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Abstract

Compliance is a key factor during physical interactions between agents
and objects, allowing delicate and robust manipulation. Such a compli-
ance can reside in human and robotic hands, as well as in objects present
in the environment. This Thesis arose from the quest for mechanical
conditions fostering object manipulation, and shaped as an investigation
on techniques to model and control the compliance in soft interactions.
Human and robotic hands are considered, functional and biomechanical
models are discussed, devised and validated. To deal with unpredictable
configurations assumed by intrinsically and passively-compliant un-
deractuated robotic hands, a solution based on magnetic actuation is
proposed. The exploitation of small magnetic elements allows also to
simplify the robotic end-effector design by relying on local interactions
to manipulate extremely deformable objects like garments. Moreover,
mechanical forces exchanged during physical interactions are used to
devise a control strategy for human-robot cooperative grasping, relying
on a novel contact model exploiting linear elastic patches to ensure the
contact permanence. The Research work contained in this Thesis shows
that developing techniques for implementing robotic soft interactions is
feasible and can significantly broaden the spectrum of robotic applica-
tions in real-world scenarios. An extensive experimental validation of
the theoretic work supports the discussion.
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Introduction

Soft interactions are the fil rouge running through this Thesis.
During such interactions, humans and robots will exchange forces
among them and with the environment, posing several Research chal-
lenges. This work wants to be a contribution to the development of
modelling and control tools for effective autonomous and human-robot
cooperative task execution.

In this work, the term softness will refer to different types of com-
pliance: soft actuation, soft materials and soft environment.

Robot-environment, human-robot, human-human and robot-robot
interactions will be investigated, with particular focus on grasping tasks.
As it will be evident in the following, the actual core of soft interactions
lies in the way in which the human hand structured the way we interact
with the world. Human hands, indeed, are soft and compliant, meaning
that the materials they are made of easily deform under interaction with
the environment, both at the skin and articular levels, servoing the hand
configuration to the object shape and to the task to be accomplished.
This adaptability of the hand allows interactions that are delicate and
robust at the same time. However, whenever the softness is present
in hands or in objects, several challenges appear, due to the difficult
predictability of the way in which the soft structure deforms during
interactions. Basically, this is the reason why the world of robotic
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grasping started a recasting in the last 15 years. Although great steps
have been made, grasping modelling and actuation strategies for soft
interactions are still far from being assessed. In general, modelling de-
formations is an extremely complex task, requiring object-specific and
material-specific assumptions. Moreover, such assumptions are usually
affected by several simplifications, leading to unavoidable mismatches
between what happens in the real-world and what happens in the sim-
plified representation. In addition, when more realistic representations
are implemented, they allow to reduce the aformentioned mismatches
at the cost of higher computational burden. Hence, such solutions are
usually not suitable for real-time robotic applications. In this Thesis we
will not focus on modelling deformations, but we mainly discuss how
to model key components to control soft interactions occurring with
soft hands or soft objects present in the environment.

Soft hands have usually soft actuation, which is inspired by the
human neurophysiology. To say it with an engineering metaphor, there
is a sort of software compliance in the human hands, residing in the way
in which the brain coordinates the motion of the fingers. The hand artic-
ulations, indeed, are not controlled joint-by-joint, but through actuation
patterns (called synergies) controlling multiple joints through coordi-
nated strategies. Moreover, as soon as some parts of the hand contact
an object, joints are controlled by the brain so to maximize the grasp
robustness according to the task to be performed. This implies that dur-
ing a successful interaction, the hand adapts to the object shape, while
satisfying acquired, implicit constraints related to the task execution.
Inspired by the human hand, the research line on Soft Manipulation
developed the fist underactuated, compliant robotic hands. As it will
be discussed in Part A of this Thesis, in such hands, the exploitation
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of passive elements and proper transmission systems allows to control
the motion of all the joints by realizing coordinated actuation patterns
that kinematically constrain the underactuated joints motion. Moreover,
the transmission system is designed so to allow the hand to adapt to the
object shape after the contact has been established. We will refer to this
behaviour with the expression soft actuation.

A further step towards the softness exploitation consists in devel-
oping robotic hands made of soft materials, i.e. highly deformable,
elastomeric compounds. Such hands are intrinsically soft and under-
actuated, meaning that they are intrinsically capable of adapting to the
object shape, realizing delicate and enveloping interactions, similarly to
what the human hand does.

Robotic hands with soft actuation and hands made of soft materials
pose to the robotic community the challenges of developing i) suitable
tools for modelling the underactuated behaviour and ii) proper strategies
for the control of such devices. In this framework, a minimalistic and
functional approach to model and control such hands will be presented
in Chapter 1: The Closure Signature of two hands representative of
the aformentioned types of softness will be devised for different types
of grasps, and an extensive experimental evaluation will be provided.
Problems related to the difficult control of intrinsically soft hands will
be analyzed more in detail in Chapter 2, where we will investigate the
possibility of providing such hands with magnetic actuation to cope with
uncertainties in control, and to provide additional Degrees of Actuation.

The neurophysiological actuation of the human hand, joined with
the high modularity of its morphological structure (about 27 little bones
and 15 articulations, 20 Degrees of Freedom), provides the human
hand with high dexterity, allowing to successfully accomplish tasks
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requiring fine manipulation. One paradigmatic example of such tasks is
the garment folding and unfolding, where the intrinsic deformability of
the object allows the object to potentially deform in infinite different
ways. This extreme, intrinsic deformability makes the autonomous
manipulation of such items really hard, opening several challenges
related to the strategies needed to establish and maintain the desired
grasps. In this respect, Chapter 3 will consider a robotic end-effector
that has to interact with a garment present in the environment, and we
will framework this study case in the context of soft environment. We
will propose to exploit Mag-Gripper, a novel robotic hand that is simple
in its design, but exploits the magnetic attraction to perform precise and
repeatable task execution.

As mentioned before, humans are soft, and one of the consequences
is that during physical interactions our muscoloskeletal behaviour can
be modelled by means of spring-damper systems. In Chapter 4, we
will consider soft interactions between humans and robots mediated by
a large object, and we will devise a robot control strategy relying on
the Extended Patch contact model, which is specifically designed for
extended, elastic contacts.

In closing, in Chapter 5 we will apply the theory of grasping for
devising a biomechanical model of a posture of the human hand suitable
for writing on touchscreen devices. In such a posture, called FingerPen,
the hand grasps the hand itself, in a soft interaction that merges the
writing tool and the gesture in a single operating organ.

The material of this Thesis is organized in two parts: Part A will fo-
cus on soft interactions for autonomous robotic manipulation (Chaps. 1,
2, 3), while Part B will focus on human-robot and human-human soft
interactions (Chaps. 4, 5). At the end, conclusions are drawn.
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Main Contributions

The main contributions of this Thesis are here listed for the sake of
conciseness:

• Extensive validation of the Closure Signature, a functional model
for soft hands, suitable to represent the behaviour of such devices
during closing motions. Tendon-driven and pneumatic hands
have been used, and different types of grasps were investigated.
The work has been published in M. Pozzi, S. Marullo, G. Salvietti,

J. Bimbo, M. Malvezzi and D. Prattichizzo. “Hand closure model for

planning top grasps with soft robotic hands”, in The International Journal

of Robotics Research, 2020.

• Proposal of magnetic actuation for soft hands: to counteract diffi-
culties in the control of soft hands, magnetic funnels generated
by magnetic elements embedded in strategic locations of such
devices can be exploited. Physics laws for modelling electro-
magnets and permanent magnets were applied to uncertainty
compensation, affordance exploitation, augmentation of the De-
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grees of Actuation and non-contact manipulation. The content
of this work has been submitted for publication in S. Marullo,

G.Salvietti, D. Prattichizzo, “On the use of magnets to robustify motion

control of soft hands”, for Soft Robotics, 2021.

• Novel approach to garment manipulation: to achieve repeatable
manipulation of garments while dealing with their extreme de-
formability, magnetic attraction between gripper and garment can
be exploited, by embedding ornamental soft ferromagnetic plates
in key locations of the garment, leading to fast task accomplish-
ment. The work is published in S. Marullo, S. Bartoccini, G. Salvietti,

M. Z. Iqbal and D. Prattichizzo. “The Mag-Gripper: A Soft-Rigid Gripper

Augmented With an Electromagnet to Precisely Handle Clothes”, in IEEE

Robotics and Automation Letters, Oct. 2020.

• Novel contact model and robot control strategy for human-robot
cooperation focused on transportation of large objects. To have
contact permanence, linear elastic compliance is required at the
area of interaction between object and robot, leading to a linear
distribution of the contact pressure. Proper pressure and force
constraints allow to retrieve robot velocities. Work published in

S. Marullo, M. Pozzi, D. Prattichizzo and M. Malvezzi, “Cooperative

Human-Robot Grasping With Extended Contact Patches”, in IEEE Robotics

and Automation Letters, Apr. 2020.

• Novel posture of the hand for writing on touchscreens without us-
ing pens: a biomechanical model of a hand posture merging tool
and gesture is presented and compared with the most common
way to write on a touchscreen, i.e. with the index finger only. An
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extensive user-study accompanies and validates the theoretical
discussion. Work published in S. Marullo, M. Pozzi, M. Malvezzi and

D. Prattichizzo, “Analysis of postures for handwriting on touch screens

without using tools”, in Scientific Reports, Jan. 2022.



Part A

Soft Robot-Environment
Interactions



Soft Robot-Environment
Interactions

This part of the Thesis focuses on soft interactions for autonomous
robotic manipulation tasks.

Autonomous manipulation in unstructured environments is an open
challenge in robotics [1], requiring the development of advanced al-
gorithms for grasp planning and control (software) and cutting-edge
robotic hands and grippers (hardware). Modularity and synergistic ap-
proaches between software and hardware solutions are strategic means,
allowing to decentralize and distribute the intelligence of the system
among the different components.

Providing robots with the capability of interacting in a dynamic en-
vironment that requires fine perception and high dexterity is paramount,
since robots are expected to autonomously perform some tasks or sub-
tasks, either in industrial either in service settings. Moreover, as robots
get closer to humans, their ability to safely interact with unstructured
environments is much more relevant than their force or velocity per-
formance, and the adoption of soft end-effectors becomes crucial [2].
Compliant and underactuated robotic hands have been studied since
the late 1970’s [3, 4]. More recently, advancements in the field of soft
robotics boosted the creation of the first completely soft manipulators
and grippers [5]. Nowadays, there is a growing need of mathematical
tools and shared standards to tackle the challenge of soft manipula-
tion, by devising methods that are general enough to be applicable to
different robotic setups.
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Moreover, adapting robots to perform tasks requiring complex dex-
terity (e.g., the manipulation of deformable objects) poses several chal-
lenges. Deformable objects, indeed, cannot be grasped according to clas-
sic grasp planning methods [6], and the manipulation strategy strongly
depends on the object global and local configuration.

In this Thesis, we will discuss the case of garments, extremely
deformable objects whose configuration during manipulation is signifi-
cantly affected by the grasping points and the handling arm trajectory.
Relatively small changes in the grasping points can cause a significant
change of the garment configuration, potentially leading to a task fail-
ure. Garments are the quintessence of deformable objects. However,
what in garment makes the autonous manipulation difficult (i.e., the
compliant deformability) can be a game changer when embedded in
robotic end-effectors. Exploiting mechanical compliance in a robotic
end-effector, indeed, allows the end-effector to adapt to the object shape,
and is particularly useful to face the typical issues related to sensitivity
to uncertainties in sensing and control that strongly affects classical
grasp planning methods [7, 2]. Such a mechanical compliance can be
achieved in active or passive manners. Active compliance is related
to fully actuated (or hyper-actuated) usually rigid hands (such as the
Allegro [8] and Awiwi [9] hands), and can be achieved by controlling
separately each joint. The control of these hands can be fast and very
accurate, but mechanical and computational complexity are very high,
reflecting on high manufacture price and chance of hardware failure.
Much more robust hands can be achieved by exploiting passive com-
pliance. In these hands, fingers, palm and also joints can be made
of elastomeric and flexible materials. Spatial volume and mechanical
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complexity are reduced, and the choice of proper materials allows to
lower the impact forces, realizing a safe robot-environment interaction.

In soft-rigid hands, links are not made of soft materials, and com-
pliance resides in the actuation system. In such hands, indeed, some
passive elements (e.g., springs) are used together with a transmission
system (e.g., gears, pulleys, tendons) to distribute the actuation torque
also to the underactuated joints [4], making these joints passively driven
with kinematically constrained motion. Moreover, the mechanical struc-
ture of these devices is such that the transmission system allows the
motion of some joints to continue after the contact has occurred [2],
so to allow the hand to adapt to the object shape. An example of such
hands is given by the Pisa/IIT SoftHand [10], a compliant, underactu-
ated, anthropomorphic robotic hand. Such a hand is a tendon-driven
actuated device with one motor and 19 degrees of freedom, designed
to reproduce the first human hand synergy [11]. In the structure of
this hand, rolling contact articulations substitute almost completely the
standard revolute joints, and just one tendon routes all joints by using
passive anti-derailments pulleys.

It is clear now that embedding passive compliance in the mechanical
structure of robotic hands allows such hands to be adaptable, versa-
tile, and robust. Delicate manipulation and robust grasps [4] can be
achieved through an enhanced hand/object adherence, compensating
also for uncertainties on the desired grasping points [2]. Hence, part of
the grasping system “intelligence” can be embodied in the hardware
design, instead of being exclusively allocated in the planning and con-
trol algorithms. Despite remarkable advantages in using soft hands,
indeterminate kinematics and a priori unpredictable deformations lead
classic strategies for hand modelling and control [12] to be no longer
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suitable. Adapting classical techniques to grasp planning with soft
hands is not the most efficient way, since classic grasp planning meth-
ods prescribe the exact position of fingers for ensuring force closure,
but do not encapsulate information on how the hand actually behaves
while performing a given motion. Classic methods need to be extended,
or even overcome, so to exploit the intrinsic features of soft hands [13].

The Closure Signature that will be presented in Chapter 1 follows
this philosophy: It is a functional model that can be retrieved for dif-
ferent robotic hands and, by modelling closure motions, it is able to
describe how the chosen device actually works. In the planning phase,
the CS-alignment gives a way to increase grasp success, and exploits
the hand compliance to gain adaptability to the object shape, safe in-
teraction with the environment, and robustness to uncertainties coming
from sensor inaccuracies. The Closure Signature can be computed for
soft-rigid hands as well as for intrinsically soft hands (i.e., made of
highly compliant material). An example of intrinsically soft hand is the
RBO Hand 2, made of 7 pneumatic actuators, 5 for the fingers and 2 for
the palm [14]. Actuators are made of silicon, sustained by a 3D printed
structure, and surrounded by passive wires constraining their motion.

In Chapter 1, the Closure Signature of the Pisa/IIT SoftHand and of
the RBO Hand2 will be computed for different types of grasps.

As previously said, one driving force for soft hands inception was
the simultaneous need of enhancing grasp robustness and stability, and
the need of reducing hand complexity and encumbrance. However,
the intrinsic underactuation of these hands yield a not precise motion
control. Hence, to overcome the dexterity limitations [15, 16] due to
underactuation and software/hardware motion coupling [17], current
research on soft manipulation is turning again to complexity both in
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design and control (as the RBO Hand 3, evolution of the RBO Hand 2,
exemplifies [18]). Classic approaches to DoAs augmentation, indeed,
rely on the replication of the same actuation system, e.g. increasing
the number of inflatable chambers in pneumatic structures [18]. In
this Thesis, instead, in Chapter 2 we propose to equip soft hands with
magnetic elements, acting as additional degrees of actuation (DoAs).
Interestingly, magnetic actuation for manipulation can be achieved by
exploiting magnetic elements that can be easily embedded in existing
hands and designs. Moreover, magnetic DoAs provide an actuation on
specific locations of the hand. Hence, they can act synergistically with
the more global effect provided by tendons and/or pneumatic actuators,
arousing a complementarity enriching the device’s capabilities.

One of the main reasons behind the exploitation of magnetic ac-
tuation resides in the possibility of performing manipulation tasks by
interacting with the environment in specific points. The need of grasp-
ing in specific locations is deeply felt when performing autonomous
garment manipulation. In this respect, in Chapter 3 we propose Mag-
Gripper, a novel type of jaw gripper augmented with an electromagnet.
Small ferromagnetic parts embedded in the garment as ornamental or
brand elements are involved in the attractive gripper-fabric approach.
Although our long-term vision involves the manufacture of garments
that can be easily manipulated by robots, Mag-Gripper features an im-
mediate field of application in the robotic community: It is meant to
be a support tool for the research in Machine Learning-based garment
manipulation, where high repeatability in grasp location is required for
data collection.



1 Functional modelling
for soft hands

This Chapter is focused on grasp planning with soft hands. The Closure
Signature functional model of a robotic hand will be discussed from a
theoretical point of view, and then computed for the compliant Pisa/IIT
SoftHand [10] and for the intrinsically soft RBO Hand 2 [14].

To investigate the CS capability of properly modelling different
types of grasps, the Closure Signature of such hands will be computed
for power, lateral and pinch grasps. Then, a modular approach to
grasp planning will be proposed: on one side, being object-centric,
on the other side, being hand-centric. The Closure Signature is the
connecting element allowing the synergy of the two modules. The
CS, indeed, maps a given hand closing motion to the direction along
which the largest deformation occurs during that motion. This direction
is akin to the grasping direction of a parallel-jaw gripper. Based on
these considerations, we will show that top-grasps can be successfully
planned by aligning the hand CS to a suitable direction on the object,
retrieved using a grasp planner for parallel-jaw grippers. In particular,
we integrated the CS-alignment (see Fig. 1.1) with a state-of-the-art
grasp planner for parallel-jaw grippers relying on deep learning [19].

In this Chapter, hence, we propose the Closure Signature functional
model as a viable strategy to actuate and control the behaviour of a soft
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Fig. 1.1 Block scheme of the CS-alignment proposed in this Chapter. Given a certain
robotic hand and a possible closing motion, the Closure Signature indicates a “preferred
grasping direction” for that closure, that can be thought as the grasping direction of a
parallel-jaw gripper and can be aligned with a suitable direction on the object.

robotic hand, rather then focusing on the difficult-to-retrieve deforma-
tions of the hand when interacting with objects and environments1.

1.1 The Closure Signature: a hand functional model

The Closure Signature (CS) of a hand is a functional model aimed at
capturing the hand function, rather than its kinematic or morphological
structure. The CS is specific for a given hand and a given closing
motion performed by the hand, meaning that the same hand can have
different CSs depending on the considered closing motion. Being aimed
at providing insights on the hand capabilities, the CS represents how the

1This Chapter contains an extract of the work published in [20].
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hand closes in free space, i.e., without considering specific interactions
with objects or surfaces.

In principle, the CS could be applied to any robotic hand performing
any closing motion. However, it is mainly conceived for soft hands.
Rigid hands, indeed, can be modeled as kinematic chains using well
known kinematics and dynamics principles. Soft hands, instead, are
difficult to model with a unique formalism, as they have very different
designs and actuation systems. The CS was introduced to fill this gap.
The following sections extend the theoretical and experimental work
firstly introduced in [21], and show the generalizability of the CS to
different robotic hands and different grasp types.

Computation of the Closure Signature (CS)

The computation of the Closure Signature requires to identify and track
a set of reference points located on the hand. The CS of the hand
performing a given closure motion is then defined as the direction along
which the set of reference points is most deformed during that motion,
and is characterized by an application point oh and a unit vector vCS.

Reference points can be placed in different locations, however they
must be representative of the analyzed closing motion. Trivially, if
during a hand closure the palm is still, reference points should be placed
in the fingers rather than in the palm. As long as reference points are
chosen with the rationale of favouring the parts of the hand that move
more during the selected motion, the transformation has low sensitivity
to the reference points location [22].

For a given robotic hand, let us consider nre f reference points. At
the end of the tracking procedure, we have a path with ns samples for
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each reference point

r j(k) ∈ R3, j = 1, . . . ,nre f , k = 1, . . . ,ns.

Let us indicate with r j,in = r j(1) and r j, f in = r j(ns) the coordi-
nates of a generic reference point j in its initial and final configuration,
respectively. We assume that the variation of the reference points
can be represented as a linear transformation T, i.e., for each point
r j ∈ R3, j = 1, . . . ,nre f , we can write

r̂ j, f in = Tr̂ j,in, (1.1)

where the symbol ˆ indicates the homogeneous representation of
the vector.

The 4×4 matrix

T =


t1 t2 t3 t4
t5 t6 t7 t8
t9 t10 t11 t12

0 0 0 1

=

[
A b

0 0 0 1

]
(1.2)

is a homogeneous matrix, where A is a 3×3 matrix representing the
linear map and b is a three-dimensional vector representing the transla-
tion [23].

Let us define the vectors containing the initial and final positions of
all reference points, rin = [rT

1,in, · · · ,rT
nre f ,in]

T and r f in = [rT
1, f in, · · · ,rT

nre f , f in]
T
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respectively. According to Eq. (1.1), we can write

ˆ̂r f in =


T 0 . . . 0
0 T . . . 0
...

...
. . .

...
0 . . . 0 T

 ˆ̂rin,

where the symbol ˆ̂ indicates that the vectors contain the homogeneous
representations of all the single vectors they include.

To find matrix T we can solve the linear system

r f in = Mt, (1.3)

where matrix M ∈ R3nre f×12 is defined as

M =

 M1

. . .

Mnre f

 , M j =

r̂T
j,in 01,4 01,4

01,4 r̂T
j,in 01,4

01,4 01,4 r̂T
j,in

 ∈ R3×12

and vector t ∈ R12 contains the components of T (see Eq. (1.2)),

t =
[
t1, · · · , t12

]T
. The resulting T matrix represents the average trans-

formation between the initial and final reference points positions.
The solution of the system depends on the properties of matrix

M. Basically, if rank(M) < 12, the system admits infinite solutions,
and is not possible to identify a unique T matrix. This case occurs
when nre f < 4 or when in the initial configuration they lie on the same
plane. However, the problem can be reformulated by considering more
restrictive conditions on T (e.g., if a planar transformation is assumed,
only 6 elements of T are independent).
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If matrix M is square and full-rank, the system has a unique solution,
and T satisfies exactly Eq. (1.1) for all the reference points.

If matrix M is full-rank, but nre f > 4, the system does not admit a
solution in general, i.e., it is impossible to find a homogeneous trans-
formation able to represent the displacement of all the reference points.
In this case the T matrix elements evaluated by means of M pseudo-
inverse are those minimizing the overall quadratic error ∥Mt− r f in∥2.
T represents then an average approximation of all the motions of the
reference points.

