S

S,

UNIVERSITA DI SIENA 1240 U

Uy

, s
Pyt

A distributed asynchronous method of multipliers for constrained nonconvex
optimization

This is the peer reviewed version of the following article:
Original:

Farina, F., Garulli, A., Giannitrapani, A., Notarstefano, G. (2019). A distributed asynchronous method of
multipliers for constrained nonconvex optimization. AUTOMATICA, 103, 243-253
[10.1016/j.automatica.2019.02.003].

Availability:
This version is availablehttp://hdl.handle.net/11365/1075032 since 2019-07-01T13:05:33Z

Published:
DOI:10.1016/j.automatica.2019.02.003
Terms of use:

Open Access

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. Works made available under a Creative Commons license can be used according to the terms and
conditions of said license.

For all terms of use and more information see the publisher's website.

(Article begins on next page)

20 April 2024

A Distributed Asynchronous Method of Multipliers
for Constrained Nonconvex Optimization™

Francesco Farina®*, Andrea Garulli®, Antonio Giannitrapani®, Giuseppe Notarstefano®

% Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Universita di Siena, Siena, Italy.
b Department of Electrical, Electronic and Information Engineering “G. Marconi”, Universita di Bologna, Bologna, Italy.

Abstract

This paper presents a fully asynchronous and distributed approach for tackling optimization problems in which both the
objective function and the constraints may be nonconvex. In the considered network setting each node is active upon
triggering of a local timer and has access only to a portion of the objective function and to a subset of the constraints.
In the proposed technique, based on the method of multipliers, each node performs, when it wakes up, either a descent
step on a local augmented Lagrangian or an ascent step on the local multiplier vector. Nodes realize when to switch
from the descent step to the ascent one through an asynchronous distributed logic-AND, which detects when all the
nodes have reached a predefined tolerance in the minimization of the augmented Lagrangian. It is shown that the
resulting distributed algorithm is equivalent to a block coordinate descent for the minimization of the global augmented
Lagrangian. This allows one to extend the properties of the centralized method of multipliers to the considered distributed
framework. Two application examples are presented to validate the proposed approach: a distributed source localization
problem and the parameter estimation of a neural network.

Keywords:

Distributed Optimization, Multi-agent systems, Method of Multipliers, Asynchronous algorithms

1. Introduction

Nonconvex optimization problems are commonly en-
countered when dealing with control, estimation and learn-
ing within cyber-physical networks. In these contexts, typ-
ically each device knows only a portion of the whole ob-
jective function and a subset of the constraints, so that,
to avoid the presence of a central coordinator, distributed
algorithms are needed.

Distributed optimization algorithms handling local con-
straints are basically designed for convex problems, except
for some specific problem settings. In [I], the authors pro-
pose a distributed random projection algorithm, while a
proximal based algorithm is presented in [2]. A subgra-
dient projection algorithm has been presented in [3] and
an extension taking into account communication delays is
given in [4]. In [5] randomized block-coordinate descent
methods are employed, to solve convex optimization prob-
lems with linearly coupled constraints over networks.

Another relevant class of algorithms is that of dis-
tributed primal-dual methods (see, e.g. [0l [7, [§]). Within
this framework, an iterative scheme combining dual de-
composition and proximal minimization is introduced

*This result is part of a project that has received funding from
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement
No 638992 - OPT4SMART).

*Corresponding author

Email address: farina@diism.unisi.it (Francesco Farina)

Preprint submitted to Automatica

in [9]. Distributed approaches based on the Alternating
Directions Method of Multipliers (ADMM) are presented
in |10} 111, [12].

Asynchronous communication protocols are a typical
requirement in real world networks (see, e.g., [13] and
references therein). Several asynchronous version of dis-
tributed optimization algorithms have been proposed in
literature, a typical example being the class of gossip-
based algorithms [14, 15]. By building on these works,
an asynchronous algorithm based on the Method of Mul-
tipliers and accounting for communication failures is in-
troduced in [I6]. In [I7] an asynchronous ADMM is pro-
posed for a separable, constrained optimization problem.
An asynchronous proximal dual algorithm has been pre-
sented in [I8].

Distributed algorithms for nonconvex optimization have
started to appear in the literature only recently. In [19]
a stochastic gradient method is proposed to minimize the
sum of smooth nonconvex functions subject to a constraint
known to all agents. In [20] a decentralized Frank-Wolfe
method for finding a stationary point of the sum of dif-
ferentiable and nonconvex functions is given. In [21] 22]
the authors propose distributed algorithms, respectively
for balanced and general directed graphs, based on the
idea of tracking the whole function gradient and perform-
ing successive convex approximation of the nonconvex cost
function. Notice that the approaches in [19, 20, 21} 22] do
not deal with local constraints, but only with global ones
known to all the agents. A perturbed push-sum algorithm

January 20, 2019

for the unconstrained minimization of the sum of noncon-
vex smooth functions is given in [23]. A distributed al-
gorithm dealing with local constraints has been presented
in [24] for a structured class of nonconvex optimization
problems.

The contribution of this paper is a fully distributed
asynchronous optimization algorithm, hereafter referred
to as ASYnchronous Method of Multipliers (ASYMM).
The proposed algorithm addresses constrained optimiza-
tion problems over networks, in which both local cost func-
tions and local constraints may be nonconvex. It features
two types of local updates at each node: a primal descent
and a multiplier update, which are regulated by an asyn-
chronous distributed logic-AND algorithm. An interesting
feature of ASYMM is that a node does not need to wait for
all multiplier updates to start a new primal descent, but
rather it just needs to receive the neighbors’ multipliers.

The main theoretical result consists in showing that
ASYMM implements a suitable inexact version of the
Method of Multipliers, in which the primal minimization
is performed by means of a block coordinate descent algo-
rithm up to a given tolerance. Thanks to this connection,
ASYMM inherits the main properties of the correspond-
ing centralized method [25] 26]. A further contribution
is to provide a bound on the norm of the augmented La-
grangian gradient based on the local tolerances, which is
instrumental to recover convergence results in the case of
inexact primal minimization (see, e.g., [26, Section 2.2.5]).
Finally, it is shown that the proposed algorithm can effec-
tively solve big-data problem (i.e., with a high dimensional
decision variable). Indeed, thanks to its block-wise struc-
ture, each agent can optimize over and transmit only one
block of the entire solution estimate.

The paper is organized as follows. In Section [2| the dis-
tributed optimization set-up is presented. The proposed
algorithm is presented in Section |3| and analyzed and dis-
cussed in Section[d] In Section [5] an extension for dealing
with high dimensional optimization problems is presented.
Finally, two numerical applications are presented in Sec-
tion [6 and some conclusions are drawn in Section

2. Set-up and Preliminaries

2.1. Notation and definitions

Given a matrix A € R™*™ we denote by Ali, j] the (4, j)-
th element of A, by A[:,] its é-th column, by A[i,] its i-th
row and by A[i:j, k] the elements of the k-th column of A
from row i to j. We write A[i,:] = b to assign the value b
to all the elements in the i-th row of A. Given two vectors
a,b € R™ and a constant ¢, we write a > c if all elements
of a are greater than ¢ and a > b if a[i] > b[i] for all 4. If
J = {j1,--,dm} is a set of indexes, we denote by [z;]jes
the vector [z ,...,z}]T.

