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ABSTRACT

In recent years, biological research revolves around huge amounts of data which are extrapolated due
to high-throughput techniques. Thanks to the emergence of omics information and big data, the use
of computational tools has become crucial to evaluate the efficacy of medical treatments or deeply
investigate the correlation between patients and diseases according to their own molecular
characteristics. The Precision Medicine approach is widely applied to the healthcare area, in particular
to rare diseases with the creation of patient registries leveraging large amounts of data to discover
potential links. Harmonizing databases and including disease registries are the major facilitators to
understand the complexity of diseases, to conduct clinical trials, to improve the drug development
process and to assign the right treatment to the right individual after a reliable patient stratification.
Moreover, the application of data mining in healthcare and public health, which has been growing
over the last years, allows to systematically identify inefficiencies and best practices that improve
care and reduce costs with remarkable economic benefits. In this thesis we focus on the development
of new Artificial Intelligence algorithms for a number of important problems in the field of Precision
Medicine, Life Sciences and Healthcare. The project demonstrates the power of computational
modelling for clinical research, opening up possibilities that would be unimaginable without
knowledge of the data. The application of Bioinformatics and Computational biology algorithms
together with the creation of digital databases will offer an opportunity to translate new data into

actionable information.
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1. INTRODUCTION

1.1. MACHINE LEARNING: A BRIEF OVERVIEW

Artificial Intelligence (Al) is the science that aims to develop machines capable of carrying out tasks
related to human perception. Although in 1956 the computer scientist John McCarthy introduced the
expression "artificial intelligence", which marked the actual birth of this discipline, already in
previous years, other researchers had produced significant results in this area. As early as 1943,
Warren McCulloch and Walter Pitt proposed the first artificial neuron to the scientific world
[McCulloch et al., 1943], and already in the 1950s the first working prototypes of neural networks
were created [Neumann, 1958] [Hebb, 1949]. However, it was the research of Alan Turing, which
increased the interest of the public. Turing, attempting to explain how and to what extent computers
could actually simulate human behaviour, devised a test - the Turing test [Turing, 1950] — to be able
to give a measure of the thinking ability of machines. Initially, computers were better able to
successfully solve problems that are intellectually difficult for humans but relatively simple for
computers, that is, problems that can be described by a list of mathematical rules [Bengio et al., 2016].
Later, the Al challenge turned out to be the solution of tasks that are easy for people to perform, but
difficult to describe formally, because they are related to perceptual skills developed in humans during
an evolutionary process of hundreds of thousands of years. The idea was to create machines that were
able to acquire the knowledge necessary to solve a problem independently, from experience. The
hierarchy of concepts allows the machine to learn complicated notions by building them starting from
the simplest ones. For this reason, a stratified form of thinking was necessary to learn complex
concepts - Deep Learning [Awad et al., 2015] - which is inspired by the way biological neural
networks in the human brain process information. Deep Learning is nothing more than a subcategory
of a larger family of Artificial Intelligence methods called Machine Learning.

Machine Learning (ML) was born from the idea that computers are able to learn to perform certain
tasks by improving their skills through experience. At the base of machine learning there are a series
of different algorithms which, starting from primitive notions, learn to make a specific decision or to
perform actions learned over time. The computer is provided with only a set of data (#raining set),
which are iteratively examined to extract information, similarly to what happens in human learning.
Depending on the way the machine learns data and information, four different learning methods can

be distinguished.



- Supervised learning [Cunningham et al., 2008]: the training data are labelled with a target i.e.,
an "expected result". In this way, after the training phase, the system will be able to use the
acquired experience to solve problems which involve the same basic knowledge.

- Unsupervised learning [Ghahramani, 2004]: the training set is not labelled. Learning consists
in identifying relationships between data, without any prior knowledge about the data
themselves.

- Semi-supervised learning [Zhu, 2005]: the training set is only partially labelled. Particularly
useful in cases where the knowledge about the data is partial or the collection and sampling
phase of labelled data is too expensive to be carried out comprehensively.

- Reinforcement learning [Russell et al., 2016]: the training set is not labelled, but an example
is given with a positive or negative result. This result allows a feedback loop for the algorithm,
letting it determine whether the provided solution solves a problem or not. It is therefore the
computerized version of human learning by "trial and error".

The Machine Learning process consists of six components regardless of the algorithm adopted as

shown in Fig. 1 [Alzubi et al., 2018 ].

Data collection
and
Preprocessing

Hyper-
parameter
Tuning

Training
phase

Model Performance
selection i selection evaluation

Feature

Figure 1. Six main components of the Machine Learning process.

Data collection and pre-processing consist in the preparation of data in a format that can be given as
input to the algorithm. Data are unstructured, sparse and contain a lot of irrelevant details as well as

they can be redundant, so that they need to be cleaned and pre-processed to a structured format. Since
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ML models require all input and output variables to be numeric, categorical data need to be encoded
with different strategies. Moreover, learning algorithms benefit from standardization of the dataset to
avoid bias in the outcome. The data obtained from the above step may contain numerous features, not
all of which are relevant to the learning process.

Feature selection is the process of reducing the number of input variables to both reduce the
computational cost of modelling and, in some cases, to improve the performance of the model.
However, even if the dataset is correctly pre-processed, not all ML algorithms are meant for all
problems, but certain algorithms are more suited to a particular class of problems. Selecting the best
machine learning algorithm is imperative in getting the best possible results.

Once obtained the most appropriate model, some strategies will have to be undertaken for setting the
most appropriate values of the various parameters. The process of searching for the ideal model
architecture is referred to as hyperparameter tuning. The same kind of ML model can require different
constraints, weights or learning rates to generalize to different data patterns. The ultimate goal for
any machine learning model is to learn from examples in such a manner that the model is capable of
generalizing the acquired knowledge to new instances which it has not seen yet. The model should
then be trained on a subset of the total dataset and fested against unseen data, to evaluate how much
has been learnt using various performance parameters like accuracy, precision and recall.
Furthermore, there are many tasks that a ML tool can perform:

- Classification: the input data are divided into two or more classes and the learning system
aims to produce a model capable of assigning a class among those available to each input.

- Regression: conceptually similar to classification with the difference that the output belongs
to a continuous rather than discrete domain.

- Clustering: the set of input data is divided into groups about which there is no prior
knowledge; unlike the classification, neither the number nor the type (target) of the classes
are known.

ML techniques include a vast class of algorithms, starting with decision trees, genetic and boosting
algorithms, metric techniques, such as the K-nearest neighbour algorithm (k-NN,) Support Vector
Machines, statistical methods, Bayesian networks and Artificial Neural Networks. The selection of
the most appropriate ML approach for a specific problem is crucial in order to obtain an ML model
that produces robust and reliable results. It depends on many factors, from the problem statement to
the type of output desired. The well-known “no free lunch” (NFL) theorem for supervised machine
learning [Wolpert et al., 1997] states that all optimization algorithms perform equally well when their
performance is averaged across all possible problems. It implies that no single ML algorithm is

universally the best-performing algorithm for all problems. Due to the inability to find a single ML



model which outperforms the others, a list of ML algorithms which are best suited to a particular task

is listed below in Fig 2.

Machine Learning
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= Logistic Regression = Extreme Gradient Boosting = Agglomerative Clustering
= Extreme Gradient Boosting = Linear Regression = DBSCAN
= Random Forest = Lasso Regression = Batch K-Means
= K-Nearest Neighbours = Random Forest =  Mini-Batch K-Means
= Neural Network = Neural Network = Mean Shift
= Support Vector Machine = K-Nearest Neighbours = Spectral Clustering
= Naive Bayes = Support Vector Machines

Figure 2. Classification of the ML algorithms more suited to different classes of problems.

Indeed, a detailed methodology for selecting the most appropriate or “best fit” ML architecture
remains a challenge to be studied in the future. So far, we have seen the wide range of applicability
of Machine Learning, but there are still open questions to be addressed. One of the main obstacles is
the developer deficit, because there are not a lot of specialists who can develop ML tools. Even a data
scientist who has a solid grasp of ML processes very rarely has enough software engineering skills.
ML algorithms require large volumes of data to be accurate and efficient, and such amounts are not
always available to researchers. Creating a data collection mechanism that adheres to all the rules and
standards imposed by governments is a difficult and time-consuming task. In the Healthcare field,
acquisition becomes even more difficult, as digital data are scattered and not always accessible,
making it difficult to make accurate predictions. Furthermore, even the raw data must be reliable,
otherwise the deriving results could be catastrophic.

Finally, the importance of the explainability of ML decision-support systems is evident, especially in
contexts that can be very sensitive, such as, for example, in the case of medical diagnoses or
autonomous driving systems. In fact, explainability is one of the most debated topics for the
application of artificial intelligence in the healthcare. While Al-based systems have been shown to
outperform humans in certain analytical tasks, the lack of explainability continues to attract criticism.

However, explainability is not a purely technological issue, but invokes a number of medical, legal,

7



ethical and social issues that require in-depth exploration. Explainable Al approaches are the new
frontier of ML applications in healthcare, in order to ensure the understanding, by both clinicians and
patients, of the "mental process" followed by the artificial brain to reach a certain decision.

There are also many fields that are still challenging for Machine and Deep Learning algorithms, such
as speech understanding, disease detection, drug discovery etc. In the near future, ML is expected to
continue to act as a technological innovator with increasingly revolutionary advances. As these
technologies continue to grow, they will have more and more impact on the social setting and quality

of life.

1.2 ML IN BIOINFORMATICS
In recent years, biological research revolves around huge amounts of data which are extrapolated due
to high-throughput techniques. Therefore, the use of computational tools becomes crucial, because
they are able to help analyse “big data”, extrapolating their features to populate biological databases.
The need for efficient computational tools gave rise to a new field called Bioinformatics, an interface
between the field of biological and computational research. Bioinformatics, in combination with
Machine Learning, represents a key factor for the development of algorithms and software for the
transfer, storage, analysis and development of biological platforms. An increasing number of ML
methods have been implemented to address bioinformatics problems in system biology, genomics,

structural biology and other relevant bioinformatics domains, as shown in Fig. 3. [Cios et al., 2006].

Machine and deep learning integration with bioinformatics

Genomics for
Disease Research

Protein structure
Analysis

Molecular evolution Systems biology

Biological Networks

Post translational modification Disease-causing
I mutations

o OH
o-@o 8
HO
o o 3
OH
Multi-Omics integration

Folding and structure Y

Phylogenetic inference

Alignment-free
sequence classification

¥ F F Biomarkers discovery

. ETRARHLRQORQARSHTLE 2 e e

CNRARGERL QR - —RAETOE
- _ CUU/\RUER:RH"HR.T- " '

ENQSROERL ETOR

CRHTSROA- - TRISTE yy 5

CROTSREP - | TR

CRHTTA THS AN
100010110 ol =
1101000 11 )

® [nference of tree topology
® Saquence classification
® Viral sequence identification

® functional annotation

® Phosphorylation site prediction
® Protein glycosylation prediction
® Protein contact maps prediction

@ Structural homology prediction

® Biological networks construction
® Biological interactions prediction
® Pathway dynamics prediction

® Platform integration frameworks

® Diesease associated genes
and mutations

® Bjomarkers

@ FPrecision medicine applications



Figure 3. Applications of integrated Machine Learning techniques with Bioinformatics. [ Auslander

et al., 2021]

ML tasks in bioinformatics include classification, regression, clustering and presentation of data for
easy interpretation [Tan et al., 2001]. Such approaches are cheaper and more efficient to handle
bioinformatics problems, being able to analyse big amounts of data in just a few seconds to obtain

prediction models on biological systems. Some of the most used methods are displayed in Fig. 4.
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Figure 4. ML algorithms commonly used in Bioinformatics.

e Artificial neural networks (ANNs) [McCulloch et al., 1943] are widely used in bioinformatics
thanks to the ability to solve complex real-world problems. ANNs are robust tools that can
manage big data identifying key components, thus providing a greater understanding of the
biological system being modelled. A neural network consists of an oriented graph formed by
nodes (organized in layers) connected by arcs. Each arc is associated with a weight, while nodes
are equipped with activation functions that elaborate the inputs to produce the neuron output.

Supervised neural network learning is based on a feedback process, called back-propagation, in
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which the output of the network is compared with the output it was meant to produce, and the
difference between the outputs is used to modify the weights of the connections between the
neurons in the network. Moreover, they are usually resistant to noise and errors present in training
data. In particular, Recurrent Neural Networks (RNNs) are a powerful and robust type of neural
architectures, provided with feedback connections, that produce internal loops. Such loops induce
a recursive dynamic within the networks and thus introduce delayed activation dependencies
across the processing elements. In doing so, RNNs develop a kind of memory that makes them
particularly tailored to process sequential data, such as text, DNA, proteins, etc.

Decision trees [Wu et al., 2008] are structures resembling a tree in which each internal node
represents a decision on an attribute, each leaf node represents a feature label and each branch
represents the value of that feature. A decision tree classifies instances by sorting them from the
root to some leaf nodes on the basis of feature values. The main goal of decision trees is to arrange
different nodes based on valid data, as each hub in a decision tree addresses an item in an
occurrence to be sorted, and each branch addresses a value that the hub can accept. While using
a decision tree, the focus is on how to decide which attribute is the best classifier at each node
level. Statistical measures like information gain, Gini index, Chi-square and entropy are
calculated for each node to quantify the worth of that node. For practical applications, decision
trees have been used for protein function prediction, protein-protein interaction (PPI) and cancer
classification.

Support Vector Machines (SVMs) [Cortes et al., 1995] are supervised learning tool which can be
used for classification as well as regression problems. They represent a method of maximizing
the margin to separate two classes so that the trained model generalizes well to test data. Each
data item is firstly plotted as a point in a n-dimensional space and the model classifies the data
into different classes by finding a hyperplane which separates them. Because of their relative
simplicity and flexibility to address a variety of problems, SVMs offer generally good predictive
performance, with a lower risk of overfitting. For this reason, SVMs have been widely applied to
many areas of bioinformatics, including protein function prediction, protease functional site
recognition, transcription initiation site prediction, and gene expression data classification.
Genetic algorithms (GA) [Whitley, 1994] have found popularity in bioinformatics research due
to their simplicity. They are heuristic techniques of calculation, which find solutions to problems
by using a finite series of standard steps, inspired by the mechanics of natural selection. GAs have
been used to determine the structure of DNA using spectrometric data.

Ensemble learning [Polikar, 2009] is a widely used technique that combines multiple learning

algorithms to improve the overall prediction accuracy and reduce the potential overfitting of
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training data. A large number of ensemble methods have been applied to biological data, but the
three most popular methods are bagging [Breiman, 1996], boosting [Freund et al., 1996], and
random forests [Breiman, 2001]. Random forests are used for classification and regression. They
use a bagging approach to create a bunch of decision trees with a random subset of data, and the
output of all decisions is combined to make the final predictive model. RFs have been applied on
a variety of bioinformatic problems, such as gene expression classification, mass spectrum protein
expression analysis, biomarker discovery or statistical genetics.

Furthermore, ML in bioinformatics has become even more significant thanks to the birth of Deep

Learning due to its capacity to execute feature engineering on its own. A deep learning algorithm will

scan the data to search for features that correlate and combine them to enable faster (parallel and

distributed) learning without being explicitly told to do so.

Let us see in detail some of the biological fields of application of ML.

® Omics: The omics sciences refer to all the disciplines that aim to characterize and quantify
biological molecule pools, in order to delineate the structure, functions and dynamics of an

organism, as shown in Fig. 5.
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Figure 5. The omics cascade. Metabolomics is the final step in the cascade, because it is closer to the

phenotype than the preceding omics.

Individual omic as well as the integrated profiles of multiple omes, such as the genome, the
epigenome, the transcriptome, the proteome, the metabolome, the antibodyome, and other omics
information are being used extensively in bioinformatics, thanks to the next-generation sequencing
technology which allows the acquisition of big amount of omics data. Sequences, position-specific
scoring matrix (PSSM) and biological, physio-chemical and structural properties are often used as
inputs for Al algorithms, which are capable of analysing them making it more understandable.

Omics technologies have also the potential to transform medicine from traditional symptom-
11



oriented diagnosis and treatment of diseases towards individualized disease prevention and early
diagnostics [Chen et al., 2013]. ML methods have been applied to a wide range of genomics
problems, ranging from the sequencing of whole genomes [Venter et al., 2001], to the
identification of genes and RNA structures [Bernal et al., 2007, Fogel et al., 2002]. Decision trees
have been used to identify genes [Lopez-Bigas et al., 2004] and gene-gene interactions [Ritchie et
al., 2003] involved in genetic diseases. Genetic Algorithms instead, have been applied for DNA
fragment assembly [Rathee et al., 2014]. In proteomics, the tertiary structure prediction of proteins
represents one of the main challenges for ML methods. Existing methods for resolving PSS usually
rely on the primary structure and physio-chemical properties of proteins, making use of specific
energy functions that need to be minimized. Lately, graph-based approaches have also been
applied, showing that starting from simple geometric properties, graph-based predictions can be
as robust as an energy-based score. ANNs have found widespread applications in protein structure
prediction [Bidargaddi et al., 2009][ Li et al., 2016], functional prediction [Kihara, 2017] and
protein classification [Fox et al., 2015]. Moreover, protein structure prediction was also performed
using decision trees and support vector machines [He et al., 2006]. ANNs have been increasingly
applied to problems in metabolomics, which result to be challenging for conventional algorithms.
A variety of ML algorithms have been developed for data analysis [Cambiaghi et al., 2016], peak
identification and compound identification [Nguyen et al., 2018] in the field of nuclear magnetic
resonance and mass spectroscopy-based metabolomics [Puchades-Carrasco et al., 2015]. RFs
have been used in metabolomic to determine a set of serum protein and metabolic biomarkers in

prostate cancer [Fan et al., 2011].

® Medicine: Computational approaches can be applied to characterize variations in health and
disease, and the outcomes obtained from these models can be used to develop high-performance
methods for disease diagnosis and treatment. Understanding the function of highly interconnected
molecular networks using Al methods can lead to the discovery of molecular disease networks,
discrimination between disease subtypes and prediction of disease progression. ML is applied to
distinguish disease phenotypes from genomic data, using ANNs [Khan et al., 2001], RFs [Zhang
et al., 2003] and SVMs [Yeang et al., 2001]. ML approaches are able to predict, based on the
molecular signatures of the disease, the response to treatment in breast cancer [ Weichselbaum et
al., 2008], prostate cancer [Zhao et al., 2010] and lung cancer prognosis [Patnaik et al., 2010].
However, the main goal of computational physiological medicine is to develop mechanistic
models able to predict emergent behaviours of biological systems in health and disease and how
system properties may change over time, and then translate insights gained from these models to

improved therapies. Recent cancer studies [Deisboeck et al., 2011] show that computational
12



models are influencing both diagnosis and treatment. Regarding diabetes, the Artificial Pancreas
Project is developing a closed-loop subcutaneous insulin delivery system for the treatment of type
1 diabetes mellitus. In addition, tools such as MRI and Computed Tomography make it possible
to model the heart of a single patient. Detailed heart models reconstructed from clinical MRI scans
were used to evaluate infarct-related ventricular tachycardia, which can help predict optimal
catheter ablation locations in individual patients' hearts [Relan et al., 2011]. The last field of ML
application to medicine concerns the comprehension of how ensembles of anatomies differ within
and between healthy and diseased states, constructing a global shape model representing typical
structures in an ensemble of anatomic image volumes. For example, in a study of structural
changes in the brain in Alzheimer's disease [Miller et al., 2009], a model of the hippocampus was

constructed from a series of volumes of MR images.

Drug discovery: In the past decade, the field of drug discovery and development has been
undergoing radical transformations, driven by rapid development of Al. Popular implementations
of Al in drug discovery include applications in virtual screening (VS) [Stumpfe et al., 2020],
retrosynthesis and reaction prediction [ Bostrom et al., 2020], and de novo protein [Strokach et al.,
2018] and drug design [Schneider et al., 2020]. A certain number of computational techniques
have been applied for the quantitative structure-activity relationships (QSAR), with the aim to
study the biological activity of chemical substances from a set of atomic and molecular
descriptors. Moreover, both ANNs and SVMs have been found useful in the field of QSAR [Moss
et al.,, 2012, Molfetta et al., 2008]. Al models also offer technological solutions for drug
development. Clinical trials consume the second half of the 10 to 15 year development cycle, to
bring a single new drug to market. Thus, a failed trial sinks not only the investment in the trial
itself but also the preclinical development costs, making the loss per failed clinical trial from $800
million to $1.4 billion. Two of the key factors causing a clinical trial to fail are patient selection
and recruitment mechanisms that fail to bring the most suitable patients to a trial in time, as well
as a lack of technical infrastructure to cope with the complexity of conducting a trial [Hwang et
al., 2016]. In these cases, Al techniques can be used to reshape key steps of clinical design and

trial to increase trial success rates. [Aziz et al., 2019, Berry et al., 2010]

While Al models need to be robust and capable of parsing the data correctly, it is also true that if the
dataset is dirty, the accuracy of the classifier decreases. Dirty biological data can be obtained due to
many factors, such as errors during experimentation, misinterpretation by biologists, use of non-

standard methods. ML approaches must be able to provide optimal decisions by adapting to such
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datasets in order to avoid over-fitting. It is therefore essential that the input and output data are
analysed and interpreted by specialists in order to maintain the quality of the data and not to run into
errors. Moreover, even if the use of ML for solving bioinformatics problems is a relatively new field,
randomly selected strategies for data splitting, parameter optimization, dealing with missing data,
need to give way to more principled approaches which guarantee statistical validity, generating

meaningful results that can be interpretable, repeatable and applicable to practical problems.

1.3 PRECISION MEDICINE, LIFE SCIENCES AND HEALTHCARE
In most developed countries, the healthcare sector comprises over 15% of the economy, making it
one of the largest industries in any state. Levels of care are divided into four categories based on the

complexity of the medical cases being treated as well as the skills and specialties of the providers.

e Primary Care is the first stop for symptom assessment and medical concerns such as some
bacterial or viral disease, or any other acute medical problem. Primary care providers may be
doctors, pediatricians, or physician assistants which are typically responsible for coordinating
the care among specialists. The health system is positively impacted by primary care providers
by offering greater access to health services, better health outcomes and a decrease in
hospitalizations and use of emergency room visits. [Shi, 2012].

e Secondary Care refers to specialists which have more specific expertise in that particular
medical problem. Specialists focus either on a specific system of the body or a specific disease
or condition. For example, cardiologists focus on the heart and its pumping system while
oncologists have a specialty in treating cancers. The main problems with specialty care
emerge due to a wrong choice of the kind of specialist. In fact, it is possible that the initial
symptoms suggest a certain diagnosis when in reality it is another condition that requires a
different specialist. In other cases, problems arise when more than one specialist is consulted
but each treats a different condition, providing care that may not be fully coordinated.

e Tertiary care is provided after the patient is hospitalized, where higher levels of specialist
intervention are necessary. Tertiary care requires highly specialized equipment, procedures
and expertise, such as coronary artery bypass surgery, hemodialysis and treatments for severe
burns. Not all hospitals can provide this care, so patients need to be transferred to a medical
center that provides highly specialized tertiary-level services. [Lo et al., 2016]

e Quaternary care is an extension of tertiary care that is not yet widespread since, being so
specific, it is not offered by all hospitals or medical centers. Some may only offer quaternary
care for particular medical conditions or systems of the body, such as for experimental

medicine and procedures and highly uncommon and specialized surgeries.
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In every developed country, however, the healthcare system is subject to some constantly changing
social trends, including demographic change and the rising of technological innovation [ Walshe et
al., 2016]. As the number of elderly people is increasing rapidly, there is an incrementing incidence
of chronic diseases, a direct result of risk factors such as tobacco use, physical inactivity, and
unhealthy diets [World Health Organization 2005]. This also derives from the fact that technological
and pharmaceutical innovation reflects an increasing ability to control chronic diseases. Even surgery,
diagnostics and telemedicine continue to find new ways to cure diseases with more effective
treatments, to slow the progress of the disease or manage its impact. Furthermore, the rapid
development of life science industries and high-throughput technologies, have begun to revolutionize
healthcare by allowing the examination of biological systems in unprecedented detail. Thanks to the
emergence of omics information and big data, it is possible to deeply investigate the correlation
between patients and diseases, according to their own molecular characteristics. Moreover, omics
technologies have the potential to transform medicine from traditional symptom-oriented diagnosis
and treatment of diseases towards individualized disease prevention and early diagnostics. Finally,
the application of data mining in healthcare and public health, which has been growing over the last
years as shown in Fig. 6 [Alyass et al., 2015, Koh et al., 2005], allows to systematically identify
inefficiencies and best practices that improve care and reduce costs with remarkable economic

benefits.
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Figure 6. Process mining in healthcare. [Rojas et al., 2016]

However, the most important benefit of ICT in healthcare is understanding the complexity of diseases
in the early stages so that they can be treated more easily and effectively, while also managing specific
individual factors.

The most common applications involve predictive modelling, which includes traditional statistics,
such as multiple discriminant analysis and logistic regression analysis, and non-traditional methods
developed in the fields of Al and ML. Data mining applications can be developed to evaluate the
efficacy of medical treatments by comparing causes, symptoms and treatment cycles [ Milley, 2000].
For example, it is possible to compare the results of groups of patients treated with different drugs
for the same disease or pathologic condition to determine which treatments work best and are most
affordable. [Kincade, 1998] Similarly, data mining can help identify successful standardized
treatments for specific diseases and determine more effective drug compounds for treating differently
responding subpopulations to certain drugs [Milley, 2000]. To aid healthcare management, data
mining applications can be developed to better identify and monitor chronic disease states and high-
risk patients, design appropriate interventions, and reduce the number of hospital admissions
[Schuerenberg, 2003]. Moreover, big data analysis allows to develop new techniques for disease
prevention and treatment based on the individual molecular characteristics by integrating genomic
information, lifestyle data and environmental information [Leyens et al., 2017]. The so called
Precision Medicine (PM) was defined by the Horizon 2020 Advisory Group for Societal Challenge
of the European Commission as “a medical model using molecular profiling technologies for tailoring
the right therapeutic strategy for the right person at the right time and for maximizing the benefit-to-
risk ratio; in this way it is possible to determine the predisposition to disease at the population level
and to deliver stratified prevention” [European Commission, 2014]. PM not only affords the basis to
develop new drugs, but also provides a wide knowledge of the patient, an essential step towards
individualized medicine, as shown in Fig. 7. It is therefore essential to collect as much information
and data as possible on each patient [Leyens et al., 2017] in order to identify the causes of the different
responses to drugs from a pharmacogenomic perspective and to identify biological markers capable
of accurately describing the risk signals to develop specific diseases. For this reason, PM approaches
are already applied to different health areas such as oncology, cardiology and neurology. PM has the
main ambitious goal not to tailor a medical treatment to a single patient, but rather to classify patients

into subpopulations based on their sensitivity to a particular disease or their response to a specific
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treatment. Patients’ stratification aims to identify groups of patients with similar biological features

who could respond to the same drug in a similar way [Laifenfeld et al., 2017].
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Figure 7. Precision medicine circular process.

The PM approach is also deeply applied to the healthcare area of rare diseases [Schee Genannt
Halfmann et al., 2017] by creating patient registries, leveraging large amounts of data to discover
potential links and including patients as active partners in this research [Trusheim et al., 2011]. Due
to the rarity of these disorders, it is a challenge to convince companies to fund development of
effective and affordable treatments, provide programmatic support and facilitate patient interaction.
However, harmonizing databases and including the rare disease registries, are the major facilitators
to understand the complexity of diseases, to conduct clinical trials, to improve the drug development
process and to assign the right treatment to the right individual after a reliable patient stratification.
Practical application of PM helps prevent treatment decisions from being guided by empirical practice
of medicine, where physicians generally rely on standard models to establish a diagnosis based on a
combination of patients’ medical history, physical examination, and laboratory data. Such diagnoses
can lead to the administration of drugs that only work in some people who suffer from that specific

disease or which, even worse, can produce harmful side effects for the patient [Seyhan et al., 2019].
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In the field of PM, many challenges still remain open, such as the integration of big data, patient
empowerment, the translation of basic research into clinical research, in order to bring innovation to

the market and reshape healthcare.
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2. AIM OF THE THESIS

In this thesis we focus on the development of new Artificial Intelligence algorithms for a number of
important problems in the field of Precision Medicine, Life Sciences and Healthcare. The idea behind
the project is the belief that Al could help industries, which generate significant amounts of
knowledge, transforming large and complex data into a format that makes them easier to use.

In a PM and Healthcare perspective, we have shown that we can predict the future health of individual
patients with highly complex and rare diseases. Our first focus was to advance research on the rare
Alkaptonuria disease towards a PM that addresses the complexity of the disease while taking into
account individual variability. Moreover, we made two project proposals for ML based applications
which support patients affected from rare diseases and their caregivers, resulting in benefits in many
aspects of their life. Finally, we performed an intensive pharmacogenetic-oriented study focused to
identify genetic markers to personalize cannabinoids treatment.

For the Life Sciences field, we were able to demonstrate the power of ML techniques in extracting
information from protein data to make predictions on the protein structural features and for the
assessment of their immunogenicity in a vaccine research perspective. We are confident that the
development of computational modelling will guide biologists and clinical researchers in realizing
the goals offered by this field, introducing possibilities that would be impossible without a deep
knowledge on the data.
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3. RESULTS AND DISCUSSION

3.1 ML APPLICATIONS TO PRECISION MEDICINE AND HEALTHCARE

As explained in the previous section, PM is an emerging approach which uses molecular profiling
technologies for tailoring the right therapeutic strategy for the right person, in order maximize the
benefit-to-risk ratio. Although PM is involved in many areas of health, its original purpose was to
manage and analyze data related to rare diseases, which suffer from a lack of tools to enable
meaningful recognition and understanding of clinical symptoms. We focus particularly on
Alkaptonuria (AKU; MIM 203500), an ultra-rare autosomal recessive metabolic disease caused by
the loss of the activity of the enzyme Homogentisate 1,2-dioxygenase (HGD; EC1.13.11.5), which
affects between 1: 250000 and 1: 1000000 individuals worldwide [Phornphutkul et al., 2002]. Under
physiological conditions, HGD is responsible for the conversion of homogentisic acid (HGA) to
maleylacetoacetic acid in the tyrosine and phenylalanine pathway. In AKU patients, HGA is not
metabolized but partially excreted with urine, where it imparts a characteristic black colour upon
oxidation, and partially accumulates in the body where it polymerizes, forming a dark brown
ochronotic pigment which is deposited in the connective tissue, resulting in an early onset of severe
arthropathy.