Matrix T represents a generic linear transformation, that can be fur-
ther decomposed into a composition of primitive transformations [24],
that can be written in a compact way as:

T = TrbTde f .

where Trb refers to a rigid body motion and Tde f to a deformation.
We relate the CS to Tde f assuming that the non-rigid part of the mo-

tion is strictly related to the grasp tightness. This consideration comes
from literature on grasp analysis. [25] demonstrated that, in a grasp
such that internal forces can be exerted, i.e., the object can be squeezed,
the rigid body motions are defined as coordinated hand/object motions
in which contact forces are constant, while the non-rigid deformation
is related to contact force variations. [26] showed that contact force
variations due to hand activation are internal, i.e., they are self balanced,
and demonstrated that they play a key role in grasp stability. In other
words, the rigid body component mainly contributes to the motion of
the grasped object, while the non-rigid part is strictly related to the
grasp tightness. This distinction characterizes the hand motion itself,
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and is not object-dependent. This is why it can be applied to the CS
computation, even though the CS is based on the analysis of the free
hand motion.

Among the available methods in literature to decompose a generic
4×4 matrix into a product of simpler transformations, we require one
that allows the distinction between rigid and non-rigid components.
The extraction of the translation part of the rigid body motion from the
starting matrix T is straightforward considering (1.2). The matrix A in
Eq. (1.2) can be written, with the polar decomposition, as the product

A = RU,

in which R ∈ SO(3) is orthogonal and represents a rigid rotation, and
U is a positive-semidefinite Hermitian matrix that takes into account
the non rigid deformation [27]. U in general contains both anisotropic
scaling and shear deformation components, however it is possible to
identify three principal directions defining a frame with respect to which
the transformation is a pure anisotropic scaling. Such directions can
be identified as the eigenvectors of U matrix, while the corresponding
eigenvalues represent scaling factors.

Definition: Closure Signature. Let us indicate with λi and vi (i =
1,2,3) the eigenvalues and the eigenvectors of the matrix U, respectively,
and with oh the centroid of the reference points trajectories computed
as oh = mean(r j(k) ∈ R3,k = 1, . . . ,ns, j = 1, . . . ,nre f ). The closure
signature CS is defined as the direction of the eigenvector corresponding
to the smallest eigenvalue of U, vCS = [vcs,x,vcs,y,vcs,z]

T, applied in oh.
□
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(a) (b)

Fig. 1.2 Power grasps with the RBO Hand 2. (a) “Heavy wrap” closing motion: from
fully open (left) to fully closed hand (right). Reference points are indicated with red
dots over the open hand. (b) Example of “lateral pinch”.

1.1.1 Closure signature for power grasps

The CS of the Pisa/IIT SoftHand complete closing motion (i.e., from
completely open to completely closed) was computed in [21]. The
top-grasps performed using this information had greater success rate
and robustness with respect to a baseline method.

In this Chapter, the generality of the CS computation for power
grasps is shown by applying it to the pneumatically actuated RBO
Hand 2 [14], that significantly differs from the Pisa/IIT SoftHand.

Concerning the complete closure of all the fingers, we investigated
a motion resembling the first hand synergy (see [28]), obtained by
actuating all the RBO Hand 2 DoAs. Seven reference points (shown in
Fig. 1.2a), 5 located on the fingertips of the hand and 2 on the palm, are
chosen and tracked with a motion capture system (Motion Analysis).
We will refer to this closure with the expression “heavy wrap” [29].

Moreover, we will investigate another type of power grasp, the
“lateral pinch” [30] (see Fig. 1.2b), considering a subset of 4 reference
points located in the palm and in the thumb and index fingertips. Fig. 1.3
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(a) (b)

Fig. 1.3 RBO Hand 2: CS computation (oh, vCS) for two different closing motions.
The device is a right hand and is seen from the top. The points are expressed in a
reference frame placed on the hand wrist, with x-axis pointing towards the middle
finger, y-axis pointing in the direction of the thumb and z-axis exiting from the plane.
Magenta circles and red stars indicate initial and final positions of the reference points,
respectively. (a) Closure signature of the heavy wrap motion (shown in Fig. 1.2a),
when considering 7 reference points: 5 in the fingertips, 2 in the palm. (b) Closure
signature of the lateral pinch motion that corresponds to the grasp shown in Fig. 1.2b,
when actuating only index, palm and thumb. Reference points are placed in the palm
and in the fingertips of the thumb and of the index.

reports initial and final positions of the reference points and the Closure
Signature corresponding to these two different motions.

In a reference frame placed on the hand wrist, with x-axis pointing
towards the middle finger, y - axis pointing in the direction of the
thumb and z- axis exiting from the plane, the CS for the power grasp
is vCS = [0.9164,−0.0592,−0.3958] mm and oh = [100,5,−30] mm.
The CS for the lateral pinch is vCS = [0.8847,0.2668,−0.3822] and
oh = [89,29,35] mm. As it can be noticed, the CS direction, vCS,
slightly varies between the two cases, but this is not the most relevant
aspect. What really makes the difference in the closure description -
and also in the experiments - is that in the second case the center of the
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CS, oh, falls between the thumb and the index, thus allowing a good
alignment with the object to perform a lateral pinch, as in Fig. 1.2b.

1.1.2 Closure Signature for precision grasps

Most of the soft hands known in literature are designed to perform
power grasps where fingers completely envelop the object. Using these
hands to perform precision grasps is often an issue, due to the low
number of controllable degrees of freedom (DoFs) and to the lack of
accurate on-line proprioceptive measurements necessary to precisely
place the fingertips over an object.

To properly describe a precision grasp exploiting the CS approach,
we considered appropriate to split the closing motion in two subse-
quent sub-movements: i) from a starting configuration to a pre-shaping
configuration, where a pre-shaping configuration is intended to be an
intermediate configuration of the hand during the closing motion, and
ii) from the pre-shaping configuration to the completely closed hand
configuration. As we showed in [20], tracking the reference point during
motion i) or during the complete motion i)+ ii) leads to a little variation
in the CS direction. However, what changes most is the application
point oh. When dealing with precision grasps, we considered more
meaningful to track the reference points only in step ii). The rationale is
that hand pre-shaping is important to guarantee contacts at the fingertips.
Approaching the object with the hand partially closed, in fact, allows to
perform a small closure near the object, without executing the whole
closure, which might cause undesirable collisions with the object, often
reorienting the object and causing a grasp failure.



1.1 The Closure Signature: a hand functional model 24

(c) (d)

Fig. 1.4 Pisa/IIT SoftHand: Partial closure for precision grasps. (c) Example of pinch
grasp: Initial configuration (partially closed hand) and final configuration (fully closed
hand) of the partial closure motion.

Hence, to provide an example of Closure Signature for precision
grasp (Fig. 1.4c), we used the Pisa/IIT SoftHand and considered refer-
ence points located only in the thumb (fingertip, proximal phalanx) and
the index (fingertip, middle phalanx), whose trajectories were tracked
in the Gazebo simulator. The closure motion under consideration starts
with the hand partially closed (half of its range of motion), and ends
with the hand fully closed (see Fig. 1.4d). Assuming a reference frame
placed on the hand wrist with x-axis pointing towards the middle fin-
ger, y-axis pointing in the opposite direction with respect to the thumb
and z-axis exiting from the plane, vCS = [0.74,0.67,−0.01] mm and
oh = [98,−36,−31] mm, shown in Fig. 1.5.
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Fig. 1.5 Pisa/IIT SoftHand: CS computation (oh, vCS) for performing precision
grasps. The device is a left hand and is seen from the top. The points are expressed in
a reference frame placed on the hand wrist, with x-axis pointing towards the middle
finger, y-axis pointing in the opposite direction with respect to the thumb and z-axis
exiting from the plane. Magenta circles and red stars indicate initial and final positions
of the reference points, respectively. Closure signature for the motion illustrated in
Fig. 1.4d, considering reference points placed in the fingertip and proximal phalanx of
the thumb and fingertip and middle phalanx of the index.
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Fig. 1.6 Block diagram of the proposed approach.

1.2 Grasp planner

As previously mentioned, the Closure Signature is ment to be a tool
for grasp planning and execution with soft hands. Our grasp planner is
composed of two modules, one object-centric and the other one hand-
centric. The former is related to grasp planning with the aid of Artificial
Intelligence, and we named it GQ-CNN module. Given a depth image of
the object to be grasped, it exploits all the encapsulated information and
provides an on-line estimate of the optimal grasp (center and direction)
to be performed. The latter module is related to soft hand modeling,
and we termed it CS module. Chosen a robotic hand, such a module
computes off-line the functional model of a certain closure (i.e., the
previously defined Closure Signature), thus providing an estimate of
the best way to align the hand to an object for performing top-grasps.
As shown in Fig. 1.6, and detailed in the following, the two modules
are put together to align the hand to the object. Then, the grasp can be
executed.

As we mentioned above, the idea behind this module integration is
that the CS allows to approximate a hand closure with a direction, and
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this direction can be thought as the closing direction of an equivalent
parallel-jaw gripper. In other words, the CS abstraction allows to use a
planner that was trained for parallel-jaw grippers without retraining it,
even if the end-effector is different.

In the proposed approach, the softness of the hand is not explicitly
modeled, but it is the condition that actually allows us to apply such a
simplified grasp planning strategy. The passive adaptability typical of
soft hands allows to compensate for the adopted simplifications (grasp
planner for rigid parallel-jaw gripper, hand modeling as a jaw-gripper),
to cope with uncertainties, and to safely interact with the environment.
This would not be possible with rigid hands, for which even small
uncertainties in the fingers positioning might lead to unwanted and
dangerous collisions with the environment [13].

1.2.1 Grasp Quality Convolutional Neural Network
(GQ-CNN) module

The Grasp Quality Convolutional Neural Network (GQ-CNN) has been
presented by [19]. It is the core component of the so-called CEM-
augmented DexNet 2.0 grasp planner, which can be used for grasp
planning, since it provides an estimation of the most robust grasp under
uncertainties in sensing and control. The planner considers a parallel-
jaw gripper performing top-grasps of objects resting on a planar surface.
Given a depth image of the object to be grasped, a set of grasp candi-
dates is sampled with the rejection sampling algorithm [31], and the
robustness of each candidate is evaluated by the neural network. This
step is shown in the first image in Fig. 1.7, where the different colors
correspond to different robustness values. After this preliminary step,
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the most robust grasps, i.e., the “elite grasps”, are selected. Then, the
cross-entropy method (CEM) iteratively computes a Gaussian Mixture
Model of the most robust grasps, and new grasp candidates are sampled
from this distribution (“sampled grasps”). This procedure is iterated
for a predefined number of times, after which the most robust grasp is
selected (see Fig. 1.7). Its center (oNN) and direction (vNN) are returned
as outputs of the planner.

The image of the object to be grasped is acquired thanks to an over-
head depth camera, and the estimation of the grasp candidate robustness
is achieved by feeding the GQ-CNN with the candidate center depth z
relative to the camera and the depth image. The grasp robustness is com-
puted by means of the so-called robustness function Q, which, given
the grasp u and the point cloud y of the object, returns the probability
of the grasp success S:

Q(u,y) = E[S | u,y].

Uncertainties in sensing are included in the problem formulation [19].
The approximation Qθ (u,y) of the function Q was learned by the GQ-
CNN, and the evaluation on the grasp candidates allows to apply a
grasping policy selecting the grasp that maximizes the success:

πθ (y) = argmax
u∈C

Qθ (u,y),

where C is a discrete set of grasps respecting some constraints. Learn-
ing the robustness function Q instead of the policy π allows enforcing
specific task-constraints without the necessity of retraining the neural
network. The GQ-CNN has been trained only on the synthetic data
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Fig. 1.7 Subsequent steps for finding the most robust grasp.

collected in the so-called Dexterity Network (Dex-Net) 2.0, which is a
dataset consisting in 6.7 million data points and associating parallel-jaw
grasps with analytic grasp quality measures. Although the neural net-
work was trained only on synthetic data, the CEM-augmented version
of the planner achieved a 94% of success rate [19].

In addition to the grasp center oNN and direction vNN , our object-
centered module outputs also the estimated actual width of the object
along the grasping direction. The expression “actual width” of the
object refers to the width of the object that will be actually involved
during the grasp execution, and neglects lower parts of the object that
cannot be reached by the hand during the top-grasp.

We devised an algorithm that provides such estimate based on the
inspection of the data captured by the depth image. First, a mask is
applied to the raw depth data in order to store only the data related to
the object to be grasped. Let us denote with V the set of these valid
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points. Each element of V contains the spatial coordinates of the pixel
it refers to with respect to a reference system associated to the depth
camera. Then, in the set of candidates C , we store only the elements
of V satisfying the condition |z− zG| < ε and belonging to the line
passing through oNN = [xG,yG,zG] with angular coefficient related to
the estimated grasping direction vNN . ε is the largest projection on
the vertical direction of the distance between the fingers and the palm
during the closing motion. Among the points stored in C , i.e., all the
points lying on the line, we consider only those that are antipodal with
respect to the grasp center, and we search for the two that are at the
maximum distance. We considered this distance as the estimated size
of the object along the grasping direction.

1.2.2 Closure Signature (CS) module

The CS module implemented for the experimental validation of the
proposed approach involves the off-line computation of the CS corre-
sponding to:

• the complete closure motion (heavy wrap) of the Pisa/IIT Soft-
Hand (computed in [21]);

• the complete closure motion (heavy wrap) of the RBO Hand 2
(computed in the previous section);

• a partial closure motion of the RBO Hand 2 leading to a lateral
pinch (computed in the previous section);

• a partial closure motion of the Pisa/IIT SoftHand leading to a
precision grasp (computed in the previous section).
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It is worth remarking that, in general, if the considered robotic hand
can perform more than one closure motion (e.g., power and precision
grasps), a list of closure signatures can be associated to the hand. In this
case, the CS module could automatically perform an on-line selection
of the most suitable CS to be used for grasp execution. The choice
could be based on the object size, computed, for example, as previously
explained. To select the best CS, one could either leverage intuitive
rules as those that we applied in the experiments here described (e.g.,
heavy wrap for objects with a size that is comparable with that of the
hand, lateral pinch and precision grasp for smaller objects), or rely on
an algorithm that compares the object size with a certain size associated
to the closure signature. A strategy could be the following: among the
closure signatures with sizes that are bigger than the object size, the CS
whose size is the closest (or second closest) to the object size would be
a good candidate for the grasp. Research on establishing this “CS size”,
however, is still on-going, since it is not trivial to identify a general
way of evaluating the size of a closure only based on the motion of the
reference points, and taking into account that the hand has to achieve a
certain orientation over the object.

1.2.3 Modules integration: grasp planning with soft hands

The Closure Signature provides a simplified way to treat soft hands char-
acterizing a specific closing motion that the hand can achieve through
a direction of maximum closure applied at a certain point. The ob-
tained center and direction can be thought as the grasping center and
direction of a parallel-jaw gripper. This is the fundamental principle
of the proposed integration between the GQ-CNN module and the CS
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Fig. 1.8 General CS-alignment procedure.

module. We named Planning with soft hands the resulting module,
which was then integrated with the Grasp Execution module, allowing
object approaching and grasping (Fig. 1.6).

The GQ-CNN output data and the CS hand model are combined
to perform the so-called CS-alignment, i.e., the alignment between the
hand CS and the grasp angle and center retrieved by the neural network.
In general, this can be achieved by computing the transformation TCS

that brings oh on oNN and aligns vCS with vNN (see Fig. 1.8).
Let us consider a world reference frame {W} that has the xy-plane

parallel to the surface over which the object is lying, and the z-axis
exiting from it. Since the GQ-CNN outputs assume that the direction of
closure of the gripper lies always on the table, the fist step is to align
the CS parallel to the xy-plane.

Let us indicate with α the angle between CS and the xy−plane,
and with θ the angle between CS projection on xy−plane and vNN ,
these angles are not shown in Fig. 1.8 for the sake of clarity. The
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overall transformation TCS to be imposed to the hand reference frame to
perform the CS-alignment will result from the combination of a rotation
of α with respect to an axis parallel to the plane xy, a rotation of θ with
respect to the z-axis, and a translation between oh and the center of the
grasp oNN .

1.3 Experiments

The experimental validation of the proposed approach consists of three
experiments.

• Experiment 1 evaluates the capabilities of the grasping policy in-
tegrating CS-alignment and GQ-CNN module in terms of success
rate over a large object dataset. The Pisa/IIT SoftHand is used
for performing heavy wrap power grasps.

• Experiment 2 assesses the applicability of the proposed approach
to heavy wraps performed with an intrinsically soft robotic hand,
the RBO Hand 2. Results obtained with our grasp planner are
compared to a baseline method, called S-alignment.

• Experiment 3 tests the functioning of the devised grasp planner
for performing grasps that are not heavy wraps: lateral pinch and
precision grasps.

While the advantages of using the CS when planning heavy wraps with
the Pisa/IIT SoftHand, compared to aligning the hand straight with the
object, has already been established in [21], Experiment 1 aims to verify
the success of its integration with the GQ-CNN module, that relies on a
grasp planner for parallel-jaw grippers.



1.3 Experiments 34

The purpose of Experiment 3 is to show that the CS-alignment
also works for grasps that are less commonly implemented with soft
hands. Since, to the best of our knowledge, there is no well-established
baseline in the literature for such types of grasps performed with soft
hands, comparison with other strategies remains an open problem.

1.3.1 Experimental setup

We performed experiments either with a 7 DoF Sawyer collaborative
robot arm (Rethink Robotics) or with a LBR iiwa (KUKA AG), having
an ATI Gamma 6-axis force-torque sensor (ATI Industrial Automation,
Inc.) and either a Pisa/IIT SoftHand [10] or a RBO Hand 2 [14] mounted
on its end-effector (Fig. 1.9). The depth image of the object to be
grasped was acquired with an Asus Xtion PRO Live camera (ASUSTeK
Computer Inc.) positioned in front of the robot, at a distance from the
tabletop in the range 55-70 cm, similarly to [19]. We used ROS to
implement information exchange between devices [32]. Experiments
ran on a notebook having the Intel Core i7-8750H as processor and the
Nvidia GeForce GTX 1050 as GPU. On average, the GQ-CNN module
returned an output in 0.9 s.

We tested our grasping policies on objects having different weights
and shapes. Adversarial surface properties, e.g., reflectivity, smoothness,
softness and roundness were considered. Depending on the performed
experiment, we used all or a subset of the objects that are shown in
Fig. 1.10, and whose properties are listed in Table 1.1.

The cylindrical chips can and the cuboid boxes are objects with
prototypical shapes. The funnel and the bowling pin are interesting
because they can easily roll and generate unwanted dynamic behaviors
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(a) Experimental setup with Pisa/IIT SoftHand

(b) Experimental setup with RBO Hand 2

Fig. 1.9 Experimental setup: the RGB-D camera detects the object on the table and
the robotic arm equipped with a force/torque sensor and a soft hand executes the grasp.
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Table 1.1 Physical properties of the objects used in the experiments. The chips can,
the pudding and sugar boxes, the small cube, the Lego Duplo piece and the strawberry
are taken from the YCB Dataset [33]. d and h denote object diameter and height,
respectively.

Object Size (mm) Weight (g)

chips can d = 75, h = 250 205
cuboid box 200×100×40 51
sugar box 175×89×38 514
pudding box 110×89×35 187
funnel d = 140, h = 140 45
bowling pin h = 170 17
big funnel d = 150, h = 70 96
plastic bowl d = 200, h = 75 84
hollow box 220×165×45 52
plastic toy h = 90 66
teddy bear h = 170 111
small cube h = 25 8
Lego Duplo piece 42×30×30 13
strawberry 55×43.8 18
small vial dmax = 20,h = 50 15

Fig. 1.10 Objects set (from back to
front, from left to right): hollow box,
sugar box, chips can, funnel, teddy
bear, cuboid box, big funnel, plas-
tic bowl, pudding box, bowling pin,
strawberry, Lego Duplo piece, small
cube, plastic toy. (The small cube, the
Lego Duplo piece, and the strawberry
are standard objects taken from the
YCB Dataset [33])
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when touched by the hand, due to their roundness, non regular shape,
and lightness. The plastic bowl, the hollow box, and the big funnel
are objects that should be picked up from their edges. The approach
followed in [21], based on building the bounding box of the entire
object, would lead to failures in these cases, since the grasp center
would end up to be in the hollow part of the object. The plastic toy
was chosen as it has a rather irregular surface. The teddy bear was
selected because it is made of compliant material, but is not soft and
lightweight enough to undergo large deformations modifying its shape
and spatial configuration when the hand touches it. The occurrence
of such deformations would lead to results possibly unrelated to the
planning output.

The first 11 objects were used in Experiment 1, and a subset of them
was used in Experiment 2, as they are suitable to be grasped with heavy
wraps. The small cube, the Lego Duplo piece, the strawberry, and the
small vial are relatively small objects with respect to the used hands
and might require delicate handling (strawberry). This is why they were
used in Experiment 3, when testing lateral pinch and precision grasps.

1.3.2 Experiment 1: Evaluation of the modules integration

The aim of Experiment 1 was to evaluate the CS exploitation integrated
with a grasp planner specifically designed for parallel-jaw grippers.
We performed top-grasp experiments with a right Pisa/IIT SoftHand
attached to a Sawyer robot arm.

The hand-object alignment was executed at fixed height from the
tabletop using the motion planning provided by MoveIt2. The robot mo-

2https://moveit.ros.org/
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Fig. 1.11 Examples of planned grasps for some of the chosen objects.

tion was then controlled by means of a feedback-driven state machine,
and the hand closed when a certain force threshold was exceeded due
to the occurred contact between the hand and the object. During experi-
ments, objects were placed in a random pose in the robot workspace.
Fig. 1.11 shows examples of planned grasps3. A grasp was considered
successful when the hand could stably hold the object while the arm
was lifting for 6 seconds with a velocity of 3 cm/s. For each object,
10 grasp attempts were performed. The overall success rate is 97/110
(∼ 88%). Numerical results per object are reported in [20].

1.3.3 Experiment 2: Application of the method to another soft
hand

To investigate the generalizability of the proposed grasp planning strat-
egy, we test it with the intrinsically soft RBO Hand 2. The hand Closure
Signature for the complete closure was computed as explained in the
previous section. Then, we performed top grasps over four different
objects, representative of three classes of objects that are present in
Table 1.1: those with a prototypical shape (chips can, cuboid box), those

3Note that, to better observe dynamical effects during hand-object interactions,
the chips can, the funnel and the bowling pin were always lying on the tabletop in
horizontal position, as shown in Fig. 1.11.
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that easily roll over the table top (bowling pin), and those that have a
hollow part (bowl).

To investigate if exploiting the RBO Hand 2 CS-alignment allows
better grasping performance, we compared it with the baseline hand
alignment used also in [21]. Such baseline has been called S-alignment
(i.e., straight alignment) and consists in aligning the hand middle finger
parallel to the chosen direction on the object, similarly to [7, 21].