The following definitions will be useful in the following.

A function W(x) has Lipschitz continuous gradient if
there exists a constant L such that ||[VU(z) — VI (y)|| <

L)z — y|| for all z,y. It is o-strongly convez if (V¥ (x) —
VU(y) (z—y) > allz -yl

Let * = [o],..,2}]T, with 2; € R" and let U =
[Ui,...,Ux], with U; € R¥™ " for all i, be a parti-
tion of the identity matrix such that @ = va:l U;z; and
z; = U;'x. The function ®(x) has block component-wise
Lipschitz continuous gradient if there are constants L; > 0
such that |V, ®(x + U;s;) — Vi, @(x)|| < L;||s;|| for all
xz € RV and s; € R™.

We say that indexes in {1,..., N} are drawn according
to an essentially cyclic rule if there exists M > N such
that every ¢ € {1,..., N} is drawn at least once every M
extractions.

2.2. Distributed Optimization Problem
Consider the following optimization problem

N
minimmize Z fi(z)
= O

subject to h;(x) =

where f; : R® — R, h; : R® — R™ and g; : R® — R™.
Throughout the paper the following assumption is made.

Assumption 1. Functions f; and each component of
hi, g; are of class C? and have bounded Hessian. Prob-
lem has at least one feasible solution, every local min-
imum of is a regular poimﬂ and it satisfies the second
order sufficiency conditions. O

The aim of the paper is to present a method for solving
problem in a distributed way, by employing a network
of N peer processors without a central coordinator. Each
processor has a local memory, local computation capabil-
ity and can exchange information with neighboring nodes.
Moreover, functions f;, h; and g; are private to node i.
The network is described by a fixed, undirected and con-
nected graph G = (V, &), where V = {1,..., N} is the set
of nodes and € C {1,..., N} x {1, ..., N} is the set of edges.
We denote by N; = {j € V | (i,j) € £} the set of the
neighbors of node i and by d; = |V;| + 1. Also, we denote
by dg the diameter of G.

Regarding the communication protocol, a generalized
version of the asynchronous model presented in [I8] is con-
sidered. Each node has its own concept of time defined by
a local timer, which triggers when the node has to awake,
independently of the other nodes. Between two trigger-
ing events each node is in IDLE mode, i.e., it listens for
messages from neighboring nodes and, if needed, updates
some local variables, but it does not broadcast any in-
formation. When a trigger occurs, the node switches to
AWAKE mode, performs local computations and sends the
updated information to neighbors.

LA feasible vector x is said to be regular if the gradients of the
equality constraints and those of the inequality constraints active at
x are linearly independent.

Assumption 2 (Local timers). For each node i, there
exists a constant 7; such that node ¢ wakes up at least
once in every time interval of length T;. O

Assumption 3 (No simultaneous awakening). Only one
node can be awake at each time instant. 0

Assumption implies that in a time interval T =
maX;ec(1,.. N} T, each node is awake at least once. Hence,
under Assumption [3] nodes wake up in an essentially cyclic
way. In practice, Assumption [3] can be relaxed, allowing
for non neighboring nodes to be awake in the same time
instant, at the price of a slightly more involved analysis of
the proposed algorithm.

2.8. Equivalent Formulation and Method of Multipliers

In order to solve Problem by means of the above
defined network, let us rewrite it in the following form

N
minimize ; fi(w:)
subject to z; = x;, V(i,j) €&, (2)
h’l(gjl) =0, 1€V,
9i(zi) <0, ieV.

where x; € R™ for all i € V. Notice that, thanks to the
connectedness of G, problems and are equivalent.

Let us now introduce the augmented Lagrangian asso-
ciated to problem . Let v;; € R™ and p;; € R be the
multiplier and penalty parameter associated to the equal-
ity constraint z; = z;. We compactly define v; = [1;]jen;,
pi = [pijljen;. Similarly, let \; € R™ and 0; € R (respec-
tively u; € R™ and ¢i € R) be the multiplier and penalty
parameter associated to the equality (respectively inequal-
ity) constraint of node i. Moreover, let © = [x],...,2\]T;
denote by p = [pi, 0i, (iliey the vector stacking all the
penalty parameters; v = [V;]iey, A = [Ailiey and p =
[1i]iey be the vectors stacking the corresponding multipli-
ers, and, consistently, let @ = [vT, AT, T]T. Let us define
for notational convenience

1
qc(a,b) = % (max{0,a + cb}? — a?). (3)
c
When a and b are vectors, the right hand side in is in-

tended component-wise. Then, the augmented Lagrangian
associated to is defined as

£o(.6) =§ {

T Pij
S [t -) + B i -] +
JEN;

0i
+ A hi(:) + §||hi($i)H2+

+

+17¢, (M,gz‘(fcz‘))}- (4)

Notice that, more generally, one can associate a differ-
ent penalty parameter to each component of the equality
and inequality constraints of each node. This extension is
omitted in order to streamline the presentation.

A powerful method for solving problem is the well
known Method of Multipliers, which consists of the follow-
ing steps (see e.g. [27] 20]),

zhtl = arg rr%cin Lk (z, Hk) (5)
V= T), g e ()
NS =\ 4 by, viev, (1
pE Y = max{0, pF + CFgi(x), VieV, (8

where the max operator is to be intended component-wise
and pFtt > pF > ... >p° > 0.
A typical update rule for a penalty parameter p;; asso-
ciated to an equality constraint x; = z; is
koo k41 k+1 k k
k+1 _ {Bpij’ if [Ja; " — Z; | >l — 251, 9)

I pfj , otherwise,

where 8 and v are positive constants (see [26, Sec-
tion 2.2.5]). Similarly, the update rule for a penalty pa-
rameter g; associated to an equality constraint h;(z;) =0
is

bt _ {ﬁ@?, i (D>l

ot = :
¢ of, otherwise,

while the rule for a penalty parameter (; associated to an
inequality constraint g;(x;) < 0 is

Bck, it g (@t)| >
> g (@, uk, P, (11)
otherwise,

k+1
Ci +1 _
k

7

where g;F (i, i, G;) = max{g;(z;), —%}.

The minimization step can be carried out approxi-
mately at each step k, up to a certain precision e*. If the
sequence {e¥} — 0 as k — oo, the minimization step is
said asymptotically exact (see [26 Section 2.5]).

Sufficient conditions guaranteeing the convergence of
method — to a local minimum of problem have
been given, e.g., in [26]. One of these conditions involves
the regularity of the local minima of the optimization prob-
lem. In general, such a condition is not verified in prob-
lem due to the constraints x; = x; for all (4,5) € £.
In [28, 29] the results in [26] have been extended to deal
with the non regularity of the local minima of problem .
With respect to those works, the main novelty of the so-
lution proposed in this paper is that the network model
is asynchronous and the switching between a primal and
a multiplier update is performed by the nodes in a fully
distributed way.

