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Unfolding Nonlinear Dynamics in Analogue
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Abstract— The paper considers a relevant class of networks
containing memristors and (possibly) nonlinear capacitors and
inductors. The goal is to unfold the nonlinear dynamics of these
networks by highlighting some main features that are potentially
useful for real-time signal processing and in-memory computing.
In particular, an analytic treatment is provided for dynamic
phenomena as the presence of invariant manifolds, the coexistence
of different regimes, complex dynamics and attractors and the
phenomenon of bifurcations without parameters, i.e., bifurcations
due to changing the initial conditions of the state variables for a
fixed set of circuit parameters. The paper also addresses the issue
of how to design pulse independent voltage or current sources
to steer the network dynamics through different manifolds and
attractors. Two relevant examples are worked out in details,
namely, a variant of Chua’s circuit with a memristor and a
nonlinear capacitor and a relaxation oscillator with a memristor
and a nonlinear inductor. In the latter example, the paper also
studies the effect on manifolds and coexisting dynamics when real
memristive devices are accounted for using a class of extended
memristor models. The analysis is conducted by means of a
recently developed technique named flux-charge analysis method
(FCAM). Numerical simulations are presented to confirm the
theoretic findings.

Index Terms— Bifurcations without parameters, coexisting
attractors, complex dynamics, flux-charge analysis, invariant
manifolds, memristor, nonlinear inductors and capacitors.

I. INTRODUCTION

CONVENTIONAL computing architectures are facing
fundamental challenges including the heat and mem-

ory wall, the end of Moore’s law and the von Neumann
bottleneck, i.e., the high (energy and speed) costs associ-
ated with constant data movements between the memory
and the processor [1], [2]. Memristor and, more generally,
mem-element technology, offers itself as a promising one to
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fill the gap of Moore’s law by enabling high-efficient on-chip
memory storage, bioinspired computing and the possibility
to implement efficient reconfigurable in-memory computing
systems [3]–[6].

A deep understanding of the nonlinear dynamics of
mem-circuits is essential to exploit them for analogue signal
processing purposes [7]–[13]. Recent papers [14]–[16] have
developed a technique, named Flux-Charge Analysis Method
(FCAM), to effectively analyze and uncover the peculiar
dynamical properties of networks with mem-elements. FCAM
has been used so far to analyze some relevant classes of
mem-networks as those containing memristors, memcapaci-
tors, meminductors together with linear capacitors and induc-
tors [4], [15], [16]. For modeling purposes at nanoscale,
mem-elements are sometimes used in combination with non-
linear inductors or capacitors. This is true for instance for
the classical circuit model for a Josephson junction, that
consists of a parallel connection of a linear capacitor, a linear
resistor, and a nonlinear flux-controlled inductor. A more rig-
orous quantum mechanical analysis of the Josephson junction
dynamics reveals the presence of an additional current com-
ponent due to interference among quasi-particle pairs, which
can be modeled with the current flowing into a flux-controlled
memristor [17].

In the paper, a class N of mem-circuits containing any
number of memristors and (possibly) nonlinear capacitors and
inductors, is considered. The goal is to extend FCAM in order
to unfold the nonlinear dynamics of networks in N by high-
lighting some main peculiar features that are potentially useful
for real-time signal processing and in-memory computing. The
main contributions in the paper consist of an analytic treatment
of the following dynamic phenomena.

• Invariant manifolds. It is shown that the state space in
the voltage-current (v, i)-domain can be foliated in a
continuum of manifolds that are positively invariant for
the dynamics in the inputless case.

• Coexisting lower-order dynamics and attractors. It is
proved that on each manifold a circuit displays a different
reduced-order dynamics and attractors.

• Bifurcations without parameters. Due to the presence
of invariant manifolds, we can observe bifurcations due
to changing the initial conditions for the state variables
even if the circuit parameters are held fixed (bifurcations
without parameters).

• Programming with pulses. We show that it is possible
to steer a circuit trajectory through different manifolds,
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dynamics and attractors, by applying suitable pulse inde-
pendent voltage or current sources.

• Extension to real memristive devices. We show via an
example that the technique in the paper can be applied
to some classes of circuits where (ideal) memristors are
replaced by memristive devices belonging to a class of
extended memristors.

The unfolding, and the main results obtained in the paper,
are illustrated by means of two examples. The first one
concerns a variant of Chua’s circuit with a memristor and
a nonlinear capacitor, for which it is shown that there is
coexistence of different regimes and attractors as equilibrium
points, cycles and complex attractors, for a fixed set of circuit
parameters. The second one concerns a relaxation oscillator
with a class of extended memristors and a nonlinear inductor,
for which there is coexistence of equilibrium points and limit
cycles.

II. A CLASS OF CIRCUITS WITH MEM-ELEMENTS

Let v(t) and i(t) be the voltage and current, respectively,
of a two-terminal element D. The flux (or voltage momentum)
is given by ϕ(t) = � t

−∞ v(τ )dτ , whereas the charge (or
current momentum) is q(t) = � t

−∞ i(τ )dτ . Also define the
incremental flux ϕ(t; t0) = � t

t0
v(τ )dτ and incremental charge

q(t; t0) = � t
t0

i(τ )dτ at the terminals of D, where t ≥ t0 and
t0 is a finite initial instant.