As in Experiment 1, a grasp was considered successful when the
hand could stably hold the object while the arm was lifting for 6 seconds
with a velocity of 3 cm/s. Moreover, for each object, 10 grasp attempts
were performed. The total success rate of the CS-alignment is 90%, and
of the S-alignment is 42.5%.

1.3.4 Experiment 3: Other types of grasps

1.3.4.1 Lateral pinch

We implemented another type of power grasp with the RBO Hand, a
lateral pinch (see Fig. 1.2b), using the CS computed as in Fig. 1.3.
We tested the strategy with two cuboid objects with different sizes
(small cube, Lego Duplo piece) and one round object (strawberry).
We observed that with the strawberry and the Lego Duplo piece, the
grasp was always successful, while it always failed with the small
cube. The trends were so clear that we limited to 5 the number of trials
per object. The grasp execution was implemented as for the heavy
wrap presented above: the hand started closing when a certain force
threshold was overcome. It is interesting to notice that in the case
of the lateral pinch, such event was determined by the exploitation
of environmental constraints: the hand contacted the table, the force
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threshold was exceeded and triggered the closing motion, the fingers
slid on the table and then performed the grasps.

1.3.4.2 Precision grasp

To show that the CS model can also be exploited for closures leading to
precision grasps, we tested the previously computed CS for the index
and the thumb of Pisa/IIT SoftHand to plan precision grasps over a
small cube and a small vial (see Table 1.1 for their properties). In this
case, we chose two very small objects, requiring a precision grasp, one
with a squared base, and one with a round base. The hand pre-shaping
and the height from the table were selected according to the object size.
In particular, the hand started closing at a height such that the fingers
almost touched the table. The overall success rate is 0.75 (small cube
7/10, small vial 8/10). In this case, we used a left Pisa/IIT SoftHand
attached to a KUKA LBR iiwa robot arm.

1.4 Discussion

1.4.1 Experiment 1: The module integration works well for
planning top-grasps with soft hands

The grasping task that we consider is mainly composed of two comple-
mentary sub-tasks: object-centric grasp planning (i.e., the problem of
identifying which are the best contact point locations satisfying a given
criterion) and the grasp execution (which relies on the closing motion of
the chosen hand). The two parts have already been validated separately.
The GQ-CNN module providing the grasp planning has been compared
with other methods in [19].The CS module providing the functional
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Fig. 1.12 Some of the successful grasps with the Pisa/IIT SoftHand.

hand model involved in the grasp execution has been tested in [21], by
comparing the CS-alignment with the so called S-alignment.

In this work, we show that the integration between the two modules
not only is feasible, but also allows grasping objects that would have
been impossible to grasp with the simple bounding-box based grasp
planner used in [21]. Planning how to grasp an object based only on its
bounding box may lead to an oversimplificated representation of the
object, and cannot be successfully applied to object categories such as,
for example, hollow objects, since the hand would end up on the empty
part of the object (instead of on an edge).

Failures and successes observed during the experimental trials de-
pend on multiple aspects: the interaction between the hand and the
object, the setup features (hand characteristics, robot workspace, etc.),
and the planned grasp. Examples of successful and unsuccessful grasps
are shown in Figs. 1.12 and 1.13, respectively.
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Fig. 1.13 Some of the unsuccessful grasps with the Pisa/IIT SoftHand.

Our approach was always successful for the objects with a prototyp-
ical shape. This is something that was expected for two reasons: i) for
these objects, the neural network typically outputs a grasping point that
is very close to the object center of symmetry as seen from the top, and
ii) results described in [21] show that, with the CS-alignment, regular
objects are picked up most of the times. There was only one failure on
the sugar box, due to its weight. Also the plastic toy was grasped as if
it was a small box, and its irregular surface did not prevent grasps from
being successful.

A high success rate was obtained also for objects that can be picked
up from edges, i.e., the bowl, the hollow box, and the big funnel.
Failures with the hollow box were due to collisions between hand wrist
and object (see Fig. 1.13), whereas those with the big funnel were due
to the fact that the network output a grasp center on the smaller opening
of the funnel and the “actual width” of the object was so large that the
hand lied on the object without being capable of trapping it.

When complex objects were considered, our approach still resulted
successful most of the times, but additional considerations should be
done: i) The funnel was correctly grasped when either the fingers or
the thumb were placed inside the cave part of the object (see Fig. 1.13).
One of the failures was due to the planned grasp, that was significantly
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laterally displaced from the center, thus leading to an unwanted object
motion when the contact with the hand occurred. The other failure
was caused by an accidental collision between the hand and the object,
leading to a displacement of the funnel. ii) Bowling pin failures occurred
when the grasp center was in proximity of the object neck (see Fig. 1.13).
In these cases, in fact, the hand entered in contact with the object in a
region that was higher than the goal point, and remained stuck there.
The force threshold was thus exceeded too soon and the hand closed
without being in contact with the right grasp center and without caging
the object. iii) For the teddy bear, the failure occurred because the
planned grasp center was near to the ear, and this led to a lateral head
displacement during the grasp execution.

1.4.2 Experiment 2: The Closure Signature computation and use
generalizes well to other soft hands

The Pisa/IIT SoftHand and the RBO Hand 2 are different devices with
different possible motion capabilities (see Part A). This reflects in the
CS computation of the whole hand closure with heavy wrap [29]. While
the first hand generates a deformation that remains mainly in the xy-
plane, the second produces a more complex 3D motion, not only due
to the thumb and palm actuation, but also related to the specific way in
which each finger closes, i.e., by depicting a sort of self-rolling spiral.
If compared with the RBO Hand 2, the Pisa/IIT SoftHand has a less
spiral-like closing motion, due to the different actuation, resulting in a
different desired alignment between the hand and the object.
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Fig. 1.14 Examples of successful grasps with the RBO Hand 2.

For the Pisa/IIT SoftHand, the angle θ around the axis normal to
the table is more relevant. The RBO Hand 2, instead, requires also a
rotation about an axis parallel to the plane of the table.

It could happen that for some physical constraints it is not possible
to make both rotations, for example, due to possible collisions of the
robot arm with the table while aligning the hand. In these cases it could
be better to privilege the alignment with the angle θ than the angle α ,
since θ is on the plane of the grasp. In other terms, aligning the hand
with a wrong θ , may increase the possible grasp failures. Aligning
the hand with a wrong α , instead, could be better compensated by the
intrinsic compliance of the hand.

Examples of successful and unsuccessful grasps with the RBO
Hand 2 are shown in Fig. 1.14 and Fig. 1.15, respectively. The CS-
alignment for the heavy wrap of the RBO Hand 2 is effective with
prototypical objects, apart from a failure with the box which was due to
the fingers touching the box and moving it before starting to close. Also
the bowl was always grasped successfully. The bowling pin remains a
difficult object to grasp (cf. results of Experiment 1), mainly due to the
fact that sometimes the planned grasp center lies on the neck of the pin,
or to object displacements resulting from unwanted collisions with the
hand.
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Fig. 1.15 Examples of failures with the RBO Hand 2.

Concerning the baseline method, we observed that i) the performed
grasps were not robust enough to stably lift the object, and ii) regarding
the chips can, the failures were due to its weight and to the fact that the
palm could not envelop it properly, since the palm lied on the can and
the finger rolling motion prevented the thumb opposability exploitation.

1.4.3 Experiment 3: The closure signature can be used to plan
different grasps with respect to heavy wraps

Experiment 3 shows that the Closure Signature provides feasible models
for lateral pinches and precision grasps.

For the lateral pinch with the RBO Hand 2, there were two main
factors influencing the grasp. First, the interaction with the environment
allowed the caging of the object and was fundamental in order to get a
successful grasp, as shown in Fig. 1.16. Second, the height of the object
determined the grasp success, as too small objects were not caged in
time between the thumb and the index during the closing motion (see
Fig. 1.17). This is due to the fact that the fingers close with a certain
velocity and with some delays between each other, so a better tuning of
these parameters could lead to higher success rates.
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When grasping small objects using a precision grasp, even small
uncertainties on the hand and object positions may lead to failures. This
is why, particularly when using highly underactuated hands, considering
a reduced set of fingers (e.g., thumb and index), and starting from a
partially closed initial position is important to achieve a good alignment
on the object. Preliminary experiments where we considered reference
points in all the fingers led to unsuccessful grasps, as the center of the
CS was too close to the middle of the palm and the objects were too
small to be caged by the fingers. On the other hand, when considering
just two fingers but starting from a completely open position, unwanted
collisions with the objects occurred.

Fig. 1.18 shows a successful grasp of a small cube. The hand starts
from half of its total closure and then gently grasps the object between
the fingertips of the thumb and index. Failures, as the one shown in
Fig. 1.19, were mainly due to misalignment between hand and object.
In fact, the alignment of the planar components of the center of the
CS to the center of the object is prone to uncertainties coming from
the vision system and from the camera-to-robot calibration. When
performing power grasps, such uncertainties are mitigated thanks to
hand compliance and to the fact that the hand starts closing after the
palm touches the object. Besides, in precision grasps, also uncertainties
on the positioning in the direction normal to the plane are relevant.
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Fig. 1.16 Execution of a lateral pinch over a Lego Duplo piece (frames sequence).

Fig. 1.17 Execution of a lateral pinch over a small cube (frames sequence).

Fig. 1.18 Execution of a precision grasp over a small cube (frames sequence).

Fig. 1.19 Execution of a precision grasp over a small vial (frames sequence).
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1.4.4 General considerations

Besides the discussion of experimental results, we will conduct here
a higher level analysis of the proposed grasp planning approach. In
particular, we want to characterise our system by means of the four
key aspects of systems building suggested in [34], i.e., modularity
vs. integration, computation vs. embodiment, planning vs. feedback,
generality vs. assumptions.

Modularity vs. integration. Modularity allows breaking down a
problem in easier-to-solve sub-problems. Our system is the result of a
tight integration of different modules. The GQ-CNN module provides
an estimation of the center and orientation of the most robust grasp, and
the CS module provides a simple model of a closing motion of a chosen
hand. The resulting integration is the Grasp planning with soft hands
module. Subsequently, it has been integrated with the Grasp execution
module, which, in turn, is given by the integration of a trajectory plan-
ning achieved with the standard module MoveIt and a force-feedback
guided state machine. Our system works on ROS, which allows a
great level of module integration. Note that the CS module plays a key
role in the proposed method, as it allows to decouple the planning on
the object, that can be performed with any grasp planner designed for
parallel-jaw grippers, from the used end-effector, whose closing motion
can be described in terms of closure signature.

Computation vs. embodiment. This aspect describes the relations
between software computation and embodiment of some processes in
the robot hardware. To characterise our system, we think that it is
appropriate to split the entire process in two subsequent stages. The first
stage includes the grasp planning and the hand alignment to the desired
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grasp, while the second stage includes only the hand closure. The first
stage relies only on computation, while the second one relies on the
embodiment of the grasping capabilities of the soft hand, whose compli-
ance allows safe interaction with the environment and high adaptability
to objects.

Planning vs. feedback. In [34], the difference between these
aspects relies on the type of solutions that they obtain: planning allows
finding general solutions, while feedback is involved in local solution
search. Our approach is closer to planning than to feedback. In fact,
after the acquisition of the object depth image, grasp planning and robot
end-effector alignment work without explicitly needing feedback from
the scene. In Experiments 1 and 2, during the object approach, however,
the execution is feedback-driven, since the robot motion stops and the
grasp begins when the force exerted on the object exceeds a certain
threshold.

Generality vs. assumptions. When building robotic systems, it is
crucial to find a trade-off between the generality of the proposed solution
and the presence of underlying assumptions [34]. The assumption that
mainly affects our system is that the neural network is trained for
executing grasps with a parallel-jaw gripper. This assumption is clearly
too restrictive in the case of grasping using a multi-fingered soft hand.
However, modelling the hand through the closure signature, overcomes
this difficulty, showing high generalizability to different robotic hands.

1.5 Final remarks

In this Chapter, a general method for grasping objects from the top
with the aid of soft robotic hands has been proposed. The strength of
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the approach resides in the Closure Signature (CS), i.e., a model that
associates a preferred grasping direction to a closure motion performed
by a robotic hand. The CS is general enough to model power and
precision grasps and its computation requires only the tracking of some
chosen reference points on the hand during the motion that one wants to
represent. The information provided by the CS can be used to suitably
align the hand with the output of a grasp planner prescribing the best
way to grasp a certain object (CS-alignment).

To validate the feasibility of the proposed approach, we tested dif-
ferent Closure Signatures of two different robotic hands in combination
with an Artificial Intelligence-based grasp planner. Multiple experimen-
tal trials showed that: i) the proposed integration generates successful
power grasps from the top over a variety of objects (Experiment 1);
ii) the CS-alignment generalizes well to heavy wraps performed with
intrinsically soft hands (Experiment 2); iii) the CS model can be used
also to perform grasps that are not heavy wraps, like lateral pinch and
precision grasp (Experiment 3).



2 Magnetic actuation
for soft hands

In the introduction to Part A of this Thesis, advantages and disadvan-
tages of soft hands have been discussed. Advantages have been echoed
several times: Soft hands allow to perform a manipulation that is deli-
cate with the objects and robust to uncertainties at the same time.

This Chapter proposes a way to overcome some of the limitations
of soft hand. As previously mentioned, a precise control of soft hands
is difficult to achieve, and the dexterity limitations due to the soft-
ware/hardware motion coupling resulting from the device underactua-
tion are steering the research on Soft Manipulation towards complex
structures, both at hardware and software levels. This way, however, we
are failing one of the most relevant motivations for the adoption of soft
hands: to reduce devices’ encumbrance and complexity. In this respect,
in this Chapter we propose to augment the classic actuation systems
of soft hands by exploiting magnetic actuation, i.e. magnetic elements
capable of improving the soft hands manipulation capabilities.

The interaction that is generated between magnetic elements, indeed,
allows to realize a physics-based guidance capable of compensating
uncertainties on control due to softness and underactuation, besides the
possibility of performing non-contact manipulation of thin and light
objects, and an augmentation of the hand DoAs. Hence, in this Chapter
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we will exploit physics modelling to (partially) control some motions
that soft hands can perform1.

In the literature on robotics, magnets have been exploited especially
as tools for locomotion and reconfigurability of milli-, micro- and nano-
robots, often made of MEs (magnetic elastomers)[35] and meant for
biomedical applications [36–39]. Micro-manipulators [40], self-folding
degradable [41], helical[42], aquatic-inspired, aerial [43], millipede
and flower-like [44] devices are examples of magnetically actuated
small-scale robots exploiting external magnetic fields. To model the
kinematics of soft continuum robots, heat-assisted shape-morphing
[45], continuation method and bifurcation analysis [46] have been
investigated. Concerning devices larger than small-scale, magnets
were employed to drive catheters [47–49], develop tracking systems
[50], provide climbing robots with suitable adhesion force [51], and to
allow fast and reconfigurable modular assembly [52, 53]. In robotic
grasping, magnets have been exploited to increase the force during
adaptive pinch grasps [54], build tactile sensors for contact points
location estimation [55], and devise a compliant, variable-stiffness
gripper [56]. Recent works focus on food handling [57] and autonomous
garment manipulation [58]. To the best of our knowledge, no works
are focused on manipulation with soft robotic hands exploiting the
magnetic force for hand control and reconfiguration.

1The content of this Chapter has been submitted to the Soft Robotics journal for
publication. The manuscript is entitled “On the use of magnets to robustify motion
control of soft hands”, by S. Marullo, G. Salvietti, D. Prattichizzo (2021).
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2.1 Methodology

We propose to augment the hand capabilities by means of magnetic
force exploitation. Such augmentation relies on a behavior that can be
modelled by means of contiguous magnetic funnels, and the overall
effect of the funnels can be seen as a position control. Such funnels
will be described in Section 2.1.2 and details on the modelling of
magnetic elements (permanent magnets and electromagnets) will be
provided in Section 2.1.1. Then, the interaction of the hand with the
environment and with the hand itself will be examined, and relevant
physics laws will be applied to position uncertainties compensation
(Section 2.2.1), non-contact manipulation (Section 2.2.2) and DoAs
augmentation (Section 2.3.1).

2.1.1 Permanent magnets and Electromagnets

Electromagnets or permanent magnets can be used to exploit the mag-
netic force depending on the envisaged use case. Electromagnets are
composed of a conductive coil with a variously shaped, usually ferro-
magnetic, core. When the coil windings are supplied with electrical
current, a magnetic field is generated. Turning off the current, the mag-
netic field associated with the coil vanishes, whereas the contribution
provided by the core lasts. To exploit the magnetic interaction only
when needed, avoiding undesired interactions with ferromagnetic ob-
jects, this contribution should be as small as possible. Hence, magnetic
cores with low remanence are recommended (e.g., soft iron, ferrites,
silicon steels). Permanent magnets, instead, after the magnetization
process, show a permanent magnetization due to the coupling of atomic
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moments, and are capable of generating magnetic fields without exter-
nal intervention. The constitutive materials can be classified as soft or
hard depending on the ease of magnetization/demagnetization (coer-
civity). Once magnetized, the magnet’s capability of re-orienting the
magnetic domains according to another external field is called perme-
ability. Neodymium alloys (e.g., NdFeB) are examples of widespread,
hard, rare-earth permanent magnets with relatively low permeability.
Since this work is focused on robotic manipulation (i.e., on the ex-
ploitation of magnetic elements embedded in hands and objects), using
electromagnets rather than permanent magnets is preferable, as they
allow the magnetic attraction exploitation only when desired. Moreover,
DC electromagnets are preferable to AC ones, since the drawbacks (e.g.,
time-dependent attraction/repulsion, eddy currents, overheating, . . . )
are less relevant. If needed, a cooling system (e.g., thermally-conductive
materials, electrothermal devices, ...) can be used. Furthermore, to limit
the encumbrance, the magnetic elements should be small. In the follow-
ing, we will show how the physics laws can be exploited to robustify
the motion control of soft hands and to augment the number of DoAs
of such devices.

2.1.2 Physics-based funnels

In the following, the expression magnetic elements will denote either
permanent magnets or electromagnets. Since we will consider elements
with a size suitable for the embedding in a hand, they can be modelled
as magnetic point dipoles [59] as a first approximation. Let us consider
an unconstrained, initially still magnet C1 represented as a point dipole
with moment m1 and located in pt , immersed in the magnetic field B
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generated by a second magnet C2, represented likewise as a dipole with
moment m2 and constrained in the origin of a reference system for
simplicity. C1 will spontaneously move on a trajectory minimizing the
potential energy U held by C1 and due to B [60], i.e.

pt+1 = argmin
p∈ I(pt)

U(p,pt ,m1,m2), (2.1)

where pt+1 denotes the position of C1 at time t + 1 and belongs to a
neighborhood of pt . As it can be seen in Fig. 2.1, the potential energy
generates funnels, whose tips correspond to points with low energy.
Since the funnels are intrinsically interconnected by physics, they are
sequential, providing an hardware-based position control without dis-
continuity.

In the more general case of moving magnets, the Least Action
Principle holds [61], whose non-relativistic expression is

min I = min
∫ t2

t1
(T −U)dt,

where T and U are the kinetic and the potential energy, respectively, and
t denotes the time variable. In this case, considerations similar to those
above are valid.
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Fig. 2.1 Pictorial representation of the potential energy related to the
magnetic elements C1 (represented with a red circle) and C2 (whose
position is represented by a purple star). The value of the potential
energy U in points belonging to a neighbourhood of pt (location of C1)
is represented by heatmap-coloured circles, the smaller the potential
energy, the larger the dot. The red star indicates the point belonging to
the neighbourhood and minimizing the system potential energy. Same
reasoning applies to a neighborhood of pt+1 (Fig. 2.1-b), and of pt+2
(fig. 2.1-c), and so on. As it can be seen, the potential energy generates
sequential funnels, that are capable of providing physical guidance
without discontinuity (i.e. C1 approaches spontaneously C2).
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2.2 Hand and object/environment interactions

2.2.1 Guidance

The control of soft and underactuated hands frequently suffers from
uncertainties due to the manufacturing process, the control strategy
modelling and the actuation system [62, 20]. In the robotic trajectory-
planning framework, sequential optimization funnels have been iden-
tified [63] to compensate for uncertainties on the target pose estimate
[64]. In Section 2.1.2, we showed that sequential magnetic funnels can
be found. Hence, exploiting such a magnetic system can allow to com-
pensate for a finger misplacement due to the actuation system, finally
reaching the desired target. In Section 2.1.2, magnets C1 and C2 have
been assumed unconstrained and constrained, respectively, for the sake
of simplicity. The aim was to show from a conceptual perspective the
existence of magnetic funnels acting as hardware controllers exploiting
a non-contact force to reach the target location. However, in real-world
situations, magnets can be embedded in robotic hands, objects and/or in
the environment. Hence, Eq. (2.1) should be considered together with

F−βββ ṗ = Mp̈, (2.2)

where F denotes the magnetic force, while βββ and M are tensors en-
capsulating the damping and inertia felt by the dipole and due to the
embedding in the hand/object structure. Unfortunately, the dynamics
of a soft and underactuated hand is so complex (and usually indetermi-
nate) that no closed-form of Eq. (2.2) is possible. Hence, a simulator is
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needed to have insights on the actual hand/object motion related to the
magnetic force.

In the following, a lumped-parameter model of the pneumatic RBO
Hand 2 [65] based on the P10 actuator [66] will be considered. The
hand consists of 4 pneumatic actuators; by design, each finger is capable
of bending about an axis orthogonal to the finger principal direction.

Regarding magnetic element modelling, values inspired by specs of
commercially available devices are adopted hereinafter.

Let us consider now a manipulation sequence prescribing a delicate
interaction with an object in specific points. Let us suppose also that
an undesired displacement between the desired contact point on the
hand and the desired point on the object is present. This undesired
displacement can be due to uncertainties affecting the hand nominal
working pressure (caused by real-world pressure leakages or uncertain-
ties on the valves’ opening time), or they can be due to the difficulties
of executing fine control movements for affordance exploitation (as in
the case of grasping a mug by means of its handle, see Fig. 2.3). If
an estimate of the displacement between the desired point on the hand
and the desired point on the object is available, simulation by software
allows to properly choose the magnetic elements that are capable of
compensating for undesired displacements.