3. Asynchronous Method of Multipliers

In this section, the Asynchronous Method of Multipli-
ers (ASYMM) for solving problem in an asynchronous
and distributed way is presented. Let us first present a
distributed algorithm whose aim is to check whether all
nodes in an asynchronous network have set a local flag to
one. It can be seen as the asynchronous counterpart of the
synchronous logic-AND algorithm presented in [30].

3.1. Asynchronous distributed logic-AND

Each node in the network is assigned a flag C; that is
initially set to 0 and is then changed to 1 in finite time. The
aim of the asynchronous distributed logic-AND algorithm
is to check if all the nodes have C; = 1.

Each node i stores a matrix S; € {0,1}9¢*% which con-
tains information about the status of the node itself and its
neighbors. Let S;[I,j;] denote the element in the [-th row
and j;-th column of .S;, where j; is the index associated to
node j by node i. The elements S;[1, j;] for j € N; repre-
sent the values of the flags of nodes j € N; and S;[1,d;]
the one of node ¢ itself. This means that S;[1,d;] = C;.
Moreover, for | = 2,...,dq, the element S;[l,j;], j € Ni,
contains the status of the (I — 1)-th row of S;, which is
defined as the product of all its entries. Similarly, S;[l, d;]
contains the status of the (I — 1)-th row of S; and it is
computed as

d;

H (1—1,0]. (12)

b=1

Hence, one has that S;[l,d;] = 1 if and only if S;[I—
1forall j € N; and S;[l — 1,d;] =1

17.71] =

Algorithm 1 Asynchronous distributed logic-AND
Initialization: C; < 0, S; <= 04, x4,

AWAKE

if TT, Silde,b] # 1 then
Si[l, dz] < Cz

Sill, di] + [T,

BROADCAST S,:,

Si[l—1,b) for 1 =2,...,dg
d;] to all j € N;

if Hb 1 Sildg,b) =1 then
STOP and send STOP signal to all j € N;

IDLE
if S;[:,d;] received from j € N; and not received a
STOP signal then
Si[l,ji] — Sj[l,dj] for [= 1,...,da

if STOP received, set S;[dg,:] 1

A pseudo code of the distributed logic-AND algorithm is
reported in Algorithm [I] Notice, in particular, that node
1 has to broadcast to all its neighbors only the last column
of S;, ie. Si[l,d;] for I = 1,...,dg. Moreover, it stores

only the d;-th column of the matrices S; of its neighbors
j € N;, whenever it receives them.

It is apparent that a node will stop only when the last
row of its matrix .S; is composed by all 1s, i.e. when

d;
I silde, b = 1. (13)
b=1

In the following result it is shown that is satisfied
at some node if and only if C; = 1 for all i.

Proposition 1. Let Assumption |4 hold. If there ex-
ists a time instant after which C;=1 indefinitely for all
j eV, then Hgil Selda,b] =1 in finite time for all nodes
¢ € V. Conversely, if there exists a node € satisfying
Hgil Selda,b] = 1 at a certain time instant, then every
node j € V must have had C; = 1 at some previous time
nstant.

Proof. In a time interval of T', every node wakes up at least
once. In the worst case, in which the distance between
two generic nodes j and £ is equal to the graph diameter
(dg), in a time dgT there exists an ordered subsequence
of awakenings following the path j7 — ¢. Hence, if C; =1
Vi, node h along this path will broadcast Si[:,dp] = 1
to its neighbors and Sy[dg,:] will eventually contain only
1s, thus leading to Hgil Selda,b] = 1. Now assume that
Hg’;l Seldg,b] = 1 at some time instant and suppose, by
contradiction, that there exists some node j for which C; =
0 at all previous time instants. By assumption, all nodes
i € N have S;[1, ;] = 0 (because columns sent by j always
contained a zero in that position), which in turn, implies
that S;[2:dg,d;] = 0 for all ¢ € Nj. Then, for every i €
Nj, every m € N; have S,,[2,4,,] = 0 and hence S,,[3

dg,dn] = 0. By induction, node ¢ must have at least one
element of its dg-th row equal to 0, which contradicts the
assumption and hence completes the proof. O

Notice that the only information that the nodes need to
know about the network is the graph diameter dg. It is
worth recalling that such a parameter can be preliminary
computed in a distributed way (see, e.g., [31] and refer-
ences therein). Furthermore, only an upper bound on dg
is necessary to run Algorithm [I] at the price of an increase
in the time needed in order to achieve the termination

condition .

8.2. Asynchronous distributed optimization algorithm

It is worth stressing that the augmented Lagrangian de-
fined in is not separable in the local decision vari-
ables x;. Thus, the minimization step in cannot be
performed by independently minimizing with respect to
each variable. In order to devise a distributed algorithm
for solving problem it is useful to define a local aug-
mented Lagrangian, whose minimization with respect to
the decision variable x; is equivalent to the minimization
of the entire augmented Lagrangian . To this aim,

let zn, = [Ij]je/\fiu{i}, On, = [)\ia/u'iyyia[yji]je./\/j]a and
DN, = [0i: Gy Pi, [Pji)jen;]. Then, the i-th local augmented
Lagrangian, which groups together all the terms of
depending on z;, is defined as

Loy, (T, On,) =

= fi(xs)+
ij + Pji
+ [%‘T(%j — Vi) + %llxi —;*| +
JEN;
+)\jhz(mz) + %th(x7,>||2+
+ 1" qe, (i, gi(x:)). (14)

The following proposition holds.
Proposition 2. Let Assumption[]] hold. Then

Vi Lp(x,0) = Vmi‘ép/\/,., (Tn; 5 ON;)- (15)
Also, for fized values of xj, j # 1,

argmin Lp(z, 0) = argmi_nﬁpNi (Za, On,)- (16)

Moreover, EPM (zar,,On,) has Lipschitz continuous gradi-
ent for alli e V.

Proof. From and it can be easily seen that
Lp(x,0) = Loy, (2, 0n;) + ¥(2-i,0-5) (17)
where ¥(x_;,0_;) is a function which does not depend
on local variables of node i. Hence and follow.
By Assumption Lp(x,0) € C? in the set {x | gi(x;) #
—1i/¢, Vi € V} for all @ and p > 0 (see e.g. [26], Proposi-
tion 3.1). Hence, one has that V5L, (x,) is almost every-
where differentiable for all 8 and p > 0. Moreover, from
Assumption [I] it holds that Vg Lp(x, 0) is bounded, and
Lp(x,0) has Lipschitz continuous gradient for all 8 and
p > 0. Hence L,(x,0) has block component-wise Lips-
chitz continuous gradients and, from ENPM (zar, On)
has Lipschitz continuous gradient. O

The ASYMM algorithm for solving problem in
an asynchronous and distributed way is now introduced.
When a node wakes up, it performs either one gradient
descent step on its local augmented Lagrangian or a mul-
tiplier update. The nodes keep performing gradient de-
scent steps, until all of them have reached a prescribed
tolerance on the norm of the local augmented Lagrangian
gradient. This check is performed by nodes themselves
in a distributed way, by using the logic-AND algorithm
presented in Section [3:1] When a node gets aware of this
condition, it performs one ascent step on its local multi-
plier vector. After it has received the updated multipliers
from all its neighbors, it gets back to the primal update.

