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Abstract

In this paper we deal with generic expansions of first-order predicate log-
ics of some left-continuous t-norms with a countable set of truth-constants.
Besides already known results for the case of  Lukasiewicz logic, we obtain
new conservativeness and completenesss results for some other expansions.
Namely, we prove that the expansions of predicate Product, Gödel and
Nilpotent Minimum logics with truth-constants are conservative, which
already implies the failure of standard completeness for the case of Product
logic. In contrast, the expansions of predicate Gödel and Nilpotent Minimum
logics are proved to be strong standard complete but, when the semantics is
restricted to the canonical algebra, they are proved to be complete only for
tautologies. Moreover, when the language is restricted to evaluated formulae
we prove canonical completeness for deductions from finite sets of premises.

Keywords: Monoidal t-norm based logic, core predicate fuzzy logics, Ratio-
nal Pavelka Logic, Gödel and Nilpotent Minimum predicate logics, expansions
with truth-constants, completeness results.

1 Introduction

As it has been repeatedly stressed, t-norm based fuzzy logics are basically logics of
comparative truth. In fact, the residuum⇒ of a (left-continuous) t-norm ∗ satisfies
the condition x⇒ y = 1 if, and only if , x ≤ y for all x, y ∈ [0, 1]. This means that
a formula ϕ→ ψ is a logical consequence of a theory if the truth degree of ψ is at
least as high as the truth degree of ϕ in any interpretation which is a model of the
theory. But in some situations it might be also interesting to explicitly represent
and reason with partial degrees of truth. To do so, one convenient and elegant way

∗This paper is a slightly extended version of [7].
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is introducing truth-constants into the language. As it is well-known, this approach
actually goes back to Pavelka [19] who built a propositional many-valued logical
system which turned out to be equivalent to the expansion of  Lukasiewicz Logic
by adding into the language a truth-constant r for each real r ∈ [0, 1], together
with a number of additional axioms. Pavelka’s logic, extended by Novák in [16, 17]
for the first-order case and fully elaborated in [18], is based on a infinitary notion
of provability which strongly relies on the continuity of the truth functions of
 Lukasiewicz logic (and hence not applicable to other t-norm based logics), was
simplified by Hájek in [8], both for the propositional and first-order cases.

In particular, Hájek defines what he calls Rational Pavelka Predicate Logic,
RPL∀ for short, as the expansion of  Lukasiewicz predicate logic  L∀ by introducing
in the language a truth-constant r for each rational r of [0, 1] and by adding the
well-known book-keeping axioms

r&s↔ max(0, r + s− 1)

(r → s)↔ min(1, 1− r + s)

Hájek shows that RPL∀ enjoys the so-called Pavelka style completeness, which
means that for any theory T and formula ϕ, one has

‖ϕ‖T = |ϕ|T ,

where ‖ϕ‖T = inf{‖ϕ‖M | M model of T} is the truth degree of ϕ in T and
|ϕ|T = sup{r | T `RPL∀ r → ϕ} is the provability degree of ϕ from T .

In contrast to Pavelka-Novák approach, an algebraic analysis of generic ex-
pansions of propositional t-norm based fuzzy logics with truth-constantshas been
recently used to establish different completeness results (with respect to a finitary
notion of deduction) for a number of propositional logics, among them Gödel and
Nilpotent Minimum logics [5], Product logic [20], logics of a continuous t-norm [4]
and logics of Weak Nilpotent Minimum t-norms [6].1

In this paper, following this algebraic approach, we consider the expansions
with truth-constants of the corresponding first-order logics, with special attention
to the cases of Gödel and Nilpotent Minimum. In fact, to the best of our knowledge,
until now only the expansion of  Lukasiewicz first-order logic with truth-constants
had been considered in the literature. A nice and deep result contained in [12]
proves that Rational Pavelka Predicate logic RPL∀ is a conservative expansion of
 Lukasiewicz first-order logic  L∀ and, since  L∀ is not recursively axiomatizable with
respect to the standard semantics, so neither is RPL∀. This is a negative result.
In this paper we show other negative results, but also some positive new results.
Namely, after some preliminary definitions and results in next section, we first
prove that the expansions of first-order Product, Gödel, Nilpotent Minimum logics
(and more generally any pseudo- complemented t-norm based logic) are conserva-
tive expansions of their corresponding first-order logics, which already implies the
failure of standard completeness for the case of Product logic. In contrast, the ex-
pansions of predicate Gödel and Nilpotent Minimum logics are proved to be strong

1For a number these logics their complexity issues have been recently studied in [9].
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standard complete but, when the semantics is restricted to the canonical algebra,
they are proved to be complete only for tautologies. Moreover, when the language
is restricted to evaluated formulae we prove canonical completeness for deductions
from finite sets of premises. The paper ends with some conclusions and research
open problems.