Let us consider the current fingertip location in p f (associated to
that uncertainty) and the target location on the object in pT . Let us as-
sume that two small magnetic elements (modelled as point dipoles) are
embedded in the hand and located on the object, respectively. To exploit
the magnetic force only when desired without disturbances during other
manipulation steps, the hand is equipped with an electromagnet in the
fingertip, and a permanent magnet is located on the object (hence, no
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additional voltage source is needed). Let us suppose that the object is
such that the weight force is greater than the magnetic force (or, equiv-
alently, the object position is constrained). According to the charge
model for magnets [67], a dipole with moment m1 generates a magnetic
field B1 which depends on the distance vector r from the dipole and can
be expressed as Eq. (2.3):

B1(r) =
µ0

4π

[
3r(m1 · r)

r5 −m1

r3

]
, (2.3)

where µ0 is the magnetic permeability of free space.
The dipole with magnetic moment m1 acts on a second dipole with

moment m2 through the wrench w = [F,τττ]′, where the dipole-dipole
interaction force and the toque are given by:

F =−∇U = ∇(m2 ·B1) =

= µ0
4π

3
r5 [(m1 ·m2)r+(m1 · r)m2 +(m2 · r)m1− 5(m1·r)(m2·r)r

r2 ]
(2.4)

and
τττ = m2× B1, (2.5)

where r is the distance vector between the dipoles, i.e. r = p2−p1.
More specifically, let us consider a single-coil electromagnet with a

cylindrical, ferromagnetic core. Solenoid and core magnetic moments
(denoted with ms and mc) can be treated as dipole moments, generating
the overall moment me = ms +mc. A solenoid with windings, supplied
with a current i and with cross-sectional area S generates a moment
mc = NiS, whose direction is perpendicular to S and oriented according
to the right-hand rule.
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Concerning the permanent magnet located on the object and the
electromagnet core, the magnetic remanence specific of the material
allows to estimate the residual magnetization per unit of volume through
the constitutive relation:

Mr = Br/µ0. (2.6)

By exposing the magnet to an external magnetic field, its magnetization
increases according to the material M-H hysteresis curve. However, the
residual magnetization is sufficient for a conservative estimate, hence
we can consider M = Mr. Therefore, the magnitude of the permanent
magnet magnetic moment is given by m2 = MV , where V is the mag-
net volume. Analogous reasoning applies to the estimate of the core
moment mc.

To provide an example, let us consider now that the undesired
displacement between the target point on the object and the grasping
point on the hand is r = [25,10,4] mm. Consistently with what has
been argued above, let use equip the finger (actuated with 10 kPa) with
an electromagnet located in the 8-th node of the lumped parameter
model, and pinpoint the desired point on the object with a permanent
magnet. Structure and supply specs of the electromagnet are i = 0.41 A,
S= 133 mm2, N = 1200 and an iron-silicon core (Br = 0.49T ) is present.
Furthermore, let us suppose that the permanent magnet is a N52 NdFeB
(Br = 1 T), with a cylindrical shape of 10 mm diameter and 5 mm
height. Simulation shows (Fig. 2.2) that the system is capable of acting
as an attractive controller, compensating the initial gap between finger
position and target.
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Fig. 2.2 Hand interacting with the object: magnetic guidance for uncertainties
compensation.

Fig. 2.3 Hand interacting with the object: magnetic guidance for affordance
exploitation.

2.2.2 Non contact manipulation

Thin and flat objects are usually difficult to grasp with robotic end-
effectors. Most of the time the problem is addressed with a soft end-
effector establishing a so-called sliding grasp [68], a triadic interaction
between object, end-effector and environment. However, light objects
are prone to fall off the support during the pre-grasping phase, leading
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to task failures. In this subsection, we will consider such objects, either
embedding ferromagnetic parts by design (like paper clips, coins, ...) or
by purpose (e.g., by adding a small plate with ferrite on the handle of a
comb). Since we are considering common objects to be grasped by a
robot, soft magnetic materials with high permeability will be considered.
By equipping the end-effector with an electromagnet (N turns run by
current i), the non-contact latching force can be exploited to generate
an attractive motion of the object towards the end-effector, as long as
the magnetic force is greater than the weight force of the object. To
properly channel the magnetic field, a U-shaped magnetic core with
high permeability is considered, as in the arrangement shown in Fig. 2.4.

Fig. 2.4 Representation of relevant elements and quantities for magnetic non-contact
manipulation. Between the electromagnet (composed of core + coil) and the soft
magnetic plate located on the object, there is a gap of length lg and cross-sectional area
Ag. Integration path and surface required for force computation are reported.

From Ampère’s circuital law:∮
C

B ·dl = µ0Itot = µ0Ni
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and magnetic circuit analysis [69], accounting for µair∼ µ0 and µcore >> µ0,
follows

Bg =
µ0Ni
2lg

,

where Bg = field in the gap and lg = gap length.
The attraction force is computed by exploiting the Maxwell’s stress

tensor [70]:

F =
1

2µ0

∮
S

B2
n dsn,

where Bn is the component of the field orthogonal to the surface S, n
is versor outgoing from S, and S is the surface identified by the orange
line in Fig. 2.4. Due to the magnetic core high permeability, the field is
channelled orthogonally to S. Hence,

F =
µ0N2i2Ag

4l2
g

n

generates an attractive motion of the object towards the hand.
To provide an example, let us suppose to equip the hand with an

electromagnet located in the 4-th node of the palm lumped parame-
ter model. Electromagnet structure and supply specs are N = 1200,
i = 0.41 A, Ag = 1 cm2 with the core made of soft ferromagnetic ma-
terial (Br = 0.49 T). The thin, light object is located on a table distant
8 cm and represented by a parallelepiped with size l1 = 5 cm, l2 = 15 cm,
l3 = 0.3 cm, and mass 25 g (similar to a hair comb). A cylindrical N52
NdFeB permanent magnet with 10 mm diameter and 5 mm height is
located at half of the length. As shown in Fig. 2.5, the system is able to
generate a magnetic attraction capable of exceeding the object’s weight
force, achieving the desired motion.
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Fig. 2.5 Hand interacting with objects: example of intermediate steps in
non-contact manipulation exploiting the magnetic attraction.

2.3 Interaction of the hand with itself

2.3.1 DoAs augmentation

The intrinsic underactuation of soft hands on one side leads to a control
simplification, on the other side entails a limitation of the possible
manipulation capabilities. Therefore, to provide soft hands with more
dexterous movements, current research on design is frequently steering
towards novel complications, resulting in classical drawbacks (weight,
encumbrance, ...) joined to specific control issues due to underactuation
and modelling issues related to soft material deformation [18]. Here
we propose to exploit magnetic elements as actuators to augment the
spectrum of movements that the hand can perform. As an example, let
us consider the RBO Hand 2. By design, fingers adduction/abduction
cannot be performed, unless a different actuation is attained. Let us
consider index and middle fingers, modelled via lumped parameters as
above, equipped with magnetic elements in the fingertips. To exploit
magnetic wrenches only when desired, let us consider electromagnets.
For the sake of simplicity, two cylindrical electromagnets with single
coil, Ci and Cm, are located in ri and rm, respectively. The dipole
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moment of such elements can be figured out as shown in Section 2.2.1.
To fulfil the adduction motion, the dipoles have to be arranged so that the
sequence of poles is N-S-N-S. Ci and Cm are subjected to the magnetic
wrenches wi and wm, respectively:

wi = [Fi,τττ i]
′, (2.7)

wm = [−Fi,τττm]
′, (2.8)

where Fi is the magnetic force in Eq. (2.4) with r = ri - rm, while
τττ i = mi×Bm and τττm = mm×Bi. Bm is the magnetic field experienced
by Ci and induced by Cm, whereas Bi is the magnetic field experienced
by Cm and generated by Ci.

To achieve abduction of fingers, instead, the dipoles can be arranged
so to generate repulsion between magnetic elements, e.g. N-S-S-N.
Eq. (2.7) and Eq. (2.7) still hold.

To provide an example of DoAs augmentation by magnetic actua-
tion, let us equip middle and index fingers with cylindrical electromag-
nets (S = 133 mm2, N = 1200, i = 0.41 A, with iron-silicon core with
Br = 0.49 T), located in the 8-th node of the fingers lumped-parameter
model. As shown in Fig. 2.6, the system is able to generate the adductive
motion (initial gap of 2.8 cm).

By inverting the verse of the current flow in one electromagnet (i.e.,
by inverting the verse of its magnetization), the same system exploits
the magnetic repulsion to realize abduction of fingers, as shown in
Fig. 2.7, generating a distance between fingertips of 4.3 cm.
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Fig. 2.6 Hand interacting with itself: Adductive motion between fingers
allowed by small electromagnets located in the fingertips.

Fig. 2.7 Hand interacting with itself: Abductive motion between fingers
allowed by small electromagnets located in the fingertips.
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Fig. 2.8 Hand interacting with itself: Adductive (b) and abductive (c) motion
between fingers allowed by small electromagnets located in the fingertips.

2.4 Discussion

Magnetic field modelling is challenging, and the dipole approximation
for magnetic elements (first term in the field multipole expansion) holds
for small sized devices as long as they are not too close. However,
since the aim of this work is to provide tools for the design of soft
hands embedding magnetic elements, what is relevant is to choose
proper values for the parameters describing these elements in such a
way that they are able to trigger the desired motion. Then, the magnetic
guidance will be in charge of realizing the desired contact. If a more
accurate field modelling is required, some results are available for
specific configurations [71, 72], or simulation software on magnetism
can be used (e.g. COMSOL, QuickField, ...).

Concerning the choice of permanent magnets, parallelepiped or
cylindrical shapes are almost equivalent if embedded in soft-rigid hands,
while cylindrical and thin-shaped elements are more suitable to pneu-
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matic hands, embeddable in external elastic rings if needed (e.g., if the
hand cannot be supplied with current).

Concerning ferromagnetic materials available with different grades
(like NdFeB), the trade-off between grade and size must be chosen
according to the needs, keeping in mind that thin magnets (about 1 mm)
are prone to realize a weak magnetic interaction. It is not uncommon
that relatively small variations of size have a greater impact than a small
change of grade.

Concerning applications, magnetic guidance can be a game changer
when the interaction between object and hand must occur in specific
locations, but uncertainties on the actual configurations are present.
Moreover, in multi-contact interactions, magnetic elements could be
embedded also in locations different from the ones in charge of estab-
lishing the main interaction, achieving an overall grasp stabilization,
which is a common issue to deal with when grasping with soft-rigid
hands (e.g., tendon-driven devices with rigid links covered by soft
materials [10, 73]).

Concerning the hand DoAs augmentation, it has potentially relevant
applications either for hand shaping in pre-manipulation steps, either
for enhancing in-hand manipulation capabilities. However, a remark
should be done concerning abduction. If magnets are not strong enough
to counteract material inertia and damping, no motion occurs. On the
other side, if the magnets are not in a symmetric configuration with
respect to the hand structure and if the hand is not stiff enough, after an
initial finger separation, a novel hand configuration occurs, potentially
ending up in an undesired fingers adduction. To prevent this situation,
proper use-case-based non-backdrivable mechanisms can be designed.
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Fig. 2.9 Interaction of the hand with itself: A hand equipped with electromag-
nets in the fingertips manipulates a thin object.

Another application of the hand interacting with itself can be de-
vised in the interaction with thin objects that can be trapped between
the fingers and then moved away, as in Fig. 2.9.

In this case, if the object is made of a non-ferromagnetic material
such that the relative permeability µr ∼ 1 (as in the vast majority of
daily objects), then the magnetic flux passes through the object as if the
latter would not be present. What is relevant is the object thickness in
the region of interaction with the hand: It must not be large enough to
make irrelevant the magnetic attraction between fingers. If the object
is a permanent magnet, instead, a proper modelling of the object is
needed. Moreover, paramagnetic and diamagnetic materials do not
provide significant effects at room temperature. If a material with high
permeability is employed, furthermore, two closed magnetic circuits can
be modelled, one for each finger (similarly to Section 2.2.2), resulting
in a double attraction finger-object.
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2.5 Final remarks

In this Chapter, we proposed to exploit magnetic elements as additional
DoAs to robustify the motion control and augment the manipulation
capabilities of soft and underactuated robotic hands. Permanent mag-
nets and electromagnets have been modelled by means of magnetic
dipoles and physics laws were discussed in the light of guidance and
DoAs augmentation. The interaction of the hand with itself and with
the environment has been investigated to apply magnetic funnels to
uncertainties compensation, non-contact manipulation of thin and light
objects, grasp stabilization and augmentation of the hand’s DoAs. Tools
for the design of novel soft hands have been provided.



3 Grasping garments

This Chapter deals with robot-environment interactions involving the
manipulation of highly deformable objects. We will focus on the manip-
ulation of garments, whose deformability is such that the success of the
task execution strongly depends on the global and local configuration
assumed by the garment.

In the light of developing techniques suitable for industrial and
domestic settings, devising hardware tools for fast and effective task
accomplishment is paramount. To counteract the strong dependency of
the garment configuration on the grasping points, and on the amount
of fabric that is grasped by the end-effector, we propose to exploit the
magnetic attraction between garment and end-effector to realize the
desired contact. Ornamental or brand elements (such as buttons or
small plates) embedding soft ferromagnetic materials (e.g., composites
of ferrite, see Chapter 2) could be properly located on the garment
to this purpose. As a suitable end-effector, we propose Mag-Gripper,
an augmented jaw gripper embedding an electromagnet. This design
choice, indeed, allows to achieve repeatable extended point-like grasps,
resulting in repeatable garment configuration.

In this Chapter, therefore, we turn down modelling the deformability
of the fabrics, and devise an hardware solution that exploits small
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Fig. 3.1 Mag-Gripper: a novel gripper to manipulate clothes

elements to add some structure in a difficult-to-manage environment. In
this way, the hardware solution fosters the control of the soft interaction
aimed at garment manipulation1.

3.1 Related works

Previous Work on Autonomous Cloth Manipulation

In the last decade, research on autonomous cloth manipulation received
great boost. Garment manipulation can be decomposed in two sub-tasks:
unfolding and folding. The former is aimed at bringing the cloth from a

1The content of this Chapter has been published in [58]. Reprinted with kind
permission from IEEE.
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random configuration to a known one (usually corresponding to have
the garment lying flat on a table), while the latter aims to actually accom-
plish the desired manipulation starting from that known configuration.
Regarding the unfolding task, the most popular approach consists in
re-grasping the object until the target configuration is reached. In [74],
a geometric approach is proposed, consisting in identifying two grasp-
ing points on the garment outline capable of generating an half-folded
cloth configuration, to which shape analysis techniques are applied to
estimate the novel re-grasping points. In [75], a 2D perception and a
Markov Hidden Model are used. In [76], 3D perception is used to com-
pute a mesh of the object, and a Support Vector Machine is employed
to implement a greedy policy for the next grasping point estimation.
In [77], a data-driven approach joint with Random and Hough forests
is used for garment recognition and to estimate the grasping points in
a probabilistic planning framework taking into account uncertainties
related to the estimation process. In [78], a simulation environment
is used to compare the synthetic data in it with a reconstructed mesh
of the physical garment to grasp, and mapping the re-grasping points
on the synthetic mesh to the physical garment. The main difficulties
encountered in the above cited works are: i) the time required to accom-
plish the task; ii) the uncertainties on the estimate of the final grasping
point; iii) the risk of loosing the object during multiple re-grasping.
In a more recent work [79], a hierarchical structure of Convolutional
Neural Networks is used to recognize the garment category and grasp
it directly in two points, avoiding multiple grasps and decreasing the
required completion time.

Regarding the folding task, early works proposed geometric ap-
proaches [80] relying on the gravity-based folding: in [81], the cloth
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is assumed to be representable as a simple polygon, and the task is
accomplished by moving a portion of the garment over another one,
having a segment termed g-fold as separation line, accounting also for
the fabric flexibility [82]. More recent works arise from the synergy
between Machine Learning and Robotics, relying on Deep Learning,
Learning from Demonstration (LfD) and Reinforcement Learning. In
those works, the robot is taught to learn the folding task by means of
a set of demonstrations provided by a human operator. In [83], a deep
convolutional autoencoder joint with a deep time delay neural network
is used to process data acquired via teleoperation. In [84], a LfD with
Deep P-Network is used to learn a T-shirt folding. In [85], Dynamic
Motion Primitives are exploited with LfD and RL. When a given cloth
manipulation task has to be learnt by means of human demonstrations,
the multiple demonstrations have to start all with the same initial gar-
ment configuration [85]. To this aim, grasping the cloth always in the
same points is fundamental, since clothes are extremely deformable
objects and relatively small changes in the grasping points can cause
significant errors in the initial configuration.

Previous Work on Grippers for Cloth Manipulation

In [86], a taxonomy of the grippers used in works on garment manipu-
lation is presented. As highlighted in the paper, usually those grippers
are not specifically thought for interacting with clothes, which are ex-
tremely deformable objects. Indeed, the most commonly used tools
are the parallel-jaw grippers. Multi-fingered hands (such as those used
for instance in [87]) allow to exploit the abduction motion and also a
more dexterous manipulation (e.g., to identify the boundary of clothes
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[88]). Few hands are designed to establish specific interactions with
clothes: in [89], force sensors are placed on the tips to perform gar-
ment classification according to the material roughness. In [90], an
underactuated three-fingered hand capable of generating human-like
grasping movements exploiting environmental constraints [91] is pre-
sented. However, when these tools are used to manipulate clothes, the
grasping task is mainly performed by sliding on the table surface and
enclosing a portion of the garment between the jaws. This approach:
i) restricts the cloth manipulation to occur on a tabletop; ii) requires that
an enough portion of the fabric is constrained between the tips to avoid
undesired slippage. However, i) cloth manipulation can be performed
also in the air [76, 85], and this is important also in the light of the
growing need of tools for assistive robotics; ii) grasping by sliding the
fabric on the table surface introduces unpredictable variations in the
configuration taken by the garment after the grasp has occurred. This
is due to the fact that the portion of the fabric actually constrained by
the tips is the consequence of the interaction between the garment, the
robot and the environment, and the related changes are difficult to face
for vision-based Machine Learning techniques.

To the best of our knowledge, no grippers exploiting the magnetic
force have been so far exploited for clothing manipulation. Moreover,
the difference with generic, commercially available grippers exploiting
the presence of a magnet [92] is that we want to exploit the magnetic
force only to establish the contact between the gripper and the garment.
After the extended point-like grasp has occurred, the magnetic force is
no more needed: the electromagnet is deactivated to avoid overheating
and a secure grasp maintenance is achieved by exploiting the gripper
jaws.
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3.2 The Mag-Gripper

Mag-Gripper has been designed to be lightweight, modular and with
a limited encumbrance. The prototype has been designed via CAD
and realized with additive manufacturing techniques, which allowed
small production cost and short production time. The gripper is similar
to a jaw gripper (see Fig. 3.1), but the novelty we propose consists in
having realized an augmented jaw gripper: In its central part, there is an
electromagnet mounted on the top of a linear actuator. By activating the
electromagnet, a magnetic field is generated, which causes a magnetic
force attracting the metal part attached to the cloth. Due to the attractive
motion of the metal part, a collision between the end-effector and the
cloth occurs, and is detected by a small resistive force sensor (FSR)
located near the electromagnet. The contact is deemed to be occurred
when the force measured by the sensor exceeds a given threshold,
triggering the closing motion of the jaws. The proposed gripper exploits
the advantages of both the electromagnet and the jaws: the former
allows grasping in the desired point, while the latter allow a secure
grasp maintenance during manipulation. In other words, from the dual
perspective, the uncertainty brought by the soft fingertips of the jaws is
tamed by the action of the electromagnet.

3.2.1 Components

The Mag-Gripper is an augmented jaw gripper, a sketch of which is
shown in Fig. 3.2a. In the gripper central part, between the jaws, there
is a linear actuator (PQ12-30-12-P by Actuonix), at the top of which an
electromagnet (KS0320 by Keyestudio) is mounted. Thanks to a set of
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pin joints and connecting links, the motion of the actuator allows both
to approach the electromagnet to the cloth, and to open/close the jaws.
Thus, the proposed gripper has one degree of actuation, which allows the
gripper to be lightweight (181 g, including all the electronics) and with
limited encumbrance, taking into account the considerations in [86].
The closed structure width is 9 cm. The maximum opening size of the
jaws is 13 cm. When the jaws are at the maximum opening distance
allowed by design, the most prominent part is the electromagnet and
the distance between the electromagnet and the base is 15.3 cm. When
the jaws are completely closed, the most prominent part is given by
the jaw tips, and the distance between the tips and the base (bottom
plate in Fig. 3.2a) is 15.5 cm. The circular base has 5 cm diameter, and
the links connecting the two circular surfaces enclosing the electronics
are 5 cm long. To have a robust structure, the gripper base, the jaws
and the locations assigned to the actuator and the electromagnet are
3D-printed in ABS. Conversely, the jaw-tips are hollow and realized in
TPU, to ensure a more compliant interaction with the cloth. The tips
are designed with grooves (see Fig. 3.2b) to increase the friction during
the contact with the objects, thus reducing undesired slippage.

The gripper microcontroller is an Arduino Pro Mini with an AT-
mega328P (running at 16MHz, 5V input voltage). Gripper control
is achieved via position control, by exploiting the actuator feedback
position and the polarity inversion through the L293B motor-drive. The
electromagnet is activated or deactivated through a logic input (H/L),
which is a function of the actuator position and sensor measurements
(see also Sec. II-B). The gripper receives commands through a Blue-
tooth connection (RN42 module by Microchip) and its working voltage
is 12 V.
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(a) Mag-Gripper CAD

(b) Jaw-tips

Fig. 3.2 Sketches of Mag-Gripper: (a) isometric view, (b) zoom on the jaw tips.
Notice the grooves and the hollow structure, designed to provide friction to limit
undesired slippage of the fabric.

3.2.2 Working principle

In Mag-Gripper, the electromagnet plays a fundamental role during the
approach to the object, while the jaws allow a secure grasp maintenance.
As soon as the central cart moves, two orthogonal motions are generated:
the first one, along the actuator direction of elongation, corresponds to
the direction along which the electromagnet approach the garment, the
second one lies on planes orthogonal to that direction, and corresponds
to the motion of the jaws.

To avoid undesired collisions between the jaws and the garment
during the approaching phase, as well as collisions between the jaws
and the electromagnet, three working configurations have been defined:
pre-grasping, grasping and release. The working configuration can be
seen as a function named conf of three independent variables: ae, which
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stands for activation of the electromagnet, sr, i.e., sensor reading, and
at i.e., translation of the actuator,

conf(ae,sr,at) =


pre−grasping
grasping
release

As mentioned in Sec. 3.2.1, during the pre-grasping phase, the dis-
tance between the jaws is the maximum allowed and the electromagnet
is the most prominent part of the gripper. This allows the electromag-
net to approach the fabric without collisions between the cloth and
the jaws. This configuration is reached as soon as the electromagnet
is activated, the force sensor starts sending the measured values and
the motion of the linear actuator has not yet started. After the gripper
has entered in the pre-grasping phase, the actuator starts translating
to approach the object. The contact is considered to occur when the
force sensor measures the exceedance of a given threshold. This allows
the gripper to enter in the grasping configuration: the jaws close and
the electromagnet is deactivated (no more needed). The motion of the
linear actuator is prevented through a position control until the release
command is sent, and the gripper enters in the release configuration:
the electromagnet is still deactivated, the sensor readings are discarded
and the linear actuator is commanded to move so to allow an opening
distance between the jaws equal to one half of the maximum allowed
(see Fig. 3.3). Notice that the jaws closing motion relies on the force
sensor measurements. This is why, in principle, Mag-Gripper can work
also without the electromagnet (see also Sec. 3.3.3).
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Fig. 3.3 Mag-Gripper working configurations. During the pre-grasping, the electro-
magnet slot is the most prominent part of the structure, to allow the attractive motion of
the ferromagnetic plate without undesired collisions between the jaws and the cloth.

