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Abstract
The mathematical foundations of a new theory for the design of intelligent agents are presented. The
proposed learning paradigm is centered around the concept of constraint, to represent the interactions with
the environment, and the parsimony principle. The classical regularization framework of kernel machines
is naturally extended to the case in which the agents interact with a richer environment, where abstract
granules of knowledge, compactly described by different linguistic formalisms, can be translated into the
unified notion of constraint for defining the hypothesis set. Constrained variational calculus is exploited
to derive general representation theorems that provide a description of the optimal body of the agent (i.e., the
functional structure of the optimal solution to the learning problem), which is the basis for devising new
learning algorithms. It is shown that, regardless of the kind of constraints, the optimal body of the agent is
a Support Constraint Machine (SCM) based on representer theorems that extend classical results for kernel
machines and provide new representations. In a sense, the expressiveness of constraints yields a semantic-
based regularization theory, which strongly restricts the hypothesis set of classical regularization. Some
guidelines to unify continuous and discrete computational mechanisms are given, so as to accommodate in
the same framework various kinds of stimuli, like supervised examples and logic predicates. The proposed
view of learning from constraints incorporates classical learning from examples and extends naturally to
the case in which the examples are subsets of the input space, which is related to learning propositional
logic clauses.
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Summary of the main notations

In the next table we collect some symbols and notations widely used in the paper.

X subset of the perceptual space Rd
F task space
fj j-th task of the agent
φ function expressing a holonomic bilateral constraint
φ̌ function expressing a holonomic unilateral constraint
Φ functional expressing an isoperimetric bilateral constraint
Φ̌ functional expressing an isoperimetric unilateral constraint
Fi ⊆ F set of admissible tasks wrt the i-th constraint
C constraint collection
FC ⊆ F set of admissible tasks with respect to the constraint collection C
Wk,2(X ) Sobolev space, with k > d/2

Dαu ∂|α|

∂α1...∂αn
u, |α| := ∑n

j=1 αj
Pi finite-order linear differential operator

∑
|α|≤ki bi,αD

α

P vectorial finite-order linear differential operator [P0, . . . , Pl−1]′

P ? formal adjoint of P
L (P ?)′P
‖ fj ‖2P 〈Pfj , Pfj〉 =

∑l−1
r=0

∫
X (Prfj(x))2dx

‖ f ‖2P,γ
∑n

j=1 γj ‖ fj ‖2P , γ ∈ Rn vector of positive components
E(·) parsimony index ‖ · ‖2P,γ
µC degree of mismatch of C
EsoftC (·) 1

2 ‖ · ‖2P,γ +µC(·)
f∗ global optimum
fo local optimum
g free-space Green function of an operator
ωi reaction of the i-th constraint
ω overall reaction of the constraints
VQ quadratic loss
VH hinge loss

Table 1: Main notations and their meanings
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1. Introduction

1.1 Motivations

This work focuses on the open issue of designing intelligent agents with effective learning capabilities in complex
environments, where sensorial data are combined with knowledge-based descriptions of the tasks. Unlike the
classical framework of learning from examples, in those cases the beauty and the elegance of simplicity behind
the parsimony principle1 has not been profitably used yet for the formulation of systematic theories of learning.
Most solutions are essentially based on hybrid systems, in which there is a mere combination of different modules
that are separately charged of handling the prior knowledge on the problem at hand and providing the inductive
behavior naturally required in some tasks. The investigation of more unified approaches is not only of interest per
se, but also, and perhaps primarily, because this crafting of knowledge with learning can give rise to interesting
induction/deduction processes that are likely to be very effective in complex real-world problems. Our theory is
centered around the parsimony principle: we consider intelligent agents interacting with constraints in a multi-
task environment, with the purpose of developing the simplest (smoothest) vectorial function in a set of feasible
solutions.

A first insight into the idea of learning from constraints on which this paper is based was given in (Gori (2009)),
but the first systematic study along this direction is given in (Diligenti et al. (2012)), where, in addition to some
artificial problems, the authors applied the theory to the automatic tagging of bibtex entries. Related studies can
be found in (Diligenti et al. (2010); Saccà et al. (2011b,a); Diligenti et al. (2011)). An application to text categoriza-
tion that involves supervised learning and prior knowledge has been addressed in (Frandina et al. (2012)), while
a first attempt to perform First-Order Logic (FOL) verification can be found in (Gori and Melacci (2013)). Kernel-
based representations of the optimal solutions to constrained learning problems have been used also in other cases,
where the prior knowledge is not given in terms of logic expressions. Remarkable results have been obtained by
imposing the classification consistency of different views of the same object (Melacci et al. (2009)) and probabilis-
tic constraints in (Melacci and Gori (2011)). A preliminary study on the benefit deriving from the restriction to
convex constraints is given in (Gori and Melacci (2010)). An in-depth analysis of the special case of constraints
deriving from propositional descriptions is given in (Melacci and Gori (2013)). Theoretical results for some kinds
of constraints are contained in (Gnecco et al. (2013a)). The regularization principles adopted in this paper were ex-
ploited in (Gnecco et al. (2013b)), together with tools from Statistical Learning Theory, to investigate learning from
constraints expressed as boundary conditions.

The main objective of this study consists in developing mathematical foundations for the paradigm of learning
from constraints, with the aim of providing the mathematical and algorithmic apparatus (Section 5) for facing
typical machine tasks encountered in applications, such as those presented in Section 5.3 (see, in particular, Table 4).

1.2 Types of constraints and their roles

In order to provide a unified context for manipulating perceptual data and granules of knowledge, we propose
to use the unifying concept of constraint. It is sufficiently general to represent different kinds of sensorial data
along with their relations, as well as to express abstract knowledge on the tasks and to embrace logic descrip-
tions. Examples of constraints come out naturally in different contexts: one might want to enforce the probabilistic
normalization of a set of functions modeling a classification task, the probabilistic normalization of a density func-
tion, or to impose coherent decisions of the classifiers acting on different views of the same pattern (Melacci et al.
(2009)). The expressive power of constraints becomes more significant when dealing with specific problems coming
from, amongst others, vision, control, text classification, ranking in hyper-textual environment, and prediction of
the stock market. While the linguistic description to express a constraint can be of many different types, including
those based on logic formalisms, in order to describe knowledge granules we can always end up with real-valued
multi-variable functions involving the inputs and the learning tasks.

We propose to build an interaction amongst different tasks by introducing various kinds of constraints; they are
summarized in the following definition, which follows the terminology used in variational calculus.

Definition 1 [TYPES OF CONSTRAINTS] Let X denote a subset of the perceptual space Rd, F a space of functions f : X →
Rn, Xi open subsets of X , φi : Xi × Rn → R and φ̌i : Xi × Rn → R continuous functions, Φi : F → R and Φ̌i : F → R

1. This principle has been massively exploited in decision making to promote the preference for the least complex explanation
of observations, as well as for deriving laws of Nature, especially in physics (Basdevant (2006)).
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continuous functionals, and mH ,mI , m̌H , and m̌I positive integers.

i. Holonomic (ho) bilateral (bi) :∀x ∈ Xi ⊆ X : φi(x, f(x)) = 0, i = 1, . . . ,mH .

ii. Holonomic (ho) unilateral (un) :∀x ∈ Xi ⊆ X : φ̌i(x, f(x)) ≥ 0, i = 1, . . . , m̌H .

iii. Isoperimetric (is) bilateral (bi) : Φi(f) = 0, i = 1, . . . ,mI .

iv. Isoperimetric (is) unilateral (un) : Φ̌i(f) ≥ 0, i = 1, . . . , m̌I .

v., vi. Pointwise (pw) bilateral (bi) and pointwise (pw) unilateral (un) :

as i. and ii., respectively, with each Xi made up of finitely many points

(in this case, the continuity of φi - respectively, of φ̌i - is required with respect

to the second vector argument) .

For notational simplicity, when dealing with constraints of the same type, the notations “mH”, “mI”, “m̌H” and
“m̌I” will be replaced simply by “m”. It is worth remarking that holonomic constraints express local properties,
since they hold ∀x ∈ Xi. Instead, isoperimetric constraints express global properties of f (apart from degenerate
cases, such as the one in which they are expressed by integrand functions2 with compact support)3.

We consider both the case in which perfect constraint satisfaction on a whole subset of the perceptual space
is required, and the case where constraint violations are allowed, at the cost of some penalization, quantified by
a loss. The former situation corresponds to a hard (hr) interpretation of the constraints, whereas the latter to their
soft (sf) interpretation. For the sake of simplicity and with a little abuse of terminology, we refer to these cases as
hard constraints and soft constraints, respectively. Soft constraints arise often in real-word problems, e.g., in case of
collections of supervised data in which labeling errors are quite common. Moreover, sometimes it may be desirable
a total fulfillment (i.e., hard constraints), which, however, may be too difficult to achieve. So, the original problem
with hard constraints is approximated by a sequence of problems with soft constraints, whose optimal solutions
converge to the “hard” one (Luenberger (1969)). In summary, the theory that we propose is based on using both
supervised pairs and hard/soft constraints of more general nature.

Based on the notion of constraint, we can accommodate into the same framework stimuli of very different kinds,
like those shown in Table 2. The labels (ho, nh, is, bi, un, pw, hr, sf) are used to classify the different constraints. The
classification considers three categorical variables that represent the specific local/global nature (pw, ho, nh, and
is stand for pointwise, holonomic, non-holonomic, and isoperimetric, respectively), the bilateral/unilateral formulation
(bi, un), and the hard/soft enforcement (hr, sf). It is worth mentioning that sometimes a given problem can receive
different classifications and, consequently, can be attacked using the corresponding different methodologies. For ex-
ample, the classical learning from examples corresponds to constraints that can be regarded either as pointwise (see
Table 2-i) or special isoperimetric. The second interpretation is specifically covered in Section 4.1. The table gives
examples of constraints that are described in column 2 either by informal (i through vi) or formal languages (vii
and viii). The informal description in the table is kept concise but could be much more detailed. Column 3 contains
a translation into constraints re-written by real-valued functions, that are the formal environmental description of
our agents.

The example i describes the simplest case in which we handle the classical pair (xκ, yκ) provided for supervised
learning in classification, where xκ is the κ-th supervised example and yκ ∈ {−1, 1} is its label. If f is the function
that the agent is expected to compute, the corresponding real-valued representation of the constraint, which is
reported in column 3, is just the translation of the classical “robust” sign agreement between the target and the
function to be learned.

2. This is the case of the functions ψi in (14) (see Section 2), when they have compact support.
3. The meaning of “holonomic” is “integrable”. Constraints of the forms

∀x ∈ Xi ⊆ X : φi(x, f(x), Qf(x)) = 0, i = 1, . . . ,mNH , (1)

∀x ∈ Xi ⊆ X : φ̌i(x, f(x), Qf(x)) ≥ 0, i = 1, . . . , m̌NH , (2)

where Q is a (vector) linear differential operator, which cannot be transformed by integration into the holonomic forms of
Definition 1 i. and ii., respectively, are called non-holonomic constraints (nh). They will not be considered in this paper. Any
holonomic bilateral constraint can be transformed by differentiation into a constraint of the form (1), and one can re-gain
the original constraint by integration. However, the vice-versa does not hold true (Giaquinta and Hildebrand (1996), p. 98).
The name “isoperimetric” derives from the classical isoperimetric problem of the calculus of variations, which consists in
determining a plane figure of the largest possible area, whose boundary is constrained to have a specified length.
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Examples ii and iii are classical probabilistic normalizations, while example iv imposes the coherence between
the decisions taken on x1 and x2, for the object x, where x1 and x2 are two different views of the same object x
(see Melacci et al. (2009)).

Example v describes the constraints needed to impose consistency in portfolio asset allocation when investing
money (USD and Euro) in bonds and stocks. Here fdc , fdb , f

d
s denote the allocations in cash, bond, and stock in

USD on the basis of the financial feature vector x, while fec , feb , f
e
s are the corresponding allocations in Euro. The

constraints simply express the consistency imposed by the overall amount of available money, denoted by T (in
USD), being c the Euro/USD conversion factor.

In the example vi, we report a constraint coming from computer vision, concerning the classical problem of
determining the optical flow. It consists in finding the smoothest solution for the velocity field under the constraint
that the brightness of any point in the movement pattern is constant. The smoothness of the velocity field can be
measured according to formula (11) introduced in Section 2, by choosing a linear differential operator such as the
gradient or the Laplacian. If u(x, y, t) and v(x, y, t) denote the components of the velocity field andE(x, y, t) denotes
the brightness of any pixel (x, y) at time t, then the velocity field satisfies the linear constraint reported in Table 2 vi
(Horn and Schunck (1981)).

In the example vii, the i-th rule expresses propositions on some linguistic features P1, P2, P5, N5, V 0, V 1 de-
tected by proper linguistic tests for the diagnosis of Wernicke’s aphasia (Tsakonasa et al. (2004)). The propositional
description of column 2 can be equivalently split into a supervised pair (Xi, yiwe), where yiwe = 1 andXi = (3,+∞)×
(−∞, 4] × (2,∞) × (−∞, 22] × (−∞, 62] × (38,+∞). Basically, as it will be shown in Section 2, any proposition i
in this example can be associated with a correspondent set Xi ∈ 2X , where X := R6 = {(P1, P2, P5, N5, V 0, V 1)}
is the feature space. The last row of the table refers to a document classification problem and states that all papers
dealing with numerical analysis and neural networks are also machine learning papers. Notice that whereas col-
umn 2 expresses the rule by a logic description, in column 3 there is a related constraint expressed by real-valued
functions, according to the classical product T-norm (Klement et al. (2000); Diligenti et al. (2010, 2012)).

1.3 Lex parsimoniae principles

A specific interpretation of the parsimony principle, inspired by Occam’s razor, provides the unified methodology
for the construction of the theory of learning from constraints presented in this paper. The parsimony principle
has been used in decision making by promoting the idea that simple explanations are preferable, and it has been
proposed in that context as a mysterious heuristics to guide towards the understanding of the laws of Nature.
Although in the scientific method, the preference for the simplest explanation is not necessarily considered an
irrefutable principle and, therefore, it is arguable and falsifiable on the basis of experimental results, typically the
laws derived via the parsimony principle provide very accurate descriptions of reality. The principle of least action,
the studies on electromagnetic fields, the development of quantum mechanics are, amongst others, some of the
many examples of successful application of the lex parsimoniae to physics (Basdevant (2006)).

There are arguments to claim that Occam’s razor should not be regarded as a theory in the classical sense of
being a model that explains physical observations. According to James Gleick (Gleick (1992), pp. 60-61), “Where
Newton’s methods left scientists with a feeling of comprehension, minimum principles left a sense of mystery”,
which is nicely reinforced in David Park’s challenging question: “How does the ball know which path to choose?”.
The experimental validation is the only way to claim that the principle holds. Aesthetic considerations are not
enough to claim that a ball or a planet are condemned to follow a predetermined path. This issue becomes central
when trying to capture complex cognitive processes or to conceive models for decision making. We can think of
cognitive processes that obey a sort of “cognitive law” based on the minimization of a generalized version of the
Dirichlet integral in Physics, that yields simplicity in its optimal solution. Interestingly, within this context, the
above Park’s question on mechanics sheds light on the truly inductive nature of Occam’s razor. The introduction
of constraints, along with quantifiers, opens the doors to an interpretation of the parsimony principle that better
resembles physical laws like Netwon’s laws. Indeed, constraints translate rules that are not only expected to hold
for single examples. As it will be shown, a remarkable improvement of the learning paradigm developed in this
paper with respect to classical frameworks of learning from examples, is that these “cognitive laws” can naturally
be checked on tons of unsupervised examples.

The idea of simplicity that is generally expressed by Occam’s razor can be given different formulations, which
are partially related. Within the framework of the Minimum Description Length (MDL) principle, which gives
preference to models that lead to the best compression of the data, the invariance theorem states that, for a long
sequence, the difference between any two optimal descriptions of it is negligible compared to the size of the se-
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Examples of constraints
# linguistic description real-valued representation classification typical

interpretation

i. i-th supervised pair yκ · f(xκ)− 1 ≥ 0 (pw,un) (sf)
for classification

ii. probabilistic normalization ∀x ∈ X : (ho,bi) (hr)
for classification f1(x) + f2(x) + f3(x) = 1;

∀x ∈ X1 = X2 = X3 = X : (ho,un) (hr)
fj(x) ≥ 0 (j = 1, 2, 3)

iii. probabilistic normalization
∫
X f(x)dx = 1; (is,bi) (hr)

of a density function ∀x ∈ X : f(x) ≥ 0 (ho,un) (hr)

iv. coherence constraint ∀x = (x1, x2) ∈ X :
(2 classes) f1(x1) · f2(x2) ≥ 0 (ho,un) (sf)

v. asset allocation ∀x ∈ X : (ho,bi) (hr)
cash, bond, and stock in USD fdc (x) + fdb (x) + fds (x) = td(x);
cash, bond, and stock in Euro fec (x) + feb (x) + fes (x) = te(x);
overall invest. in USD and Euro td(x) + c · te(x) = T

vi. optical flow ∂E
∂x u+ ∂E

∂y v + ∂E
∂t = 0 (ho,bi) (sf)

vii. Wernicke’s aphasia (i-th) rule ∀x ∈ Xi : yiwe · fwe(x)− 1 ≥ 0 (ho,un) (sf)
if P1 > 3 and P2 ≤ 4 and P5 > 2
and N5 ≤ 22 and V 0 ≤ 62
and V 1 > 38 then W

viii. document classification: fna(x) · fnn(x) · (1− fml(x)) ≤ ε (ho,un) (sf)
∀x : na(x) ∧ nn(x)⇒ ml(x) (ε > 0 and ε ' 0)

Table 2: Examples of constraints from different environments. The first four are problem-independent,
whereas the others are descriptions of granules of knowledge in specific domains. The classifi-
cation of the constraints in the second to last column concerns local/global nature (pw, ho, nh,
and is stand for pointwise, holonomic, non-holonomic, and isoperimetric, respectively), the bilat-
eral/unilateral formulation (bi, un), and the hard/soft enforcement (hr, sf). The classification hard
vs soft constraint in the last column is referred to the way in which the constraints are usually
dealt with in practice.
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quence (Kolmogorov (1965); Solomonoff (1964); Chaitin (1966)), which gave rise to the notion of universal code and
Kolmogorov complexity. However, the concept of simplest explanation given by Vapnik in (Vapnik (1998), Chapter
6) with the introduction of the concept of structural risk minimization, rooted in the Vapnik-Chervonenkis (VC)
dimension, is likely to be the better starting point to grasp the idea of simplicity followed in our approach (which,
like for support vectors machines, is not simply associated with the number of free parameters).

Regardless of the contiguities with other approaches and the specific discussion on parsimony issues, the pro-
posed approach is primarily related to kernel machines. Our investigation was stimulated by the idea that, so
far, restricting to environments based on examples only has given quite a limited picture of the potential use of the
parsimony principle, as the examples alone are not a very expressive description of most interesting cognitive tasks.

1.4 Overview of the main results

The present paper summarizes and cements a series of works from the authors, by providing a unifying perspective
and contextually new theoretical results. The paper presents a new learning paradigm, which we call Support
Constraint Machines (SCMs), and can be regarded as a generalization of standard Support Vector Machines (SVMs)
and other kernel methods, where the classical supervision based on training samples is interpreted in terms of
pointwise constraints. Based on this novel view, new types of possibly non-pointwise constraints are taken into
account, and a classification of constraints that can be handled by the new learning paradigm is provided. Similarly
to SVMs and other kernel methods, learning takes place by finding a function that best satisfies the constraints (in
a hard or soft way) and is as smooth as possible, according to an integro-differential regularization term. Such a
function is assumed to belong to a Cartesian product of Sobolev spaces of finite order (although extensions to the
infinite-order case are possible, modeling, e.g., the case of a Gaussian kernel), and is searched for as a solution to
the Euler-Lagrange equations induced by the problem formulation.

The work makes use of variational calculus to show that the optimal solution to the constrained learning prob-
lem has an additive decomposition into several terms, each related to a specific constraint and given as the convo-
lution between the free-space Green function associated to the differential regularization operator and a so-called
constraint-reaction function, which, roughly speaking, takes the role of the SVM’s dual variable associated with the
constraint. The paper also investigates in detail contexts in which the convolution can be carried out easily (e.g., in
the case of SVMs) and situations for which it cannot. The latter cases are actually more interesting as they open a
new research direction, in which the optimal solution to the learning problem has to be numerically found as the
solution of a system of partial differential equations.

In our approach, an agent performs an induction process under a regularization mechanism that goes beyond
the classical regularization based on supervised examples only. To give an insight into the way we measure the
smoothness of a feasible solution, let us consider, as an instance, an open set X ⊆ R, scalar-valued admissible
functions f : X → R of one variable and, for b0, b1 ≥ 0, the minimization of the parsimony index

‖ f ‖2:= b0

∫

X
f2(x)dx+ b1

∫

X

(
df

dx

)2

dx, (3)

which is the square of a seminorm in the Sobolev space of functions on X that are square-integrable together with
their partial derivatives up to the order k (it is a norm when b0, b1 > 0). In Section 2.1, we extend this setting to
more general norms of the form ‖ Pf ‖, where P is a linear differential operator, and also to vectorial functions
f . Basically, in this case the learning problem that we address consists in discovering appropriate functions f in
a Sobolev space that are required to minimize ‖ f ‖2, while fulfilling a given set of hard/soft constraints. The
distinction between hard and soft constraints is in the way the constraints are embedded into the problem formula-
tion. In the hard case, they restrict the set of feasible solutions, whereas in the soft case their violation is penalized
through terms containing a loss, which are included in the objective of the optimization problem together with the
parsimony index. Likewise for kernel machines, it is of special interest the situation in which there is a unique
optimal solution to the learning problem, which is proven to hold for a very large class of regularization operators,
regardless of specific assumptions on the shape of the optimal solution.

To fully appreciate the difference between this kind of regularization operators with respect to classical kernels,
we start noting that any problem of learning from examples can directly be formulated in our framework, by re-
placing the traditional loss with one that measures the fulfillment of the constraints. This usually requires collecting
unsupervised data to check the constraints. It represents indeed a general way of facing learning from constraints,
that in this paper is fully covered and referred to as learning from pointwise constraints and has already been the
subject of investigation (see, e.g., (Diligenti et al. (2012))).
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As it will be shown, a significant class of constraints can be expressed as ∀x ∈ X : φ(x, f(x)) = 0 (or a
generalization of this case, in which the set X is replaced by its subset Xi) and, in one instance of the proposed
learning paradigm, a parsimonious agent is required to fulfill such constraints, while minimizing ‖ f ‖. Notice,
on passing, that unlike the case of supervised learning in which the constraints are clearly imposed on the training
set, this class of constraints is expressed by quantifiers on infinite domains. In the paper we prove that, for several
problems of learning from constraints, the optimal solution is fully representable by using the following notion of
constraint reaction:

i. ωhard(x) := −λ(x) · ∇fφ(x, f(x)) , (4)
ii. ωsoft(x) := −p(x) · ∇fφ(x, f(x)),

where ∇f denotes the gradient with respect to the second vector argument of φ, computed at f(x), λ(x) is a La-
grange multiplier function associated with the constraint, and p(x) is a probability density (see Fig. 1). The case
i. refers to a hard constraint, whereas the case ii. to a soft one. Interestingly, the two constraint reactions have
exactly the same dependence on the gradient of the constraint. However, whereas in the case of a hard constraint
the Lagrange multiplier function associated with the constraint φ needs to be determined so as to impose the hard
fulfillment of the constraint, for soft constraints the role of λ(x) is replaced by the probability density p(x). Both
functions λ(·) and p(·) play crucial roles in determining the magnitude of the constraint reactions. For a given point
x, in the case of hard fulfilment the weight λ(x) needs to be discovered in a way not to violate the constraint at x,
whereas in case of soft fulfillment p(x) is the typical weight that is large in regions of high probability. An impor-
tant result given in the paper concerns the representation of an optimal solution to the problem of learning from
constraints. Recall that the free-space Green function g associated to a linear differential operator O is a solution
to the distributional differential equation Og = δ, where δ is the Dirac distribution, centered on the origin. In the
paper we prove that, if g is the (free-space) Green function of the operator L := (P ?)′P , being P a (vectorial) dif-
ferential regularization operator and P ? its formal adjoint (the symbol ′ denotes transposition), then under suitable
conditions the functional representation of an optimal solution4 is5

f?(x) =

m∑

κ=1

(g ∗ ωκ)(x) , (5)

where “∗” denotes the convolution operator, m is the number of constraints, and ωκ is the reaction of the k-th con-
straint. Interestingly, the Fourier transforms6 of both sides yield

f̂?(ξ) =

m∑

κ=1

ĝ(ξ) · ω̂κ(ξ) . (6)

The basic results on the representation of the optimal solution are given in Sections 3.1 - 3.3, for various classes of
constraints. Under some assumptions, g is also the kernel of a Reproducing Kernel Hilbert Space (RKHS) Berlinet
and Thomas-Agnan (2004).

In equations (5) and (6), we can easily recognize a structure that very much resembles the one arising from the
representer theorems of kernel machines (see, e.g., Schölkopf and Smola (2002); Dinuzzo and Schölkopf (2012)).
Compared to other classical representer theorems, those obtained in this paper provide necessary optimality con-
ditions expressed in the form of (distributional) partial differential equations. This is due to the choice of a Sobolev
space in the definition of the ambient space of the optimization problem, and of a regularization term expressed
in integro-differential form. So, one can exploit in this framework Green functions and other tools from functional
analysis and variational calculus, which are not standardly used in machine learning problems. A similar approach
was adopted in (Poggio and Girosi (1989)), but only for soft pointwise constraints, and in the absence of hard
constraints.

4. We denote by f? a globally optimal solution to the constrained learning problem (f? is a particular instance of a locally
optimal solution, denoted by fo, which is actually the case for which most of the equations presented in this section are
derived in the paper). Moreover, under certain circumstances (in particular, for convex problems), any f◦ is also a globally
optimal solution.

5. For the sake of simplicity, the linear differential operator herein considered is not scaled by a factor γ as in the general
definition (11), i.e., equation (5) refers to the case γ = 1.