We consider henceforth a class N of nonlinear circuits
containing:

• flux-controlled memristors, denoted by D ∈ Mϕ and
defined by the constitutive relation (CR) qM = fM (ϕM )

• charge-controlled memristors, denoted by D ∈ Mq and
defined by the CR ϕM = fM (qM )

• possibly nonlinear charge-controlled capacitors (D ∈ Cq )
with CR vC = fC (qC)

• possibly nonlinear flux-controlled inductors (D ∈ Lϕ)
with CR iL = fL(ϕL)

• linear resistors v = Ri and independent voltage and
current sources with CR ve(t) = e(t) and ia(t) = a(t),
respectively.

In the flux-charge (ϕ, q)-domain the CRs of the elements
are given as follows:

• D ∈ Mϕ :

qM (t; t0) = fM (ϕM (t; t0) + ϕM0) − fM (ϕM0)

where ϕM0 = ϕM (t0)
• D ∈ Mq :

ϕM (t; t0) = fM (qM(t; t0) + qM0) − fM (qM0)

where qM0 = qM (t0)
• D ∈ Cq :

ϕ̇C(t; t0) = fC (qC(t; t0) + qC0)

where qC0 = qC(t0)
• D ∈ Lϕ :

q̇L(t; t0) = fL(ϕL(t; t0) + ϕL0)

Fig. 1. Decomposition of a circuit N ∈ N .

where ϕL0 = ϕL(t0)
• linear resistors: ϕR(t; t0) = RqR(t; t0);

independent voltage sources: ϕe(t; t0) = � t
t0

e(τ )dτ ;
independent current sources: qa(t; t0) = � t

t0
a(τ )dτ .

A. State Equations in the (ϕ, q)-Domain

The article [18] has addressed the problem of writing
a global state equation (SE) representation for a circuit
N ∈ N under suitable assumptions. Next, we briefly recall
some results from that paper. The SEs are then used for
addressing the main topic of this paper, i.e., the unfolding
of the dynamics of circuits in the class N .

Consider a circuit N ∈ N . In the (ϕ, q)-domain, N satisfies
Kirchhoff charge law (KqL) and Kirchhoff flux law (KϕL)
for incremental charges and fluxes [14]. Taking into account
also the CRs of the elements D ∈ N , it is seen that a circuit
N ∈ N in the (ϕ, q)-domain is analogous to a nonlinear RLC
circuit described in the (v, i)-domain. Based on this analogy,
we can tackle the problem of writing the SEs of N using well
established results for nonlinear RLC circuits [19].

To find the SE representation in the (ϕ, q)-domain, it is con-
venient to represent a circuit N ∈ N as a resistive multi-port
NR containing the linear resistors and flux and charge sources
terminated by a number of two-terminal elements. The hybrid
description of NR [20] is then used for writing the SEs.
In particular, we assume that N is given by NR terminated
by the following two-terminal elements, as shown in Fig. 1:

• D ∈ Cq in parallel to D ∈ Mϕ (we assume there are nγμ

of such elements);
• D ∈ Cq (nγ );
• D ∈ Lϕ in in series with D ∈ Mq (nλμ);
• D ∈ Lϕ (nλ).
Assume that there exists the hybrid representation of NR⎛

⎜⎜⎝
qγμ(t; t0)
ϕλμ(t; t0)
qγ (t; t0)
ϕλ(t; t0)

⎞
⎟⎟⎠ = H

⎛
⎜⎜⎝

ϕγμ(t; t0)
qλμ(t; t0)
ϕγ (t; t0)
qλ(t; t0)

⎞
⎟⎟⎠ + U(t; t0) (1)

where

U(t; t0) = B
	

ϕe(t; t0)
qa(t; t0)




depends upon the flux and charge sources within NR .
Remark 1: A necessary condition for the existence of the

hybrid representation (1) is that N has no loop formed by
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capacitors and independent flux sources only, and no cut-set
formed by inductors and current sources only. Moreover,
according to [19, Th. 2], for the existence of (1), each
flux-controlled memristor should be in parallel to a capacitor,
while each charge-controlled memristor should be in series
with an inductor. Finally, according to the SE representations
in (3.8) and (3.9) in [19], we need to exclude nonlinear
capacitors that are not charge-controlled and nonlinear induc-
tors that are not flux-controlled. This justifies the previous
choices of elements in N guaranteeing the existence of the
SE representation.

For the nγμ two-terminal elements Cq -Mϕ , in vector form,
the CR can be written as

−qγμ(t; t0)= fγμ
M (ϕγμ(t; t0)+ϕ

γμ
M0) − fγμ

M (ϕ
γμ
M0)+qγμ

C (t; t0)

(2)

with

ϕ̇γμ(t; t0) = fγμ
C (qγμ

C (t; t0) + qγμ
C0 ).

For the nγ two-terminal elements Cq we have

ϕ̇γ (t; t0) = fγ
C (qγ

C (t; t0) + qγ
C0). (3)

For the nλμ two-terminal elements Lϕ-Mq we obtain

−ϕλμ(t; t0)= fλμ
M (qλμ(t; t0)+qλμ

M0) − fλμ
M (qλμ

M0) + ϕ
λμ
L (t; t0)

(4)

with

q̇λμ(t; t0) = fλμ
L (ϕ

λμ
L (t; t0) + ϕ

λμ
L0)

while for the nλ two-terminal elements Lϕ we have

q̇λ(t; t0) = fλ
L(ϕλ

L(t; t0) + ϕλ
L0). (5)

Let us introduce the vectors of incremental capacitor fluxes
and incremental inductor charges

x(t) =
	

ϕγμ(t; t0)
qλμ(t; t0)



=

	
ϕ

γμ
C (t; t0)

qλμ
L (t; t0)




y(t) =
	

ϕγ (t; t0)
qλ(t; t0)



=

	
ϕ

γ
C(t; t0)

qλ
L(t; t0)




and the auxiliary vectors

w(t) =
	

qγμ
C (t; t0)

ϕ
λμ
L (t; t0)



; z(t) =

	
qγ

C(t; t0)
ϕλ

L(t; t0)



.