3.2.3 Finite Element Modelling and Analysis

Finite Element Analysis (FEA) and Dynamic Analysis of the gripper
have been carried out using COMSOL Multiphysics Software. Bound-
ary load of 18 N (Linear Actuator maximum force) was applied in the
y-axis direction. The gripper was cut half to simplify the geometry and
a symmetric constraint was applied to compute the solution. Tehtrahe-
dran elements were used for meshing. A mesh convergence test was
also carried out on the basis of maximum element size, which suggested
that when element size is between 0.00180 m to 0.00375 m the results
are almost similar. Hence, maximum element size of 0.00218 m was
selected. The result of FEA is depicted in Fig. 3.4. The maximum stress
experienced is 5.29 MPa and it is exerted on the link between finger and
piston, showing it as the most vulnerable part. For the case of dynamic
analysis, a constant force of 18 N was applied and the corresponding
velocity and acceleration plots of the jaw tip are shown in Fig. 3.5.
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Fig. 3.4 FEA: (a) Stress Von Mises, (b) Maximum Displacement.

Fig. 3.5 Dynamic analysis: (a) Velocity and (b) Acceleration plot of the jaw tip when
the actuator maximum force is applied.

3.3 Experiments

Mag-Gripper is meant to be a tool for autonomous manipulation of
clothes, by exploiting the presence of small ferromagnetic parts prop-
erly located on the garment. To avoid undesired interactions with the
environment, soft ferromagnetic materials can be exploited (see Chap-
ter 2). Grasping the object in the desired points is the first condition to
be met to achieve the desired manipulation.
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Experiments with a Sawyer collaborative robotic arm (by Rethink
Robotics) were performed to test the actual capabilities of the proposed
gripper. To this aim, we investigated: i) how the performance are related
to the size of the ferromagnetic plate and the cloth weight; ii) which is
the role played by the electromagnet on the configuration taken by the
cloth after the grasp has occurred; and iii) how to compensate possible
uncertainties on the estimate of the grasping points.

For the sake of simplicity, we assumed the desired location of the
grasping point to be fixed on the garment (i.e., on a shoulder), and a
fiducial marker located in that position had been used to retrieve an
estimate of the desired pose with respect to the robot base. The cloth
was located on a tabletop and an overhead camera (ASUS Xtion) was
used during the marker detection phase.

The trajectory planning was implemented in the MoveIt framework,
and was decomposed in three steps: i) go 4 cm over the estimated
location; ii) go down until the contact between the gripper and the
ferromagnetic part has been detected; and iii) lift the garment for 20 cm.
Communication between the devices (robot, gripper, PC) ran via ROS
(Robot Operating System).

In the following, five different sets of experiments are described.
For the sake of simplicity, the gripper orientation at the target location
was fixed so to have a non-occluded view of the scene from our desk.
However, it can be chosen arbitrarily.

Unless otherwise stated, the garment to grasp was the T-shirt in-
cluded in the YCB dataset [93], and a squared ferromagnetic plate with
side 1.8 cm was involved in the grasping task.
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3.3.1 Dependency on the plate dimensions

By means of this set of experiments, we investigated two aspects related
to the ferromagnetic plate size: i) how the number of successful grasps
changes by varying the plate dimensions, and ii) the repeatability of the
grasp execution. Regarding the former issue, we termed successful a
detected contact occurred in correspondence of the ferromagnetic plate
and maintained without appreciable changes during the lifting phase.
Regarding the second investigated aspect, we meant to have a measure
of repeatability by estimating the area of the garment contacted by the
electromagnet when multiple grasp attempts were performed with the
same target. To have this measure, we covered the gripper extremity
with a thin rubber layer and put a thin layer of tempera colours on it.
During the contact with the plate, the color laid down on the plate,
leaving a mark of the executed trial. After 10 grasp attempts, we
estimated the radius of a circumference containing all the color marks
on the plate by measuring the distance between the two furthest points
with a caliper. After each trial, the rubber was cleaned to avoid a dry
color layer, which would have reduced the magnetic force. The usage
of the thin wet tempera color layer did not reduced appreciably the
attraction. Three different squared plates were used, with side of 1.0
cm, 1.8 cm and 2.5 cm, respectively. Results are reported in Table 3.1.
Notice that in the bimanual clothing manipulation presented in [75], a
grasp configuration is termed successful if both the left and the right
grasps occurred within 5 cm from the estimated most likely grasps.
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Table 3.1 Grasps repeatability estimate: Number of successful grasps on the
YCB T-shirt and radius of the estimated contacting area between end-effector
and plate when the grasping attempts are repeated 10 times. Results are related
to the plate size.

Square side Success radius [mm]

1.0 cm 8/10 15.1

1.8 cm 9/10 21.2

2.5 cm 9/10 24.5

3.3.2 Dependency on the cloth weight

To have insights on how the performance of Mag-Gripper are influenced
by the cloth weight, 4 different garments were used to be autonomously
grasped 5 times: the YCB T-shirt, a mid-season pullover, an old bib
and a terry guest towel. Objects weight and thickness are reported in
Table 3.2. Besides the number of successful attempts, we report also
the mean distance that was required between the electromagnet and
the garment to allow the magnetic force to cause the desired attractive
motion of the cloth towards the electromagnet.

3.3.3 Dependency on the electromagnet

By means of this kind of experiments, we investigated which is the
role played by the electromagnet on the configuration taken by the
fabric when the grasp has already occurred. To this aim, we compared
the area involved in the grasp with and without the exploitation of the
electromagnet. In other words, we performed 10 attempts equipping the
garment with the ferromagnetic plate (E experiments) and then more
10 attempts after having removed it (WE experiments). All the trials
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Table 3.2 Objects used to have an insight on how the Mag-Gripper perfor-
mance are related to the objects weight and thickness. Number of successful
grasp attempts and required distance between the electromagnet and the plate
are reported. The ferromagnetic plate with side 1.8 cm was exploited.

Object Weight Thickness Successes Distance

T-shirt 125 g 0.4 mm 5/5 6 mm

Pullover 266 g 0.7 mm 5/5 5 mm

Bib 43 g 1.3 mm 5/5 3 mm

Towel 148 g 2.5 mm 4/5 2 mm

had the same target grasping point. In both the sets of experiments, the
gripper closing motion started when the contact between the gripper
and the cloth had been detected by the force sensor.

Moreover, in both the set of experiments, a thin layer of tempera
colors was laid down on the jaw-tips to mark the areas involved in the
grasp execution. In Fig. 3.6, the green marks correspond to the areas
contacted without exploiting the presence of the electromagnet, while
the blue marks are the areas of interaction when the grasp execution
relies on the force of attraction between gripper and cloth. In the first
case, the distance between the corresponding centres of the marks is
about 10 cm (avg), while in the second case the same distance is about
5 cm (avg). When the ferromagnetic part is lifted by the electromagnet,
the portion of the fabric involved in the grasp is smaller than the one
involved without the electromagnet exploitation. This reduces the
possibility of wrinkling the fabric, increasing the grasp precision and
repeatability.
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Fig. 3.6 Estimate of the fabric portion involved in the grasp, with and without
the electromagnet exploitation (blue and green marks, respectively). A smaller
portion produces less wrinkles, increasing the grasp precision.

3.3.4 Target uncertainties compensation

When dealing with grasp planning, it is common to have to cope with
pose errors due to the camera-robot calibration process, or to simplify-
ing assumptions affecting the grasp planners, or to undesired uncalibra-
tion of the robot arm. To investigate the Mag-Gripper capabilities, we
introduced by purpose an error of 1 cm on the x and y coordinates of
the estimated grasping point, and 10 grasping attempts were performed.

During 7 grasp trials, the electromagnet was still capable of attract-
ing the cloth. However, in 3 of these experiments, the force sensor did
not detect the occurred contact, since it happened in a lateral location
not involving the sensor (the sensor radius was about 3 mm).

3.3.5 Common small objects with ferromagnetic parts

This set of experiments was aimed at testing the Mag-Gripper capability
in grasping small objects different from clothes that usually would
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require the exploitation of environmental constraints for a successful
grasp execution [91]. Two small boxes, a comb, hair barrettes and paper
clips have been used. The squared plate with side 1 cm (used also in
Section 3.3.1) was located on the top of the boxes and on the comb
handle. The other objects were already equipped with ferromagnetic
parts. The heavier object (box) had a mass of 25 g. The size of the
objects spanned between 0.1 cm x 4.5 cm (paper clip) and 4.5 cm x
6.5 cm (box). An overall of 12 grasp attempts have been performed,
achieving a success rate of 100%.

3.4 Discussion

3.4.1 On the dependency on the plate dimensions

This set of experiments was aimed at investigating the role played by
the ferromagnetic plate size in the grasp execution.

In all the failures, the contact between plate and electromagnet
actually occurred but was not detected by the force sensor, since it
occurred in a location not involving the sensor. Hence, the garment
lifting phase was not triggered and the robot remained stuck.

In respect to the estimate of the actual contacting area between
end-effector and plate, as it can be foreseen, the larger is the plate, the
larger is area that can be contacted. That area could be represented as a
circle enclosing the plate, since the contact between the plate and the
electromagnet can occur everywhere on the plate, as long as there is
a superposition of the two surfaces. The variability observed during
experiments in the location of the area of interaction was due to different
aspects: the manual collocation of the marker on the plate, errors related
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to the camera calibration, but also to uncertainties on the control of the
collaborative robotic arm due to its spring-based joints.

Interestingly, one successful grasp related to the plate with side
1 cm allows a further consideration. During that attempt, the contact
between end-effector and plate occurred. However, suddenly the plate
fell down before the electromagnet deactivation. Nonetheless, the
magnetic force was capable of re-establishing the contact in time and
the gripper successfully lifted the T-shirt. This suggests that by properly
managing the electromagnet deactivation time, Mag-Gripper could be
used to cope with the possibility of loosing the contact with the object,
ending up in a successful grasp.

3.4.2 On the dependency on the cloth weight

Experiments aimed at having insights on how much the Mag-Gripper
performance rely on the cloth weight revealed that the thickness of the
garment is more relevant than the overall object weight. As it can be
noticed by looking at the fourth column of Table 3.2, the thicker the
garment is, the smaller the distance required to attract the ferromagnetic
part. This is due to the fact that changing the thickness results in
varying the local mass the electromagnet has to attract. If the local mass
increases, the electromagnet needs to be closer to the plate to cause the
attractive motion of the ferromagnetic part. This result suggests that the
most suitable electromagnet should be chosen either to grasp specific
clothes or in a conservative manner, by considering a predefined set
of garments and ensuring to be capable of grasping the thickest one.
However, this gives us the possibility to remark that the choice should
be context-related: in some cases, an unnecessary strong magnetic field
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can introduce some disturbances in other devices that are present in
the robot workspace. Moreover, we want to stress the importance of
having an attractive motion between the gripper and the cloth without
the need of getting in contact with the environment to grasp the garment.
This capability, indeed, allows an intrinsically safer robot-environment
interaction, besides the possibility of performing aerial grasps [94].

3.4.3 On the dependency on the electromagnet

Regarding this set of experiments, as it can be seen in Fig. 3.6, when
the grasp execution relies on the presence of the electromagnet (E ex-
periments), the distance between the jaws during the grasp is smaller
than in the case where the electromagnet is not exploited (WE exper-
iments). This is due to the fact that the closing motion of the gripper
starts as soon as the contact between the end-effector and the cloth is
detected. However, in the WE experiments, the gripper needs to reach
the table before detecting the contact. As a consequence, when the jaws
start closing, the distance between the jaws is close to the maximum
allowed (13 cm by design). On the other hand, in the E experiments,
the magnetic force attracts the plate before the gripper reaches the table,
and when the collision of the plate with the force sensor generates the
signal of detected contact, the fabric has already assumed a conic-like
shape. This is the reason why the distance between the jaws is smaller
in the E experiments than in the WE experiments.

Moreover, a qualitative consideration should be done. As it can be
seen in Fig. 3.7, when WE experiments are performed, the part of the
cloth located between the jaws is significantly crinkled. This is due to
the fact that the grasp is executed by sliding the jaws on the table: The
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(a) WE experiments (b) E experiments

Fig. 3.7 Grasps performed with and without electromagnet exploitation (left
and right, respectively). The electromagnet exploitation allows a conic-like
grasp without unnecessary wrinkles, resulting in a more repeatable cloth
configuration.

contact points between cloth and jaws do not change and the minimum
distance between these points (i.e., the distance without considering the
wrinkles) becomes gradually smaller and smaller, while constraining a
non-necessary portion of the fabric to remain trapped between the jaws.

Hence, if the aim is grasping the garment in a desired location, mak-
ing the fabric assume a configuration easy to manage with vision-based
Machine Learning techniques, the exploitation of the electromagnet
seems to be a good way to approach the problem. Indeed, the conic-like
shape taken by the cloth allows to achieve a sort of pinch grasp [30],
which results in a less disturbing configuration of the points located
near the actual grasping point. This sort of extended point-like grasp
allows a more predictable configuration of the garment, which is an
highly deformable object with potentially infinite ways of deforming.
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3.4.4 On the target uncertainties compensation

The artificial introduction of uncertainties in the estimate of the grasping
point pose was aimed at investigating to what extent the exploitation of
the magnetic force can allow grasping the object in the target location,
thus achieving a compensation of position estimation errors. Distur-
bances of 1 cm acting simultaneously along the x and y coordinates
resulted in noisy targets located about 1.4 cm far from the desired points.
The fact that in 7 grasps over 10 the electromagnet attracted the plate is
encouraging, yet not exciting. However, the presence of the electromag-
net suggests the possibility of performing a sort of partially-blind grasp.
A blind grasp is meant to be a strategy to be applied when uncertainties
on the estimation of the grasping points are present (e.g. when the
vision system is not particularly reliable, or uncertainties originate from
non-ideal dynamics of the robot arm). According to this strategy, the
robot is first commanded to reach the estimated grasping point and, if
the contact between the object and the gripper is not detected, the robot
starts following a predefined pattern (e.g., inside a square of known
side, similar to the one shown in Fig. 3.8). The basic idea is to span a
small area around the estimated grasping point to let the magnetic force
overcome position uncertainties and establish the desired contact.

The envisaged pattern corresponds to a planar motion occurring at a
given height with respect to the ferromagnetic plate, hence it can allow
to successfully compensate uncertainties on the xy plane. However, the
success of the blind grasp is highly dependent on the distance required
to the electromagnet for attracting the garment. That distance, in turn,
depends on the fabric thickness. To get a more generalized planning
strategy, further investigations are needed. Notice also that if the plate
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Fig. 3.8 Example of pos-
sible motion pattern (in
red) for a blind grasp: a
small area (delimited with
the dashed line) is spanned
around the estimated grasp-
ing point (blue dot) to face
position estimation errors.

dimensions are not sufficiently small and the attraction occurs near the
borders, the grasp might be unstable.

In principle, the blind grasp could be taken to extremes to perform
a totally-blind grasp, when the vision system is not present at all and a
minimal a priori knowledge of the environment is given (i.e., size and
pose of the table where the cloth is located).

3.4.5 On common small objects with ferromagnetic parts

This set of experiments was aimed at having insights on the Mag-
Gripper capabilities of grasping objects different from clothes. Indeed,
we proposed Mag-Gripper as a tool for service robots suitable in home
settings or in assistive robotics. In this framework, it could be useful
to have a robot capable of grasping small objects of common usage.
In particular, we considered objects (i.e., comb, hair barrettes and
paper clips) difficult to grasp either with a parallel-jaw gripper either
with a more complex robotic hands, and usually requiring environment
exploitation [91]. The challenging nature of these objects relies on the
fact that they are flat and thin. During experiments, the electromagnet
was capable of generating a visually appreciable attractive motion, that
allowed the grasps without the end-effector needed to reach the tabletop.
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A physics-based model of such a magnetic latching has been provided
in Chapter 2 of this Thesis. As a note, we want to point out that the
ferromagnetic part located on the object could be small and lightweight,
depending on the object: in a hair barrette involved in the experiments,
the magnetic element consisted in a spring 5 mm long.

3.4.6 Additional considerations

As previously mentioned, Mag-Gripper features an immediate appli-
cation in the robotic community: It is meant to be a support tool for
the research in Machine Learning-based garment manipulation, where
high repeatability in grasp location is required during data collection.
However, our long-term vision involves a synergistic cooperation with
researchers in Machine Learning and garment manufactures to develop
production lines for autonomous cloth manipulation. In this light, we
filed a patent application that concern methods exploiting magnetic
coupling for autonomous garment manipulation (PCT/IB2021/057293).

Different grippers can be devised, exploiting also tendon-driven
fingers and embedded environmental constraints (e.g, like in the Scoop
hand [95]). The proper choice will rely on the desired kind of manip-
ulation. Additionally, magnetic elements can be exploited as support
points in different, intermediate tasks occurring during the manufactur-
ing process (like cutting, sewing, ironing, and the like). Moreover, the
magnetic elements located on the garment can be fixed (like buttons or
labels, ornamental or brand elements) or removable (i.e. they can be
attached to the fabric during the manufacturing process and removed
before packaging the garment).
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3.5 Final remarks

This Chapter concerned the autonomous manipulation of highly de-
formable objects present in the environment, with focus on garments.

In this context, we presented Mag-Gripper, a novel augmented jaw
gripper specifically designed for autonomous cloth manipulation. To
grasp the garment where desired, we proposed to exploit an attractive
force between the desired location on the fabric and the robotic end-
effector. To this aim, Mag-Gripper is equipped with an electromagnet.
Such an electromagnet establishes an extended point-like contact with
the cloth, while the jaws allow a secure grasp maintenance during
manipulation. Clearly, clothes have to be equipped with small magnetic
parts (properly located ornamental or brand elements, like buttons).

Experiments performed with a collaborative robotic arm showed
that the exploitation of the magnetic force allows to perform a repeat-
able grasp execution and to compensate uncertainties on the estimated
location of the target grasping point. Moreover, the extended point-like
contact caused by the electromagnet allows grasp without unnecessary
wrinkles, achieving clothing configurations more suitable to vision-
based Machine Learning techniques for autonomous manipulation.



Part B

Soft Interactions with Humans



Soft interactions
with humans

This part of the Thesis deals with soft interactions involving humans.
As previously mentioned, humans can be considered to be soft agents.
This sentence can appear unusual, since thoughts quickly run to our
bones, playing remarkable roles when accomplishing different tasks.
The hard, osseous skeleton, indeed, is the structural core that allows
humans to get the upright posture, which differentiates humans from
invertebrates, quadrupeds and apes. Several scholars agree that the
upright posture is one of the features that most profoundly affected
the physical and cultural evolution of humans [96, 97]. However, the
anatomical evolution that led to the upright posture went hand in hand
with the brain specialization induced by the progressive specialization
of the hand [98], that became capable of dexterous and in-hand manip-
ulative movements. Interestingly, chimpanzees tend to walk upright
when they have valuable food in their hands [99].

Although the osseous structure has a fundamental role in the human
anatomy, hard bones would allow a negligible impact on the world
around us without the synergistic interplay of bones, muscles and skin.
Muscles, indeed, envelop the bones and are connected to tendons, real-
izing a network of fibres capable of transducing in motion the electrical
signals coming from the brain. The skin envelops the human body, and
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is rich of mechanoreceptors, which are specialized neurons transducing
mechanical deformation of the skin into electrical signals. Such signals
encapsulate information on the tactile and kinaesthetic interaction with
the environment.

Muscles and skin are tissues made of soft materials, whose features
are revealed during interactions with the environment. In such inter-
actions, hands are the main means used by humans. As mentioned in
the introduction of Part A of this Thesis, the compliance of the human
hand is located both at the joints and at the skin levels. This allows to
perform delicate and robust grasps, as well as to retrieve relevant infor-
mation on the manipulated object, through the way in which the skin
deforms generating pressure distributions related to the object texture
and weight.

The compliance of the tissues allowed the development of analytical
models focused on humans. Muscles, indeed, can be modelled as
spring-damper systems, and functional muscles-tendons units can be
represented as series of elastic elements [100]. Also during voluntary
movements, the coordinated motion of agonist and antagonist muscles
belonging to the same limb can be modelled as a linear spring-damper
system. During such movements, moreover, if a small disturbance acts
on the limb, the muscular visco-elastic behaviour allows humans to
carry on with the desired trajectory, with little deviations [101].

Concerning the human arm, the analysis of experimental stiffness
ellipsoids retrieved by perturbing the position of the hand [102] revealed
that the principal axis is along the forearm. This means that this is the
direction along which the human is more able to reject disturbances, and
it is due to the fact that, if needed, muscular contractions of both upper
arm and forearm can be performed. The minimum stiffness is along
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the direction perpendicular to the direction of maximum stiffness, and
corresponds to contracting only the forearm, with negligible contraction
of the upper arm. Furthermore, experiments revealed that when humans
have to accomplish a task, they spontaneously arrange arms and hands
to minimize the impact of possible perturbations [103].

During activities, humans learn feedforward internal models of their
body, as well as task-related models of the body parts involved in the
task execution. These models map the sequence of the muscular ac-
tivations into effects produced on the environment, and are adaptive,
meaning that humans are able to generalize the learnt patterns for facing
previously unseen situations [104]. When interacting physically with
objects, variations of the learnt patterns are related to experiencing dif-
ferent force fields, which require to apply different torques at the human
joints for a successful task accomplishment [104]. Tactile and kinaes-
thetic feedbacks, encapsulating information on the actual interaction,
are the main actors of motor learning [105]. Interestingly, such models
are encoded and stored, leading to the so-called motor memory: the
acquired internal models do not disappear when the training stops [106].

In Chapter 4, we will consider a human-robot cooperative task
involving the transportation of a large object. The envisaged task is
human-centered, meaning that the human will be in charge of deciding
the trajectory to be performed, and the robot will have to cooperate.