6. We use the unitary definition of the Fourier transform in terms of the frequency vector ξ ∈ Rd, i.e., ĝ(ξ) :=∫
Rd g(x) exp(−ι〈2πξ, x〉)dx and g(x) :=

∫
Rd ĝ(ξ) exp(ι〈2πξ, x〉)dξ, where 〈·, ·〉 denotes the Euclidean inner product in Rd.
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In Section 4.1, it is proven that the functional representation provided by equation (5) collapses perfectly to the
kernel expansion of kernel machines, where the constraints are restricted to supervised pairs (xκ, yκ). Indeed, we
prove that in such a case the global constraint reaction (i.e., the sum of the reactions of all the constraints) can be
written as

ω(x) =

m∑

κ=1

ακδ(x− xκ), (7)

where the ακ’s are real coefficients, and we have made the simplified assumption of dealing with a scalar-valued
function f . Consequently, in the Fourier domain, we have

ω̂(ξ) =

m∑

κ=1

ακe
−2πιxκξ . (8)

Hence, it turns out that the weights of the obtained kernel machine can be thought of as the coefficients ακ of the
Fourier transform of the global constraint reaction. The constraint reaction associated with a single supervised pair
is shown in Fig. 2-a.

In Fig. 2-c we can see the response to the κ-th constraint dictated by the Green function g of the regulariza-
tion operator. Such a response has the form (or is proportional to) g(x) ∗ δ(x − xκ) = g(x − xκ). We call such
a function plain kernel. In general, when quantifiers are involved, the Fourier transform does not get the simple
structure of equation (8), which reveals an intriguing peculiarity of classical supervised learning (more generally,
of learning with pointwise constrants). The connection with classical kernel machines vanishes when considering
other constraints (i.e., holonomic constraints), since in such cases the plain kernel that arises as the response to the
impulse δ(x − xκ) is replaced by (g ∗ ωk)(x). Basically, this new response comes out from the “marriage” of the
plain kernel with the reaction of the constraint, which contributes to defining the class of functions to be used for
the representation of the optimal solution to the constrained learning problem.

Let us consider, as an example, the soft relaxation of the so-called box constraint, i.e., ∀x ∈ B ⊂ X : f(x)− 1 = 0
and, for the sake of simplicity7, let B := [a, b] ⊂ R for some a < b. As depicted in Fig. 2-b, in this case the reaction
of the constraint is a rectangular impulse, instead of a Dirac distribution. If, for σ > 0, we use the differential
regularization operator

L =

∞∑

κ=0

(−1)κ
σ2κ

κ! 2κ
∇2κ (9)

(associated with a suitable operator P ), whose Green function is the Gaussian, then for a single box the general
functional representation given by equation (5) yields for the optimal solution the expression

(g ∗ 1B) (x) ∝ erf((x− a)/σ)− erf((x− b)/σ),

where 1B is the characteristic function of B,

erf(x) :=
2√
π

∫ x

0

e−t
2

dt

is the error function, g is the Green function of the operator L := (P ?)′P , and P ? is the formal adjoint of P .
The two examples above clearly indicate that the functional representation of the optimal solution can be

thought of as the response of a system with a certain Green function g (plain kernel) to a Dirac delta (supervised
pair) or to a rectangular impulse (box constraint). The latter case is just an example to show that often the rep-
resentation of the optimal solution is not based on the plain kernel anymore, but on a function that arises from
its “marriage” with the reaction of the constraint. In (Melacci and Gori (2013)), it is proven that, under certain
conditions, also g ∗ 1B is in fact the kernel of a RKHS and, therefore, all the related mathematical and algorithmic
apparatus of kernel machines can be directly re-used. It is also shown therein that significant experimental results
are achieved in cases where prior knowledge of this form is naturally available (e.g., for the case of medical ap-
plications, rules provided by physicians). Basically, the emergence of the plain kernel as the Green function of the
operator L is just the consequence of the degeneration of the reaction of the constraint to a Dirac distribution, which
happens in the case of a supervised pair.

7. In Section 4, the results are established in general.
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Figure 1: Constraint reactions in the generic point x ∈ X corresponding to hard and soft constraints,
where one can see the roles of the Lagrange multiplier function and of the probability density
in the same point x for hard and soft constraints, respectively. For illustrative purposes, the
case n = 2 is considered here. The reaction of the constraint φ in x is a vector orthogonal to the
level curve φ(x, f?(x)) = 0, where, in the definition of the level curve, φ(x, ·) is interpreted as a
function of its second vector-valued argument only.
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Figure 2: Constraint reactions corresponding (a) to a classical supervised pair and (b) to the soft constraint
∀x ∈ [a, b] : f(x) = 1 (box constraint). In (c) and (d) we can see the emergence of the plain and
the box kernels, respectively. The regularization operator of equation (9) is used, which for
supervised learning yields the classical plain Gaussian kernel. The representation (5) (here, for
m = 1) leads to a new kernel-based optimal solution and prescribes its form (box kernel).
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Constraint Reactions and Kernels
type of constraint reaction optimal solution

supervised pair (xκ, yκ) δ(x− xκ) g(x) ∗ δ(x− xκ) ∝ e−(x−xκ)2/2σ2

box constraint 1[a,b] g(x) ∗ 1[a,b](x) ∝ erf((x− a)/σ)− erf((x− b)/σ)

[Af(x) = b(x)]i ai
(
[AA′]−1Lb(x)

)
i

g(x) ∗ ai
(
[AA′]−1Lb(x)

)
i
∝ e−x2/2σ2 ∗ ai

(
[AA′]−1Lb(x)

)
i

Table 3: Different types of constraints with the corresponding reactions and optimal solutions. The cases
refer to the differential regularization operator of equation (9), which for supervised learning
yields the classical plain kernel.

As already pointed out, the general representation (5) of the optimal solution does not hold only for soft con-
straints, but also for hard constraints (see also Table 2, item v). In Section 4.3.2 we prove that in this case, for linear
hard constraints of the form Af(x) = b(x) (where A is a given matrix and b(x) is a given smooth function and with
compact support), the reaction of the i-th constraint has the expression

ωi(x) ∝ ai
(
[AA′]−1Lb(x)

)
i
,

where the transpose a′i of the column vector ai is the i-th row of the matrix A, and
(
[AA′]−1Lb(x)

)
i

denotes the i-th
element of the column vector [AA′]−1Lb(x).

For the three examples above, the reactions of the constraints and the corresponding functional representations
of the optimal solutions are shown in Table 3. In the case of supervised learning, the reaction of the constraint
associated with a single supervised pair (xκ, yκ) is proportional to δ(x−xκ) and the corresponding Fourier transform
ω̂κ has constant absolute value. In the second case, the reaction is a rectangle function, and its Fourier transform is
a window-like function (more precisely, a sinc function). Intuitively, in this case, the more we stress the universal
quantification over X , the more the spectrum of the constraint reaction is peaked. Finally, in the last case, the
constraint reaction depends on Lb(x) (which is approximated by a constant when b(x) is “nearly” constant in some
portion of interest of the domain8, and in such a case its Fourier transform is approximated by a Dirac distribution).
The proofs of these and related results are given in Section 4, where we apply the notion of constraint reaction.

Summing up, the proposed framework can be given a twofold interpretation. First, any constraint can be
thought of yet another stimulus, just like a supervised input-target pair. Hence, the development of an agent in
such a learning environment consists in finding a parsimonious solution compatible with the given constraints.
Second, we can think of the constraints as a way to provide an additional prior with respect to the one introduced
by the classical smoothness assumptions on the hypothesis space. Unlike supervised examples, any constraint
quantified on an infinite domain turns out to represent a sort of rule derived from the environment, which offers a
semantic statement on the tasks. Hence, an agent learning in such a framework is subjected to priors that give rise
to a sort of semantic-based regularization.

1.5 Algorithmic issues

The results that we obtain on the structure of the optimal solution of the constrained learning problem (“body of
the agent”) are not only important in themselves but they also play a crucial role for the construction of learning
algorithms. Basically, whenever we determine the structure of the optimal solution, we often identify a dependence
on parameters that leads to bridge most classical machine learning algorithms. To sum up, the cases of Table 3, even
when we consider a mixture of constraints, can be attacked by using the classical kernel machine mathematical and
algorithmic apparatus (see Section 4 for details). Unfortunately, an explicit expression of the constraint reaction
likewise in Table 3 is not always possible, and numerical approximations are needed in that case.

The general solution of the given constrained learning problem leads to representations that stimulate the
development of learning algorithms. This is summarized in Fig. 3, where we distinguish between kernel-based
approaches and solutions based on equation (5). As already mentioned, for some learning problems, the most

8. See Section 4.3 for a discussion about an extension to the case of a function b(x) that is constant on the whole input space
(hence, its support is not compact).
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Figure 3: Three different approaches leading to the development of learning algorithms. Besides the case
of kernel-based algorithms, this paper gives hints to devise algorithms based on constraint-
induced kernels and on the direct solution of fixed-point functional equations.

straightforward approximation of the optimal solution can be gained by quantizing the constraints over a given
set of unsupervised data, which yields a representation based on an expansion in terms of the plain kernel (see
Section 3.2, Theorem 22). This approach, which has already been the subject of in-depth investigation, can be ex-
perimented also by a software simulator that is available at

https://sites.google.com/site/semanticbasedregularization/home/software
where any pointwise soft constraint can be considered. From an algorithmic point of view, our results suggest also
the two approaches depicted in the lower part of Fig. 3.

• For the case in which each constraint reaction takes on the form ωκ(x) = ακhκ(x), where ακ is a coefficient
(to be determined) and hκ(·) is a known function, we can construct the new constraint-induced kernel g ∗ hκ,
which, likewise the box kernel, comes from the “marriage” of the plain kernel and the κ-th constraint. In so
doing, one can still rely on the usual kernel machine apparatus for the concrete algorithmic development.

• In other cases, one can also learn the optimal solution f? as a fixed point of equation (5). This is a more
general approach, as it applies also to the case in which the reaction ωκ to the κ-th constraint has an unknown
structure. Such a case will be briefly discussed in Section 6, along with a new perspective of on-line learning.

1.6 Related literature

The variational formulation of learning proposed in this work is mostly inspired by Poggio and Girosi in (Poggio
and Girosi (1989)). They offered a clear variational formulation of learning single tasks, which opens the doors
to fruitful developments in the area of kernel machines. Under Gaussian assumptions on the probability density
of the data, they also nicely pointed out that their formulation of learning, which is extended in this paper, has
some intriguing connections with expressing a prior in Bayesian learning (see also (Kaipio and Somersalo (1994),
pp. 79-89) for Gaussian smoothness priors). Basically, the presence of a generalized version of the Dirichlet integral
in the performance index of the agent, which favors the development of “simple solutions”, can be thought of as
a prior within the Bayesian framework. In general, however, the smoothing of the solution is not interchangeable
with priors and it is somehow related to luckiness functions (Herbrich and Williamson (2002)).
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The notion of simplicity in our agents emerges from the classical way of facing inverse problems, which can
be traced back to (Wahba (1975); Tikhonov and Arsenin (1977)). Interestingly, the extended formulation that we
develop to encompass the concept of constraints requires to solve a Fredholm equation of the II kind, which has
been massively investigated in the context of inverse problems (see, e.g., (Kaipio and Somersalo (1994), Chapter
2)). The same issue is central in inverse imaging, where it is required to reconstruct an object from its image (see,
e.g., (Bertero and Boccacci (1998), Chapter 8)).

The context in which our agents operate is the one of multi-task learning, brought to the attention of the ma-
chine learning community in (Caruana (1997)), and is related to recent studies in such a field; see, e.g., (Caponnetto
et al. (2008); Argyriou et al. (2007); Evgeniou et al. (2005)). However, following (Poggio and Girosi (1989)), here
we adopt a measure of parsimony that is based on linear differential operators instead than directly on kernels of
RKHSs, which allows us to deal naturally with quantifiers on infinite sets. To this end, we extend the studies on ap-
proximation and learning presented in (Poggio and Girosi (1989); Girosi et al. (1995)) to the case in which the agent
interacts with general hard/soft constraints instead of the classical interaction restricted to supervised examples
(see also Girosi et al. (2000); Chen and Haykin (2002)). The two approaches of inducing parsimony via differential
operations vs via kernels are connected as follows: the optimal solutions to certain learning problems containing
regularization terms that depend on linear differential operators can be written in terms of Green functions of re-
lated differential operators and, under certain assumptions, such Green functions are also kernels of RKHSs9 (see,
e.g., (Smola et al. (1998); Schölkopf and Smola (1998); Gnecco et al. (2013b))). When invoking this connection, we see
that, unlike the above-mentioned approaches to multi-task kernels, our agents do not capture cross-dependencies
amongst different tasks at the level of the choice of the kernel, but they express any such dependence via con-
straints. More precisely, the constraint-induced kernels, which emerge from the marriage of the plain kernel with
the reactions of the constraints, are entrusted the role of capturing the cross-dependencies. This kind of dependence
between tasks and, in general, the idea of injecting prior knowledge into the learning process, goes into the direction
of probabilistic inductive logic programming (De Raedt et al. (2008)).

This paper is organized as follows. In Section 2 we introduce our formulation of learning from constraints in
a variational framework. In Section 3, first we investigate the structures of the optimal solutions to the problem of
learning hard, soft, and mixed constraints via suitable Euler-Lagrange equations, by providing the corresponding
representer theorems. Then, we introduce the basic concepts of constraint reactions and support constraints, which
open the doors to the new learning paradigm of Support Constraint Machines (SCMs). Section 4 applies the results
to some relevant case studies, while Section 5 addresses the algorithmic side of the theory. Finally, Section 6 contains
a perspective view and a discussion on the application of the theory. Some technical lemmas are collected in the
Appendix.

2. Learning from constraints

In this section we introduce a formulation of learning from constraints based on a variational formulation of the
parsimony principle, which aims at keeping small a functional that involves the function to be learned and its
derivatives up to some order, via suitable linear differential operators. Interestingly, it is different - yet related - to the
classical approach of kernel machines. The bridge between the proposed approach and the classical learning theory
in RKHSs is represented by the fact that, as already mentioned, the Green functions of certain linear differential
operators are also kernels of certain RKHSs (this issue is addressed in Gnecco et al. (2013b); see Section 7, Section
11, and Table 1 therein).

2.1 Task space and parsimonious agents

Definition 2 [AGENT, TASKS, AND TASK SPACE] We think of an intelligent agent acting on a subset X of the perceptual
space Rd as one implementing a vectorial function f := [f1, . . . , fn]′ ∈ F , where F is a space of functions from X to Rn. The
function fj , j = 1, . . . , n, is called the j-th task of the agent and F the task space.

9. However, it is not true that any kernel of a RKHS can be expressed as the Green function of a linear differential operator. For
instance, a polynomial kernel cannot be a Green function even for an infinite-order differential operator, as it has nonzero
partial derivatives only up to a finite order. We refer the interested reader to (Gnecco et al. (2013b), Section 11 and Table 1)
for examples of kernels that either can or cannot be expressed as Green functions of linear differential operators.
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For technical reasons, related to the theory of Sobolev spaces (Adams and Fournier (2003)), in the following we
assume X to be either the whole Rd, or an open, bounded and connected subset of Rd, with strongly local Lipschitz
continuous boundary (Adams and Fournier, 2003, 4.9, p. 83). In particular, we consider the case in which, ∀j ∈
Nn := {1, . . . , n} and some positive integer k, the function fj : X → R, belongs to the Sobolev spaceWk,2(X ), i.e.,
the subset of L2(X ) whose elements fj have weak partial derivatives up to the order k with finite L2(X )-norms,
and we require k > d/2. We express this choice in the next definition, which, unless stated otherwise, is supposed
to hold throughout the paper. By the superscript ′ we denote transposition.

Definition 3 [HARD/SOFT CONSTRAINT SATISFACTION] The interaction between the agent and the environment is mod-
eled by constraints that have to be strictly satisfied (hard constraints) and/or constraints that can be violated, at the cost of
some penalization quantified by a loss (soft constraints).

In Definition 3, we slightly abuse the terminology. Although the qualifiers “hard” and “soft” regard the way in
which a constraint is interpreted, depending on the application context, for the sake of simplicity we refer to “hard
constraints” and “soft constraints”, respectively.

Definition 4 [CHOICE OF THE TASK SPACE] Let X ⊆ Rd be open, fj : X → R the j-th task of the agent, j = 1, . . . , n, and
f := [f1, . . . , fn]′. Then f ∈ F , where the task space is chosen as

F :=Wk,2(X )× . . .×Wk,2(X )︸ ︷︷ ︸
n times

with k > d/2.

By the Sobolev Embedding Theorem (see, e.g., (Adams and Fournier (2003), Chapter 4)), the requirement k >
d/2 implies that each element of Wk,2(X ) has a unique bounded and continuous representative, on which the
constraints are well-defined10. Moreover, by the Sobolev Embedding Theorem, for k > d/2 the space F is a RKHS,
too (see also (Berlinet and Thomas-Agnan (2004), Chapter 6) for a proof)11.

To define our learning model, we introduce a parsimony index, defined via a differential operator. We linear
consider differential operators that are invariant under spatial shift and have constant coefficients, as summarized
in the next definition. We use the following notation. For a function u and a multi-index α with n non-negative
components αj , we write Dαu to denote ∂|α|

∂α1...∂αn
u, where |α| := ∑n

j=1 αj .

Definition 5 [FINITE-ORDER LINEAR DIFFERENTIAL OPERATOR] We define the vectorial finite-order linear differen-
tial operator P := [P0, . . . , Pl−1]′ as the l-tuple of operators Pi, i = 0, . . . , l − 1, acting on the Sobolev spaceWk,2(X ) and
such that

Pi :=
∑

|α|≤ki

bi,αD
α ,

where ki ≤ k and the bi,α’s are suitable real coefficients. The formal adjoint of P is defined as the operator P ? = [P ?0 , . . . , P
?
l−1]′

whose i-th component P ?i has the form
P ?i :=

∑

|α|≤ki

(−1)|α|bi,αD
α .

We also define the operator
L := (P ?)′P .

10. Indeed, each element ofWk,2(X ) is an equivalence class of functions, which differ on sets of zero Lebesgue measure. Know-
ing that each such equivalence class has a unique bounded and continuous representative allows one to define the constraints
unambiguously, i.e., to evaluate them on such a representative element (otherwise, some constraints, such as pointwise ones,
might be ambiguously defined, since it would not be clear on which representative element they should be evaluated).

11. When the condition k > d/2 is violated, one can easily construct functions belonging toWk,2(X ) and containing peaks of
infinite amplitude (see, e.g., (Stein (1970), p. 132), and (Girosi and Anzellotti (1993))). This shows that in such casesWk,2(X )
is not a RKHS since, by one of its equivalent definitions, a RKHS is a Hilbert space of functions for which all evaluation
functionals are bounded (see, e.g., (Berlinet and Thomas-Agnan (2004))).
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For two functions u1, u2 : X → R such that the right-hand side of (10) is well-defined and finite, we let

〈u(1), u(2)〉 :=

∫

X
u(1)(x)u(2)(x) dx . (10)

Definition 6 [PARSIMONY INDEX] Let P := [P0, . . . , Pl−1]′ be a finite-order linear differential operator, ‖ fj ‖2P :=

〈Pfj , Pfj〉 :=
∑l−1
r=0

∫
X (Prfj(x))2dx, and γ ∈ Rn a vector of positive components. We endow the task space F :=

Wk,2(X )× . . .×Wk,2(X )︸ ︷︷ ︸
n times

with a seminorm

‖ f ‖P,γ :=




n∑

j=1

γj ‖ fj ‖2P




1/2

=




n∑

j=1

γj

l−1∑

r=0

∫

X
(Prfj(x))2dx




1/2

.

The parsimony index is given by the functional
E(·) := ‖ · ‖2P,γ . (11)

Equation (3) provides a simple example of a parsimony index of the form (11).

Definition 7 [PARSIMONIOUS AGENT] A parsimonious agent that interacts with the environment aims at minimizing over
the task space the functional E . More specifically, in the case of hard constraints the functional (11) has to be minimized on the
subset ofF of the task space that satisfies the hard constraints, whereas in the soft case one has to minimize onF the sum of (11)
and a suitable penalty term, which quantifies the violation of the given set of soft constraints. In the case of hard constraints
mixed with soft ones, the sum above is minimized on the subset of F of the task space that satisfies the hard constraints.

Notice that, in principle, any constraint can be regarded as hard or soft, depending on the way it is encoded in the
optimization problem that models learning with constraints.

Our formulation is a generalization to multi-task learning of what was proposed in (Poggio and Girosi (1989))
for regularization networks with soft constraints associated with supervised examples only, whose definition is
rooted in Tikhonov’s regularization theory (Tikhonov and Arsenin (1977)) and related studies on spline func-
tions (Wahba (1975, 1990)); see also Hadamard’s seminal paper on well-posedness (Hadamard (1902)). This relies
on a generalized version of the Dirichlet integral, which plays a fundamental role in many classical physic laws. In
the case n = 1, the operator P has been related to the notion of kernel in a RKHS, too (see, e.g., Schölkopf and
Smola (1998); Smola et al. (1998); Gnecco et al. (2013b)), and in (Evgenious et al. (1999)) there are some relevant links
between regularization networks and kernel machines.

The representer theorems that we derive in Section 3 are based on the existence of a free-space Green function
for the operator L := (P ?)′P introduced in Definition 5. It has to be remarked that, when P is a finite-order linear
differential operator, as stated in Definition 5, a Gaussian cannot be the free-space Green function of L. Indeed,
if g were a Gaussian, then the first hand-side of the distributional differential equation Lg = δ would be smooth
(differently from the right-hand side). So, our theory does not cover directly the Gaussian kernel, which has been
used, nevertheless, in the introductory example of Section 1.4. In Section 3.6, we discuss a way to circumvent this
problem.

If we choose for the operator P the form used in Tikhonov’s stabilizing functionals (Tikhonov and Arsenin
(1977)), for n = 1 (i.e., there is only one task f : X → R) and l = k + 1 we get

‖ f ‖2P =

∫

X

k∑

r=0

ρr(x) (Drf(x))
2
dx ,

where the function ρr(x) is non-negative, Pr :=
√
ρr(x)Dr, and Dr denotes a linear differential operator with

constant coefficients and containing only partial derivatives of order r. An interesting case is the one in which
ρr(x) ≡ ρr ≥ 0 for every x ∈ X and the differential operator satisfies

D2r = ∆r = ∇2r (12)

and

D2r+1 = ∇∆r = ∇∇2r , (13)
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where ∆ := ∇2 denotes the Laplacian operator and ∇ the gradient, with the additional condition D0f = f (see
Poggio and Girosi (1989); Yuille and Grzywacz (1989)). For instance, D1 = ∇, D2 = ∆ = ∇2, and D3 = ∇∆ =
∇∇2. According to (11), when n > 1 the operator P acts separately12 on all the components of f , i.e., Pf :=
[Pf1, Pf2, . . . , Pfn]′. Then, unlike what is done in (Micchelli and Pontil (2005); Argyriou et al. (2007); Evgeniou et al.
(2005)), the interaction among the components f?j of an optimal solution f? to the learning problem is modeled by
the fulfillment of the constraints, not by the presence of the differential operator P in the parsimony index.

2.2 Admissible tasks and constraint transformations

The kinds of constraints that we consider in this paper have been summarized in Definition 1; see Table 2 for several
instances. We use the symbol C to denote a collection of constraints. For instance, C :=

{
φ̌i, i ∈ Nm̌H

}
is a collection

of unilateral holonomic constraints.

Definition 8 [ADMISSIBLE TASKS] The set Fi ⊆ F of the functions belonging to the task space F and compatible with the
i-th constraint is called the set of admissible tasks wrt the i-th constraint. For a constraint collection C, the set FC ⊆ F of
the functions belonging to the task space F and compatible with all the constraints in C is called the set of admissible tasks
and its functions are the admissible tasks.

A specially interesting case of the isoperimetric bilateral constraints introduced in Definition 1 (iii) is

Φi(f) =

∫

X
ψi(x, f(x))dx. (14)

where ψi : X × Rn → R, i.e., when Φi(·) is an integral functional. A similar remark holds for Φ̌i(·) in the case
of isoperimetric unilateral constraints (see Definition 1 (iv)). When the set Xi is made up of a single point, un-
der mild smoothness assumptions any pointwise constraint defined in that point can be expressed in terms of an
equivalent isoperimetric one by replacing ψi in (14) by a Dirac delta. For instance, the bilateral pointwise constraint
φi(xi, f(xi)) = 0 is equivalent to ∫

X
φi(x, f(x))δ(x− xi)dx = 0,

provided that φi and f are continuous. Often, pointwise constraints can be interpreted as discretizations of con-
straints of holonomic type. In machine learning applications, they may be associated, e.g., with both supervised
and unsupervised training examples.

Any holonomic bilateral constraint φi(x, f(x)) = 0 can be expressed in terms of the pair of unilateral constraints
(φi(x, f(x)) ≥ 0,−φi(x, f(x)) ≥ 0) . Likewise, unilateral constraints can be expressed in terms of an appropriate
choice of bilateral constraints. To see this, let (u)+ := max {0, u}. Then, the unilateral constraint φ̌i(x, f(x)) ≥
0 is equivalent to (−φ̌i(x, f(x)))+ = 0 and also to

(
(−φ̌i(x, f(x)))+

)2
= 0. This equivalence should be treated

with care when applying the classical theory of Lagrange multipliers (see Sections 3.1 - 3.3), since it requires some
properties that might be lost in making such a transformation. For instance, the reduction of a unilateral constraint
φ̌i(x, f(x)) ≥ 0 to the corresponding bilateral one (−φ̌i(x, f(x)))+ = 0 may cause the loss of the differentiability.
So, the direct extension of theoretical results from the case of bilateral constraints to unilateral ones is not always
feasible in a plain way.

2.3 Learning from hard and soft constraints

We denote by 1Fi : Fi → {0, 1} the characteristic function(al) of the set of functions Fi, i.e., f ∈ Fi ⇔ 1Fi(f) = 1.
Likewise, we use 1Xi(·) to denote the characteristic function of the set Xi when Xi is open. In order to keep the
notation uniform for pointwise constraints, we let 1Xi(·) :=

∑|Xi|
j=1 δ(· − x(i,j)) for a finite set Xi made up of the

points x(i,j) (j = 1, . . . , |Xi|), where δ denotes the Dirac’s delta; so, for a set Xi made up only of one point xi, one
has 1Xi(·) := δ(· − xi).

The following definition formalizes the problems of learning from hard constraints.