Consider also the vectors of the memristor fluxes and
charges and the capacitor charges and inductor fluxes

X(t) = x(t) + X0 =
	

ϕ
γμ
M (t)

qλμ
M (t)



(6)

W(t) = w(t) + W0 =
	

qγμ
C (t)

ϕ
λμ
L (t)



(7)

Z(t) = z(t) + Z0 =
	

qγ
C (t)

ϕλ
L(t)



(8)

where the vectors of initial conditions for the same variables
are

X0 =
	

ϕ
γμ
M0

qλμ
M0



; W0 =

	
qγμ

C0
ϕ

λμ
L0



; Z0 =

	
qγ

C0
ϕλ

L0



.

Finally, define the following nonlinear functions

Fa(·)=
	

fγμ
M (·)

fλμ
M (·)



; Fb(·)=

	
fγμ
C (·)

fλμ
L (·)



; Fc(·)=

	
fγ
C (·)

fλ
L(·)




and decompose matrices H = {Hi j }, B = {Bi j }, i, j = 1, 2,
and vector U(t; t0) = {Ui (t; t0)}, i = 1, 2.

Substituting (2)-(5) in (1) we obtain that the SEs of N in
the (ϕ, q)-domain can be expressed as [18]

	
ẋ(t)
ẏ(t)



=

	
Fb(w(t) + W0)
Fc(z(t) + Z0)




where	
w(t)
z(t)



=

	 −Fa(x(t) + X0) + Fa(X0)
0




− H
	

x(t)
y(t)



− U(t; t0). (9)

In a more compact form the same SEs can be written as

ẋ(t) = Fb� − Fa(x(t) + X0) + Fa(X0) − H11x(t)

− H12y(t) − U1(t; t0) + W0
�

(10)

ẏ(t) = Fc(−H21x(t) − H22y(t) − U2(t; t0) + Z0) (11)

for t ≥ t0, with initial condition (x(t0), y(t0)) = (0, 0).
This is a system of nϕq = nγμ +nλμ +nγ +nλ equations in

the same number of state variables (x(t), y(t)) ∈ R
nϕq given

by the incremental capacitor fluxes and incremental inductor
charges. The order of the SEs in the (ϕ, q)-domain is nϕq .

B. State Equations in the (v, i )-Domain

The SEs of N in the (v, i)-domain can be obtained by dif-
ferentiation in time of (1)-(5) and by performing substitutions
analogous to those used to derive SEs (9). We obtain

Ẋ(t) = Fb(W(t)) (12)	
Ẇ(t)
Ż(t)



=

	 −JFa (X(t))Fb(W(t))
0




− H
	

Fb(W(t))
Fc(Z(t))



− U̇(t; t0) (13)

for t ≥ t0, with initial condition

�0 = (X(t0), W(t0), Z(t0)) = (X0, W0, Z0)

where JFa denotes the Jacobian of Fa .
This is a system of nv i = 2(nγμ +nλμ)+nγ +nλ equations

in the same number of state variables

�(t) = (X(t), W(t), Z(t)) ∈ R
nvi

given by the fluxes of flux-controlled memristors, charges of
charge-controlled memristors, charges of capacitors and fluxes
of inductors. The order of the SEs in the (v, i)-domain is nv i .

Remark 2: Note that for the SE description there is a reduc-
tion of order nγμ + nλμ, equal to the number of memristors,
passing from the (v, i)-domain to the (ϕ, q)-domain.
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III. INVARIANT MANIFOLDS AND COEXISTING DYNAMICS

Let us now address the main issues concerning the existence
of invariant manifolds and coexisting reduced-order dynamics
and attractors.

Consider, under the assumption det H22 �= 0, function
K(�) : R

nvi → R
nγμ+nλμ of the state variables in the

(v, i)-domain defined as

K(�) = Fa(X) + S22X + W − H12H−1
22 Z (14)

where S22 = H11 − H12H−1
22 H21.

Let � = K(Rnvi ). For any �̄ ∈ �, consider the set

M(�̄) = {� ∈ R
nvi : K(�) = �̄}.

This defines ∞nγμ+nλμ manifolds in the state space R
nvi in the

(v, i)-domain with geometric properties analogous to those in
Theorem 1 in [16].

Theorem 1: Assume det H22 �= 0 and let �(t; t0,�0),
t ≥ t0, where �0 ∈ R

nvi , be the solution of the SEs in the
(v, i)-domain with initial condition �0 at t0. Then, for any
t ≥ t0 we have

�(t; t0,�0) ∈ M(K(�(t; t0,�0)))

where

K(�(t; t0,�0)) = K(�0) + H12H−1
22 (B21ϕe(t; t0)

+ B22qa(t; t0))

− (B11ϕe(t; t0) + B12qa(t; t0)). (15)

Proof: From (9) we obtain z(t) = −H21x(t) − H22y(t) −
U2(t; t0) and, since det H22 �= 0

y(t) = −H−1
22 (z(t) + H21x(t) + U2(t; t0)).