The forces exerted by the human will implicitly reflect all that
has been previously said on the way in which the soft human agent
interacts with the environment. Such forces are the core of the robot
control scheme, and a compliant surface at the end-effector is exploited.
Such a compliance allowed to develop pressure constraints leading to
robot velocity commands for a successful task execution. Nonetheless,
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accomplishing Human-Robot cooperative tasks is not something that
people are used to perform, so we consider the aspect of motor learning
by accounting for training and test phases during the experiments.

In Chapter 5, we will consider a hand-focused human-human soft
interaction. More specifically, a biomechanical model of a hand posture
for writing on touch screen devices will be devised. In such a posture,
the hand will interact with itself, realizing a FingerPen that will merge
gesture and tool into a single operative organ. Bones will constitute the
mechanical structure composed of rigid links, while the skin compliance
and the arrangements of the fingers will determine the contact models
involved in the proposed work. Moreover, velocity ellipsoids, dual of
the force ellipsoids, will characterize the workspace. Being a novel
hand posture, also in this case we explicitly accounted for a users’
training phase, during which visual and kinaesthetic feedbacks allowed
the acquisition of task-related motor skills.



4 Human-Robot cooperative
grasping

This Chapter focuses on a soft interaction occurring during a human-
robot cooperative manipulation task. In the envisaged task, the two
co-agents transport a large object, and the robot is not tightly grasping
the object, but is contacting it with a compliant extended patch with
known geometry (Fig. 4.1). In this framework, a proper contact model
named the Extended Patch model will be proposed: geometric properties
and compliance of the patch will be used to derive pressure constraints,
that will be considered in addition to Coulomb and normal friction
limits. Then, based on the Extended Patch contact model, a novel
control scheme for cooperative human-robot grasping will be introduced.
In such a control scheme, the violation of the constraints generates
velocity commands that have to be provided to the robot with the aim
of maintaining the contact with the object. More specifically, friction
constraints are related to robot translational velocities, while the novel
pressure constraints are used to derive suitable angular velocities.

The proposed approach provides the robot with some exterocep-
tive capabilities related to the status of the contact, similarly to the
information provided to the human by mechanoreceptors1.

1The content of this Chapter has been published in [107]. Reprinted with kind
permission from IEEE.
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Fig. 4.1 Cooperative grasp between a human and a robot. The human guides
the cooperative manipulation task and the robot keeps the grasp stable, avoiding
sliding and rolling. The robot end-effector is equipped with a force sensor and
a contacting plate ensuring an extended contact patch.

4.1 Related works

Cooperative manipulation between humans and robots is one of the most
relevant examples of physical human-robot interaction (pHRI) [108].
Different scenarios have been tackled, from lifting of heavy objects [109],
to transport of long or flexible objects [110]. The interaction is usually
based either on impedance [111] or admittance [112] control schemes,
where the controller parameters are often tuned exploiting observations
of human-human interaction. Research works on human-robot coopera-
tive manipulation focus on obtaining smooth human movements [113]
and optimal load sharing [114] for a seamless and natural collaboration.
Most of the times it is assumed that the robot is either tightly grasping
the object with its gripper(s) [114], or that the object is attached to
the robot through a universal joint [112]. So far, in the field of coop-
erative human-robot grasping, less focus has been put on deriving a
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model of the robot contacts taking into account the actual properties
of the contacting surface. Also in the field of cooperative robot-robot
manipulation, the common assumption is to consider the grasped object
as firmly attached to each manipulator’s end-effector (tightly grasped
object) [115], and there are only a few works that explicitly model the
contact points. In [116], for example, rotational/prismatic joints are
used to model the rolling/sliding of the contacts. Most of the literature
on grasp analysis is based on models in which both the hand and the ob-
ject are represented as rigid bodies, and contacts are identified in single
points [117, 118]. These assumptions are at the basis of the main grasp
quality measures [119, 120], and are also adopted in other applications,
including the analysis of cooperative robot-robot and human-robot ma-
nipulation. Gupta et al. , for example, starting from the work conducted
by Erdmann [121], assumed single point frictional contacts to plan
carrying tasks with robots equipped with flat palms [122]. Contact
models considering the resistance to torques about the contact normal
direction (soft finger contact model [118]) have been exploited, instead,
to simulate human grasp capabilities [123], and to detect rotational slip
with force and tactile sensors [124].

Extended contact patches have been explicitly modelled in many
works on non-prehensile manipulation (e.g., planar pushing [125], pla-
nar sliding [126]), and, more recently, the concepts of limit surface [126]
and motion cone [125] were used for planning prehensile in-hand ma-
nipulation actions through planar pushes [127]. Also the diffusion of
soft robotic hands and their introduction in unstructured contexts [128],
lead to an upgrade of the contact model, in order to consider contact
patches with a finite and non-negligible area and local material defor-
mation [129].
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Fig. 4.2 Side and front view of the flat, rectangular plate attached to the
force/torque sensor at the robot end-effector.

4.2 Contact models

After some general definitions, here we briefly review the main contact
models adopted in grasp analysis, and then introduce a model that
considers a finite non-negligible contact area between robot end-effector
and grasped object.

4.2.1 Definitions

Let us consider a plate whose surface goes in contact with the grasped
object and is attached to a force/torque sensor at the robot end-effector,
as in Fig. 4.1. For the sake of clarity, we assume that the contact area
is flat and rectangular (Fig. 4.2). Let us define a contact reference
frame whose origin C is in the centroid of the contact area, in which the
z−axis is normal to the contact surface pointing to the plate, and x and
y are aligned with plate’s edges. When the plate is in contact with an
object, it applies an equivalent contact wrench λ c at the center of the
contact patch C. λ c collects the contact forces fc and moments mc in
C: λ c = [fT

c ,mT
c ]

T , and it is balanced by the resultant of the tangential
stresses and normal pressures applied to the plate. In each infinitesimal
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area dS of the contact patch there are a normal pressure p(x,y) and two
tangential stress components τx and τy. The resultant force and moment
related to p, τx and τy, that have to balance λ c, are:

fcx =−
∫

S
τxdS, fcy =−

∫
S

τydS, fcz =−
∫

S
pdS, (4.1)

mcx =−
∫

S
pydS, mcy =

∫
S

pxdS, mcz =−
∫

S
(−τxy+ τyx)dS. (4.2)

In the following, we summarize how these components are related in
case the plate is approximated with a point (see Section 4.2.2) or in case
all geometrical properties of the actual contacting area are explicitly
taken into account (Section 4.2.3).

4.2.2 Background

4.2.2.1 Single point with friction (or Hard Finger)

This is one of the simplest contact models, often adopted in grasp anal-
ysis literature, and it can be applied when the contact area is relatively
small and the materials of the contact surfaces are sufficiently hard.
In this situation, the contact can be approximated as a point and the
action that is exchanged can be approximated with a force applied at the
contact point, i.e., λ c = [fT

c ,0T ]T . This force can be represented as the
sum of a normal fn = fcz and a tangential ft =

√
f 2
cx + f 2

cy component,
that are related by the Coulomb’s friction constraint, i.e., ft ≤ µs fn,
where µs is the static friction coefficient. In other words, Coulomb’s
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law of friction imposes that fc ∈ FC, where FC is the friction cone:

FC =
{

fc ∈ℜ
3 : fn ≥ 0, ft ≤ µs fn

}
. (4.3)

4.2.2.2 Soft finger

As in the previous model, the theoretical contact patch is assumed to be
a point, but in this case we consider the local deformation of the contact
surface. The action exchanged at the contact surface is the resultant of
the distributions of normal pressure and tangential stress. Beside the
tangential force ft , the tangential stress can also generate a moment
component mcz. Since tangential stress and normal pressure have to
locally satisfy Coulomb’s friction law, that is τt =

√
τ2

x + τ2
y ≤ µs p,

there is also a constraint between mcz and fn, i.e., mcz ≤ µt fn [123].

4.2.3 Extended Patch (EP) model

Both the models described above are based on the hypothesis that,
neglecting local deformations, the contact can be approximated with a
point. In other words, both the models deal with non-conformal contacts
[130]. In many implementations, however, this hypothesis cannot be
applied. Here, for instance, we are considering a human and a robot that
have to lift and move an object together: it is obviously better to assume
that the robot is touching the object with an extended contact patch,
through which it can apply forces and torques in all directions, rather
than supporting the grasp in a single point. In this way, intuitively, the
grasp is more reliable, and the human can fully control the object pose,
while a part of the object weight is supported by the robot.



4.2 Contact models 106

To better explain the contact model that we are proposing, we do two
hypotheses simplifying computations: a) the contact is flat, and b) the
contacting surfaces are made of linear elastic materials. If one or both
these hypotheses are not satisfied, the main steps of the procedure that
will be presented can be applied as well by properly specifying contact
materials’ constitutive relationships and by evaluating the integrals in
Eq. (4.1) and Eq. (4.2) over the non-flat surface.

From our hypotheses, it follows that the pressure distribution must
be linear in x and y:

p = p0 +ax+by. (4.4)

otherwise the contact between the surfaces would be lost after the
deformation. In the linear elastic material, indeed, the Hook law holds
point-by-point: f = −kẑ, where k is the elastic constant. This means
that f generates point-by-point a linear displacement of the contact
surface. Hence, locally, the pressure is given by p =−k′z. To preserve
the fact that f generates a linear displacement of any point of the contact
surface, the most general expression of the pressure distribution on that
surface has to be linear in x,y (Eq. (4.4)), whose coefficients p0, a and
b depend on the contact wrench λ c and the plate surface S through:

fcz =−
∫

S
(p0 +ax+by) dS, (4.5)

mcx =−
∫

S
(p0 +ax+by) y dS, (4.6)

mcy =
∫

S
(p0 +ax+by) x dS. (4.7)

We can express p0, a and b as functions of fcz, mcx, and mcy by
solving the above equations. If we assume that the surface of the plate
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is rectangular, with sides l1 and l2, and we substitute the obtained p0, a
and b in (4.4), we get:

p =
fcz

l1l2
+

3mcy

l3
1 l2

x+
3mcx

l1l3
2

y. (4.8)

Eq. (4.8) shows that the pressure is the sum of three terms: the first
one is the mean pressure, due to the application of a normal force on a
surface, while the others are the contributions provided by the applied
torques in x and y directions. These components vary according to the
Cartesian position of a given point on the surface. So, for instance, if
just a counterclockwise rotation about x-axis is considered, the higher
is the y-coordinates of a point, the higher is the pressure in that point.
If an additional counter-clockwise rotation about y-axis is considered,
the highest value of the pressure is in the right upper corner of the
plate, while the minimum is in the bottom left corner. This is coherent
with what is expected by intuition about forces and torques applied to a
rectangular plate surface.

In order for the flat contact to hold, the following constraints must
be satisfied for any point on the plate:

p(x,y)> 0. (4.9)

It should be noticed that if mcx ̸= 0 and / or mcy ̸= 0, the pressure
distribution over the contact area will not be constant and will have a
minimum pmin and maximum pmax value. Since the pressure distribution
is linear and the plate is rectangular, the boundary values pmin and pmax

will result in one of the corners or, in some limit cases (when mcx = 0
or mcy = 0) on one of the edges. To verify that the contact is present, it
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evaluate ec with 
SP or EP method

ec Kc
 robot control 
and dynamics

ξd

λc, n

Fig. 4.3 Diagram of the force control with inner velocity loop.

is therefore sufficient to verify that Eq. (4.9) is satisfied for all the plate
corners.

4.3 Robot control

The contact models introduced above are the basis of two force con-
trol algorithms that were implemented on a robotic arm to perform
human-robot hybrid cooperative grasping. In both algorithms, the con-
tact wrench λλλ c and the normal direction n are inputs for the evaluation
of force and torque correction terms denoted with e f and em, respec-
tively. Indicating with ec = [eT

f , eT
m]

T the complete correction vector,
the reference robot speed value is then evaluated as ξξξ d = Kcec, where
ξξξ d = [vT

d , ωωωT
d ]

T . vT
d and ωωωT

d are the reference linear and angular
velocities of the end-effector, respectively, and the subscript d indicates
reference values. Kc = diag[K f , Km] is a 6-dimensional diagonal ma-
trix of the contact values transforming force and moment correction
terms into translation and angular speed references, respectively. In
other terms, in both the control algorithms, a force control scheme with
an inner velocity loop is implemented, as shown in Fig. 4.3.
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4.3.1 Single Point (SP) method

This control algorithm is based on the single point with friction contact
model (Section 4.2.2.1). The robot is controlled so that: a) the normal
component of the contact force fn is bounded between two limits fmin

and fmax; b) the contact force fc is inside the friction cone FC (Eq. (4.3)).
SP contact model does not take into account moment components, how-
ever, since in our experimental implementation a flat end-effector was
used, we had also to consider a moment correction term. Concerning
this aspect, the control acted so to maintain the moment components as
small as possible.

To accomplish these requirements, e f and em are evaluated as de-
tailed in Alg. 1 and graphically represented in Fig. 4.4. The inputs of
the algorithm are the current contact wrench λ c, the contact normal n,
fmin (chosen to assure that fn > 0 with a sufficient reliability), fmax

(taking into account the maximum force that the robot can apply and/or
that can be applied to the object to avoid damages), and the friction
coefficient µs

2.
The force compensation term is given by the sum of two terms:

e f = en + et , where en is evaluated to ensure that fmin < fn < fmax,
and et keeps ft within Coulomb’s friction limits. The contact moment
component, em, is an action opposite to mc and is applied to keep its
value as low as possible, i.e., em =−mc.

2 To account for a possibly inaccurate estimate of µs, we define µs = csµ ′s, where
µ ′s is the estimated value and cs ∈ (0,1] plays the role of safety coefficient. The same
applies to µt .
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Algorithm 1 Evaluation of ec, SP method
Input: fc, mc, n, fmin, fmax, µs
Output: ec

1: loop
2: fn← fc ·n

3: t← (n× fc)×n
|n× fc|

4: ft ← fc · t
5: if ( fn ≤ fmin) then
6: en← ( fmin− fn)n
7: else if ( fn ≥ fmax) then
8: en← ( fmax− fn)n
9: else

10: en← 0
11: end if
12: if ft ≤ µs fn then
13: et ← 0
14: else
15: et ← ft

(
1− µs fn

ft

)
t

16: end if
17: e f ← en + et
18: em←−mc
19: ec← [eT

f , eT
m]

T

20: return ec
21: end loop



4.3 Robot control 111

Fig. 4.4 Single Point method, evaluation of en and et for the following cases:
a) fn < fmin, b) fn > fmax, c) ft > µs fn.

4.3.2 Extended Patch (EP) method

The Extended Patch contact model (Section 4.2.3) is the core of the
second control algorithm we discuss. In this case, e f is evaluated again
as in Alg. 1. The main difference with respect to the SP control resides
in the evaluation of the em = [emx, emy, emz] term, that here explicitly
takes into account the previously introduced contact properties and
limits. The emz action is applied if the normal component of contact
moment exceeds torsional friction limits, i.e., if mcz > µt fcz, while emx

and emy actions are applied if the pressure distribution p(x,y) < 0 in
some parts of the contact patch. The pi values are evaluated by means
of Eq. (4.8) in the four plate corners Pi. Let pmin be their minimum
value. If pmin < 0, a corrective term emb = [emx, emy, 0] is evaluated
as emb = −kmb|pmin|b. Its magnitude is proportional to |pmin|, and
its direction is opposite to the tangential component of the contact
moment, whose direction is defined by the unit vector b. The constant
coefficient kmb depends on plate geometry and is necessary to transform
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the pressure in a torque reference. The evaluation of the ec components,
and in particular of em, is detailed in Alg. 2.

Algorithm 2 Evaluation of ec, EP method
Input: fc, mc, n, fmin, fmax, µs, µt , kmb
Output: ec

1: loop
2: e f ← Alg. 1

3: b← (n×mc)×n
|n×mc|

4: pi← eval Eq. (4.8) at corners Pi, i = 1 · · ·4
5: pmin←min[p1, p2, p3, p4]
6: if (pmin > 0) then
7: emb← 0
8: else
9: emb←−kmb|pmin|b

10: end if
11: if (mcz < µt fn) then
12: emz← 0
13: else
14: emz← mcz

(
1− µt fn

mcz

)
n

15: end if
16: em← emb + emz
17: ec← [eT

f , eT
m]

T

18: return ec
19: end loop
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4.4 Experiments

To validate the Extended Patch contact model, experiments with a 7
DoF collaborative robotic arm were performed. Skilled and non-skilled
participants were involved. A skilled experimenter is a person familiar
with collaborative robotics, and in particular with the cooperative ma-
nipulation setup used in the experiments. Non-skilled participants had
never collaboratively grasped an object with a robot before.

Two groups of experiments were carried out: Characterization
(performed by a skilled operator) and Pick-and-Place (performed by 10
non-skilled operators). In both cases, the Extended Patch method (EP)
was compared to the Single Point approach (SP). Experimenters were
not informed about which method they were testing.

Characterization experiments were mainly aimed at evaluating the
precision and overall functioning of the proposed control strategies in
the most favourable conditions (i.e., user with consolidated experience
with collaborative robots and with the specific experimental setup), and
this is why they were performed by an expert operator.

Pick-and-Place experiments, instead, were aimed at analysing user
behaviour during a representative task that could be useful in industrial
and domestic settings, and thus were performed by operators with
different levels of experience.

In the experiments, we selected the Kc gains as follows. The two
methods used the same K f (K f ,SP = K f ,EP = diag(k f ,k f ,k f )), while
two different Km matrices (Km,SP and Km,EP) were adopted:
Km,SP = diag(km,SP,km,SP,km,SP) and Km,EP = diag(km,EP,km,EP,km,EP).

The translational correction term, indeed, resides on the same compu-
tation for both methods, while the rotational correction operates onto
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different quantities (torques for the SP method, pressures for the EP
method). The gains k f , km,SP, and km,EP were empirically chosen to
ensure safe robot reactions (too high gains would result into too high
velocities) and acceptable performance in all motion directions.

To have a soft elastic contact between the robot and the object,
during experiments the object side closer to the robot was covered by a
rubber layer (equivalently, the elastic patch can be embedded directly
on the end-effector). A Sawyer robotic arm (by Rethink Robotics)
equipped with an ATI Gamma force/torque sensor and a squared con-
tacting plate at the end-effector were used. Communication between the
devices was implemented within the Robot Operating System (ROS).

4.4.1 Characterization experiments

In these experiments, the operator was asked to move a box in coop-
eration with the robot, performing a simple trajectory for each trial,
namely: i) a lateral translation of 50 cm along the x-axis (Fig. 4.1),
ii) a vertical ascending translation of 50 cm along the y-axis, and iii) a
translation of 50 cm towards the operator along the z-axis.

The given task must be accomplished keeping as constant as pos-
sible Cartesian coordinates that are not explicitly involved in the task
execution (e.g., in task ii) x and z must be perturbed as little as possible).
However, since in collaborative robotics a special attention is dedicated
to the human operator’s comfort, the operator is asked to achieve a
trade-off between comfort and assigned task. Each task was repeated 5
times with a 33×25×15 cm box weighting 0.5 kg.

Figs. 4.5 and 4.6 show the results obtained in terms of trajectories
in task ii) using the the Single Point method and the Extended Patch
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Fig. 4.5 Single Point method, Characterization experiments: results of 5 trials of
task ii), i.e., object vertical motion. The motion in the y-axis is almost linear, similarly
to Fig. 4.6. However, in this case, controlling the motion along x results to be more
difficult than when using the Extended Patch method (see Table in Fig. 4.7).
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Fig. 4.6 Extended Patch method, Characterization experiments: results of 5 trials of
task ii), i.e., object vertical motion. The motion in the y-axis is almost linear, and the
other two directions are kept constant, or piecewise constant.

method, respectively. For the other two tasks we obtained analogous
results: a) for both methods the motion along the main task direction is
almost linear, and b) the other two directions show a small variation be-
tween initial and final values when considering the EP method, whereas
at least one of them varies considerably with the SP method. This is
confirmed by the data reported in the right part of the Table in Fig. 4.7.
To have insights on how much the Cartesian coordinates are perturbed
during the task execution, for each trial of each task, the difference
between the initial and the final positions was recorded. The second
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to last column of the Table in Fig. 4.7 reports this position difference
(diff ) averaged over the 5 trials. Besides, for each trial of each task, the
standard deviations along each motion direction were computed. The
last column of the Table in Fig. 4.7 contains the worst case standard
deviation (maxstd), i.e., the maximum computed value for the standard
deviation achieved along each direction.

When considering the secondary coordinates (i.e., the coordinates
not explicitly involved in the task), the quantity diff is always smaller
for the EP method with respect to what was obtained with the SP
approach. More precisely, for each task, for at least one coordinate,
the ratio between the values obtained for the two methods is about one
order of magnitude (see for example the x values for task ii)). While
the Extended Patch method allows to well control all coordinates (with
a maximum diff of about 2 cm), with the Single Point approach the
human performance is less satisfactory. Similar conclusions can be
drawn by looking at the values of maxstd.

In the Table shown in Fig. 4.7, also averaged kinematic quantities
and their standard deviations are reported, including the task execution
time (t), and the norms of force ( f ), torque (m) and velocity (linear (v)
and angular (ω)) vectors.
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Fig. 4.7 Results on Characterization experiments.
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Fig. 4.8 Setup for the Pick-and-Place experiments.

4.4.2 Pick-and-Place experiments

In these experiments, the operator was asked to move a box from a
given start position to a given target position, placed 27 cm under it, 47
cm to the right (with respect to the human), and rotated of 35◦ about
the vertical axis. The experimental setup is shown in Fig. 4.8. A box
with size 36.5×34×11 cm and weight 0.4 kg was used.

A total of 10 volunteers, 3 females and 7 males, aged between 26
and 54, participated to this experiment. None of them had previous
experience of collaborative robotics and had ever tried the system. To
acquire task-specific motor skills involving human-robot collaborative
aspects, experimenters first had to accomplish a training phase and then
a test phase. The training was composed of 2 trials with Extended Patch
method and 2 trials with Single Point method, alternately proposed to
the experimenter. After the training phase, one trial per method was
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performed for the test phase. Half of the participants first did the task
with the EP method, while the others experimented first the SP method.

It should be remarked that the experimenters were not informed
about which method was running, and they were not even aware of
the fact that their experiments were finalized to the comparison of two
different approaches. None of the other participants was present while
one of them was performing the experiment. Experimenters were told
to move the box from the start to the target position with the aid of
the robot and without loosing the contact with the robot. They were
asked to accomplish the task as precisely (staying within the blue lines
in Fig. 4.8) and as fast as possible.

Both phases of the experiments (training and test) were analysed
and the results are presented in the following.

4.4.2.1 Average quantities

Data collected during the test phase have been processed so to obtain
the average completion time and the average norms of the linear ve-
locity and force. Results are reported in Table 4.1, which shows that
while forces and velocities are similar for both methods, the average
completion time decreases by ∼ 16% for the EP.