2 Preliminaries

2.1 Propositional expansions with truth-constants

The basic logic we will consider is the Monoidal t-norm based logic MTL introduced
in [3] and proved to be the logic of left-continuous t-norms and their residua in
[13]. In this setting, given a left-continuous t-norm ∗ we will denote by [0, 1]∗
the standard MTL-chain defined by the left-continuous t-norm ∗ and its residuum
⇒, i. e. [0, 1]∗ = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, and by L∗ the axiomatic extension
of MTL whose equivalent algebraic semantics is the variety generated by [0, 1]∗,
denoted V([0, 1]∗). Well-known examples of these logics are the cases when ∗ is
the minimum t-norm (L∗= G), the  Lukasiewicz t-norm (L∗ =  L), the product
t-norm (L∗ = Π) or the nilpotent minimum t-norm (L∗ = NM).

Now, given a left-continuous t-norm ∗ and its corresponding logic L∗, let C =
〈C, ∗,⇒,min,max, 0, 1〉 be a countable subalgebra of the standard L∗-algebra [0, 1]∗.
Then, the logic L∗(C) is defined as follows:

(i) the language of L∗(C) is the one of L∗ expanded with a new propositional
variable r for each r ∈ C \ {0, 1},

(ii) the axioms and rules of L∗(C) are those of L∗ plus the book-keeping axioms:

r&s↔ r ∗ s
r → s↔ r ⇒∗ s

for each r, s ∈ C.

The algebraic counterpart of the L∗(C) logic consists of the class of L∗(C)-algebras,
defined as structures

A = 〈A,&,→,∧,∨, {rA : r ∈ C}〉

such that:
1. 〈A,&,→,∧,∨, 0A, 1A〉 is an L∗-algebra, and
2. for every r, s ∈ C the following identities hold:

rA&sA = r ∗ sA
rA → sA = r ⇒ sA.

L∗(C)-chains defined over the real unit interval [0, 1] are called standard. Among
them, there is one which reflects the intended semantics, the so-called canonical
standard L∗(C)-chain

[0, 1]L∗(C) = 〈[0, 1], ∗,⇒,min,max, {r : r ∈ C}〉,
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which is the standard chain where the truth-constants are interpreted by their
defining values. It is worth to point out that for a logic L∗(C) there may exist
multiple standard chains as soon as there exist different ways of interpreting the
truth-constants on [0, 1] respecting the book-keeping axioms. For instance, let
C = [0, 1]∩Q and let ∗ be a pseudo-complemented t-norm, that is, a left-continuous
t-norm ∗ whose definable negation ¬x = x ⇒ 0 is the so-called Gödel negation
(¬x = 0 for all x 6= 0 and ¬0 = 1). In such a case, if ∗ is closed on C, it is easy to
check that the algebra A = 〈[0, 1], ∗,⇒,∧,∨, {rA : r ∈ C}〉 where

rA =
{

1, if r > 0
0, otherwise

is always a standard L∗(C)-algebra. This is the case e.g. of minimum and product
t-norms. Furthermore, in the particular case of ∗ = min, for any α > 0, the algebra
A = 〈[0, 1],min,⇒,∧,∨, {rA : r ∈ C}〉 where

rA =
{

1, if r ≥ α
0, otherwise

is also a standard G∗(C)-algebra. The structure of L∗(C)-chains has been fully
described in [4] for the case of ∗ being a continuous t-norm and in [6] for some
additional classes of left-continuous t-norms.