Substituting in (9)

0 = Fa(x(t) + X0) − Fa(X0) + S22x(t) + w(t)

− H12H−1
22 z(t) − H12H−1

22 U2(t; t0) + U1(t; t0)

for any t ≥ t0, where S22 = H11 − H12H−1
22 H21. Then,

the result in the theorem follows.
Let us now study the behavior of N in the inputless case.

The following holds.
Theorem 2: Assume det H22 �= 0. Consider the inputless

case ϕe(t; t0) = 0, qa(t; t0) = 0, for any t ≥ t0. Then:
1) each manifold M is positively invariant for the dynamics

of N in the (v, i)-domain, namely, given any initial
condition �0, we have

�(t; t0,�0) ∈ M(K(�0))

for any t ≥ t0;
2) the reduced-order (nϕq -order) system on manifold

M(K(�0)) is given by

Ẋ(t) = Fb� − Fa(X(t)) − H11X(t) − H12Y(t)

+ K(�0)
�

(16)

Ẏ(t) = Fc(−H21X(t) − H22Y(t)) (17)

where

Y(t) = y(t) − H−1
22 (H21X0 + Z0). (18)

Fig. 2. Modified Chua’s circuit with memristor and nonlinear capacitor.

Fig. 3. Three-port NR for finding the hybrid representation of the modified
Chua’s circuit.

Proof: In the inputless case, it follows from (15) of
Theorem 1 that K(�(t; t0,�0)) = K(�0) for any t ≥ t0,
as stated in point 1).

To prove point 2), it is enough to substitute (18) in (10),
(11), note that ẏ(·) = Ẏ(·) and recall (6)-(8).

Consider the constant term K0 = K(�0) at the right-hand
side of the reduced-order system (16). If we change the
initial conditions �0 in a way that also K(�0) is changed,
then we obtain a different reduced order dynamics on man-
ifold M(K0). This explains theoretically why for structural
reasons there coexist infinitely many different reduced-order
dynamics and attractors for a given circuit N ∈ N .

Let us now consider the case where the inputs are non-zero.
On the basis of (15), we can design independent pulse voltage
or current source to steer the solutions of N through different
manifolds and dynamics along the lines discussed in [16]. This
latter aspect is further illustrated via the examples in the next
sections.

IV. CHUA’S CIRCUIT WITH MEMRISTOR

AND NONLINEAR CAPACITOR

To illustrate the unfolding of the dynamics of circuits with
memristors and nonlinear storage elements, we consider a
variant of Chua’s circuit where the nonlinear resistor (Chua’s
diode) is replaced by a flux-controlled memristor Mϕ with
characteristic qM = fM (ϕM ) and one linear capacitor is
replaced by a nonlinear charge-controlled capacitor C1 with
characteristic vC1 = fC1(qC1) (Fig. 2). An independent current
source a(·) is also introduced for manifold programming.

To obtain the hybrid representation of the three-port NR for
this circuit, let us refer to Fig. 3. A simple analysis yields⎛

⎝ qγμ(t; t0)
qγ (t; t0)
ϕλ(t; t0)

⎞
⎠ = H

⎛
⎝ϕγμ(t; t0)

ϕγ (t; t0)
qλ(t; t0)

⎞
⎠ + Bqa(t; t0)

with

H =
⎛
⎝ G −G 0

−G G −1
0 1 0

⎞
⎠ , B =

⎛
⎝ −1

0
0

⎞
⎠

and qa(t; t0) = � t
t0

a(τ )dτ .
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We have x(t) = ϕC1(t; t0), y(t) = (ϕC2(t; t0), qL(t; t0))T

and w(t) = qC1(t; t0), z(t) = (qC2(t; t0), ϕL(t; t0))T , where
T denotes the transpose. Then, on the basis of (10), (11) we
obtain that the modified Chua’s circuit satisfies the following
third-order system of SEs in the (ϕ, q)-domain

ϕ̇C1(t; t0) = fC1

� − GϕC1(t; t0) + GϕC2(t; t0)

− fM (ϕC1(t; t0) + ϕM0) + fM (ϕM0)

+ qC10 + qa(t; t0)
�

(19)

ϕ̇C2(t; t0) = 1

C2
[GϕC1(t; t0) − GϕC2(t; t0)

+ qL(t; t0) + qC20] (20)

q̇L(t; t0) = 1

L
[−qC2(t; t0) − qL0]. (21)

The initial conditions are ϕC1(t0; t0) = ϕC2(t0; t0) = 0 and
qL(t0, t0) = 0.

By means of (12), (13) we obtain the fourth-order SEs in
the (v, i)-domain

ϕ̇M (t) = fC1(qC1(t))

q̇C1(t) = G


qC2(t)

C2
− fC1(qC1(t))

�

− f �
M (ϕM (t)) fC1(qC1(t)) + a(t)

q̇C2(t) = ϕL(t)

L
+ G fC1(qC1(t)) − GqC2(t)

C2
dϕL(t)

dt
= −qC2(t)

C2

with initial conditions ϕM0 , qC10 , qC20 and ϕL0 .
We have

det H22 = det

	
G −1
1 0



= 1 �= 0.