More formally, when node i wakes up, it checks through
a flag, called Myope, if its multiplier vector and the neigh-
boring ones are up to date. If this is the case (which cor-
responds to Myone = 0), it performs one of the following
two tasks:

T1. If Hld:1 Silda,1] # 1, node i performs a gradient de-
scent step on its local augmented Lagrangian (using
1/L; as stepsize, where L; is the Lipschitz constant
of Ezwi (xa,0,;)) and checks if the local tolerance
€; > 0 on the gradient has been reached. If the lat-
ter is true, it corresponds to setting C; < 1 in the
distributed logic-AND Algorithm[I} Then, it updates
matrix S;, and broadcasts the updated z; and the
column S;[:, d;] to its neighbors.

T2. If Hf;l Silda,1] = 1, node i performs an ascent step
on the local multiplier vector and updates the lo-
cal penalty parameters according to equations @—
and @-, respectively. Then, it sets Myone = 1
and broadcasts the updated multipliers and penalty
parameters v;; and p;; (associated to constraints z; =
x;) to its neighbors.

Algorithm 2 ASYMM

Initialization: Initialize z;, 6;, N;, p;, S;
Mdone =0.

== 0dg><d1:7

AWAKE
if TT%, Si[da,b] # 1 and not Mg, then

Ti — T — L%V%ENPM (xn;, ON,)

if |V, Loy, (2n,,0n,)] < €; then Si[1,d;] 1
Sillydi] [T, Sill — 1,0 for 1 =2, ..., de
BROADCAST =z;, S;[:,d;] to all j € N;

if Hi;l Sildg,b] = 1 and not My, then

Vij < Vij + pij(z; — x5) for j € N;

Ai <= i + 0ihi(w;)
pi < max{0, u; + (;igi(z:)}

update g;, ¢; and p;
Mdone «— 1
BROADCAST v;, pij to j € N;

IDLE
if S;[:, d;] received from j € N; and not already received
some new vj; then
Sz[l,jl} — S][l,dj] for [= 1, ...,d(;
if v;; and pj; received from j € N set S; [dg,:] 1
if 27" received from j € N, update z; < z
if Mgone and vj; received from all j € N; then
Maone < 0, S; < 04, xd;, update €;

When in IDLE | node i continuously listens for messages
from its neighbors, but does not broadcast any informa-
tion. Received messages may contain either local opti-
mization and logic-AND variables, or multiplier vectors
and penalty parameters. If necessary, node i suitably up-
dates local logic-AND variables or the Mg,,. flag. Notice

that, for node 7, sending a new multiplier v;; or receiving a
new v;; corresponds to sending or receiving a STOP signal
in the asynchronous logic-AND algorithm.

The ASYMM pseudocode is reported in Algorithm[2and
an example of its execution is shown in Figure [I} where
tasks T1 and T2 are denoted by white and black blocks,
respectively.

Remark 1. A gossip-based distributed algorithm based on
the Method of Multipliers for convex optimization prob-
lems has been proposed in [16]. In ASYMM the logic-
AND allows the nodes to perform multipliers updates
asynchronously, while in [I6] a global clock is employed
to regulate such an update in a synchronous way. One
main advantage of ASYMM is that it guarantees that a
prescribed tolerance is reached by each node in the primal
descent, which in turn is a crucial feature when solving
nonconvex optimization problems.

4. ASYMM Analysis

In order to analyze the ASYMM algorithm, we start
by noting that under Assumptions [2 and [3] from a global
perspective, the local asynchronous updates can be treated
as an algorithmic evolution in which, at each iteration,
only one node wakes up in an essentially cyclic fashion.

Given the above, it is possible to associate an iteration
of the distributed algorithm to each triggering. Denote
by t € N a discrete, universal time indicating the t-th
iteration of the algorithm and define as i; € V the index
of the node triggered at iteration t.

In the following, it will be shown that: (i) there is an
equivalence relationship between ASYMM and an inex-
act Method of Multipliers and (ii) under suitable techni-
cal conditions, a bound on the gradient of the augmented
Lagrangian can be derived from the local tolerances ;.

4.1. Equivalence with an inexact Method of Multipliers

Consider an inexact Method of Multipliers which con-
sists of solving the k-th instance of the augmented La-
grangian minimization by means of a block-coordinate gra-
dient descent algorithm (see, e.g., [32] for a survey), which
runs for a certain number of iterations A*. A pseudo
code of this inexact Method of Multipliers (inexact MM)

is given in Algorithm [3] where ij, is the index of the block
chosen at iteration h and the penalty parameters are up-

dated as in -.

Algorithm 3 Inexact MM

for k=0,1,... do
:&O — .’Bk
for h=1,...,h" do
ghtl = gh — L%Uihv% Lp(&",6%)

*h

phtl — pht+l

k k k ..
Vij+1 — Vikj +pf:j($z +1 mj+1)7 V(ZM]) c £
Aéﬁ“ = M+ ofhi (2T, Vie V
= max{0, pf + ¢Fg;(aF)}, Viev

It is worth remarking that the ordered sequence of in-
dexes h and k used in Algorithm [3]does not coincide with
the sequence of universal times ¢ of ASYMM. It will be
rather shown that a (possibly reordered) subsequence of
iterations in the universal time ¢t of ASYMM gives rise to
suitable h and k sequences in Algorithm

Let t1, ta, ... be a subsequence of {t} such that at each ¢,
a multiplier update (task T2) has been performed by node
it, and let t; be the time instant of the first multiplier
update. Then, the following result holds.

Lemma 3. Each sequence (it y. 1y-ityyy), for k =
0,1,..., is a permutation of {1,...,N}. Moreover, if ¢; >
0 for all i € V, multiplier updates occur infinitely many
times.

Proof. Consider the first multiplier update, performed by
node i;, at t;. Then, until all other nodes have performed
their first multiplier update, there will be some node j
which has not received back all the new multipliers from
its neighbors and has My,,e = 1. Hence, it cannot run
task T1, and consequently it cannot set and broadcast
S;[1,d;] = 1. So, node i;, has at least one element of
the last row of S;, at 0, hence it cannot perform an-
other multiplier update (although it could have started
over performing task T1). The first part of the proof is
completed by induction. In order to prove the second part
of the lemma, assume, by contradiction, that the number
of multiplier updates is finite and denote by t,; the time

Legend
T2 subsequence t3k+1 t3k+2 t3(k+1) HT2
O waiting
k-th cycle [~ v OT1
k + 1)-th cycle P ——
() Y Graph
Node 1 | | —1 T 1 1 m [
Node 2] e] [I I [mm [1]
Node 3 1 L1] 1 1 mm] [] 3

Figure 1: An example of the execution of ASYMM for a network with three nodes.