In a PM context, rare diseases such as AKU suffer from the problem of data scarcity and sparsity,
due to fragmented knowledge and limited number of data and specimens available. It is therefore
necessary to implement an ecosystem capable of collecting, integrating and analyzing significant data
flows from different research groups. For this reason, a Precision Medicine Ecosystem (PME)
dedicated to AKU has been developed, called ApreciseKUre, which is a multidisciplinary, interactive
and integrated AKU database (www.bio.unisi.it/aprecisekure/; www.bio.unisi.it/aku-db/) where
genetic, biochemical and clinical resources are shared among scientists, clinicians and patients
[Aronson et al., 2015]. The ApreciseKUre database allows the organization of data from different
research groups in order to make them available and usable for clinicians, it performs the
harmonization and standardization of different types of collected data and different sources and builds
an easily searchable global reference point for AKU. Computational modelling and database creation
can be a useful guide to generate a comprehensive and dynamic picture of a patient with AKU and to
identify potential new biomarkers to achieve patient stratification. The creation of a database, which
integrates patient-derived information (quality of life), physician-derived information (test results,
genotypes) and mutational analysis (molecular modelling of proteins) offers a comprehensive

visualization of different information layers to support doctors and researchers in the PM application
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to AKU. Furthermore, ApreciseKUre was integrated with data mining models for understanding
disease mechanisms. The outcome of these models can open up new opportunities to match therapy
to the patient, thus leading to more personalized medicine which maximize the benefit/risk ratio
[Rossi et al., 2020]. For instance, in order to address a first patient stratification, a tool for the
prediction of the quality of life of AKU patients starting from clinical markers have been developed
(see appendix: Machine Learning application for development of a data-driven predictive model

able to investigate Quality of Life scores in a rare disease, Fig.8).

Data Preprocessing Feature Selection Algorithm Selection Model Evaluation
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QoL scores correlation matrix XGBOOSt Lin.Reg. k-NN NN Surrogate data method

gt to select the most &7 % for validating the ML model
_ e ——— A ol owt) developed on small data samples

Figure 8. A 4-steps workflow of the ML-based classification model.

After the selection of the most statistically significant biomarkers using XGBoost [Chen et al., 2016],
Quality of Life (QoL) score prediction was performed with k-NN. The innovative finding of this work
is that, for the first time, we have found an ensemble of multiple complementary biomarkers whose
combination produces better k-NN prediction of QoL scores than any single one. Moreover, due to
the limited number of data available, the model has been validated using a surrogate data method, in
which data were generated from random numbers able to mimic the distribution of the original
dataset. They statistically resemble the original data in terms of their mean, standard deviation and
range, but they do not maintain the complex relationships between the variables of the real dataset.
Therefore, real-data models are consistent if they perform significantly better than the surrogate data
models. In conclusion, this framework allowed ML algorithms to successfully predict clinical and
QoL score outcomes despite small datasets. Furthermore, another ML approach was implemented
with the aim of monitoring the evolution of biomarkers and QoL scores to tailor the treatment to each
patient in a typical PM perspective (see appendix: Towards a Precision Medicine Approach Based

on Machine Learning for Tailoring Medical Treatment in Alkaptonuria, Fig.9).
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and ’Correlation between QoL scores and drugs’ in the bottom.

In this work, the prediction of the QoL scores, based on both personal and clinical AKU patients’
information, was performed using the Random Forest algorithm, which suggested that the Knee injury
and Osteoarthritis Outcome Score (KOOS) indicator could be a useful factor to better understand
symptoms and difficulties experienced by AKU patients. Indeed, KOOS prediction could be
fundamental to assess the main important prognostic biomarkers of AKU and the efficacy of future
pharmacological treatments. Moreover, it has been looked for a correlation between the values of the
QoL scores and the drugs the patients take. Fisher’s exact test was applied on all the combinations
QoL score vs. drug, employing the Benjamini-Hochberg procedure to deal with multiple
comparisons. In this context, antihypertensive agents could help AKU patients to improve their
conditions, as well as FANS and opioid, which resulted to be effective in reducing AKU pain, but
also common drugs not related to specific AKU symptoms showed a correlation with some QoL
scores. Overall, the validity and effectiveness of the proposed solutions show the potential direct
benefits for patient care, treatment and early diagnosis, highlighting the necessity of patient databases
for rare diseases. We believe this is not limited to the study of AKU, but it represents a proof of
concept that could be applied to other rare diseases, allowing data management, analysis and
interpretation. (see appendix: Machine Learning Approaches in Precision Medicine: Applications
to An Integrated Bioinformatics Digital Ecosystem Platform for A Rare Disease).

Rare disease patients, therefore, face uncommon, severe and debilitating conditions, often
characterized by poor prognosis and limited treatment options. In some cases, people lose the ability
to speak and can only use their hands as their disease progresses, which can be emotionally
devastating. That is because the ability to communicate is strongly associated with patients’ QoL and
communication is seen as crucial for the adaptation to terminal diseases. Therefore, while verbal as
well as nonverbal communication abilities deteriorate, augmentative and alternative communication
(AAC) strategies and technologies become more and more important. However, in the more severe

cases AACs are not able to support communication, to express personality and feelings. Here the
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necessity to implement a device, EMMA, addressed to severely disabled patients in order to reduce
their psychological distress. EMMA is the acronym for Emotional Multimodal Assistant, a virtual
assistant able to recognize and communicate emotions for people with rare diseases with impaired
communication abilities. It has been already established that emotion recognition can provide a
scientific basis for monitoring emotional health. Emotions are not only expressed through behavioural
gestures, but also through a series of physiological signals [Xiefeng et al., 2019], which can be
measured using electrocardiogram (ECG) [Nardelli et al.,, 2015], sweating detection and blood
volume pulse. Among these changes, the heart rate variability extracted from an ECG, results to be
one of the most important indicators of emotion recognition [Agrafioti et al., 2012, Gaetano et al.,
2012]. By relying on this information, through advanced Al techniques, EMMA will be able to
capture the guttural sounds emitted by the subject together with biometric data such as stress levels,
saturation, heart rate and sleep quality and associate them with the emotions felt at that moment.

It will be therefore possible to develop an Artificial Neural Network which automatically learns how
to associate the emotion experienced with the inputs acquired by EMMA. Integrating the application

simply in a wearable device it will be possible to process the inputs and communicate in real time,

through audio-visual feedback, the emotional state of the patients, as shown in Fig. 10.

Figure 10. EMMA prototype. From the left: capture of the guttural sounds emitted by the subject
together with biometric data such as stress levels, saturation, heart rate and sleep quality. Association
with the emotions felt at that moment. Communication of the emotional state of the patient in real

time, through audio-visual feedback.
EMMA brings numerous benefits to both the patient and the caregiver, constituting a palliative care

tool which provides immediate feedback facilitating diagnostic, therapeutic choices and improving

quality of life. This project was awarded with the first prize at the Rare Disease Hackathon contest.
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This positively affects caregivers, who play an important role in supporting people with rare diseases.
Caregivers provide daily assistance to people with impairments caused by ageing, chronic diseases,
infirmities, etc. The constant attention to the patient’s needs, and the social isolation that the role of
being caregivers entails are at the basis of the obstacles they have to deal with in the daily assistance
[Navaie-Waliser et al., 2002]. In a rare disease, where diagnosis is often a slow and difficult process
[Thevenon et al., 2016] which can lead to sudden changes in the life of a patient, it is often challenging
for a caregiver to give immediately the appropriate support to the patient. A further obstacle is
represented by the fact that rare diseases-dedicated associations are generally dispersed around the
world. This makes it difficult for caregivers and their patients to communicate with specialized
centers, resulting in the lack of psychological and practical support. In order to cope with the issues
of isolation and poor communication with healthcare professionals, a network of caregivers is
extremely valuable [Munsell et al., 2011]. Here the necessity to develop a cross—platform application,
CaregiverMatcher, which facilitates communication between caregivers, patients’ associations and
specialists. (see appendix: CaregiverMatcher: graph neural networks for connecting caregivers
of rare disease patients, Fig. 11).

A direct communication channel between caregivers is realized by means of a graph neural network
(GNNs [Scarselli et al., 2009]), which performs a matching between similar caregivers based on
information regarding the assisted patient. Consequently, CaregiverMatcher would give the
opportunity to caregivers to establish direct contact with other people that face similar issues in daily
assistance. Moreover, this platform offers a section of easily understandable information material on
rare diseases curated by doctors, associations and health professionals, with useful links to get in
touch with them, as well as to external websites or to additional material. This multi-purpose platform,
enriched with artificial intelligence tools, could pave the way for the development of other platforms

for the exchange of information between scientists, doctors and patients in the field of rare diseases.
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* Caregiver - Caregiver
* Caregiver - Doctor
Caregiver - Association

Figure 11. General architecture of CaregiverMatcher mobile app. From the left: to access the
platform, caregivers log in with username and password. Four sections are available in the home
page: Profile, to manage personal and patient data; Chat, where all messages and chat conversations
are stored; Get Informed to retrieve rare diseases information as well as associations or doctors
contacts; Match to start the matching process. As a result, caregivers can then connect with patient

associations, specialized clinicians and other caregivers.

In the general framework just described, designed to define an innovative approach to personalized
medicine and to the targeted support of the patient during the whole evolution of the disease, and
thanks to advances in genetics and the increasing availability of health data, PM increases the ability
of physicians to use patients’ genetic and molecular information as part of routine medical care. In
cancer, for example, each tumour is involved in interactions with various non-cancer elements such
as gene-environment interactions (GxE), transcriptional regulation and gene co-expression [De
Anda-Jauregui et al., 2020]. The application of genetic data integration and analysis, as well as the
use of molecular modelling algorithms, allows to formulate many predictions of drug-target
interactions to greatly facilitate the guided development of personalized drugs [Tolios et al., 2020].

(see appendix: Multi-Omics Model Applied to Cancer Genetics, Fig. 12).
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omics technologies, such as genomics, epigenomics, transcriptomics, and proteomics.

Furthermore, from a pharmacogenetic point of view, many researchers focus on using the individual’s
genome to prescribe the safest and most effective drug for a specific patient [Drew, 2016]. For
example, the patient’s response to cannabinoid treatment may have a genetic background, depending
on gene polymorphisms involved in the metabolism of these substances in the organism. Different
variants may determine different therapeutic effects or the occurrence of possible side effects
[Hryhorowicz et al., 2018]. Starting from this assumption, a genetic-based precision medicine
approach was developed for patients treated with cannabinoids.

First of all, a dataset of patients, containing both static and dynamic features, was created. Static
features consisted of personal, genetic and pathological data, while dynamic characteristics included
data that change over the treatment period, such as the daily dose of cannabinoids taken, the side
effects of the therapy, and the Visual Analogue Scale (VAS). VAS is a one-dimensional measure of
pain intensity widely used in the adult population, with values in a “0—10” scale, from no pain to
extreme one. Moreover, although there are more than 100 cannabinoids isolated from Cannabis, we
concentrated on the prediction of A9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is

the most studied of these cannabinoids and also the most psychoactive, while CBD shouldn’t have
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any intoxicating or psychoactive effects, but could be a potential treatment for a wide range of
diseases.

Once the dataset has been pre-processed, a prediction model based on Gradient Boosting Regression
was implemented, with an incredible precision in predicting the daily dose of THC and CBD.
Moreover, features’ importance in the prediction was calculated, resulting in a significant importance
of genetic polymorphisms, demonstrating that they have a crucial role in the response to
cannabinoids. In the next few years, pharmacogenetics could therefore provide answers regarding the
medical use of cannabis, with the identification of future genetic markers to personalize cannabinoids

treatment.

3.2 ML APPLICATIONS TO LIFE SCIENCES
The rapid development of life science industries, high-throughput technologies, computational
frameworks, have begun to revolutionize healthcare by allowing the examination of biological
systems in unprecedented detail. Artificial intelligence methods are able to process the enormous
amounts of data coming from the Life Science industries at an unprecedented speed, revealing
information and patterns hidden within. As an example, the ability to predict protein structure is
making a revolution in biology as it allows us to better understand how all the information
maintenance/transformation mechanisms of cells work. Providing high-quality 3D structures lets
structural biologists focus their work on applications related to human health, for example tackling
some of the most serious diseases by predicting the structures of the proteins involved, characterising
how they interact, and understanding how they cause a certain disease. New proteins could be
designed for novel vaccines or biological therapies to modulate diseases, and new candidate drugs
can be identified more effectively. However, determining the 3D structure of proteins is one of the
most challenging tasks in computational biology. Although gradual developments have been made in
predicting the 3D conformation, the results obtained are generally of lower quality than experimental
techniques — apart from the very recent AlphaFold from Google [Deepmind, 2020], that anyway
presupposes an enormous computational power —, which actually constitutes the ground-truth for
evaluating the performance of predictive methods. Thanks to these tests, it has been discovered that
protein conformations can be established mainly on the basis of the sequence of its amino acids
[Anfinsen, 1973], a fundamental hypothesis which could help the development of novel protein
folding prediction techniques. This is further corroborated by the rapid advances in genomics and
proteomics, which have seen the discovery of millions of protein sequences that can be processed in
a reasonable time through computational approaches for the prediction of the protein structure.

Moreover, the protein secondary structure prediction could provide a significant first step toward the
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tertiary structure prediction, also yielding information about protein activity, relationships, and
functions. This means that, given a protein sequence, the first step towards the prediction of the three-
dimensional native configuration consists in determining which backbone regions are likely to form
helices, strands and turns. Secondary structure prediction algorithms employ a variety of
computational techniques, including neural networks [Wang et al., 2016], hidden Markov models
[Aydin et al., 2007], clustering techniques and genetic algorithms [Thanh et al., 2015]. In the present
study, based on the intuition that signals should exist, in the form of particular amino acid
concentrations, which determine the formation of secondary structures and define their extension, we
carried out a statistical analysis of the amino acid concentrations in the vicinity of a-helices, revealing
that informative patterns can be evidenced at the beginning and at the end of amino acid sequences
representing a-helices (see appendix: A deep attention network for predicting amino acid signals

in the formation of a-helices, Fig. 13).
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Figure 13. Workflow scheme. From the top: Statistical analysis, helices prediction and Attention

Mechanism implementation.

In order to validate this assumption, three ML models, specifically built for the task of amino acid
signal identification were implemented and compared. Each of them was equipped with an attention
module, which measures the importance given by the model to each feature in each sequence position,
allowing an interpretation of its behaviour. The experimental results show how all the models focus
on the most important information, suggesting that the amino acids located at the sequence boundaries
are fundamental in determining the occurrence of a-helices. It is a matter of future research to extend

the proposed approach to the prediction of signals defining other common secondary structures,
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namely S-sheets and U-turns. Indeed, the combination of the existing sophisticated ML techniques
with a deeper knowledge of the primary and secondary structure information content will play a
significant role for the prediction of the structure of new proteins.

Next to protein structure prediction, as one of the most successful advances in modern medicine,
vaccination is still facing the difficulty of developing safe and effective vaccines against many
infectious diseases such as tuberculosis, HIV and Salmonella. Salmonella in particular is a bacterium
that causes life-threatening diseases in adults and children. Typhoid fever, paratyphoid fever and
invasive non-typhoidal Salmonella infections (iNTS) have a high incidence worldwide and coexist in
many geographical areas. Current treatment for Salmonella infections is insufficiently effective
[Hohmann, 2001; Kariuki et al., 2015], taking Salmonella on the WHO antimicrobial resistance high-
priority list [World Health Organization, 2017]. The possibility to deliver multiple antigens and to
confer protection against multiple Salmonella serovars is therefore becoming increasingly important.
We exploited the potential of machine learning methods for the identification of protective
immunogens towards improved vaccine design and development. First, Al techniques were applied
to classify proteins as immunogenic or non-immunogenic from a vaccine research perspective,
information that will later be supplemented with the use of the modified outer membrane vesicle
(mOMV) platform, to test its effectiveness. in in vitro/in vivo models. For this project, we developed
a prediction model of bacterial immunogens based on XGBoost, showing an outstanding ability to
identify Salmonella immunogens. The potential deriving from SHASI-ML and the later combination
AI/mOMYV would automatically lead to a number of advantages in the area of vaccine product
development. Using a new vaccine for Salmonella as an example, there would be immediate
advantages in terms of cost and ease of production, safety and flexibility but also significant social
repercussions, both in terms of increasing global health security and in providing assistance to low-
and middle-income countries. The use ofthis methodology for the development of a universal vaccine
against Salmonella constitutes an ideal test bed for its applicability to research and development
processes of any other vaccine. Indeed, being able to identify vaccines and curative drugs more
quickly for a new and emerging infectious disease would have a very significant impact on a global
level.

Fig. 14 represents a map showing all the above-mentioned projects and publications concerning

Machine Learning application to Precision Medicine, Life Sciences and Healthcare from my PhD.
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4. CONCLUSIONS AND FUTURE PERSPECTIVES

The rapid development of life science industries and high-throughput technologies have begun to
revolutionize biological research by allowing the examination of biological systems in an
extraordinary detail. The use of computational tools has become ever more crucial, because they are
able to process enormous amounts of data at an unprecedented speed, revealing information and
patterns hidden within. Therefore, Bioinformatics in combination with Machine Learning represent a
key factor for the development of algorithms and software for the transfer, storage, analysis and
development of biological platforms. Data mining applications can be developed to evaluate the
efficacy of medical treatments by comparing causes, symptoms and treatment cycles. Similarly,
computational methods can help identify successful standardized treatments for specific diseases and
determine more effective drug compounds for treating differently responding subpopulations to
certain drugs. Moreover, the new Precision Medicine techniques make it possible to develop models
for disease prevention and treatment based on the individual molecular characteristics, by integrating
genomic information, lifestyle data and environmental information. The Precision Medicine approach
is deeply applied to the healthcare area, and in particular to rare diseases, with the creation of patient
registries leveraging large amounts of data to discover potential links. Based on the idea that Al could
help industries which generate significant amounts of knowledge, in this thesis we have focused on
the development of novel Artificial Intelligence algorithms for a number of important problems in
the field of Precision Medicine, Life Sciences and Healthcare. The application of Bioinformatics and
Computational biology algorithms together with the creation of digital databases will offer an
opportunity to translate new data into actionable information, thus allowing earlier diagnosis and
precise treatment options. Indeed, our results are very encouraging, and suggest continuing using ML
approaches in the biological field. Many challenges still remain open, requiring the development of

alternative strategies to complement/improve existing techniques.
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Abstract

Background: Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease caused by a mutation in the
homogentisate 1,2-dioxygenase (HGD) gene. One of the main obstacles in studying AKU, and other ultra-rare
diseases, is the lack of a standardized methodology to assess disease severity or response to treatment. Quality of
Life scores (Qol) are a reliable way to monitor patients’ clinical condition and health status. QoL scores allow to
monitor the evolution of diseases and assess the suitability of treatments by taking into account patients’
symptoms, general health status and care satisfaction. However, more comprehensive tools to study a complex and
multi-systemic disease like AKU are needed. In this study, a Machine Learning (ML) approach was implemented
with the aim to perform a prediction of QoL scores based on clinical data deposited in the ApreciseKUre, an AKU-
dedicated database.

Method: Data derived from 129 AKU patients have been firstly examined through a preliminary statistical analysis
(Pearson correlation coefficient) to measure the linear correlation between 11 QoL scores. The variable importance
in QoL scores prediction of 110 ApreciseKUre biomarkers has been then calculated using XGBoost, with K-nearest
neighbours algorithm (k-NN) approach. Due to the limited number of data available, this model has been validated
using surrogate data analysis.

Results: We identified a direct correlation of 6 (age, Serum Amyloid A, Chitotriosidase, Advanced Oxidation Protein
Products, S-thiolated proteins and Body Mass Index) out of 110 biomarkers with the QoL health status, in particular
with the KOOS (Knee injury and Osteoarthritis Outcome Score) symptoms (Relative Absolute Error (RAE) 0.25). The
error distribution of surrogate-model (RAE 0.38) was unequivocally higher than the true-model one (RAE of 0.25),
confirming the consistency of our dataset. Our data showed that inflammation, oxidative stress, amyloidosis and
lifestyle of patients correlates with the QoL scores for physical status, while no correlation between the biomarkers
and patients’ mental health was present (RAE 1.1).

Conclusions: This proof of principle study for rare diseases confirms the importance of database, allowing data
management and analysis, which can be used to predict more effective treatments.
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Background

Alkaptonuria (AKU) was described by Garrod in 1908 [1]
as the first disorder to conform with the principles of Men-
delian recessive inheritance. The estimated incidence of
AKU is 1 case in 250.000—1.000.000 births in most ethnic
groups [2], with about 950 patients reported in 61 countries
[3]. AKU patients carry homozygous or compound hetero-
zygous mutations of the HGD gene leading to a deficiency
of the enzyme homogentisate 1,2-dioxygenase (HGD),
which is involved in the catabolic pathway of tyrosine [4, 5].
Such dysfunction causes accumulation of homogentisic acid
(HGA). Most of HGA is excreted through the urine, result-
ing in the characteristic darkening-upon-standing, but
smaller HGA amounts can also accumulate in connective
tissues, where HGA polymerizes forming a dark brown
melanin-like pigment (ochronotic pigment). Ochronosis af-
fects skin, sclera and ears (presenting with blue-black dis-
colouration), spine and joints (causing a dramatic
degeneration and chronic inflammation), heart valves (lead-
ing to stenosis), and kidneys (where stones may develop)
[2]. Ochronosis is also the main cause of arthropathy early
onset, severely reducing patients’ quality of life and causing
pain and deficiency in locomotion [6]. HGA has also been
found to trigger oxidative stress in AKU [7-10]. Since oxi-
dized lipids are cytotoxic and responsible for initiating in-
flammatory reactions, a strict correlation between
cytotoxicity of the ochronotic pigment and inflammation
has be suggested [11]. It has been shown that useful bio-
markers for oxidative stress and inflammation in AKU are
the Advanced Oxidation Protein Products (AOPP), the
products of the oxidation reaction between plasma proteins
and oxidizing agents [12-14].

Recent studies have classified AKU as a secondary
amyloidosis [11, 15-18], characterised by deposition of
serum amyloid A (SAA) fibers, which in its soluble form
is a circulating protein produced during chronic inflam-
matory processes. Studies on AKU patients’ samples
(cartilage, salivary glands, chondrocytes and synovio-
cytes) showed that ochronotic pigment and amyloid fi-
bers share the same location, confirming that SAA is
associated with the ochronotic pigment derived from
HGA [15]. Under normal conditions SAA is found at
low concentrations in plasma (4—6 mg/L), while inflam-
matory stimulus or tissue damage increase SAA plasma
levels 100—1000 times [19], making SAA a sensitive bio-
marker of inflammation [19]. On top of SAA deposition,
SAA plasma level have also been reported to be high in
AKU patients ([11, 12, 15-18, 20].

Chitotriosidase (CHIT1) is a chitinase mainly expressed
in the differentiated and polarized macrophages [21].
CHIT1 serum concentration correlates with the progres-
sion or the severity of several diseases (sarcoidosis, rheuma-
toid arthritis, ankylosing spondylitis, uveitis, idiopathic
pulmonary fibrosis, scleroderma-associated interstitial lung
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diseases, and chronic obstructive lung diseases), suggesting
a potential use of CHIT1 as an AKU biomarker [20, 21].

The major obstacle in carrying out clinical research on
AKU is the lack of a standardized methodology to assess
disease severity and response to treatment [22], which is
complicated by the fact that AKU symptoms differ from
an individual to another and no correlation between spe-
cific HGD mutations and disease severity has been ob-
served so far [5, 23]. A reliable way to monitor patients’
clinical condition and overall health status is the use in
clinical practice and research of measures of quality of life
(QoL) [20, 24]. QoL allows to observe the evolution of dis-
eases from acute to chronic, and to assess the suitability of
the therapeutic interventions considering patients’ symp-
toms, general health status and care satisfaction [24].

Our previous studies showed that, in a rare and multisys-
temic disease like AKU, QoL scores help to identify health
needs and to evaluate the impact of disease [20, 25], sug-
gesting the presence of a correlation between QoL and the
clinical data deposited in the ApreciseKUre database, which
could be instrumental in shading light on AKU complexity.
Here we have developed a machine learning application
that perform a prediction of the QoL scores based on clin-
ical data deposited in the ApreciseKUre. We believe this ap-
proach can be turned into a best practice model also for
other rare diseases and can be useful for overcoming the
obstacles in small dataset management and analysis.

Materials and methods

Patient data

The ApreciseKUre contains data from 203 patients, but only
129 have a complete and comprehensive set of information,
which have been used in this study [26-28]. ApreciseKUre
contains information about biomarkers and replies to ques-
tionnaires (for a full description of data deposited in Apreci-
seKUre see [20]. Patients data are classified according with
11 QoL scores: (i) physical health score, (ii) mental health
score, (iif) AKU Severity Score Index (AKUSSI) joint pain,
(iv) AKUSSI spinal pain, (v) Knee injury and Osteoarthritis
Outcome Score (KOOS) pain, (vi) KOOS symptoms, (vii)
KOOS daily living, (viii) KOOS sport, (ix) KOOS QOL, (x)
Health Assessment Questionnaire Disability Index (HAQ-
DI) and (xi) global pain visual analog scale (hapVAS). (for
more details see Additional file 1).

Statistical analysis and machine learning
— Preliminary statistical analysis

The input data were firstly examined through a pre-
liminary statistical analysis. A correlation matrix based
on Pearson correlation coefficient was calculated to
measure the linear correlation between QoL scores:
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where oy, is the covariance of the two variables x and vy,
ox and oy are the variances of x and y, respectively, and
Ux and p, are the mean values.

Application of different ML algorithms

Machine learning (ML) is an algorithm-based novel
modeling technique that has been introduced recently to
select key behavior features (biomarkers) and predict
risk levels [29]. ML methods are more precise and ac-
curate in terms of prediction abilities compared with
traditional statistical methods, because complex inter-
variable interactions are taken into account in ML only
[30]. There are several key steps of the machine
learning-based classification model: data preprocessing,
feature selection, algorithm selection and model evalu-
ation. Our workflow is described in Fig. 1.

In this study, to select the most representative predic-
tors (among biomarkers included in ApreciseKUre) for
QoL scores we have applied Extreme Gradient Boosting
(XGBoost). It is a key algorithm in the processes of clus-
tering evaluation, resampling evaluation, feature selec-
tion and prediction, [31] able to calculate variable
importance defined as the statistical significance of each
variable with respect to its effect on the generated model
[32]. Starting from selected biomarkers, QoL score pre-
diction is then evaluated comparing the performance of
three other different ML techniques: (i) Linear Regres-
sion [33], (ii) Neural networks [34], and (iii) K-nearest
neighbours algorithm (k-NN) [35].). Finally, we applied a
surrogate data method [36].

Results

Qol scores statistical correlation

In the present study, a machine learning algorithm was
implemented with the aim to perform a prediction of
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QoL scores based on 129 patients’ clinical data deposited
in the ApreciseKUre database [26, 27]. QoL scores were
firstly examined through a preliminary statistical analysis
in order to evaluate the degree of correlation among
pairs of variables (Fig. 2).

It is interesting to notice the presence of correlation
among AKUSSI, KOOS and HAQ scores. Specifically,
KOOS pain, KOOS symptoms, KOOS daily living and
KOOS sport have a high correlation with AKUSSI joint
pain and spinal pain, and with hapVAS and HAQ-DL
Differently, the mental health score correlation with all
the other QoL scores is not statistically significant (be-
tween - 0.3 and 0.3). Taken together, these data suggest
that the mental health score, the only one assessing the
psychological status of the patient, is independent from
other QoL scores linked to the individual’s physical sta-
tus. Surprisingly, this finding shows that the patients’
psychological experience, based on the evaluation of
levels of anxiety and depression, is not directly related
with their actual physical and clinical status.

AKU biomarkers selection using XGBoost

Selection of the most representative predictors for QoL
scores was performed by Extreme Gradient Boosting.
XGBoost reveals that the most statistically significant
variables among 110 biomarkers included in Aprecise-
KUre [27] are: age, SAA, CHIT1, AOPP, RSSP, BML
Variable importance scores of the above mentioned six
best biomarkers, with respect to every QoL score, are re-
ported in Fig. 3.

ML algorithm selection
Based on these preliminary analyses, different ML
models (Linear Regression, Neural networks and k-NN)
were implemented to improve the correlation analysis of
biomarkers and QoL score. The ML models were com-
pared based on RAE (Relative Absolute Error) indicator
(Table 1) and R? score (Coefficient of determination):

As such, k-NN resulted to be the most accurate algo-
rithm to predict QoL scores. Therefore, we performed a

Data Preprocessing

l

QoL scores correlation matrix
| i
M-

sl .