Since the additional symbols added to the language are 0-ary, L∗(C) is also an
algebraizable logic and its equivalent algebraic semantics is the variety of L∗(C)-
algebras. This, together with the fact that L∗(C)-algebras are representable as
a subdirect product of L∗(C)-chains, leads to the following general completeness
result of L∗(C) with respect to the class of L∗(C)-chains. In the following, for any
set Γ ∪ {ϕ} of L∗(C)-formulae and any class K of L∗(C)-chains, we write Γ |=K ϕ

to denote that, for each A ∈ K, e(ϕ) = 1A for all A-evaluation e model of Γ

Theorem 1 (Chain completeness). For any set Γ∪{ϕ} of L∗(C)-formulae, it holds
that Γ `L∗(C) ϕ if, and only if, Γ |={L∗(C)−chains} ϕ.

The issue of studying when a logic L∗(C) is also complete with respect to the
class of standard L∗(C)-chains (called standard completeness property) or with re-
spect to the canonical standard L∗(C)-chain (called canonical standard completeness
property) has been addressed in the literature for some logics L∗. Hájek already
proved in [8] the canonical completeness of the expansion of  Lukasiewicz logic with
rational truth-constants for finite theories2. More recently, the expansions of Gödel
(and of some t-norm based logic related to the nilpotent minimum t-norm) and of
Product logic with countable sets of truth-constants have been proved to enjoy the
canonical standard completeness for theorems in [5] and in [20] respectively. A
rather exhaustive description of completeness results for the logics L∗(C) can be
found in [4] and in [6].

2This result has been recently extended in [1] for the case of expansions with countable sets
of truth-constants possibly containing irrational values.
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2.2 Core predicate fuzzy logics

Predicate versions of the propositional t-norm based logics described above have
also been defined and studied in the literature. Following [11] we give below a
general definition of the first-order logic L∀ for any (propositional) core fuzzy logic
L. A finitary logic L in a countable language is a core fuzzy logic [10] if:

(i) L expands MTL;

(ii) L satisfies the congruence condition:
ϕ↔ ψ `L χ(ϕ)↔ χ(ψ), for every ϕ,ψ, χ;

(iii) L satisfies the following local deduction theorem:
Γ, ϕ `L ψ iff there a is natural number n such that Γ `L ϕ& n. . . &ϕ→ ψ.

Note that the logics L∗(C) introduced above are core fuzzy logics, so what follows
also applies to them.

Given a core fuzzy logic L, the language PL of L∀ is built from the propositional
language L of L by enlarging it with a set of predicates Pred, a set of object
variables V ar and a set of object constants Const, together with the two classical
quantifiers ∀ and ∃. The notion of formula trivially generalizes taking into account
that now, if ϕ is a formula and x is an object variable, then (∀x)ϕ and (∃x)ϕ are
formulae as well.

In first-order fuzzy logics it is usual to restrict the semantics to L-chains
only. For each L-chain A, an A-interpretation for a predicate language PL =
(Pred,Const) of L∀ is a structure

M = (M, (cM)c∈Const, (PM)P∈Pred)

where M 6= ∅, cM ∈M and PM : Mar(P ) → A for each c ∈ Const and P ∈ Pred.
For each evaluation of variables v : V ar →M , the truth-value ‖ϕ‖AM,v of a formula
(where v(x) ∈M for each variable x) is defined inductively from

‖P (x, · · · , c, · · · )‖AM,v = PM(v(x), · · · , cM, · · · ),

taking into account that the value commutes with connectives, and defining

‖(∀x)ϕ‖AM,v = inf{‖ϕ‖AM,v′ | v(y) = v′(y) for all variables y, except x}
‖(∃x)ϕ‖AM,v = sup{‖ϕ‖AM,v′ | v(y) = v′(y) for all variables y, except x}

if the infimum and supremum exist in A, otherwise the truth-value(s) remain un-
defined. A structure M is called A-safe if all infs and sups needed for the definition
of the truth-value of any formula exist in A. Then, the truth-value of a formula ϕ
in a safe A-structure M is just

‖ϕ‖AM = inf{‖ϕ‖AM,v | v : V ar →M}.