SP EP

t (s) 47.41 39.78

v (m/s) 0.018 0.02

f (N) 6.45 6.41

Table 4.1 Pick-and-Place experiments. Average completion time, average norms of
the linear velocity and force during the test phase.



4.4 Experiments 120

Three of the subjects, corresponding also to those that obtained
the best performance in terms of completion time in the test phase,
showed an interesting trend between the training and the test phase.
The completion time of their experiments, indeed, gradually decreased
between the subsequent trials with the EP method and not with SP
approach, as shown in Table 4.2. This qualitative consideration suggest
that the EP method fosters the familiarization with the task, even when
participants are not yet skilled.

Test 1st trial [s] 2nd trial [s] 3rd trial [s]

Subject 1 SP 54.6 57.1 49.6
EP 42.7 36.9 34.2

Subject 2 SP 41.7 33.8 41.1
EP 47.2 34.9 26.8

Subject 3 SP 53.3 58.05 38.8
EP 48.9 48.02 30.9

Table 4.2 Pick-and-Place experiments. Task completion time for the three of the
subjects that obtained the best performance. A gradual reduction of the completion
time can be observed when using the Extended Patch method. The 1st and 2nd trials
belong to the training phase, the 3rd one belongs to the test phase.

Another remark can be done when focusing on the data related
to the 5 subjects that performed the first experiment of the training
phase with the EP method and the second one with the SP approach.
Although the trial with the EP method corresponded to their very first
time doing a cooperative robotics experiment, all of them achieved a
shorter completion time than what was obtained with the SP method.
The average difference was about 7.6 s.

Moving on with this reasoning and taking into account the first two
trials of all the subjects, one done with EP and the other done with SP
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method no matter the order in which the two methods were presented,
8 out of 10 experimenters achieved a shorter completion time with the
EP method, with an average duration difference of 8.75 s. The same
comparison applied to data collected in the test phase shows that the EP
method allows a shorter completion time for 7 out of 10 subjects, with
an average time difference between EP and SP of 11.6 s.

4.4.2.2 Task Precision and Contact Permanence

The proposed Pick-and-Place experiments involved more complex mo-
tions if compared to the motions required by the Characterization ex-
periments. In Pick-and-Place experiments, indeed, subjects were asked
to perform a composition of translations and rotations.

Concerning task precision, participants were asked to precisely
place the object in the target, clearly delimited, location. During the
experimental trials, no relevant deviations were found with respect to
the assigned location (average displacement ∼ 0.4 cm, average angular
deviation ∼ 6◦).

Regarding contact permanence, the subjects were asked not to lose
the contact between the box and the robot, and specifically to remain in
contact with at least one corner of the contacting plate. During the test
phase, with the SP method, an average angle between the end-effector
surface and the box side of 30.1◦ about the plate y−axis was observed.
The same angle was just about 4.3◦ for the EP approach, that, however,
also generated an average angle of 11.4◦ about the plate x-axis between
the box and the plate.
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4.4.2.3 Movement smoothness

To have a comparative measurement of the movement smoothness
achieved with the proposed methods, the SPARC (SPectral ARC length)
index [131] has been computed for each experiment performed by the
non-skilled subjects, and the average value was then retrieved. Calcula-
tions are based on the code available on GitHub3.

Smoothness indices for movement tasks (i.e., task involving specific
motions) rely on the idea of analysing the derivatives of the position pro-
file to highlight jerks. As suggested in [131], the data processing for the
SPARC index related to a movement task with position measurements
is related to velocities, since velocity “highlights intermittencies, and
does not amplify noise as much as the other higher order derivatives”.

We computed an average SPARC index for each direction of motion
(x,y,z). The ratios between the corresponding SPARC indexes for the
EP and for the SP methods are 0.85, 0.99, and 1.02 for the three axes,
respectively. These values do not highlight a relevant difference between
the proposed approaches, since they are very close to 1. However, the
same ratios computed for the subjects that obtained the best completion
time (Table 4.2) show a remarkable higher smoothness of the EP with
respect to the SP along the x and z axes (1.23, 1.07, 2.08).

4.5 Discussion

Experiments reported in Section 4.4 aimed at characterizing the per-
formance achievable with the proposed Extended Patch method, and

3https://github.com/siva82kb/SPARC
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Fig. 4.9 Compensation of object rotation with the EP method.

to provide a comparison with a simplest control strategy based on the
Hard Finger contact model, i.e. the Single Point method.

Characterization experiments relied on performing pure transla-
tional motions, and were carried out by a skilled operator. What came
out is that the average force, moment, linear velocity and task com-
pletion time were similar in the two methods (see Fig. 4.7), showing
that, as requested, the operator was naturally and comfortably perform-
ing the experiments making a similar effort. However, the Extended
Patch method allowed to better control the object trajectory along the
main direction of motion, keeping both the other directions almost
constant or piecewise constant (see diff and maxstd in the Table shown
in Fig. 4.7, and Figs. 4.5, 4.6). Thus, the task was accomplished with
more precision. Given that the operator’s effort was similar in both
the approaches, decreasing the undesired displacement occurring in the
secondary coordinates when using the SP method would have required
to make more effort.

The Pick-and-Place experiments involved a composition of trans-
lations and rotations, and were carried out by non-skilled volunteers.
All of them were able to precisely accomplish the task. The most rele-
vant result obtained during these experiments is related to the contact
permanence between the plate and the grasped object. For the Single
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Point method, at the end of the experiments, an average angle of 30.1◦

about the plate y-axis appeared between the box and the plate. A much
smaller detachment was measured with the Extended Patch method
(4.3◦ about the y-axis, 11.4◦ about the x-axis). This implies that in
the Single Point method, the operator has to choose whether to reduce
the detachment actively, thus finishing the task with the box in a final
wrong position, or to accomplish the task precisely, risking to lose the
object. This would be particularly disadvantageous if the aid of the
robot is necessary not only to stabilize the grasp but also to hold part of
the object weight. A way to avoid this problem could be to finely tune
the Km,SP values (see Alg. 1), which would require an inconvenient
trial-and-error, task-dependent selection procedure.

The small angular displacements observed with the Extended Patch
method are due to the fact that the robot does not have enough time to
finish its rotational motion, as the experimenters are asked to complete
the task as quickly as possible. However, the detachment could be
avoided if subjects did slower motions. Subsequent frames of such
situation are shown in Fig. 4.9, where the robot follows the object
rotation thanks the Extended Patch method.

4.6 Final remarks

This Chapter focused on a soft interaction involving human-robot co-
operation for moving large objects. A compliant, extended contact has
been assumed to occur between the object and the robotic end-effector.
Compliance and geometric properties of the actual contact region al-
lowed to devise a proper contact model named Extended Patch. This
contact model and the generalized forces exerted by the human are the
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basis of a robot control strategy named the Extended Patch method, that
puts the human at the center of the task execution.

The Extended Patch approach has been compared with a control
strategy based on a contact model that is more similar to the most
commonly used in literature (i.e. the Hard Finger model), and does not
consider the actual properties of the contact area.

Experiments revealed that the control strategy relying on modelling
the compliant interaction gave better results in terms of trajectory track-
ing and completion time. Moreover, preliminary, promising, results
suggest also that the Extended Patch method allows to reduce users’
learning time and increases movement smoothness, but these aspects
will be better investigated in future work.



5 Handwriting on touchscreens

In this Chapter we will consider a soft interaction involving a human
that interacts with themself. The focus is on a grasping task: writing on
a touchscreen device. In the envisaged writing task, the hand will grasps
itself, by realizing a hand posture that merges gesture and tool into a
single operative organ. This hand posture, named FingerPen, is such
that the forces that are usually exerted on a tool are here exerted directly
on the same hand that exerts such forces. Hence, the same forces
that are in charge of generating task-related movements constitute non-
mediated kinaesthetic feedback affecting the performance of the writing
task, allowing fast motor learning.

The envisioned applications focus on children and elders. In the
former case, the aim is to develop pre-writing skills, and in the latter to
contrast the decline of neural circuits due to the old age. Both the cases
rely on neurophysiological studies showing the outstanding role played
by manipulation capabilities on the status of synaptic connections1.

1The content of this Chapter has been published in [132]. Source: Scientific Reports,
Nature. Licensed under CC 4.0.
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5.1 Introduction

Handwriting requires the sense of self and of what is other than the self,
proprioception and exteroception, implies a strong hand-eye coordina-
tion, and relies on a fine control of the forces exchanged with the writing
tool. However, nowadays the possibility of fast typing on keyboards
and touchscreens is making this activity more and more rare, leading to
a de-materialization of the writing process. What is clearly missing is
the spatial perception of the physical medium, the perception of the tool
and also the fine tool management. However, as the embodied cognition
model enlightens, handwriting is one of the skills that mainly fostered
the human cognitive development: Specific brain synaptic connections
and areas specialization were set in a complex interrelation, leading
to the simultaneous development of physical and mental capabilities,
as remarked by several neuroscientists and educationalists [133–135].
This strong connection between mind and body is becoming thinner
and thinner, as the growing concerns about dysgraphia highlight [136].
However, the advantages brought in everyday life by mobile devices
cannot be ignored and children are nowadays exposed very early to the
use of technology [137, 138].

According to McLuhan, any technology leads simultaneously to an
amputation and a sensorial extension [139]. De Kerckhove investigated
also the effects on the human mind, and defined a psychotechnology
as “any technology that emulates, extends, or amplifies sensory-motor,
psychological or cognitive functions of the mind” [140]. Inspired by
these concepts, we propose the FingerPen: a posture of the hand thought
to exploit smartphones and tablets to keep people used to practise the
“language by hand” [141]. In the FingerPen posture, the index finger is
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Fig. 5.1 The FingerPen, a hand posture suitable for writing on touchscreens.

constrained by the hand in such a way that it becomes a writing tool
(Fig. 5.1) characterized by the fact that “tool and gesture merge into
a single organ”, similarly to what the anthropologist Leroi-Gourhan
observed in animals [142], leading to an intrinsic embodiment of the
tool [143, 144].

Notwithstanding that the fine sensorimotor skills required by the
classic handwriting cannot be acquired in other ways except by means
of pen and paper, the FingerPen can be exploited in parallel to make
children familiarize with the writing task and develop reading-writing
prerequisite skills. Berninger said that “We use our hands to access
our thoughts”, and showed that children tend to write more quickly,
with more words and more ideas while writing by hand than by key-
board [145]. Since tablets are quite spread in all the age groups, some
applications of the FingerPen can be proposed for elders, to keep prac-
ticing hand-eye coordination and contrast visual-spatial deficit and
memory loss, which are amplified by the lack of exercise [146]. Ex-



5.1 Introduction 129

ercises similar to those proposed in the SAGE test [147], the Clock
Drawing test [148], or the Benton Visual Retention Test [149] can be
performed. Recent studies show that memory benefits from the act of
drawing, both in younger and in older adults [150, 151].

Related works

The handwriting task involves advanced cognitive processes, and is a
paradigmatic action that clearly shows human dexterous manipulation
capabilities. It would not be possible without the complex structure of
the human hand and its underlying sensorimotor control paradigms [152–
155]. The study of the human hand biomechanics [152] has led to the
definition of different kinematic models of the human hand, typically
characterized by realistic measures of the phalanges and of their rela-
tive positioning [156–158]. Usually, the hand is represented as a set
of open kinematic chains made of rigid links connected by revolute
joints. Each joint represents a degree of freedom (DoF) of the structure.
A common choice is to model index, middle, ring and little fingers
with four DoFs (three for flexion/extension, and one at the basis for
adduction/abduction) [159, 157], whereas the most used representations
of the thumb either include four [159, 157] or five DoFs [160]. When
it comes to modeling the handwriting posture, not only the kinematic
model of the human hand has to be considered, but also the fact that the
writing task starts with a prehensile action [161], i.e., the achievement
of a stable grasp over the writing tool (e.g., a pen). The adopted grasp
configuration can affect the handwriting ability, and four main grip
styles have been identified based on how fingers are placed around the
writing tool [162, 163].
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With the advent of touchscreens, researchers have also focused
on studying the digital handwriting, i.e., the action of writing over a
touchscreen either using an ad-hoc tool or just the index finger. With
respect to writing on paper, the surface of touchscreens has a lower
friction and this might influence the graphomotor execution [164] and
the contribution of different types of sensory feedback (proprioceptive,
visual) [165] during handwriting. Several works investigate digital
handwriting in children and older adults by comparing it to other writing
methods [166, 167], or focus on similar tasks, like tactile exploration
through sliding [168], but only a few propose a model of the digital
handwriting task [169]. In [169], authors found that using a writing
tool allows a more accurate control of the writing action, showing also
that the free finger motion is more suitable for tasks requiring a large
workspace and short completion time. In this paper, we introduce the
FingerPen posture.

5.2 Hand model

To analyze the FingerPen posture from a kinematic point of view, we
considered a mechanical model of the human hand in which each
finger is an open kinematic chain composed of rigid links connected
through revolute joints. In this way, a characterization of the hand
operational space can be provided, and the hand in FingerPen posture
can be described as a manipulator grasping the distal phalanx of the
index finger. The key elements that are needed to model a handwriting
posture are: i) the links and joints composing the hand, and ii) the
contact points of the hand with itself and with the environment.
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(a) (b) (c)

Fig. 5.2 (a) Model of the human hand adopted in this work, (b) FingerPen con-
tact points. Green arrows indicate the contact points of the hand with itself (i.e.,
chh = [cti,cii,cmi]

′), while the orange arrow indicates the contact point between the
hand and the environment (i.e., che). (c) In the FreeFinger posture only the contact
point with the environment must be considered.

We adopted a 20 DoFs model of the human hand (Fig. 5.2a) like
the one used in [159, 22, 169]. Index, middle, ring and little fingers
are composed of three links, corresponding to proximal (PP), medium
(MP) and distal phalanxes (DP), and three joints, corresponding to
metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal
interphalangeal (DIP) joints. The thumb has the metacarpal bone (MC),
which is connected to the palm through the trapeziometacarpal (TM)
joint and to the proximal phalanx (PP) through the metacarpophalangeal
(MCP) joint. The proximal and distal phalanges of the thumb are
connected through the interphalangeal (IP) joint. The MCP joints of
the fingers and the TM joint of the thumb have two degrees of freedom
(adduction/abduction and flexion/extension), whereas the other joints
only allow flexion/extension movements.

Concerning the contact points, we can indicate with the vector chh

the position of the contacts between the fingers themselves, and with
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che the position of the contacts between the hand and the environment.
In the FingerPen posture (Fig. 5.2b), the hand has three contact points
with itself, whose position is described by the vector chh = [cti,cii,cmi]

′,
where cti is the contact point between thumb and index fingers, cmi

is the contact point between index and middle fingers, and cii is the
contact point between the last phalanx of the index finger and the
remaining part of that finger. To properly model the fact that the index
tip and the remaining part of that finger are just consecutive parts of
the same finger, the last phalanx of the index finger can be constrained
(through the adoption of a suitable contact model, see Section 5.2.2) to
be completely attached to the index finger itself. Then, the FingerPen
establishes a contact point with the environment located on the tip of
the index finger (che).

To better assess the kinematic properties of the FingerPen, in the
following we will compare the FingerPen with the FreeFinger posture,
i.e., the posture that we typically use to interact with touchscreens, in
which the index finger is considered “free”, since it is not constrained
by the other fingers (chh = 0). In this case, the only vector to consider is
che, as the FreeFinger is contacting just the environment (see Fig. 5.2c).
In Section 5.2.1 and Section 5.2.2, we will provide details on the hand
posture for FingerPen and FreeFinger, respectively. By following the
analogy with a manipulator, in both cases the index fingertip will be
treated as the manipulator end-effector.

In this work, the mathematical vectors representing position and
velocity of the contact points of the hand with itself will be denoted
with chh and ċhh, respectively, while che and ċhe will denote position
and velocity of the contact point between fingertip of the index and
the environment. The vectors including the manipulator joint angles
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and angular velocities will be indicated by q and q̇, respectively. In the
next subsections, we will provide the mathematical relations mapping
the hand joint velocities onto the velocity of the index fingertip that
interacts with the environment.

5.2.1 The FingerPen Posture

In the FingerPen (FP) posture, the position of the index fingertip is
generated by the superposition of the effects caused by the kinematic
chains of thumb, index, and middle fingers, while ring and little fingers
do not play a role and can be neglected. Since each acting finger is
a 4-DoF manipulator, q, q̇ ∈ R12×1. By interpreting the FingerPen
posture in the light of the grasping theory [170], we can say that the
final part of the index finger is grasped by a manipulator composed
by i) the kinematic chain of the thumb, ii) the kinematic chain of the
middle and iii) the kinematic chain of the index finger without its final
part. As previously mentioned, it is like as if the final part of the index
finger has been cut (becoming a separate object) and then grasped by
the fingers in specific locations (see Fig. 5.2b). Moreover, since the
fingertip is assumed to remain in contact with the environment and the
arrangement of the fingers is such that all the fingers are very close to
each other, the angular displacement and velocity potentially provided
by the interaction with the thumb and middle fingers can be neglected.
Hence, the contact points between these fingers and the index fingertip
are represented according to the Hard Finger (HF) contact model [170].
To properly render the fact that the index fingertip is actually attached
to the rest of the index finger, the (virtual) contact point of the index
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with itself is represented according to the Complete Constraint (CC)
model [170].

In the theory of grasping, the contact between the hand and the
object occurs when specific locations on the hand and on the object
coincide. More specifically, it occurs when the velocity of these loca-
tions on the hand and on the object are the same (according to the given
contact model). This argument is the basis of the theory on quasi-static
grasps [170], that we applied in the following.

The velocity of the contact points on the hand is related to the hand
joints by ċhh = Jq̇, where J ∈ R12×12 is the Jacobian matrix of the
thumb, index and middle fingers. During the grasp, the velocity of
the contact points on the hand is related to the velocity of the grasped
object (i.e. the index fingertip) by ċhh = GT ċhe, where G ∈ R3×12 is
the Grasp matrix. Hence, Jq̇ = GT ċhe that leads to ċhe = (GT )#Jq̇,
where (GT )# denotes the pseudoinverse of GT , and it can be proved
that (GT )# = (GGT )−1G. For notation simplicity, we can write

ċhe = Jeqq̇, Jeq = (GGT )−1GJ. (5.1)

In our simulation, the HF contact point on the thumb is located at
3/4 of the length of the distal phalanx, while the HF contact point on the
middle and the CC contact point are located at 1/2 of the length of their
respective distal phalanges. The basic FingerPen posture (described
here and shown in Fig. 5.1) has been chosen after some preliminary
investigations aimed at identifying an arrangement of the fingers easy to
be adopted and kept during time without effort. As a matter of fact, if,
for instance, the middle finger was not located next to the index finger,
but on the index finger - as some people tend to do - it would result in a
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posture causing physical fatigue, due to the weight of the middle finger
that would load the index finger.

5.2.2 The FreeFinger Posture

In the FreeFinger (FF) posture, the position of the fingertip of the index
is uniquely determined by the kinematic chain representing the index
finger, which is a 4-DoF manipulator. Hence, the joint variables of
the other fingers can be neglected, leading to q, q̇ ∈ R4×1. Thus, the
fingertip velocity is described by

ċhe = Jiq̇, (5.2)

where Ji ∈ R3x4 is the Jacobian of the index finger, mapping the actual
velocity of the manipulator’s joints in the velocity of the end-effector
(index fingertip).

5.3 Manipulability analysis

Manipulability analysis [171] gives insights on the role played by the
configuration of the manipulator in the map describing the relation
between joints and end-effector velocities. More specifically, it allows to
identify the directions along which the configuration of the manipulator
amplifies the joint velocities and which are the motion directions along
which the end-effector velocity is slowed down due to that manipulator
configuration. The equation

q̇T q̇ = 1 (5.3)
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describes a sphere in the joint velocity space. That set of joint velocities
is mapped onto the end-effector operational space by accounting for
the actual relation between joint velocities and end-effector velocities,
that depends on the manipulator configuration. In Section 5.3.1 and
Section 5.3.2, we will provide the manipulability analysis for the Fin-
gerPen and FreeFinger configurations, respectively. The analysis was
conducted using the SynGrasp MATLAB Toolbox [172].

5.3.1 FingerPen manipulability

In the FingerPen configuration, Eq. (5.3) and Eq. (5.1) yield

ċT
he(J

#
eq)

T J#
eqċhe = 1.

However, it can be shown that (J#
eq)

T J#
eq = (JeqJT

eq)
−1, leading to

ċT
he(JeqJT

eq)
−1ċhe = 1 (5.4)

that describes how the set of points in Eq. (5.3) are mapped in an el-
lipsoid, whose semi-axes directions and dimensions are given by the
eigenvectors and eigenvalues of the matrix JeqJT

eq, respectively. Eigen-
vectors characterize the orientation of the ellipsoid, while eigenvalues
define the ellipsoid shape, encapsulating the information on the di-
rections along which the end-effector is capable of higher and lower
velocities. Results are visually shown in Fig. 5.3a.



5.3 Manipulability analysis 137

(a) (b) (c)

Fig. 5.3 Manipulability analysis: Velocity ellipsoids describing the (a) FingerPen and
(b) FreeFinger configurations. (c) Projection of the ellipsoids on the writing plane.

5.3.2 FreeFinger manipulability

In the FreeFinger configuration, Eq. (5.3) and Eq. (5.2) yield

ċT
he(J

#
i )

T J#
i ċhe = 1

that, thanks to the fact that JiJT
i is a full-rank matrix, can be rewritten

as
ċT

he(JiJT
i )
−1ċhe = 1. (5.5)

Hence, ellipsoid semi-axes directions and lengths are given by the
eigenvectors and eigenvalues of the matrix JiJT

i , respectively. Results
are visually shown in Fig. 5.3b.

5.3.3 Comparison on the Writing Plane

At first glance, Fig. 5.3a and Fig. 5.3b seem to suggest that the index
fingertip is capable of faster motions along the transverse direction,
both in the FP and in the FF configurations. However, what is worth
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to investigate is the actual motion capability of the fingertip on the
writing plane. To this aim, the Cartesian, closed-form equation of the
ellipsoids has been retrieved and intersected with the writing plane
equation, leading to the equations of the ellipses resulting from the
projection of the ellipsoids on the writing plane. For an easy visual
comparison, such ellipses are drawn superimposed in Fig. 5.3c.