Y

Feature Selection

l

XGBoost

to select the most

representative biomarkers

Algorithm Selection

Y

Model Evaluation

N

l

Lin.Reg. k-NN NN Surrogate data method
. _/ .'\;‘,\ for validating the ML model
= (. u‘) developed on small data samples

Fig. 1 Machine learning framework. A 4-steps workflow of the machine learning-based classification model
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Physical Health Score-
Mental Health Score
AKUSSI joint pain &
AKUSSI spinal pain &
KOOS pain-

KOOS symptoms -
KOOS daily living- 0.7
KOOS sport- 0.7
KOOS_QOL-

HAQ_hv &

Physical Health Score
Mental Health Score
AKUSSI joint pain
AKUSSI spinal pain
KOOS pain

KOOS symptoms
KOOS daily living
KOOS sport
KOOS_QoL

Fig. 2 Correlation matrix of health survey questionnaires. In this correlation matrix all QoL scores are correlated to each other. In black statistically
significant inverse correlation, in light-pink statistically significant direct correlation, in red or purple not statistically significant correlations

Legend:
* AKUSSI: AKU Severity Score Index
KOOS: Knee injury and Osteoarthritis Outcome Score
hapVAS: Global pain visual analog scale

HAQ-DI: Health Assessment Questionnaire Disability Index

k-NN on each of the 11 QoL scores and KOOS symp-
toms score showed the most accurate prediction (lowest
RAE: 0.25) (Fig. 4). Conversely, mental health scores
might not be predicted with a sufficient accuracy (high-
est RAE: 1.1), indicating limited or no connection with
age, SAA, CHIT1, AOPP, RSSP, BMI values, which is in
line with our preliminary statistical analysis.

Differently from other scores (AKUSSI, KOSS, HAQ,
hapVAS), mental health score is measured across eight
domains (vitality, physical functioning, bodily pain, gen-
eral health perception, physical role functioning, social
functioning, emotional role functioning, mental health),
thus it is not unexpected that there is not a correlation

with age and other AKU biomarkers. This observation,
in line with [20], confirms a not infrequent disability
paradox in inherited/chronic disease, underlying the
difference between the physical and mental impact on
disease severity, which may underestimate overall men-
tal state.

The obtained results demonstrated the power of ML
techniques in extrapolating information from a bio-
markers dataset to make predictions of QoL scores.
ML, with their remarkable ability to derive meaning
from complicated or imprecise data, can be used to ex-
tract patterns and detect trends that are too complex to
be noticed by either humans or other computer

Physical Health Score
Mental Health Score
AKUSSI joint pain
AKUSSI spinal pain
KOOS pain

KOOS symptoms
KOOS daily living
KOOS sport
KOOS_QOL

HAQ_hV

HAQ_hD
RSSP

CHIT1

AOPP

Legend:

AKUSSI: AKU Severity Score Index

KOOS: Knee injury and Osteoarthritis Outcome Score
hapVAS: Global pain visual analog scale

HAQ-DI: Health Assessment Questionnaire Disability Index

Fig. 3 Variable importance Xgboost for each QoL score. In the matrix are reported all the most representative indicators (X axes) with respect to
Qol scores (Y axes) for scores prediction with their corresponding variable importance. Color scale goes from the lower value (in black) to highest
value (light pink)
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Table 1 ML algorithm performance comparison

Model RAE R’

Linear Regression 0.34 0.87
Neural networks 0.28 091
k-NN 025 0.94

Comparison based on RAE and R* score among different ML models. K-NN
resulted to have the lowest RAE, thus the best performance

techniques. For instance, in Fig. 3, age, SAA, CHIT]I,
AQOPP, RSSP, BMI related to AKUSSI spinal pain and
AKUSSI joint pain scores assumed the highest variable
importance, suggesting the hypothesis they would have
been the best QoL indicators. However, as shown in
Fig. 4, AKUSSI spinal score and AKUSSI joint pain
RAE for k-NN prediction resulted to be higher in com-
parison with KOOS symptom. Additionally, HAQ hap-
VAS and HAQ-DI showed high RAE despite the
biomarkers variable importance is not different from
KOOS symptom score. In view of this, based on the k-
NN prediction, KOOS symptoms can be considered as
a useful guide for better understanding symptoms and
difficulties experienced by patients.

In conclusion, a k-NN based on the combination of
parameters like age, SAA, CHIT1, AOPP, RSSP and
BMI was able to predict with low RAE the value of
KOOS symptoms. Taken singularly these features are
not predictive and it is already well known that parame-
ters like age, SAA, CHIT1 are linked with disease sever-
ity. The innovative finding of the present work is that,
for the first time, we have found an ensemble of mul-
tiple complementary features (SAA, CHIT1, AOPP,
RSSP, related with inflammation, oxidative stress, amyl-
oidosis; age and BMI, linked with lifestyle) whose com-
bination produce better k-NN prediction results than
any single one.
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Validating ML models using surrogate data

Small dataset conditions and the associated random ef-
fects make validation of ML models a challenging task.
For these reasons, to validate the obtained model, we ap-
plied a surrogate data method, which has been previ-
ously shown to be the most suitable method for small
dataset [36]. In this approach, the surrogate data were
generated from random numbers able to mimic the dis-
tribution of the original dataset independently for each
component of the input. They statistically resemble the
original data in terms of their mean, standard deviation
and range, but they do not maintain the complex rela-
tionships between the variables of the real dataset
(Table 2).

Therefore, real-data models are expected to perform
significantly better than the surrogate data models [36].
The same k-NN algorithm was applied to both datasets,
which were randomly split into 80-20% for, respectively,
the training and test sets. Each model was trained and
validated on 1000 different runs, each using a different
training sets, selecting a 10% of the training set to valid-
ate the model. The performances of the model, in terms
of RAE and R? score, were calculated as the average over
the runs.

The models trained on our real biochemical and clin-
ical dataset achieve an increase in the average of predict-
ive performance than analogous models trained on the
surrogate controls. Indeed, the error distribution of
surrogate-model (RAE 0.38) was unequivocally higher
than the true-model one (RAE of 0.25) confirming the
consistency of our dataset. Thus, it is possible to con-
clude that the obtained predictive method is not biased
or resulting from an overfitting of the model on a small-
sized dataset (Fig. 5). This framework allowed ML algo-
rithms to successfully predict clinical and QoL scores
outcomes despite small datasets.

physical health score - 0.26
mental health score 1.1
AKUSSI_jointpain - 0I55
AKUSSI_spinalpain - 0:37
KOOS pain - 0.36

KOOS symptoms - 0:25
KOOS daily_living - 0.43
KOOS sport - 0:55

KOOS QOL - 0.48

RAE

highest value (blue)

HAQ_hapVAS 0.85
HAQ_hagDlI 0.71

Fig. 4 Performance for each QoL Score. Representation of model accuracy (RAE) for each QoL score, scale from the lower value (in light green) to

1.05
0.90 Legend:
AKUSSI: AKU Severity Score Index
0.75
hapVAS: global pain visual analog scale
. 0.60 HAQ-DI: Health Assessment Questionnaire Disability Index
KOOS: Knee injury and Osteoarthritis Outcome Score
-0.45
-0.30
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Table 2 Correlation matrix of original and surrogate dataset

ORIGINAL Pearson correlation coefficient

Variables SAA  CHIT1 AOPP  RSSP  age BMI
SAA 1.00 -001 -001 0.15 0.02 0.23
CHIT1 -0.01 1.00 0.00 028  040* -001
AOPP -001 000 100 006 009 017
RSSP 0.15 0.28 0.06 100 038 0.09
Age 002 040* 009 038* 1.00 0.14
BMI 023 -001 017 009 014 100
p-value

Variables SAA  CHIT1 AOPP  RSSP  age BMI
SAA 000 056 100 011 057 001
CHIT1 056  0.00 0.87 000 000 086
AOPP 1.00 087 0.00 069 045 0.10
RSSP 011 000 069 000 000 059
Age 057 000 045 000 000 028
BMI 0.01 0.86 0.10 059 028 000

SURROGATE  Pearson correlation coefficient

Variables SAA  CHIT1 AOPP RSSP  age BMI
SAA 1.00 =016 0.02 0.22 -002 -0.16
CHIT -016 100 -003 -006 -008 006
AOPP 002 -003 1.00 -012 006  -001
RSSP 022 -006 -012 1.00 -0.18 0.09
Age -002 -008 006 -018 100 -0.10
BMI -0.16  0.06 -001 009 -0.10 1.00
p-value

Variables SAA  CHIT1 AOPP  RSSP  age BMI
SAA 000  0.72 1.00 0.23 057 010
CHIT1 072 0.00 0.88 002 000 1.00
AOPP 100 088 000 066 061 020
RSSP 0.23 0.02 0.66 0.00 002 0.58
Age 057  0.00 0.61 002 000 028
BMI 010 100 020 058 028 000

The first table shows the Pearson correlations coefficients and the p-values of
our original dataset, the second table shows the Pearson correlations
coefficients and the p-values of surrogate dataset

*indicates statistically significant values

Discussion

The limited number of AKU patients spread around the
world represent a major obstacle for generating a stan-
dardized strategy to assess disease stage and progression.
While several biomarkers for AKU have been identified,
a clear connection between biomarkers levels and dis-
ease severity (QoL score) is still missing. Here, we imple-
mented an ML method from which QoL of AKU
patients can be predicted based on age, oxidative stress
(AOPP and RSSP), amyloidosis (SAA) inflammation
(CHIT1) biomarkers and BMI, while HGA appears to be
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extremely variable and unrelated with disease severity.
An intricate and complex pattern of oxidative stress,
amyloidosis and inflammation is evidently the main im-
portant indicator of patients’ health status.

Moreover, QoL scores worsen progressively with the
age. Aging is associated to decrease antioxidant defenses
(for instance the age-related decline in plasma glutathi-
one (GSH) and low molecular weight thiols) and in-
crease ROS production, allowing oxidatively damaged
macromolecules to accumulate [37]. AKU subjects
undergo a significant decrease in serum free protein
thiols and a significant increase in low molecular weight
mixed-protein thiols with aging [38].

Our ML model suggested that KOOS indicators could
be used to better understanding symptoms and difficul-
ties experienced by AKU patients.

KOOS is a valid, reliable and responsive tool to evalu-
ate both short-term and long-term consequences of knee
injury and primary OA. It is a patient-reported outcome
measurement, developed to assess the opinion of pa-
tients about their knees and associated problems, and it
is routinely used for follow-up evaluations [39]. Multiple
studies in patients with knee injury and knee OA report
that the KOOS demonstrates expected convergent and
divergent construct validity, with the KOOS more
strongly correlated with subscales of the ShortForm- 36
(SE-36) that measure similar constructs [40]. This is the
reason why KOOS prediction could be potentially useful
to assess consequences of primary OA, to evaluate
changes from week to week induced by treatment (medi-
cation, surgery, physical therapy) or over the years due
to a primary knee injury, posttraumatic OA or primary
OA [39], to identify the main important prognostic bio-
markers of AKU, to help the clarification of physiopath-
ological mechanisms of AKU and ochronosis, and to
assess the efficacy of future pharmacological treatments.

Similarly, AOPP and RSSP, indicators of oxidative
stress and inflammation, have shown to influence the k-
NN model. This is not surprising since AKU patients
undergo a significant increase in RSSP with aging [38].
Such a trend suggests that progression of AKU symp-
toms could be related to impaired anti-oxidant status
[10]. HGA induces a significant oxidation of a number
of serum and chondrocyte proteins. Further investiga-
tions allowed highlighting how HGA-induced proteome
alteration, lipid peroxidation, thiol depletion, and amyl-
oid production could contribute to oxidative stress gen-
eration and protein oxidation in AKU [7]. Furthermore,
this is in line with our findings that SAA can be consid-
ered as an AKU biomarker for amyloidosis [15]. In fact,
a chronic inflammatory status paralleled by inadequate
antioxidant defenses is known to promote the aberrant
production of amyloidogenic proteins, ultimately leading
to secondary amyloid deposition [7]. SAA-amyloidosis
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Surrogate Analysis
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Fig. 5 Surrogate Test Analysis. Comparison of performance based on RAE values, between k-NNs trained on surrogate data (red) and original

RAE

colocalizes with ochronotic pigment as well as with tis-
sue calcification, lipid oxidation, macrophages infiltra-
tion, cell death, and tissue degeneration [11, 16, 17].
One of the most striking results is that, differentially
from the physical QoL scores based on bodily pain scales
and general factor of physical health, mental health sta-
tus is not predictable by k-NN using the biomarkers
listed above. It is measured across eight domains: vitality,
physical functioning, bodily pain, general health percep-
tion, physical role functioning, social functioning, emo-
tional role functioning, mental health. Surprisingly, in
line with the study of [20], the level of biomarkers re-
ported to be directly linked to physical status and pain
are not influencing social functioning, role-emotional,
levels of depression and anxiety [20]. In conclusion, the
outcome of our work was that, for the first time, we have
found a biomarkers combination which, in accordance
with literature, was able to produce reliable k-NN pre-
diction results. Thanks to this ML algorithm, we will be
able to correctly predict KOOS symptoms of a new
AKU patient just relying on clinical and lifestyle data.

Current study limitations and future perspective

There are several challenges in studying an ultra-rare
and complex disease like AKU, and specifically (i) the
paucity of specimens and available data, and (ii) the lack
of a standardized method able to objectively assess dis-
ease severity or response to treatment. For this reason

we developed ApreciseKUre database, aiming to collect
as many AKU patients’ data as possible, and to use QoL
scores to monitor patients’ clinical condition and health
status, although the database does not yet include ob-
jective disease severity findings (i.e. imaging, cardiac
valve or calcification, radiographic severity score, treat-
ment modalities, time to surgery, etc). We believe that
this study could be a starting point for a better investiga-
tion of the utility and reliability of QoL scores, which are
becoming increasingly popular, and their correlation to
biochemical and clinical biomarkers. For example, the
AKUSSI score, which incorporates into a single score
multiple clinically meaningful AKU outcomes, medical
photography imaging investigations and detailed ques-
tionnaires, performed poorly in the model based on the
selected biomarkers (AKUSSI joint pain RAE 0.37 and
AKUSSI spinal pain RAE 0.55). However, as shown in
Fig. 3, parameters like age, SAA, CHIT1, AOPP, RSSP,
BMI were the 6 variables with the highest importance
values. In literature, these 6 variables have been already
used as biomarkers for AKU. In fact, there is an intimate
connection between HGA and the ochronotic process,
SAA and amyloidosis, inflammation and oxidative stress
in AKU, as demonstrated by structural co-localization of
ochronotic pigment and SAA-amyloid and co-
localization of SAA with crucial cytoskeletal proteins in
AKU chondrocytes [20]. As described in [12], some
AKU patients, who underwent joint replacement surgery
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and complained about articular disorders, arthropathy
and joint pain together with other co-morbidities,
showed pathological levels of SAA and AOPP above the
reference value. Moreover, serum concentration of SAA
[41, 42] and CHIT1 activity [43, 44] are markers of dis-
ease severity in several rheumatic conditions, and in [20]
was provided the evidence that AKU patients present
significantly high SAA and chitotriosidase activity in
comparison with controls. Some objective disease sever-
ity findings, such as cardiac valve calcification and
treatment modalities, are strictly linked with amyloid-
osis, inflammation and oxidative stress. For example, in
[11, 16, 17], SAA deposition was detected by immuno-
fluorescence technique in AKU aortic valve and it was
tested that low dose methotrexate can down-regulate in-
flammation and lower SAA production in AKU [20].

In a complex disease like AKU, also lifestyle parameters
like BMI are not neglectable. As shown in Table 2, SAA
and AOPP have a weak direct correlation with BMI (p-
value respectively 0.01 and 0.10), which in turn increases
with age. It has been previously shown that oxidative stress
increase with a rising BM], as a consequence of an impaired
antioxidant status [20, 45] through various biochemical
mechanisms, such as superoxide generation from NADPH
oxidases, oxidative phosphorylation and glyceraldehyde
auto-oxidation [46]. Moreover, in line with [20], a positive
association was found between SAA and BMI, since in
obesity (where low-grade inflammation is found) adipose
tissue is the major source of SAA, which can be considered
an obesity-related inflammatory protein [47, 48].

Age is an important driving factor for the prediction of
QoL scores and it is a common observation that clinical
symptoms might worse with aging. In fact, as shown in
Table 2, CHIT1 and RSSP correlate with age (p-value 0.0
for both biomarkers). This is confirmed by the fact that
when age is removed from the set of six biomarkers (SAA,
CHIT1, AOPP, RSSP, BMI) able to predict QoL scores,
the k-NN RAE of KOOS symptoms jump to 0.31. Unfor-
tunately, it is not easy to gather data of very young pa-
tients, since people start showing AKU symptoms in their
30/40s, even if the dark discoloration of the urine is
present from birth. The systematic use of the Aprecise-
KUre database will increase the number of patients and
will allow us to develop an upgraded version of our algo-
rithm to include an adjustment for the age of the patients.

It is important to specify that this study was based on
baseline biochemical and clinical analysis, since the very
limited number of information regarding the longitu-
dinal changes, changes during the acute phase, medica-
tion effects, differences after joint replacement did not
produce robust statistical results. Being AKU a chronic
but not lethal disease, the future direction of our study
will aim at collecting more AKU follow-up patients’ data
before and after treatments, in order to evaluate the
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effectiveness of different therapies. This will be an essen-
tial point for a typical precision medicine approach, in
which each patient is closely monitored over time and
several types of information are collected to understand
the uniqueness of each individual. This predictive system
will allow for the easy monitoring of AKU disease evolu-
tion and it will help clinicians in the selection of the
most appropriate treatment, and evaluate its efficacy by
observing the trend of QoL scores and biomarkers. In
summary, this cost-effective computational method will
be beneficial in supporting experimental and clinical
studies and, at the same time, will help patients by iden-
tifying the most promising treatments.

Conclusion

In conclusion, the combination of a ML to analyse and re-
interpret data available in the ApreciseKUre shows the po-
tential direct benefits for patient care and treatments,
highlighting the necessity of patient databases for rare dis-
eases, like ApreciseKUre. We believe this is not limited to
the study of AKU, but it represents a proof of principle
study that could be applied to other rare diseases, allowing
data management, analysis and interpretation.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513023-020-1305-0.

Additional file 1. In Additional file 1 a more detailed description of QoL
scores is provided. Moreover, informational layers, data and features
included in ApreciseKUre are collected and listed.

Abbreviations

aimAKU: Italian Association of Alkaptonuric patients; AKU: Alkaptonuria;
AKUSSI: AKU Severity Score Index; AOPP: Advanced Oxidation Protein
Products; BMI: Body Mass Index; CHIT1: Chitotriosidase; GSH: glutathione;
hapVAS: global pain visual analog scale; HAQ-DI: Health Assessment
Questionnaire Disability Index; HGA: homogentisic acid; HGD: Homogentisate
1,2-dioxygenase; IL-1: Interleukin-1; IL-6: Interleukin-6; k-NN: K-nearest
neighbors algorithm; KOOS: Knee injury and Osteoarthritis Outcome Score;
ML: Machine learning; OA: Osteoarthritis; QoL: Quality of life; RAE: Relative
Absolute Error; RSSP: S-thiolated proteins; SAA: Serum amyloid A; SF-36: Short
Form-36 questionnaire; SOFIA: Subclinical Ochronotic Features In
Alkaptonuria; SONIA1: Suitability Of Nitisinone In Alkaptonuria 1;

SONIA2: Suitability of Nitisinone in Alkaptonuria 2; TNF: Tumor necrosis
factor; XGBoost: Extreme Gradient Boosting

Acknowledgements
Many thanks are due to Energy Way srl.

Authors’ contributions

OS designed the experiments. VC conceived and performed the
experiments, analyzed the data, contributed with reagents/materials/analysis
tools, wrote the paper. CF analyzed data (information technology expert). LM
acquired and analyzed data (AKU expert). GB acquired and analyzed data
(AKU expert). AB analyzed data (information technology expert). BM
supervisor of the research and AKU clinical data expert. AT analyzed
bioinformatic data. AV analyzed ML data. DB acquired and analyzed data,
reviewed the paper (AKU expert). FP supervisor of computational approach,
reviewed the paper. AS supervisor of the research and scientific-technical
AKU expert, reviewed the paper. All authors read and approved the final
manuscript.


https://doi.org/10.1186/s13023-020-1305-0
https://doi.org/10.1186/s13023-020-1305-0

Spiga et al. Orphanet Journal of Rare Diseases (2020) 15:46

Funding
Not applicable.

Availability of data and materials

The datasets generated and/or analysed during the current study are
available in the ApreciseKUre repository, [http://www.bio.unisi.it/aku-db/].
The datasets used and/or analysed during the current study are available
from the corresponding author on reasonable request.

Ethics approval and consent to participate

Procedures were approved by Siena University Hospital and national Ethics
(Comitato Etico Policlinico Universitario di Siena, number GGP10058, date 21/
07/2010) in accordance with 1975 Helsinki Declaration, revised in 2000 (52nd
WMA General Assembly, Edinburgh, Scotland, October 2000). Informed
written consent was obtained from the patient.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'Department of Biotechnology, Chemistry and Pharmacy, University of Siena,
Via A, 53100 Siena, Italy. *Toscana Life Sciences Foundation, Siena, Italy.
*Energy way, Modena, ltaly. “Department of Information Engineering and
Mathematics, University of Siena, Siena, Italy. *UOC Patologia Clinica, Azienda
Ospedaliera Senese, Siena, Italy. 5School of Life Sciences, University of Essex,
Colchester CO4 3SQ, UK.

References

1. Garrod A. Croonian lectures on inborn errors of metabolism, lecture II:
alkaptonuria. Lancet. 1908;2:73-9.

2. Phornphutkul CIW, Anderson P, Huizing M, Anikster Y, Gerber L, Gahl W.
Natural history of alkaptonuria. N Engl J Med. 2002;347(26):2111-21.

3. Nemethova M, Radvanszky J, Kadasi L, Ascher D, Pires D, Blundell T, Porfirio
B, Mannoni A, Santucci A, Milucci L, Sestini S, Biolcati G, Sorge F, Aurizi C,
Aquaron R, Alsbou M, Lourengo CM, Ramadevi K, Ranganath LR, Gallagher
JA, van Kan C, Hall AK, Olsson B, Sireau N, Ayoob H, Timmis OG, Sang KH,
Genovese F, Imrich R, Rovensky J, Srinivasaraghavan R, Bharadwaj SK,
Spiegel R, Zatkova A. Twelve novel HGD gene variants identified in 99
alkaptonuria patients: focus on 'black bone disease' in Italy. Eur J Hum
Genet. 2016,24(1):66-72.

4. LaDu B, Zannoni V, Laster L, Seegmiller J. The nature of the defect in
tyrosine metabolism in alcaptonuria. J Biol Chem. 1958,230:251-60.

5. Ascher DB, Spiga O, Sekelska M, Pires DEV, Bernini A, Tiezzi M, Kralovicova J,
Borovska 1, Soltysova A, Olsson B, Galderisi S, Cicaloni V, Ranganath L,
Santucci A, Zatkova A. Homogentisate 1,2-dioxygenase (HGD) gene variants,
their analysis and genotype-phenotype correlations in the largest cohort of
patients with AKU. Eur J Hum Genet. 2019;27(6):888-902.

6. Milch R. Studies of alcaptonuria: inheritance of 47 cases in eight highly
inter-related Dominican kindreds. Am J Hum Genet. 1960;12(1):76-85.

7. Braconi D, Millucci L, Bernardini G, Santucci A. Oxidative stress and
mechanisms of ochronosis in alkaptonuria. Free Radic Biol Med. 2015;88:70-80.

8. Braconi D, Laschi M, Amato L, Bernardini G, Millucci L, Marcolongo R, Cavallo G,
Spreafico A, Santucci A. Evaluation of anti-oxidant treatments in an in vitro
model of alkaptonuric ochronosis. Rheumatology. 2010a;49(10):1975-83.

9. Braconi D, Laschi M, Taylor A, Bernardini G, Spreafico A, Tinti L, Gallagher JA,
Santucci A. Proteomic and redox-proteomic evaluation of homogentisic
acid and ascorbic acid effects on human articularchondrocytes. J Cell
Biochem. 2010b;111(4):922-32.

10. Braconi D, Bianchini C, Bernardini G, Laschi M, Millucci L, Spreafico A,
Santucci A. Redox-proteomics of the effects of homogentisic acid in an
in vitro human serum model of alkaptonuric ochronosis. J Inherit Metab Dis.
2011;34(6):1163-76.

11, Millucci L, Ghezzi L, Bernardini G, Braconi D, Lupetti P, Perfetto F, Orlandini
M, Santucci A. Diagnosis of secondary amyloidosis in alkaptonuria. Diagn
Pathol. 20143,9:185.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Page 9 of 10

Braconi D, Bernardini G, Paffetti A, Millucci L, Geminiani M, Laschi M,
Frediani B, Marzocchi B, Santucci A. Comparative proteomics in alkaptonuria
provides insights into inflammation and oxidative stress. Int J Biochem Cell
Biol. 2016;81(Pt B):271-80.

Bay-Jensen A, Wichuk S, Byrjalsen |, Leeming D, Morency N, Christiansen C,
Maksymowych W. Circulating protein fragments of cartilage and connective
tissue degradation are diagnostic and prognostic markers of rheumatoid
arthritis and ankylosing spondylitis. PLoS One. 2013;1(e54504). https.//doi.
0rg/10.1371/journal.pone.0054504.

Gibson D, Rooney M, Finnegan S, Qiu J, Thompson D, Labaer J, Pennington
SR, Duncan M. Biomarkers in rheumatology, now and in the future.
Rheumatology (Oxford). 2012;51(3):423-33.

Millucci L, Spreafico A, Tinti L, Braconi D, Ghezzi L, Paccagnini E, Bernardini
G, Amato L, Laschi M, Selvi E, Galeazzi M, Mannoni A, Benucci M, Lupetti P,
Chellini F, Orlandini M, Santucci A. Alkaptonuria is a novel human secondary
amyloidogenic disease. Biochim Biophys Acta. 2012;1822(11):1682-91.
Millucci L, Ghezzi L, Braconi D, et al. Secondary amyloidosis in an
alkaptonuric aortic valve. Int J Cardiol. 2014¢;172:2121-3.

Millucci L, Ghezzi L, Paccagnini E, Giorgetti G, Viti C, Braconi D, Laschi M,
Geminiani M, Soldani P, Lupetti P, Orlandini M, Benvenuti C, Perfetto F, Spreafico
A, Bernardini G, Santucci A. Amyloidosis, inflammation, and oxidative stress in the
heart of an alkaptonuric patient. Mediat Inflamm. 2014b:(2014):258471.

Millucci L, Braconi D, Bernardini G, Lupetti P, Rovensky J, Ranganath L, Santucci
A. Amyloidosis in Alkaptonuria. J Inherit Metab Dis. 2015;38(5):797-805.

Gabay C, Kushner I. Acute-phase proteins and other systemic responses to
inflammation. Engl J Med. 1999;340:448-54.

Braconi D, Giustarini D, Marzocchi B, Peruzzi L, Margollicci M, Rossi R,
Bernardini G, Millucci L, Gallagher JA, Le Quan Sang KH, Imrich R, Rovensky
J, Al-Sbou M, Ranganath LR, Santucci A. Inflammatory and oxidative stress
biomarkers in alkaptonuria: data from the DevelopAKUre project. Osteoarthr
Cartil. 2018;26(8):1078-86.

Cho S, Weiden MD, Lee C. Chitotriosidase in the pathogenesis of
inflammation, interstitial lung diseases and COPD. Allergy Asthma Immunol
Res. 2015;7(1):14-21.

Ranganath L, Cox T. Natural history of alkaptonuria revisited: analyses based
on scoring systems. J Inherit Metab Dis. 2011;34(6):1141-51.

Vilboux T, Kayser M, Introne W, Suwannarat P, Bernardini |, Fischer R,
Suwannarat P, Bernardini |, Fischer R, O'Brien K, Kleta R, Huizing M, Gahl WA.
Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria.
Hum Mutat. 2009;30:1611-9.

Clivio, L. (2005). Qualita della vita e stato di salute. Tratto da Unita di
Informatica per la Ricerca Clinica - Laboratorio per la ricerca Traslazionale e
QOutcome Research, Dipartimento di Oncologia: http://crc.marionegri.it/qdv/
index.php?page=sf36].

Cicaloni V, Zugarini A, Rossi A, Zazzeri M, Santucci A, Bernini A, Spiga O.
Towards an integrated interactive database for the search of stratification
biomarkers in Alkaptonuria. Peer) Preprints; 2016;4:2174v1. https://doi.org/
10.7287/peerj.preprints.2174v1.

Spiga O, Cicaloni V, Bernini A, Zatkova A, Santucci A. ApreciseKUre: an
approach of Precision Medicine in a Rare Disease. BMC Med Inform Decis
Making. 2017;17:42.

Spiga O, Cicaloni V, Zatkova A, Millucci L, Bernardini G, Bernini A, Marzocchi
B, Bianchini M, Zugarini A, Rossi A, Zazzeri M, Trezza A, Frediani B,
Ranganath L, Braconi D, Santucci A. A new integrated and interactive tool
applicable to inborn errors of metabolism: application to alkaptonuria.
Comput Biol Med. 2018;103:1-7.

Cicaloni V, Spiga O, Dimitri GM, Maiocchi R, Millucci L, Giustarini D,
Bernardini G, Bernini A, Marzocchi B, Braconi D, Santucci A. Interactive
alkaptonuria database: investigating clinical data to improve patient care in
a rare disease. FASEB J. 2019;33(11):12696-703.

Mondal P, Yirinec A, Midya V, Sankoorikal B, Smink G, Khokhar A, Abu-Hasan
M, Bascom R. Diagnostic value of spirometry vs impulse oscillometry: a
comparative study in children with sickle cell disease. Pediatr Pulmonol.
2019. https://doi.org/10.1002/ppul.24382.

Cleophas TJ, Zwinderman AH. Machine learning in medicine. The
Netherlands: Springer; 2013.

Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In:
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining; 2016. p. 785-94.

Friedman JH. Greedy function approximation: a gradient boosting machine.
Ann Stat. 2001;29:1189-232.


http://www.bio.unisi.it/aku-db/
https://doi.org/10.1371/journal.pone.0054504
https://doi.org/10.1371/journal.pone.0054504
http://crc.marionegri.it/qdv/index.php?page=sf36
http://crc.marionegri.it/qdv/index.php?page=sf36
https://doi.org/10.7287/peerj.preprints.2174v1
https://doi.org/10.7287/peerj.preprints.2174v1
https://doi.org/10.1002/ppul.24382

Spiga et al. Orphanet Journal of Rare Diseases

33.
34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

(2020) 15:46

Neter J, Wasserman W, Kutner MH. Applied linear statistical models.
Homewood: Irwin; 1985.