When ‖ϕ‖AM = 1 for a A-safe structure M, the pair (M,A) is said to be a model for
ϕ, written (M,A) |= ϕ. Sometimes we will call the pair (M,A) an L∀-structure.
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The axioms for L∀ are the axioms resulting from those of L by substitution
of propositional variables with formulae of PL plus the following axioms on
quantifiers (the same used in [8] when defining BL∀):

(∀1) (∀x)ϕ(x)→ ϕ(t) (t substitutable for x in ϕ(x))
(∃1) ϕ(t)→ (∃x)ϕ(x) (t substitutable for x in ϕ(x))
(∀2) (∀x)(ν → ϕ)→ (ν → (∀x)ϕ) (x not free in ν)
(∃2) (∀x)(ϕ→ ν)→ ((∃x)ϕ→ ν) (x not free in ν)
(∀3) (∀x)(ϕ ∨ ν)→ ((∀x)ϕ ∨ ν) (x not free in ν)

The rules of inference of L∀ are modus ponens and generalization: from ϕ infer
(∀x)ϕ.

A completeness theorem for first-order BL was proven in [8] and the complete-
ness theorems of other first-order fuzzy logics defined in the literature have been
proven in the corresponding papers where the propositional logics are introduced.
The following general formulation of completeness for predicate core fuzzy logics is
from the paper [11].

Theorem 2 ([11]). For any core fuzzy logic L over a predicate language PL, it
holds that

T `L∀ ϕ iff (M,A) |= ϕ for each model (M,A) of T ,

for any set of sentences T and any formula ϕ of the predicate language PL.

3 Types of completeness properties and their re-
lationships

We will use the following terminology and notation to refer to the usual three
notions of completeness for core fuzzy logics.

Definition 3. Let L be a core fuzzy and let K be a class of L-algebras. We define:

• L has the property of strong K-completeness, SKC for short, when for every
set of L-formulae Γ and every L-formula ϕ, Γ `L ϕ iff Γ |=K ϕ.

• L has the property of finite strong K-completeness, FSKC for short, when for
every finite set of L-formulae Γ and every L-formula ϕ, Γ `L ϕ iff Γ |=K ϕ.

• L has the property of K-completeness, KC for short, when for every L-formula
ϕ, `L ϕ iff |=K ϕ.

They are analogously defined for the first-order logics.

Definition 4. Let L be a core fuzzy logic. We say that L∀ has the SKC if for each
language Γ, theory T , and formula ϕ the following are equivalent:

• T `L∀ ϕ.

• (M,A) |= ϕ for each A ∈ K and each model (M,A) of the theory T .
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We say that L∀ has the FSKC if the above condition holds for finite theories.
Finally, we say that L∀ has the KC if the above condition holds for the empty
theory.

When K is the class of standard algebras in the variety of L-algebras, then in-
stead of K-completeness properties we talk about standard completeness properties
and we use the notation RC instead of KC (to stress that it is a completeness
with respect to algebras defined of the real unit interval). Moreover, as mentioned
above, when the considered core fuzzy logic is of the form L∗(C) we can think of
further restricting the semantics to the canonical standard algebra. Thus, we also
consider the three canonical standard completeness properties for these logics both
in the propositional and in the first-order case.

All these completeness properties, their relationship and algebraic equivalent (or
sufficient) conditions have been studied in [2]. In particular, the following results
for the SKC have been proved.

Theorem 5 ([2]). Let L be a core fuzzy logic and let K be a class of L-algebras.
Then:

1. L has the SKC if, and only if, every countable L-chain can be embedded into
some chain from K.

2. L∀ has the SKC if every countable L-chain can be σ-embedded (i.e. with
an embedding which preserves existing suprema and infima) into some chain
from K.

Now we recall a relation between completeness of a propositional core fuzzy
logic L and completeness of its corresponding first-order logic L∀.

Proposition 6 (cf. [2]). If for some family K of L-chains L∀ enjoys the KC
(FSKC, SKC resp.), then L enjoys the KC (FSKC, SKC resp.) as well.

This proposition yields a necessary condition for the completeness properties of
first-order fuzzy logics that will be useful to refute some completeness results in the
next section. In a similar way we will also use the following proposition relating
completeness of two first-order logics when one is a conservative expansion of the
other one.

Proposition 7. Let L and L′ be two core fuzzy logics such that L′∀ is a conservative
expansion of L∀. Let K′ be a class of L′-chains and let K be the class of their
L-reducts. If L′∀ enjoys the K′C (FSK′C, SK′C resp.), then L∀ enjoys the KC
(FSKC, SKC resp.) as well.