12. Basically, in this case we overload the notation and use the symbol P both for the (matrix) linear differential operator acting
on f and for the (vector) differential operator acting on its components.
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Definition 9 [LEARNING FROM HARD CONSTRAINTS] Let FC ⊆ F be the subset of the functions that belong to the given
function space F and are compatible with a given collection C of constraints. The problem of determining a (local or gobal)
minimizer of the functional E(·) :=‖ · ‖2P,γ over FC is called learning from the hard constraint collection C.

Now we turn our attention to the soft case, focusing on holonomic constraints. The softness of pointwise and
isoperimetric constraints can be directly understood once we have the notion for holonomic constraints. Whereas
isoperimetric constraints yield directly a measure of their violation (given, for instance, by |Φi(f)| and |(−Φ̌i(f))+|),
for holonomic constraints we can express a global degree of mismatch in terms of some given (possibly general-
ized13) data probability density p(·) (more generally, a weighted average of their degree of violation). For example,
for a continuous holonomic constraint φi associated with an open subset Xi of X and q ∈ N+, one can express the
global degree of mismatch as

∫

Xi
|φi(x, f(x))|qp(x)dx (15)

and, for a continuous unilateral holonomic constraint φ̌i, as
∫

Xi
|(−φ̌i(x, f(x)))+|qp(x)dx . (16)

However, when different kinds of constraints are involved, the quantities in equations (15) and (16) might not
satisfactorily represent the interactions of the agent with the environment. Basically, the constraints come with their
own specificity and the agent might be willing to express a belief on them. Hence, whereas (15) and (16) represent
inherent degrees of mismatch of φi, which depend on the probability density, it is useful to the belief of a soft
constraint.

Definition 10 [BELIEF OF A SOFT CONSTRAINT] Given the i-th constraint of a collection C of soft constraints, its belief is
defined as follows.

• If isoperimetric: a non-negative constant βi.

• If holonomic: either a function from Xi to R+ or a linear combination of Dirac’s deltas with positive coefficients.

• If pointwise: a vector of |Xi| non-negative constants.

For the pointwise case, the belief can be reduced to the one for the holonomic case, when the latter is expressed
by a linear combination of Dirac’s deltas with positive coefficients. So, in the following definition, we deal only
with isoperimetric and holonomic constraints.

Definition 11 [DEGREE OF MISMATCH OF A SOFT CONSTRAINT] Given the i-th constraint of a collection C of soft con-
straints (possibly of different kinds), its qth-order degree of mismatch is defined as follows.

• If isoperimetric bilateral: µ(q)
Φi

(f) := |Φi(f)|q βi .

• If isoperimetric unilateral: µ(q)

Φ̌i
(f) := |(−Φ̌i(f))+|q βi .

• If holonomic bilateral: µ(q)
φi

(f) :=
∫
Xi |φi(x, f(x))|q βi(x) p(x) dx .

• If holonomic unilateral: µ(q)

φ̌i
(f) :=

∫
Xi |(−φ̌i(x, f(x)))+|q βi(x) p(x) dx .

The qth-order degree of mismatch of C, denoted by µ(q)
C (f), is the summation of the degrees of mismatch of each constraint in

C. In this case, by µ(q)
i,C(f) we denote the qth-order degree of mismatch of the i-th constraint in C.

Of course, µ(q)
C (f) = 0 ⇔ C is a collection of constraints that are strictly satisfied by f . Notice that, in the holo-

nomic case, it is reasonable to expect βi(x) ≡ ci for every i ∈ Nm, which expresses a global belief on the holonomic
constraints. It might be the case that ci = c for every i ∈ Nm, when one has no reason to express different beliefs
on different constraints. In other cases, the choice of the belief is not obvious, since it may actually involve local
properties of the constraints.

To get an insight into the joint role of the probability density and the belief of the constraints, we provide the
following example.

13. E.g., expressed in terms of Dirac’s deltas.

20



Example 1 Let us consider the following holonomic constraints, along with their beliefs:

∀x ∈ X : φ1(f1(x), f2(x)) := f1(x)(1− f2(x)) = 0; β1(x) =
1

2
;

φ2(f1(x), f2(x)) = f1(x)− y1 = 0; β2(x) =
1

4
δ(x− x) ;

φ3(f1(x), f2(x)) = f2(x)− y2 = 0; β3(x) =
1

4
δ(x− x).

The overall 2-nd degree of mismatch is

1

4

(
(y1 − f1(x))2 + (y2 − f2(x))2

)
︸ ︷︷ ︸
supervised pairs, βi(x)= 1

4 δ(x−x)

+
1

2

∫

X
(f1(x)(1− f2(x)))

2
dx

︸ ︷︷ ︸
logic constraint, β1(x)= 1

2

.

While the first part involves supervised pairs on the same x, the second models a logic-type constraint. Clearly, their soft
fulfillment requires to express their belief, since it may be qualitatively different on different points of the domain. Basically, the
belief can be thought of a weight to judge the subsequent constraint verification.

In the rest of the paper we shall consider the case q = 1. So, to simplify the notation we shall merely write µφi(f)

instead of µ(1)
φi

(f) and similar notations.
Now, we consider the following functional.

Esoft
C (f) :=

1

2
‖ f ‖2P,γ +µC(f). (17)

By Definitions 1 and 4, the functional (17) is well-defined when f ∈ F . In equation (17), we can clearly realize the
twofold role of probability in the fuzziness arising from soft constraints. For instance, in the case of a soft holonomic
constraint represented by the function φ̌, the degree of mismatch µφ̌(f) depends on each point x ∈ X via its belief
and the probability density p(·) and, at the same time, the penalty (−φ̌)+ is a way of weighing the fuzziness of the
set Fφ̌ :=

{
φ̌ : φ̌(x, f(x)) ≥ 0 ∀x ∈ X

}
⊆ F that has already been defined in the hard case. In the case of a soft

constraint, the penalty term (−φ̌)+ yields a measure connected with a certain membership functional of Fφ̌.

Definition 12 [LEARNING FROM SOFT CONSTRAINTS] Let C be a collection of constraints. The problem of determining a
(local or global) minimizer of the functional Esoft

C (·) := 1
2 ‖ · ‖2P,γ +µC(·) over F is called learning from the soft constraint

collection C.

In the following, in order not to burden the notations and without loss of generality, we shall omit βi and βi(x)
and write merely 1 instead of βi and p(x) instead of βi(x) p(x).

2.4 Existence and uniqueness of optimal solutions

Let us investigate the existence of optimal solutions to the problems of learning from hard and soft constraints. The
following theorem provides sufficient conditions for the existence of global minimizers in the hard case.

Theorem 13 [EXISTENCE AND UNIQUENESS FOR THE PROBLEM OF LEARNING FROM HARD CONSTRAINTS] Let C be
a hard constraint collection. If ‖ · ‖P,γ is a Hilbert-space norm on F and the set FC is nonempty, closed, and convex, then
there exists a unique solution to the problem of learning from C.

Proof. As ‖ · ‖P,γ is a Hilbert-space norm on F and the norm is convex and continuous, it follows by Lemma 32
(iv) in the Appendix that the functional ‖ · ‖P,γ is weakly lower semicontinuous on F . Moreover, since for any
sufficiently large M ∈ R the set

SM :=
{
f ∈ FC

∣∣∣ ‖ f ‖P,γ≤M
}

is nonempty, closed, bounded and convex, by Lemma 32 (iii) SM is nonempty and weakly compact. Finally, since
any Hilbert space norm is strictly convex, by Lemma 32 (v) arg minf∈FC ‖ f ‖P,γ is nonempty and contains only
one element. �
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For n = 1, examples of problems for which ‖ · ‖P,γ is a Hilbert-space norm on F are provided in (Gnecco et al.
(2013b)) for the class of rotationally-symmetric linear differential operators as defined in that paper (see also Section
4.3.1 for some details on such operators). Such examples extend readily to the case n > 1, as the operator P acts on
each component of f separately. Examples of problems for which FC is nonempty, closed, and convex arise when
the constraints are bilateral and holonomic and the constraint functions φi(·, ·) are linear with respect to the second
vector-valued argument. For unilateral and holonomic constraints, the assumption of closedness and convexity
of FC holds when the associated constraint functions φ̌i(·, ·) are concave with respect to the second vector-valued
argument and continuous. A similar remark holds for the other kinds of constraints.

The next theorem addresses the case of soft constraints.

Theorem 14 [EXISTENCE AND UNIQUENESS FOR THE PROBLEM OF LEARNING FROM SOFT CONSTRAINTS] Let C be a
soft constraint collection. If ‖ · ‖P,γ is a Hilbert-space norm on F and the penalty term µC(·) is convex and continuous, then
there exists a unique solution to the problem of learning from C.

Proof. Likewise in the proof of Theorem 14, by Lemma 32 (iv) in the Appendix the functionals ‖ · ‖P,γ and µC(·) are
weakly lower semicontinuous on F , such is their sum. Moreover, as for any sufficiently large M ∈ R the set

SM :=

{
f ∈ F

∣∣∣ 1

2
‖ f ‖2P,γ +µC(f) ≤M

}

is nonempty, closed, bounded and convex, it follows by Lemma 32 (iv) that SM is nonempty and weakly compact.
Finally, since any Hilbert space norm is strictly convex and the sum of a strictly convex functional and a convex one
is strictly convex, by Lemma 32 (v), arg minf∈F

(
1
2 ‖ f ‖2P,γ +µC(f)

)
is nonempty and contains only one element. �

When the constraints are holonomic and bilateral, problems for which µC(·) is convex and continuous arise
when each φi(·, ·) is non-negative, continuous, and convex with respect to the second vector-valued argument (this
implies the convexity of φ2

i (·, ·) with respect to the same argument, too). For unilateral holonomic constraints, the
convexity and continuity of µC(·) hold when the constraint functions φ̌i(·, ·) are concave with respect to the second
vector-valued argument and continuous. Again, a similar remark holds for the other kinds of constraints.

Remark 15 In Sections 4 and 5, we shall see that for many important learning tasks the conditions of Theorem 14 (e.g., the
convexity and continuity ones) hold true. However, when departing from the convexity hypothesis of the constraints, the
optimization problem can become hard to face.

3. Representer theorems and Support Constraint Machines (SCMs)

The investigations of this section are based on results established in the areas of unconstrained and constrained
variational calculus (see e.g., (van Brunt (2003)), (Giaquinta and Hildebrand (1996), Chapter 2), (Ernestovic (1970),
Chapter IX), (Gelfand and Fomin (1963), pp. 42–50)).

3.1 Representer theorems for hard constraints

We start considering hard holonomic constraints. The following theorem prescribes the functional representation
of an optimal solution to the corresponding learning problem. Given a set of m holonomic constraints (defined, in
general, on possibly different open subsets Xi), we denote by m(x) the number of constraints that are defined in
the same point x of the domain. For each set Xi, we denote by cl(Xi) its closure in the Euclidean topology. For two
vector-valued functions u(1) and u(2) of the same dimension, u(1) ∗ u(2) denotes the vector-valued function v whose
first component is the convolution of the first components of u(1) and u(2), the second component is the convolution
of the second components of u(1) and u(2), and so on, i.e., vj = (u(1) ∗u(2))j = u

(1)
j ∗u

(2)
j , for each index j. We denote

by X̂ ⊂ X an open set in which the same subset of constraints is defined in all its points, in such a way that m(x) is
constant on the same X̂ . We recall that we denote by fo a locally-optimal solution to the problem of learning from
(hard or soft) constraints, and by f? a globally-optimal solution. The following two definitions recall some classical
concepts.

Definition 16 [ACTIVE CONSTRAINTS] A constraint φ̌i(x, f(x)) ≥ 0 is said to be active in x0 at local optimality iff
φ̌i(x0, f

o(x0)) = 0, otherwise is inactive in x0 at local optimality.
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Definition 17 [FREE-SPACE GREEN FUNCTION] The free-space Green function g associated to a linear differential operator
O is a solution to the distributional differential equation Og = δ, where δ is the Dirac distribution, centered on the origin.

Theorem 18 [REPRESENTER THEOREM FOR HARD HOLONOMIC CONSTRAINTS] Let us consider the learning problem
formulated in Definition 9 in the case of m < n hard bilateral constraints of holonomic type, which define the subset

Fφ := {f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X : φi(x, f(x)) = 0}

of the function space F , where ∀i ∈ Nm : φi ∈ Ck+1(cl(Xi) × Rn). Let fo be any constrained local minimizer of class
C2k(X ,Rn) of the functional (11). Let us assume that for every X̂ and every x0 in the same set X̂ one can find two permutations
σf and σφ of the indexes of the n functions fj and of the m constraints φi, respectively, such that φσφ(1), . . . , φσφ(m(x0)) refer
to the constraints actually defined in x0, and the Jacobian matrix

∂(φσφ(1), . . . , φσφ(m(x0)))

∂(foσf (1), . . . , f
o
σf (m(x0)))

, (18)

evaluated in x0, is not singular. Then the following hold.

(i) There exists a set of functions λi : X̂ → R, i ∈ Nm, such that fo satisfies on X̂ the Euler-Lagrange equations

γLfo(x) +

m∑

i=1

λi(x)1Xi(x) · ∇fφi(x, fo(x)) = 0 , (19)

where γL := [γ1L, . . . , γnL]′ is a spatial-invariant operator14 and ∇fφi is the gradient w.r.t. the second vector argu-
ment f of the function φi.

(ii) Let γ−1g := [γ−1
1 g, . . . , γ−1

n g]′. If for all i one has Xi = X = Rd, L is invertible on Wk,2(X ), and there exists15 a
free-space Green function g of L that belongs toWk,2(X ), then fo has the representation

fo(·) =

m∑

i=1

γ−1g(·) ∗ ωi(·) , (20)

where ωi(·) := −λi(·)1Xi(·)∇fφi(·, fo(·)).

(iii) For the case of m < n unilateral constraints of holonomic type, which define the subset

Fφ̌ :=
{
f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X : φ̌i(x, f(x)) ≥ 0

}

of the function space F , (i) and (ii) still hold if the nonsingularity of (18) is required when restricting the constraints
defined in x0 to the ones that are active in x0 at local optimality (of course, replacing the φi’s by the φ̌i’s). Moreover,
each Lagrange multiplier function λi(x) is non-positive and equal to 0 when the correspondent constraint is inactive in
x at local optimality.

Proof. (i) Let fo be a constrained local minimizer of the functional E(f) := ‖ f ‖2P,γ over F . Fix x0 ∈ X̂ and a
compact subset XC ⊂ X̂ contained in an open ball of sufficiently small radius containing x0, and, after performing
the permutations σφ and σf , reorder the constraints and the components of f in such a way that the ones with
indexes σφ(1), . . . , σφ(m(x0)) and σf (1), . . . , σf (m(x0)), respectively, are the first m(x0) ones. By an application
of Lemma 33, if we fix arbitrarily the functions ηi ∈ Ck0 (XC) for i = m(x0) + 1,m(x0) + 2, . . . , n, then, for every
sufficiently small |ε| > 0, the bilateral holonomic constraints are met for a function f whose components fj have
the following expressions:

f1 = fo1 + εη1 +O(ε2) ,

f2 = fo2 + εη2 +O(ε2) ,

. . .

14. Here we use an overloaded notation, as made for the operator P .
15. Existence and uniqueness of g and invertibility of L are discussed in (Gnecco et al. (2013b)).
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fm(x0) = fom(x0) + εηm(x0) +O(ε2) ,

fm(x0)+1 = fom(x0)+1 + εηm(x0)+1 ,

fm(x0)+2 = fom(x0)+2 + εηm(x0)+2 ,

. . .

fn = fon + εηn ,

where the functions ηi ∈ Ck0 (XC), for i = 1, . . . ,m(x0), are still determined by Lemma 33. In particular, by
setting y(x) := [fom(x0)+1(x), fom(x0)+2(x), . . . , fon(x)]′, z(x) := [fo1 (x), . . . , fom(x0)(x)]′, φ := [φ1, . . . , φm(x0)]

′, ηy :=

[ηm(x0)+1, ηm(x0)+2, . . . , ηn]′, and ηz = [η1, . . . , ηm(x0)]
′, we have16

ηz(x) = −(∇3φ(x, y(x), z(x)))−1(∇2φ(x, y(x), z(x)))ηy(x) . (21)

Moreover, the partial derivatives, up to the order k, of the first m(x0) components of f , have similar expressions,
obtained from (71) in the Appendix, which contain terms of order O(ε2). This implies that E(f) can be written as

E(f) =

n∑

j=1

γj〈P (fo + εη)j , P (fo + εη)j〉+O(ε2)

=

n∑

j=1

γj〈Pfoj , Pfoj 〉+ 2ε

n∑

j=1

γj〈Pfoj , Pηj〉+ ε2
n∑

j=1

γj〈Pηj , Pηj〉+O(ε2)

=

n∑

j=1

γj〈Pfoj , Pfoj 〉+ 2ε

n∑

j=1

γj〈Pfoj , Pηj〉+O(ε2) .

Moreover, by an application of Green formula (see, e.g., (Attouch et al. (2006), Proposition 5.6.2)), we have

〈Pfoj , Pηj〉 = 〈(P ?)′Pfoj , ηj〉 = 〈Lfoj , ηj〉 ,

where P ? is the formal adjoint of the operator P . Now, we define locally the row vector function λ as follows:

λ(x) := −[γ1(Lfo)1(x), . . . , γm(x0)(Lf
o)m(x0)(x)](∇3φ(x, y(x), z(x)))−1 . (22)

Then, with such a definition, and exploiting equation (21), we get

m(x0)∑

j=1

γj〈Pfoj , Pηj〉 =

m(x0)∑

j=1

γj〈Lfoj , ηj〉 =

∫

X
λ(x)(∇2φ(x, y(x), z(x)))ηy(x)dx .

Summing up, we have

E(f)− E(fo) = 2ε

∫

X

(
[γm(x0)+1(Lfo)m(x0)+1(x), . . . , γn(Lfo)n(x)]

+ λ(x)(∇2φ(x, y(x), z(x)))
)
ηy(x)dx+O(ε2) .

Now, since E(f)−E(fo) ≥ 0 for |ε| > 0 sufficiently small due to the local optimality of fo, and ηy ∈ Ck0 (XC ,Rn−m(x0))
is arbitrary, by applying the Fundamental Lemma of the Calculus of Variations (see, e.g., (Giaquinta and Hildebrand
(1996), Section 2.2)) we conclude that

[γm(x0)+1(Lfo)m(x0)+1(x), . . . , γn(Lfo)n(x)] + λ(x)(∇2φ(x, y(x), z(x))) = 0

16. For a scalar-valued function u of various vector arguments, we denote by ∇iu the column vector of partial derivatives of u
with respect to all the components of the i-th vector argument.
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on XC . This, together with the definition (22) of λ(x), shows that (19) holds on XC (setting also λi(x) = 0 for the
constraints that are not defined in x). Finally, by varying the point x0, we obtain (19) on the whole X̂ .

(ii) follows by (19), the definition of the Green function g of L as the solution of Lg = δ (where δ denotes the
Dirac’s delta centered in 0), and the stated assumptions on L and g.

(iii) For the case of unilateral constraints, the constraints inactive in x0 at local optimality are not taken into
account locally, so the condition about the nonsingularity of the Jacobian matrix has to be referred only to the
constraints that are active in x0 at local optimality. Moreover, all the arguments used to derive (i) and (ii) still hold
(restricting the analysis to the active constraints in x0 at optimality and replacing the φi’s by the φ̌i’s), since, for
every sufficiently small |ε| > 0, the function f constructed as in the proof of (i) still satisfies with equality the active
constraints in x0 at local optimality.

Finally, we show that each Lagrange multiplier function λi(x) is non-positive. Without loss of generality, we
can restrict the analysis to the points of continuity of λi(x). Suppose by contradiction that there exists one such
point x̂0 ∈ X̂ such that λi(x̂0) > 0. Then, by continuity λi(x) > 0 on a sufficiently small open ball centered on x̂0.

For simplicity of notation, we also suppose that all the constraints defined in x̂0 are active in x̂0 at local op-
timality. Then, by the nonsingularity of the Jacobian matrix, there exists a vector u = [u1, . . . , um(x̂0)]

′ such that
∇3φ̌(x̂0, y(x̂0), z(x̂0))u = ei, where ei is a column vector of all 0’s, with the exception of the i-th component, which
is 1. By an application of the Implicit Function Theorem (likewise in the proof of Lemma 33), for every sufficiently
small ε > 0 (but in this case, not for every sufficiently small ε < 0) we can construct a feasible smooth perturbation
f(x) of fo(x) such that its components fj satisfy

f1(x) = fo1 (x) + εη1(x) +O(ε2) ,

f2(x) = fo2 (x) + εη2(x) +O(ε2) ,

. . .

fm(x̂0)(x) = fom(x̂0)(x) + εηm(x̂0)(x) +O(ε2) ,

fm(x̂0)+1(x) = fom(x̂0)+1(x) ,

fm(x̂0)+2(x) = fom(x̂0)+2(x) ,

. . .

fn(x) = fon(x) ,

for suitable functions η1, . . . , ηm(x̂0) ∈ Ck0 (XC) such that η1(x̂0) = u1, η2(x̂0) = u2, . . . , ηm(x̂0)(x̂0) = um(x̂0), and such
that E(f)− E(fo), apart from an infinitesimal of order O(ε2), is directly proportional to

ε[γ1(Lfo)1(x̂0), . . . , γm(x0)(Lf
o)m(x̂0)(x̂0)]u = −ελ(x̂0)ei = −ελi(x̂0) < 0 ,

which contradicts the local optimality of fo. Then, we have λi(x̂0) ≤ 0. �

When Xi 6= Rd, the constraints considered in Theorem 18 may include conditions on the borders ∂Xi which have to
be taken into account when solving the correspondent Euler-Lagrange equations (see equation (19)). In particular,
they are required to join the solutions to the Euler-Lagrange equations associated to two adjacent sets X̂ ’s.

In the expression

fo =

m∑

i=1

γ−1g ∗ ωi ,

derived for the case Xi = X = Rd for all i, we can recognize both the ingredients of a parsimonious knowledge-
based solution, i.e., the Green function g and the functions ωi, mixed by convolution. Note also that, by defining
ω :=

∑m
i=1 ωi, we have fo = γ−1g ∗ω (the functions ωi and ω :=

∑m
i=1 ωi play a special role, which will be discussed

in Section 3.4). Denoting by ◦ the Hadamard (entrywise) product, we can express the Fourier transform (by Fourier
transform of a vector-valued function we mean the vector of Fourier transforms of each component) f̂o of fo as
follows:

f̂o = γ−1ĝ ◦ ω̂ ,
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which promptly shows the filtering role of g(·), although we should also take into account that ω itself depends on
fo through the collection of the φi’s. The frequency-vector distribution ω̂i,j(ξ) (i.e., the j-th component of the Fourier
transform ω̂i of ωi) is referred to as the weight of the constraint φi in the representation of the function foj . These
results represent a formal statement of the general results concerning the notion of constraint reaction (equation (4-i))
and the representation of an optimal solution to the constrained learning problem (equations (5) and (6)).

Since the operator L is invertible onWk,2(X ) and has g∗ as its inverse, by fo = γ−1g∗ω we get ω = γLfo, which
is just a compact expression of the solution (20) to the Euler-Lagrange equations (19).

Corollary 19 Under the assumptions of Theorem 18 (ii), one has ‖ fo ‖2P,γ= 〈ω, γ−1g ∗ ω〉.

Proof. Directly from (19), when considering the definition of the function ω, we get

‖ fo ‖2P,γ= 〈γLfo, fo〉 = 〈ω, γ−1g ∗ ω〉 .
�

By the Parseval Theorem and the Mean Value Theorem, we can find ξ̌ωi,j ∈ Rd (i = 1, . . . ,m, j = 1, . . . , n) such that
(as L = (P ∗)′P and g solves Lg = δ, ĝ is real)

‖ fo ‖2P,γ = 〈ω, γ−1g ∗ ω〉 =
n∑

j=1

∫

Rd
γ−1
j ĝ(ξ) · |ω̂|2 (ξ)dξ (23)

=

m∑

i=1

n∑

j=1

∫

Rd
γ−1
j ĝ(ξ) · |ω̂i,j |2 (ξ)dξ =

m∑

i=1

n∑

j=1

γ−1
j ĝ(ξ̌ωi,j )

∫

Rd
|ω̂i,j |2 (ξ)dξ.

Now we consider hard isoperimetric constraints. The structure of an optimal solution of the correspondent
learning problem is investigated in the following theorem. By Ck0 (X ,Rn) we denote the set of functions from X
to Rn that are continuously differentiable up to the order k and have compact support. We say that the constraint∫
X 1Xi(x) · ψ̌i(x, f(x))dx ≥ 0 is active at local optimality iff

∫
X 1Xi(x) · ψ̌i(x, fo(x))dx = 0, otherwise is inactive at

local optimality.

Theorem 20 [REPRESENTER THEOREM FOR HARD ISOPERIMETRIC CONSTRAINTS] Let fo be a constrained local mini-
mizer of (11). Consider a parsimonious agent that minimizes (11) on F , consistently with the set

∀i ∈ Nm,
∫

X
1Xi(x) · ψi(x, f(x))dx = 0 ,

of bilateral isoperimetric constraints, where ∀i ∈ Nm : ψi ∈ C1(cl(Xi) × Rn) and assume that there exist functions
η(1), . . . , η(m) ∈ Ck0 (X ,Rn) such that the matrix




∫
X1

(∇fψ1(x, fo(x)))
′
η(1)(x)dx . . .

∫
X1

(∇fψ1(x, fo(x)))
′
η(m)(x)dx

. . . . . . . . .∫
Xm (∇fψm(x, fo(x)))

′
η(1)(x)dx . . .

∫
Xm (∇fψm(x, fo(x)))

′
η(m)(x)dx


 (24)

is nonsingular. Then the following hold.

(i) There exist m constants λi ∈ R such thatfo satisfies on X

γLfo(x) +

m∑

i=1

λi1Xi(x) · ∇fψi(x, fo(x)) = 0.