Let �(t) = (ϕM (t), qC1(t), qC2(t), ϕL(t))T ∈ R
4 be the vector

of state variables in the (v, i)-domain. A simple computation
yields S22 = G and H12H−1

22 = [0 G]. Then, from (14) we
obtain

K (�(t))
.= Q(t) = fM (ϕM (t)) + GϕM (t)

+ qC1(t) + GϕL(t) : R
4 → R

for any t ≥ t0. The state-space R
4 in the (v, i)-domain can be

decomposed in ∞1 manifolds

M(Q0) = {(ϕM , qC1, qC2, ϕL)T : fM (ϕM(t))+GϕM (t) (22)

+ qC1(t) + GϕL(t) = Q0} (23)

for any Q0 ∈ R. Moreover, from (15) we have

Q(t) = Q0 + qa(t; t0) (24)

for any t ≥ t0, where Q0 = Q(t0).
Consider first the inputless case a(t) = 0, hence

qa(t; t0) = 0, for any t ≥ t0. Due to Theorem 2,
manifolds M(·) are positively invariant for the dynamics
in the (v, i)-domain. Namely, given the initial conditions
�0 = (ϕM0, qC10, qC20, ϕL0)

T , if we let Q0 = K (�0), then
we have �(t; t0,�0) ∈ M(Q0) for any t ≥ t0. Moreover,

Fig. 4. Nonlinear characteristic fC1 of C1.

from (16) and (17), the reduced-order (third-order) system
describing the dynamics on M(Q0) is given by

Ẋ(t) = fC1

� − G X (t) + GY1(t) − fM (X (t)) + Q0
�

Ẏ1(t) = 1

C2
[G X (t) − GY1(t) + Y2(t)]

Ẏ2(t) = 1

L
(−Y1(t)) (25)

where ϕM (t) = X (t) and	
Y1(t)
Y2(t)



=

	
ϕC2(t) − ϕL0 − ϕC20

qL(t) − qL0 − GϕM0 + qC20 − GϕL0



.

Summing up, each invariant manifold M(Q0) is identified
by quantity Q0 = K (�0) = fM (ϕM0) + GϕM0 + qC10 + GϕL0

(cf. (22)). Moreover, the same value of Q0 acts as an additional
parameter, i.e., a forcing term, for the vector field defining
the reduced-order system on M(Q0) (cf. (25)). Different
manifolds are characterized by different values of Q0 and,
hence, different dynamics. This proves analytically that there
is coexistence of infinitely many different third-order dynamics
for a fixed set of circuit parameters. Also, note that it is
possible to vary Q0 in R by varying the initial conditions
�0 = (ϕM0, qC10, qC20, ϕL0)

T for the state variables in the
(v, i)-domain, for fixed circuit parameters. Then, we expect
to observe bifurcations due to varying the initial conditions,
for a fixed set of circuit parameters. This kind of bifurcations
is named bifurcations without parameters [14]. Some of these
phenomena are illustrated via the next numerical simulations.

Suppose that the nonlinear characteristic of C1 is the piece-
wise linear function

vC1 = fC1(qC1) (26)

= 1

Cb
qC1 +

1

2

	
1

Cb
− 1

Ca



(|qC1 − q0| − |qC1 + q0|) (27)

with 1/Ca = −1, 1/Cb = 1.5 and q0 = 1 (Fig. 4), while the
memristor characteristic is

qM = fM (ϕM ) = αϕM + 1

3
βϕ3

M (28)

with α = −1/2 and β = 0.015. Note that the memristor is
active since its memristance is negative in an interval around
the value ϕM = 0. Moreover, let G = 1, C2 = 8.8 and
L = C2/14.

Figure 5 reports the bifurcation diagram of the SEs in
the (ϕ, q)-domain (19)-(21), obtained by increasing Q0 in
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Fig. 5. Bifurcation diagram of the modified Chua’s circuit obtained by
varying Q0 for a fixed set of circuit parameters, namely, fC1 as in (26),
fM as in (28) and G = 1, C2 = 8.8, L = C2/14.

Fig. 6. Magnification of the bifurcation diagram of Fig. 5. Black dots are
obtained by increasing Q0 in the interval [1.45, 1.85], while red dots are
obtained by decreasing Q0. A sequence of period-doubling (PD) bifurcations
can be detected. Moreover, a scenario is suggested where there is a subcrit-
ical Hopf bifurcation (H) and a saddle-node bifurcation of periodic orbits
(LPC–limit point of cycles).

small steps 	Q0 = 0.005, for fixed circuit parameters. Note
that there are intervals where the circuit displays complex
dynamics, intervals with a periodic dynamics (cycles with
period 3, 2 and 1) and an interval with a convergent dynam-
ics. Figure 6 provides a magnified version of the bifurca-
tion diagram for Q0 ∈ [1.45, 1.85], where we can better
detect a sequence of inverse period-doubling (PD) bifurcations
destroying the complex attractor and leading to a periodic
dynamics (cycle with period 1). The last PD is at Q0 = 1.573.
The same figure reports with red dots a simulation obtained
by decreasing Q0. The figure suggests a scenario with a
subcritical Hopf (H) bifurcation for Q0 = 1.695 and a
saddle-node bifurcation of periodic orbits (LPC–limit point
of cycles) at Q0 = 1.822. Note that there is coexistence of
a stable cycle and a stable equilibrium point when Q0 ∈
[1.695, 1.822]. Since such figures are obtained by varying
Q0 via a variation of the initial conditions, for a fixed set

Fig. 7. Coexisting attractors displayed by the modified Chua’s cir-
cuit obtained for different values of Q0 and fixed circuit parameters:
(a) double-scroll attractor (Q0 = 0); single-scroll attractor (Q0 = 0.9); cycle
with period eight (Q0 = 1.491); cycle with period four (Q0 = 1.5); cycle
with period 2 (Q0 = 1.55) and cycle with period 1 (Q0 = 1.7).

of circuit parameters, the numerical simulations confirm the
theoretic findings, i.e., there is coexistence of different chaotic
attractors, cycles with different periods and also convergent
dynamics for the memristor circuit. Moreover, several types
of bifurcations without parameters are observed.