6

instant of the last multiplier update. If mod(M, N) # 0,
from the connectedness of G at tp; + 1 there exists at
least one node j that: i) has not updated its multipli-
ers yet; ii) has a neighbor who has already performed a
multiplier update. Hence, node j will perform a multiplier
update next time it wakes up (which occurs in finite time
by Assumption , thus contradicting the assumption that
tps was the time instant of the last multiplier update. If
mod(M, N) =0 (i.e., (itp_nrs---»bta_y1» 0ty) IS @ permu-
tation of {1,..., N}), all the nodes that wake up after ¢,
will run task T1. From a global perspective, this can be
seen as a block coordinate descent algorithm on the aug-
mented Lagrangian with a given multiplier vector. Since
this algorithm converges to a stationary point [33], every
node i € V will reach its local tolerance ¢; > 0 in finite
time and then set S;[1,d;] = 1. From Proposition [1] af-
ter a finite number of iterations some node j will satisfy
HZJ: 15;ilde,b] = 1 and hence it will run a new multiplier
update, which contradicts the assumption that ¢, was the
time instant of the last multiplier update. O

In the sequel the subset of universal times ¢,
{tkns1, - t(ee1yn }, during which N tasks T2 are per-
formed, will be referred to as the k-th cycle of ASYMM.

The example in Figure [1| shows the k-th and (k+1)-th
cycles of an ASYMM run. According to Lemmal3] during a
single cycle each node performs task T2 once. It is worth
remarking that in the k-th cycle node 1 starts over the
(k-+1)-th primal minimization before node 3 has completed
its k-th multiplier update. This happens because node 1
has already received the updated multipliers and penalty
parameters from node 2, which is the only neighbor of
node 1. The same thing happens to node 3 in the (k+1)-th
cycle. This is a key feature of the asynchronous distributed
scheme underlying ASYMM. It can also be observed that
when node 3 wakes up for the first time, after node 1 has
done the k-th dual update, it performs again task T1. In
fact, node 3 has not received a STOP signal yet, because
it is not connected directly to node 1.

Define 6; = [Ai, i, v;] and let & and 6! be the value
of the state vector and of the multiplier vector of node i,
at iteration ¢, computed according to ASYMM. Then, the
following Corollary holds, whose proof follows immediately
from Lemma [3l

Corollary 4. Let 7 € {tiny1,.,t(er1)N}, for some
k = 0,1,.. Then one has éfT = 0~ZTT for all t =
T,T+l,...7t(k+1)N, O

Corollary [4] states that once a multiplier vector is up-
dated in a cycle, then, its value remains unchanged for the
whole cycle.

Let 7F be the time instant in which node i performs task
T2 in the k-th cycle, i.e., 7F € {tin11, <oy L1y} such
that node 7 is awake at time Tf. By using this Corollary
one can define

k k

_ 5T k+1 _ gTi
=z, 6;7=86,",

21 1

K2

k = 0,1,... and by using Lemma [3] and reordering the
indexes i,

ot = [t)]
gF+1l — {(efﬂ)T . (0?\,“)T]T

The next two lemmas show that a local primal (resp.
multiplier) update is performed according to a common
multiplier (resp. primal) variable.

Lemma 5. For all 7 € {txny1,-tsenyny, K = 0,1,...,

every multiplier Hffl is computed using the state vector

k1

Proof. Consider 7 € {tpn41,...,ter1yn} for a given k.
Node i, computes

k+1 _ ~7
Ti, = Tis
k4l _ & Eooktl ~T , '
viy =VijTpi (i —), Vj €N,
k+1 _ \k k k+1
N = o b (25T),

it = max{0, pf +¢F gi, (@)

First, notice that the update of node i, depends only on
zj or @ with j € NV; . Then, let us show that 2] = xf“
for all j € NV;,. If a node j € N;, has already performed
its multiplier update in the k-th cycle, then, even if it woke
up again before time 7 it did not update z; (did not start
a new primal update) because it has not received all the
updated multipliers from its neighbors (node i, has not
performed the multiplier update yet and thus has not sent
z/fjgl to node 7). Therefore, z7 = z?“. If, vice-versa, node
j € N;, has not performed its multiplier update in the k-th

k+1 next time node j wakes up

cycle, then z7 will become
(because node i, has sent it the updated multiplier while

it was in idle, so that j has set S;[dg,:] = 1). O
Lemma 6. For allt=71F 7F+1,... ,Tf"'l, every descent

step on the augmented Lagrangian with respect to the block-
coordinate x; is performed using the multiplier vector @5+1.

Proof. Node i can start over a block coordinate descent
iteration after 7 only when it has received all the new
multipliers I/sz——i_l (and the corresponding penalty parame-
ters) from its neighbors. Thanks to , it is sufficient to
show that each local descent on the i-th local augmented
Lagrangian is performed using the multiplier vector 0%1.
This follows from Lemma [3] and Corollary [] by using ar-

guments similar to those in the proof of Lemma . O

Next lemma states that every node performs at least one
primal update between the beginning of two consecutive
cycles.

Lemma 7. Between tyyy1 and t(g41)n41 every node per-
forms task T'1 at least once.

Proof. Since at iteration ;4 1)y all the nodes have per-
formed the k-th multiplier update, each of them has set
Si[l,d;] = 0 at some time between txn11 and ¢, 1)n. At
time #(41)n 41 the first node performs the (k+ 1)-th mul-
tiplier update. This can occur only if each node ¢ has set
Si[1,d;] = 1 at some time between tn 11 and (p11yn41,
which implies that each node performs task T1 at least
once over the same time interval. O

The equivalence of ASYMM and Algorithm (3] is stated
by the next theorem.

Theorem 8. Let Assumptions [and [3 hold. Then,
ASYMM s equivalent to an instance of Algorithm [3 in
which the selection of nodes iy satisfies an essentially
cyclic rule. Moreover, if in Algorithm[3, €; > 0, Vi € V,
the total number of primal descent steps h* is finite.

Proof. Define HF={t | 7F~'<t<rF, i runs task T1 at t}
for kK = 0,1,..., where 7';1 is the first time instant in
which node ¢ is awake (doing task T1). Then, define
H* = ;e HE, h* = |H"| and let

V1 <V < ... < Upk

be the ordered sequence of elements (time instants) in H*.

By setting i, = iy,, for h = 1,...,h*, in Algorithm
and using Lemma [p] and Lemma [} one has that ASYMM
turns out to be equivalent to an instance of Algorithm
Moreover, from Lemma |7 every node runs task T1 at least
once in {vy,...,vux }. Hence, Algorithm [3|is run with an
essentially cyclic update rule over a time window of length
hy, which is finite due to Lemma [3] O

Remark 2. The duration of each ASYMM cycle can be
bounded both from below and from above as follows. From
the definition of A* it can be easily verified that hk > N.
Moreover, from Lemma [7| one has that k¥ < Lht1)N+1 —
tknv+1— N. Hence, t(x11)N41 —tkn+1 = 2N. On the other
side, from Proposition |I| it follows that ¢, 11N —tens1 <
dgT for all k.

4.2. A bound on the Lagrangian gradient

In virtue of the equivalence result in Theorem
ASYMM inherits the convergence properties of Algo-
rithm [3] applied to Problem Pl In particular, in order to
guarantee the convergence of the inexact MM to a local
minimum, it is necessary that the Lagrangian minimiza-
tion is asymptotically exact (see, e.g., [20, Section 2.5]). To
this aim, in this section an upper bound & on the norm of
the gradient of the augmented Lagrangian is derived as
a function of the local tolerances ¢; employed in task T1
of ASYMM. The result requires (at a given iteration k)
a technical assumption of local (strong) convexity of the
augmented Lagrangian.