Proof: Assume that L′∀ enjoys the KC and we prove that L∀ also enjoys it. Suppose
that 6`L∀ ϕ for some formula ϕ in language of L∀. Then, since L′∀ is a conservative
expansion of L∀ we also have 6`L′∀ ϕ, hence there is some structure (M,A′) with
A′ ∈ K′ such that (M,A′) 6|= ϕ. Let A be the L-reduct of A′. Since ϕ is a
L∀-formula, it is clear that (M,A) 6|= ϕ. 2
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4 Completeness results for some L∗∀(C) logics

In the following, given a left-continuous t-norm ∗ and its corresponding logic L∗,
and a countable subalgebra C of the standard L∗-algebra [0, 1]∗, we will denote
by L∗∀(C) the first-order version of the (core fuzzy) logic L∗(C) according to the
definitions in Section 2.2.
Remark about the notation used. In the way we have just defined L∗∀(C), we
should have rather used the notation L∗(C)∀, since we have started by the expanded
logic L∗(C) and then we have defined the first-order variant over it. But in fact,
starting with the L∗∀ logic and then expanding it with the truth constants from C
leads exactly to the same first-order logic and thus we will keep on using L∗∀(C).
Moreover, we will also denote as usual by G∀,  L∀, Π∀ and NM∀ the logics L∗∀ logic
when the t-norm ∗ is the minimum,  Lukasiewicz, product and nilpotent minimum
t-norm respectively.

In the case of expansions of L∗∀ logics with truth-constants, it was already
proved by Hájek et al. in [12] that RPL∀ (Rational Pavelka predicate logic3) is a
conservative expansion of  L∀. Next theorem proves that an analogous result also
holds for some other logics.

Proposition 8. If ∗ is a pseudo-complemented t-norm or the nilpotent minimum
t-norm, then L∗∀(C) is a conservative expansion of L∗∀.

Proof: Let ϕ be an L∗∀-formula such that 6`L∗∀ ϕ. We must show that 6`L∗∀(C) ϕ.
By hypothesis, there is some L∗∀-structure (M,A) such that (M,A) 6|= ϕ. It is
enough to show that A can be expanded to an L∗(C)-chain. If ∗ is a pseudo-
complemented t-norm we can define the interpretation of every truth-constant r in
A by putting rA = 1A for r 6= 0 (see Section 2.1). Assume now that ∗ is the nilpo-
tent minimum t-norm. If C has no negation fixpoint, we define the interpretation in
A of a truth-constant r as 1A when ¬r < r, and we define it as 0A when ¬r > r. If
C has the negation fixpoint 1

2 , we can suppos e that A also has a negation fixpoint
a (otherwise it could be added as shown in [15]), and then we interpret 1

2 and the
rest of the constants as in the previous case. 2

This result, together with the one above mentioned by Hájek et al., shows that
when ∗ is one of the three basic continuous t-norms ( Lukasiewicz, product and
minimum), L∗∀(C) is a conservative expansion of L∗∀ for every subalgebra C of
truth-constants, except for the case of  Lukasiewicz t-norm where the result has
only been proved for C = [0, 1] ∩Q.

Now we are prepared to deal with the standard completeness properties of first-
order logics with truth-constants. It is well known that Product and  Lukasiewicz
first-order logics do not enjoy standard completeness. Therefore, by Propositions
7 and 8,  L∀(C) and Π∀(C) do not have the KC when K is the class of all standard
 L∀(C)-chains and the class of all standard Π∀(C)-chains, respectively; hence these
logics do not enjoy canonical standard completeness neither. The same reasoning

3In our notation RPL∀ corresponds to  L∀(C) when C = [0, 1] ∩ Q.



On Completeness Results for Predicate  Lukasiewicz, Product,... 241

would also hold for every logic based on a pseudo-complemented t-norm ∗ for which
we know that L∗∀ fails to enjoy the standard completeness.4

This is not the case for Gödel and Nilpotent Minimum first-order logics which,
in fact, are strongly standard complete. Next we show that in these two partic-
ular cases, their completeness properties extend to their expansions with truth-
constants.

Theorem 9. The logics G∀(C) and NM∀(C) enjoy the SRC.