Despite an apparent similarity between the velocity ellipsoids of the
FP and FF configurations, the actual motion capabilities of the index fin-
ger are remarkably different on the writing plane. As shown in Fig. 5.3c,
indeed, the FingerPen configuration allows a larger velocity along the
longitudinal direction, while in the FreeFinger configuration the finger
can move faster in the transversal direction (the longer the ray vector,
the higher is the allowed velocity along that direction). This argument
allows a further consideration. During manipulation tasks, indeed, a
trade-off between precision and velocity occurs, meaning that precise
motions usually require low velocity, and high speed movements gener-
ate an imprecise control of the motion. This is due to the fact that in
humans precise movements are the result of hand-eye coordination with
continuous visual servoing providing proper feedback on the performed
trajectory. The higher is the velocity, the less effective is the visual feed-
back to change the trajectory, due to a longer distance covered during a
given time interval. To reflect this argument on Fig. 5.3c, we can say
that the FingerPen allows a more precise motion along the transversal
direction and a less precise motion in the longitudinal one. On the
contrary, FreeFinger allows a precise motion along the longitudinal
direction and a remarkably less precise motion along the transversal
direction.
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5.4 Experiments

To have quantitative and qualitative evaluations on the actual use of
the FingerPen for writing on touchscreens, we carried out an experi-
mental campaign with 25 participants aged between 18 and 46. Two
experiments were designed to retrieve quantitative data and, after the
experiments, a questionnaire was submitted to the participants to distil
insights on the user experience. As in Section 5.3, we carried out a
comparative analysis between FingerPen and FreeFinger. Experiments
investigated the relation between precision and workspace extension
(see Section 5.3), and concerned the fact that the possibility of moving
fast along certain directions usually leads to i) long traits and ii) im-
precise movements. Hence, Experiment 1 focused on the extension of
the occupied workspace when writing with a given hand posture (FP or
FF), whereas Experiment 2 regarded the precision that can be achieved
when using the FP and FF postures.

Participants were informed that they would perform experiments
with two possible postures for writing on touchscreen devices, but no
additional information on the idea behind the FingerPen was provided.
The correct way to arrange the hand according to the FingerPen and
FreeFinger configurations was shown to the participants by an expert,
and they were let familiarize with the FingerPen configuration by per-
forming free movements in the air for a couple of minutes. Informed
consent was obtained from all subjects, no sensitive data were acquired
and the other data were anonymized (GDPR 2016/679). All methods
were carried out in accordance with relevant guidelines and regulations:
Participants were free to leave the experiments whenever they wanted,
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and the experimental protocols conformed with the principles inspiring
the Declaration of Helsinki.

All the experiments required just a smartphone with touchscreen.
Data generated by the user touch were acquired through a dedicated
webapp implemented in HTML/PHP (see user interface in Fig. 5.4
and 5.6), and sent to a server where they were stored before data pro-
cessing. Points from the performed finger trajectory were acquired at
approximately 50 Hz.

In general, in handwriting tasks, size, speed and precision are highly
subject-specific. Hence, we focused on the distribution of the individual
differences to have insights on the effect of the FP and FF writing
postures. Therefore, quantitative data gathered from all the participants
underwent a statistical analysis in SPSS Statistics (Statistical Package
for Social Science [173], v.26) to check whether data acquired with
FingerPen and FreeFinger differ in a statistically significant manner. If
the individual differences were normally distributed (Shapiro-Wilk’s
test, p > 0.05) and without extreme outliers (boxplot inspection), a
paired samples T-test was conducted (statical significance for p < 0.05).
When normality had been violated, a non-parametric test was conducted.
To account also for effect size estimate, we considered the Cohen’s d
coefficient, whose absolute value provides a measure of the signal-to-
noise ratio (0.2: small, 0.5: medium, 0.8: large effect [174]).

5.4.1 Experiment 1 - Investigation on the Workspace

In this experiment, participants were asked to write the word "CIAO"
(Italian word for "Hello") in capital letters, within a rectangular box,
two times: once using the FingerPen, and once using the FreeFinger. In
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(a) (b) (c)

Fig. 5.4 Experiment 1. On the left: example of the performed experiment aimed
to investigate the space occupied when writing a simple word using (a) FingerPen
and (b) FreeFinger. On the right (c), number of performed experiments leading to
occupied workspace reduction/increment, respectively, when using the FingerPen. The
“*” symbol stands for “statistically significant difference with p < 0.05”.

Fig. 5.4a and Fig. 5.4b we show an example of this experiment: The
area allowed for writing was defined by the solid, thin, black line.

Bearing in mind the considerations of the sociologists cited in Sec-
tion 5.1, we deliberately asked people to write in Italian and not in
English, because we believe that asking people to write in a language
different from the native one (and not used in everyday life) may intro-
duce some artefacts [175, 176].

Data acquired from the webapp were processed in MATLAB (v. 2019)
[177]. Width and height of the text bounding box were retrieved for
each participant and each hand configuration. A paired-samples T-test
has been conducted to compare results for the FingerPen and FreeFinger
configurations, revealing that data differ in a statistically significant
manner (p < 0.05) concerning both text width and height. Concerning
height (p = 0.026, t = −2.38), the FingerPen allows a reduction of
the maximum text height of about 10.3±21.6 px, with medium effect
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size d =−0.5. Regarding text width (p = 0.01, t =−2.77), the Finger-
Pen allows a decrement of 17.1±30.8 px, with effect size d = −0.6.
As shown in Fig. 5.4c, the 72% of the experimenters experienced a
reduction of the occupied workspace while using the FingerPen.

5.4.2 Experiment 2 - Investigation on Precision

In this experiment, we investigated the precision that can be achieved
by exploiting the FingerPen and FreeFinger postures. Participants were
asked to trace the outline of different figures using the FP e FF. Four geo-
metrical figures have been chosen on the basis of their shape (Fig. 5.5a):
triangle (straight lines and sharp angles), quadrangle (straight lines,
sharp and obtuse angles), ellipse (curved line with symmetry axes ro-
tated with respect to the axes of the workspace), puzzle piece (straight
and curved lines). To avoid local self-occlusions of the traced contour,
we designed a displaced copying task (Fig. 5.6). Participants were
provided with a canvas containing a geometrical figure in the upper
part and a large blank area in the lower part. On the geometrical figure,
there was a small circle coloured in blue: This point was matched with
the corresponding, hollow, small circle located in the lower part of the
canvas. Starting from this hollow circle, participants had to retrace the
figure: Although the user touches the screen in points that are different
from the location in which the geometrical figure is located, their trait
appears in the region of the geometrical figure. In some sense, it is
like to have an extension of the index finger, as it happens in some
calligraphic tasks exploiting the oblique pen nib holder. In this way,
users have a precise visual feedback on the precision related to their
motion.
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(a)

(b)

Fig. 5.5 Experiment 2. a) Figures for evaluation: triangle, quadrangle, ellipse, puzzle
piece. b) Figures for training: house, three, boat. The blue circle indicates the starting
point.

Since the FingerPen posture is somehow unusual for people, we
wanted to investigate the effect of a small training on precision. To
this aim, we designed three figures (house, number three, boat) that
were thought to resemble the pre-writing exercises that people usually
perform during childhood. We thought that engaging experimenters
by stimulating memories capable of freeing the mind from the current
performance would allow users to familiarize better with the FingerPen,
leading also to a performance improvement. Figures used for training
are shown in Fig. 5.5b.

Each experimenter carried out a session articulated in three steps:
i) pre-training, ii) training; iii) post-training. During pre-training, the
participant is asked to draw the triangle and the ellipse exploiting Fin-
gerPen and FreeFinger, alternately. Training was dedicated, instead,
only to the FingerPen, and stopped when the participant felt at ease
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Fig. 5.6 Experiment 2: intermediate steps. The blue circle indicates the starting
point of the desired contour, whereas the white circle indicates the starting point of the
tracing motion.

with the FingerPen posture; tracing at least three times per figure was
recommended. During post-training, participants were asked to trace
the quadrangle and the puzzle piece; such figures are slightly more com-
plex than the ones used during pre-training. At the end of the session,
three instances of each figure were drawn for each hand posture.

For each trial, the user’s trace and the time required to draw it
were recorded. The former was saved as a sequence of N points pi,
i = 1, . . . ,N; the latter was computed as the interval between the first
instant in which the user touched the screen and the instant in which
the user lifted the finger from it.

For each gathered user’s contour, the mean error has been computed
as the average of the distances between each user’s point (pi) and the
corresponding nearest neighbour point (nni) belonging to the original
contour (ei = ||pi−nni||). In addition, we computed the maximum error
(emax = max({ei}i=1,...,N)). These metrics were intended to be a first
indicator of precision. For each contour, also the standard deviation of
the error has been computed (std = std{[ei]i=1,...,N}) and considered as
an indicator of regularity in the tracing task (i.e., the less is the standard
deviation, the more regular is the task execution).
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For each participant, all the data related to the same figure and
acquired with the same hand posture were averaged to retrieve only
one measure per person, figure and method. Such data underwent an
analysis in SPSS for statistical significance of possible differences. A
paired-samples T-test was conducted to investigate the distribution of
the individual differences for all the figures and metrics except for the
time in the triangle (a violation of normality occurred, and a Wilcoxon
Sign test was performed). In Fig. 5.7, we show a representation of
the results. Symbols ’*’, ’**’, ’***’ stand for “statistically significant
difference with p≤ 0.05, p≤ 0.01, p≤ 0.001”, respectively. d denotes
the effect size according to the Cohen’s definition.

Fig. 5.7 Experiment 2. Barplots of the descriptive statistics related to the metrics
mean and max errors, std and time for each investigated figure. Yellow and blue colors
are related to FingerPen and FreeFinger, respectively.
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5.4.3 Questionnaire

To have insights on the user experience, after the experiments the users
filled out a questionnaire concerning aspects specifically related to the
FingerPen configuration, and aspects related to the comparison between
FingerPen and FreeFinger.

On the FingerPen configuration, the following questions were asked,
and results are reported in parentheses:

• FP1: I felt difficult to keep the FP configuration: at the beginning
(48%), during all the experiments (4%), no (48%).

• FP2: The difficulty I felt was especially: mental, physical (36%),
both mental and physical, not relevant (64%).

• FP3: The training for FingerPen was: very useful (28%), quite
useful (56%), a little useful (16%).

• FP4: Keeping the hand in the FingerPen configuration was: natu-
ral (56%), artificial (36%), neutral (8%).

The questions on the comparison between FP and FF are reported
in the following and results are shown in Fig. 5.8:

• C1: I believe that I was more precise while using...

• C2: I believe I had a greater control of the hand motions while
using...

• C3: I found more pleasing the experience with...

• C4: I believe that the configuration inducing the most errors while
tracing was...
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Fig. 5.8 Answers to the questions on the user experience about the comparison of
FingerPen and FreeFinger. Values 2 and 4 represent intermediate scores.

5.5 Discussion

Comparison between FingerPen and FreeFinger postures

In Section 5.3, we retrieved a model-based characterization of the hand
operational space while using FingerPen and FreeFinger. Experiment 1
(in Section 5.4.1) showed that in the 72% of the trials the FingerPen
allowed a reduction of the overall workspace occupied by the written
text, and that the reduction was statistically significant both in height
and width. Moreover, qualitatively speaking, the text usually appears
more similar to what we are used to observe in adults (see also Fig. 5.4).

The hypothesis we made on the basis of the manipulability analysis,
i.e. that the FreeFinger would lead to a larger text, has been exper-
imentally confirmed. However, the manipulability analysis provides
information on the allowed velocity of the finger; but the actual length
of traits depend on how much the manipulator configuration constrains
the manipulator movements. Hence, in the FP case the occurring tripod
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grasp causes an overall reduction of the reachable planar workspace.
Moreover, an additional explanation can be the fact that the extension
of the space needed while writing is related to the effectiveness in the
hand control while drawing letters. Hence, the better control provided
by the FP contributes in reducing the overall size of the text.

Concerning precision (Experiment 2, Section 5.4.2, Fig. 5.7), a first
consideration can be done on the difference between pre- and post-
training. On average, the effect size in post-training is higher than in
pre-training for all the metrics (as expected), suggesting that FP training
leads to data distributions that differ more from the FF (see also the p -
values). In the case of figures with effect size of similar magnitude (i.e.,
ellipse, quadrangle and puzzle, disregarding pre- and post-training), it
can be noticed that the numerical difference between the values of the
FP/FF metrics is larger as the figure is more complex (puzzle piece);
however, the relative improvement is quite constant for each metric,
independently on the figure complexity.

In general, long straight traits lower the average error, and the main
difficulty is near the angles or in the curved parts (see also results on
max err). Data related to the std metric show that in general the FP
allows a more regular trait, with less dispersion. As expected, the
higher are precision and regularity, the longer is the time required to
accomplish the task (see the time column).

Concerning the questionnaire (Section 5.4.3, Fig. 5.8), the vast ma-
jority of experimenters reported that if a difficulty was present during
the experiments, it was related to the need of physically shaping the
hand according to the FingerPen posture (FP2), and it was overcome
while going on with experiments (FP1). This suggests that the difficulty
was due to the need of getting used to another hand configuration, and
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is further supported by the fact that more than the 80% of the experi-
menters found the training step very or quite useful (FP3). Interestingly,
the fact that the FingerPen configuration is somehow unusual for people
(FP4) and requires some adaptation capabilities, does not impact nega-
tively on the user experience: The vast majority of the experimenters
had the perception of having greater control on the hand movements
while using the FingerPen rather than the FreeFinger (C2). Moreover,
they report that they felt more precise while exploiting FingerPen rather
than FreeFinger (C1). Only two experimenters found the experience
with the FreeFinger more pleasing (C3), and one half of the experi-
menters believe that the FreeFinger induces more in errors than the
FingerPen, while the 20% of the experimenters found a tie on this as-
pect (C4). Hence, the analysis of the questionnaires strongly suggests
that, from a user perspective, the advantages of adopting the FingerPen
configuration for handwriting on touchscreen devices are remarkably
more relevant than the disadvantages.

Additional investigation:
Comparison between FingerPen and Pen postures

The focus of this work is on investigating hand postures for writing on
touchscreens without using specific tools. Motivations are illustrated in
Section 5.1. However, people are used to write with a stylus. Hence, for
the sake of completeness, here we provide an experimental comparison
of the performance achievable with FingerPen and Pen postures. The
Pen posture corresponds to the hand configuration that is typically used
to hold a stylus while writing [163] (see, e.g., Fig. 5.9a).
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We asked 15 additional participants to perform the experiments on
workspace and precision described in Section 5.4 using a capacitive
stylus. Figures for training (Fig. 5.5b) were used to let experimenters
familiarize with the use of the pen in the proposed tasks before starting
the experiments. Then, three instances of each figure shown in Fig. 5.5a
were proposed alternately to each user. Data were collected and pro-
cessed as previously described in Section 5.4, and a statistical analysis
was carried out by performing independent T-tests.

Concerning the workspace occupancy (Experiment 1), the Pen al-
lows a statistically significant reduction of the text width (37.6 ± 11.4,
p = 0.003, t = 3.3), see Fig. 5.9b. Also the text height and the comple-
tion time are reduced, although without statistical significance.

Concerning the experiments on precision (Experiment 2), in Fig. 5.10
we show the results on the quadrangle and puzzle figures. In general,
the task completion time is slightly higher for the Pen, whereas the
metrics related to the errors are slightly lower for the Pen than for the
FingerPen. The difference is even more negligible for the most complex
figure (puzzle). Results on the comparison performed on triangle and
ellipse show the same trend as the quadrangle.

In the following lines, we provide a possible interpretation of the
obtained results, taking into account that the performance with the sty-
lus is affected by the users’ familiarity with the tool. Results on the
occupancy of the workspace are consistent with what was expected: the
Pen allows tighter and faster writing, although only the width reduction
is statistically significant, and with remarkable effect size. In the ex-
periments on precision, we expected a shorter completion time for the
Pen, differently from what was obtained in the experiments. However,
this can be due two main factors. First, there are two displacements
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(a) (b)

Fig. 5.9 (a) Pen posture. (b) Comparison between FingerPen (yellow) and
Pen (purple): Investigation on workspace occupancy.

to be considered: Dp,t , i.e., the distance between the pen tip and the
point where the trait actually appears (see Fig. 5.6, displaced copy task),
and Dp, f , i.e., the distance between the pen tip and the points where
the pen is grasped by the fingers. These two distances make the task
with the stylus more demanding than using the FingerPen, because not
only Dp,t , but also Dp, f impact the user’s tracking of the figures. As
a consequence, the visual servoing that the user performs to track a
certain profile becomes more challenging, requiring a careful control of
the forces and torques applied to the writing tool. Second, not everyone
is equally familiar with the adoption of a stylus to interact with touch-
screens (and smartphones in particular), whereas all of us are used to
interact with screens through our fingers. Hence, it can be reasonably
argued that the above mentioned factors partially reduce user’s famil-
iarity and ability with styluses, resulting in a task performance with a
slightly higher precision at the cost of a higher task completion time.



5.6 Final remarks 152

Fig. 5.10 Comparison between FingerPen (yellow) and Pen (purple): Investi-
gation on precision.

5.6 Final remarks

In this Chapter, we considered a soft interaction involving the human
hand. More specifically, we presented the FingerPen, a novel hand
posture that can be adopted for writing on touchscreens without the use
of specific input devices (e.g., a stylus). By exploiting modeling tools
from biomechanics and the theory of grasping, a characterization of the
workspace of this posture as been provided. A comparison with the hand
posture that people typically adopt for interacting with touchscreens,
i.e., the free index finger (FreeFinger), showed that FingerPen allows a
greater control of the hand and more precise motions. The conducted
experimental campaign with 25 participants confirmed the model-based
results, and a questionnaire on the user experience reported a strongly
positive opinion on the FingerPen adoption.



Conclusions

The Research work contained in this Thesis was aimed at finding mod-
elling and control tools capable of capturing meaningful elements for
effective manipulation of objects. We identified the core of such tools
in what we called soft interactions, i.e. interactions exploiting material
compliance of robotic and human hands, or compliance of objects.

Although the softness of end-effectors allows delicate and robust
manipulation, it makes the control of such devices difficult (see Part A).
To face this drawback, we introduced modelling and design techniques.
On one side, indeed, we proposed to abstract from the kinematic and
morphological structure of such devices, by devising functional models
capturing the way in which the hand actually works (Chapter 1). Conse-
quently, we computed and extensively validated the Closure Signature
for diverse types of closing motions of robotic hands with different
actuation, showing that the Closure Signature allows high success rate
in grasping task accomplishment. However, as discussed in Chapter 1,
what makes the Closure Signature powerful is also its main limitation:
treating a soft hand as a parallel-jaw gripper leads to a lack of complex-
ity in the description of the hand capabilities. A richer representation
would require a different kind of modeling, with increased complex-
ity. However, despite its apparent simplicity, experiments show that
the Closure Signature allows a compact and effective representation.
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Future work will focus on applications in real-world scenarios, as well
as on the investigation of the possibility of explicitly considering the
interaction with the environment within that framework. Moreover, the
Closure Signature could also play an important role in the open quest
for standards and benchmarks in robotic manipulation.

On the other side, concerning design techniques for controlling soft
interactions, we proposed a physics-based framework to exploit mag-
netic elements properly located in the hand to compensate for uncertain-
ties on fingers’ trajectories, affordance exploitation and augmentation
of the hand’s Degrees of Actuation (Chapter 2). The main limitation
of this work is that the analytical computation of the acting forces
requires the knowledge of the internal structure of the chosen mag-
netic elements (i.e., geometric shape, magnetic permeability, number of
turns, etc). However, in off-the-shelves components such information
is usually protected by industrial design rights, and the identification
of their features by reverse-engineering is not easy to achieve. The
most straightforward way is to design ad-hoc devices and outsource the
manufacture of such devices, that then would be ready for the desired
use-cases. Future work will focus on the development of a 3D-printed
prototype of a compliant hand specifically designed to exploit magnetic
actuation jointly with more classic actuation sources (e.g., pneumatic or
tendon-driven), realizing a synergistic approach capable of enhancing
the hand manipulation capabilities.

Concerning interactions with soft objects present in the environ-
ment, we focused on autonomous garment manipulation (Chapter 3),
due to the challenge posed to the Research community by the extreme
intrinsic deformability of the fabric. To achieve effective and repeatable
grasp execution, we proposed to exploit an attractive force between the
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desired grasping points and the robotic gripper. To this aim, we devel-
oped Mag-Gripper, an end-effector capable of successful interactions
with garments equipped with small ferromagnetic parts (ornamental or
brand elements, like buttons and labels). Mag-Gripper has two main
limitations: the first one concerns the dexterity allowed by the proposed
gripper, the second one regards the need of ferromagnetic plates in the
garments. Concerning the former issue, the gripper allows by design
only a one-dimensional approach to the garment and a jaw-like closing
motion. However, in future work we will design multifingered robotic
hands with more dexterity. Concerning the second issue, it should
be remarked that the ferromagnetic plates add some structure in the
difficult-to-manage environment constituted by deformable fabrics, and
that this structure allows to address the challenge of grasp repeatability.
However, as discussed in Chapter 3, the ferromagnetic parts can be
easily removed during final steps of garment production, before deliv-
ery to sealers or customers. Future work will focus also on testing our
approach in setups for bimanual autonomous garment manipulation.

Concerning human-robot interactions, we introduced the Extended
Patch method (Chapter 4), which is a technique exploiting forces and
torques exerted during a cooperative grasping task to devise force and
pressure constraints that generate robot velocity commands for effec-
tive task execution. Such constraints were retrieved by modelling an
extended linear-elastic contact with known geometry. It can be noticed
that the identification of such contact area could be non-trivial when
the involved surfaces are not flat. However, a matrix of force sensors
can be exploited to localize the occurred contacts, and retrieve as a
consequence an estimate of the geometry involved in the contact. Then,
pressure constraints could be easily adapted to the case. Future work
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will concern the application of the proposed method to cooperative
manipulation between teams composed of multiple humans and multi-
ple robots, and to trimanual tasks during which the human guides the
motion of the object with one hand and performs operations with the
other. Moreover, we will investigate how providing the human with
haptic feedback carrying information on the task execution reflects on
motor learning and performance.

Mechanical forces exerted during a grasping task are also the core
of the FingerPen (Chapter 5), a posture of the hand for writing on touch-
screens and based on a biomechanical model of the hand that merges
gesture and tools in a single operative organ. The main limitations in the
adoption of the FingerPen are related to possible individual physiologi-
cal constraints: people with large hands or with arthritis can have some
difficulties in arranging the hand in such a posture. Moreover, people
used to squeeze the pen while writing tend to squeeze also their index
finger, and this results in a sense of fatigue at the wrist. Although there
is no a recipe valid for everybody, experiments show that people usually
tend to feel more at ease after some familiarization, which allows also to
slightly modify the posture according to individual needs. Future work
will focus on the analysis of the FingerPen performance when adopted
by experimenters of different age groups, with particular attention to
children and elders.

Beyond deepening the presented Research activities, we aim at
testing and refining the proposed approaches in real-world scenarios,
with the strong motivation of bringing Robotics Research out of labs
and in touch with people.
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