Let us introduce the following preliminary result.

Lemma 9. Let ®(y1,...,yn) be a o-strongly convex func-
tion with block component-wise Lipschitz continuous gra-
dients (with L; being the Lipschitz constant with respect to
block y;) in a subset Y C R™. Let {y"} be a sequence gen-
erated according to y"t! = yh — iUi,L V., ®(y"), where

y° € Y and indexes iy, € {1,.. N} are drawn in an es-
sentially cyclic way. If, for some h; > 0, ||V, ®(y")| <
€, Vie{l,...,N}, then

[Vy@(y")| <
for allh > h = maX;ec(1,.. N} hi.
Proof. See the Appendix. O

The next result provides a bound on the norm of the
gradient of the augmented Lagrangian L(x,6) used in
ASYMM.

Proposition 10. Let Assumption[]] hold and assume that

xF generated by ASYMM belongs to a neighborhood of
a local minimum of Lyx(x,0%) where Ly (z,0%) is oF-
strongly convexr. Denote by € the local tolerance set by
node i for the primal descent during cycle k and by L¥ the

Lipschitz constant of Vriﬁpﬁ/_ (zn,,0%:). Then, it holds

N rkkN2

i=1

IVa Ly (@1, 0%)] < e =

Proof. From Proposition L. (x,0%) has block
component-wise Lipschitz continuous gradient with
constants LY. Moreover, during the k-th cycle of
ASYMM, there occurred that ||in£~pk (zn,, 08|l < €F

N
and hence, by (15)), also ||V, Lpr(x,0%)| < €F. Then,
being x**! generated through a block coordinate de-
scent (according to Theorem 7 the proof follows from

Lemma [9 O

Proposition relates the local tolerances adopted by
the nodes in the primal descent to a global bound on
the norm of the gradient of the augmented Lagrangian.
The result requires to assume that the vector &* gener-
ated during the k-th cycle of ASYMM lies in a neigh-
borhood of a local minimum of the current augmented
Lagrangian, in which the augmented Lagrangian itself is
strongly convex. This assumption is indeed strong, but it
is somehow standard in the nonconvex optimization liter-
ature (see, e.g., [26 Section 2.2.4]). In practice it turns
out to be typically satisfied after a sufficient number of it-
erations of multiplier/penalty parameter updates. In fact,
as p* grows according to the update rules @—, the
augmented Lagrangian tends to become locally strongly
convex. Moreover, from a practical point of view, it has
been observed that choosing the obtained z* as the ini-
tial condition for the (k+1)-th minimization usually gen-
erates sequences {x*} that remain within a neighborhood

of the same local minimum of Problem , thus mean-
ing that there exists a cycle k after which the assumption
in Proposition (10| will hold indefinitely. Hence, if the as-
sumptions of Proposition hold from a certain cycle k
and the local tolerances €’ vanish as k — oo, the min-
imization of the augmented Lagrangian turns out to be
asymptotically exact. Therefore, convergence results such
those in [26] Section 2.5] can be recovered, when applying
ASYMM to Problem . The interested reader is referred
to [26], Chapter 2] for a thorough discussion on the conver-
gence properties of the Method of Multipliers.

5. Dealing with big-data optimization

The ASYMM algorithm can be easily amended to deal
with so called distributed big-data optimization, [34], i.e.,
the distributed solution of problems in which z € R™ with
n very large. In this set up arising, e.g., in estimation and
learning problems, two main problems may arise. On one
hand, the primal and multiplier update steps may not be
executable in a single step by some node because the com-
putation of the whole gradient in the primal step may be
cumbersome. Moreover, communication bottlenecks may
arise, in fact it may happen for some node ¢, that the local
optimization variable x; does not fit the communication
channels between node ¢ and its neighbors.

Assume each agent 4 to partition its local decision vari-
able z; in N; blocks, ie., x; = [x;1... :z:z-,Ni]T, where
Lim = Uszxl and z; = Zzlzl Ui,mxi,m~

Whenever node ¢ wakes up to perform task T1, it com-
putes the primal descent step on one of the N; blocks (say
m) instead of performing it on the whole z;, i.e. it com-
putes

1 ~
T Veun Lo, (280, 0)

)

Tiom = Tim —

where m is picked in an essentially cyclic way. Similarly
the update of the local multiplier vectors can be carried
out on one block at a time, e.g.,

Vijym < Vijym + Pij(Tiym — Tjom)-

By following the same reasoning adopted in Sections 3
and 4, it can be shown that the primal descent steps are
equivalent to a block coordinate descent algorithm on the
augmented Lagrangian and converge to a stationary point.

The only additional assumption needed for the con-
vergence result is that functions f;, h;, ¢; have block
component-wise Lipschitz continuous gradients. If for
some node i, x; does not fit the communication channels
(the same holds true for v;;), ASYMM is easily extended
by allowing node 7 to transmit x;,, and U;,, at the end
of each task T1 and to split the transmission on v;; in
multiple steps.

I I I I I I
0 10 20 30 40 50
cycle k

Figure 2: Evolution of the local decision variables z¥.

101 _
o107t -
N
&0
S
1073 -
1075 -
| | | | | |
0 10 20 30 40 50
cycle k

Figure 3: Logarithm of the measure of infeasibility £*.

6. Numerical Results

Two examples are presented to assess the performance
of ASYMM. The first one involves nonconvex local con-
straints, while the second requires the minimization of a
nonconvex objective function.

6.1. Distributed source localization

Consider a network of N sensors, deployed over a certain
region, communicating according to a connected graph
G = (V, &), which have to solve the optimization problem

N
minimize Z fi(z)
x
i=1

& — el = Ri <0,

ri — ||z — ¢l <0,

subject to i=1,...,.N

i=1,.. N,

which can be rewritten in the form of problem .

Such a problem naturally arises, for example, in the
context of source localization, in which each agent knows
its own absolute location ¢; and takes a noisy measure-
ment y; of its own distance from an an emitting source
located at an unknown location z* (for example through

a laser) as y; = ||l* — ¢|| + w;. If we make the assump-
tion of unknown but bounded (UBB) noise, i.e. for all
i =1,..., N, the noise signal w; satisfies |w;| < k; for some
ki > 0, then each node is able to define its own feasible
set X; in which the unknown source location must lie as
X, ={x|r < |z —c| < R;}, where r; = y; — k; and
R; = y; + r;. Notice that each set X; is a circular crown
and hence it is a non convex set.

Suppose fi(z;) = x]x; for all i € V. We report a
simulation with N = 10 nodes and n = 2, in which
x* € U[—2.5,2.5]", ¢; € U[—2.5,2.5]" and k; € UJ[0,0.3]
for all ¢ € V, where Ula, b] denotes the uniform distribu-
tion between a and b. The graph is modeled through a
connected Watts-Strogatz model in which nodes has mean
degree K = 2. Let us define the measure of infeasibility at
iteration k as

N
¢ -3 (max(o, 2% — el — Ro)+
=1
max(0,ri — 2 —)+ 3 —x§||)

JEN;

We run ASYMM for 25000 iterations with 5 = 4 and
v =0.25. Figureshows the evolution of #¥ for each i € V.
Finally, in Figure [3| the values of £ are reported. As it
can be seen, the nodes performed 50 multiplier updates
each, along the 25000 iterations (corresponding to 2500
awakenings per node on average).