Figure 7 reports the shapes of the different attractors
for better illustrating the dynamics complexity. Figure 7(a)
depicts the attractor when the initial conditions are such that
Q0 = K (�0) = 0, i.e., the dynamics evolve on the mani-
fold M(0). It is seen that the solution (projection onto the
ϕC1 − qL plane) has a complex attractor resembling the
double-scroll attractor of Chua’s circuit. The plots (b), (c), (d),
(e), and (f) in the same figure then show the simulations when
the initial conditions are respectively chosen in a way that
Q0 = {0.9, 1.491, 1.5, 1.55, 1.7}.

In a second experiment we use the input a(t) to steer
trajectories of the modified Chua’s circuit through different
manifolds and attractors. Suppose that at t0 = 0 the circuit
in on manifold M(Q0 = 0), i.e., �0 ∈ M(0) and let
�(t; 0,�0) be the corresponding solution of the circuit. Let
a(·) be given by a sequence of three short rectangular pulses
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Fig. 8. Input signal a(·) given by a sequence of three short rectangular
impulses (upper plot) and time-domain behavior of Q(t) = qa(t; 0) =� t

0 a(τ )dτ (lower plot).

Fig. 9. Projection onto the ϕC1 − qL plane of a trajectory of a modified
Chua’s circuit that is driven through different manifolds via the application
of a pulse current source.

applied at t1 = 600, t2 = 1200 and t3 = 1800 and suppose
the length of each impulse is 	 = 1 (normalized time), see
Fig. 8. The first impulse has an area 0.9, the second has area
0.65 and the third one has area 0.15. The circuit evolves on
M(0), and tends to a double-scroll chaotic attractor in M(0)
up to the application of the first impulse. Consider now the
first impulse. At t1 + 	, when the impulse is over, we have
from (24) that Q(t1 + 	) = Q0 + � t1+	

t1
a(τ )dτ = 0.9

(Fig. 8). Due to Theorem 1, �(t1 +	) ∈ M(K (�(t1 +	))) =
M(Q(t1 + 	)) = M(0.9). Then, the first input causes the
solution to pass from manifold M(0) to M(0.9) in [t1, t1+	].
In the interval (t1+	, t2) we have a(t) = 0, hence the solution
stays on manifold M(0.9), where the solution displays a
different (single-scroll) chaotic attractor. The second impulse
has an analogous effect and causes the switch from M(0.9)
to M(1.55), where the circuit tends to a period-two cycle.
Finally, the third pulses drives the solution from M(1.55)
to M(1.7) where the circuit has a period-one cycle. The
corresponding simulation of the circuit in the (ϕ, q)-domain,
shown in Fig. 9, confirms these theoretic results. For a better
comparison, in Fig. 10 we also reported the superposition of
the 4 attractors for manifolds M(0),M(0.9),M(1.55) and
M(1.7) (cf. Fig. 7). We conclude that, using the pulse current

Fig. 10. Superposition of attractors of four different manifolds.

source a(·), we can easily and effectively drive solutions of the
modified Chua’s circuit through different manifolds, dynamics
and attractors, without the need to alter the circuit parameters.

Remark 3: We have seen that an independent charge source
qa(t; t0) in parallel to C1 permits to switch the modified
Chua’s circuit dynamics between different manifolds. It can
be checked that an independent flux-source in series with
C1 would be instead ineffective to switch between different
manifolds (details are omitted). An interesting issue for future
investigation is to understand from a circuit topological view-
point where to insert independent sources that make it possible
the programming of different memristor dynamics.

Remark 4: Complex nonlinear dynamics are hard to sim-
ulate. We refer the reader to [21], [22] for a review and a
discussion on the fidelity of numerical methods in such a
context. Due to these issues, and in order that the interested
readers can verify in detail the coexisting complex dynamics
and bifurcations in the modified Chua’s circuit, the code used
in the numerical simulations of the paper is made available in
platform Code Ocean.

Remark 5: Several papers in the literature reports on dif-
ferent dynamics and attractors that are observed by varying
the initial conditions for a fixed set of memristor circuit
parameters, see, e.g., [23], [24], and references therein. Unlike
those papers, which are based on simulations or experiments,
here we have proved analytically that for structural reasons
there is coexistence of different dynamics and attractors in a
memristor circuit. This phenomenon is due to the foliation
property of the state space and the parameter Q0, which
depends upon the initial conditions, in the right-hand side of
the vector field describing the dynamics on each manifold of
the modified Chua’s circuit.

V. RELAXATION OSCILLATOR WITH MEMRISTOR

AND NONLINEAR INDUCTOR

As a second example, we consider in this section a relax-
ation oscillator implemented via the parallel connection of a
memristor and a nonlinear inductor as shown in Fig. 11(a). The
memristor is flux-controlled and has a CR qM = fM (ϕM ) =
αϕM + 1

3βϕ3
M , where α < 0 and β > 0 (Fig. 12(a)).

The inductor has a CR iL = fL (ϕL), where fL (·) is a
strictly monotone increasing function mapping R onto R as



DI MARCO et al.: UNFOLDING NONLINEAR DYNAMICS IN ANALOGUE SYSTEMS WITH MEM-ELEMENTS 21

Fig. 11. (a) Relaxation oscillator with memristor and nonlinear inductor and
(b) circuit in the (ϕ, q)-domain.