Haykin, S. (1998). Neural networks: a Comprehensive Foundation. 2nd
prentice Hall PTR upper Saddle River, NJ, USA ©1998.

Altman NS. An introduction to kernel and nearest-neighbor nonparametric
regression. Am Stat. 1992;46(3):175-85.

Shaikhina T, Lowe D, Daga S, Briggs D, Higgins R, Khovanova N. Machine
learning for predictive Modelling based on small data in biomedical
engineering. IFAC-PapersOnLine. 2015;48(20):469-74.

Braconi D, Millucci L, Ghezzi L, Santucci A. Redox proteomics gives insights
into the role of oxidative stress in alkaptonuria. Expert Rev Proteomics. 2013;
10(6):521-35.

Giustarini D, Dalle-Donne |, Lorenzini S, Selvi E, Colombo G, Milzani A, Fanti
P, Rossi R. Protein thiolation index (PTI) as a biomarker of oxidative stress.
Free Radic Biol Med. 2012;53(4):907-15.

Roos E, Lohmander L. The knee injury and osteoarthritis outcome score (KOOS):
from joint injury to osteoarthritis. Health Qual Life Outcomes. 2003;1:64.

Collins N, Misra D, Felson D, Crossley K, Roos E. Measures of knee function:
international knee documentation committee (IKDC) subjective knee
evaluation form, knee injury and osteoarthritis outcome score (KOOS), knee
injury and osteoarthritis outcome score physical function short form (KOOS-
PS), knee Ou. Arthritis Care Res. 2011;63:5208-28.

Cantarini L, Giani T, Fioravanti A, lacoponi F, Simonini G, Pagnini |, et al.
Serum amyloid a circulating levels and disease activity in patients with
juvenile idiopathic arthritis. Yonsei Med. 2012;J53:1045e8.

Jung SY, Park M-C, Park Y-B, Lee S-K. Serum amyloid a as a useful indicator
of disease activity in patients with ankylosing spondylitis. Yonsei Med J.
2007;48:218e24.

Brunner KH Jr, Scholl-Biirgi S, Hossinger D, Wondrak P, Prelog M,
Zimmerhackl LB. Chitotriosidase activity in juvenile idiopathic arthritis.
Rheumatol Int. 2008;28:949e50.

Basok IB, Kucur M, Kizilgul M, Yilmaz I, Ekmekci BO, Uzunlulu M, Isman KF.
Increased chitotriosidase activities in patients with rheumatoid arthritis: a
possible novel marker? J Med Biochem. 2014;33:245-51.

Yang RL, Shi YH, Hao G, Li W, Le GW. Increasing oxidative stress withprogressive
hyperlipidemia in human: relation between mmalondialdehyde and
alatherogenic index. J Clin Biochem Nutr. 2008:43:154-8.

Ramos LF, Shintani A, lkizler TA, Himmelfarb J. Oxidative stress and
inflammation are associated with adiposity in moderate to severe CKD.

J Am Soc Nephrol. 2008;19:593-9.

Christenson K, Bjorkman L, Ahlin S, Olsson M, Sjoholm K, Karlsson A, et al.
Endogenous acute phase serum amyloid a lacks pro-inflammatory activity,
contrasting the two recombinant variants that activate human neutrophils
through different receptors. Front Immunol. 2013;4:92.

Wang Z, Nakayama T. Inflammation, a link between obesity and
cardiovascular disease. Mediat Inflamm. 2010:(2010):535918.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 10 of 10

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




S International Journal of
Molecular Sciences

Article

Towards a Precision Medicine Approach Based on Machine
Learning for Tailoring Medical Treatment in Alkaptonuria

3

Ottavia Spiga "*, Vittoria Cicaloni >*, Anna Visibelli !, Alessandro Davoli 3(7, Maria Ausilia Paparo 37,

Maurizio Orlandini 1, Barbara Vecchi 3 and Annalisa Santucci

check for

updates
Citation: Spiga, O.; Cicaloni, V.;
Visibelli, A.; Davoli, A.; Paparo, M.A;
Orlandini, M.; Vecchi, B.; Santucci, A.
Towards a Precision Medicine
Approach Based on Machine
Learning for Tailoring Medical
Treatment in Alkaptonuria. Int. ]. Mol.
Sci. 2021, 22,1187. https://doi.org/
10.3390/1jms22031187

Academic Editor: Alessandro Desideri
Received: 20 November 2020
Accepted: 22 January 2021

Published: 26 January 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional clai-
ms in published maps and institutio-

nal affiliations.

Copyright: ©2021 by the authors. Li-
censee MDPI, Basel,

This article is an open access article

Switzerland.

distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1

Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
anna.visibelli@student.unisi.it (A.V.); maurizio.orlandini@unisi.it (M.O.); annalisa.santucci@unisi.it (A.S.)
Toscana Life Sciences Foundation, 53100 Siena, Italy; v.cicaloni@toscanalifesciences.org

Hopenly s.r.1., 41058 Vignola, Italy; alessandrodavoli@hopenly.com (A.D.);

ausiliapaparo@hopenly.com (M.A.P.); barbara@hopenly.com (B.V.)

Correspondence: ottavia.spiga@unisi.it

1t These authors contributed equally to this work.

Abstract: ApreciseKUre is a multi-purpose digital platform facilitating data collection, integration
and analysis for patients affected by Alkaptonuria (AKU), an ultra-rare autosomal recessive genetic
disease. It includes genetic, biochemical, histopathological, clinical, therapeutic resources and quality
of life scores that can be shared among registered researchers and clinicians in order to create a
Precision Medicine Ecosystem (PME). The combination of machine learning application to analyse
and re-interpret data available in the ApreciseKUre shows the potential direct benefits to achieve
patient stratification and the consequent tailoring of care and treatments to a specific subgroup of
patients. In this study, we have developed a tool able to investigate the most suitable treatment
for AKU patients in accordance with their Quality of Life scores, which indicates changes in health
status before/after the assumption of a specific class of drugs. This fact highlights the necessity of
development of patient databases for rare diseases, like ApreciseKUre. We believe this is not limited
to the study of AKU, but it represents a proof of principle study that could be applied to other rare
diseases, allowing data management, analysis, and interpretation.

Keywords: alkaptonuria; rare disease; machine learning; precision medicine; data analysis; QoL scores

1. Introduction

Precision medicine (PM) is an emerging approach for disease prevention, diagnosis
and treatment that takes into account individual variability in genes, environment, pro-
teomics, metabolomics and lifestyle [1]. The capacity to collect, harmonize and analyse data
streams is the core for developing a “Precision Medicine Ecosystem” (PME) in which bio-
chemical and clinical resources are shared between researchers, clinicians and patients [2]
and can constitute useful guides to generate an exhaustive and dynamic picture of the
individual, to identify new potential biomarkers and to tailor a medical treatment suitable
for every patient. In PM context, multimedia data management plays a key role not only
for common pathologies, but especially for rare disorders, where patients are scattered
around the world.

In particular, Alkaptonuria (AKU) is an ultra-rare autosomal recessive metabolic
disease [3] with a very low prevalence (1:1,000,000-250,000) [4], caused by mutation in
the structure of homogentisate 1,2-dioxygenase (HGD) [4], an enzyme involved in the
metabolism of tyrosine and phenylalanine. The deficient activity of HGD enzyme leads
to the accumulation of Homogentisic Acid (HGA), which undergoes oxidation and poly-
merization, forming a dark-brown pigmentation in different connective tissues with a
phenomenon called “ochronosis”. Such pigmentation involves mostly the osteoarticular
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tissues leading to a serious arthropathy with tissues degeneration, chronic inflamma-
tion and oxidative stress [5]. The deposition of the dark pigment involves skin, salivary
glands [5], brain [6] and cardiac system [7,8], but the most damaged tissues are bone and
cartilage [9]. Moreover, recent studies have classified AKU as a secondary amyloidosis [7,8],
characterised by deposition of serum amyloid A (SAA) fibers, which is a circulating pro-
tein produced at high levels (100-1000 times the normal plasmatic condition of about
4-6 mg/L) in chronic inflammation, making SAA a sensitive biomarker of inflammation.
Another marker linked to chronic inflammation is chitotriosidase (CHIT1), a chitinase
mainly expressed in the differentiated and polarized macrophages. Therefore, in AKU,
besides inflammation, patients also suffer from significant oxidative stress caused by high
systemic levels of HGA and its products. In this context, Protein Thiolation index (PTI)
interestingly denotes and summarizes the oxidative state of AKU patients. One of the
main problems in carrying out clinical research on AKU is the lack of a standardized
methodology to assess disease severity and response to treatment, which is complicated
by the large variety of AKU symptoms from an individual to another. A reliable way to
monitor patients’ clinical condition and overall health status is the use in clinical practice
and research of measures of Quality of Life (QoL) scores.

To overcome the limitations due to the scarcity of specimens and data available for
AKU and the wide range of AKU symptoms, we have recently established a comprehen-
sive digital ecosystem, ApreciseKUre, that integrates patient-derived information (QoL
scores, lifestyle), clinician-derived information (urine, blood, plasma analysis), mutational
analysis (genotypes, protein stability) and therapeutic treatments offering an exhaustive
visualization of different informative layers, to support clinicians and researchers in a PM
approach to AKU [10-15]. The ApreciseKUre database can be a good starting point for the
creation of a new clinical management tool in AKU, which will lead to the development of
a deeper knowledge network on the disease and will advance its treatment [10-12].

The integration of quality of life scores with clinical and therapeutic data will have
a central role in order to create a complete PME, supporting clinicians to tailor a medical
treatment to every AKU patient. AKU can be treated symptomatically during the early
stages (generally using anti-inflammatories, painkillers, low protein diet and vitamin C)
whereas, for end stages, total joint and heart valve replacements may be required. Currently,
there is no specific therapy for AKU, although a clinical trial with nitisinone is in progress.
Moreover, it has been already proved that both methotrexate and anti-oxidants have an
excellent efficacy to inhibit the production of amyloid in AKU model chondrocytes [16,17].
Our integrated platform, jointly with a machine learning analysis, described in this study,
will be useful to achieve an AKU patients stratification and in monitoring the evolution of
biomarkers and QoL scores to tailor the most suitable treatment to each patients sub-group.

The workflow of our study is summarized in Figure 1. The first goal of this work
was the prediction of the QoL scores based on both personal and clinical AKU patients’
information collected in ApreciseKUre. A fine-tuned scoring system can indeed assist
clinicians in making sound decisions regarding diagnosis and treatment plan. Then, it was
better investigated the correlation between the values of the QoL scores and the drugs
the patients take. This could pave the way to stratify AKU patients and to tailor the
most suitable treatment to each patient sub-group in a typical PM perspective. Tailoring
treatment to the patient has become a promising approach for maximizing efficacy and
minimizing drug toxicity and it is not trivial in an ultra-rare disease like AKU. We believe
that this AKU-dedicated preliminary study can represent a proof of principle applicable
not only to other rare diseases, but it could be also valuable to larger research communities
with an increasing number of affected patients.



Int. . Mol. Sci. 2021, 22, 1187 30f10

ApreciseKU re Clinicians assistance in
QoL scores prediction ) )Random Forest Classifier ) | making decisions regarding
diagnosis and treatment plan
machine ™=
ar'tlﬁclalnied.ic':in Stratification of AKU
Imageillcd ;
collabor%jltion5°='Y----- Cgrc:gﬁ“sogn%etdwrze: QoL Fisher's exact test patients for tailoring the
dafa SAA g most suitable treatment
"""" homoaenti

Figure 1. Workflow scheme represented by two stages, ‘Quality of Life (QoL) scores prediction” in the top and "Correlation
between QoL scores and drugs” in the bottom.

2. Materials and Methods
2.1. Dataset

The ApreciseKUre (http://www.bio.unisi.it/aku-db/) contains data from 203 patients,
of whom 129 do not contain missing data (for a full description of ApreciseKUre see
Supplementary Materials S1). Each patient in the ApreciseKUre database is characterized
by more than 100 features (for the complete list see supplementary materials S1), describing
biochemical (i.e., SAA, CHIT1 and PTI), clinical, genotypic information and replies to
questionnaires evaluating QoL scores. It has been performed patients assessment involving
11 QoL scores: (i) physical health score (PHS), (ii) mental health score (MHS); (iii) AKU
Severity Score Index (AKUSSI) for joint pain (AJP) and (iv) AKUSSI spinal pain (ASP);
(v) Knee injury and Osteoarthritis Outcome Score (KOOS) pain (KOOSp), (vi) KOOS
symptoms (KOOSs), (vii) KOOS daily living (KOOSdI), (viii) KOOS sport (KOOSsp),
(ix) KOOS QOL; (x) Health Assessment Questionnaire Disability Index (HAQ-DI) and
(xi) global pain visual analog scale (hapVAS) (for more details about each score, see
supplementary materials in [14]). Moreover, it includes information about drugs taken. We
decide to divide the drugs in painkillers, anti-inflammatories and others; then, we group
them in several sub-categories:

1. painkillers: opioid, paracetamol, metamizole;

2. anti-inflammatories: Non-steroidal anti-inflammatory drugs (FANS), corticosteroid;

3. others: antiacid, antiarhythmic, antiasthma, antibiotic, anticoagulant, anticonvulsant,
antidepressant, antiglaucoma, antigout, antihistamine, antihyperglycemic, antihyper-
tensive, antimuscarinic, antiosteoporotic, antiparkinson, antipsychotic, antireumatic,
antiviral, calcium, cholesterol-lowering medication, corticosteroid, diuretic, hormone,
methotrexate, proton pump inhibitor, skeletal muscle relaxant, sodium chloride, thy-
roid hormones, vitamins.

The amount of data used in the analysis varies according to the information available
for each QoL score: in particular, we have 134 to 138 rows of data at our disposal, depending
on the particular QoL score we are focusing on.

2.2. Machine Learning Classification

The first goal of this work has been the prediction of the QoL scores based on dif-
ferent patients information collected in ApreciseKUre. Because of the small amount of
available data, we decided to turn these scores into categorical variables; for each of them,
in particular, we divided its range in three equally spaced regions denoted by 0, 1 and 2,
corresponding to decreasing severity of health conditions. Given a specific QoL score, we
defined y as the vector representing its values (one for each patient): the k-th element
could then take value 0, 1 or 2. The prediction was performed with a one-vs-all approach:
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one of three classes was chosen (let i represent its value), and the new vector y!) was
defined such that its k-th element is:

(i): 1 ifyk:i 1
Yk _{o if oy A1 M)

The prediction for y() turned out to be a standard binary classification, which was
carried out using the Random Forest (RF) algorithm [18,19], an ensemble classifier that
uses multiple decision trees to obtain a better prediction performance. It creates many
classification trees and a bootstrap sample technique is used to train each tree from the set
of training data.Finally, to evaluate the performance of the model, we defined the usual
elements of the confusion matrix, i.e., true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) as:

TP = ;59;;)%({1) %01 (2a)
NG = ;%ﬁ“,ﬁ“ 5y£f)’0 (2b)
NG = ; [1 — 5%((1'),%(:)} 5%&1‘),1 (20)
FPl) = ; {1 — 5?;:)%((1‘)} 5%((1'),0 , (2d)

where J is the Kronecker delta and yA,(j) is the prediction for y,((i). Once the elements of the

confusion matrix were computed, we introduced other standard metrics such as:

1. accuracy:

0 _ TP 4 TN
acc\ = , A , ~; 3)
TP + TN + FP() + FN)
2.  recall:
. TP
1o = _— 4
reca TP 4+ EN(G) 4)
3. precision:
4 TP
()= ___ > .
preC - TP(I) + FP(Z) 7 (5)
4. F; score:
i 2TP()
FY = ©)

= 21P0 1 FPO) 4 FNG)
5.  Matthews correlation coefficient (MCC) [20]:

. (@) @ _ gpl) (@)
MCC) = TP x TN FPY x FN o

V(TP 4+ FPO) (TP 1 END)(TN® + FPO) (TN 4 FN(D)

Among these, the most appropriate metric to be considered was the MCC, as it is the
least sensitive to the case of imbalanced classes [21,22]; by definition, it varies over the
range (—1,1), with the value 0 corresponding to random guess.

Given that the index i takes three values, i = 0, 1,2, we ended up with three values for
each of these metrics, corresponding to the number of 2-combinations of three elements.
In order to derive a single value, different ways of computing a mean value were possible
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(e.g., macro-, micro- and weighted-average); in particular, we used a weighted average,

and defined: ; 0 "

. ; TP\ + FNV
where m generically stands for one of the metrics in Equations (3)—(7); each class, then, was
weighted by the number of positive instances with respect to the total.

2.3. Techniques in Determining Correlation

The second goal of the present work has been to look for a correlation between the
values of the QoL scores and the drugs the patients take. Clearly, it is not uncommon for
these 33 drugs to be taken in different combinations: for this reason, we treated each of
them as a binary variable (with value equal to 1 if it is taken by the patient, to 0 otherwise),
and each record has been characterized by a 33-dimensional vector representing if the
patient takes a particular drug or not. The problem of looking for a possible correlation
between the drugs and the QoL scores then became that of studying the correlation between
two categorical variables. Therefore various methodologies were accessed and compared
(see Supplementary Section S2 for a detailed discussion).

3. Results
3.1. Quality of Life Scores Prediction

The first goal of this work has been the prediction of the QoL scores based on different
patients information collected in ApreciseKUre, both personal (e.g., date of birth, gender,
country of origin, etc.) and clinical (e.g., inflammation biomarkers, results from blood
tests, etc.).

For this purpose, we have considered all the QoL scores with the exception of PHS
and MHS. Each score takes real values, with KOOS being the only one where large values
correspond to good health conditions (absence of pain).

In order to carry out the classification, we used the RF algorithm [18,19]; by compar-
ing its performance against that of logistic regression (LR) and support vector machine
(SVM) [23], it turned out the be the one giving the best results.

The hyperparameters of the RF were optimized with the Python library Hyperopt in
order to maximize (the absolute value of) the MCC, with a training-validation spitting of
0.8-0.2. We optimized the following hyperparameters: max depth (dmax), max features
(fmax), min samples leaf (slyin), min samples split (SSmin), number of estimators (Nestim.);
we report in Table 1 the results for the different QoL scores.

Table 1. List of optimized hyperparameters for RF used in the analysis, for the different QoL scores.

QoL Score Amax fmax Slmin SSmin Nestim
AKU joint pain 10 0.718 6 8 53
AKU spinal pain 23 0.990 27 14 72
KOQOS pain 1 0.718 5 17 51
KOOS symptoms 10 0.609 21 17 94
KOOS daily living 2 0.554 25 44 78
KOOS sport 23 0.663 23 52 56
KOOS QOL 6 0.554 10 25 80
hapVAS 24 0.554 24 13 38

Given the limited amount of data, we adopted the following procedure for training and
testing: once the hyperparameters had been optimized, we performed M = 50 independent
trainings and tests, each time with a different training-test splitting, with the training size
randomly chosen between 0.7 and 0.8; we then computed an average on all the metrics
obtained in each iteration. The results of the prediction are given in Table 2, together with
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the number of records available for each QoL score; in particular, for each metric, both the
mean value () and the standard deviation (c) are shown.

Table 2. QoL scores prediction with RF; the last column represents the number of records available for that particular QoL score.

Accuracy Precision Recall F MCC N

U o i o " o i o i o
AKU joint pain 0669 0052 0530 0.082 0593 0.061 0530 0.071 0180 0.095 138
AKU spinal pain 0589 0046 0327 0.111 0440 0.065 0342 0.084 0.037 0.101 138
KOOQOS pain 0.648 0.064 0487 0.084 0547 0.077 0495 0.085 0204 0.127 134
KOOS symptoms ~ 0.657  0.070 0.543 0.111 0585 0.089 0542 0.102 0235 0147 134
KOQOS daily living ~ 0.718  0.044 0553 0.064 0.623 0.061 0578 0.061 0346 0.089 134

KOOQOS sport 0689 0049 0415 0.08 0546 0.073 0464 0.079 0275 0.096 130
KOOS QOL 0.662 0.050 0463 0129 0509 0.076 0460 0.090 0232 0112 134
hapVAS 0571 0054 0371 0136 0359 0.086 0325 0.098 0.066 0127 136
HAQ-DI 0624 0.084 0624 0104 0624 0.084 059 0.09 0163 0183 138

As can be seen, the prediction algorithm performs best for KOOS daily living, KOOS
sport, KOOS symptoms and KOOS QOL: despite the rather limited amount of data, about
70% of the records where correctly classified for these QoL scores. If, in the future, informa-
tion from new patients is recorded, we expect these results to improve significantly.

3.2. Correlation between Drugs and Quality of Life Scores

The second goal of the present work has been to look for a correlation between the
values of the QoL scores and the drugs the patients take, grouped in the sub-categories,
as explained before. We decided to perform Fisher’s exact test on all the combinations
QoL score vs. drug, using the software R, employing the Benjamini-Hochberg procedure
to deal with multiple comparisons. Out of the 33 drugs we considered in the analysis, it
turns out that 8 of them showed significant correlation with at least one QoL score; we
report a summary of the results in Table 3, where we simply indicate whether a given drug
is correlated with a given QoL score. It is important to notice that “no” does not mean
that the drug and the QoL score are uncorrelated, but simply that there is not a significant
evidence of correlation; in the future, with a larger amount of data available, it is possible
that those drug will turn out to be correlated.

Table 3. Evidence of correlation between the drugs considered in this analysis and the QoL scores; while “yes" means that the
correlation is significant, “no" indicates that with the available data there is no evidence of correlation.

FANS Antlar.ry- Antll.'ll- Antlh}fper- Cholestferol- Opioid Pl‘OtO}’l Vitamins
Thmic Stamine Tensive Lowering Pump in.
AKUSSI
joint pain no no no yes no no no no
AKUSSI
spinal pain no no no yes no no no no
KOOS yes yes yes yes no yes yes yes
pain
KOOS
symptoms no no no yes no no no no
KOOS
daily living yes no no yes yes no yes no
KOOS
sport yes no no yes no yes yes no
KOOSs
QOL yes no no yes no yes yes no
HAQ-
DI yes no no no no yes yes no
hap-
yes no no no no yes yes no

VAS
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The full results of the Fisher’s exact test can be found in Supplementary Table S3,
together with the threshold (shown in the last column) used to accept or reject the null hy-
pothesis, computed according to the Benjamini-Hochberg procedure with a false discovery
rate Q set to Q = 0.2; the drugs which show a significant correlation are highlighted with
bold characters. Moreover, a dense representation is shown in Figure 2.

Anti—

hypertensive
- A
Proton Opioid
pump in. i
S
Anti— .
histamine (A . Anti— )
Anti— hypertensive
Y Anti— histamine FANS FANS
arrhythmic ' ‘
a-° «
a0
KOOS
FANS Ny daily living Amij' )
D arrhythmic Anti—
Anti— histamine
hypertensive KOOS
KOOS sport symptoms
Anti—
arrhythmic
¢ bypetonsive KOOS
VPETENSIVE K008 QOL pain
‘ ‘A
Anti—
Antifr \ hypertensive
histamine ’ \
AKUSSI AKUSSI
FANS joint pain spinal pain
Anti— FANS
hypertensive .
Y .
A A
Ninst = 150 Anti— vAmiT
arrhythmic histamine

Q Ninst = 100
Q Ninst = 50

Figure 2. Dense results of the Fisher’s exact test. For each QoL score, a first level of pie charts is shown, representing the psycho-
physical state of the patients (from red to cyan, corresponding to progressively better health conditions); the area of each circle is

proportional to the number of p

atients for which the information about that QoL score is available. A second level of pie charts, then,

shows the impact of drugs on that particular QoL score, with the same conventions as before. As a reference, we also show three

benchmark circles whose sizes correspond to the case where the number of patients is 150, 100 and 50, respectively.

In Figure 2, for each QoL score a first pie chart is represented, whose dimension is
proportional to the number of patients for which there is information for that given QoL
score. The colours are divided according to the psycho-physical state of the patient: from
red (bad health conditions) to cyan (absence of pain). In the second level of pie charts,
only the drugs for which evidence of correlation has been found are shown. The area of
the circle is proportional to the number of patients taking that drug for that given QoL
score. As a reference, we also show the size of the circles corresponding to three benchmark
values for the number of patients, i.e., 150, 100 and 50.
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4. Discussion

The first goal of this work is the prediction of QoL scores in AKU patients. Our
previous studies showed that, in a rare and multisystemic disease like AKU, QoL scores
help to identify health needs and to evaluate the impact of disease, suggesting the presence
of a correlation between QoL and the clinical data deposited in the ApreciseKUre database,
which could be instrumental in shading light on AKU complexity. Here, we have developed
machine learning applications that perform a prediction of the QoL scores based on data
deposited in the ApreciseKUre. In particular, it is based on information about the patients,
both personal (date of birth, gender, country of origin, etc.), biochemical and clinical (e.g.,
amyloidosis, oxidative stress and inflammation biomarkers, results from blood and urine
tests, etc.). In this analysis, we consider 9 QoL scores: AKUSSI joint pain, AKUSSI spinal
pain, KOOS pain, KOOS symptoms, KOOS daily living, KOOS sport, KOOS QOL, HAQ-DI
and hapVAS. Because of the small amount of available data, we decide to turn these scores
into three categorical variables (0, 1 and 2) corresponding to decreasing severity of health
conditions (i.e., 0 is the worst condition and 2 is the best condition). The classification
was carried out using the RF algorithm and comparing its performance against LR and
SVM in order to obtain the best result which were then validated. In accordance with
our previous study, [14], the algorithm prediction performs best for KOOS daily living,
KOOS sport and KOOS symptoms. In fact, despite the rather limited amount of data,
about 70% of the records where correctly classified. Thus, our model suggested that KOOS
indicator could be a useful tool to better understand symptoms and difficulties experienced
by AKU patients. Indeed, KOOS is a valid, reliable and responsive instrument to evaluate
both short-term and long-term consequences of knee injury and primary osteoarthritis
(OA). It is a patient-reported outcome measurement, developed to assess the opinion of
patients about their knees and associated problems, and it is routinely used for follow-up
evaluations [24]. KOOS prediction could be important to assess consequences of primary
OA, to evaluate changes from week to week induced by treatment (such as medication,
surgery, physical therapy etc.) or over the years due to a primary knee injury, post-traumatic
OA or primary OA [24], to identify the main important prognostic biomarkers of AKU,
to help the clarification of physio-pathological mechanisms of AKU and ochronosis, and to
assess the efficacy of future pharmacological treatments. The second goal of this study is
the investigation of the correlation between QoL scores and drugs taken by AKU patients.
Similarly to the majority of rare genetic diseases, the existing state-of-the-art treatment for
AKU is unsatisfactory. To date AKU has no licensed therapy and treatment is symptomatic.
Generally, for end-stages joint and heart valve, replacement surgery is required. Previously
suggested approaches included a low protein diet for reducing the amount of tyrosine and
phenylalanine intake and hence HGA production. Thanks to this attitude, lower values of
HGA in blood and urines have been detected especially for children [25]. However, in AKU
the low-tyrosine dietary strategy was found not always effective, only palliative and also
difficult to follow without the supervision of a specialist and it cannot be performed
for prolonged times. The idea of adapting diet or treatment according to “personal”
factors (such as age, gender, physiological state, or physical activity and QoL scores) and
to pathological features (need to follow a low level-protein diet), as well as to special
conditions (such as risk of disease) is common today. We believe that our tool could be
effective to investigate the most suitable therapy in accordance with QoL scores, which
indicates changes in quality of life of patients before/after a specific treatment. Being
AKU related to chronic inflammation, oxidative stress and amyloidosis, symptomatic
treatments are based on anti-inflammatories (FANS, corticosteroid, FANS+corticosteroid),
anti-oxidant (such as Vitamin C) and painkillers (opioid, paracetamol and metamizole).
AKU is also linked to cardiovascular ochronosis [26]. Ochronosis is associated with aortic
valve stenosis but mitral and pulmonary valves can be affected as well. Numerous case
reports have suggested that cardiovascular calcification and stenosis may be associated
with pigment deposition in the aortic and mitral valves, endocardium, pericardium, aortic
intima, and coronary arteries. In this context, antiarrhythmic and antihypertensive agents
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could help AKU patients to improve AKU conditions, as obtained by the application of
our method. As well as FANS and opioid resulted to be particularly effective in reducing
AKU pain as suggested by a high correlation with KOOS scores, HAQ-DI, hap-VAS. Also,
common drugs not related to specific AKU symptoms, such as cholesterol lowering and
proton pomp inhibitors, showed a correlation with some QoL scores. In the case of vitamins,
they resulted to be effective in the only case of KOOS pain evaluation.