Proof: As stated in the preliminaries, the strong standard completeness follows
from the property of σ-embeddability. Since the SRC for first-order Gödel logic
was proved in this way, we know that any countable G-chain is σ-embeddable
into [0, 1]G, thus every countable G(C)-chain is also σ-embeddable into a standard
G(C)-chain. Indeed, given a countable G(C)-chain A let f be the σ-embedding
of its G-reduct into [0, 1]G. Then A, as G(C)-chain is also σ-embeddable into
the standard G(C)-chain defined over [0, 1]G interpreting each truth-constant r as
f(rA). The proof for NM∀(C) is completely analogous. 2

A natural question here is whether these completeness results can be improved
by restricting the semantics to the canonical standard algebra. As a matter of
fact, the canonical FSRC fails for the logics G(C) and NM(C), as shown in [4, 6].
Therefore, by Proposition 6, this completeness property also fails for their first-
order versions. Nevertheless, we can still prove the canonical standard completeness
for these logics.

Theorem 10. The logics G∀(C) and NM∀(C) enjoy the canonical RC, i.e. the
provable formulae coincide with the 1-tautologies of the canonical standard chain
[0, 1]G(C) and of [0, 1]NM(C) respectively.

Proof: We only prove it for G∀(C) (the proof for NM∀(C) is analogous with the
obvious changes). Soudness is obvious as usual. For the converse direction we will
argue by contraposition, i.e. we will prove that if 0G∀(C) ϕ for some formula ϕ,
then there is a G∀(C)-structure (M, [0, 1]G(C)) such that (M, [0, 1]G(C)) 6|= ϕ.

If 0G∀(C) ϕ, then there exists a G∀(C)-structure (M,A) over a countable G-

chain A and an evaluation v such that ‖ϕ‖AM,v < 1A. Take s = min({r ∈ C |
rA = 1A, r appears in ϕ} ∪ {1}) and define g : A → [0, 1] by taking g(1A) = 1
and g |

A\{1A} a bijection of A \ {1A} into [0, s) preserving existing suprema and
infima, and such that g(rA) = r for every truth-constant appearing in ϕ such that
rA 6= 1A. If M = (M, (cM)c∈Const, (PM)P∈Pred), using the mapping g we can
produce a structure (M′, [0, 1]G(C)), where M′ = (M, (cM)c∈Const, (PM′)P∈Pred),
where PM′ : Mar(P ) → [0, 1] is defined as PM′ = g ◦ PM, and hence

for every evaluation of variables e on M one has

‖P (t1, t2, . . . , tn)‖[0,1]G(C)
M′,e = g(‖P (t1, t2, . . . , tn)‖AM,e)

4This is the case of all pseudo-complemented continuous t-norms except for ∗ = min.
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for each predicate symbol P and terms t1, t2, . . . , tn. Now we can prove that the fol-
lowing statements hold for any subformula ψ of ϕ and every evaluation of variables
e on M :

a) If ‖ψ‖AM,e = 1A, then ‖ψ‖[0,1]G(C)
M′,e ≥ s,

b) If ‖ψ‖AM,e 6= 1A, then ‖ψ‖[0,1]G(C)
M′,e = g(‖ψ‖AM,e).

The proof is by induction on the structure of ψ and we provide some details next:

• If ψ = r, then ‖ψ‖AM,e = rA. Then either rA = 1A and hence r ≥ s, or

rA 6= 1A, and hence g(rA) = r = ‖r‖[0,1]G(C)
M′,e .

• If ψ = P (t1, t2, . . . , tn), then it holds by definition.

• Suppose ψ = α&β. If ‖α&β‖AM,e = 1A, then ‖α‖AM,e = ‖β‖AM,e = 1A

and thus by induction hypothesis ‖α‖[0,1]G(C)
M′,e , ‖β‖[0,1]G(C)

M′,e ≥ s, and hence

‖α&β‖[0,1]G(C)
M′,e ≥ s. If ‖α&β‖AM,e 6= 1A, then ‖α‖AM,e 6= 1A or ‖β‖AM,e 6= 1A,

and by using the induction hypothesis the result easily follows.

• If ψ = α → β, to check the result is again a matter of routinary proof by
cases and usage of the induction hypothesis.

• Suppose ψ = (∀x)α, and let V (e) denote the set of evaluations of variables v
such that e(y) = v(y) for all variables y, except x. Recall that ‖(∀x)α‖AM,e =
inf{‖α‖AM,v | v ∈ V (e)}.