(ii) If X = Rd, L is invertible onWk,2(X ), and there exists a free-space Green function g of L that belongs toWk,2(X ),
then fo has the representation

fo(·) =

m∑

i=1

γ−1g(·) ∗ ωi(·) , (25)

where ωi(·) := −λi1Xi(·)∇fψi(·, fo(·)).
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(iii) Now, consider a parsimonious agent that minimizes (11) on F consistently with the set

∀i ∈ Nm,
∫

X
1Xi(x) · ψ̌i(x, f(x))dx ≥ 0

of m unilateral isoperimetric constraints, where ∀i ∈ Nm : ψ̌i ∈ C1(cl(Xi) × Rn). Then (i) and (ii) still hold the
nonsingularity of (24) is required on the active constraints at local optimality (of course, replacing the ψi’s by the ψ̌i’s).
Moreover, each Lagrange multiplier λi is non-positive and equal to 0 when the correspondent constraint is inactive at
local optimality.

Proof. (i) Let fo be a constrained local minimizer of the functional E(f) := ‖ f ‖2P,γ overF , let the auxiliary functions
η(1), . . . , η(m) ∈ Ck0 (X ,Rn) be such that the matrix (24) is nonsingular, and fix η(m+1) ∈ Ck0 (X ,Rn) arbitrarily. Let
ε1, . . . , εm+1 ∈ R and consider the problem of minimizing the function

F (ε1, . . . , εm+1) := E
(
fo +

m+1∑

i=1

εiη
(i)

)

subject to the m equality constraints given by

∀i ∈ Nm, Wi(ε1, . . . , εm+1) :=

∫

X
1Xi(x) · ψi(x, (fo +

m+1∑

i=1

εiη
(i))(x))dx = 0 . (26)

Of course, being fo a local constrained minimizer of E(f) implies that (0, . . . , 0) is a constrained local minimizer
of F (ε1, . . . , εm+1) under the constraints (26). Since the nonsingularity of (24) provides the qualification17 of the
set of constraints (26) in (0, . . . , 0), we can apply the standard theory of Lagrange multipliers in finite dimensional
spaces (see, e.g., Chapter 3 in (Bertsekas (1999)) to conclude that there exists a vector λ = [λ1, . . . , λm]′ ∈ Rm of
Lagrange multipliers such that

∇ε1,...,εmF (0, . . . , 0) + (∇ε1,...,εmW )′(0, . . . , 0)λ = 0 , (27)
∇εm+1F (0, . . . , 0) + (∇εm+1W )′(0, . . . , 0)λ = 0 , (28)

whereW is the column vector of componentsWi, for i = 1, . . . ,m. Both terms∇ε1,...,εmF (0, . . . , 0) and (∇ε1,...,εmG)′(0, . . . , 0)
do not depend on the arbitrary function η(m+1). Moreover, ∇ε1,...,εmW (0, . . . , 0) is equal to the matrix (24), which
is invertible by assumption. Concluding, equation (27) allows us to compute the vector λ, regardless of the spe-
cific choice of η(m+1). Finally, redefining the Lagrange multipliers up to the common multiplicative constant 1/2,
equation (28) is equivalent to

∫

X

[
γLfo(x) +

m∑

i=1

λi1Xi(x) · ∇fψi(x, fo(x))

]′
η(m+1)(x)dx = 0. (29)

from which we obtain (29), by applying the Fundamental Lemma of the Calculus of Variations.

(ii) is obtained likewise in the proof of Theorem 18 (ii).

(iii) Proceeding likewise in the proof of part (i), we consider the problem of minimizing the function

F (ε1, . . . , εm+1) := E
(
fo +

m+1∑

i=1

εiη
(i)

)

subject to the m inequality constraints given by

∀i ∈ Nm, W̌i(ε1, . . . , εm+1) :=

∫

X
1Xi(x) · ψ̌i(x, (fo +

m+1∑

i=1

εiη
(i))(x))dx ≥ 0 .

17. In particular, the so-called linear independence constraint qualification (LICQ).
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Since the active constraints at optimality are qualified by assumption, we can proceed similarly as in the proof of
(i), by applying additionally the Karush-Kuhn-Tucker necessary conditions for local optimality, which provide the
correct sign of the Lagrange multipliers associated with the inequality constraints. �

The next theorem states a similar result for the case of hard pointwise constraints. We denote by x(i,1), x(i,2), . . . , x(i,|Xi|)
the elements of each finite setXi (notice that in general there may be a nonempty intersection between differentXi’s).
We say that the constraint φ̌i(x(i,j), f(x(i,j))) ≥ 0 is active at local optimality iff φ̌i(x(i,j), f

o(x(i,j))) = 0, otherwise is
inactive at local optimality.

Theorem 21 [REPRESENTER THEOREM FOR HARD POINTWISE CONSTRAINTS] Let us consider a parsimonious agent
that minimizes (11) on F consistently with a given set of bilateral pointwise constraints given by

∀i ∈ Nm∀j ∈ N|Xi|, φi(x(i,j), f(x(i,j))) = 0 ,

where ∀i ∈ Nm : φi ∈ C1(X × Rn). Let fo be any constrained local minimizer of (11). Moreover, assume that for any x0 in
the finite set ∪mi=1Xi we have m(x0) ≤ n and we can find two permutations σf and σφ of the indexes of the n functions fj and
of the m constraints φi such that φσφ(1), . . . , φσφ(m(x0)) refer to the constraints actually defined in x0, and the Jacobian matrix

∂(φσφ(1), . . . , φσφ(m(x0)))

∂(foσf (1), . . . , f
o
σf (m(x0)))

, (30)

evaluated in x0, is nonsingular. Then the following hold.

(i) There exist
∑m
i=1

∑|Xi|
j=1 constants λ(i,j) ∈ R such that fo satisfies on X

γLfo(x) +

m∑

i=1

|Xi|∑

j=1

λ(i,j)δ(x− x(i,j))∇fφi(x, fo(x)) = 0. (31)

(ii) If X = Rd, L is invertible onWk,2(X ), and there exists a free-space Green function g of L that belongs toWk,2(X ),
then fo has the representation

fo(·) =

m∑

i=1

γ−1g(·) ∗ ωi(·) , (32)

where ωi(·) := −∑|Xi|j=1 λ(i,j)δ(· − x(i,j))∇fφi(·, fo(·)).

(iii) For the case of m unilateral pointwise constraints given by

∀i ∈ Nm∀j ∈ N|Xi|, φ̌i(x(i,j), f(x(i,j))) ≥ 0 ,

where ∀i ∈ Nm : φ̌i ∈ C1(X × Rn), (i) and (ii) still hold if the nonsingularity of (30) is required on the active
constraints at local optimality (of course, replacing the φi’s by the φ̌i’s). Moreover, each Lagrange multiplier λ(i,j) is
non-positive and equal to 0 when the correspondent constraint is inactive at local optimality.

Proof. Items (i), (ii) and (iii) are obtained likewise the correspondent items in Theorem 20. In the following, we
detail only the required changes with respect to the proof of item (i) of Theorem 20.

Let us denote by M the cardinality of the set ∪mi=1Xi and by x(1)
0 , . . . , x

(M)
0 its elements. For l = 1, . . . ,M , let the

auxiliary functions η(l,1), . . . , η(l,m(x
(l)
0 )) ∈ Ck0 (X ,Rn) be chosen according to the following rules:

• the supports of η(l,1), . . . , η(l,m(x
(l)
0 )) are contained in an open ball of sufficiently small radius, centered in x(l)

0 ;

• the auxiliary functions correspondent to different indexes l (hence to different points x(l)
0 ) have disjoint sup-

ports;
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• the m(x
(l)
0 )×m(x

(l)
0 ) matrix

∂(φ1, . . . , φm(x
(l)
0 )

)

∂(fo1 , . . . , f
o
n)

[η(l,1), . . . , η(l,m(x
(l)
0 ))] ,

evaluated in x
(l)
0 , is nonsingular18, where [η(l,1), . . . , η(l,m(x

(l)
0 ))] denotes the n × m(x

(l)
0 ) matrix obtained by

concatenating the column vectors η(l,1), . . . , η(l,m(x
(l)
0 )).

Now, let us choose an arbitrary function η ∈ Ck0 (X ,Rn) and, for ε, ε(l,r) ∈ R (l = 1, . . . ,M, r = 1, . . . ,m(x
(l)
0 )),

consider the problem of minimizing the function

F (ε, {ε(l,r)}) := E


fo + εη +

M∑

l=1

m(x
(l)
0 )∑

r=1

ε(l,r)η
(l,r)




subject to the
∑M
h=1m(x

(h)
0 ) equality constraints19 given by

∀h ∈ NM∀i ∈ N
m(x

(h)
0 )

,

Gh,i(ε, {ε(l,r)}) := φi


x(h)

0 ,


fo + εη +

M∑

l=1

m(x
(l)
0 )∑

r=1

ε(l,r)η
(l,r)


 (x

(h)
0 )


 = 0 .

By the construction of the auxiliary functions η(l,r), the qualification of the constraints holds and the Lagrange
multipliers can be chosen independently of the function η. So, we can proceed likewise in the remaining of the
proof of item (i) of Theorem 20. The Dirac delta terms in (31) arise from the fact that (∇εGh,i)(0, . . . , 0) depends
only the value assumed by the vector η(x) for x = x

(h)
0 , h = 1, . . . ,M . �

Example 2 Let us consider the classical supervised learning in which we want to enforce hard fulfillment of the constraints

∀κ ∈ Nls : f(xκ)− yκ = 0 ,

where the subscript “s” in ls stands for “supervised”. We can promptly see that conditions (30) concerning the qualification
of the constraints holds true whenever we deal with distinct points, since the Jacobian matrix becomes the diagonal matrix.

3.2 Representer theorems for soft constraints

In this section we do not consider the case of soft isoperimetric constraints, which, however, can be dealt with
similarly to holonomic and pointwise ones.

We can associate any holonomic or pointwise unilateral constraint φ̌i(x, f(x)) ≥ 0 with φ≥i (x, f(x)) = 0, where
φ≥i (·, ·) is a suitable non-negative function. Similarly, each holonomic or pointwise bilateral constraint can be refor-
mulated as a pair of unilateral constraints. Hence, the learning problem amounts at minimizing

Esoft
C (f) =

1

2
‖ f ‖2P,γ +

m∑

i=1

µi,C(f) =
1

2
‖ f ‖2P,γ +

m∑

i=1

∫

X
1Xi(x)φ≥i (x, f(x)) p(x) dx , (33)

where each set Xi is either open or made up of a finite number of points.
The next result is a representer theorem for an optimal solution. Note that the classical supervised learning is a

degenerate case in which each set Xi is made up of a single point, and in this case we set p(x) 1Xi(x) = p(x)δ(x−xi).

Theorem 22 (REPRESENTER THEOREM FOR SOFT HOLONOMIC AND SOFT POINTWISE CONSTRAINTS). Let C be a
collection of soft constraints, p be continuous, non-negative and in L1(X ), and consider the problem of minimizing over F the
functional Esoft

C (see (33)). Let fo be a local minimizer, then the following holds true.

18. Choosing the functions η(l,1), . . . , η(l,m(x
(l)
0 )) in such a way is always possible, due to the assumed nonsingularity of the

Jacobian matrix (30).
19. We have implicitly reordered the constraints in such a way that the first m(x

(h)
0 ) ones are those defined in x(h)

0 .
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(i) Let the following condition hold: ∀i ∈ Nm, Xi ⊆ X is open and ∀x ∈ Xi, there is an open neighborhoodN of (x, fo(x))

for which φ≥i ∈ C1(N ). Then, fo satisfies on X

γLfo(x) +

m∑

i=1

p(x)1Xi(x) · ∇fφ≥i (x, fo(x)) = 0. (34)

Under the same assumptions on φ≥i , the same result holds if the sets Xi are made up of a finite number of points.

(ii) Suppose that the sets Xi are disjoint, each set Xi is made up of a single point xi, and that φ≥i has the form

φ≥i (x, f(x)) =
∑

j∈Nn
φ≥i,j(x, fj(x)) ,

where φ≥i,j(x, fj(x)) := (1− yi,j · fj(x))+, and the yi,j ’s belong to the set {−1, 1}. Then, fo satisfies on X

γjLf
o
j (x) +

m∑

i=1

p(x)1Xi(x) · ∂fjφ≥i,j(x, foj (x)) = 0 , j = 1, . . . , n , (35)

where ∂fjφ
≥
i,j(x, f

o
j (x)) denotes a suitable element of the subdifferential20 ∂fjφ

≥
i,j(x, f

o
j (x)), which is equal to the sub-

differential ∂fjφ
≥
i (x, fo(x)).

(iii) Let the assumptions of either item (i) or item (ii) hold. If, moreover, X = Rd, L is invertible on Wk,2(X ), and there
exists a free-space Green function g of L that belongs toWk,2(X ), then fo has the representation

fo(·) =

m∑

i=1

γ−1g(·) ∗ ω≥i (·) , (36)

where ω≥i (·), under the assumptions of item (i), has the expression

ω≥i (·) := −p(·)1Xi(·)∇fφ≥i (·, fo(·)) ,

whereas, under the assumptions of item (ii), its n components ω≥i,j(·) are given by

ω≥i,j(·) := −p(·)1Xi(·)∂fjφ≥i,j(·, fo(·)) .

Proof. (i) Let us first consider the case in which Xi ⊆ X is open. Then, (i) is proved by fixing arbitrarily η ∈
Ck0 (X ,Rn), then computing

lim
ε→0

Esoft
C (fo + εη)− Esoft

C (fo)

ε
=

∫

X

(
γLfo(x) +

m∑

i=1

p(x)1Xi(x) · ∇fφ≥i (x, fo(x))

)′
η(x)dx = 0 , (37)

and finally applying the Fundamental Lemma of the Calculus of Variations. The first equality in (37) is obtained by
exploiting the assumption that ∀x ∈ Xi there is an open neighborhood N of (x, fo(x)) for which φ≥i ∈ C1(N ), and
the second is derived by the local optimality of fo. The case in which the sets Xi are made up of a finite number of
points is similar and is proved in (Gnecco et al. (2014)).

(ii) Let us fix arbitrarily η ∈ Ck0 (X ,Rn), with the additional condition that η(x) = 0 for all x ∈ ∪mi=1Xi. By
proceeding likewise in the proof of item (i), we obtain

lim
ε→0

Esoft
C (fo + εη)− Esoft

C (fo)

ε
=

∫

X
(γLfo(x))

′
η(x)dx = 0 . (38)

Since, for every j = 1, . . . , n, γjLfoj is a distribution, (38) implies that the support of γjLfoj is a subset of {x1, . . . , xm},
which is a set of finite cardinality. By (Schwartz (1978), Theorem XXXV in Chapter 3), γjLfoj is made up of a finite

20. Let Ω ⊆ Rd be a convex set. The subdifferential of a convex function u : Ω → R at a point x0 ∈ Ω is the set of all the
subgradients of u at x0, that is the set of all vectors v ∈ Rd such that f(x)− f(x0) ≥ v′(x− x0).
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linear combination of Dirac delta’s and their partial derivatives up to some finite order, centered on x1, . . . , xm.
Now, all the coefficients associated with the partial derivatives of any order of the Dirac delta’s are 0. This can
be checked by choosing a function η ∈ C∞0 (X ,Rn) such that only its j-th component ηj is different from 0, and
ηj(x) = 0 for all x ∈ ∪mi=1Xi (although some partial derivatives of some order of ηj may be different from 0 for some
x ∈ ∪mi=1Xi). Concluding, γjLfoj satisfies on X

γjLf
o
j (x) =

m∑

i=1

Biδ(x− xi) , (39)

where the Bi’s are constants. Notice that (39) is of the same form as (35).
Now, we look for lower and upper bounds on theBi’s. For simplicity of exposition, in the following we suppose

m = 1, so there is only one constant B1. However, the following arguments hold also for the case m > 1. Let ηj+

denote any function in Ck0 (X ,Rn) such that only its j-th component ηj+j is different from 0, and ηj+j (x1) > 0. Once
ηj+ has been fixed, we denote by ηj− the function −ηj+. The following possible cases show up.

1. (1− y1,j · foj (x1))+ < 0;

2. (1− y1,j · foj (x1))+ > 0;

3. (1− y1,j · foj (x1))+ = 0 and y1,j = −1;

4. (1− y1,j · foj (x1))+ = 0 and y1,j = 1.

• In the case (1), we get

lim
ε→0+

Esoft
C (fo + εηj+)− Esoft

C (fo)

ε
=

∫

X
γjLf

o
j (x)ηj+j (x)dx = B1η

j+
j (x1) ≥ 0 (40)

and

lim
ε→0+

Esoft
C (fo + εηj−)− Esoft

C (fo)

ε
=

∫

X
γLjf

o
j (x)ηj−j (x)dx = −B1η

j+
j (x1) ≥ 0 , (41)

then B1 = 0 (since ηj+j (x1) > 0). Notice that the inequalities in (40) and (41) follow by the local optimality of
fo, whereas the equalities by the left/right differentiability21 of the function (·)+.

• Similarly, in the case (2), we have

lim
ε→0+

Esoft
C (fo + εηj+)− Esoft

C (fo)

ε
=

∫

X

(
γjLf

o
j (x)− y1,jp(x)1X1(x)

)
ηj+j (x)dx

= (B1 − y1,jp(x1))ηj+j (x1) ≥ 0

and

lim
ε→0+

Esoft
C (fo + εηj−)− Esoft

C (fo)

ε
=

∫

X

(
γjLf

o
j (x)− y1,jp(x)1X1

(x)
)
ηj−j (x)dx

= −(B1 − y1,jp(x1))ηj+j (x1) ≥ 0 .

So, B1 = y1,jp(x1).

• In the case (3), we obtain

lim
ε→0+

Esoft
C (fo + εηj+)− Esoft

C (fo)

ε
=

∫

X

(
γjLf

o
j (x)− y1,jp(x)1X1(x)

)
ηj+j (x)dx

= (B1 − y1,jp(x1))ηj+j (x1) ≥ 0

and

lim
ε→0+

Esoft
C (fo + εηj−)− Esoft

C (fo)

ε
=

∫

X
γjLf

o
j (x)ηj−j (x)dx = −B1η

j+
j (x1) ≥ 0 .

Hence B1 ∈ [y1,jp(x1), 0] = [−p(x1), 0].

21. Depending on the sign of y1,j .
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• Finally, in the case (4) we get

lim
ε→0+

Esoft
C (fo + εηj+)− Esoft

C (fo)

ε
=

∫

X
γjLf

o
j (x)ηj+j (x)dx = B1η

j+
j (x1) ≥ 0

and

lim
ε→0+

Esoft
C (fo + εηj−)− Esoft

C (fo)

ε
=

∫

X

(
γjLf

o
j (x)− y1,jp(x)1X1(x)

)
ηj−j (x)dx

= −(B1 − y1,jp(x1))ηj+j (x1) ≥ 0 .

Then B1 ∈ [0, y1,jp(x1)] = [0, p(x1)].

Finally, summarizing the results of the analysis of cases (1)-(4) and applying the definition of subdifferentiability
to the function (·)+, we get22 (35).

(iii) is obtained likewise in the proof of Theorem 18 (ii). �

The item (i) of Theorem 22 applies, e.g., to the case of a function φ≥i that is continuously differentiable everywhere
(or at least a function φ≥i that is “seen as” a continuously differentiable function at local optimality, in the sense
that (x, fo(x)) is not a point of discontinuity of any partial derivative of φ≥i ). However, a function φ≥i deriving
from a unilateral constraint may not be continuously differentiable everywhere. In this case, we can approximate
such a function by a continuously-differentiable approximation or, for some φ≥i , we can deal directly with the
nondifferentiable case, as shown in Theorem 22 (ii).

A remarkable difference with the case of hard constraints is that the solution provided by Theorem 22 is based
on the assumption of knowing the probability density of the data, whereas for hard constraints we need to compute
the Lagrange multipliers associated with the constraints and also to check the satisfaction of the constraints. We also
remark that the classical supervised learning with a smooth loss is a degenerate case of Theorem 22 (i), in which
each set Xi is made up of a single element xi, and one sets p(x)1Xi(x) = p(x)δ(x − xi). Such a degenerate case is
extended in Theorem 22 (ii) to the case of a particular nondifferentiable function φ≥i . Examples of applications of
Theorem 22 are provided in Section 4.

When the probability density p is not known but a finite set U := {x̃κ ∈ Rd, κ = 1, . . . , lu} of unsupervised
examples is given (where the subscript “u” in “lu” stands for “unsupervised”), we can exploit them to estimate
p according to a mixture of kernel functions, i.e., p(x) =

∑
κ∈Nlu πκ ϑκ(x − x̃κ) for suitable coefficients πκ’s and

kernel functions ϑκ’s. For example, we can take the kernel functions equal to the Green function g of the differential
operator L; in such a way, the Euler-Lagrange equations (34) become

γLfo(x) +

m∑

i=1

`u∑

κ=1

πκ · 1Xi(x) · ∇fφ≥i,κ(x, fo(x)) = 0 ,

where
φ≥i,κ(x, fo(x)) := g(x− xκ) · φ≥i (x, fo(x)).

If we plug the expression of ω≥i (·) into the representational equation for fo(·) given by Theorem 22 (iii) we get

fo(x) = −
m∑

i=1

γ−1g(x) ∗
(
p(x)1Xi(x)∇fφ≥i (x, fo(x))

)

= −
m∑

i=1

γ−1g(x) ∗
(

`u∑

κ=1

πκg(x− xκ)1Xi(·)∇fφ≥i (x, fo(x))

)

= −
m∑

i=1

`u∑

κ=1

γ−1πκg(x) ∗
(
g(x− xκ)1Xi(x)∇fφ≥i (x, fo(x))

)
. (42)

In Section 5 we will provide algorithmic issues for the concrete solution of the learning problem, which are
based on the notion of dimensionality collapse.

22. A different method to prove item (ii) in Theorem 22 consists in reducing the soft constraints to hard unilateral constraints,
then applying a slight modification of Theorem 21 (iii).
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3.3 Representer theorems for mixed constraints

The proof techniques used to derive the results in Sections 3.1 and 3.2 can be applied to the case in which the
constraints are of mixed type, too; for instance, when there are simultaneously a bilateral isoperimetric constraint
and a bilateral holonomic constraint. While the extension to such a case in the soft case is straightforward, in the
hard case it requires in addition the satisfaction and the qualification of the whole set of mixed constraints, which
are both required to apply the theory of Lagrange multipliers. A problem that arises when dealing with mixed hard
and soft constraints, together with the associated Euler-Lagrange equations, is reported and solved in Section 4.3.2.

As an example, the following theorem combines hard holonomic and soft pointwise constraints. The learning
problem amounts at minimizing, for some c > 0, the functional

Emixed
C (f) :=

1

2
‖ f ‖2P,γ +

c

2ls

ls∑

κ=1

n∑

j=1

(yκ,j − fj(xκ))2 , (43)

in the presence of a collection C of hard holonomic constraints and of ls supervised examples (xκ ∈ Rd, yκ,j ∈ R),
dealt with in a soft way, where κ = 1, . . . , ls and j = 1, . . . , n.

Theorem 23 [REPRESENTER THEOREM FOR MIXED HARD HOLONOMIC AND SOFT POINTWISE CONSTRAINTS] Let us
consider the minimization of the functional (43) in the case of m < n hard bilateral constraints of holonomic type, which define
the subset

Fφ := {f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X : φi(x, f(x)) = 0}
of the function space F , where ∀i ∈ Nm : φi ∈ C∞(cl(Xi) × Rn). Let fo be any constrained local minimizer of the
functional (43), and let the holonomic constraints be defined in such a way that either Lfo ∈ C0(X ,Rn) or they are of the form
Af(x) = b(x), where A ∈ Rm,n with m < n and rank(A) = m, and b ∈ C2k

0 (X ,Rm). Let us assume that for any X̂ and for
every x0 in the same X̂ we can find two permutations σf and σφ of the indexes of the n functions fj and of the m constraints
φi, respectively, such that φσφ(1), . . . , φσφ(m(x0)) refer to the constraints actually defined in x0, and the Jacobian matrix

∂(φσφ(1), . . . , φσφ(m(x0)))

∂(foσf (1), . . . , f
o
σf (m(x0)))

, (44)

evaluated in x0, is not singular. Suppose also that (44) is of class C∞(X̂ ,Rn). Then, the following hold.
(i) There exists a set of distributions λi defined on X̂ , i ∈ Nm, such that fo satisfies on X̂ the Euler-Lagrange equations

γLfo +

m∑

i=1

λi1Xi(·) · ∇fφi(·, fo(·)) +
c

ls

ls∑

κ=1

(fo(·)− yκ)δ(· − xκ) = 0 .

(ii) Let γ−1g := [γ−1
1 g, . . . , γ−1

n g]′. If for all i we have Xi = X = Rd, L is invertible on Wk,2(X ), and there exists a
free-space Green function g of L that belongs toWk,2(X ), then fo has the representation

fo(·) =

m∑

i=1

γ−1g(·) ∗ ωhard
i (·) +

ls∑

κ=1

γ−1g(·) ∗ ωsoft
κ (·) , (45)

where ωhard
i (·) := −λi1Xi(·)∇fφi(·, fo(·)), and ωsoft

κ (·) := − c
ls

(fo(xκ)− yκ)δ(· − xκ).
(iii) For the case of m < n unilateral constraints of holonomic type, which define the subset

Fφ̌ :=
{
f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X , φ̌i(x, f(x)) ≥ 0

}

of the function space F , (i) and (ii) still hold (with every occurrence of φi replaced by φ̌i) if the nonsingularity of the Jacobian
matrix (see (44)) is required when restricting the constraints defined in x0 to those active in x0 at local optimality. Moreover,
each Lagrange multiplier λi is non-positive and locally equal to 0 when the correspondent constraint is locally inactive at local
optimality.

Proof. For the sake of conciseness, we merely summarize the differences with respect to the proof of Theorem 18.
First, in the Euler-Lagrange equations there is an additional term c

ls

∑ls
κ=1(fo(x)− yκ)δ(x−xκ), due to the presence
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of the supervised examples. Then, in general the Lagrange multipliers λi are not functions, likewise in Theorem 18,
but distributions, obtained by a variation of equation (22), which is well-defined in a distributional sense since the
Jacobian matrix (44) is locally invertible and infinitely smooth, and since either Lfo ∈ C0(X ,Rn) or Af(x) = b(x)
hold (with the stated assumptions on A and b(x)). More precisely, equation (22) is replaced by

λ :=− [γ1(Lfo)1, . . . , γm(x0)(Lf
o)m(x0)](∇3φ(·, y(·), z(·)))−1

+

(
c

md

md∑

κ=1

[(yκ,1 − fo1 ), . . . , (yκ,m(x0) − fom(x0))]δ(· − xκ)

)
(∇3φ(·, y(·), z(·)))−1 ,

where now λ is a row vector distribution. Finally, additional smoothness of fo is not required, since only (44) has to
be infinitely smooth. �

3.4 Constraint reactions

The following definition introduces a concept that plays a central role in the theory developed in this paper.