5. Conclusions
In conclusion, our study could be summarized in two main goals

1. Prediction of the QoL scores based on both personal and clinical AKU patients’
information collected in ApreciseKUre.

2. The investigation of the correlation between the values of the QoL scores and the
drugs the patients take.

The previously described bioinformatics approach could pave the way to achieve AKU
patient stratification and to tailor the most suitable treatment to each patient sub-group in
a typical PM perspective. This AKU-dedicated preliminary study can represent a proof
of principle useful not only to other rare diseases, but it could be also valuable to more
common diseases with a larger cohort of patients.
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Abstract

Word count: 348

Alkaptonuria (AKU) is an ultra-rare autosomalfacessiv. \diseese cal =2d B a mutdition in“the homogentisate 1,2-dioxygenase gene.
One of the main obstacles in studying /45U #nd ot »r ulti »:re e dise¢ es, is..c'lack of a standardized methodology to assess
disease_sauerity or response to trée nent.| ased on,that, " nulti-pdrpose digital platform, called ApreciseKUre, was implemented
to facilite. |\ data aollCC an, integrat, n and' aalysis'for patients affected by AKU. It includes genetic, biochemical, histopathological,
clinical, ti rapeu, ¢ rest rces and Q ity of .o (QoL) scores that can be shared among registered researchers and clinicians to
create a Pri_ision' =dicii \ Ecosyster.."The combination of machine learning applications to analyse and re-interpret data available
in the Apre¢ =KUre :lear) “wdicated the potential direct benefits to achieve patients’ stratification and the consequent tailoring
of care and t ‘atmé&iits to a specific subgroup of patients. Computational modelling and database building can be a useful guide to
generate an exhaustive and dynamic picture of the individual and to identify potential new biomarkers, opening new
opportunities to match therapy to patients, and thus leading to a more personalized medicine for maximizing the benefit-to-risk
ratio. In this work, different Machine Learning implemented approaches were described:

predictive model for the estimation of oxidative status trend of each AKU patient based on different biochemical predictors
[Cicaloni et al., 2019].

prediction of QoL scores based on clinical AKU patients’ clinical data to perform patients’stratification [Spiga et al., 2020].

atool able to investigate the most suitable treatment in accordance with AKU patients’ QoL scores [Spiga et al., 2021 A].

the comparison of different algorithms to explore the phenotype-genotype relationships unknown in AKU so far [Spiga et al., 2021
B].

We also implemented an ApreciseKUre plugin, called AKUImg [Rossi et al., 2021], dedicated to the storage and analysis of AKU
histopathological slides, where images can be shared to extend the AKU knowledge network. The outcomes of these predictions
highlight the necessity of development databases for rare diseases like ApreciseKUre. We believe this is not limited to the study of
AKU, but it could be applied to other rare diseases, allowing data management, analysis, and interpretation.

Contribution to the field

To favor implementation of Precision Medicine (PM) approach for a rare disease, Alkaptonuria (AKU), we created the ApreciseKUre-
database that represent suitable “PM Ecosystem” in which genetic, biochemical and clinical AKU patient’s data are shared. All the
information obtained from different AKU research lines were used to populate our growing digital ecosystem. Including updated
case-data and samples from clinicians and patients, the researchers benefit from new information sources and contribute to
improve and increase the knowledge of the disease through data analysis. Potential applications include getting a deeper
knowledge of AKU, eventually advancing its treatment, and identifying exploitable prognostic biomarkers for a reliable clinical
monitoring. Moreover, overcoming the classical idea of a database as a storage tool, ApreciseKUre is also able to perform
computational analysis allowing a more complete biological understanding of a complex disease like AKU. Overall, the validity and
effectiveness of the proposed models shows the potential direct benefits for patient care, treatment and early diagnosis,
highlighting the necessity of patient databases for rare diseases. We believe this is not limited to the study of AKU, but it
represents a proof of principle study that could be applied to other rare diseases, allowing data management, analysis and
interpretation.
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Abstract

Alkaptonuria, (AK@) 15han ultrg rare Wptgfomal recessive disease caused by a mutation in the
homogentisatc, 1,2-¢ oxy| enase gene. One of the main obstacles in studying AKU and other ultra-
rare diseases,_ibtiie lack of a standardized methodology to assess disease severity or response to
treatment. Based on that, a multi-purpose digital platform, called ApreciseKUre, was implemented to
facilitate data collection, integration and analysis for patients affected by AKU. It includes genetic,
biochemical, histopathological, clinical, therapeutic resources and Quality of Life (QoL) scores that
can be shared among registered researchers and clinicians to create a Precision Medicine Ecosystem.
The combination of machine learning applications to analyse and re-interpret data available in the
ApreciseKUre clearly indicated the potential direct benefits to achieve patients’ stratification and the
consequent tailoring of care and treatments to a specific subgroup of patients. Computational
modelling and database building can be a useful guide to generate an exhaustive and dynamic picture
of the individual and to identify potential new biomarkers, opening new opportunities to match
therapy to patients, and thus leading to a more personalized medicine for maximizing the benefit-to-

risk ratio. In this work, different Machine Learning implemented approaches were described:

e predictive model for the estimation of oxidative status trend of each AKU patient based on
different biochemical predictors [Cicaloni et al., 2019].
e prediction of QoL scores based on clinical AKU patients’ clinical data to perform

patients’stratification [Spiga et al., 2020].



e atool able to investigate the most suitable treatment in accordance with AKU patients’ QoL
scores [Spiga et al., 2021 A].
e the comparison of different algorithms to explore the phenotype—genotype relationships

unknown in AKU so far [Spiga et al., 2021 B].

We also implemented an ApreciseKUre plugin, called AKUImg [Rossi et al., 2021], dedicated to the
storage and analysis of AKU histopathological slides, where images can be shared to extend the AKU
knowledge network. The outcomes of these predictions highlight the necessity of development
databases for rare diseases like ApreciseKUre. We believe this is not limited to the study of AKU,

but it could be applied to other rare diseases, allowing data management, analysis, and interpretation.

Introduction

Although evidence-based medicine (EBM) has been tiie main_ouid@ for i \edical treatment over the
last decades, this approach does not consider the inéiviG al 1 s0iecular ¢yirac eristics of the patients,
which are of great importance for the £tfic oy «ad safety of t.iupies. Indeed, the decision-making
process in mq lical ara€ice that cc aside s only the niost reliable scientific information combined with
the individual| xper 'se ¢ [the clinician [Bereczki et al., 2012], cannot be generalized for all patients.
It is well know \that not all people respond to therapies and drugs in the same way [Hafen et al.,
2014; Lehrach, 2015; Roden, 2015] for their differences in genomic, epigenomic and metabolomic
profile [Leyens et al., 2014] and other several factors including diet, comorbidities, age and weight
[Haga SB. et al., 2017]. In fact, it is possible that patients do not improve their condition after taking
the drugs recognized as the 'best' for that pathology, or even suffer from more serious complications
due to the accompanying side effects such as adverse drug reactions (ADRs). To maximize the
benefit/risk ratio, pharmaceutical interventions and dosage should be specifically tailored for
individual patient on their disease risk and expected response. This aspect will become crucial

especially in multisystemic, multifactorial and complex disorders, like Alkaptonuria (AKU).

To address this problem, a new approach called Precision Medicine (PM) has become a reality in
recent years. This recent technique focuses on different individual parameters, such as genes
variability, environment, lifestyle, and various biological markers [www.nih.gov/precision-medicine-

initiative-cohortprogram] for the prevention and treatment of diseases.



Biomarkers for example are biological indicators that could have a specific molecular, anatomic,
physiologic, or biochemical character, which can be accurately detected and evaluated [Biomarkers
Definition Working Group, 2001]. They play a key role as indicators of an ordinary or pathogenic
biological process, having a specific physical characteristic or biological change produced. Thanks
to PM it is possible primarily to promote research and understanding a wide range of diseases, but
also to identify the causes of the different responses to drugs commonly used to treat different
patients. Patients can be "stratified" [Laifenfeld et al., 2012] according to their susceptibility to a
particular disease or their response to a specific treatment. The PM approach is already profitably
applied in various health areas such as oncology, cardiology, nutrition, and in particular rare diseases
[Schee Genannt Halfmann et al., 2017]. Thanks to this approach patients’ registries can be
implemented, exploiting large amounts of data to uncover potential links, and including patients as

active partners in this research [Trusheim et al., 2011].
1. Precision Medicine in an ultra-rare disease

While the PM has focused on large amounts ofdata to stu_y n ore commd 1 discases, the data obtained
from rare diseases are often limite4 an/ Leparse. 10i¢ lack ) €information makes the ability to collect,

integrate and naly «£ d.a an ext =mel,

“ficult but necessary effort. Therefore, to overcome this
obstacle, PM 1 rare lise. :es focuses on creating patients’ registries, leveraging the largest amounts
of data availabiCto discover potential connections. A process of data harmonization in rare disease
registries allows to conduct clinical studies to understand the complexity of diseases, allowing a more
accurate classification based on their genetic characteristics [Ogino et al., 2012]. It is also possible to
improve the drug development process and assign the right treatment, as well as the most suitable
dosage and posology, to the right individual after reliable patients’ stratification that implies a process
of patients’ classification into new subcategories of common diseases.

An obstacle in the creation of such registers is that they are often created at the national or local level,
to map rare diseases in certain areas and to gather information on their incidence and prevalence in
those selected areas. Data for such disease registries are mostly obtained on a voluntary basis,
observational studies, and clinical data. It would be desirable that such registers could be also
strengthened by expanding data thanks to the implementation of PM in health systems across the EU
[Schee Genannt Halfmann et al., 2017].

In this review, we focused our attention on the application of Artificial Intelligence techniques to
analyze and re-interpret data on Alkaptonuria (AKU), an ultra-rare disease characterized by no

apparent genotype-phenotype relationship and no prognosis. Our overall goal was to advance research



on rare orphan AKU disease towards a PM approach that addresses disease complexity while
considering individual variability.

From a PM perspective, a digital platform dedicated to AKU called ApreciseKUre was created,
containing data collected from all over the world from different information levels (biochemical,
clinical, genetic, lifestyle, pharmacological and quality of life data). The exploitation of
multidisciplinary data of AKU patients and the integration of heterogeneous information feed and
refine ApreciseKUTre to stratify patients in a typical PM approach. The ApreciseKUre platform was
not created as a simple registry, but rather as a PME in which genetic, biochemical, and clinical
resources are shared between researchers, clinicians, and patients [Aronson et al., 2015] in order to
promote a better understanding of the pathophysiological mechanisms of AKU and related
comorbidities. Thanks to the integration of sophisticated computational techniques, it may be possible
to identify potential biomarkers to assess AKU severity and progression (so far impossible to be
determined), providing data with prognostic value (AKU prognosis is undetezminable as well), and
supporting the identification of new drug targets tor thewdesiza ai.l, in vitro and ex vivo
experimentation of potentially therapeutic molecul€}, of 'nit 3 new,pers, ectives for the treatment of

AKU.
Al raptonu| ia (AKU)

AKU in an ultzi-rare autosomal recessive disease caused by the mutations of the Homogentisate 1,2-
dioxygenase (HGD) gene which leads to a deficiency of the HGD enzyme [Ascher et al., 2019, La
Du et al., 1958] producing accumulation of the unprocessed toxic catabolite homogentisic acid
(HGA), especially in connective tissues. AKU was the first disorder to conform with the principles
of Mendelian recessive inheritance [Garrod et al., 1908] with an estimated incidence of 1 case in
250.000 — 1.000.000 births in most ethnic groups [Phornphutkul et al., 2002] and around 1300 patients
around the world [Zatkova et al., 2020, Ascher et al., 2019]. At a structural level, the active form of
the HGD enzyme is a complex hexamer [Titus et al., 2000] with a low tolerance to mutations
including missense variants (about 65% of all known AKU substitutions) which can cause a harmful
effect on proteins folding stability and, consequently a possible alteration of HGA accumulation
[Nemethova et al., 2016]. While the HGA excess is mostly eliminated through the urine, the
remaining part contributes to the production of an ochronotic pigment deposited in cartilage [Milch
et al., 1961; Braconi et al., 2015; Bernardini et al., 2019; Bernini et al. 2021; Braconi et al., 2020],
which contributes in arthropathy early onset, responsible for reducing patients’ quality of life and
causing severe pain and deficit in locomotion [Milch et al., 1961; Braconi et al., 2015; Spiga et al.,

2020]. Oxidative stress and chronic inflammation are also triggered by the HGA accumulation



[Braconi et al., 2015, Braconi et al., 2010, Braconi et al., 2011, Millucci et al., 2014] in different
organs, making AKU a complex multisystemic disease. Lately, AKU has been classified as a
secondary amyloidosis [Millucci et al., 2014, Millucci et al.,, 2012, Millucci et al., 2015],
characterized by the deposition of serum amyloid A (SAA) fibers, a circulating protein produced at
high levels in chronic inflammation, making SAA a sensitive biomarker of inflammation [ Gabay et
al., 1999], confirmed by elevated SAA plasma levels also in AKU patients [Millucci et al., 2014,
Millucci et al., 2012, Millucci et al., 2015, Braconi et al., 2016 , Braconi et al., 2018]. Moreover, both
ochronotic pigment and SAA-amyloid share the same location in human cartilage and other tissues
[Millucci et al., 2012]. Another marker linked to chronic inflammation is chitotriosidase (CHIT1), a
chitinase mainly expressed in the differentiated and polarized macrophages [Cho et al., 2014]. Serum
concentration of CHIT1 is linked with sarcoidosis, theumatoid arthritis, ankylosing spondylitis and
chronic obstructive lung diseases, suggesting a probable involvement of CHIT1 as an AKU biomarker
[Braconi et al., 2018, Cho et al., 2014]. Therefore, in AKU, besides inflammatign, patients also suffer
from significant oxidative stress caused by high systemic levelssgf HOA allits products. Proteomics
revealed oxidative-stress relayed alterations in AKUfpati nts ind showed)inteiesting similarities with
other rheumatic diseases [Bracgnietfal~2016), In thil \conicxt, Protein Thiolation index (PTI)
interestingly | deng®g™ ¢hd sumi arizé )y the' oxidative state of AKU patients, as revealed by
ApreciseKUr¢ ools ind ¢ rperimeiitally confirmed [Cicaloni et al., 2019]. Moreover, one of the main
obstacles in can ing out clinical research on AKU is the lack of a standardized methodology to assess
disease severity and response to treatment [Ranganath et al., 2011]. The large variety of AKU
symptoms from an individual to another [Ascher et al., 2019, Vilboux et al., 2009] needs a reliable
way to monitor patients’ clinical conditions and overall health status. A way to help to identify health
needs and to evaluate the impact of the disease is represented by the measure of Quality of Life (QoL)
[Braconi et al., 2018] whose correlation with the clinical data deposited in the ApreciseKUre database

mat help to effectively face AKU complexity [Spiga et al., 2020].
3. ApreciseKUre digital ecosystem platform

As shown in Fig 1, ApreciseKUre (www.bio.unisi.it/aprecisekure/; www.bio.unisi.it/aku-db/) is a

digital platform populated by heterogeneous data from different research groups around the world.
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information (U st rei ults,
collected, inte nd shared between scientists, clinicians and patients [Spiga 2017 and 2018], to
build a worldwide easily consultable reference point for AKU. In detail, AKU patients’ data have
been collected and divided into different levels such as genetic, protein, biochemical, histopathologic,
clinical, lifestyle and habitual, as shown in Fig.2. All this kind of information is accessible to
clinicians which are also able to insert new data, refreshing or replacing previous entries thanks to an

easy graphical user interface (GUI).

Currently, ApreciseKUre [Spiga and Cicaloni et al., 2021 A and B] incorporates data of over 210
subjects with AKU, 119 more than its original version [Spiga et al. 2018, Spiga et al., 2017, Cicaloni
et al., 2016] which is an exceptional result considering the rarity of AKU. The total number of fields
making up each record is 110, with 82 numeric attributes and eight Booleans; the remaining fields
are categorical values or concise notes (for the complete list see supplementary material by Spiga and

Cicaloni et al., 2021 A and B).
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being able to insert new data, refreshing or replacing previous entries.

Moreover, the development of databases and a proper data analysis can constitute useful tools to
generate an exhaustive and dynamic picture of an AKU patient and to identify potential new
biomarkers in order to achieve patient stratification. Based on that, different data mining techniques
were implemented to discover potential biomarkers, opening new opportunities to match therapy to
patients, possibly single therapy to single group of patients, thus leading to a more personalized
medicine for maximizing the benefit to risk ratio. The outcomes obtained from these models could
be useful not only to advance the treatment of AKU, but also to serve as a model for other rare
diseases. In Figure 3, all the data analysis techniques are summarized, ranging from more common

statistical data mining to deeper ML models.



AKU-dedicated digital platform

ApreciseKUre: genetic, biochemical Predictive model for the estimation
and clinical data oxidative status trend of each AKU
AKUImg: storage and analysis of patient based on different biochemical
AKU histopathological slides | predictors.
- ‘ - b
Biomarkers T
: Database e . |
B prediction :
Genotype- . . —_ ,
Exploration the phenotype-genotype h \ Patients Patients stratification based on Quality of
relationships unknown in AKU phenotype | ificati Life (QoL) scores and dlinical data
: - 2 stratification
oh investigation N

A4 |

Personalized
treatment

treatment in accordance with AKU

'I Investigation of the most smtable |
19
| patients” Qol scores

Figure 3. Data mining techniques. All the outcemes der ved from " tisv cal and computational

approaches included in ApreciseKlIre dre  'spla sed.

1. Data ai 1lys) \bya refreshable correlation matrix

The first analytic method developed is based on Pearson’s correlation coefficient and P value that
generates a refreshable correlation matrix where every numeric datum included in ApreciseKUTre is
correlated with all the others. The modelling correlations have significant implications for early
diagnosis, monitoring and therapeutic intervention in AKU, revealing that some clinically used
biomarkers might not be suitable prognostic biomarkers in AKU.

For instance, our automated method was able to figure out an inverse statistical correlation between
Cystatin C (CysC) and Cathepsin D (CatD) [Cicaloni et al., 2016, Spiga et al, 2017; Spiga et al.,
2018]. On the one hand, CysC is a marker for monitoring kidney function: if the kidney function and
glomerular filtration rate (GFR) decline, blood levels of CysC increase [Croda-Todd et al., 2007;
Randers et al., 1998]. On the other hand, CatD levels are particularly elevated in muscular dystrophy
and rheumatic diseases [Khalkhali-Ellis et al., 2014]. The main function of CatD is to degrade
proteins like CysC [Lenarc¢i¢ et al., 1991]. Ochronotic manifestations in AKU gradually lead to kidney
stones and nephrolithiasis [Faria et al., 2012]. Even though AKU patients often suffer from kidney
dysfunction, in 40 AKU subjects for whom CatD and CysC were tested we did not observe increased

CysC levels, whereas CatD showed higher values in AKU subjects compared to controls [Braconi et



al., 2018]. Thanks to omni-comprehensive approaches like such correlation matrix, starting from a
statistical observation, it was possible to biologically suggest that CysC might not be a suitable marker
to measure GFR in AKU, since overexpression of CatD in AKU might lead to degradation of CysC,
making it no longer detectable.

This first data-mining approach revealed the amount of hidden information which can be extrapolated
from computational models, in order to acquire a deeper knowledge of the AKU and to identify
prognostic biomarkers that can be exploited for a reliable clinical monitoring. Furthermore, given the
chronic nature of AKU, it is necessary to monitor the clinical condition of each patient over time and
implement a correlation system able to compare biomarkers at different times with follow-up studies,
providing a guideline for newly diagnosed patients and estimation of socio-economic costs for

affected people and health institutions.
2. Predictive model for the estimation oxidative status

After this preliminary model, a prognostic method based omilpear xegicision able to investigate
oxidative stress status of AKU patients, startingr{ron: eas 'y 1. easurable ¢ inical parameters [Cicaloni
et al., 2019] was integrated in Ag/ccis Kore. Th g predi¢ ive system could help clinicians to easily
monitor the | xida{ ve | ress evc utioti pgbingle patients, with the consequent most appropriate
antioxidant tr¢ tmei : pre cription for each of them. It has already emerged from the correlation
matrix that PTFisa reliable biomarker to monitor oxidative stress in AKU [Giustarini et al., 2017]. A
linear regression model was then implemented, revealing the most influential biomarkers for PTI
prediction, and consequently, for oxidative stress estimation. Such biomarkers are parameters easily
measured in AKU clinical analysis and they are related to inflammation, amyloidosis, and lifestyle.
They are Body Mass Index (BMI), SAA, HGA, cholesterol, and CTH1. The outcome obtained, not
only could help clinicians and researchers to monitor the trend of oxidative stress in an AKU-affected
individual, but also could be used as a model for other research groups for improving the AKU-

knowledge network.

3. Prediction of QoL scores based on clinical AKU patients’ clinical data to perform

patients’ stratification

Patients’ stratification is one of the main goals that computational modelling together with databases
can achieve. A K-nearest neighbors algorithm (k-NN) was then modelled, capable of outperforming
other predictive models in predicting quality of life scores starting from clinical markers [Spiga et al.,
2020]. Moreover, due to the limited number of data available in a rare disease, it is essential to develop

methods that would cope with the limited data size. The model has been therefore validated using



surrogate data, because small dataset conditions and the associated random effects make validation
of ML models for regression tasks impractical. Conventional methods, such as cross-validation, may
become unreliable when the number of independent test samples is limited. The surrogate data
method consists in the generation of a so-called "surrogate dataset" generated from random numbers
and able to mimic the distribution of the original dataset independently for each component of the
input vector. While resembling the original data statistically, it will not retain the intricate
relationships between the variables of the real dataset, so it is expected to perform worse than the

real-data one.

The validated and effective proposed solution identified a direct correlation between different
significant clinical markers and QoL scores, making it addressable to several open issues in AKU

with a strong clinical impact on early diagnosis, prediction of disease and of treatment outcome.

4. A tool able to investigate the most suitable treatment in accordance -with AKU patients’

QoL scores

It has been already studied that QoL sceregcotid identif] hec th afeds and to evaluate the impact of
disease.
QoL of AKUatie| ts w s assess| i through the following validated questionnaires [Braconi et al.,

2010]:

e Knee injury and Osteoarthritis Outcome Score (KOOS) [Roos et al., 2003], evaluating both
short- and long-term consequences of knee injury. It contains 5 subscales: pain, other
symptoms, function in daily living, function in sport and recreation, and knee-related QoL.
Scores are normalized to a “0—-100 scale, from extreme knee problems to no knee problems.

e Health Assessment Questionnaire (HAQ), including a disability index (haqDI) and a global
pain visual analog scale (hapVAS). Scores are normalized to a “0-3” scale, from no
difficulties to extreme ones.

e AKUSSI, incorporating clinically meaningful AKU outcomes combined with medical

photography imaging investigations, and detailed questionnaires into a single score.

In this study [Spiga et al., 2021], starting from the idea that there is a correlation between QoL and
the clinical data deposited in the ApreciseKUre database, we have developed a ML model that
performs a prediction of the QoL scores based on both personal, biochemical and clinical patients
data. In this analysis, we considered the following QoL scores: AKUSSI joint pain, AKUSSI spinal
pain, KOOS pain, KOOS symptoms, KOOS daily living, KOOS sport, KOOS QOL, HAQ-DI and
hapVAS. All these QoL scores were standardized into three categorical variables (0, 1 and 2)



corresponding to decreasing severity of health conditions (i.e., 0 is the worst condition and 2 is the
best condition), to face the problem of data scarcity.

The classification was carried out using the RF algorithm, revealing that KOOS indicator could be a
useful tool to better understand symptoms and difficulties experienced by AKU patients, as already
discovered in [Spiga et al., 2020]. KOOS prediction could be important to assess consequences of
primary osteoarthritis (OA), to evaluate weekly changes induced by treatment, to identify the main
important prognostic biomarkers of AKU, to help the clarification of physio-pathological
mechanisms of AKU and ochronosis, and to assess the efficacy of future pharmacological treatments.
Similarly, to most rare genetic diseases, the existing state-of-the-art treatment for AKU is
unsatisfactory. With the only exception of Nitisinone, that resulted in reducing urinary excretion of
HGA, in decreasing ochronosis and in improving clinical signs with a slower disease progression,
there is still no other licensed therapy [Ranganath et al., 2020]. Symptomatic treatments with anti
inflammatories and painkillers are generally taken by AKU patients. The idea of personalizing the
treatment according to “personal” and pathological features, asagell <y to ¢ heclal conditions could be
the right approach to follow. For that reason, we pérfoi ne¢a corgelatigh boiween QoL scores and
drugs taken by AKU patients, beliesing thai'Sur tenlcould he eficctive to investigate the most suitable
therapy in aci yrdageg”w th QoL s\ ores. \atisrrhythmic and antihypertensive agents, as well as FANS
and opioid, r¢ ulteq to | = particularly effective in reducing AKU pain as suggested by a high
correlation with 2008 scores, HAQ-DI, hap-VAS. Also, common drugs not related to specific AKU
symptoms, such as cholesterol lowering and proton pomp inhibitors, showed a correlation with some

QoL scores. In conclusion, vitamins resulted to be effective in the only case of KOOS pain evaluation.
5. Comparison of different algorithms to explore the phenotype—genotype relationship

By taking advantage of the dataset containing the highest number of AKU patients ever considered,
it is also possible to apply more sophisticated ML methods to achieve a first and preliminary AKU
patient stratification based on phenotypic and genotypic data. Our contribution [Spiga et al. 2021 B]
started from a preliminary statistical analysis based on Pearson Correlation Coefficient to evaluate
the relationship between pairs of clinical data, biochemical parameters and QoL scores. While all the
QoL scores resulted to be statistically correlated, biomarkers of chronic inflammation and
amyloidosis like CHIT1 and SAA did not result strongly correlated with disease severity. PTI instead
was correlated with Knee injury and Osteoarthritis Outcome Score (KOOS) scores and age. After this
preliminary analysis, we performed an innovative strategy applying both K-means and Hierarchical
Clustering to stratify AKU population into subgroups with similar features. The experiment was

conducted using three different stratification sizes and the resulting clusters were then grouped



according to the severity of the AKU disease, by considering age, levels of oxidative stress,
inflammation, and amyloidosis biomarkers and QoL scores. Cluster evaluation was performed by
applying the Kruskall-Wallis ranking non-parametric test. Additionally, we computed the Silhouette
Score with the aim to test the consistency within elements which have been assigned to the same
cluster. Once AKU stratification and cluster validation were performed, we investigated the HGD
mutations distribution across the obtained clusters. We paid attention to G161R mutation, responsible
for a dramatic reduction of HGD activity [Rodriguez et al., 2000], which occurred in higher
percentage in the most phenotypically severe clusters, and M368V and A122V mutations, in which
enzymatic activity of HGD is conserved for more than 30%, [Rodriguez et al., 2000] and the trend

described a higher percentage in less severe phenotypic sub-groups.

6. AKUImg

Starting from the assumption that bio-imaging technologies are increasingly impacting on life
sciences and sharing of image data is required to enablc' innovative f@fure »seirch, an ApreciseKUre
plugin, called AKUImg [Rossi et al., 2020], was cregieG AK Yimg is thi)firss AKU-dedicated image
repository. It is dedicated to the stgsagé an hana wsis of A KU opathological slides where images
can be sharec among#@uistered r searc \ers 2ad cliticians to extend the AKU knowledge network. It
allows to exte d th{ rec¢ znition 2. reading of slides in the scientific community for an ultra-rare
disease, like Al 1L by Supporting clinicians and researchers with a user-friendly online tool able to
distinguish between AKU or control cartilage slides. As a matter of fact, the plugin is also integrated
with an accurate predictive model based on a standard image processing approach, namely histogram
comparison, able to discriminate the presence of AKU by comparing histopathological images. Deep
learning (DL) and convolutional neural networks (CNNs) have shown impressive results in many
image-processing tasks. However, despite their popularity, they generally require huge datasets to
reach good performance. Although we could divide each acquired image in patches, our dataset was
not that big. To overcome the obstacle of the paucity of images available, the model we created has
been a simple but effective binary classification of the knee cartilage. It performs a comparative
analysis of the color histograms of the three channels revealing that AKU and healthy cartilages are
easily distinguishable. Therefore, it has been calculated and stored color histograms for all the images
in the dataset. For each new image to be classified, it has been evaluated the intersection region
between the related histogram and all the histograms in the dataset. Finally, the test image has been
assigned to the class with the largest intersection region. In conclusion, the algorithm can perform
image classification with a high accuracy, making it a useful guide for non-AKU researchers and

clinicians.



4. Conclusion

Bioinformatics is an interdisciplinary field combining biology, computer science, information
engineering, mathematics and statistics that develops methods and software tools to analyze and
interpret biological data. Bioinformatics is taking a key role in big data analysis especially in
healthcare, public health and in PM for a new understanding of the complexity of diseases and for
tailoring the most appropriate treatment. PM is an innovative approach which aims to build a
knowledge base network that can better guide individualized patient care, giving benefits in terms of
health and quality of life. In this review, we focused on its application to an ultra-rare disease named
Alkaptonuria, characterized by no apparent genotype-phenotype relationship, no prognosis, and no

therapy.

To develop an AKU-dedicated PME, clinical and experimental data_havfy been collected and
integrated in ApreciseKUre, a multi-purpose digital platforptCintai ing ihf¢rmation of more than
200 AKU subjects, uniquely identified based-qu an inon mc 1s key. Datc are stratified into different
layers related-to genotype, bihinarl ers; enviiyrment) Mlifestyle, habit, histopathologic, social
functioning, | lini€ ¥ ar! therap! s ot jwfents. Including updated case-data and samples from
clinicians and' atier s, th ) researchers benefit from new information sources and can contribute to

get a deeper kaowledge of AKU.