Fig. 12. (a) Nonlinear characteristic of the memristor and (b) of the nonlinear
inductor.

in Fig. 12(b), hence it is is both flux- and current-controlled.
A voltage source e(·) is also introduced for invariant-manifold
programming purposes.

The circuit is obtained by the relaxation oscillator with
tunnel diodes discussed in [25, Sect. IV] once the nonlinear
resistor with two batteries and two tunnel diodes in push- pull
configuration in Fig. 7 of that paper is replaced by a memristor
with an analogous relationship between flux and charge.

The differential algebraic equations (DAEs) describing the
circuit in the (ϕ, q)-domain are easily written as follows

qL(t; t0) = qM(t; t0)

ϕM (t; t0) = −ϕL(t; t0) + ϕe(t; t0)

qM (t; t0) = fM (ϕM (t; t0) + ϕM0) − fM (ϕM0)

q̇L(t; t0) = fL(ϕL(t; t0) + ϕL0)

where ϕe(t; t0) = � t
t0

e(τ )dτ . These yield

q̇L(t; t0) = fL(ϕL(t; t0) + ϕL0) (29)

qL(t; t0) = fM (−ϕL(t; t0) + ϕe(t; t0) + ϕM0)

− fM (ϕM0). (30)

The dynamic route for the DAEs (29), (30) is depicted in
Fig. 13 in the case where ϕL0 = 0, ϕM0 = 0 and ϕe(t; t0) = 0.
We are facing a classic situation where there are two forward
impasse points PA and PB [19]. In fact, if the initial condition
is such that iL(t0) = iL0 > 0, then the corresponding solution
reaches PA in finite time and it cannot be further prolonged

Fig. 13. Dynamic route with two impasse points PA and PB .

Fig. 14. (a) Circuit with a parasitic capacitance C for breaking impasse
points and (b) circuit in the (ϕ, q)-domain.

in time. Note that PA is not an equilibrium point, since q̇L �= 0
at PA, so we reached an absurd. An analogous situation is
observed if iL0 < 0. It is not possible to write a local SE
in a neighborhood of points PA and PB , hence a global SE
representation does not exist for the circuit. Solutions are
defined up to a finite instant but cannot be prolonger thereafter,
hence, the circuit is bad-modeled from a physical viewpoint.
This situation is different from that studied in Section II, where
a global SE is instead guaranteed to exist.

It is possible to overcome this problem by postulating
the existence of jump phenomena [25]. Otherwise, and in
an almost equivalent way, impasse points can be broken by
inserting a small parasitic capacitance C modeling for instance
the electric field between the inductor terminals (Fig. 14(a)).
The obtained circuit now has a global SE representation in the
(ϕ, q)-domain that can be written by inspection as (Fig. 14(b))

Cϕ̇C (t; t0) = − fM (ϕC(t; t0) + ϕM0)

+ f (ϕM0) + qL(t; t0) + qC0 (31)

q̇L(t; t0) = fL (−ϕC(t; t0) + ϕe(t; t0) − ϕL0). (32)

The state variables are ϕC (t; t0) and qL(t; t0). The existence of
the global SE representation rules out in particular the presence
of impasse points [19].

The SEs in the (v, i)-domain are obtained from the circuit
in Fig. 14(a) as

ϕ̇M (t) = qC(t)

C

q̇C(t) = − f �
M (ϕM (t))

qC (t)

C
+ fL(ϕL(t)) (33)

ϕ̇L(t) = −qC(t)

C
+ e(t). (34)

The state variables are ϕM (t), qC (t), ϕL(t).
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Fig. 15. Input signal e(·) given by a sequence of four short rectangular
impulses (upper plot) and time-domain behavior of 
(t) = ϕe(t; 0) =� t

0 e(τ )dτ (lower plot).

These SEs can be obtained also via the method described
in Section II. We leave it to the reader to verify this fact
and also verify that in this case the hybrid representation is
such that H22 is singular, hence invariant manifolds cannot be
directly obtained via the technique in Section III. Nevertheless,
invariant manifolds may be found by noting that from a
topological viewpoint the circuit has a loop given by the
memristor, inductor and voltage source. Applying KϕL to this
loop, we have ϕM (t; t0) + ϕL(t; t0) − ϕe(t; t0) = 0, hence


(t)
.= ϕM (t) + ϕL(t) = ϕM0 + ϕL0 − ϕe(t; t0) (35)

for any t ≥ t0. Clearly, in the input-less case ϕe(t; t0) = 0 for
any t ≥ t0, we have that each set

M(
0) = {(ϕM , vC , ϕL)T ∈ R
3 : ϕM + ϕL = 
0} (36)

where 
0 ∈ R, is positively invariant for the dynamics of the
circuit in the (v, i)-domain. Note that such invariant manifolds
are planar, which is different from what has been found in
Section III under the assumption that H22 is nonsingular.

The input source e(t) (ϕe(t; t0)) may be used as for the
modified Chua’s circuit for steering the dynamics through
different manifolds. Suppose the circuit is on manifold M(0)
at t0 = 0 and apply the sequence of four impulses with
equal length 	 = 0.1 and area 0.12 as shown in Fig. 15.
Due to (35), the impulses cause the circuit solution to pass
from manifold M(0) to manifold M(−0.12), M(−0.24),
M(−0.36) and finally to M(−0.48). We performed computer
simulations by choosing C = 0.0001, parameters α = −0.001,
β = 0.005 for the memristor characteristic and the character-
istic in Fig. 12(b) for the nonlinear inductor. It is seen from the
simulations in Fig. 16 that the circuit displays oscillations with
slightly increasing period and different shape when passing
from M(0) to M(−0.36). On M(−0.48) we have instead
convergence toward an equilibrium point.