Definition 24 [CONSTRAINT REACTIONS] The function ωi in Theorems 18 and 20 and the function ω≥i in Theorem 22 is
called reaction of the i-th constraint, while ω :=

∑m
i=1 ωi (respectively, ω≥ :=

∑m
i=1 ω

≥
i ) is the overall reaction of the

constraints. A similar definition holds for the distributions ωi and ω :=
∑m
i=1 ωi in Theorem 21, the distributions ω≥i and

ω≥ :=
∑m
i=1 ω

≥
i in Theorem 22, and the distributions ωhard

i , ωsoft
κ and ωmixed :=

∑m
i=1 ω

hard
i +

∑ls
κ=1 ω

soft
κ in Theorem 23.

We emphasize the fact that the constraint reaction is a concept associated with the (constrained) local minimizer
fo. In particular, two different local minimizers may be associated with different constraint reactions. A similar
remark holds for the overall reaction of the constraints. Loosely speaking, under the assumptions of the respective
representer theorems, the reaction of the i-th constraint provides the way under which such a constraint contributes
to the expansion of fo. For instance, under the assumptions of Theorem 18 (ii), we have the expansion

fo =

m∑

i=1

γ−1g ∗ ωi = γ−1g ∗ ω ,

which shows the roles of ωi and ω in the representation of fo. Hence, in such cases the problem of learning from
constraints is reduced to finding the reactions of the constraints.

The following uniqueness property that involves constraint reactions and Lagrange multipliers plays an im-
portant role for concrete development of algorithms. Indeed, although in general a local minimizer is a-priori
unknown, this is still a structural property of local minimizers, which can be useful when searching for them.

Proposition 25 Both for soft and hard constraints, under the hypothesis of the respective representer theorems, the constraint
reactions and the Lagrange multipliers are uniquely determined by the local minimizer fo.

Proof. For the soft case, the property concerning the constraint reaction is trivial, and follows directly from the
definition of the constraint reaction, as no Lagrange multiplier has to be determined. Let us prove the uniqueness
of Lagrange multipliers for hard constraints. We detail the proof in the holonomic bilateral case, i.e., under the
hypotheses of Theorem 18 (ii). Similar proofs can be given for the other cases. Let us proceed by contradiction and
assume that there exist two different sets {λi, i = 1 . . . ,m} and

{
λi, i = 1 . . . ,m

}
of Lagrange multipliers associated

with the same constrained local minimizer fo, with at least one index i such that λi 6= λi. According to Theorem 18
(i), fo satisfies the Euler-Lagrange equations (19). Without loss of generality, for each x ∈ X̂ , we can re-order the
constraints and the associated Lagrange multipliers in such a way that the firstm(x) constraints are the ones actually
defined in x ∈ X̂ , and assume that λi(x) = λi(x) = 0 for all indexes i > m(x), as the corresponding constraint
reactions are equal to 0 in x due to the definition of ωi. By the assumption of distinct Lagrange multipliers, we have

γLfo(x) +

m∑

i=1

λi(x) · ∇fφi(x, fo(x)) = 0 ,

γLfo(x) +

m∑

i=1

λi(x) · ∇fφi(x, fo(x)) = 0,
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from which we get
m∑

i=1

(λi − λi)∇fφi = (λ(D) − λ(D))
′ ∂(φ1, . . . , φm(x))

∂(f1, . . . , fm(x))
= 0 ,

where λ(D) := [λ1, . . . , λm(x)]′ and λ(D) := [λ1, . . . , λm(x)]
′. Distinct multipliers are only compatible with the singu-

larity of the Jacobian matrix, which contradicts the assumption on the invertibility of (18). �

3.5 Support constraints and Support Constraint Machines

Starting from the concept of the reaction of a constraint, we introduce the following definition.

Definition 26 [SUPPORT CONSTRAINT] A support constraint is a constraint associated with a reaction that is different
from 0 at least in one point of the domain X .

Under the assumptions of the representer theorems of Sections 3.1 - 3.3, a local optimal solution fo to a problem
of learning from hard or soft constraints can be obtained by the knowledge of the Lagrange multipliers (in the hard
case) and the reactions associated merely with the support constraints. This motivates the use of the terminology
“support constraints” as an extension of the concept of “support vector” in kernel methods to problems of learning
from constraints. The connection with kernel methods arises also because, as already mentioned, under quite
general conditions the free-space Green function g associated with the operator L is the kernel of a RKHS (see,
e.g., Gnecco et al. (2013b) and the references therein). In such cases, for suitable choices of the constraints, various
kernel methods are obtained as particular instances of the proposed learning framework. For instance, with soft
pointwise constraints expressed by the quadratic loss and in the absence of hard constraints, one obtains kernel
ridge regression. In the case of soft pointwise constraints expressed by the hinge loss and no hard constraints,
one gets support vector machines. In Section 4, a precise connection will be given with support vectors that are
associated with the correspondent support constraints.

The emergence of constraints whose reaction is identically 0 at local optimality (thus, constraints that are not
support constraints) is particularly evident for the case of hard holonomic unilateral constraints. For instance, under
the assumptions of Theorem 18 (iii), a hard holonomic unilateral constraint that is inactive at local optimality for all
x ∈ X is associated with a Lagrange multiplier function λi(·) that is identically 0, so its reaction is identically 0, too.
Therefore, such a constraint is not a support constraint.

It is interesting to discuss the case of an instance of a problem of learning from hard constraints in which one
of the constraints is entailed by the collection of the remaining ones, in the sense that the fulfillment of all the other
hard constraints guarantees its fulfillment, too. Without any loss of generality, such a redundant constraint23 can
be discarded from the problem formulation and, provided that the assumptions of one of Theorems 18, 20, or 21
hold, we still have the representations (20), (25), or (32) for the constrained local minimizer fo, where the Lagrange
multiplier associated with the redundant constraint is 0, hence also the reaction from that constraint is 0. Therefore,
we can say that the redundant constraint is not a support constraint.

The concept of support constraints arises also in the soft case. Indeed, although in such a context the Lagrange
multipliers - which make their appearance in the hard case - are replaced by fixed (possibly generalized) probability
densities, the reaction of the i-th constraint can be still identically 0 - hence the constraint is not a support constraint
- provided that the term ∇fφ≥i (x, fo(x)) in equation (34) or - for all indexes j - the one ∂fjφ

≥
i,j(x, f

o
j (x)) in equation

(35) - is identically 0 on Xi. Examples of such a behavior are provided in Section 4. It is also shown therein that the
classical concept of support vector and the one of support set are two instances of the more general concept of support
constraint.

The role played by support constraints in the proposed learning paradigm is emphasized in the next definition.

Definition 27 [SUPPORT CONSTRAINT MACHINE (SCM)] A Support Constraint Machine (SCM) is any computa-
tional machinery capable of finding a (local or global) optimal solution to the problem of learning from constraints for which
one of the representer theorems provided in Sections 3.1, 3.2, and 3.3 holds, and such an optimal solution can be expressed in
terms of the correspondent constraint reactions.

23. Of course, redundant hard constraints can appear only if the assumption on the invertibility of the Jacobian matrix made in
the correspondent represent theorem of Section 3.1 is violated.

35



3.6 Approximating the Gaussian kernel

The Gaussian is often used as a kernel function in classical kernel methods and SVMs. However, when P is a
finite-order linear differential operator (see Definition 5), a Gaussian cannot be the Green function of L = (P ?)′P .
Indeed, if g were a Gaussian, the first hand-side of the distributional differential equation Lg = δ would be smooth
(differently from the right-hand side). So, our theory does not cover directly the Gaussian kernel. Nevertheless,
if the operator P is replaced by an infinite-order differential operator with constant coefficients, then it is possible
to get a Gaussian as a free-space Green function. Indeed, in (Yuille and Grzywacz (1988)) it was shown that the
Gaussian kernel with mean 0 and variance σ2 is a free-space Green function of the linear differential operator of
infinite order24

L = L(∞) :=

∞∑

i=0

(−1)iai∇2i , (46)

where ai := σ2i

i!2i (see also Poggio and Girosi (1989), Section 5.1.2). This can be proved via Fourier transforms,
observing that the Fourier transforms of (−1)i∇2i and δ are, respectively, the function ‖2πξ‖2i and the constant
function 1. Then, with such coefficients ai, by exploiting the Taylor-series expansion

exp(t) =

∞∑

i=0

ti

i!
,

one obtains

ĝ(ξ) = ĝ(∞)(ξ) :=

( ∞∑

i=0

ai‖2πξ‖2i
)−1

= exp

(
−σ

2‖2πξ‖2
2

)
,

whose inverse Fourier transform is the Gaussian function

g(x) = g(∞)(x) :=
1√

(2πσ2)d
exp

(
−‖x‖

2

2σ2

)
.

The simplest way to apply the results of the previous sections to this situation consists in replacing, for some
positive integer k, the infinite-order operator (46) with its truncation

L = L(k) :=

k∑

i=0

(−1)iai∇2i ,

which is a finite-order linear differential operator. Then, the free-space Green function g(x) = g(k)(x) associated
with L = L(k) is the inverse Fourier transform of

ĝ(ξ) = ĝ(k)(ξ) :=

(
k∑

i=0

ai‖2πξ‖2i
)−1

,

which, for sufficiently large values of k, is a good approximation of the Gaussian kernel (see Fig. 4 for a numerical
example of computation of the inverse Fourier transforms of ĝ(ξ) and ĝ(k)(ξ) via the Inverse Fast Fourier Transform
(IFFT), implemented in Matlab 7.7).

A similar method can be used for other infinitely-smooth kernels that are free-space Green functions of infinite-
order linear differential operators. Otherwise, direct extensions of the results to infinite-order differential operators
may be obtained by setting the problem of learning from constraints on Sobolev spaces of infinite order (Dubinskij
(1986)).

4. Case studies

In this section we discuss some instances of learning problems that involve hard and soft constraints. We show
that the application of the representations given in Sections 3.1 - 3.3 leads in some cases to problems that can be
attacked by using the mathematical and algorithmic apparatus of kernel machines. In particular, for the reactions
of the constraints we provide expressions that clearly show the connections with classical kernel methods. As the
examples refer to convex problems, there is no distinction between global and local minimizers f? and fo.

24. Of course, differential operators P associated with L via L = (P ?)′P can be constructed in several ways.
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Figure 4: For σ2 = 1 and d = 1, (a) the functions ĝ(k)(ξ) :=
(∑k

i=0 ai‖2πξ‖2i
)−1

with ai := σ2i

i!2i
, and (b)

their inverse Fourier transforms g(k)(x) for several values of the positive integer k. As k → ∞,

g(k)(x)→ g(∞)(x) := 1√
(2πσ2)d

exp
(
−‖x‖2

2σ2

)
in the L2 norm.

4.1 Supervised learning

The classical framework of supervised learning from examples is a particular case of learning from constraints.
Interestingly, this classical framework can be reproduced either by pointwise or isoperimetric constraints. In the
hard context, the first case is trivial and produces an interpolation of the supervised examples. However, in learning
from supervised examples the constraints are typically interpreted in a soft sense. Given Y ⊆ Rn and the training set
EL := {(xκ, yκ) ∈ X × Y, κ ∈ N`s}, a possible transcription by a single hard isoperimetric constraint of a collection
of given hard pointwise constraints imposed on the training set is

Φ̌(f) =

∫

X

∑

j∈Nn

∑

κ∈N`s

V (yκ,j , fj(x))δ(x− xκ)dx = 0, (47)

where V (·, ·) is a continuous loss function, i.e., a continuous non-negative function V : R2 7→ [0,+∞) such
that V (z, z) = 0 for each z ∈ R. This can be translated into a soft constraint for the function space F . Of
course, V has to be properly chosen in dependence of the specific learning problem (e.g., classification or re-
gression). Note that, for the case in which V (z(1), z(2)) 6= 0 for every z(1), z(2) ∈ R with z(1) 6= z(2), as long
as hard constraints are considered, the specific form of V is not important, since for this class of loss functions∫
X
∑
j∈Nn

∑
κ∈N`s V (yκ,j , fj(x))δ(x − xκ)dx = 0 implies yκ,j = fj(xκ), for each j ∈ Nn and κ ∈ N`s . Instead,

the form of the loss function becomes important when considering the correspondent soft constraints, in the sense
that in the soft case different loss functions may lead to different optimal solutions to the correspondent learning
problems. Finally, it is worth mentioning that in general the transcription by a single hard isoperimetric constraint
of several pointwise constraints causes the loss of the constraint qualification, required to apply the technique of
Lagrange multipliers.
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Let us now focus on the soft framework. We have to find f? ∈ argminf∈FEsoft
C (f), where Esoft

C (f) is given in
equation (33) with p(x)1Xi(x) = p(x)δ(x − xi), assuming that each set Xi is made up of a single point25. In the
following, we write φ≥i (f(x)) instead of φ≥i (x, f(x)) since there is no explicit dependence on x. There are differ-
ent possible choices for φ≥i (f(x)), which typically depend mostly on whether we face regression or classification
problems. Here, we consider the following two cases.

• The quadratic loss VQ(u) := 1
2u

2, associated with the hard bilateral constraints φi,j(fj(x)) = (yi,j − fj(x)) = 0,
which originates φ≥i (f(x)) =

∑
j∈Nn VQ ◦ φi,j(fj(x)) = 1

2

∑
j∈Nn(yi,j − fj(x))2. The quadratic loss is used for

both classification and regression problems.

• The hinge loss VH(u) := (u)+, associated with the hard unilateral constraints26 φ̌i,j(f(x)) = (1−yi,j ·fj(x)) ≤ 0,
which gives rise to φ≥i (f(x)) =

∑
j∈Nn VH ◦ φ̌i,j(fj(x)) =

∑
j∈Nn(1− yi,j · fj(x))+. The hinge loss is used for

classification, although related functions can be exploited in regression problems.

As we shall see in the following, the reactions of the constraints are related to the values fj(xi) with respect to
the targets yi,j . Here, each yi,j denotes a given real number for regression problems and a given element of the set
{−1, 1} for classification problems.

4.1.1 QUADRATIC LOSS

For every j ∈ Nn and x ∈ X , by Theorem 22 (i), (iii) the j-th component of the reaction of the generic i-th constraint
is given by

ω≥i,j(x) = −p(x)1Xi(x)
∂

∂fj
φ≥i (fo(x))

= −p(x)δ(x− xi)
∂

∂fj


1

2

∑

j∈Nn
(yi,j − foj (x))2


 = p(x)(yi,j − foj (x))δ(x− xi) .

Then

foj (x) =
1

γj

m∑

i=1

g ∗ ω≥i,j(x) =
1

γj

m∑

i=1

g ∗
(
p(x)(yi,j − foj (x)) · δ(x− xi)

)

=

m∑

i=1

p(xi)
yi,j − foj (xi)

γj
g(x− xi) =

m∑

i=1

α
(ql)
i,j g(x− xi), (48)

where α(ql)
i,j := p(xi)

yi,j−foj (xi)

γj
. The computation of fo from Theorem 22 shows how to compute the coefficients

α
(ql)
i,j : for p(xi) 6= 0, they can be obtained by solving

[
γj
p(xi)

α
(ql)
i,j +

∑

κ∈Nm
g(xi − xκ)α

(ql)
κ,j

]
= yi,j . (49)

In the case in which all the p(xi)’s are equal to 1/m, equation (49) can be compactly re-written as

[mγjIn +G]α
(ql)
·,j = y·,j . (50)

Here, In ∈ Rn,n is the n×n identity matrix and G is the Gram matrix associated with the input data xi and g which,
under suitable conditions (see, e.g., Gnecco et al. (2013b)) is the kernel of a RKHS. So, in this case we get the classical
representer theorem used in kernel machines. This emerged in a very similar way in (Poggio and Girosi (1989)).
Interestingly, we also find that

ω≥i,j(x) = p(x)(yi,j − foj (x))δ(x− xi) = γjα
ql
i,j · δ(x− xi).

This means that ω̂≥i,j(ξ) ∝ αqli,je−2πι〈xi,ξ〉, which is just the general form of equation (8) in case of vectorial functions.

25. As discussed in Section 2, this comes from merging the belief on the constraint with the probability distribution.
26. Here, we consider hard unilateral constraints of the form φ̌i,j(f(x)) ≤ 0, because this formulation is more natural than the

equivalent one −φ̌i,j(f(x)) ≥ 0.
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4.1.2 HINGE LOSS

Here, we consider the case yi,j ∈ {−1, 1}. For every j ∈ Nn and x ∈ X , by Theorem 22 (ii), (iii) the j-th component
of the reaction of the generic constraint i is

ω≥i,j(x) = −p(x)1Xi(x)∂fjφ
≥
i (fo(x))

= −p(x)δ(x− xi)∂fj
(
(1− yi,j · foj (x))+

)
,

where
−∂fj

(
(1− yi,j · foj (x))+

)

is equal to 0 if (1− yi,j · foj (x)) < 0 and to yi,j if (1− yi,j · foj (x)) > 0, whereas if (1− yi,j · foj (x)) = 0, it denotes an
element (to be found) either of the set [0, 1], when yi,j = 1, or [−1, 0], when yi,j = −1.

Then we get

foj (x) =
1

γj

m∑

i=1

g ∗ ω≥i,j(x) =
1

γj

m∑

i=1

g ∗
(
−p(x)∂fj

(
(1− yi,j · foj (x))+

)
· δ(x− xi)

)

= − 1

γj

m∑

i=1

p(xi)∂fj
(
(1− yi,j · foj (xi))+

)
g(x− xi)

=

m∑

i=1

yi,jα
(hl)
i,j g(x− xi), (51)

where, recalling that yi,j ∈ {−1, 1}, we have α(hl)
i,j := −p(xi)yi,jγj ∂fj

(
(1− yi,j · foj (x))+

)
. Of course, we may find

points xi defined by indexes i ∈ Nm for which α(hl)
i,j 6= 0, for at least one choice of the other index j. We denote by S

the set of such indexes i. Such points xi correspond to the support vectors of the classical kernel machines. It is worth
remarking that α(hl)

i,j ∈ [0, p(xi)/γj ]. In the case p(xi) = 1/m, this is the classical result on the range of the weights in
support vector machines (see, e.g., (Bishop (2006), Chapter 6)).

Following the same computations made above for the hinge loss, one can also derive the classical results for the
ε-insensitive loss used for regression, using an adaptation of Theorem 22 (ii), (iii) to this case.

4.2 Learning from propositional descriptions

In this section we consider the problem of learning from propositional descriptions, like those given in Table 2 (vii).
This extends naturally learning from supervised examples with the hinge loss to the situation in which the points
are replaced by open sets Xi defined by the corresponding characteristic functions 1Xi(·), and associated with the
volumes vol(Xi). The open sets can degenerate into single points and we suppose to be given md points and mo

open sets. Hence, m = md +mo (the subscripts “d” and “o”stand for “discrete” and “open”, respectively)27.
Likewise in Section 4.1.2, we need to express the (generalized) probability density of the data. A strong simpli-

fication arises when this is approximated by

1

m

mo∑

i=1

1

vol(Xi)
1Xi(x) +

1

m

md∑

κ=1

δ(x− xκ) ,

which corresponds to assuming a uniform distribution within the ordinary open sets and Dirac distributional de-
generation for points. So, we make the hypothesis of working in an environment with uniform probability distribu-
tion 1/m, where the agent gives the same weight to the constraints, and we give a reasonable answer to the question
whether more importance should be given to a rule with respect to an example, or vice-versa. In addition, we as-
sume that 1 − yi,jfoj is nonzero on the sets Xi and does not change its sign within each of such sets. We formalize
this as an assumption.

Assumption 4.1 [SIGN CONSISTENCY] On each set Xi, i = 1, . . . ,m, the quantities 1− yi,jfoj , j = 1, . . . , n, are nonzero
and have constant signs.

27. Note that md corresponds to the notation ls used in Section 3.3 for the number of supervised examples.

39



We take yi,j ∈ {−1, 1} and invoke28 Theorem 22. For every x ∈ X , the reaction of the generic constraint is
different depending on whether we are considering a degenerate set (point) or an ordinary one (open set). In the
first case, by the previous analysis we get for every κ ∈ Nmd and j ∈ Nn

ω≥,dκ,j (x) = yκ,jα
(hl)
κ,j δ(x− xκ) .

For non-degenerate sets, under the sign consistency hypothesis we have

ω≥,oi,j (x) = − 1

m · vol(Xi)
1Xi(x)

∂

∂fj

(
(1− yi,jfoj (x̂i))+

)
,

where x̂i denotes here any point in Xi. Let

α̂
(hl)
i,j := − yi,j

m · γj
∂

∂fj

(
(1− yi,jfoj (x̂i))+

)
.

By the sign-consistency hypothesis, we get α̂(hl)
i,j ∈ {0, 1

m·γj } and such a value does not depend on the choice of

x̂i ∈ Xi. Likewise for points, we call support set every set Xi whose index i ∈ Nmo satisfies α̂(hl)
i,j 6= 0 for at least one

index j. We denote by So the set of such indexes i. Interestingly, because of the sign-consistency hypothesis, the
reaction of each support set comes out from the whole contribution of the set, as each point inside the set provides
an equal contribution to the constraint reaction. Similarly, in the degenerate case, we denote by Sd the set of indexes
of support vectors (which corresponds to the set S of Section 4.1.2). Now, if we define29

β(x;Xi) :=

[
1

vol(Xi)
g(·) ∗ 1Xi(·)

]

x

as the set kernel associated to the pair (x,Xi), we end up with the representation

foj (x) =
∑

κ∈Sd

yκ,jα
(hl)
κ,j g(x− xκ) +

∑

i∈So

yi,jα̂
(hl)
i,j β(x,Xi) , (52)

which is limited to the support sets and support vectors.
As already discussed at the end of Section 3.2, another useful approximation can be given when a set U :={

x̃κ ∈ Rd, κ = 1, . . . , `u
}

of unsupervised examples is given, too, and used to estimate p(x) according to a mixture
of kernel functions30 g(x− x̃κ), i.e.,

p(x) =
∑

κ∈N`u

πκg(x− x̃κ)

for suitable coefficients πκ’s (to be determined, by using the information coming from the unsupervised examples).
For the sake of simplicity, let us assume that we are given only non-degenerate sets, i.e., open sets31. Let us assume
again the sign-consistency hypothesis. Similar arguments as before provide

foj (x) = − 1

γj

[
g(·) ∗

mo∑

i=1

(
`u∑

κ=1

πκg(· − x̃κ)

)
1Xi(·)

∂

∂fj

(
(1− yi,jfoj (x̌i))+

)
]

x

=

[
g(·) ∗

mo∑

i=1

α̌
(hl)
i,j yi,j

(
`u∑

κ=1

πκg(· − x̃κ)

)
1Xi(·)

]

x

=
∑

i∈Nmo

α̌
(hl)
i,j

∑

κ∈N`u

πκyi,j · [g(·) ∗ (g(· − x̃κ)1Xi(·))]x

=
∑

(i,κ)∈Nmo×N`u

πκα̌
(hl)
i,j yi,jβ(x; x̃κ,Xi) =

∑

(i,κ)∈Šo×N`u

α̌
(hl)
i,j,κyi,jβ(x; x̃κ,Xi) , (53)

28. Actually, here we are applying an extension of Theorem 22 to the case under consideration, which differs slightly from the
latter but can be proved similarly (it combines the assumptions of Theorem 22 (i) and (ii) by considering both kinds of soft
constraints, i.e., those on open sets and those on single points).

29. The notation
[

1
vol(Xi)

g(·) ∗ 1Xi(·)
]
x

means that the argument · is evaluated at x.

30. For the sake of notational simplicity, we suppose that the kernel in this expansion coincides with the Green function g of the
linear differential operator L.

31. The case in which also supervised points are given can be treated as in the previous case. Notice that, since the constraints
are of the same kind, in this context it is tacitly assumed that their beliefs are the same.
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where α̌(hl)
i,j,κ := πκα̌

(hl)
i,j , x̌i denotes any point in Xi,

α̌
(hl)
i,j := −yi,j

γj

∂

∂fj

(
(1− yi,jfoj (x̌i))+

)
,

β(x; x̃κ,Xi) :=

∫

X
g(x− ζ)g(ζ − x̃κ)1Xi(ζ)dζ ,

and the last equality in equation (53) follows by restricting the summation to the set Šo ⊆ Nmo of indexes i for
which α̌

(hl)
i,j > 0 for at least one index j (i.e., the set of indexes i associated to the support sets). Moreover, by

the sign-consistency assumption one has α̌(hl)
i,j ∈ {0, 1

γj
}. Of course, once the coefficients α̌(hl)

i,j,κ have been discov-
ered assessing to the (unsupervised) data and to the prescribed supervisions on the sets Xi, the sign-consistency
assumption has to be checked on the solution fo obtained in such a way.

Again, we have derived for fo a representation that depends on a finite number of parameters. However, notice
that, whereas the representations (48) and (51) are kernel expansions in which the kernel is the Green function of
the differential operator L, in the case considered in this section the functions β(x;Xi) and β(x; x̃κ,Xi) inherit a
structure that, in addition to L, closely depends on the correspondent sets Xi. For this reason, such functions are
called constraint-induced kernels. More details on learning from propositional descriptions can be found in (Melacci
and Gori (2013)), where the methodology is applied to the case in which the sets Xi are boxes, thus originating a
particular case of constraint-induced kernels called therein box kernels.

4.3 Learning from hard bilateral holonomic constraints

First we deal with linear constraints without supervised examples, then we consider the situation in which also the
latter are available.