However, ApreciseKUre is more than a data storage, as it also integrates computational predictive
models able to map highly non-linear input and output and to investigate the health status of AKU
patient patterns even when mechanistic relationships between model variables could not be

determined. The main ML goal are listed below:

e Estimation of oxidative status trend of each AKU patient based on different biochemical
predictors.

e Patients’ stratification based on QoL scores and clinical data

e Investigation of the most suitable treatment in accordance with AKU patients’ QoL scores

e Exploration of the phenotype—genotype relationships unknown in AKU

Overall, the combination of a ML to analyze and re-interpret data available in the ApreciseKUre
shows the potential direct benefits for patient care and treatments, highlighting the necessity of patient
databases for rare diseases, like ApreciseKUre. We believe this is not limited to the study of AKU,
but it represents a proof of principle study that could be applied to other rare diseases, allowing data

management, analysis, and interpretation. Thanks to our sufficiently populated and organized dataset,



it was possible, for the first time, to extensively explore the phenotype-genotype distribution in a

typical PM perspective

Lists of abbreviations

AKU: Alkaptonuria

ML: machine learning
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PM: Precision Medicine

PME: Precision Medicine Ecosystem
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GUI: Graphical user interface
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k-NN: K-nearest neighbors algegtiin
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PTTI: Protein Thiolation Index

QoL: Quality of Life scores

PM: Precision Medicine

DL: Deep learning

CNN: convolutional neural networks

BMI: Body Mass Index

AKUSSI_jointpain: AKU Severity Score Index joint pain
AKUSSI_spinalpain: AKU Severity Score Index spinal pain

KOOSpain: Knee injury and Osteoarthritis Outcome Score pain
KOOSsymptoms: Knee injury and Osteoarthritis Outcome Score symptoms
KOOSdaily_living: Knee injury and Osteoarthritis Outcome Score daily living
KOOSsport: Knee injury and Osteoarthritis Outcome Score sport
KOOS_QOL: Knee injury and Osteoarthritis Outcome Score Quality of Life
hapVAS: Global pain visual analog scale



HAQ-DI: Health Assessment Questionnaire Disability Index
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Abstract

Rare diseases affect a growing number of individuals. One key problem for patients and their caregivers is the difficulty in reaching
experts and associations competent on a particular disease. As a consequence, caregivers, often family members of the patient, learn
much about the disease from their own experience. CaregiverMatcher is a proof of concept providing a smart solution to build a
network of caregivers, linked by a matching mechanism based on graph neural networks. The caregivers and their experience with
rare diseases are described by node features. Associations and care centers are invited to share their knowledge on the platform.
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1. Introduction

Any disorder which has a low prevalence in the target population, typically chronic and potentially life-threatening,
is known as rare disease. In the United States, a disease is defined as rare when it affects less than 200,000 people
in the US population. This definition was introduced in the Orphan Drug Act of 1983 with the aim of regulating the
production of drugs for the treatment of such diseases. In the European Union a rare disease is defined as a disorder
“with an incidence of less than 1 per 2000 people”. This was first established in the EU legislation in Regulation (EC)
141/2000 of 16 December 1999.
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According to Eurordis [1], the estimated number of rare diseases is higher than 6,000 and, depending on the local
definitions of rarity, the prevalence of people suffering from them varies between 3.5% and 5.9%. This results in 263-
446 millions of affected people worldwide [2]. Therefore, although rare disorders have a relatively low prevalence,
the number of patients is still very large.

An important role in the support of people affected by rare diseases is that of the caregiver. Caregivers provide
daily assistance to people with impairments caused by ageing, chronic diseases, infirmities, etc. They can be either
members of the patient’s family, or people hired for providing help. An ISTAT report of 2015 [3] states that, in
the European Union, 15 out of 100 people provide assistance to individuals with impairments at least once a week.
Regarding care for family members, this number slightly decreases to 13. This indicates that the role of the caregiver
is mostly occupied by family members, who rarely have got an adequate education on how to deal with people affected
by some impairments. In addition, the constant attention to the patient’s needs, and the social isolation that the role of
being caregivers entails are at the basis of the obstacles they have to deal with in the daily assistance [4]. This aspect
becomes even more relevant when the assisted patient is affected by a rare disease. The diagnosis is often a slow and
difficult process [5] which can lead to sudden changes in the life of a patient. Consequently, it is often challenging for
a caregiver, be it a family member or not, to give immediately the appropriate support to the patient.

A further obstacle is represented by the fact that rare diseases dedicated associations are generally dispersed around
the world. This makes it difficult for caregivers and their patients to communicate with specialized centers, resulting in
the lack of psychological and practical support. In order to cope with the issues of isolation and poor communication
with healthcare professionals, a network of caregivers is extremely valuable [6].

In this work, a proposal for the design of a cross—platform application in support of the caregiver’s experience is
presented. The proposal is called CaregiverMatcher, and its aim would be to create a network of caregivers assisting
people affected by rare diseases. Technically, CaregiverMatcher would exploit graph neural networks (GNNs [7]) to
perform a matching (an association) between caregivers, based on information about the assisted patients. Conse-
quently, CaregiverMatcher would give the caregiver the opportunity to establish a direct contact with other caregivers
that face similar issues in daily assistance. Moreover, CaregiverMatcher would make some informative sections avail-
able, which would be dedicated to improve the knowledge about rare diseases. These sections would be curated by
doctors and associations joining the platform, and they would also include contacts to medical centers and associa-
tions. In summary, besides offering the opportunity of a direct contact between caregivers to promote the sharing of
experiences, CaregiverMatcher attempts to facilitate the exchange of information between associations, doctors and
caregivers in the field of rare diseases.

The paper is organized as follows: in Section 2, some related works are presented.Section 3 explains the archi-
tectural structure of CaregiverMatcher. Section 4 highlights the strengths and limitations of the proposed application.
Finally, Section 5 presents the conclusions of the paper.

2. Related works

Several technologies have been proposed with the aim of improving the health and well-being of caregivers, by
enabling them to communicate with other caregivers [8, 9, 10]. These approaches can reduce difficulties related with
the access to health care providers and resources to give an appropriate support to the assisted patient [11]. Other
applications focus instead on the creation of a “health team” community, through which caregivers and patients can
request information and receive feedback [12]. Finally, other support technologies provide an emergency channel
through which the patient can immediately be put in contact with the caregiver [13].

However, to the best of our knowledge, existing applications do not exploit Machine Learning techniques as a mean
of facilitating communications between caregivers, associations and doctors. The proposal represents an innovation in
this direction, because CaregiverMatcher would select groups of caregivers facing similar daily issues by exploiting
graph neural networks (GNNs).

GNNeg, first introduced in [7] and [14], are deep neural networks designed to process graphs, which have been
proven to be universal approximators on graph-structured inputs under certain conditions [15]. This family of models
includes several types of architectures, that differ for structure and performed tasks (for an exhaustive taxonomy of
existing GNN models see [16] and [17]). The first models to be introduced [7, 14] exploit recurrent neural networks
to learn a node’s representation in a graph. Later, convolutional GNNs (GCNs) were introduced [18, 19, 20, 21]. In
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* Caregiver - Caregiver
* Caregiver - Doctor
* Caregiver - Association

Fig. 1. General architecture of CaregiverMatcher mobile app. From the left: to access the platform, caregivers log in with username and password.
Four sections are available in the home page: Profile, to manage personal and patient data; Chat, where all messages and chat conversations are
stored; Get Informed to retrieve rare diseases information as well as associations or doctors contacts; Match to start the matching process. As a
result, caregivers can then connect with patient associations, specialized clinicians and other caregivers.

order to learn node representations, GCNs exploit convolutional operations to aggregate the information contained
in a node’s neighbourhood. Moreover, the type of convolution applied to the graph has led to the definition of many
different architectures, e.g. Graph Isomorphism Networks [22].

3. Materials and Methods

CaregiverMatcher main purpose is to allow caregivers to share their experience with other people, and to spread
knowledge gained in the course of their assistance to patients affected by a rare disease. CaregiverMatcher can be
described as a free and easy—to—use multi—platform network application, where the user can both provide and request
psychological or technical support, which comes in the form of a simple chat conversation with other caregivers,
patient associations and specialized doctors. This could lead to benefits in many aspects of daily life, including, for
example, psychological health. In addition, more expert caregivers can spread their experience, in order to make
“newcomers’” benefit of the advises which have been shared on the platform.

Finally, the feeling of abandonment a caregiver can experience [23], may be mitigated by the possibility offered by
CaregiverMatcher to promote the communication with associations and doctors.

3.1. Proposed architecture

During the registration on the platform, the caregiver creates a personal profile and provides some information
about the patient. Information may include personal data such as age, gender, height and weight, blood group, as
well as health condition, symptoms and characteristics of the specific disease affecting the patient. For example,
information regarding organs involved in the disease, condition of reduced mobility, blindness, difficulties in breathing
and communicating may be included. It is worth noting that these data are anonymous and intentionally generic,
in order to protect the patients identity. Personal information cannot be accessed by other users: patients data are
exclusively used in the matching process by the machine learning model.

Moreover, patients and caregivers data can be updated in the dedicated Profile section, in order to keep track of the
course of the disease, as well as of the experience of the caregiver. Multiple patient records are available in the profile
section to include caregivers providing assistance to more than one patient at the same time. If for some reason a new
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patient replaces one of those already present in the caregiver’s profile, the experience gained with the previous one is
still used by CaregiverMatcher as useful information for the matching process.
In addition to the modifiable Profile section, CaregiverMatcher makes other three sections accessible to the user:

- Connecting section, where the user can discover the usernames of the matched caregivers. The association is
performed by using the Deep Learning techniques described in Section 3.2, by exploiting information on similar
assisted patients and similar life condition of the caregivers.

- Chat section, where the caregiver can communicate in real time with other people after the matching process
and where all chat sessions are stored.

- Get Informed section, a specific area where doctors and associations provide easily understandable documen-
tation about several rare diseases and useful links to external websites. Moreover, direct links to associations
and/or doctors are available, so as to offer other communication channels to the user.

3.2. Deep learning-based matching process

The core of CaregiverMatcher is its ability to connect caregivers by means of deep learning techniques. From a
practical point of view, the application checks the compatibility between caregivers based on both patient personal
information and health condition. In particular, a graph neural network is exploited by the application to perform
a matching between caregivers living in similar conditions. The input to the model is constituted by a vector of
information regarding both the caregiver and the assisted patient health conditions. As several information could be
collected to describe a caregiver in the network, it could happen that the input to the machine learning model is high
dimensional. Therefore, in order to facilitate the data processing, some specific architectures, such as autoencoders,
could be used to obtain a compressed representation of the input data.

The mathematical structure CaregiverMatcher is built on is constituted by graphs.

A graph is a common data structure composed of two basic elements: a finite set of nodes (vertices) and a set of arcs
(edges) connecting them. In this context, nodes represent entities such as patients, while edges stand for relationships
between entities, such as being affected by the same disease. Every node is then associated to a label which includes a
compressed representation of patient personal information as well as health condition or symptoms and characteristics
of the corresponding disease.

In order to add the caregiver information as well, another type of node, labeled with caregiver personal data, is
included in the graph and connected to the patient nodes through an assistive—type relational edge. As a consequence, a
heterogeneous graph is obtained. This kind of graph has been commonly used to abstract and model complex systems,
in which entities of different types interact. The resulting graph is then composed of two types of nodes and edges:
the former represent both patient and caregiver and the latter represents both patient-patient and caregiver-patient
relationships.

Neural Networks and Deep Learning have been shown to be efficient in processing graph structured data, both in
the homogeneous [16] and heterogeneous [24] domains. In particular, CaregiverMatcher matching function is based
on graph neural networks (GNN5), a special class of deep learning models capable of correctly processing data in the
graph domain [7], leveraging on node features and on relationships between nodes. GNNs can also include heteroge-
neous structural information, i.e. different types of nodes and edges, and heterogeneous features associated with each
node type.

The GNN model exploited in the present application is asked to predict whether an edge exists between each pair
of caregiver nodes. The predicted presence or absence of an edge represents the existence of a caregiver—caregiver
relationship, and it is weighted according to a real-valued similarity score describing how compatible their profiles
are: the higher the score, the higher the compatibility between the connected users.

Eventually, once the matching process has been completed, the user is returned a list of similar caregivers, filtered
as needed by setting some parameters in a dedicated section: by default, the first five compatible caregivers are shown,
in decreasing order with respect to the similarity score.
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3.3. Graph neural network model

Graph neural networks (GNNs) are deep neural network models capable of processing graph-structured data [7].
The model input is defined as a graph G = (V, E), where V is the set of nodes, E C V X V is the set of edges,
and every node v; € V is labeled with a feature vector /;. The neighborhood of a node is defined as a function
Ne(v;) = {v; : (vj,v;) € E} assigning a set of neighbors Ne(v;) to each node v; € V. A GNN implements two functions:
a state updating function f() that allows the network to define and update a state s; for each node v;, and an output
function g() that calculates the output based on the node states. Depending on the problem at hand, the output function
can be defined on a set of nodes V,,,; C V (see Figure 2), a set of edges E,,; C E, or the whole graph.

Fig. 2. Graph neural network model for general node-focused application. GNNs create an encoding network, an architecture which replicates
the input graph structure by using two MLPs as building blocks. An MLP implements a state transition function f on each node; the other one
implements an output function g on each node or edge (or on a subset of them). The network unfolds itself in time and space, respectively, by
replicating the MLP units on each node of the input graph, and by iterating the state computations until a stable point or a maximum number of
iterations is reached. In the resulting feedforward network, called unfolding network, each level corresponds to a time instant, and contains a copy
of all the elements of the encoding network, which determines connections between the various layers.

Since the objective is to match a new (caregiver) node with the most similar (caregivers) nodes in the network, by
calculating a matching score, the new node is connected to all the existing caregiver nodes. Then, an edge regression
task is assigned to the GNN, where E,,,; will correspond to the subset of edges connected to the new node. After the
scores have been predicted, all the edges connecting the new node to the rest of the graph, but the top-5 matching
nodes, will be erased from the graph. The state updating function is defined in Eq. (1), while the edge-based output
function is defined in Eq. (2)

si = f(si7" ¢isi ) 1 v; € Ne(v)) W
vij = 8(si", s @

In particular, after initializing the state of each node with its feature vector s? = [;, the state calculation is iterated
m times (with m being set as a hyperparameter). The state at each 1 < k < m iteration is calculated as in Eq. (1), based
on the node state, and on the states of its neighbours at iteration k — 1, which are grouped by an aggregation function ¢
(sum, average, or another custom aggregation method). Therefore, nodes exchange information by sending their state
vectors through the outcoming edges, and by receiving the states of their neighbours through the incoming edges. This
process is called message passing, and allows to exploit the relationships (edges) between the nodes without breaking
the graph structure. This represents an advantage in the use of graph neural networks with respect to other methods
(e.g. random walks) which encode the graph into a vector before processing the graph information, often leading to
a loss of structural information. Each function is implemented with a Multi-Layer Perceptron (MLP) module [25].
The state network is replicated on each node of the input graph. The output network is placed on the entities (nodes
or edges) for which an output is required, depending on the type of problem. In the case of CaregiverMatcher, the
output network is located on each edge linking two caregivers. Finally, all the replicas of the same MLP share their
parameters [26].
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3.4. Autoencoders

As many different rare diseases and patient health conditions exist, the input features of the nodes labels may be
represented in a high-dimensional space. This may result in high computational costs if caregivers and patients are
described by large vectors, since the model tends to work on all the available data.

In order to facilitate data processing, compressed representations of the nodes features can be obtained by using
appropriate techniques. In particular, autoencoders are unsupervised machine learning models which are often used to
learn compact representations of high—dimensional vectors [27, 28]. Theyre usually designed as feedforward neural
networks composed of two sub—units: an encoder and a decoder. The former has the role of compressing the input
data, while the latter learns to reconstruct the original input starting from the compressed version provided by the
encoder. The last layer of the encoder could be thought of as a bottleneck which forces a compressed representation
of the original input. This allows to use the encoder as a data preprocessing tool to perform feature dimensionality
reduction on raw data. This is obtained, in practice, by first training the autoencoder, and then by exploiting the hidden
layer output to train the machine learning model. In particular, the dimensionality of nodes features can be reduced
with an autoencoder, and the resulting representation used as node labels in the GNN learning procedure.

It is worth noting that this is a special kind of unsupervised task, called self-supervised, since there is no need for
a supervisor to give the correct answer to the network, as its target is the input itself.

4. Discussion: strengths and limitations

CaregiverMatcher is a cross-platform application designed to facilitate the communication between caregivers,
by offering them the possibility to interact with specialists and rare disease associations. The interaction with other
caregivers, with doctors and with associations are thought, in particular, for caregivers assisting patients affected by
rare diseases.

Firstly, CaregiverMatcher has an inutitive and easy—to—use interface. Caregivers only have to register to the appli-
cation and to select the desired page (Chat, Get Informed, ...). A GNN model will automatically look for a correspon-
dence between a caregiver and other users with similar needs, based on the features of the assisted patients.

Secondly, the language used in CaregiverMatcher is easy to comprehend. This assumes a particular importance as
caregivers can have different levels of education. A further advantage brought by CaregiverMatcher is the low cost
of its usage, design, and implementation. Indeed, the user only needs to have a mobile phone or a PC to have access
to the application. Moreover, the GNN exploited by CaregiverMatcher would perform the matching operation with a
high level of accuracy in a reasonable computational time. Nevertheless, it has to be pointed out that a high level of
efficiency of the application can be reached only after a variable (yet not quantifiable) amount of time. Actually, the
GNN model will require a consistent amount of data (a consistent number of registered users) to efficiently perform
a matching between the nodes of the network (patients and caregivers). However, even if an accurate matching is not
immediately available to the user, the simplified informative pages on rare diseases, and the related useful links to web
pages on related topics could be exploited as soon as CaregiverMatcher is launched.

Another crucial point in the development of CaregiverMatcher is that it is thought not only for supportive care, but
also for sharing knowledge and experiences among caregivers. In the past, there have been attempts to improve support
to caregivers (see, for example, the COPE project [29, 30]). However, these attempts were mostly focused on giving
supportive care, rather than on offering a concrete possibility of sharing experiences. In contrast, CaregiverMatcher
is designed to offer a multidisciplinary psychological support to caregivers. The opportunity to virtually talk with
other caregivers with similar experiences results in an occasion for giving/receiving help in daily problems. It is well
established that support groups for caregivers lead to improvements in psychological well-being, caregiver burden,
and social consequences [31]. Indeed a lot of caregivers have limited access to information and resources that exist
in their communities, and often report feelings of isolation and inadequate social support [32]. The chat page of
CaregiverMatcher gives the caregiver a real-time opportunity to express private feelings, by establishing a connection
with caregivers assisting patients with similar diseases.

In particular, the writing process immediately after an emotionally charged event has already been described as
therapeutic [33]. Interventions comprising provision of information, psycho—educational and supportive interventions
offered by professionals and associations have the aim of improving the well-being of the caregiver [34]. Associa-
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tions are responsible for producing reliable educational material, information on diseases, available treatments and
the location of knowledgeable clinicians. Finally, CaregiverMatcher provides a solution for practical needs as well,
especially during the spread of the COVID-19 pandemic. The system puts the caregivers in contact with medical spe-
cialists, when possible, avoiding unnecessary visits to care centres and reducing the risks and difficulties connected to
traveling, especially in the case of patients suffering from rare diseases [35].

5. Conclusions

The purpose of this paper is to make a project proposal for a machine learning based application which supports
caregivers in daily life. The proposed solution, CaregiverMatcher, consists in a free and easy—to—use multi—platform
application which facilitates communication between caregivers, patients associations and specialists. A direct com-
munication channel between caregivers is realized by means of a graph neural network, which performs a matching
between similar caregivers based on information regarding both the assisted patient and the living conditions of the
caregiver. The use of graph neural networks is the most innovative aspect of this proposal, as GNNs allow to efficiently
process input data in the graph domain by exploiting both features describing the graph nodes (in this case, caregivers
and patients), and the edges (relations) between them. Moreover, as the potentially high dimensionality of the input
features describing the nodes of the graph may affect the performance of the GNN, an option to enrich the application
would be to use an autoencoder to obtain a compressed representation of the input data. A further advantage in this
proposal is that CaregiverMatcher would perform the matching with a heterogeneous graph as input. This allows to
take into account relevant information about the assisted patient, as well as problems encountered by the caregiver in
the daily assistance.

Overall, CaregiverMatcher aims at improving the caregivers knowledge not only by providing direct contact with
other caregivers, but also by offering a section of easily understandable information material on rare diseases, provided
by associations, doctors and health professionals, with useful links to get in touch with doctors or associations, as well
as to external websites or to additional material.

In conclusion, CaregiverMatcher may result in benefits in many aspects of caregivers life, including mental health,
by providing psychological and practical support, along with the possibility to easily access reliable educational
material offered by professionals and associations.
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Abstract: In this review, we focus on bioinformatic oncology as an integrative discipline that incorpo-
rates knowledge from the mathematical, physical, and computational fields to further the biomedical
understanding of cancer. Before providing a deeper insight into the bioinformatics approach and
utilities involved in oncology, we must understand what is a system biology framework and the
genetic connection, because of the high heterogenicity of the backgrounds of people approaching
precision medicine. In fact, it is essential to providing general theoretical information on genomics,
epigenomics, and transcriptomics to understand the phases of multi-omics approach. We consider
how to create a multi-omics model. In the last section, we describe the new frontiers and future
perspectives of this field.

Keywords: data analysis; artificial intelligence; precision medicine; machine learning models; com-

putational oncology; cancer disease; omics tools

1. Introduction

Last fact sheets from World Health Organization (WHO), updated to March 2021,
reports cancer is the second leading cause of death worldwide, accounting for nearly
10 million deaths in 2020. Approximately 70% of the deaths from cancer occur in low-
and middle-income countries. Breast, lung, colorectal, and prostate cancers are the most
common [1].

A correct cancer diagnosis is essential for adequate and effective treatment because
every tumor is involved in interactions with non-cancer elements such as gene-environment
interactions (GxE), micro-environmental interactions, and those with the immune system;
intercellular interactions within the tumor environment; and intracellular interactions, such
as transcriptional regulation and gene co-expression, signaling and metabolic pathways, as
well as protein interactions (Figure 1) [2].

This is the reason why only an integrating framework among different omics layers
can gather and organize the knowledge gained with each experimental approach into
mechanistic or semi-mechanistic descriptions of the biological phenomenon [3].

Multi-omics model is defined as a biological approach that, by using one or more
current high-throughput experimental techniques, can investigate physiological or patho-
logical phenomena and characterize biomolecular systems at different levels. As a matter
of fact, each omics contributes on a specific fashion to shape the actual biological phenotype
of interest.

Thus, a comprehensive recognition of molecular networks based on multi-omics data
has an important scientific role to understand the molecular mechanisms of cancer, but
this is possible only because of bioinformatics application [4]. Computational oncology
can be defined as an integrative discipline incorporating scientific backgrounds from
the mathematical, physical, and computational fields to get a deeper understanding on
malignancies [2].
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Figure 1. The many levels of interactions found in a cancer system, that can be measured via the
different omics technologies, such as genomics, epigenomics, transcriptomic, and proteomic.

In the coming age of omics technologies, next gen sequencing, proteomics, metabolomics,
and other high throughput techniques will become the usual tools in biomedical cancer
research. However, their integrative approach is not trivial due to the broad diversity of
data types, dynamic ranges and sources of experimental and analytical errors characteristic
of each omics [2]. The multi-omics systematic study of cancer found many different factors
involved in the development/maintenance of the malignant state such as genetic aber-
rations, epigenetic alterations, changes in the response to signaling pathways, metabolic
alterations, and many others [5]. The advent of high-throughput technologies has permit-
ted the development of systems biology. The system biology paradigm tries to analyze
cancer as a complex and intricate pathology and to gain insight into its molecular origin by
taking into account the different contributions like DNA mutations, deregulation of the
gene expression, metabolic abnormalities, and aberrant pathway signaling [2].

The essential basis of systems biology is to consider a biological phenomenon as a
system of interconnected elements such as many complex molecular and environmental
components interacting with each other at different levels. For example, tumor behavior is
determined by a combination of changes in genomic information possibly associated with
abnormal gene expression, protein profiles, and different cellular pathways. In this scenario,
the complex interaction of DNA and proteins in replication, transcription, metabolic, and
signaling networks are considered the decisive causes for cancer cells dis-functioning [2].
The integration of multi-omics data provides a platform to connect the genomic or epige-
nomic alterations to transcriptome, proteome, and metabolome networks underling the
cellular response to a perturbation. Powerful and sophisticated computational tools can
identify the interconnection between genomic aberrations with differentially expressed
mRNAs, proteins, and metabolites associated with cancer-driven cellular perturbation [6].
If on the one hand this aspect provides an opportunity to better study the cellular response,
on the other hand it poses a challenge for systems biology-driven modelling. Therefore,
the next step of systems biology approach focuses on dynamic models that can deal with
thousands of mRNA, protein, and metabolite changes developing effective strategies to
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administer personalized cancer therapy [7]. Summarizing, the main goal of the systems
biology research driven by multi-omics data is to develop predictive models that are
refined by experimental validations in order to select patients based on personalized multi-
omics data and stratifying them to determine who are most likely to benefit from targeted
therapies [6,8].

Definition and detection of cancer-distinctive features allow the investigation of the
transition process of a normal cell to malignancy. Generally, the hallmarks involve pheno-
typic and molecular changes in several metabolic pathways such as uncontrolled prolif-
eration by blocking growth suppressors, reprogramming of energy metabolism, evading
immune destruction, resisting cell death, angiogenesis, and metastasis [9]. These vari-
ations in cellular machinery are driven by molecular aberration in several omics layers
such as genome, epigenome, transcriptome, proteome, and metabolome within cancer
cells. Specifically, by applying next generation sequencing to cancer cell genomes, it is
possible to reveal how mutations in proliferative genes like B-raf drives the activation of
mitogen-activated protein- (MAP-) kinase signaling pathway underlying an uncontrolled
cell proliferation [10]. Molecular aberrations leading to cancer are involved not only in
genomic mutational events but also in the epigenome. In particular, aberrant epigenetic
mechanisms can be responsible for silencing of certain cancer suppressor genes [11]. The
multistep processes of invasion and metastasis require a transition of epithelial cell to-
ward mesenchymal phenotype to colonize distant sites. Recent studies have revealed that
epithelial-mesenchymal transition is induced by specific transcription factors that coordi-
nate the invasion and metastasis processes [9]. By applying transcriptomics techniques
it is possible to investigate the transcription factors involved in transcription regulatory
networks assumed to be activated in malignancy. Moreover, manifestations of cancer
hallmarks also affected cellular metabolism, in fact tumor cells can reprogram glucose
metabolism and energy production pathways detectable with a metabolomics approach [6].

2. Genomics and Molecular Processes
2.1. Cancer Gene Types

In general, cancer disrupts cellular relations and results in the dysfunction of vital genes.
This disturbance is affective in the cell cycle and enhances abnormal proliferation [12,13].
There are three main types of cancer genes that control cell growth and can cause cancer
to develop:

1. Oncogenes. These, when mutated, actively promote cell proliferation. They are
formed when proto-oncogenes that promote cell division are improperly activated,
so they are not known to be inherited. They may lead to increased/dysregulated
expression of the gene in a new location or to production of fusion proteins with new
functions [14]. Two common oncogenes are HER2 and RAS.

2. Gatekeeper genes. These are protective genes, also known as tumor suppressor genes.
Normally, they negatively control cell growth by monitoring and controlling the
cell phases or repairing mismatched DNA. Autosomal recessive mutations in tumor
suppressor gene cause loss of function effect at the cellular level, inducing cells to grow
uncontrollably, which may eventually form a tumor. Examples of tumor-suppressor
genes include BRCA1, BRCA2, and p53 or TP53. Germline mutations in BRCA1 or
BRCA2 genes increase a woman'’s risk of developing hereditary breast or ovarian
cancers and a man’s risk of developing hereditary prostate or breast cancers. They
also increase the risk of pancreatic cancer and melanoma in women and men [15]. The
most mutated gene in people with cancer is p53 or TP53. More than 50% of cancers
involve a missing or damaged p53 gene. Most p53 gene mutations are acquired.
Germline p53 mutations are rare, but patients who carry them are at a higher risk of
developing many different types of cancer [15].

3. Carekeeper genes. These fix the mistakes made when DNA is copied. Many of them
function as tumor suppressor genes. BRCA1, BRCA2, and p53 are all DNA repair
genes. If a person has an error in a DNA repair gene, mistakes remain uncorrected.
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Then, the mistakes become mutations. These mutations may eventually lead to cancer,
particularly mutations in tumor suppressor genes or oncogenes. Mutations in DNA
repair genes may be inherited or acquired. Lynch syndrome is an example of the
inherited kind. BRCA1, BRCA2, and p53 mutations and their associated syndromes
are also inherited [14].

As said before genetic changes that promote cancer can be inherited from our parents
if the changes are present in germ cells, which are the reproductive cells of the body (eggs
and sperm). Such changes, called germline changes, are found in every cell of the offspring.
Cancer-causing genetic changes can also be acquired during one’s lifetime and are called
somatic (or acquired) changes [14]. Next, we will take these aspects into consideration.

2.2. Genomic Instability

Somatic mutations, based on their function, involves driver mutations, conferring
growth advantage to the cancer cells. Otherwise, acquired mutations do not confer any
growth advantage to the cancer cells nor contribute to cancer development [16]. Chromo-
somal changes are highly variable, they can be grouped into two general categories [17]:

e  Balanced structural changes; the genetic material is equally exchanged, even if genetic
information was rearranged into an abnormal gene;

e Unbalanced or nonreciprocal structural changes; the exchange is not equally dis-
tributed, and genetic material is added or lost. This can range from the loss or gain of
a single base pair to the loss or gain of the entire chromosomes.

From Knudson'’s two hits hypothesis [18] studies to the present, scientists suggested
that the primary pathogenetic changes in cancer result from balanced rearrangements,
while the secondary hits that occur during cancer progression are from unbalanced changes
(see Table A1).

In Wilms’ tumor and retinoblastoma, gene deletions or inactivation are responsible for
cancer development [17]. Deletions, inversions, and translocations are commonly detected
in the Philadelphia chromosome, the first balanced chromosomal mutation described in
cancer cells; it is the result of a reciprocal translocation between chromosomes 9 and 22
with breakpoints in the c-abl gene on chromosome 9 and the c-bcr gene on chromosome 22.
The fusion gene created by this rearrangement encodes a tyrosine kinase that promotes
cancer in white blood cells (chronic myeloid leukemia) [19]. Burkitt’s lymphoma is another
type of cancer associated with reciprocal translocations involving chromosome 8 and a
chromosome carrying an immunoglobulin gene (2, 14, or 22). The translocations juxtapose
c-myc to the genes for the immunoglobulin genes, causing overexpression of c-myc in B
cells. The c-myc gene encodes a transcription factor that activates genes for cell division [20].
Large portions of chromosomes can also be lost, as occurred on chromosomes 1p and 16q
in solid tumor cells [17]. Gene duplications and increases in gene copy numbers can also
contribute to cancer and can be detected, for example, in many sarcomas. The chromosomal
region 12q13-q14 encodes a binding protein called MDM2, which is known to bind to a
tumor suppressor called p53. Amplification of MDM?2 prevents p53 from regulating cell
growth, which can result in tumor formation. Also, mutations in carekeeper genes can
additionally lead to rearrangements and duplications [17]. Most of the cancers harbor
more than one driver gene mutation. Breast, colorectal, and prostate cancers require from
five to seven driver mutations for cancer initiation and progression, while hematological
malignancies may require fewer. TP53, RB1, EGFR, and KRAS, are widely known mutated
genes in various cancer types, whereas others are rare and/or restricted to one cancer [16].