6.2. Distributed nonlinear classification

In this example we consider a nonlinear classification
problem in which the data to be classified are represented
as points z € R? which belong to two different classes.
So, each point is associated a label y € {—1,1}, which
represents the class the point belongs to.

The considered classifier can be represented as a Neural
Network (NN) consisting of one input layer with two units,
two hidden layers with four and two units respectively, and
an output layer with one unit (respectively green, blue and
red in Figure . Moreover, a bias unit is present in both
the input and the hidden layers (in yellow in Figure Ié—_l[)
Define w; € R2X4, b, € R4, wo € R4X2, by € R2, w3 €
R2%! and b3 € R. Moreover, define 2 € R?® as the stack
of all the previously defined variables.

Define the output of the first hidden layer as
l1(z,wy,by) = tanh(w] z + by). (18)

where the operator tanh is to be intended component-wise.
Similarly, the output of the second hidden layer is

lo(z, w1, by, wa, by) = tanh(wg Iy (z,w1,by) + by) (19)
and the output of the whole NN is
f(z,z) = tanh(wy lo(z, w1, by, wa, by) + bs3) (20)

10

Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer
(Y

Figure 4: Graphical representation of the Neural Network used
as classifier. In green the input units, in blue the hidden units,
in red the output unit and in yellow the bias units.

—-15-1-050 05 1
Z1

1.5 2 25

Figure 5: Two moons dataset. Blue dots represent points with
label —1 and white dots points with label 1. Colored regions
represent the output of the classifier resulting from the
solution of provided by ASYMM. The color of the regions
is associated to a number as in the color bar.

1.5

Figure 6: Nested circles dataset. Blue dots represent points
with label —1 and white dots points with label 1. Colored
regions represent the output of the classifier resulting from
the solution of provided by ASYMM. The color of the
regions is associated to a number as in the color bar.

Given a set of labeled data points (Z,Y), the classifica-
tion problem can be written as

miniwmize Z (f(z,2) — 9)2 .

z,y€(Z,Y)

(21)

Suppose now that the dataset is distributed among N
nodes, which communicate according to a connected graph
G = (V,€). Each node i owns a portion of the dataset
(Z;,Y;), which must remain private and cannot be shared
with the other nodes. In this framework, problem can
be rewritten in the equivalent form

N
minimize Y Y (f(z,7:) —y)°

X1y N N
=1 2,y€(Z;,Ys)

v(i,j) € €

(22)

subject to x; = x;,

In our simulations two datasets are considered, which
are benchmarks used in the context of machine learning.
The first one consists of points belonging to two moon-
shaped subsets (see Figure7 in which points of one subset
have label y = 1, points of the other have label y = —1.
In the second one, data points are distributed along two
nested circles. Points on the inner circle have label y =1,
while the others have label y = —1 (see Figure @

The ASYMM algorithm has been run on N = 10 nodes,
each one processing a local dataset (Z;,Y;) consisting of
100 points. The obtained classifiers are represented in
Figures [5] and [6] The colored regions represent the value
of computed in those points at the (local) minimum
x* obtained by ASYMM.

It is worth stressing that the example presents a low-size
classification problem, with the purpose of illustrating the
proposed technique. When massive data in higher dimen-
sional spaces are available, it is necessary to consider a
more complex neural network (i.e., with a much higher
number of neurons) so that the dimension of the decision
variable can be fairly high. In such a case, the big-data
approach proposed in Section [f] can be adopted.

7. Conclusions

In this paper, an asynchronous distributed algorithm
for nonconvex optimization problems over networks has
been proposed. By suitably defining local augmented La-
grangian functions, the optimization process has been dis-
tributed among the agents of the network. A fully asyn-
chronous implementation has been devised, taking advan-
tage of a distributed logic-AND algorithm that allows the
agents to regulate the sequence of primal and dual update
steps. The proposed ASYMM algorithm is shown to be
equivalent to an inexact version of the centralized method
of multipliers, thus inheriting its main properties. An ex-
tension to big-data problems, featuring high-dimensional
decision variables, has been also presented.

Ongoing research concerns the specialization of the pro-
posed method to different application domains, including

11

distributed set membership estimation and machine learn-
ing with constraints.

References
[1] S. Lee, A. Nedic, Distributed random projection algorithm for
convex optimization, IEEE Journal of Selected Topics in Signal
Processing 7 (2) (2013) 221-229.
K. Margellos, A. Falsone, S. Garatti, M. Prandini, Distributed
constrained optimization and consensus in uncertain networks
via proximal minimization, IEEE Transactions on Automatic
Control PP (99) (2017) 1-1.
A. Nedic, A. Ozdaglar, Distributed subgradient methods for
multi-agent optimization, IEEE Transactions on Automatic
Control 54 (1) (2009) 48-61.
P. Lin, W. Ren, Y. Song, Distributed multi-agent optimization
subject to nonidentical constraints and communication delays,
Automatica 65 (2016) 120 — 131.
I. Necoara, Random coordinate descent algorithms for multi-
agent convex optimization over networks, IEEE Transactions
on Automatic Control 58 (8) (2013) 2001-2012.
T.-H. Chang, A. Nedi¢, A. Scaglione, Distributed con-
strained optimization by consensus-based primal-dual perturba-
tion method, IEEE Transactions on Automatic Control 59 (6)
(2014) 1524-1538.
D. Yuan, D. W. Ho, S. Xu, Regularized primal-dual subgradient
method for distributed constrained optimization., IEEE Trans.
Cybernetics 46 (9) (2016) 2109-2118.
C.-X. Shi, G.-H. Yang, Augmented lagrange algorithms for dis-
tributed optimization over multi-agent networks via edge-based
method, Automatica 94 (2018) 55 — 62.
A. Falsone, K. Margellos, S. Garatti, M. Prandini, Dual decom-
position for multi-agent distributed optimization with coupling
constraints, Automatica 84 (2017) 149 — 158.
F. Tutzeler, P. Bianchi, P. Ciblat, W. Hachem, Explicit con-
vergence rate of a distributed alternating direction method of
multipliers, IEEE Transactions on Automatic Control 61 (4)
(2016) 892-904.
P. Bianchi, W. Hachem, I. Franck, A stochastic coordinate
descent primal-dual algorithm and applications, in: Machine
Learning for Signal Processing (MLSP), 2014 IEEE Interna-
tional Workshop on, IEEE, 2014, pp. 1-6.
P. Bianchi, W. Hachem, F. Iutzeler, A coordinate descent
primal-dual algorithm and application to distributed asyn-
chronous optimization, IEEE Transactions on Automatic Con-
trol 61 (10) (2016) 2947-2957.
D. P. Bertsekas, J. N. Tsitsiklis, Parallel and distributed com-
putation: numerical methods, Vol. 23, Prentice hall Englewood
Cliffs, NJ, 1989.
S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Randomized gos-
sip algorithms, IEEE transactions on information theory 52 (6)
(2006) 2508-2530.
A. Nedic, Asynchronous broadcast-based convex optimization
over a network, IEEE Transactions on Automatic Control 56 (6)
(2011) 1337-1351.
D. Jakovetic, J. Xavier, J. M. Moura, Cooperative convex op-
timization in networked systems: Augmented lagrangian algo-
rithms with directed gossip communication, IEEE Transactions
on Signal Processing 59 (8) (2011) 3889-3902.
E. Wei, A. Ozdaglar, On the O(1=k) convergence of asyn-
chronous distributed alternating direction method of multipli-
ers, in: Global conference on signal and information processing
(GlobalSIP), 2013 IEEE, IEEE, 2013, pp. 551-554.
I. Notarnicola, G. Notarstefano, Asynchronous distributed op-
timization via randomized dual proximal gradient, IEEE Trans-
actions on Automatic Control 62 (5) (2017) 2095-2106.
P. Bianchi, J. Jakubowicz, Convergence of a multi-agent pro-
jected stochastic gradient algorithm for non-convex optimiza-
tion, IEEE Transactions on Automatic Control 58 (2) (2013)
391-405.