4.3.1 LINEAR CONSTRAINTS AND NO SUPERVISED EXAMPLES

Let X = Rd and ∀i ∈ Nm, ∀x ∈ X define

φi(f(x)) := a′if(x)− bi = 0 , (54)

where ai ∈ Rn and bi ∈ R are given. We consider problems of learning from hard constraints like those in Table 2
(v and vi). Basically, we have hard holonomic bilateral constraints that can be written in the form (54), where a′i is
the i-th row of a given constraint matrix A ∈ Rm,n. The constraints can be compactly written as Af(x) = b, where
b ∈ Rm. We also suppose b 6= 0. In the following, we assume n > m and rank(A) = m. We discuss the solution for
the class of so-called rotationally-symmetric linear differential operators

P := [
√
ρ0D0,

√
ρ1D1, . . . ,

√
ρκDκ, . . . ,

√
ρkDk]′ ,

as defined in (Gnecco et al. (2013b)), where each operator Dκ satisfies (12) and (13), ρ0, ρ1, . . . , ρκ, . . . , ρk ≥ 0, and
ρk > 0. Such operators correspond via L = (P ?)′P to L =

∑k
κ=0(−1)κρκ∇2κ, which is invertible on Wk,2(Rd)

(see, e.g., (Gnecco et al. (2013b), Lemma 1)). In addition, we assume that all the components of γ are equal to some
constant γ̄ > 0.

We first address the case ρ0 6= 0, for which we show by a counterexample that being a solution of the Euler-
Lagrange equations (19) is not a sufficient condition to solve the associated problem of learning from hard con-
straints, although in this case such a problem is convex. Inspired by Theorem 18, we verify that the Euler-Lagrange
equations (19) are satisfied for a constant function f̄(·). We have Lf̄ =

∑k
κ=0(−1)κρκ∇2κf̄ = ρ0f̄ and∇fφi(f̄) = ai.

Hence, from (19) we get γ̄ρ0f̄+A′λ = 0, where the Lagrange multipliers are elements of the constant vector λ ∈ Rm.
Now, every constant solution f̄ to the algebraic equation above is also a solution to γ̄ρ0Af̄ + AA′λ = 0 and, there-
fore, of γ̄ρ0b+AA′λ = 0. Moreover, by the assumptions n > m and rank(A) = m, we have det[AA′] 6= 0. So, we can
determine the vector of Lagrange multipliers by

λ = −γ̄ρ0[AA′]−1b

and, consequently, denoting by λi the i-th component of the vector λ, the reaction of the i-th constraint is given by
ωi = −aiλi. This, in turns, yields

ωi = γ̄ρ0ai
(
[AA′]−1b

)
i
.
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Hence, recalling that the overall reaction of the constraints is ω =
∑m
i=1 ωi, the solution to the Euler-Lagrange

equations (19) is given by

f̄ = γ̄−1g ∗ ω =

(
ρ0

∫

X
g(ζ)dζ

)
A′[AA′]−1b .

By Lg = δ, we get
∑k
κ=0(−1)κρκ∇2κg = δ. In terms of the Fourier transform ĝ(ξ) of g, we have ρ0ĝ(ξ) +∑k

κ=1 ρκ (2π‖ξ‖)2κ
ĝ(ξ) = 1. For ξ = 0 we obtain ρ0ĝ(0) = ρ0

∫
X g(ζ)dζ = 1. Finally,

f̄ = A′[AA′]−1b. (55)

Now, we check that the function f̄ defined by (55) is not an optimal solution to the problem of learning from
hard constraints, for which we have just solved the associated Euler-Lagrange equations. First of all, since f̄ is a
constant, each nonzero component f̄j of f̄ does not belong to the Sobolev spaceWk,2(Rd), so f̄ does not belong to
the ambient space F . At a first look, this may be considered a minor point, since we may still replace the ambient
space by a different one, for which the same form of the Euler-Lagrange equations still holds. The real issue is that,
for the obtained f̄ , the value E(f̄) = ‖f̄‖2P,γ assumed by the objective functional of the learning problem with hard
constraints is not even finite32, so such a function f̄ cannot be an optimal solution even for other choices of the
ambient space.

We now consider the case ρ0 = 0. In such a situation, we can easily verify that f̄ = A′[AA′]−1b solves the
associated Euler-Lagrange equations with the constant choice λ = 0. Although such f̄ does not belong to F (so,
it is not an optimal solution to the original problem of learning from hard constraints when this is set on F), its
components f̄j belong to the generalized Sobolev space HP (Rd) (Fasshauer and Ye (2011)), i.e., the set of functions
fj : Rd → R for which ‖fj‖2P is finite. Finally, since E(f) = ‖f‖2P,γ ≥ 0 for any admissible f and E(f̄) = ‖f̄‖2P,γ = 0,
we can conclude a-posteriori that f̄ is indeed an optimal solution f? to the problem of learning from hard constraints
above when this is set on

F̄ = HP (Rd)× . . .×HP (Rd)︸ ︷︷ ︸
n times

,

instead than simply on F .

4.3.2 LINEAR CONSTRAINTS AND SUPERVISED EXAMPLES

Here we discuss the relevant in which a generalization of the previously-discussed linear constraints is combined
with classical learning from supervised examples and the constant vector b is replaced by a function b(·). A prelim-
inary version of these results has been presented without proofs in (Gori and Melacci (2010)). As a particular case,
when no supervised examples are present, one also obtains an extension of the case discussed in Section 4.3.1 to the
one of a vector-valued function b(·).

We carry out the analysis by assuming, as before, that ∀i ∈ Nm one has γi = γ̄ > 0. We suppose also that
ρ0, ρk > 0. We are now given a supervised learning set L :=

{
(xκ, yκ), xκ ∈ Rd, yκ ∈ Rn, κ ∈ Nls

}
and the linear

constraint Af(x) = b(x), where b ∈ C2k
0 (X ,Rm) is a smooth vector-valued function with compact support. Such a

constraint is intended in the hard sense, whereas the given supervised pairs induce soft constraints expressed in
terms of the quadratic loss33.

32. Note that this is not in contrast with Theorem 13, about the existence of a global solution to the learning problem under
hard constraints. Indeed, such a theorem cannot be applied here since the set FC is empty: any function f(x) that satisfies
the set of hard bilateral holonomic constraints Af(x) = b for a constant vector b 6= 0 cannot belong to the ambient space
W . A possible way to solve this issue consists in reformulating the learning problem in a different ambient space and
with a different functional. More precisely, we can consider the problem of finding (c, u)? ∈ arg min(c,u)∈F̃C ‖u‖

2
P,γ , where

F̃C := {(c, u) : c is a constant vector in Rn, u ∈ Wk,2(X )× . . .×Wk,2(X )︸ ︷︷ ︸
n times

and A(c + u(x)) = b for all x ∈ X}, which has

the optimal solution (c, u)? = (f̄ , 0) = (A′[AA′]−1b, 0). Another possible way to attack the problem is illustrated in the next
Section 4.3.2 and is obtained by replacing the constant vector b by a function b(·). To approximate the original problem, the
function b(·) may be chosen “nearly constant” in some portion of interest of the domain.

33. This is reasonable in practice. For example, in the task of Table 2 v., whereas the single asset functions can be learned in a
soft way from supervised examples, a constraint on the assets, like the overall money available, must be intended in a hard
sense.
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Since this is a problem with mixed hard and soft constraints, we search for a solution f̄ to the Euler-Lagrange
equations

γ̄Lf̄(x) +A′λ+
1

ls

ls∑

κ=1

(f̄(x)− yκ)δ(x− xκ) = 0 (56)

(see Theorem 23, with c = 1). Let us determine the vector of distributional Lagrange multipliers λ. We have

ALf̄ = A

k∑

κ=0

(−1)κρκ∇2κf̄ =

k∑

κ=0

(−1)κρκA∇2κf̄ =

k∑

κ=0

(−1)κρκ∇2κAf̄ =

k∑

κ=0

(−1)κρκ∇2κb = Lb ,

where Lb ∈ C0
0(X ,Rm) has compact support. Hence, from equation (56) we get

γ̄Lb(x) +A

[
A′λ+

1

ls

ls∑

κ=1

(f̄(x)− yκ)δ(x− xκ)

]
= 0,

from which we find that the Lagrange multiplier distribution34 λ is given by (see equation (45))

λ = −[AA′]−1

(
γ̄Lb(x) +

1

ls

ls∑

κ=1

A(f̄(x)− yκ)δ(x− xκ)

)
.

Now, if we plug this expression for λ into the Euler-Lagrange equations (56), we get

γ̄Lf̄(x) = c(x) +
1

ls

ls∑

κ=1

Qmixed(yκ − f̄(x))δ(x− xκ) ,

where c(x) := γ̄A′(AA′)−1Lb(x), and Qmixed := In − A′[AA′]−1A. Let α(ql)
κ := 1

ls
γ̄−1(yκ − f̄(xκ)). By inverting the

operator L, we obtain

f̄(x) = γ̄−1

∫

X
g(ζ)c(x− ζ)dζ +

ls∑

κ=1

Qmixedα(ql)
κ g(x− xκ). (57)

Note that, in the absence of supervised examples and in the limit case b(x) = b “nearly” constant (e.g., such that
each of its components is a rectangular pulse of sufficiently large width), we get (55) as an approximation for ‖x‖ not
too large, since in that case Lb ' ρ0D0 b ' ρ0b. So, the overall constraint reaction (of both hard and soft constraints)
is

ωmixed(x) = c(x) + γ̄

ls∑

κ=1

Qmixedα(ql)
κ δ(x− xκ) .

The coefficients α(ql)
κ can be determined by following the same scheme as the one used for equation (48). Let

y = [y1, . . . , yls ] ∈ Rn,ls be the matrix of targets, where the κ-th column is associated with the corresponding sample
xκ and α(ql) := [α

(ql)
1 , . . . , α

(ql)
ls

] ∈ Rn,ls . By the definition of α(ql), we have

γ̄lsα
(ql) +Qmixedα(ql)G = y − γ̄−1

∫

X
g(ζ)H(ζ) dζ ,

where G is the Gram matrix of the input data and g, and H : X → Rn,ls is the matrix-valued function whose κ-th
column is given by the function c(xκ − ·). The existence of a solution α(ql) to the linear system above follows by
a slight modification of Theorem 13 (since for ρ0, ρk > 0, ‖ · ‖P,γ is a Hilbert-space norm onWk,2(Rd) by (Gnecco
et al. (2013b), Proposition 3), and the square loss is convex and continuous with respect to ‖ ·‖P,γ , because under the
stated conditions ‖ · ‖P,γ is a norm equivalent to the standard Hilbert-space norm ofWk,2(Rd), which for k > d/2 is
a RKHS) and the nonsingularity of the Jacobian matrix (44) associated with the set of hard constraintsAf(x) = b(x).

We conclude discussing the admissibility of the obtained solution (57). By an application of (Gnecco et al.
(2013b), Theorem 3) about the smoothness properties of Green functions, it follows that g ∈ Wk,2(Rd). This implies

34. Here, for uniformity of notation with the present section, a column vector is considered.
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that f̄ ∈ F , Emixed
C (f̄) (see equation (43)) is finite, and f̄ is both a local and global minimizer (thanks to the convexity

of the problem).
Finally, as a unilateral variation of this example, we mention the remarkable case of a unilateral constraint

f(x) ≥ 0 (componentwise), which makes sense when the components of f represent, e.g., mass or probability
densities.

4.4 Quadratic constraints

Let us consider the case of soft fulfillment of a holonomic quadratic constraint

∀x ∈ X1 = X = Rd, φ1(f(x)) = (f(x)− υ(x))′Q(f(x)− υ(x)) , (58)

where Q ∈ Rn,n is a positive semi-definite matrix and υ(·) is a given function. For simplicity, we take υ(x) :=
0 , ∀x ∈ X1. This corresponds to a degree of mismatch µφ1

(f) =
∫
X1
f ′(x)Qf(x)dx. We are also given a set

(xκ, yκ), κ = 1, . . . ,m of supervised examples, which are dealt with in a soft way through the quadratic loss. We as-
sume that the belief of the holonomic constraint is uniform over X1 (e.g., including it in p(x), we set35 p(x) ≡ p̄ > 0).
Recall that in the following, we use the symbol ◦ to denote the Hadamard (entrywise) product.

Proposition 28 Let us consider the quadratic soft constraints (58) along with a collection of m supervised examples, dealt
with in a soft way through the quadratic loss. Assume that:

(i) p(x) ≡ p̄ > 0 , ∀x ∈ X1 = X = Rd;

(ii) Q ∈ Rn,n is a symmetric positive definite matrix, for which we denote by Q̃ := diag[q̃1, . . . , q̃n] ∈ Rn,n the full-rank
diagonal matrix of its eigenvalues and by T ∈ Rn,n an invertible matrix such that TQ̃T−1 = Q;

(iii) (a) L is invertible onWk,2(X ) and (b) it has a free-space Green function g ∈ Wk,2(X );

(iv) the operator Lω := L + pγ ◦ Q̃I is invertible36 on F , where pγ := γ−1p̄ :=
[
γ−1

1 p̄, . . . , γ−1
n p̄

]′
and I is the identity

operator, and for every j ∈ Nn the operator Lωj := L+ pγj q̃jI (where pγj := γ−1
j p̄) is invertible onWk,2(X ) and has a

free-space Green function gωj ∈ Wk,2(X ).

Then, for the components of any locally optimal solution fo of this instance of the problem of learning with soft constraints,
one has

∀j ∈ Nn : foj (x) =

m∑

κ=1

n∑

l=1

αωκ,j,lg
ω
l (x− xκ) , (59)

and gω := [gω1 , . . . , g
ω
n ]′ is the unique solution to

∀j ∈ Nn : gωj + q̆j · g ∗ gωj = g, (60)

where q̆j := pγj q̃j . When Q is diagonal, αωκ,j,l = 0 for l 6= j, hence (59) reduces to the form

∀j ∈ Nn : foj (x) =

m∑

κ=1

αωκ,jg
ω
j (x− xκ) . (61)

Proof. By a slight extension of Theorem 2237, following the arguments of Section 4.1, we have

Lfo(x) = −pγ ◦Qfo(x) +

m∑

κ=1

ακδ(x− xκ) ,

35. Although this p(x) is not a probability density as it does not belong to L1(X1), it still provides a way to weigh the soft
constraint uniformly on the whole domain (see also the concept of “improper prior” in Bayesian statistics).

36. Here, again, an overloaded notation is used for L and also for I , since we use the same notation for such operators both
when acting on F and when acting onWk,2(X ).

37. The theorem can be extended straightforwardly to the case - considered here - of a function p(·) that does not belong to
L1(X1).

44



where ακ ∈ Rn, and ακ,j = 1
m (yκ,j − foj (x)). By hypothesis, there exists an invertible matrix T ∈ Rn,n such that

TQ̃T−1 = Q, so Lfo(x) = −pγ ◦ TQ̃T−1fo(x) +
∑m
κ=1 ακδ(x− xκ). Let f̃o(x) := T−1fo(x) and α̃κ = T−1ακ be. We

have LT f̃o(x) = TLf̃o(x). Thus Lf̃o(x) + pγ ◦ Q̃f̃o(x) =
∑m
κ=1 α̃κδ(x − xκ). By introducing the linear differential

operators Lω := L+ pγ ◦ Q̃I and Lωj := L+ pγj q̃jI , we can compactly write

Lω f̃o(x) =

m∑

κ=1

α̃κδ(x− xκ) (62)

and

Lωj f̃
o
j (x) =

m∑

κ=1

α̃κ,jδ(x− xκ).

Then, for every j ∈ Nn, a Green function gωj for the operator Lωj satisfies the equation

Lωj g
ω
j = Lgωj + pγj q̃jg

ω
j = δ. (63)

Now we prove by contradiction the uniqueness of gωj . Let gωj be another Green function such that gωj 6= gωj . Then
L
(
gωj − gωj

)
+ pγj q̃j

(
gωj − gωj

)
= 0. By the hypothesis (iv), we get gωj − gωj = 0 and, therefore, we end up with a

contradiction. So, gωj and also gω are unique. By the hypothesis (iii), L is invertible, so if we apply g∗ to both sides
of equation (63) we get the equation (60). Finally, from equation (62), one obtains

f̃o(x) =

m∑

κ=1

α̃κ ◦ gω(x− xκ)

and, from fo(x) = T f̃o(x),

fo(x) = T

(
m∑

κ=1

α̃κ ◦ gω(x− xκ)

)
,

from which we get (59), for some coefficients αωκ,j,l. In the particular case in which Q is diagonal, T can also be
chosen to be diagonal, hence one obtains (61), for other coefficients αωκ,j . �

Let us consider the linear operator T := g∗ and define λj := −q̆−1
j = (pγj q̃j)

−1. We can promptly see that
equation (60) can be re-written as

(T − λjI) gωj = −λjg .
Hence, for every j ∈ Nn the Green function gωj solves a classical Fredholm equation of the II kind (Kreyszig (1989)).
For this reason, the kernels gωj and gω derived from g and satisfying equation (60) are referred to as the Fredholm
kernels. They will be addressed in Section 5.1.4.

5. Algorithmic framework and applications

The analysis carried out so far has been focused on functional representations of local or global optimal solutions to
constrained learning problems. However, in order to have an experimental impact, the proposed investigation must
be paired with a consequent algorithmic framework for the actual computation of such optimal solutions. In this
section, we show that our approach is very well-suited to exploit constraints deriving from the availability of huge
amounts of unsupervised data. Basically, since supervised data represent just special constraints, the viewpoint
that emerges from our analysis is that of dismissing the difference between supervised and unsupervised data.
While, in principle, the case of hard constraints can be attacked even without unsupervised data, the development
of algorithms for soft constraints does rely on their massive availability. Intuitively, it is their availability that allows
the constructions of penalties to check the satisfaction of each constraint.

The overall analysis carried out in the paper shows that learning from constraints is generally reduced to finding
the constraint reactions. Whereas for both hard and soft constraints we get the same structure for the Euler-Lagrange
equations, there is a strong difference since in the first case we need to determine the Lagrange multipliers. Fig. 5,
which gives an overall view of algorithmic approaches for holonomic, pointwise, and isoperimetric constraints,
shows that the hard (hr) and soft (sf) cases require different treatments. Moreover, whereas hard isoperimetric
and hard pointwise constraints share a structure that is similar to the one obtained for hard holonomic ones, their
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(i) There exists a set of functions λi : X̂ → R, i ∈ Nm, such that, in addition to the above
constraints, fo satisfies on X̂ the Euler-Lagrange equations

γLfo(x) +

m�

i=1

λi(x)1Xi(x) · ∇fφi(x, fo(x)) = 0, (37)

where γL := [γ1L, . . . , γnL]� is a spatial-invariant operator19 and ∇fφi is the gradient w.r.t.
the second vector argument f of the function φi.

(ii) Let γ−1g := [γ−1
1 g, . . . , γ−1

n g]� be. If for all i one has Xi = X = Rd and there is a unique20

free-space Green’s function g of L, then fo has the representation

fo(·) =

m�

i=1

γ−1g(·) �⊗ φi(·, fo(·)) (38)

where g �⊗ φi := g ⊗ ωi and ωi(·) :=↑ φi(·, fo(·)) := −λi(·)1Xi(·)∇fφi(·, fo(·)).

(iii) For the case of m < n unilateral constraints of holonomic type, which define the subset Fφ̌ :=�
f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X : φ̌i(x, f(x)) ≥ 0

�
of the functional space F , (i) and (ii)

still hold if one requires the nonsingularity of (36) to hold when restricting the constraints
defined in x0 to the ones that are active in x0 at local optimality (of course, replacing the φi’s
by the φ̌i’s). Moreover, each Lagrange multiplier function λi(x) is nonpositive and equal to 0
when the correspondent constraint is inactive in x at local optimality.

Proof. (i) Let fo be a constrained local minimizer of the functional E(f) = � f �2
P,γ over

F . Fix x0 ∈ X̂ and a compact subset XC ⊂ X̂ contained in an open ball of sufficiently
small radius, and containing x0, and reorder the components of f in such a way that the
first m(x0) components are ones for which the Jacobian matrix (36) is nonsingular. Due to an
application of Lemma 39 in the appendix, if one fixes arbitrarily the functions ηi ∈ Ck

0 (XC)
for i = m(x0) + 1, m(x0) + 2, . . . , n, then, for every sufficiently small |ε| > 0, the holonomic
constraints are met for a function f whose components fj have the following expressions:

f1 = fo
1 + εη1 + O(ε2) ,

f2 = fo
2 + εη2 + O(ε2) ,

. . .

fm(x0) = fo
m(x0) + εηm(x0) + O(ε2) ,

fm(x0)+1 = fo
m(x0)+1 + εηm(x0)+1 ,

fm(x0)+2 = fo
m(x0)+2 + εηm(x0)+2 ,

. . .

fn = fo
n + εηn ,

19. Here we use again an overloaded notation, as made before for the operator P .
20. The uniqueness of g is discussed in detail in Gnecco et al. (2013).
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supervised learning
quadratic loss

supervised learning
hinge loss

where α(ql)
i,j := p(xi)

yi,j−fo
j (xi)

γj
. This is the classic representer theorem used in kernel ma-

chines. The computation of fo from Theorem 33 shows how to compute the coefficients α(ql)
i,j :

for p(xi) �= 0, they can be obtained by solving 1
p(xi)

�
γjα

(ql)
i,j +

�
κ∈Nm

g(xi − xκ)α
(ql)
κ,j

�
= yi,j ,

which can be compactly re-written as

1

p(xi)
[γjI + G]α

(ql)
·,j = y·,j (76)

where G is the Gram matrix associated with g(·, ·). This is a classic result, which emerged in
a very similar way in (Poggio and Girosi (1989)). Interestingly, we also find that

ω≥
i,j(x) = p(x)(yi,j − fo

j (x))δ(x − xi) = γjα
ql
i,j · δ(x − xi). (77)

This means that ω̂≥
i,j(ξ) ∝ αql

i,je
−2πxiξ, which is just the general form of equation (10) in case

of vectorial functions, which gives foundations on some of the main results Section 2.

9.1.2 HINGE LOSS

For every ∈ Nn and x ∈ X , by Theorem 33 (ii), (iii) the j-th component of the reaction of the
generic constraint i is

ω≥
i,j(x) = (↑ φ≥i (fo(x)))j = −p(x)1Xi(x)∂fj

φ≥i (fo(x))

= −p(x)δ(x − xi)∂fj

�
(1 − yi,j · fo

j (x))+
�

,

where
−∂fj

�
(1 − yi,j · fo

j (x))+
�

is equal to 0 if (1−yi,j ·fo
j (x)) < 0 and to yi,j if (1−yi,j ·fo

j (x)) > 0, whereas if (1−yi,j ·fo
j (x)) =

0 denotes an element (to be found) either of the set [0, 1], when yi,j = 1, or [−1, 0], when
yi,j = −1.

Then we get

fo
j (x) =

1

γj

m�

i=1

g ⊗ ω≥
i,j(x) =

1

γj

m�

i=1

g ⊗
�
−p(x)∂fj

�
(1 − yi,j · fo

j (x))+
�

· δ(x − xi)
�

= − 1

γj

m�

i=1

p(xi)∂fj

�
(1 − yi,j · fo

j (xi))+
�
g(x − xi)

=

m�

i=1

yi,jα
(hl)
i,j g(x − xi), (78)

where, recalling that yi,j ∈ {−1, 1}, one has α(hl)
i,j := −p(xi)

yi,j

γj
∂fj

�
(1 − yi,j · fo

j (x))+

�
. Of

course, we may find points xi defined by the indexes i ∈ S ⊆ Nm for which α
(hl)
i,j = 0,

for at least one index j. When the opposite holds true, because of Theorem 36, we are in
presence of parsimonious support constraints or, simply, support vectors, since in this case any
constraint is characterized by a corresponding vector. Notice that when dealing with soft
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(i) There exists a set of functions λi : X̂ → R, i ∈ Nm, such that, in addition to the above
constraints, fo satisfies on X̂ the Euler-Lagrange equations

γLfo(x) +
m�

i=1

λi(x)1Xi(x) · ∇fφi(x, fo(x)) = 0, (37)

where γL := [γ1L, . . . , γnL]� is a spatial-invariant operator19 and ∇fφi is the gradient w.r.t.
the second vector argument f of the function φi.

(ii) Let γ−1g := [γ−1
1 g, . . . , γ−1

n g]� be. If for all i one has Xi = X = Rd and there is a unique20

free-space Green’s function g of L, then fo has the representation

fo(·) =
m�

i=1

γ−1g(·) �⊗ φi(·, fo(·)) (38)

where g �⊗ φi := g ⊗ ωi and ωi(·) :=↑ φi(·, fo(·)) := −λi(·)1Xi(·)∇fφi(·, fo(·)).

(iii) For the case of m < n unilateral constraints of holonomic type, which define the subset Fφ̌ :=�
f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X : φ̌i(x, f(x)) ≥ 0

�
of the functional space F , (i) and (ii)

still hold if one requires the nonsingularity of (36) to hold when restricting the constraints
defined in x0 to the ones that are active in x0 at local optimality (of course, replacing the φi’s
by the φ̌i’s). Moreover, each Lagrange multiplier function λi(x) is nonpositive and equal to 0
when the correspondent constraint is inactive in x at local optimality.