A. FCAM for Circuits Including an Extended Memristor

A more realistic model of some real memristor devices has
been proposed in [26] and consists of the parallel connection
of an ideal flux-controlled memristor qM = fM (ϕM ) and a

Fig. 16. Time-domain behavior of a solution of the memristor and nonlinear
inductor circuit that starts on M(0) and displays oscillations with almost
equal amplitude and increasing period. The solution eventually tends to an
equilibrium point.

Fig. 17. An extended memristor model of real memristive devices.

Fig. 18. Relaxation oscillator with an extended memristor model.

nonlinear resistor i = fR(v) (Fig. 17), where fR(·) is a smooth
locally Lipschitz function. This corresponds to an extended
memristor [27] satisfying the state-dependent Ohm’s law

i(t) =
	

f �
M (ϕM(t)) + fR(v(t))

v(t)



v(t)

for any v(t) �= 0, i(t) = 0 if v(t) = 0, with

dϕM (t)

dt
= v(t).

The nonlinear resistor may account for the junction rectifying
effects that are observed in some memristor implementations
(cf. [28]). In such a case, fR(·) has a typical exponential
diode-like shape. Although relatively simple, such a model
may account for phenomena observed in actual memristor
devices as the nonsymmetric loops about the origin of the
v − i plane displayed when they are subject to a sinusoidal
voltage [26].

Next, we study what happens when inserting such an
extended memristor model into the relaxation oscillator previ-
ously analyzed (cf. Fig. 18). The SEs in the (v, i)-domain are
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obtained as

ϕ̇M (t) = qC(t)

C
(37)

q̇C(t) = − f �
M (ϕM (t))

qC(t)

C

− fR

	
qC(t)

C



+ fL(ϕL(t)) (38)

ϕ̇L(t) = −qC(t)

C
+ e(t). (39)

These yield

dϕM (t)

dt
+ dϕL(t)

dt
+ e(t) = 0

hence

ϕM (t) + ϕL(t) = ϕM0 + ϕL0 − ϕe(t; t0) = 
0 − ϕe(t; t0)

(40)

for any t ≥ t0. Hence, in the inputless case e(t) = 0, t ≥ t0,
there exist the same planar invariant manifolds given in (36) as
for the circuit with an ideal memristor. This is not surprising,
indeed the insertion of the nonlinear resistor fR(·) does not
destroy the loop made by the memristor, the inductor and the
voltage source.

From (40), we obtain

ϕM (t) = −ϕL(t) + 
0 − ϕe(t; t0).

Then, the circuit satisfies the second-order SE in the
(v, i)-domain

q̇C(t) = − f �
M (−ϕL(t) + 
0 + ϕe(t; t0))

qC(t)

C

− fR

	
qC(t)

C



+ fL(ϕL(t)) (41)

ϕ̇L(t) = −qC(t)

C
+ e(t). (42)

We repeated the previous experiment by applying to the
circuit with an extended memristor the same sequence of four
impulses as in Fig. 15. For the nonlinear resistor we have
chosen the characteristic of a Shockley diode

i = fR(v) = Is

�
e

v
ηvT − 1

�

with Is = 10−12 A, vT = 26 · 10−3 V and η = 1.7. The
simulation results in Fig. 19 show that once more the circuit
displays oscillations with increasing period on the subsequent
manifolds visited by the solution. As expected, the effect of
the diode is mainly that of reducing in an asymmetric way the
amplitude of oscillations on each manifold (compare Fig. 16
with Fig. 19).

Remark 6: The article [25] discusses a more realistic model
of the nonlinear inductor accounting also for losses. The model
is given by a nonlinear inductor (a lossless element) with
a characteristic as that in Fig. 12(b), and named restoring
function, in parallel to a nonlinear resistor i = fRL(v)
(a dissipative element) with a strictly monotone increas-
ing voltage-current characteristic, named dissipation function.
There is no additional difficulty in considering such a general

Fig. 19. Time-domain behavior of a solution of the extended memristor and
nonlinear inductor circuit.

model in the circuit in Fig. 18. In fact, once more the nonlinear
resistor fRL does not break the loop formed by the (ideal)
memristor, the inductor and the voltage source, so that there
are still planar invariant manifolds as in (36) and there is also
a reduction of order for the dynamics on invariant manifolds.
A detailed treatment is omitted for brevity.

VI. CONCLUSION

The SE representation in the (ϕ, q)-domain and
(v, i)-domain, in combination with an extension of the
FCAM theory in [14]–[16], have been proved effective to
unfold the dynamics of a class of memristor circuits with
nonlinear storage elements. In particular, we have shown that
a modified Chua’s circuit with a memristor and a nonlinear
capacitor displays a rich dynamic scenario including the
coexistence of different regimes (periodic, chaotic) and
period-doubling bifurcations due to changing the initial
conditions for a fixed set of circuit parameters (bifurcations
without parameters). In a second example, we have shown
that the peculiar phenomena of coexistence of different
attractors, as equilibria and limit cycles, is displayed also
by a relaxation oscillator with a memristor and a nonlinear
inductor. In both cases, pulse current or voltage sources can
be designed to steer trajectories through different manifolds
and dynamics. These results show that such kind of circuits
are a source of programmable complex dynamics that can
be implemented at nanoscale and are potentially useful for
incorporation in future neuromorphic computing systems.
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