2]

(3]

(4]

[12]

[13]

[14]

[20] H.-T. Wai, A. Scaglione, J. Lafond, E. Moulines, A projection-
free decentralized algorithm for non-convex optimization, in:
Signal and Information Processing (GlobalSIP), 2016 IEEE
Global Conference on, IEEE, 2016, pp. 475-479.

[21] P. Di Lorenzo, G. Scutari, Next: In-network nonconvex opti-
mization, IEEE Transactions on Signal and Information Pro-
cessing over Networks 2 (2) (2016) 120-136.

[22] Y. Sun, G. Scutari, D. Palomar, Distributed nonconvex mul-
tiagent optimization over time-varying networks, in: Signals,
Systems and Computers, 2016 50th Asilomar Conference on,
IEEE, 2016, pp. 788-794.

[23] T. Tatarenko, B. Touri, Non-convex distributed optimization,
IEEE Transactions on Automatic Control 62 (8) (2017) 3744—
3757.

[24] I. Notarnicola, G. Notarstefano, A randomized primal dis-
tributed algorithm for partitioned and big-data non-convex op-
timization, in: Decision and Control (CDC), 2016 IEEE 55th
Conference on, IEEE, 2016, pp. 153-158.

[25] D. P. Bertsekas, Multiplier methods: A survey, Automatica
12 (2) (1976) 133 — 145.

[26] D. P. Bertsekas, Constrained optimization and Lagrange multi-
plier methods, Academic press, 2014.

[27] R. T. Rockafellar, Augmented lagrange multiplier functions and
duality in nonconvex programming, SIAM Journal on Control
12 (2) (1974) 268-285.

[28] I. Matei, J. S. Baras, M. Nabi, T. Kurtoglu, An extension of
the method of multipliers for distributed nonlinear program-
ming, in: Decision and Control (CDC), 2014 IEEE 53rd Annual
Conference on, IEEE, 2014, pp. 6951-6956.

[29] I. Matei, J. S. Baras, Distributed nonlinear programming meth-
ods for optimization problems with inequality constraints, in:
Decision and Control (CDC), 2015 IEEE 54th Annual Confer-
ence on, IEEE, 2015, pp. 2649-2654.

[30] T. Ayken, J.-I. Imura, Diffusion based stopping criterion for
event-triggered distributed optimization, SICE Journal of Con-
trol, Measurement, and System Integration 8 (6) (2015) 371—
379.

[31] G. Oliva, R. Setola, C. N. Hadjicostis, Distributed finite-time
calculation of node eccentricities, graph radius and graph diam-
eter, Systems & Control Letters 92 (2016) 20-27.

[32] S.J. Wright, Coordinate descent algorithms, Mathematical Pro-
gramming 151 (1) (2015) 3-34.

[33] Y. Xu, W. Yin, A globally convergent algorithm for noncon-
vex optimization based on block coordinate update, Journal of
Scientific Computing (2017) 1-35.

[34] I. Notarnicola, Y. Sun, G. Scutari, G. Notarstefano, Distributed
big-data optimization via block-iterative convexification and av-
eraging, in: 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), 2017, pp. 2281-2288.

[35] Y. Nesterov, Introductory lectures on convex optimization: A
basic course, Vol. 87, Springer Science & Business Media, 2013.

Appendix
Proof of Lemma

Consider a function ®(y), o-strongly convex in a sub-
set Y C R"™, with L-Lipschitz continuous gradient. Define
y* = argminycy ®(y). From the definition, if ®(y) is o-
strongly convex, then, using the Cauchy Schwartz inequal-
ity one obtains

IVO(y) = VO(2)|| = olly — 2|
Then, it can be easily proved that

ally =™ < IVe)l < Llly —y*|, Yy € Y (23)

G W Ly =l

Figure 7: Representation of the results of Lemma

In order to prove Lemmal[J|the following technical results
are needed.

Lemma 11. Performing a gradient descent algorithm on
®(y), starting from y° and using a step-size equal to %,
i.€.

Y=y B (24)
produces a sequence {y"} such that,

ly" ™ =y < " = y*| (25)
Proof. See, e.g., [35, Theorem 2.1.14]. O

Lemma 12. Consider a sequence {y"} generated as
Yyt =yt — 2VO(y") with y° € Y. Then:

1. for all h > h it holds that
Ve < Lily" -y (26)
2. if for some h it holds that | V®(y")| = ¢, then

IV < 2 (27)

for all h > h.

Proof. Using the right side of and Lemma one has
that

IV)] < Llly"*' —y*|| < Lliy" — "
By induction, (26| follows directly and this concludes the

proof for point |1} For point (ii), since ||[V®(y")| = ¢, from
the left side of (23]), one has that

olly" =yl <e
which can be rewritten as

ly" —y*|| < (28)

SHEL

Then, substituting in the right side of , we ob-
tain which, from point (1| concludes the proof. O

A graphical representation of the previous Lemma is
given in Figure The gradient of ®(y) is bounded by
the dotted lines, as from . Moreover, from 7 given
[V, ®(y")]|, it holds that ||V, ®(y")| stays in the shaded
region.

Finally, Lemma [J] is proved by noting that, from
Lemma [T2]

Liéi
IV, @(y")] <
for all h > h;, and
N
V@™ = [DIV (M)
i=1

13

	Introduction
	Set-up and Preliminaries
	Notation and definitions
	Distributed Optimization Problem
	Equivalent Formulation and Method of Multipliers

	Asynchronous Method of Multipliers
	Asynchronous distributed logic-AND
	Asynchronous distributed optimization algorithm

	ASYMM Analysis
	Equivalence with an inexact Method of Multipliers
	A bound on the Lagrangian gradient

	Dealing with big-data optimization
	Numerical Results
	Distributed source localization
	Distributed nonlinear classification

	Conclusions