If ‖(∀x)α‖AM,e = 1A, then for every such v ∈ V (e) we have ‖α‖AM,v = 1A, and

hence ‖α‖[0,1]G(C)
M′,v ≥ s, which implies that ‖(∀x)α‖[0,1]G(C)

M′,e ≥ s.

If ‖(∀x)α‖AM,e 6= 1A, then it is enough to consider the infimum over the

subset V +(e) ⊆ V (e) of those evaluations v such that ‖α‖AM,v 6= 1A, i.e.

‖(∀x)α‖AM,e = inf{‖α‖AM,v | v ∈ V +(e)} 6= 1A. Then, since g preserves
the existing infima, we have the following equalities: g(‖(∀x)α‖AM,e) =
g(inf{‖α‖AM,v | v ∈ V +(e)}) = inf{g(‖α‖AM,v) | v ∈ V +(e)} =

inf{‖α‖[0,1]G(C)
M′,v | v ∈ V +(e)} = inf{‖α‖[0,1]G(C)

M′,v | v ∈ V (e)} = ‖(∀x)α‖[0,1]G(C)
M′,e .

• If ψ = (∃x)α, the reasoning is similar to the previous one (now it uses that g
preserves existing suprema).

Finally, from the above statements the theorem easily follows since ‖ϕ‖AM,v < 1A,

and thus ‖ϕ‖[0,1]G(C)
M′,v = g(‖ϕ‖AM′,v) < s < 1. 2

As regards to canonical finite strong standard completeness, we have already
argued why it fails for all the logics considered in this paper. However, for those
logics enjoying canonical standard completeness, G∀(C) and NM∀(C) according to
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the last theorem, we may still wonder whether this result can be extended to a
canonical FSRC for evaluated formulae as it has been done in previous works for
propositional fuzzy logics. Recall that an evaluated formula is a formula of type
r → ϕ, where ϕ is a formula without new truth-constants (i.e. different from 0 and
1); it is called positively evaluated formula if r > ¬r.

Theorem 11. G∀(C) enjoys the canonical FSRC restricted to evaluated formulae.
NM∀(C) enjoys the canonical FSRC restricted to positively evaluated formulae.

Proof: Again we write the proof for the case of Gödel logic (for Nilpotent Minimum
logic the same kind of reasoning with a few changes would prove the result). We
have to show that for every ϕ1, . . . , ϕk, ψ formulae in the language of G∀ and
constants r1, . . . , rk, s:

{ri → ϕi | i = 1, . . . , k} `G(C)∀ s→ ψ if, and only if,
{ri → ϕi | i = 1, . . . , k} |=[0,1]G(C) s→ ψ

By the deduction theorem and the canonical standard completeness for G∀(C),
a finite deduction of type {ri → ϕi | i = 1, . . . , k} `G∀(C) s → ψ is equivalent
to |=[0,1]G(C)

∧
i=1,...,k(ri → ϕi) → (s → ψ). Thus what we need to prove is the

semantical version of the deduction theorem for G∀(C), i.e. the equivalence between
{ri → ϕi | i = 1, . . . , k} |=[0,1]G(C) s → ψ and |=[0,1]G(C)

∧
i=1,...,k(ri → ϕi) → (s →

ψ).
In one direction the implication is obvious. For the other one we do it by

contraposition. If 6|=[0,1]G(C)

∧
i=1,...,k(ri → ϕi) → (s → ψ) there must exist a

G∀(C)-structure (M, [0, 1]G(C)) and an evaluation e such that

‖
∧

i=1,...,k

(ri → ϕi)→ (s→ ψ)‖[0,1]G(C)
M,e < 1

We have to build a G∀(C)-structure (M′, [0, 1]G(C)) and an evaluation of variables

e′ such that ‖
∧

i=1,...,k(ri → ϕi)‖
[0,1]G(C)
M′,e′ = 1 and ‖s → ψ‖[0,1]G(C)

M′,e′ < 1. Observe

first that the previous inequality implies that ‖
∧

i=1,...,k(ri → ϕi)‖
[0,1]G(C)
M,e > ‖s→

ψ‖[0,1]G(C)
M,e and thus ‖s → ψ‖[0,1]G(C)

M,e = ‖ψ‖[0,1]G(C)
M,e < 1. We follow the proof by

cases:

(i) If ‖ri → ϕi‖
[0,1]G(C)
M,e = 1 for every i ∈ {1, . . . , k}, then we just take M′ = M and

e′ = e.