Proof. (i) Let fo be a constrained local minimizer of the functional E(f) = � f �2
P,γ over

F . Fix x0 ∈ X̂ and a compact subset XC ⊂ X̂ contained in an open ball of sufficiently
small radius, and containing x0, and reorder the components of f in such a way that the
first m(x0) components are ones for which the Jacobian matrix (36) is nonsingular. Due to an
application of Lemma 39 in the appendix, if one fixes arbitrarily the functions ηi ∈ Ck

0 (XC)
for i = m(x0) + 1, m(x0) + 2, . . . , n, then, for every sufficiently small |ε| > 0, the holonomic
constraints are met for a function f whose components fj have the following expressions:

f1 = fo
1 + εη1 + O(ε2) ,

f2 = fo
2 + εη2 + O(ε2) ,

. . .

fm(x0) = fo
m(x0) + εηm(x0) + O(ε2) ,

fm(x0)+1 = fo
m(x0)+1 + εηm(x0)+1 ,

fm(x0)+2 = fo
m(x0)+2 + εηm(x0)+2 ,

. . .

fn = fo
n + εηn ,

19. Here we use again an overloaded notation, as made before for the operator P .
20. The uniqueness of g is discussed in detail in Gnecco et al. (2013).
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representations
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as the set kernel associated to the pair (x,Xi), we end up into the representation

fo
j (x) =

�

κ∈Sd

yκ,jα
(hl)
κ,j g(x − xκ) +

�

i∈So

yi,jα̂
(hl)
i,j β(x,Xi) , (76)

which is limited to the sets of support sets and support vectors.
As already discussed at the end of Section 3.2, another useful approximation can be given when a

set U :=
�
x̃κ ∈ Rd, κ = 1, . . . , �u

�
of unsupervised examples is given, too, and used to estimate p(x)

according to a mixture of kernel functions29 g(x − x̃κ), i.e.,

p(x) =
�

κ∈N�u

πκg(x − x̃κ)

for suitable coefficients πκ’s (to be determined, by using the information coming from the unsupervised
examples). For the sake of simplicity, let us assume that we are given only non-degenerate sets, i.e., open
sets30. Let us assume again the sign-consistency hypothesis. Similar arguments as before provide

fo
j (x) = − 1

γj

�
g(·) ∗

mo�

i=1

�
�u�

κ=1

πκg(· − x̃κ)

�
1Xi(·)

∂

∂fj

�
(1 − yi,jf

o
j (x̌i))+

�
�

x

=

�
g(·) ∗

mo�

i=1

α̌
(hl)
i,j yi,j

�
�u�

κ=1

πκg(· − x̃κ)

�
1Xi(·)

�

x

=
�

i∈Nmo

α̌
(hl)
i,j

�

κ∈N�u

πκyi,j · [g(·) ∗ (g(· − x̃κ)1Xi(·))]x

=
�

(i,κ)∈Nmo×N�u

πκα̌
(hl)
i,j yi,jβ(x; x̃κ,Xi) =

�

(i,κ)∈Šo×N�u

α̌
(hl)
i,j,κyi,jβ(x; x̃κ,Xi) , (77)

where α̌(hl)
i,j,κ := πκα̌

(hl)
i,j , x̌i denotes any point in Xi,

α̌
(hl)
i,j := −yi,j

γj

∂

∂fj

�
(1 − yi,jf

o
j (x̌i))+

�
,

β(x; x̃κ,Xi) :=

�

X
g(x − ζ)g(ζ − x̃κ)1Xi(ζ)dζ ,

and the last equality in equation (77) follows by restricting the summation to the set Šo ⊆ Nmo of indexes
i for which α̌

(hl)
i,j > 0 for at least one index j (i.e., the set of indexes i associated to the support sets for

this problem). Moreover, by the sign-consistency assumption, one has α̌(hl)
i,j ∈ {0, 1

γj
}. Of course, once

the coefficients α̌(hl)
i,j,κ have been discovered assessing to the (unsupervised) data and to the prescribed

supervisions on the sets Xi, the sign-consistency assumption has to be checked on the solution fo obtained
in such a way.

Again, we have obtained for fo a representation that depends on a finite number of parameters. How-
ever, notice that whereas the representations (71) and (75) are kernel expansions in which the kernel is the
Green’s function of the differential operator L, in the case considered in this section the functions β(x;Xi)

29. For the sake of notational simplicity, we suppose that the kernel in this expansion coincides with the Green’s function g of
the differential operator L.

30. The case in which also supervised points are given can be treated as in the previous case. Notice that, since the constraints
are of the same kind, in this context it is tacitly assumed that their beliefs are the same.
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Figure 5: From representations to algorithms. The green blocks represent methods to reduce constrained
learning to finite dimension and re-use the mathematical and algorithmic apparatus of classical
kernel machines. We can either see plain kernels and constraint-induced kernels. An alterna-
tive possibility, represented by the blue block, is to use memory-based approaches along with
fixed-point algorithms. While for isoperimetric and pointwise constraints the Lagrange multi-
pliers are real numbers (non-positive for unilateral constraints), for holonomic constraints the
Lagrange multipliers turn out to be functions (more generally, distributions). Finally, in the
case of soft fulfillment, the (possibly generalized) probability density plays the role of the (sign-
flipped) Lagrange multipliers used in the hard case.
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Lagrange multipliers are constants instead of functions or distributions. Therefore, compared to the representation
provided in Theorem (18) (ii), the ones given in Theorems 20 (ii) and 21 (ii) still give rise to non-linear forms of
the Fredholm equation of the II kind, but the constraint reactions are easier to compute. The last row of blocks
in Fig. 5 indicates that the infinite-dimensional functional representation of the optimal solution collapses to finite
dimension in a number of relevant cases, which are discussed in detail in Section 5.1. While it is always possible
to come up with the approximation of sampling the constraints (thus, obtaining pointwise constraints), the finite-
dimensional representations obtained in such cases and presented in Sections 3 and 4 (see also the blocks associated
with the pointwise constraints in Fig. 5) make it possible to determine the optimal solution, thanks to proper kernels
induced by the constraints. A similar remark holds for isoperimetric constraints (see the last block in Fig. 5). Finally,
Fig. 5 shows also that we might go beyond algorithmic schemes focusing on reduction to classical kernel machines
and face directly the posed learning problem in the original ambient space (see Section 5.2).

5.1 Reduction to kernel machines

A straightforward way to apply the proposed approach consists in exploring the reduction to classical kernel ma-
chines. Under certain assumptions, the search for an optimal solution to the problem of learning from hard or
soft constraints can be restricted to finite-dimensional spaces. We call this phenomenon the collapse of the dimen-
sionality. The next proposition investigates cases for which it occurs. For simplicity of exposition, it refers to a
globally-optimal solution, although some results can be extended to locally-optimal ones.

Proposition 29 Suppose that a globally optimal solution f? to a problem of learning from hard or soft constraints takes on
the structure

f? =

m∑

i=1

γ−1g ∗ ωi , (64)

where each j-th component ωi,j of ωi (j = 1, . . . , n) is of the form

ωi,j(·) = αi,jβi,j(·) (65)

for a given function βi,j : Rd → R and the coefficients αi,j are to be determined. Then the following hold.

(i) ‖ f? ‖2P,γ depends on the αi,j ’s only, since it has the expression

‖ f? ‖2P,γ=

n∑

j1,j2=1

m∑

i1,i2=1

γ−1
j1
γ−1
j2
αi1,j1αi2,j2〈P (g ∗ βi1,j1), P (g ∗ βi2,j2)〉 . (66)

(ii) For the case of a problem with hard constraints, the optimal coefficients α?i,j ’s are determined by minimizing (66) while
imposing the hard satisfaction of the constraints.

(iii) For the case of a problem with soft constraints, the optimal coefficients α?i,j ’s are determined by substituting the expres-
sions (64) and (65) into the penalty term µC(·), then minimizing the sum of (66) and the resulting penalty term.

Proof. The proof of (66) is immediate. Items (ii) and (iii) follow directly from the structural properties of f? and ωi
expressed by (64) and (65), respectively, and the optimality of f?. �

It is also worth remarking that, when the collapse of the dimensionality occurs, standard finite-dimensional
convex optimization algorithms (Boyd and Vandenberghe (2004)) can be used to find the reactions of the constraints
(hence, to determine the support constraints) for the case of convex instances of the constrained learning problems.

5.1.1 PLAIN KERNELS

In the following discussion, we refer to soft pointwise constraints. Whereas Theorem 22 gives a general represen-
tation of an optimal solution, in the special case of supervised learning, equation (48) for the quadratic loss and its
analogous (51) for the hinge loss provide directly the structural representation of the optimal body of the agent,
which turns out to be defined by a finite number of parameters. More precisely, the representation of the optimal
solution given by Theorem 22 collapses to the finite space of the coefficients α(ql)

i,j for the quadratic loss and α(hl)
i,j for
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the hinge loss. A crucial consequence is that we are now ready to convert the infinite-dimensional problem attacked
by Theorem 22 into finite dimension, simply by plugging equation (48) for the quadratic loss (respectively, equa-
tion (51) for the hinge loss) into Esoft(·) and then by searching for the optimal parameters. In the case of quadratic
loss with equal probabilities, this plugging leads directly to solving the linear system of equations (50), but with
other loss functions we end up with non-linear equations. More generally, from φ≥i (f(xi)) =

∫
X φ
≥
i (f(x))δ(x−xi)dx

we get the identity Esoft
C (f) = 1

2 ‖ f ‖2P,γ +
∑m
i=1 φ

≥
i (f(xi)) , which can be combined with the representation of

the optimal solution to obtain its coefficients. For instance, in the case of the hinge loss, any function f that satisfies
the structural property for an optimal solution determined by equation (51) provides the following expression for
‖ f ‖2P,γ :

‖ f ‖2P,γ =

n∑

j=1

γj〈P
m∑

i=1

yi,jα
(hl)
i,j · g(x− xi), P

m∑

i=1

yi,jα
(hl)
i,j · g(x− xi)〉

=

n∑

j=1

γj〈
m∑

i=1

yi,jα
(hl)
i,j · g(x− xi), (P ?)′P

m∑

i=1

yi,jα
(hl)
i,j · g(x− xi)〉

=

n∑

j=1

γj〈
m∑

i=1

yi,jα
(hl)
i,j · g(x− xi), L

m∑

i=1

yi,jα
(hl)
i,j · g(x− xi)〉

=

n∑

j=1

γj〈
m∑

h=1

yh,jα
(hl)
h,j · g(x− xh),

m∑

κ=1

yκ,jα
(hl)
κ,j · Lg(x− xκ)〉

=

n∑

j=1

γj〈
m∑

h=1

yh,jα
(hl)
h,j · g(x− xh),

m∑

κ=1

yκ,jα
(hl)
κ,j · δ(x− xκ)〉

=

n∑

j=1

γj

m∑

h=1

m∑

κ=1

g(xκ − xh)yh,jα
(hl)
h,j yκ,jα

(hl)
κ,j

=

n∑

j=1

γj(y·,j ◦ α(hl)
·,j )′ G (y·,j ◦ α(hl)

·,j ),

where G is the Gram matrix associated with the input data and g, and ◦ denotes the Hadamard product. Hence, we
get

Esoft
C (f) =

1

2

n∑

j=1

γj(y·,j ◦ α(hl)
·,j )′G(y·,j ◦ α(hl)

·,j ) +

m∑

i=1

φ≥i (f(xi)) .

Finally, when considering that the penalty term
∑m
i=1 φ

≥
i (f(xi)) depends only on the vector of parameters α(hl), we

end up with the optimization of an objective function of the form Êsoft(α(hl)) in the finite-dimensional space of the
parameters α(hl). This is a classical scheme used in kernel machines and the perfect match arises when the Green
function g of L is the kernel of a RKHS (Gnecco et al. (2013b)). As already mentioned, we call g plain kernel.

In both cases of quadratic and hinge losses, it is clear that there can be a non-zero reaction of a soft constraint
whenever the associated hard constraint is not satisfied. In the case of quadratic loss, it happens iff yi,j 6= foj (xi)

for at least one index j. This corresponds to the well-known fact that usually all the examples are support vectors38

(apart from the case of an interpolating solution). On the opposite, when the hinge loss is used, the constraint
reactions associated with some significantly large number of examples can be zero; this corresponds to the presence
of support (non-support) constraints, of which the classical support (non-support, respectively) vectors are special
cases.

5.1.2 SAMPLING-INDUCED KERNELS

There is a straightforward approach to collapse the dimensionality for the general case of holonomic constraints.
The idea consists in sampling the constraints over a set of (unsupervised) examples U :=

{
x̃κ ∈ Rd, κ = 1, . . . , `u

}
,

38. Of course, the set S defined in Section 4.1.2 for the hinge loss can be also defined for the quadratic loss considered in Section
4.1.1.
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so as to replace the original problem based on holonomic constraints into one based on pointwise constraints. When
the constraints are sampled and dealt with in a soft way, we can promptly see that we end up exactly with the same
scheme of dimensionality reduction discussed for supervised learning in Section 5.1.1, the only difference being
that the accumulation of the loss is now over U instead than on the set of supervised pairs. As the corresponding
plain kernel is obtained via a sampling process, we call it sampling-induced kernel. The consequent reduction nicely
matches the analysis carried out in (Diligenti et al. (2012)), where the parsimony principle is imposed using the
classical norm in a RKHS, expressed through its kernel. As remarked in Section 1.5, this approach is exploited by
the software simulator available at

https://sites.google.com/site/semanticbasedregularization/home/software
which considers pointwise soft constraints and the classical plain kernel. Again, the plain kernel corresponds to
the Green function of the operator L considered in this paper, and the learning problem is now framed into a
finite-dimensional space of dimension n · |U|.

Interestingly, while the collapse of dimensionality with the correspondent reduction to the plain kernel comes
out from sampling of the constraints, in general this is no longer true if soft holonomic constraints are used, even
when one exploits the approximation of the probability density that leads to equation (42). This means that the
collapse of dimensionality based on Proposition 29 is not always possible, since the reaction of the constraints
might not be reducible to the structure expressed by equation (65). However, such a reduction is still possible when
the approximation of the probability density is combined with soft pointwise constraints.

A final remark about sampling-induced kernels concerns the case in which the dimension of the input domain
is high. In such a case, a large number of unsupervised examples may be needed to approximate the probability
density satisfactorily. A similar problem may arise when the examples are generated from a probability density
concentrated on an unknown manifold (this typically occurs, e.g., in machine-learning problems involving images).
In such a case, the proposed approach can be complemented with tools and methods from manifold regularization
(see (Belkin et al. (2006)) and (Melacci and Belkin (2011))).

5.1.3 CONSTRAINT-INDUCED KERNELS

The collapse of dimensionality is not limited to pointwise constraints derived from supervised learning and con-
straint sampling. While in the discussion presented in Section 5.1.2 we have restricted the attention to holonomic
constraints, related results can be derived for isoperimetric constraints. We also note that for the case of linear con-
straints discussed in Section 4.3 there exists a kernel-based representation theorem (Theorem 23) that is still based
on the plain kernel. Hence, the analysis carried out in Sections 5.1.1 and 5.1.2 can be re-used so as to end-up into
a finite-dimensional optimization problem. A finite-dimensional representation of the optimal solution is obtained
also in Section 4.2 for the case of learning with propositional descriptions. Interestingly, such a representation is
not expressed in terms of the plain kernel g, but via constraint-induced kernels. Moreover, the finite-dimensional
representational structure that arises from the case studies presented in Section 4.2 can be plugged into Lf?, ‖f?‖2P,γ
and the corresponding loss terms, exactly as shown in Section 5.1.1. So, also in this case learning with constraints
is framed as a finite-dimensional optimization problem. The details of this computation, along with experimen-
tal analysis, can be found in (Melacci and Gori (2013)). In the next section we show how the same idea can be
used for the case of quadratic constraints addressed in Section 4.4, which are associated with a particular class of
constraint-induced kernels, i.e., the so-called the Fredholm kernels.

5.1.4 FREDHOLM KERNELS

In order to derive algorithms for the problem of learning under soft quadratic constraints and supervised examples
(see Section 4.4), we need algorithms to compute gω (see equation (60)) and 〈Lfo, fo〉when fo is expanded according
to (59). The following proposition indicates a method to compute gω . It is based on a classical iteration in normed
spaces which, in this case, yields the Neumann series.

Proposition 30 Let the hypotheses of Proposition 28 be satisfied, T := g∗, and assume that T : Wk,2(Rd) → Wk,2(Rd).
Consider the sequence {u(κ)}∞κ=0 defined as u(0) := g and u(κ+1) := T (u(κ)), and assume that ∀j ∈ Nn , |q̆j | < 1/ ‖ T ‖.
Then, ∀j ∈ Nn, one has

gωj =

∞∑

κ=0

(−1)κq̆κj · u(κ), (67)

where the series converges inWk,2(Rd).
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Proof. We have

‖ u(κ+1) ‖= ‖ T (u(κ)) ‖
‖ u(κ) ‖ ‖ u(κ) ‖≤ sup

u∈Wk,2(Rd),u 6=0

(‖ T (u) ‖
‖ u ‖

)
‖ u(κ) ‖=‖ T ‖ · ‖ u(κ) ‖ .

Since by assumption, ∀j ∈ Nn one has |q̆j | < 1/ ‖ T ‖, there exists 0 < α < 1 such that, ∀j ∈ Nn teh inequalities
‖ T ‖ ·|q̆j | < α < 1 hold. For every κ ∈ N, let Mκ :=‖ (−1)κq̆κj · u(κ) ‖. Then

Mκ+1 = |q̆j |κ+1· ‖ u(κ+1) ‖≤ |q̆j |κ+1· ‖ T ‖ · ‖ u(κ) ‖≤‖ T ‖ ·|q̆j |
(
|q̆j |κ ‖ u(κ) ‖

)
< αMκ.

As
∑∞
κ=0Mκ < M0/(1 − α), by the Weierstrass M-test and the completeness of Wk,2(Rd), we conclude that the

series (67) converges inWk,2(Rd).
Finally, we can promptly check that the right-hand side of (67) satisfies equation (60) (hence, it coincides with

gωj , due to the uniqueness of the solution of (60)). Indeed, one has

−q̆jg ∗
( ∞∑

κ=0

(−1)κq̆κj u
(κ)

)
=

( ∞∑

κ=1

(−1)κq̆κj u
(κ)

)
=

( ∞∑

κ=0

(−1)κq̆κj u
(κ)

)
− g .
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Figure 6: The Fredholm kernels corresponding to the Gaussian plain kernel g (with d = 1, n = 1, and σ =
1) for values of q̆j ranging from −4 to 6. The plots have been obtained by using the Neumann
series (67) and have been normalized to better assess the dependencies on q̆j . Although q̆j has
been defined in Section 4.4 as a non-negative real number, the series (67) can be formally defined
also for negative values of q̆j , hence also such values are reported in the figure.

Notice that the condition ∀j ∈ Nn , |q̆j | < 1/ ‖ T ‖ in Proposition 30 is merely sufficient for the convergence of the
series.

To illustrate the result stated in Proposition 30, we consider the operator T obtained with the Gaussian kernel,
which corresponds to the infinite-order linear differential operator L :=

∑∞
i=0(−1)i σ

2i

i!2i∇2i. Although our theory
has been developed only for the finite-order case, the operator above can be still dealt with as outlined in Section
3.6. For the case d = 1, the eigenvalues and eigenfunctions of the operator T corresponding to a Gaussian kernel
are given by (Gradshteyn and Ryzhik (1980), p. 98)

ρκ,T =

√
2a

A
Bκ ,

ψκ,T (x) = exp(−(c− a)x2) ·Hκ(
√

2c · x) ,
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respectively, where κ = 0, 1 . . . , a−1 = 4σ2, c =
√
a2 + a, A = 1/2 +a+ c, B = 1/(2A), and Hκ denotes the Hermite

polynomial of order κ. The set of the eigenvalues is countable and its unique accumulation point is 0 (Kreyszig
(1989), Theorem 8.3-1, pp. 421-422). Moreover,

‖ T ‖= sup
κ=0,1,...

ρκ,T =

√
4a

1 + 2a+ 2
√
a2 + a

.

In the case shown in Fig. 6 (d = 1, n = 1, and σ = 1), one has ‖ T ‖= 2/(
√

3 + 2
√

3), which guarantees the
convergence of the Neumann series (67) for q̆j < (

√
3 + 2

√
3)/2 ' 1.271, whereas the simulation of the series (67)

indicates that the convergence holds also for larger values of q̆j . Notice that, in general, the application of the
operator T is not feasible at high dimension. However, for most common plain kernels (i.e., Green functions of
the operators L), we need not to use expensive numerical algorithms for the computation of the convolution. For
instance, in the case of Gaussian plain kernels, the following proposition turns out to be useful.

Proposition 31 Let d = 1 (i.e., X = R), g1(x) = c1e
− (x−µ1)2

2σ21 , g2(x) = c2e
− (x−µ2)2

2σ22 and consider their convolution

g1∗2(x) = c1∗2e
− (x−µ1∗2)2

2σ1∗2 and their product g1×2(x) = c1×2e
− (x−µ1×2)2

2σ1×2 . Then

i. µ1∗2 = µ1 + µ2, σ
2
1∗2 = σ2

1 + σ2
2 , c1∗2 =

√
2π

c1c2√
(σ2

1)−1 + (σ2
2)−1

,

ii. µ1×2 =
(σ2

1)−1µ1 + (σ2
2)−1µ2

(σ2
1)−1 + (σ2

2)−1
, σ2

1×2 =
1

(σ2
1)−1 + (σ2

2)−1
, c1×2 = c1c2e

− (µ2−µ1)2

2(σ21+σ22) .

Proof. See (Bromiley (2003)). �

Proposition 31 can be extended to the case d > 1. It allows one to avoid the numerical computation of the
convolution in the Neumann series and makes the computations feasible in high-dimensional spaces for the case
of the Gaussian kernel. The example clearly indicates that gω can be significantly different from the corresponding
plain kernel g. In this case, as shown in Fig. 6, the values of q̆j dramatically affect the structure of the kernel.
Interestingly, gωj is associated with the operator

Lωj = q̆jI +

∞∑

κ=0

(−1)κ
σ2κ

κ!2κ
∇2κ = (1 + q̆j)I +

∞∑

κ=1

(−1)κ
σ2κ

κ!2κ
∇2κ,

which differs from the above-considered infinite-order linear differential operator L :=
∑∞
i=0(−1)i σ

2i

i!2i∇2i only in
the first term.

Now, recalling the form of an optimal solution for the case described by Proposition 28 when the matrix Q is
diagonal, we show how to convert the infinite-dimensional optimization problem into a finite-dimensional one. We
follow the scheme indicated in Section 5.1.1. From gωj + q̆jg ∗ gωj = g we get Lgωj = −q̆jgωj + δ. Then, for any f that
satisfies the structural property for an optimal solution determined by equation (61), we get
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‖ f ‖2P,γ =

n∑

j=1

γj〈Pfj , Pfj〉 =

n∑

j=1

γj〈fj , Lfj〉

=

n∑

j=1

γj〈
m∑

i=1

αωi,jg
ω
j (· − xi), L

m∑

κ=1

αωκ,jg
ω
j (· − xκ)〉

=

n∑

j=1

m∑

i=1

m∑

κ=1

γjα
ω
i,jα

ω
κ,j〈gωj (· − xi), Lgωj (· − xκ)〉

=

n∑

j=1

m∑

i=1

m∑

κ=1

γjα
ω
i,jα

ω
κ,j〈gωj (· − xi),−q̆jgωj (· − xκ) + δ(· − xκ)〉

= −
n∑

j=1

m∑

i=1

m∑

κ=1

γjα
ω
i,jα

ω
κ,j q̆j〈gωj (· − xi), gωj (· − xκ)〉

+

n∑

j=1

m∑

i=1

m∑

κ=1

γjα
ω
i,jα

ω
κ,jg

ω
j (xκ − xi). (68)

To finalize the reduction to finite dimension, we need to expressGji,κ := 〈gωj (·−xi), gωj (·−xκ)〉 . By the Neumann
series, we get

Gji,κ = 〈gωj (· − xi), gωj (· − xκ)〉 = 〈
∞∑

h=0

(−1)hq̆hj u
h,

∞∑

κ=0

(−1)κq̆κj u
κ〉

=

∞∑

h=0

∞∑

κ=0

(−1)h+κq̆h+κ
j 〈uh, uκ〉.

Whereas, in general, this is hard to compute at high dimension, there is a dramatic simplification with some
plain kernels g. Again, we consider here the case of the Gaussian, for simplicity for d = 1. Then, from Proposition 31
we can directly express the product uhuκ needed to compute 〈uh, uκ〉 by a Gaussian term with mean 0, variance
σu(h, κ) = σ2 · hκ/(h+ κ), and constant multiplicative factor 1

(
√

2πσ)h+κ−2
√
hκ

. Then, we get

Gji,κ =

∞∑

h=0

∞∑

κ=0

(−1)h+κq̆h+κ
j 〈uh, uκ〉

=

∞∑

h=0

∞∑

κ=0

(−1)h+κq̆h+κ
j

∫

Rd

e
− x2

2σ2u(h,κ)

(
√

2πσ)h+κ−2
√
hκ
dx

=

∞∑

h=0

∞∑

κ=0

(−1)h+κq̆h+κ
j

√
2πσu(h, κ)

(
√

2πσ)h+κ−2
√
hκ

∫

Rd

e
− x2

2σ2u(h,κ)

√
2πσu(h, κ)

dx

= (2π)
3
2σ4

∞∑

h=0

∞∑

κ=0

(−1)h+κq̆h+κ
j

√
hκ

(h+ κ)(
√

2πσ)h+κ

= (2π)
3
2σ4

∞∑

h=0

∞∑

κ=0

(−1)h+κ

√
hκ

h+ κ

(
q̆j√
2πσ

)h+κ

.
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Now, we can promptly see that, if there exists β ∈ (0, 1) such that, ∀j ∈ Nn : |q̆j | < β
√

2πσ, then the series
above converges. Indeed,

(2π)
3
2σ4

∣∣∣∣∣
∞∑

h=0

∞∑

κ=0

(−1)h+κ

√
hκ

h+ κ

(
q̆j√
2πσ

)h+κ
∣∣∣∣∣ ≤ (2π)

3
2σ4

∣∣∣∣∣
∞∑

h=0

∞∑

κ=0

(−1)h+κ

(
q̆j√
2πσ

)h+κ
∣∣∣∣∣

= (2π)
3
2σ4

∣∣∣∣∣
∞∑

h=0

(−1)h
(

q̆j√
2πσ

)h ∞∑

κ=0

(−1)κ
(

q̆j√
2πσ

)κ∣∣∣∣∣ ≤ (2π)
3
2σ4 1

(1− β)2
.

Finally, from (68) we can compute ‖ f ‖2P,γ since Gji,κ, likewise gωj , is the limit of a convergent series. Then, if we
plug equation (61) into the overall penalty loss we end up with a finite-dimensional optimization problem, which
fits the classical approach used for kernel machines.
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Figure 7: The structure of a support constraint machine. Depending on hard or soft constraints, the re-
action of each constraint is computed by using the Lagrange multiplier or the (possibly gener-
alized) probability density, which is often expressed in terms of the unsupervised data U . The
constraint reactions are then used to express the optimal solution f? to the constrained learning
problem. Finally, for any point x, the machine determines f?(x) and checks the constraints.