2.3. Epigenomic Instability

It is largely proved that genomic instability is a reductive model; studies demonstrated
epigenetic errors resulting in aberrant gene silencing/activation [21]. According to the
definition, epigenetics is a dynamic situation in the study of cell fate, that alter the structure
of DNA without directly affecting and mutating its sequence [22]. In fact, mutations
occurred in the elements that regulate the expression or repression of the genome, such
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as transcription factors and noncoding RNAs, with a consistent effect on the coordination
of multiple biological processes. These elements can be divided into three roles: “writers”
and “erasers” refer to enzymes that transfer or remove chemical groups to or from DNA
or histones, respectively; “readers” are proteins that can recognize the modified DNA or
histones [23].

In tumor tissues, different tumor cells show various patterns of histone modification,
genome-wide or in individual genes, demonstrating that epigenetic heterogeneity exists
at a cellular level and suggesting that tumorigenesis is the consequence of the combined
action of multiple epigenetic events [24]. For example, the repression of gatekeeper genes
is usually caused by DNA modification in the methylation of CpG islands together with
hypoacetylated and hypermethylated histones [25]. Gene silencing experiments identified
several hallmarks of epigenetic events, including histone H3 and H4 hypoacetylation,
histone H3K9 methylation, and cytosine methylation [26]. Major epigenetic modifications
are classified as DNA modifications, histone modifications, effects of non-coding RNA
(Figure 2).

DNA
METHYLATION

DNA methylation is associated
with drug resistance. At promoters
usually results in gene repression.
Hypermethylation at gene body
may lead to activation of
oncogenes.

HISTONE
MODIFICATION

EPIGENETIC

Histone deacetylases are
responsible for gene silencing and
transcription repression of various
genes, as tumor suppressor genes.
Histone methylation sites determine
gene activation or repression;
most enzymes related are
substrate-specific proteins.

LRV 87 Non-coding
RNA

ncRNAs play different and

sometimes opposite roles in cancers,

functioning through RNA-RNA,
RNA-DNA, and RNA-protein
interactions. ncRNAs includes
tumor-promoting and

tumor-suppressive two

types.

Figure 2. Epigenetic regulations in cancer. Alterations in epigenetic modifications in cancer regulate
various cellular responses, including cell proliferation, apoptosis, invasion, and senescence. Through
DNA methylation, histone modification, and noncoding RNA regulation, epigenetics play an im-
portant role in tumorigenesis. These main aspects of epigenetics present reversible effects on gene
silencing and activation via epigenetic enzymes and related proteins.

DNA methylation typically occurs at CpG sites (cytosine-phosphate-guanine) sites.
This methylation results in the conversion of the cytosine to 5-methylcytosine. The forma-
tion of Me-CpG is catalyzed by enzymes called DNA methyltransferases (DNMTs). This
modification is common in body cells; in tumors, we can observe an hypomethylation of the
genome [27] that results in initiate and propagate oncogenesis, by inducing chromosome
instabilities and transcriptional activation of oncogenes and pro-metastatic genes, such as
r-ras [28]. This state is accompanied by a region- and gene-specific hypermethylation of
multiple CpG islands [29,30]. Hypermethylation of CpG islands in the promoter region
of a tumor suppressor or otherwise cancer-related gene is often associated with transcrip-
tional silencing of the related gene. Numerous genes associated to various pathways are
known and rapidly identified; actually, genes involved in signal transduction (APC), DNA
repair (MGMT, MLH1, BRCA1), detoxification (GSTP1), cell cycle regulation (p15, p16, RB),
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differentiation (MYOD1), angiogenesis (THBS1, VHL), and apoptosis (Caspases, p14, DAPK)
are reported and largely studied [31] (for a complete overview on key regulatory factors
of DNA methylation in cancer we suggest to see Table 1 of [23]). DNA methylation can
act as one hit having the same functional effect as a genetic point mutation, as proven by
numerous experiments in which re-establishing expression of tumor suppressor genes
could be reached through drugs inducing demethylation. Epimutations can inactivate
one of the two alleles, while the other is lost through genetic mechanisms or silence both
alleles [32]. For example, a study conducted on 50 RB patients (45 unilateral and 5 bilateral),
selected from an initial cohort of 476 RB cases diagnosed over a period of 17 years at the
Retinoblastoma Referral Centre of Siena (Ophthalmology Department, AOUS), provided
evidence supporting the identification of a constitutional epimutation acting as the first
“hit” in the Knudson model of RB development and suggests that epimutations do not
represent a frequent cause of RB predisposition but this is an understudied etiological
phenomenon and, besides promoter methylation, other untested epigenetic events may
reduce gene expression, phenocopying RB onset [33]. Epigenetic changes occur at higher
frequency with respect to genetic changes and might be especially important in the first
phase of human neoplasia; aberrant promoter methylation is initiated at ~1% of all CpG
islands and as much as 10% become methylated during the multistep process of tumorige-
nesis [34]. As a stable nucleic-acid-based modification with limited dynamic range that is
technically easy to handle, DNA methylation is a promising biomarker for non-invasive
detection of different tumor types [35-38]. Besides early detection, the methylation status
of CpG islands can be used to characterize and classify cancers. While for example, breast,
or testicular tumors show global low levels of methylation, some other tumor types such
as colon tumors, acute myeloid leukemias, or gliomas are characterized by high levels
of methylation, although some heterogeneity is observed in almost all tumor types. So,
methylation patterns can be an important hallmark to identify and classify the different
types of human cancers [34,39]. DNA methylation profile can be used also to predict and
monitor the response to anti-neoplastic treatment [39,40].

Histones are made up of amino acids, like all other proteins. Amino acids located in
the tail of them are targets for enzymes that attach or remove chemical markers, therefore
the potential main site of histone modifications, in particular, lysine (Lys) and serine (Ser)
are common targets. Histone modification is a relatively complicated process compared to
DNA methylation that involves only two types of enzymes, which can add or remove only
methyl groups to cytosine. When histone modification patterns are altered, it can lead to
unregulated activity or silencing of genes related to cancer onset [24,41].

All families of protein involved in chromatin remodeling pathways are associated
with cancer, although in most cases, the molecular mechanisms underlying their functions
remain unknown [42]. Overall reduction of mono acetylated H4K16 forms the majority of
histone modifications in cancer cells [43]. Other modifications, as histone H3 acetylation
and methylations, interfere with the chromatin remodeling status, leading to repression or
activation of transcription [44]. In contrast ubiquitination is a larger covalent modification,
commonly related to the H2B. H2BK123ub1 modification involves the addition of ubiquitin
chain to histone H2B and this modification results in regulating transcriptional initiation
and elongation, while H2AK119ubl is involved in gene silencing [45]. Similarly, phos-
phorylated forms of histones, H3510ph and H2BS32ph, are implicated in the expression
of proto-oncogenes, such as MYC, JUN, and FOS [46] (for a more detailed overview on
important enzymes or proteins that regulate histone modification we suggest to see Tables
2 and 3 in reference [23]).

Epigenetic-related noncoding RNAs (ncRNAs) include microRNAs (miRNAs), small
interfering RNA (siRNAs), Piwi-interacting RNA (piRNAs), and long noncoding RNAs
(IncRNAs). MiRNAs, one of the most studied ncRNAs, are small RNAs (from 19 to
22 nucleotides in length) known to influence gene expression by way of targeting mes-
senger RNA (mRNA) [24]. Generally, they can be classified into tumor-promoting and
tumor-suppressing miRNAs. In fact, during tumorigenesis we can observe that oncogenic
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miRNAs such as miR-155, miR-21, and miR-17-92 are usually overexpressed, while miR-
NAs such as miR-15-16 are downregulated. There is another type of miRNA, cellular
context-dependent miRNAs, working in tumorigenesis. For example, miR-146 has been
shown to be overexpressed in multiple cancers, whereas a study of Garcia et al. has proven
that miR-146 can reduce the expression of BRCA1. At the same time, the expression of
proteins and enzymes is also regulated by certain miRNAs. The miR-101 reduces EZH2
expression, and abnormal downregulation of miR-101 has been observed in several types
of cancers [24]. As miRNAs play critical roles in regulating functions of the cells, disruption
in their structure and turnover can also cause diseases [47]. CLL is the first human disease
that is associated with miRNA disorders [48]. miRNAs can be used as cancer diagnosis
biomarker as determinant of cancer prognosis and patient overall survival. MiRNAs can be
used to classify myeloid malignancies. For example, in a study of meta-analysis performed
by Erdogan et al. [49], they identified 13 miRNAs of interest from a total of 42 MDS samples
and 45 controls studied, 8 of which proved statistically significant on real-time polymerase
chain reaction verification. LncRNAs are another diffused group of ncRNAs that can play
an important role in tumorigenesis. Some of them are cancer type-specific, such as PCGEM1
in prostate cancer and HEIH in hepatocellular carcinoma. Many aberrant IncRNAs have
been discovered in various cancers; for example, dysregulation of HOTAIR has been found
in lung, pancreatic, and colorectal cancer [24]. ncRNAs can either be directly involved in
tumorigenesis or indirectly affect tumor development by participating in other epigenetic
events [24].

3. Roles of Computational Approach in Multi-Omics Era

Computational approach plays central roles not only in the analysis of high-throughput
experiments, but also in data acquisition, in processing of raw file derived from several
instruments, in storage and management of large streams of omics information and in
the data model integration. Bioinformatics workflow management systems can be used
in developing and in application of a certain pipeline. Examples of such systems include
Galaxy [50], Snakemake [51], Nextflow [52], and the general-purpose Common Workflow
Language [53]. Several tools for omics data studies are available in Bioconductor project as
packages for the R language [54] and in Biopython project [55].

3.1. Data Acquisition

All the omics technologies have a specific role to figure out the complex phenotype of
cells especially in complex diseases like cancer. Knowledge of the biological molecular basis
of different cellular signaling pathways does not involve only genes and transcripts, in fact,
proteins and metabolites are particularly important to predict the phenotypic alterations
for diagnosis and prognosis of cancer, and for this reason, in this chapter, we will spend
some words about them. Table 1 represents a summary of the applications of different
NGS-based and mass spectrometry-based techniques which are at the basis of different
omics data acquisition approaches.

3.1.1. Genomics

To date, genomics approach has highly sustained the finding and investigation of
variations at both the germline and somatic levels thanks to many progresses in genome-
exome sequencing techniques, for instance from the Sanger sequencing-based approaches
to the NGS-based sequencing. Bioinformatics has always had a central role in the analysis
of downstream genetic data. For example, in the multiscale scale project “The Cancer
Genome Atlas” (TCGA), researchers used NGS sequencing associated to bioinformatics
tools with the aim to discover somatic mutational landscape across thousands of tumor
samples and to understand the complexity underlying different cancer types [56,57]. For
the analysis of NGS data a sequence aligner tool is used on the sequence data (stored
in FASTQ format). Some popular aligners are the stand-alone BWA [58], Bowtie [59],
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Bowtie2 [60], and SNAP [61], with aligned sequences being stored in SAM (Sequence

Alignment Map, text-based) or BAM (Binary Alignment Map) files.

Table 1. Summary of the applications of different techniques for sequencing, which are at the basis of different omics data

acquisition approaches. Genomics, epigenomics, and transcriptomics are based on NGS techniques, whereas proteomics
and metabolomics are driven by mass-spectrometric (LC-MS/MS) method. The main goal of genomics, epigenomics,
and transcriptomics is the screening of genome-wide mutations, the identification of altered epigenomic modifications,

and exploring differential RNA expression, while for proteomics and metabolomics is the identification of differentially

regulated proteins and metabolites (reprinted from reference [6]).

OMICS TYPE PRINCIPLE APPLICATION BIOINFORMATICS
TOOLS
Whole exome NGS Exome-wide
sequencing mutational /analysis BWA
Whole genome NGS Genome-wide BOWFie
GENOMICS sequencing mutational/analysis Bowtie2
SNAP
e?er}g ;ticrlne Sanger sequencin; Mutational analysis in N
& . & 4 & targeted gene/exon BAM
sequencing
Methylation-Array-
. Genome-wide Analysis
Methylomics Whole genome bisulfite mapping of DNA SICER2
sequencing :
methylation pattern PeakRanger
EPIGENOMICS GEM
MUSIC
PePr
- DFilter
ChIP- Genome-wide MACS
sequencin NGS mapping of
d J epigenetic marks
Genome-wide
RNA- NGS differential gene Bowtie
sequencing . . STAR
TRANSCRIPTOMICS expression analysis el
- - allisto
Microarray Hybridization lefer(.entlal gene Salmon
expression analysis
PROTEOMICS Deep-. Mass- Differential protein expression analysis MaxQuant
proteomics spectrometry Perseus
. . . Metab
METABOLOMICS Deep- Mass- Differential metabolite metaRbolomics
metabolomics spectrometry expression analysis Lipidr

3.1.2. Epigenomics

Epigenomics is concerned with the genome-wide identification of chemical mod-
ifications (i.e., methylation and acetylation of DNA) which are involved in regulatory
mechanisms controlling gene expression and cellular phenotypes [62]. Chromatin immuno-
precipitation (ChIP) assays-coupled NGS (ChIP-seq) and methylation analysis through
whole-genome bisulfite sequencing (WGBS) or bisulfite sequencing (BSSeq) are the most
widely used methods in epigenomics analysis [6]. By exploiting the advances in NGS field,
it is now possible to analyze genome-wide methylome patterns at a single nucleotide reso-
lution and to detect the methylated cytosine bases in genomic DNA. Data from array-based
techniques can be analyzed using dedicated packages such as methylationArrayAnalysis [63],
whereas for ChIP-seq data processing tools like SICER?2 [64], PeakRanger [65], GEM [66],
MUSIC [67], PePr [68], DFilter [69], and MACS [70] are used.
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3.1.3. Transcriptomics

The detection and quantification of RNA transcripts (mRNA, noncoding RNA and
microRNAs) is possible owing to the employment of several transcriptomics techniques.
Differently from the static nature of genome, transcriptome dynamically changes as con-
sequence of temporal cellular and extracellular stimuli. Microarray was the technique
of choice to detect alterations in cellular mRNA levels in a high-throughput manner ow-
ing to its ability to quantify the relative abundance of mRNAs for thousands of genes
at the same time. Microarrays are widely used to facilitate the identification of genes
with differential expression between normal and cancer conditions. With the advent of
NGS, the identification of the presence and the abundance of RNA transcripts in genome-
wide manner became possible. In contrast to microarrays technique, RNA-seq does not
depend on the transcript-specific probes and thus can effectively perform an unbiased
detection of novel transcripts, also the less abundant, with high specificity and sensitivity.
Starting points for RNA-seq bioinformatics analysis include alignment-based methods,
such as Bowtie [59], and STAR [71], or alignment-free methods, such as kallisto [72] and
Salmon [73]. Cancer-related omics experiments often rely on specific, tailor-made analytic
pipeline. TCGA and other repositories give the great opportunity to analyze the omics data
by a pan-cancer approach where different types of cancers can be compared in terms of
genomic and transcriptomic landscapes [74].

3.1.4. Proteomics and Metabolomics

Given the high complexity and dynamic range of proteins, their identification and
quantification in large scale are significantly challenging. Proteomic analyses are applied
to identify and quantify the set of proteins present within a biological system of inter-
est. Progressions of the tandem mass-spectrometry (LC-MS/MS) techniques in terms of
resolution, accuracy, quantitation, and data analysis have made it a solid instrument for
both the identification and quantification of cells proteome [75]. Recently, the advent of
cutting edge high-resolution “Orbitrap” mass-spectrometer instruments associated with
powerful computational tools (i.e., MaxQuant [76] and Perseus [77]) simplified the genome-
wide detection of all expressed proteins in human cells and tissues paving the way for
a first draft of the human proteome [78,79]. MS-based proteomics techniques have been
extensively applied also to investigate the proteome alteration in several human cancer
tissues [80]. In particular, the study of cancer proteomes is a promising path for biomarkers
and therapeutic targets identification because proteins are the molecular unit from which
cellular structure and function arise [81].

The application of MS techniques is not restricted to proteomics but rather can be
extended to smaller molecules such as metabolites. Metabolomics is characterized by
the quantifications of metabolites that are synthesized as products of cellular metabolic
activities, such as amino acids, fatty acids, carbohydrates, and lipids. Their levels can be
dynamically altered in disease states reflecting aberrant metabolic functions in complex
disorders like cancer. Indeed, metabolic variations are significant contributors to cancer
development [82]. This is the reason why cancer metabolomics has become an important
research topic in oncology [83], with the aim to get new insights on cancer progression
and potential therapeutic targets. Lipidomics is a subset of metabolomics [84], specifically
cancer lipidomics has recently led to the identification of novel biomarkers in cancer
progression and diagnosis [85]. Metabolomics is still an ongoing field with the potential to
be highly effective in the discovery of biomarkers, especially in cancer. This is possible due
to the support of bioinformatics tools like metab package [86], which provides an analysis
pipeline for metabolomics derived from gas chromatography-MS data, or metaRbolomics
package [87], which is a general toolbox that goes from data processing to functional
analysis. Similarly, the lipidr package [88] is an analogous framework focused on lipidomics
data processing.
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3.2. Data Management

The huge amount of data deriving from different omics analyses need to be adequately
collected and stored. Challenges of data management include defining the type of data
to be stored and how to store it, the policies for data access, sharing, use, and finally,
long-term archiving procedures [89]. One of the most successful repositories regarding
application of multi-omics approach in cancer is NIHs Genome Data Commons (GDC) [90]
containing all data generated by the Cancer Genome Atlas (TCGA) project [74]. TCGA
project has performed integrative analysis of more than 30 human cancer types with the
aim to create a publicly available comprehensive platform for collecting the molecular
alterations in the cancer cells at the forefront of multi-omics research [74]. Information about
aberrations in the DNA and chromatin of the cancer-genomes from thousands of tumors
have been catalogued by matching with the normal genomes and linking these aberrations
to RNA and proteins levels. Moreover, it provides data for method development and
validation usable in many current projects. In 2020, the collaboration of an international
team has completed the most comprehensive study of whole cancer genomes, significantly
improving the fundamental understanding of cancer, and indicating new directions for
developing diagnostics and treatments. The ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Project (PCAWG, or the Pan-Cancer Project) involved more than 1300 scientists
and clinicians from 37 countries, analyzed more than 2600 whole genomes of 38 different
tumor types. Commenting this aspect, Rameen Beroukhim, an associate member of the
Broad Institute, said: “It was heartening that this very large group was able to bring
together disparate resources and work to come up with some groundbreaking findings”.
Additionally, Gad Getz, an institute member and the director of the Cancer Genome
Computational Analysis Group at the Broad Institute, director of bioinformatics at the
Massachusetts General Hospital’s (MGH) Cancer Center and professor of pathology at
Harvard Medical School, said: “This large international effort shows the breadth of the
types of research and new biological insight that are possible using whole cancer genome
data”. He continued: “By analyzing the largest collection of whole cancer genomes studied
thus far, we created the most comprehensive catalog of mutational signatures to date,
this catalog can be used to understand the mechanisms that generate mutations and drive
cancer in each patient” [91]. The Pan-Cancer Project improved and developed new methods
for exploring not only exome, that represent the 1 percent of the genome, but, also, the
remaining 99 percent of the genome, which includes regions that regulate the activity
of genes.

With the genomics, epigenomics, and transcriptomics data from over 11,000 tumors
representing 33 of the most prevalent forms of cancer, the Pan-Cancer Atlas represents
an exceptional chance for a comprehensive and integrated analysis to extend our current
knowledge of how a normal cell achieves cancer hallmarks. The pan-cancer analysis
involving multi-omics data in combination with structured bioinformatics and statistical
instruments provides an effective platform to recognize common molecular signatures for
the stratification of patients affected by different cancer types and uncover shared molecular
pathology of different cancer types for designing tailored therapies. Investigation of the
massive amount of cancer-specific data deposited in TCGA requires special bioinformatics
methods to mine biologically meaningful information. Several analytic and visualization
platforms have been already developed to support the rapid analysis of TCGA data. For
instance, cBioPortal provides the opportunity to visualize, analyze, and download large-
scale cancer genomics data sets [92]. The impulse for open data in the field of biomedical
genomics is important to make data available in public repositories for improving and
accelerating scientific discovery, although there are ethical and technological challenges to
be overcome.
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3.3. Data Integration

The need to integrate multi-omics data has led to the development of new theoretical
algorithms and methods that are able to extract biologically significant information of
clinical relevance.

Unsupervised data integration refers to the cluster of methods that draw an inference
from of an unlabeled input dataset. Learning consists in detecting intrinsic regularities
and relationships between the data, without any prior knowledge about the data itself.
Examples of unsupervised techniques are matrix factorization methods, Bayesian methods,
network-based methods, and multi-step analysis. CNAmet is a powerful multi-step inte-
gration tool for CNV, DNA methylation, and gene expression data [93]. The identification
of genes which are synergistically regulated by methylation and CNV data, allow the
understanding of biological process behind cancer progression.

Supervised methods involve the use of a dataset for which the phenotype label is
known. In this way, when the system has learned a given task, it will be able to generalize,
or to use the experience gained to solve problems that provide the same basic knowledge.
Supervised data integration methods are built via information of available known labels
from the training omics data. The most common supervised techniques are Network-based
methods, Multiple Kernel Learning methods, and multi-step analysis. For example, Feature
Selection Multiple Kernel Learning (FSMKL) is a method which uses the statistical score
for feature selection per data type per pathway, improving the prediction accuracy for
cancer detection.

Semi-supervised integration methods, lies between supervised and unsupervised
methods, takes both labeled and unlabeled samples to develop learning algorithm. It
is particularly useful in cases where we have a partial knowledge about the data, or
if the collection and sampling phase of labeled data is too expensive to be carried out
exhaustively. Semi-supervised data integration methods are usually graph-based. Graph-
based semi-supervised learning (SSL) methods have been applied to cancer diagnosis and
prognosis predictions.

The combination of different biological layers, with the aim to discover a coherent
biological signature, remain a challenging process. Furthermore, multi-omics combinations
are not necessarily capable to achieve better diagnostic results. Selecting an optimal
omics combination is not trivial, since there are economic and technical constraints in the
clinical setting in which such diagnostic tools are to be deployed [94]. Machine Learning
Bioinformatic approaches play an important role in the design of such studies.

3.3.1. Multi-Omics Datasets

Selecting an appropriate dataset that allows for easy manipulation and data cal-
culations could affect the performance of a computational model and reduce the main
obstacles to multi-omics data analysis by improving data science applications of multiple
omics datasets:

e  The MultiAssayExperiment Bioconductor database [95] contains the information of
different multi-omics experiments, linking features, patients, and experiments;

o The STATegRa dataset [96] has the advantage of allowing the sharing of design
principles, increasing their interoperability;

e  MOSim tool [97] provides methods for the generation of synthetic multi-omics datasets.

3.3.2. The Problem of Missing Data

Integrating large amounts of heterogeneous data is currently one of the major chal-
lenges in systems biology, due to the increase in available data information [98]. The prob-
lem of missing and mislabeled samples, is a common problem in large-scale multi-omics
studies [99]. It is common for datasets to have missing data related to some individuals.
This often happens in clinical studies, where patients can forget to fill out a form. In other
cases, it is possible that the acquisition of data reveals to be too expensive, need much time
to be obtained or it is difficult to measure. Missing row values for a table are difficult to
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manage because most statistical methods cannot be applied directly to incomplete datasets.
In recent years, several approaches have already been proposed to address missing row
values [100]. The missRow package combines multiple imputation with multiple factor
analysis to deal with missing data [99]. The omicsPrint method detects data linkage errors
and family relations in large-scale multiple omics studies [101].

3.3.3. Exploratory Data Analysis

Understanding the nature of the data is a critical step in omics analysis [102]. For
this purpose, it is possible to use exploratory data analysis (EDA) techniques which allow
better assessments at a further modeling step. The main techniques for EDA include
cluster analysis and dimension reduction, both widely applied to transcriptomics data
analysis [103]. While cluster analysis consists of a set of methods for grouping objects into
homogeneous classes, based on measures related to the similarity between the elements,
dimension reduction is the process of reducing the number of variables, obtaining a set of
variables called “principal.” Both cluster analysis [104] and dimension reduction [105] are
applied to cancer studies, as shown in Table 2.

Table 2. Main cluster analysis and dimension reduction package tools applied to cancer studies.

Package Tools Description
OMICsPCA Omics-oriented tools for PCA analysis [106]
CancerSubtypes Contains Clustering methods for the id?ntification of cancer
subpopulations from multi-omics data [107]
Omicade4 Implementation of multiple co-inertia analysis (MCIA) [108]
Biocancer Interactive multi-omics data exploratory instrument [109]
iClusterPlus Integrative cluster analysis combining different types of genomic data [110]

Together with dimensionality reduction and data clustering, data visualization is also
an important part of EDA [2]. The combinations of these three factors make it possible to
identify complex patterns, subpopulations within a dataset, and understand the variability
within a phenomenon. Even if the scatter plot is the most common method for data visual-
ization, there are other visualization tools available. Hexbins [111] can be used to explore
sc-RNAseq data, while Circos diagram [112] can be used for the detailed representation of
multi-omic data and their position in specific genomic regions.

Recently it is stated that mapping omics data to pathway networks could provide
an opportunity to biologically contextualize the data. A network representation of multi-
omics data can enhance every aspect of the multi-omics analysis because the functional
level of biological description is fundamentally composed of molecular interactions [2].
The main tools for a network representation of multi-omics data are Pathview [113] and
Graphite [114].

3.3.4. Machine Learning Models

In recent years, machine learning has been proved to be capable of solving many
biomedical problems. These mathematical models can represent the relationships between
observed variables and provide a useful description of biological phenomena. A ML
tool can perform several tasks, including classification task in which the input data are
divided into two or more classes and the learning system produces a model capable of
assigning one class among those available to each input. These models have important
biomedical applications [94], because they are capable of discriminating between health
and disease, or between different diseases outcomes [2]. In a regression task instead, the
output belongs to a continuous rather than discrete domain. These models provide insights
into the molecular mechanisms driving physiological states, reveal interactions between
different omics, and have been used in prognostic tools [115]. In this context, due to the
large amounts of heterogeneous data, the removal of non-informative characteristics which
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simplifies the model, increases its performance, and makes it less expensive to measure,
reveals to be a crucial process [2]. Feature selection algorithm is a process which selects the
variables that contribute most to the prediction, removing the irrelevant or less important
features that can negatively contribute to the performance of the model. Both classification
and regression ML techniques combined with feature selection algorithms have been
widely used for cancer prognosis and prediction [2]. Moreover, many packages, which
combine exploratory, supervised, and unsupervised tools, have been recently implemented
in oncology. Table 3 provides a list of some of these new tools.

Table 3. Main packages tools implemented in oncology for machine learning.

Package Tools Description

R package for the multivariate analysis of biological datasets with a specific

mixOmics . . . . . L
focus on data exploration, dimension reduction, and visualization [116].

Package for the identification of multi-omic biomarker panels capable of
DIABLO discriminating between multiple phenotypic groups. It can be used to
understand the molecular mechanisms that guide a disease [117].

Package for discovering the principal sources of variation in multi-omics

MOFA data sets [118].
. Package for the identification of molecular signatures from large omics
Biosigner . . . .
datasets in the process of developing new diagnostics [119].
Package that uses high-dimensional exposome data in disease association
omicRexposome studies, including its integration with a variety of high-performance data
types [120].
. Package that identifies the time intervals in which omics functions are
OmicsLonDA Lo .
significantly different between groups [121].
. . Package that provides a method to integrate micro-RNA and mRNA data
Micrographite . L .
through their association to canonical pathways [122].
pwOrmics Package for integrating multi-omics data, adapted for the study of time

series analyses [123].

3.3.5. Functional Enrichment Approaches

The interpretation of a ML model results could be a difficult task. A strategy that
can provide readily interpretable results consist in mapping omic data on functional
characteristics, in order to make them more informative and to associate them with a
wider body of biomedical knowledge [2]. Some functional enrichment approaches are
listed below:

Over-Representation Analysis (ORA) [124];

Gene-Set Enrichment Analysis (GSEA) [125];
Multi-Omics Gene-Set Analysis (MOGSA) [126];
Massive Integrative Gene Set Analysis (MIGSA) [127];
Exploratory Data Analysis (PCA) [128];

Divergence Analysis [129].