(ii) Suppose there exists a non-empty set of indexes J ⊆ {1, . . . , k} such that for
all j ∈ J , ‖ri → ϕi‖

[0,1]G(C)
M,e = ‖ϕi‖

[0,1]G(C)
M,e < 1. Let

b = min{‖ϕi‖
[0,1]G(C)
M,e | j ∈ J} and c = ‖ψ‖[0,1]G(C)

M,e .

Define f as the automorphism of [0, 1]G(C) given by f(x) = 1 for every x ≥ b,
an ordered bijection between [c, b) and [c, 1) such that x ≤ f(x) for every x (e.g.
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f(x) = (x − c)(1 − c)/(b − c) + c), and f(x) = x for every x < c. It is obvi-
ous that this mapping is an ordered bijection that preserves existing suprema and
infima. Now we consider a structure M′ over the same domain as M with the
same interpretation of the object constants, with the same evaluation of variables
e′ = e, and we will just change the interpretation of the predicate symbols. Indeed,
for every n-ary predicate P and arbitrary elements of the domain m1, . . . ,mn,
we define PM′(m1, . . . ,mn) = f(PM(m1, . . . ,mn)). Then, since f is a homomor-
phism that preserves existing suprema and infima, it is obvious that for every G∀-
formula ϕ we have ‖ϕ‖[0,1]G(C)

M′,e′ = f(‖ϕ‖[0,1]G(C)
M,e ). An easy computation shows that

‖
∧

i=1,...,k(ri → ϕi)‖
[0,1]G(C)
M′,e′ = 1 (observe that ‖ri → ϕ‖[0,1]G(C)

M,e = 1 for all i /∈ J by

assumption, and for all i ∈ J we have ‖ϕi‖
[0,1]G(C)
M′,e′ = 1), while ‖s→ ψ‖[0,1]G(C)

M′,e′ < 1
(since the value of ψ has not changed).

The proof for NM∀(C) is very similar, it uses the fact that if all the ri’s are positive,
i.e. ri > ¬ri, then c, as defined above in (ii), is also positive, and this allows one
to define the mapping f as f(x) = 1 if x ≥ b, f(x) = 0 if x ≤ ¬b and as an ordered
bijection between (¬b, b) and (0, 1) such that f(x) = x for x ∈ (¬c, c). 2

5 Conclusions and open problems

In this paper we have considered the (canonical) standard completeness properties
for several prominent first-order fuzzy logics enriched with constants for interme-
diate truth-values. Some of these properties have been shown to fail because they
already fail in the corresponding propositional logics. In some other cases the stan-
dard completeness properties have been refuted by showing that the logic is a con-
servative expansion of the corresponding logic without additional truth-constants
and for which standard completeness already fails. In the remaining cases dealt
with in the paper the answer has turned out to be positive by some ad hoc proofs.
The following table collects the results.

Logic RC FSRC SRC Can. RC Can. FSRC Can. SRC
 L∀(C) No No No No No No
Π∀(C) No No No No No No
G∀(C) Yes Yes Yes Yes No No

NM∀(C) Yes Yes Yes Yes No No

Finally, we have also obtained the canonical FSRC restricted to (positively)
evaluated formulae for G∀(C) and NM∀(C). Of course, there are a number of
problems left open and which we plan to address in future research. Among them,
we can mention the following ones:

1. Investigate for which left-continuous t-norms ∗ and algebras of truth constants
C is L∗∀(C) a conservative extension of L∗∀. In particular, is  L∀(C) is a
conservative expansion of  L∀ when C contains irrational values?
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2. Investigate completeness results for the expansions of the logics L∗∀(C) with
the projection connective ∆.

3. Investigate completeness results with respect to the semantics defined over
the rational unit interval.
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21-26, M. Štěpnička, V. Novák, U. Bodenhofer (eds), Universitas Ostraviensis,
2007.
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[10] P. Hájek and P. Cintula. On theories and models in fuzzy predicate logics.
The Journal of Symbolic Logic 71: 863–880, 2006.
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