5.2 Fixed-point algorithms

The constraint-induced kernels allow us to better represent the optimal solutions to certain problems of learning
from constraints and, in some cases, the methodology perfectly fits the mathematical and algorithmic framework of
kernel machines. For example, in case of simple geometry, constraint-induced kernels can be determined directly
from the associated plain kernel. This is the case, e.g., of box kernels (see Fig. 2). For soft quadratic constraints,
the computation of the constraint-induced kernel can be based on the Neumann-series recurrent scheme. In the
general case, when looking at the representer theorems obtained for both hard and soft constraints, one can see that
the computation of an optimal solution requires the associated constraint reaction ω, which depends on the optimal
solution itself. This circular dependence is depicted in Fig. 7 (where we refer, without loss of generality, to a global
optimal solution f?). Indeed we have to expect its emergence, which seems to be a sign of the inherent complexity
of the problem at hand. For example, the representation given by Theorem 18 (ii) (see equation (20)) is a non-linear
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version of the classical functional equation known as the Fredholm equation of the II kind39. The fact that classical
supervised learning, learning from propositional descriptions, and other constraints yield to finite-dimensional
optimization problems based on constraint-induced kernels that can be directly or efficiently determined by the
plain kernel, reveals a specific property of those simple constraints. However, in general, the Lagrange multipliers
that are not merely constants but functions or distributions: this makes the recurrent computation hard.

Based on these premises, whereas the reduction to classical kernel machines is a desirable link with existing
approaches to machine learning, the given framework of Support Constraint Machines (SCMs) seems to be well-
suited also for a truly new way of computing an optimal solution to the learning problem, which is not based on the
discovering of the weights of a certain kernel expansion. More precisely, in the case of soft constraints we propose
to attack directly the functional equations that have to be satisfied by an optimal solution by discovering a fixed-
point of the corresponding operator. Indeed, in the case of soft holonomic constraints an optimal solution fo can be
written as fo = V(fo), where

V : F → F : f → −
m∑

i=1

γ−1g(·) ∗ p(·)1Xi∇fφ≥i (·, ·).

Related operators can be introduced for other types of soft constraints. A possible computational scheme to find fo

is the classical iteration u(κ+1) = V(u(κ)), initialized by a given u(0) ∈ F .
An in-depth analysis of algorithms based on this scheme is outside the scope of this paper, but the following

example of soft quadratic constraints, already addressed in Section 4.4 with the purpose of reduction to kernel
machines, clearly shows the power of the direct computation of a fixed-point of V . For instance, it follows from the
proof of Proposition 28 that the optimal solution fo is a fixed point of the operator V defined by

V(u)j := −pγj
n∑

h=1

g ∗Qj,huh +
1

m

m∑

κ=1

yi,j − uj(xi)
γj

g(x− xi) .

Then, in order to find fo, one may apply, for such an operator, the iterative scheme u(κ+1) = V(u(κ)) with
the initialization u

(0)
j :=

∑m
i=1 α

(0)
i,j g(x − xi) for some coefficients α(0)

i,j . We can easily see that we can export to
this case the proof technique applied to derive Proposition 30, and conclude that such an iterative scheme leads
to the (unique) fixed point of V , provided that V is a contraction operator. Moreover, the rate of convergence is
linear, as it typically happens for iterative schemes based on contraction operators. As already noticed, the possible
intractability of applying the operator T := g∗ to a generic function can be faced by appropriate plain kernels, like
the Gaussian, for which one obtains the structural properties of convolution stated by Proposition 31. In that case,
it easy to see that, if the iterative scheme above is initialized with Gaussian functions u(0)

j , then, at each iteration κ,

the functions u(κ)
j have Gaussian expansions, centered at {xi, i = 1, . . . ,m}.

5.3 Applications

The theory of Support Constraint Machines (SCMs) presented in this paper provides foundations for applications to,
amongst others, text categorization, face recognition, computer vision, medical diagnosis, and bioinformatics (see
Table 4, second column). In the last few years, different types of constraints have been the subject of investigation,
which motivates the overall view of learning from constraints given in this paper. Most emphasis has been given
to holonomic constraints and propositional descriptions, but the applications based on iso-perimetric constraints
(see Table 2) are clearly of interest. The applicative studies with holonomic constraints have primarily made use
of the reduction to kernel-machines (Section 5.1), which arises when sampling the constraints on unsupervised
data. Relevant applications have been published using propositional descriptions, which have been analyzed in
Section 4.2. In this case, the corresponding representation of the learning tasks, given in (52), indicates that one
goes beyond solutions based on plain kernels, thus showing the relevance of the case studies treated in Section 4.2.
Only the case of box kernels has been concretely applied, but the remaining analysis of the section indicates other
important contexts in which the proposed theory dictates the adoption of proper kernels.

39. There are a number of theoretical and numerical studies on this equation (see e.g., (Lishan (1996); Ivaz and Mostahkam
(2006))), and particular attention has been devoted to the linear case (Kreyszig (1989)).
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Learning from constraints: applications

application
context

type of constraints
results without / with
additional constraints on
the learning environment

source instance of

i. Text
classification

First-Order Logic
(Class-relationships)

F1 Score
0.569 / 0.672

Frandina et al. (2012)
Sec. 3.2
Sec. 4.1.2
Sec. 5.1.2

ii. Text
classification

Coherence over the
data manifold

Error Rate
20.04% / 9.34%

Melacci and Belkin (2011)
Sec. 3.2
Sec. 4.1.1
Sec. 5.1.2

iii.
Tagging
bibliographical
entries

First-Order Logic
(Semantic
relationships
among tags)

F1 Score
0.140 / 0.155

Diligenti et al. (2012)
Sec. 3.2
Sec. 4.1.2
Sec. 5.1.2

iv. Image Tagging First-Order Logic
descriptions − Saccà et al. (2011b)

Sec. 3.2
Sec. 4.1.2
Sec. 4.2

v.
Handwritten
digit
recognition

Propositional
descriptions
(Rules defined by
observing digits)

Accuracy
89.78% / 92.55%

Melacci and Gori (2013) Sec. 4.1.2
Sec. 4.2

vi. Computer
vision

Coherence on
four views
of the same object

Accuracy
92.53% / 94.67%

Melacci et al. (2009)
Sec. 3.2
Sec. 4.1.1
Sec. 5.1.2

vii.
Face
recognition

Probabilistic
constraints

Error Rate
41.36% / 39.32%

Melacci and Gori (2011)
Sec. 3.2
Sec. 4.1.1
Sec. 5.1.2

viii. Computer
vision

Mutual Information
penalty − Gori et al. (2012)

Sec. 3.2
Sec. 4.1.1
Sec. 5.1.2

ix.
Breast cancer
prognosis

Propositional
descriptions
(Rules provided
by a physician)

Accuracy
82.58% / 90.97%

Melacci and Gori (2013) Sec. 4.1.2
Sec. 4.2

x. Bioinformatics First-Order Logic
constraints

AUC
p: 0.808 / 0.820
d: 0.605 / 0.937
r: 0.591 / 0.676

Saccà et al. (2014)
Sec. 3.2
Sec. 4.1.1
Sec. 5.1.2

Table 4: Examples of applications that are instances of the theory proposed in this paper. Most of the
experimental results are related to soft pointwise constraints. The cases i,ii,iii,iv,vi,vii,viii,x can
be regarded as instances of soft holonomic constraints. Such constraints are then sampled onto
a set of unsupervised points, obtaining soft pointwise constraints. The optimal solutions to the
corresponding learning problems are described by the sampling-induced kernels presented in Sec-
tion 5.1.2. Differently, v and ix are instances of learning from propositional descriptions, which is
described in Section 4.2. The experimental results provide clear evidence on the beneficial ef-
fect of adding constraints to supervised examples. In the table, we use “−” to indicate that no
comparison was carried out with the case of supervised learning with plain kernels.
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The adoption of the methodology investigated in this paper requires one to go beyond learning from examples
only, by modelling learning tasks in term of constraints. This guideline has already been followed in a number of
remarkable different applications. Some of them are summarized in Table 4.

In i (Frandina et al. (2012)), a large set of scientific papers is classified by exploiting relationships between the
classes, which are expressed in terms of First-Order Logic (FOL) formulas. They are translated into real-valued
constraints by means of T-norms (Klement et al. (2000)), so as to gain a uniform real-valued representation of the
constraints, which is the basic representational assumption of this paper. A subset of the CORA dataset40 is then
used to evaluate the impact of those additional constraints. The application faced in ii (Melacci and Belkin (2011))
exploits the popular manifold assumption applied to classification. It refers to a text classification task on news-
groups data41 (see Melacci and Belkin (2011) for other examples and experiments). A constraint on the classifier
output between each pair of data points is defined, which is weighted by a measure related to their distance. This
constraint enforces smooth changes on the classifier output over the (estimated) manifold of the data distribution.
Interestingly, this category of constraints can be simply regarded as an instance of the learning framework proposed
in this paper. In iii (Diligenti et al. (2012)), a set of bibliographical entries (from the Bibtex dataset42) is paired with
semantic relationships between their categories, for the purpose of tagging. The approach followed therein is sim-
ilar to the one adopted in i but, instead of a pre-coordinate classification scheme, the intelligent agent deals with a
post-coordinate scheme (tagging), which allows the users to attach keywords to documents without the constraint
of placing them into a unique location. In iv (Saccà et al. (2011b)), related studies are carried out, where prior logic
knowledge and graph regularization are integrated for an interesting application to image tagging. In v (Melacci
and Gori (2013)), a classical pattern recognition problem is attacked using propositional descriptions. It is shown
that handwritten digits (USPS dataset (Hull (1994))) are better discriminated when adding constraints on those
digit portions that are well-known to be critical in the recognition process, thus dramatically reducing the need for
large databases of supervised point-wise examples. The problem of object recognition is the topic of the experi-
ments carried out in vi (Melacci et al. (2009)). One is given therein 100 distinct objects, and considers four classifiers
operating on multiple views of the same object, which are constrained to produce a coherent decision (COIL-100
dataset, Columbia University43). The experiments cited in vii (Melacci and Gori (2011)) are based on constraining
295 classifiers to fulfill a probabilistic normalization, which is expressed by a linear constraint. This yields remark-
able improvements in the face recognition benchmark XM2VTS database, University of Surrey44. In viii (Gori et al.
(2012)), an extraction of computer vision features is proposed, which is based on the maximization of the mutual
information between the video stream and a set of codes. The solution can be regarded as learning under a soft
constraint related to mutual information. In ix (Melacci and Gori (2013)), the task consists in predicting whether
a patient will remain cancer-free for at least 24 months, given the results of some medical tests (Wisconsin Breast
Cancer Prognosis (Bache and Lichman (2013))). Two basic rules provided by a physician are considered, in the form
of propositional descriptions, and two constraints on open sets are defined and exploited to improve the prediction
accuracy. In x (Saccà et al. (2014)), it is shown that the adoption of the theory of learning from FOL constraints,
properly translated into real-valued constraints as mentioned in i and iii, leads to a substantial improvement of
performance over competitors in several experimental settings, for problems of protein-protein interactions. In par-
ticular, in the fourth column of row x, the improvement with respect to learning from examples with plain kernels
is shown for three different levels of interactions (p: protein, d: domain, r: residuals).

Overall, inspection of the fourth column of Table 4 clearly shows the remarkable improvements of performances
that have been reached by involving constraints. While these applications indicate that the interest in the field
covered in this paper is growing, as discussed in Sections 5.1 and 5.2 there is also room for a significant follow-up
of other ideas, along with their formalizations and corresponding algorithmic frameworks, possibly inspired by the
present work.

6. Conclusions and open issues

In this paper, we have developed the mathematical foundations of a learning paradigm that is driven by a tight link
of the parsimony principle with constraint-based representations of the environment45. These two ingredients lead

40. http://people.cs.umass.edu/˜mccallum/data.html
41. http://qwone.com/˜jason/20Newsgroups/
42. http://mulan.sourceforge.net/datasets.html
43. http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
44. http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
45. “Simplicity is the ultimate sophistication,” Leonardo da Vinci.

56

http://people.cs.umass.edu/~mccallum/data.html
http://qwone.com/~jason/20Newsgroups/
http://mulan.sourceforge.net/datasets.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/


to a variational framework that very much resembles the one used in other fields, such as Physics, Biology, and Eco-
nomics. A major appeal of the proposed approach consists of its capability of providing functional representations
of the optimal solutions, which are somehow prescribing the laws that govern learning in the given environment.
While there are close connections with related studies especially in kernel machines, a substantial novelty is the re-
quirement of satisfying also constraints expressed by quantifiers acting on continuous infinite subsets of the perceptual space.
The given representation theorems, along with the emergence of their collapsed finite-dimensional versions, advo-
cate the call for novel approaches to learning, which go beyond “sampling of concepts.” Like support vectors are
the only points in charge to support the decision in kernel machines, when shifting to more general constraints,
we have shown that the same mechanism holds true for support constraints. Interestingly, the focus on constraints
leads to dismiss the classical distinction between supervised and unsupervised learning, since agents only interact
with constraints that, in case of soft fulfillment need (unsupervised) data to perform the check, while a supervised
pair is just one of the simplest instances of a constraint.

We have provided foundations on a number of experimental studies and we have reviewed most of them (see,
e.g., those based on the software simulator

https://sites.google.com/site/semanticbasedregularization/home/software
) at the light of the general theory herein proposed. To emphasize this, we have reported a summary of the ex-
perimental improvements achieved in a number of machine learning tasks, like text classification and tagging,
handwritten character recognition, computer vision, face recognition, and applications to medicine and bioinfor-
matics. By the introduction of constraint-induced kernels, we have analyzed a number of remarkable cases and
have shown how to construct the corresponding semantic kernel. While this seems to be a promising research direc-
tion (see e.g., (Melacci and Gori (2013) for box kernels), the perspective of fixed-point learning algorithms might lead
to more remarkable advances. As pointed out in Section 5.2, the iterative approach appears a natural computational
scheme to take into account the inherent circular dependence of representer theorems. Such a dependency cannot
be overcome in most interesting real-world problems.

A possible extension of our theory concerns the application of tools from Statistical Learning Theory (SLT),
such as Rademacher’s complexity (see, e.g, Mendelson (2003); Gnecco and Sanguineti (2008a,b) and the references
therein), to investigate how the presence of constraints influences the generalization capability of the learned model.
As an example, we mention that in the case of hard constraints, the set of admissible functions is restricted by
the presence of the latter, so one expects a smaller upper bound on the corresponding Rademacher’s complexity,
hence better bounds from SLT. However, this kind of investigation is outside the scope of the present work. We
only mention that tools from SLT were applied in (Gnecco et al. (2013b)) to investigate the case of learning from
supervised examples in the presence of additional boundary conditions.

While the results given in this paper might open the doors to a number of quite straightforward extensions and
applications, there are still significant open issues that have not been faced.

First, we have assumed that the constraints are given, but in many real-world problems this might be quite
difficult. We expect an enormous impact from the removal of the distinction between functions to be learned and
constraints. Basically, this is equivalent to state that the constraints can be learned exactly like the functions. We
conjecture that while the distinction can be profitably removed, in order to face complexity issues, it is necessary
to introduce stages of learning, in which some functions that are kept fixed at some stage, so as to play the role
of constraints, evolve at a further stage. There are some intriguing connections of this idea with developmental
psychology (Inhelder and Piaget (1958); Piaget (1961)) and recent studies in developmental AI (see e.g., (Guerin
(2008); Sloman (2009))), which might be sources of inspiration for further research.

Second, in some cases, the optimization task related to the learning problem is non-convex. This triggers a
natural question related to the existence of locally-optimal solutions, and also to the choice of a good starting point
for the solver. Issues related to bad local minima deserve attention in future studies. In this respect, one might
think about the use of a multi-start technique, and also about the development of annealing strategies for the
vector parameter γ. Indeed, large values of its components γj make the optimization problem “nearly convex”. By
gradually reducing them, one can hope to end up with an easier way to good local minima of problems with smaller
values of the components γj , compared to the case in which such an optimization problem is addressed directly,
without using annealing. Strategies that start the optimization from the optimal solution to a simpler optimization
problem involving only a subset of the constraints could be thought as well. In some sense, this would prevent the
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agent from being overloaded of information (constraints) during the early stages of the learning process, and thus
becoming trapped in bad local solutions.

Third, a possible direction of evolution of this theory might come from noticing that, unlike what happens in
other field of science, the variational approach used in this paper to provide foundations of learning and inference
neglects the major role of time. We foresee an extension based on the overcoming of the distinction between learning
and testing, based on the introduction of temporal regularization mechanisms, leading to on-line learning. A couple
of papers (Frandina et al. (2013a), Frandina et al. (2013b)) gives insights into this view, which follows the growing
interest for models of life-long learning (see e.g., the AAAI 2013 Spring Symposium “Lifelong Machine Learning”:
http://www.seas.upenn.edu/˜eeaton/AAAI-SSS13-LML).

Finally, a further direction of improvement is represented by the exploration of the logic structure induced by a
set of constraints and the mechanisms of inference of new constraints, somewhat related to classical notions of logic.
In particular, a notion of parsimonious inference might be investigated, which is supported only by a subset of a given
set of premises. In terms of constraints, when parsimony is invoked, a parsimonious inferential mechanism should
emerge, that is based only on relevant constraints, while disregarding the rest.
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Appendix A. Technical lemmas

Recall that for a Hilbert space H with inner product 〈·, ·〉H, a sequence {f (i)} in H converges weakly to f̄ ∈ H iff
for every f ∈ H one has 〈f (i), f〉H → 〈f̄ , f〉H. A subset S of H is weakly closed iff the weak limit f̄ of each weakly
convergent sequence {f (i)} ⊆ S belongs to S. A set S ⊂ H is weakly compact iff each sequence {f (i)} ⊆ S has a
subsequence that converges weakly to some f̄ ∈ S. A functional F on a nonempty and weakly closed subset S of a
Hilbert spaceH is weakly lower semicontinuous iff for every f ∈ S and every sequence {f (i)} ⊆ S weakly convergent
to f one has F (f) ≤ lim infi→∞F (f (i)) .

The following lemma summarizes elementary properties of weakly lower semicontinuous functionals (see, e.g.,
(Evans, 2000, Appendix D)). It is exploited in the proofs of Theorems 13 and 14.

Lemma 32 The following hold.
(i) Every closed and convex subset of a Hilbert space is weakly closed (Mazur’s Theorem (Evans (2000), p. 639)).
(ii) Every closed and bounded set of a Hilbert space is weakly relatively compact (i.e., its closure in the weak topology is

compact). A weakly closed and bounded subset of a Hilbert space is weakly compact46.
(iii) By (i) and (ii), every convex bounded closed set of a Hilbert space is weakly compact.
(iv) Every convex and continuous functional on a Hilbert space is weakly lower semicontinuous.
(v) Let H be a Hilbert space, S its nonempty and weakly closed subset, and F : S → R a functional. If F is weakly lower

semicontinuous and there exists M ∈ R such that the set {f ∈ S | F (f) ≤ M} is nonempty and weakly compact, then the
problem inff∈SF (f) has a global minimizer, which is unique when F is strictly convex.

The next lemma, which is a consequence of the Implicit Function Theorem, is exploited in the proof of Theorem
18. For a scalar-valued function u of various vector arguments, we denote by ∇iu the column vector of partial

46. In general, closed and bounded sets are not weakly compact in Hilbert spaces (e.g., the set consisting of an orthonormal basis
in an infinitely-dimensional Hilbert space is closed and bounded but not weakly compact, as it does not contain 0).
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derivatives of u with respect to all the components of the i-th vector argument. For a vector-valued function u of
various vector arguments,∇iu denotes the matrix whose h-th row is the transpose of the column vector∇iuh.

Lemma 33 Let Ω ⊆ Rd, Y ⊆ Rn1 , Z ⊆ Rn2 be open subsets, and φ : Ω × Y × Z → Rn2 a given function. Let y : Ω → Y
and z : Ω→ Z be given functions that satisfy the (vector-valued) holonomic and bilateral constraint

φ(x, y(x), z(x)) = 0 ,∀x ∈ Ω .

Suppose also that φ ∈ Ck+1(Ω× Y × Z,Rn2) for some positive integer k ≥ 1 and that, for every x ∈ Ω, the Jacobian matrix

∇3φ(x, y(x), z(x)) :=




∂φ1(x,y(x),z(x))
∂z1

. . . ∂φ1(x,y(x),z(x))
∂zn2

. . . . . . . . .
∂φn2

(x,y(x),z(x))

∂z1
. . .

∂φn2
(x,y(x),z(x))

∂zn2


 (69)

is nonsingular (possibly after interchanging locally some components of y(x) by an equal number of components of z(x), and
redefining the function φ and the vectors y(x) and z(x) according to such a replacement). Let ηy be an arbitrary function
in Ck0 (Ω,Rn1) with compact support ΩC contained in an open ball of sufficiently small radius, and consider a perturbation
∆y(x) := εηy(x) of the function y(x), where ε ∈ R is sufficiently small.

Then, there exists a unique function ηz ∈ Ck0 (Ω,Rn2) with compact support ΩC , such that the perturbed holonomic and
bilateral constraint

φ(x, y(x) + ∆y(x), z(x) + ∆z(x)) = 0 ,∀x ∈ Ω

is satisfied for ∆z(x) of the form
∆z(x) = εηz(x) +O(ε2) , (70)

where the “hidden constant” inside the “big O” notation above does not depend 47 on x, and ηz(x) has the expression

ηz(x) = −(∇3φ(x, y(x), z(x)))−1(∇2φ(x, y(x), z(x)))ηy(x) .

Moreover, for each h ∈ {1, . . . , k} and i ∈ {1, . . . , n2}, one has, for the i-th component ∆zi of ∆z,

∂h

∂xj1 . . . ∂xjh
∆zi(x) = ε

∂h

∂xj1 . . . ∂xjh
ηzi(x) +O(ε2) , (71)

where, again, the “hidden constant” inside the “big O” notation above does not depend on x.

Proof. Fix x = x0 ∈ Ω. Since φ ∈ Ck+1(Ω × Y × Z,Rn2) for k ≥ 1 and the Jacobian matrix (69) is nonsingular, we
can apply the Implicit Function Theorem, according to which, on a suitable open ball B centered in (0, 0) and of
sufficiently small radius ε > 0, there exists a unique function u ∈ Ck+1(B,Rn2) such that u(0, 0) = 0 and

φ(x+ ∆x, y(x) + ∆y, z(x) + u(∆x,∆y)) = 0 ,∀(∆x,∆y) ∈ B .

Moreover, since48 k + 1 ≥ 2, each component ui(∆x,∆y) of the function u(∆x,∆y) has the multivariate Taylor
expansion

ui(∆x,∆y) =
∑

|α|=1

Dαui(0, 0)(∆x,∆y)α +O(‖(∆x,∆y)‖2) , (72)

47. Instead, in (70) and (71) there is a dependence of the “hidden constants” on the specific choice of ηy , which may be removed
by further assuming ‖ηy‖Ck0 (Ω,Rn1 ) ≤My for some given positive constant My .

48. In the lemma, we have made the assumption φ ∈ Ck+1(Ω×Y ×Z,Rn2) instead of the weaker one φ ∈ Ck(Ω×Y ×Z,Rn2),
in order to be able to express the remainder in Taylor polynomial (72) by the integral Lagrange form, instead, e.g., of the
Peano form. To avoid cumbersome notations, in (72) we have not reported the explicit expression of the remainder in the
integral Lagrange’s form. Considering for simplicity the case of a scalar valued function u(x) of class C2 depending on a
scalar argument x, we recall that one has

f(x+ ∆x) = f(x) + f ′(x)∆x−
∫ ∆x

0

(t−∆x)f ′′(x+ t)dt ,

where the last term is the remainder in the integral Lagrange form. This formula can be generalized to the multivariate case,
and such an extension is used to obtain terms of order O(ε2) in (71).
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where (∆x,∆y)α :=
∏d
j=1(∆xj)

αj
∏n1

j=1(∆yj)
αd+j and the termO(‖(∆x,∆y)‖2) denotes a function of class Ck+1(B),

infinitesimal at (0, 0) with order at least 2. The “hidden constant” inside the “big O” notation above depends only
on the local behavior of φ on a neighborhood of (x, y(x), z(x)), and is independent of x itself, provided that, after the
initial choice x0 for x, x varies inside a compact subset ΩC of the projection of the set49 B + (x0, y(x0)) on Ω. Now,
let ηy ∈ Ck0 (ΩC ,Rn1) ⊆ Ck0 (Ω,Rn1) and set ∆x := 0 and ∆y = ∆y(x) := εηy(x). Then, we define each component
∆zi(x) of the function ∆z(x) as

∆zi(x) := ui(0, εηy(x)) =
∑

|α|=1

Dαui(0, 0)(0, εηy(x))α +O(‖(0, εηy(x))‖2)

= ε
∑

|α|=1

Dαui(0, 0)(0, ηy(x))α +O(ε2) ,

where the replacement of the term O(‖(0, εηy(x))‖2) by O(ε2) follows by the fact that ηy(x) is fixed and uniformly
bounded. Then, we get (70) by setting

ηz,i(x) :=
∑

|α|=1

Dαui(0, 0)(0, ηy(x))α ,

which shows that the function ηz,i is in Ck0 (ΩC ,R) ⊆ Ck0 (Ω,R), likewise ηy is in Ck0 (ΩC ,Rn1) ⊆ Ck0 (Ω,Rn1). An
application of the Implicit Function Theorem shows also that the vector ηz(x) with components ηz,i(x) has the
expression

ηz(x) = −(∇3φ(x, y(x), z(x)))−1(∇2φ(x, y(x), z(x)))ηy(x) .

Finally, (71) is derived directly by (70), by computing its partial derivatives of order h (i.e., by exploiting the ex-
pression of the remainder of Taylor polynomial (72) in Lagrange integral form, the rule of differentiation under the
integral’s sign, the chain rule, and the fact that each component of the function ηy is bounded on ΩC , together with
its partial derivatives up to the order k with respect to the components of x). �

The meaning of Lemma 33 is the following: in order to still be able to satisfy the holonomic and bilateral
constraint, a perturbation ∆y(x) := εηy(x) of the function y(x) implies a perturbation ∆z(x) := εηz(x) (apart from
an infinitesimal of order greater than ε) of the function z(x), where ηz depends only on ηy and suitable partial
derivatives of φ evaluated at the current solution (x, y(x), z(x)), but does not depend on ε. Equation (71) shows that
also the partial derivatives of ∆z(x) up to the order k have similar expressions.
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C. Saccà, M. Diligenti, M. Gori, and M. Maggini. Learning to tag from logic constraints in hyperlinked environments.
In Proc. 10th Int. Conf. on Machine Leraning and Applications Workshops, vol.2, pages 251–256, 2011a.
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