The first two enrichment approaches, ORA and GSEA, are feature extraction methods
generally employed as dimensionality reduction methods. The output of these methods
could be the starting points for more complex models such as interactions among functions.
In particular, ORA method is based on a statistical evaluation of the fraction of pathway
components found among a user-selected list of biological components. This input list
fulfils the specific criteria (i.e., log fold change, statistical significance, and cutting-off
the majority of components from the input list such as all the genes of a microarray
experiment). GoMiner [130] is one of the most popular examples of ORA method. It
was developed for gene-expression analysis of microarray data. It takes as input a set of
over-/under-expressed genes plus the complete set list of the microarray, then it calculates
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over-/under-representation for Gene Ontology categories by means of Fisher’s exact test.
Similarly, GSEA was developed for gene expression analysis from microarray data. The
input is a list of ranked genes in accordance with their differential gene expression between
two phenotypic classes. For each set of genes, an enrichment score (ES) is calculated
based on a Kolmogorov-Smirnov pathway-level statistic. Multiple hypothesis testing is
applied for the evaluation of ES significance. In the study of [131], the GSEA methodology
was used to validate the proliferative role of growth-supporting genes involved in cancer
treatment [132]. Multi-omics gene-set analysis (MOGSA) is an enrichment approach
that uses multivariate analysis, which consists in integrating multiple experimental and
molecular data types measured on the same data set. The method projects the features
across multiple omics data sets to reduce dimensional spaces and calculates a gene set
score with the most significant features. MOGSA's multi-omics approach compensates
for missing information in each single data type to find sets of genes not obtainable from
the analysis of single omics data. A different approach is the massive integrative gene
set analysis (MIGSA). It allows to compare large collections of datasets from different
sources and create independent functional associations for each omic layer. The utility of
MIGSA was demonstrated in [133] by applying the multi-omics perspective method to
functionally characterize the molecular subtypes of breast cancer. There are enrichment
approaches, such as pathwayPCA and divergence analysis methods, which use functional
aggregation as support for other data analysis studies. In pathwayPCA, exploratory data
analysis is performed using statistical methodologies to analyze the functional enrichment
of each omics set and aggregating them via consensus. pathwayPCA overcomes alternative
methods for identifying disease-associated pathways in integrative analysis. Among
various case studies, the model was applied for the identification of sex-specific pathway
effects in kidney cancer for the construction of integrative models for the prediction of
the patient’s prognosis and for the study of heterogeneity in an ovarian cancer dataset.
Divergence analysis method instead, is an enrichment approach that uses functional
aggregation to classify large amounts of omics data. The omic profile is reduced to a digital
representation based on that of a set of samples taken from a baseline population. The
state of a subprofile that is not within the basic distribution is interpreted as “divergent.”
In [134] an application of the divergence analysis within the study of metabolic differences
among the interpersonal heterogeneous cancer phenotypes has been described.

4. Novelty, Challenges, and Future Perspective

The computational approach plays a central role in improving our current cancer
diagnostic capabilities [135]. The understanding of the cancer progression, the new ther-
apeutic interventions, and the discovery of novel cancer biomarkers need to adopt and
integrate different omics strategies at multiple levels. To achieve this aim, as suggested
in the work of [136] there are five essential challenges in the omics integration workflow:
(1) experimental challenges, (2) individual omics datasets, (3) integration issues, (4) data
issues, and (5) biological knowledge.

1.  Experimental challenges: an accurate sample preparation in a multi-omics perspective
becomes one of the major experimental challenges, with the aim to achieve a universal
sample collection and preparation protocol for generating multiple omics datasets.

2. Individual omics datasets: data preprocessing is also another significant challenge.
This process can be performed on each omic dataset independently before merging
significant results or after the production of a unique merged dataset. Moreover, the
information included in each individual omic dataset requires very different stan-
dardization and scaling approaches, operating in different numerical and time scales.

3. Integration issues: data integration issues increases the difficulty of accounting for
false positives in merged datasets. Additional problems include the management
of rigorous approaches based on statistical models with respect to less rigorous
approaches that include a biological interpretation. In comparison to a single omics
study, a multi-omics approach has the benefit to allow a deeper understanding of
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how the tumoral transformation is affecting the flow of information from different
omics levels resulting in a bridge between cancerous genotype and the phenotype.

4.  Data issues: the storage of omics data is very important for reproducibility. To this
end, new omic platforms are being developed to provide essential clinical data for
insights into the prognosis and diagnosis of diseases.

5. Biological knowledge: the interpretation of the outputs of computational models re-
quires a deep knowledge of the biological system under study, in order to discriminate
results that are not biologically relevant.

Despite these challenges the application of bioinformatics data integration and anal-
ysis, as well as the use of molecular modeling algorithms, allow to formulate many pre-
dictions of drug—target interactions to greatly facilitate guided drug development and
guided drug resistance prevention [137]. Artificial intelligence (AI) approaches act on
many aspects related to cancer therapy, including drug discovery and development and
how these drugs are clinically validated and ultimately administered to patients [138]. The
convergence of Al and cancer therapy has led to multiple benefits in terms of cost and time
reduction. Al methods, ranging from regression models to neural networks can accelerate
drug discovery, harness biomarkers to accurately match patients to clinical trials, and truly
customize cancer therapy using only patients’ own data.

In conclusion, the design and development of methods that integrate different multi-
omic computational approaches in order to create robust and reliable models can lead to
enormous advances in understanding the biology of cancer. As bioinformatics tools evolve,
they must become user-friendly, interconnected, interoperable, and powerful for intensive
analyses. In this context, integrated omics is not just an ensemble of computational tools,
but a cohesive paradigm for deeper biological interpretation of multi-omics datasets that
will potentially reveal novel details into cancer investigation. Although this field is still
under development, many advances are constantly being made, with the development of
new updated algorithmic approaches.
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Appendix A
Table Al. Examples of main chromosomal translocations associated to different cancers.
Fused G /Protei
Translocation Associated Diseases used enesTroleins
First Second
IGH@ (immunoglobulin heavy
c-myc on chromosome 8
locus) on chromosome 14
t(8;14)(q24;932) Burkitt’s lymphoma
gives the fusion protein induces massive transcription of
lymphocyte-proliferative ability fusion protein
cyclin D1 on chromosome 11 IGH@ (immunoglobulin heavy
locus) on chromosome 14
t(11;14)(q13;q32) Mantle cell lymphoma

gives fusion protein
cell-proliferative ability

induces massive transcription of
fusion protein

t(14;18)(q32;q21)

Follicular lymphoma
(~90% of cases)

IGH@ (immunoglobulin heavy
locus) on chromosome 14

Bcl-2 on chromosome 18

induces massive transcription of
fusion protein

gives fusion protein
anti-apoptotic abilities
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Table A1. Cont.

Translocation

Associated Diseases

Fused Genes/Proteins

First

Second

t(10;(various))(ql1;(various))

Papillary thyroid cancer

RET proto-oncogene on
chromosome 10

PTC (papillary thyroid
cancer)—Placeholder for any of
several other genes/proteins

t(2;3)(q13;p25)

Follicular thyroid cancer

PAX8—paired box gene 8 on
chromosome 2

PPARy1 (peroxisome
proliferator-activated receptor y 1)
on chromosome 3

£(8:21)(q22/422)

Acute myeloblastic leukemia
with maturation

ETO on chromosome 8

AML1 on chromosome 21

found in ~7% of new cases of
AML, carries a favorable
prognosis and predicts good
response to cytosine
arabinoside therapy

1(9;22)(q34;q11) Philadelphia

Chronic myelogenous leukemia
(CML), acute lymphoblastic

Abl1 gene on chromosome 9

BCR (“breakpoint cluster region”

chromosome Jeukemia (ALL) on chromosome 22
RAR-o on chromosome 17
t(15;17)(q22;q21) Acute promyelocytic leukemia PML protein on chromosome 15 persistent laboratory detection of
the PML-RARA transcript is
strong predictor of relapse
Acute myeloid leukemia,
congenital fibrosarcoma, secretory
t(12;15)(p13;q25) breast carcinoma, mammary TEL on chromosome 12 TrkC receptor on chromosome 15
analogue secretory carcinoma of
salivary glands, cellular variant of
mesoblastic nephroma
t(9;12)(p24;p13) CML, ALL JAK on chromosome 9 TEL on chromosome 12
. . A DDIT3 (formerly CHOP) on
t(12;16)(q13;p11) Myxoid liposarcoma chromosome 12 FUS gene on chromosome 16
t(12;21)(p12;q22) ALL TEL on chromosome 12 AML1 on chromosome 21
t(11;18)(q21;q21) MALT lymphoma BIRC3 (API-2) MLT
t(1,11)(q42.1,q14.3) Schizophrenia
t(2;5)(p23;935) Anaplastic large cell lymphoma ALK NPM1
t(11;22)(q24;q11.2-12) Ewing’s sarcoma FLI1 EWS

Platelet derived growth factor B

t(17;22) DFSP Collagen I on chromosome 17 on chromosome 22

t(1;,12)(q21;p13) Acute myelogenous leukemia

t(X;18)(p11.2;,q11.2) Synovial sarcoma

. . Oligodendroglioma and
t1:19)(q10;p10) oligoastrocytoma
t(17;19)(q22;p13) ALL
€7,16) (qu(}_jzi{ [P;E; or (11,16) Low-grade fibromyxoid sarcoma FUS CREB3L2 or CREB3L1
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The secondary and tertiary structure of a protein has a primary role in determining its function.
Even though many folding prediction algorithms have been developed in the past decades —
mainly based on the assumption that folding instructions are encoded within the protein se-
quence — experimental techniques remain the most reliable to establish protein structures. In
this paper, we searched for signals related to the formation of a-helices. We carried out a
statistical analysis on a large dataset of experimentally characterized secondary structure ele-
ments to find over- or under-occurrences of specific amino acids defining the boundaries of
helical moieties. To validate our hypothesis, we trained various Machine Learning models, each
equipped with an attention mechanism, to predict the occurrence of a-helices. The attention
mechanism allows to interpret the model’s decision, weighing the importance the predictor gives
to each part of the input. The experimental results show that different models focus on the same
subsequences, which can be seen as codes driving the secondary structure formation.

Keywords: a-Helices; proteins; machine learning; attention mechanism.

1. Introduction

Knowledge of the secondary and tertiary structure of a protein is fundamental in
understanding its function and its structure-function relationships. It is now well
established that protein structures are mainly determined by their amino acid
sequences.! Protein folding prediction techniques have been based on this hy-
pothesis for decades, but they have not yet reached an accuracy comparable to that
of the traditional methods, like NMR spectroscopy, X-ray crystallography, or cryo-
electron tomography. These processes, though, are expensive and overly time
consuming.

2050028-1
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The rapid progresses in genomics have led to the discovery of millions of protein
sequences, less than 0.2% of which were resolved with the traditional methods.
Advanced computational approaches for the prediction of secondary and tertiary
structures would solve this problem allowing to process large amounts of sequences in
a reasonable time. Nevertheless, although gradual developments have been made in
the prediction methods based on local information on the amino acid sequence, their
results have a lower quality compared to those of the experimental techniques, which
can also take into account the protein evolutionary information and constitute the
ground-truth for the performance evaluation of predictive methods.

Efficiently predicting the occurrence of secondary structure motifs in proteins can
represent a solid basis towards accurate predictions of 3D native structures and,
actually, the search for a performing method for secondary structure prediction, over
the last five decades, produced a wide variety of different statistical approaches. One
of the first solutions was SIMPA,? a nearest neighbor classifier based on a sequence
similarity matrix. In BSPSS,? a probabilistic model was developed, formulating the
secondary structure prediction as a general Bayesian inference problem. Another
example of a static inference approach is SOPM,* which makes use of a sequence
similarity score in order to predict secondary structures. Finally, IPSSP® extends the
hidden semi-Markov model (HSMM) used in BSPSS, taking residue dependencies
into account, in order to make a better prediction.

Recently, also neural networks have been applied to the secondary structure
prediction task, showing promising results. In Ref. 6, a hybrid modular architecture
was proposed based on a combination of BSPSS with a neural network. Differently,
an ensemble model, composed by a Multi—Class Support Vector Machine (M—SVM)
and a neural network, was described in Ref. 7. PSIpred® is a server, hosted at UCI,
which implements a simple and accurate secondary structure prediction method,
incorporating two feed-forward neural networks. For each amino acid in the se-
quence, the first neural network is fed with a window of 15 amino acids. A second
neural network is then used to refine the structure predicted by the first network.
Since their first appearance (almost 20 years ago) Long Short-Term Memories
(LSTMs), a special kind of Recurrent Neural Network, have produced the state-of-
the-art results in many Machine Learning (ML) tasks involving sequential data, such
as in speech recognition.” and in machine translation.' LSTMs are tailored to
process sequences, since they can focus on both local and global contextual features.
LSTMs have already been applied to predict secondary structures in proteins,'!:'>
obtaining very good results.

In this paper, we faced the problem of finding helical moieties in proteins from a
somewhat different perspective, searching for small conserved amino acid signals,
that delimitate a-helices — or, in other words, define their boundaries — and are
used by Nature to drive their formation. To this aim, we first carried out a statistical
analysis and then implemented and compared three different ML approaches to
identify such signals. In particular, in Sec. 2, the concentration of each amino acid is
calculated considering three positions outside and four positions inside known
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helices, as reported in CATH database.!® Actually, the obtained results show how
some amino acids are both hyper- or under-represented in biologically explainable
ways. In Sec. 3, three ML models, specifically built for the task of amino acid signal
identification, are described. These ML architectures are trained to discriminate
sequences which contain an a-helix from those which do not. Each of them is
equipped with an attention module, which measures the importance given by the
model to each feature in each sequence position, allowing an interpretation of its
behavior. The experimental results reported in Sec. 5 show how all the models focus
on the most important information, suggesting that the amino acids located at the
sequence boundaries are fundamental in determining the occurrence of a-helices.
Finally, Sec. 7 collects some conclusions and suggests future perspectives.

2. Amino Acid Concentration at the Helix Boundaries

The most common type of secondary structure in proteins is the a-helix. Linus
Pauling was the first to predict the existence of a-helices,'* which was confirmed a
few years later by X-ray crystallographic determinations of myoglobin and hae-
moglobin structures, respectively resolved by Max Perutz'® and John Kendrew.'°

The idea that Nature interprets some signals to locally fold a protein into an
a-helix is not completely new, even if, in the past, it was declined based on different
assumptions, for instance searching for combinations of unusual codons.'” Our point
of view, instead, is that of searching for abnormal concentrations of some amino
acids, in particular positions located at the helix boundaries.

In the following, we first describe how the helix dataset was gathered, the pre-
processing phase on the collected data and their statistical analysis, together with a
biological interpretation of the obtained results.

2.1. Dataset collection

A set of proteins, divided in three main classes (mainly-«, mainly-3, and a-3 pro-
teins) was downloaded from the CATH database (http://www.cathdb.info/
browse/tree). All the sequences were then analyzed in order to find as many helices
as possible. Sequences and secondary structure information were extracted from the
PDB entries, using the Kabsch and Sander DSSP algorithm,'® which exploits
backbone dihedral angles and hydrogen bonds, to assign each amino acid to a sec-
ondary structure.

2.2. Preprocessing

In an a-helix, each turn is composed by an average number of 3.6 residues. Therefore,
to ensure that each helix includes at least two turns, helices shorter than eight
residues were discarded. Since signals that trigger the helix formation can also be
located outside the helix sequence itself, we analyzed the complete sequence, taking
into account also two or three amino acids before and after each helix. We labeled the
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Table 1. Helices obtained from DSSP files.

Alpha domains  Beta domains  Alpha Beta domains Tot

Total helices 11592 1864 25776 39347
>8,(1) 8343 631 16846 25873
>8,(2) 3818 328 8945 13094
> 8,(3) 1220 121 2906 4249

sequences with two or three external residues with the suffix 2H or 3H, respectively.
Table 1 shows the distribution of sequences in each category.

In Table 1, the first row shows the total number of helices in each class, without
taking into account their length. The other rows convey the number of helices longer
than eight residues, which also include one (1), two (2) and three (3) amino acids
before and after the helix. Due to the small number of helices in the mainly-3
domains, this class was not used in the following analysis. Moreover, to obtain a non-
redundant dataset, the sequences were scanned with CATH S100, with the purpose
of removing sequences with a 100% identity. All the a-helices were then grouped
according to their size, as shown in Fig. 1.

The lengths of the collected a-helices vary between 8 and 40 residues, with a mean
helical length of approximately 10 residues. There is a gradual decrease in the helix
population as the helical length increases beyond 14 residues. Moreover, helices
longer than 40 residues are rarely found in proteins, whereas the longest helix in our
dataset is composed by 60 residues.

2.3. Statistical analysis

In order to establish if the biological signals actually exist which can delimit the
a-helix, we first evaluate the residue propensity value for each amino acid in the
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Fig. 1. Length distribution of 2H helices.
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Fig. 2. Position coding along helix sequences.

positions shown in Fig. 2, namely three positions outside and four positions inside
the helix.

The residue propensity value (e,) describes in which percentage a particular
amino acid occupies a given position, and can be calculated based on the following
equation:

L =25 100,
nS
where a; and n, are the number of residues of type a in position s and the total
number of residues, respectively. Propensity values can then be compared with the
percentage concentration of each amino acid in the entire dataset. The results
obtained are reported in Tables 2 and 3. Colored values represent residue frequencies
that deviate more than 4% from the standard concentration value, being negative
and positive deviations highlighted in blue and red. The second column of both tables
shows the frequency of each amino acid within the dataset.

Tables 2 and 3 report very similar propensity values. The case of Glycine is

particularly interesting as it has a very high frequency of occurrence in the terminal

Table 2. Residue propensity values in 2H helices.

Code % -2B -1B +1B +2B +3B +4B —4E -3E -2E -—-1E +1E +2E

Ala 87 81 48 9, 96 103 [ - - 12 Bl 121 45

Cys 12 1 12 1,1 06 0 9 1,3 1 1 14 08
Asp 58 79 [ 42 75 2,7 3,7 3,4 31 46 35 53
Gu 71 88 55 65 - - 43 79 68 82 10 72 54
Phe 41 29 33 47 35 51 44 43 35 36 35 2

Gly 7 89 B 73 7,1 72 33 |27 3 9 25 92 B
His 24 24 24 18 21 24 19 22 16 26 21 34 26
Ile 6 36 22 58 48 43 89 73 54 78 42 26 [19
Lys 58 62 37 66 53 47 48 6 56 86 85 76 75
Lew 101 [B5 B 105 7 72 [EH B B2 BE B 1. [54
Met 17 14 14 19 13 15 27 25 28 23 25 21 1

Asn 4 48 BB 21 33 28 23 29 29 27 37 66 68

Pro 44 77 26 58 82 48 [0 o5 05 (01 [0 00 42
Glh 38 33 34 4 52 39 46 39 49 49 52 46
Arg 53 49 36 55 49 43 6 755 76 68 65 51
Ser 58 93 51 56 59 37 39 42 37 6 72 53

Thr 51 59 82 46 48 54 46 37 27 33 37 36 32
Val 7 41 @6 7 51 55 95 7 52 75 43 31 [24
Trp 13 09 12 1,8 12 11 1,7 19 1,1 14 09 07 04
Tyr 34 25 31 42 27 35 39 41 32 32 31 34 19

2050028-5



J. Bioinform. Comput. Biol. Downloaded from www.worldscientific.com

by UNIVERSITY OF GLASGOW on 08/09/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Visibelli et al.

Table 3. Residue propensity values in 3H helices.

Code % —-3B —2B —-1B +1B +2B +3B +4B —-4E —-3E —2E -1E +1E +2E +3E

Ala 87 97 7,7 52 98 96 104 129 11,9 146 119 122 106 63 56
Cys 12 14 12 14 08 06 1 13 13 1 13 13 16 09 11
Asp 58 49 87 94 4 71 65 19 34 43 29 37 38 61 6
Gu 71 72 97 54 59 119 115 45 75 94 9 77 66 68 61
Phe 41 48 31 39 43 34 41 53 51 3 36 47 4 25 41
Gy 7 11,7 89 137 7 84 59 4 24 32 19 24 105 147 159
His 24 24 25 24 19 17 25 18 19 1,7 2 25 31 31 35
Tle 6 37 33 28 63 4 43 95 81 48 81 49 35 23 44
Lys 58 56 57 43 72 52 47 46 61 7 73 76 73 84 71
Lew 101 66 56 6 104 64 74 16 149 139 158 168 95 6,5 83
Met 17 17 16 14 2 13 15 3 28 26 23 3 19 12 12
Asm 4 3 55 T4 2 37 3 27 32 4 28 36 63 65 56
Pro 44 75 54 26 55 84 42 0 05 07 01 0 0 81 34
Gh 38 33 34 34 32 39 53 37 45 51 5 38 42 52 36
Arg 53 43 46 33 58 47 38 48 62 66 63 58 6 53 54
See 58 75 94 122 56 64 61 36 39 46 39 59 92 64 48
Thr 51 5 62 78 48 49 61 44 31 38 34 39 41 42 4
Vval 7 5 4 3 67 45 56 102 72 5 74 56 35 29 5
Trp 1,3 11 1 12 18 14 1,1 1,8 21 12 14 09 08 06 09
Tyr 34 34 26 32 49 25 47 4 41 34 36 38 37 23 4

regions of helices (in position +2E and +3E). Especially, for 2H helices, the frequency
of Gly increases from an average value of 7 to 29.7.

Known for not being strong helix conformers, Glu, Lys and Arg residues have a
low frequency of occurrence in the examined positions. This is due to their charge
that makes them repel each other by preventing the formation of a-helices. It is also
known that negatively charged amino acids are often found near the amino-terminus
of the helical segment, where they have a stabilizing interaction with the positive
charge of the helix dipole; a positively charged amino acid at the amino-terminal end
is destabilizing. The opposite is true at the carboxyl-terminal of the helical segment.
Consequently, negatively charged amino acids, as Glu and Asp, increase their fre-
quency at the beginning of the helices. For the same reason, positively charged amino
acids, as Lys, Arg and His, increase their frequency, often slightly, at the end of the
helix. On the one hand, the frequencies of Ala and Leu in position +4B, —4E, —3E,
—2E, —1E, are higher than their propensity values inside helices (respectively, 8.7
and 10.1). On the other hand, as expected, Pro and Gly have low frequencies in the
central positions, whereas they have high concentrations at the ends of the helix.
Indeed, Pro has a very large side chain, and it is well known that Prolines get in the
way of a-helix formation. Pro either breaks or twists a helix because it cannot donate
an amide hydrogen bond (having no amide hydrogen), and also because its side chain
interferes sterically with the backbone of the preceding turn inside a helix, which
forces a bend of about 30° in the helix axis. However, Pro is often seen as the first
residue of a helix (with a propensity value of 5.5-5.8 in our test, which is greater than
the average concentration, 4.4), probably due to its structural rigidity. At the other
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extreme, Gly also tends to disrupt helices because its high conformational flexibility
makes it entropically expensive to adopt the relatively constrained a-helical struc-
ture. Finally, Ala, Leu, Glu and Met have an especially high propensity to belong to
the inner part of helices.

3. Predictive Models

The statistical investigation carried out in Sec. 2 shows that informative patterns can
be evidenced at the beginning and at the end of amino acid sequences representing
a-helices. In order to validate this assumption, we compare three ML approaches,
which rely only on sequence data, equipped with attention modules, to decide if a
short fixed—length amino acid sequence represents or not an a-helix. The ML models
used for the classification of sequence data are a Random Forest Classifier (RFC), a
MultiLayer Perceptron (MLP), and a Long-Short Term Memory (LSTM) recurrent
architecture. RFC is an additive model which makes predictions by combining
decisions from a set of base models, like decision tree classifiers. MLPs can be used for
this task, since we consider fixed-length sequences of 14 amino acids (see Fig. 2),
while LSTMs are employed supposing that they can better capture the very nature of
protein data, even for short sequences. Parametric details of the compared archi-
tectures are shown in Table 4.

3.1. Input sequence representation

Predictive models are trained on amino acid sequences without further information.
To represent each amino acid, the simplest solution is one-hot encoding, i.e. each
residue is represented by a binary vector of dimension 20, in which only the element
corresponding to a particular amino acid gets a value of 1, while all the other entries
are set to 0. Anyway, since one-hot encoding is verbouse and sparse, we also realized
a dense representation, exploiting Word2Vec,'” a technique widely used in natural
language processing. Taking a corpus of text in input, this method builds a vocab-
ulary of the words in the corpus, and learns a representation for each word, based on
the corpus semantics, as shown in Fig. 3. In our case, each amino acid corresponds to
a word, and its dense output vector representation has length 5.

While MLPs and RFCs models deal with a 2D input (a matrix containing pat-
terns represented as vectors), the LSTM input can be seen as a 3D tensor [samples;
timesteps; features], where “samples” account for the cardinality of the learning set,

Table 4. Models’ hyperparameters.

Model MLP I MLP II LSTM I LSTM II LSTMIII LSTMIV
Encoding One-Hot Word2Vec  One-Hot  Word2Vec  One-Hot ~ Word2Vec
LSTM units 30 33 48 54
Dense units 135 135 10 10 20 20
Attention Before Before After After Before Before
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Fig. 3. Representation of the Word2Vec tool.

“timesteps” corresponds to the length of each amino acid sequence, and “features” is
the dimensionality of the residue representation (5). The structure of the input
tensor is illustrated in Fig. 4.

3.2. Attention mechanism

Attention is one of the most important cognitive processes in human beings. When
dealing with any problem, instead of processing the whole bulk of information at
their disposal, humans focus only on the details which are important for under-
standing and solving the problem itself. A very similar approach can be attached to
the ML models. Even though attention, for instance in neural networks, is very
loosely related to the visual attention mechanism found in humans, it has been
applied to a wide variety of applications, from text summarization.?’ to image
description.?!

An attention module takes n arguments y,...,y, and a context ¢ in input, and
returns a vector z, which is the summary of the y; focused on the information related
to the context c. More precisely, the attention module calculates a weighted arith-
metic mean of the y;, where the weights are chosen according to the relevance of each
y; in the given context c.

In the MLP model, the attention mechanism is applied directly on the input, as
reported in Fig. 5.

Q@

S
Q/v/} =0 =
Q{?—/j 7T A7 P ]

-

HEEEEEEEEEEEEE

¢ OO
Syl EEEEE NN,
| OO

- E-zainag+aBE\-45£-zEEQ1EEwE

—
—

r
TIME STEP

Fig. 4. 3D input tensor for LSTMs.
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Input sequence

N
E- Dense layer(softmax) . c
|_#neuron=sequence_length :
[y
Raw sequence —

Fig. 5. MLP attention.

Concerning the LSTM model, instead, we applied the attention module in two
different positions within the network, respectively, after and before the LSTM layer,
as shown in Figs. 6 and 7.

This is done by transposing the input in the 3D tensor [samples; features; time-
steps], feeding it to a softmax which estimates the weight distributions, that are
then combined with the input sequence. Although both methods are valid, the
disadvantage of applying the attention module after the LSTM is that the high-
dimensional space spanned by the LSTM might be trickier to interpret. The per-
mutation in the attention mechanism (Figs. 6 and 7) allows us to move the focus on

Weighted output sequence

Permute(timesep,feature)
! Dense layer(softmax) c
|_#neuron=sequence_length :

B A

! Permute(feature,timestep) .

s

LSTM Output sequence —

Fig. 6. Attention after LSTM.
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e
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Fig. 7. Attention before LSTM.

each timestep rather than on each feature. Our primary interest is, in fact, to
measure the importance of each sequence position in determining the occurrence of
a-helices. Secondarily, and only in the one-hot case, the focus on the single feature in
each timestep allows us to evaluate the importance of the presence of a particular
amino acid in a given position.

In the RFC model, the attention mechanism is implemented in terms of the
importance of each sequence position with respect to the model decision that can be
evaluated as an average across the base decision tree classifiers.

In order to visualize the focus of attention throughout the sequence positions,
each network was trained and tested on 20 different 10-fold cross-validation runs,
each using a different dataset split. The attention vectors were averaged over the 10
folds in every test.

4. Experimental Setup

Our dataset is composed of 4127 3H helices and 7767 non-helix sequences, collected
from the three main protein classes, described in Table 1.

Six different Neural Networks, all built with roughly the same number of para-
meters, are used in the experiments. Two of them share the same MLP architecture,
a dense SeLU layer followed by a two-unit softmax output layer. The other four
models include a single LSTM layer followed by a dense SeLLU hidden layer and by a
two-unit softmax output layer. Details on architectural hyperparameters can be
found in Table 4.

The hyperparameters, shown in Table 4, were selected after a grid search, which
consists in trying every possible configuration in order to find the parameter set
which guarantees the highest accuracy. In our experiments, each model was tested on
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the validation set, to avoid an excessive adaptation of the hyperparameters on the
training data. The model is trained with the Adam optimizer, minimizing the cat-
egorical cross-entropy loss function.

With respect to RFCs, the parameter values were determined after a grid search.
We implemented a forest with 1000 trees with a maximum depth of 50 for the RFC
using One-Hot Encoding (RFC I) and 21 for the RFC using Word2Vec (RFC II). We
used the default values for the minimum number of samples per leaf (1) and the
minimum number of samples required to split an internal node (2).

5. Results

In order to visualize the focus of attention throughout the sequence positions, a set of
experiments was performed. Each network was trained and tested on 20 different 10-
fold cross-validation runs, each using a different dataset split. The attention vectors
were averaged over the 10 folds in every test. Even if optimizing the classification
accuracy is out of the scope of this paper, actually obtaining performing models
means that we can be confident in their results or, in other words, that they have
been able to select the correct information inside the data to solve the classification
problem. Therefore, for the sake of completeness, we evaluated the performance for
all the ML approaches, almost always obtaining values greater than 80%, as shown in
Table 5.

The best architecture, namely the LSTM II network, scored more than 84%,
based on Word2Vec embedding and with the attention module posed after the
LSTM layer. Nevertheless, networks whose attention mechanism is located after
the LSTM layer return attention vectors which slightly depend on the split. On the
contrary, attention modules placed before the LSTM layer produce very similar
vectors across the runs, showing almost no dependence on the split. This indepen-
dence is also found in the MLP and RFC models, which produce very similar at-
tention vectors. Therefore, one example, representative of each model, can be
considered to illustrate the related attention vectors, as shown in Fig. 8.

Regardless of the ML model and the encoding used, the attention focuses prin-
cipally on the last position upstream with respect to the 5’ end of the helix, and on
the three last positions inside the helix.

From the bar charts, it emerges that most of the information which defines the
presence of an «-helix is contained in the helix itself, except position —1B. Fur-
thermore, the information at the end of the motif looks more relevant with respect to
what is present in the other considered position both inside and outside the helix.

Table 5. Accuracy (Acc %) and Standard Deviation (SD) of the six models.

Model MLPI MLPII LSTMI LSTMI LSTMII LSTMIV RFCI RFCII

Ace % 82.00 78.10 82.74 84.08 81.84 83.35 82.30 82.02
SD 0.005 0.006 0.009 0.011 0.007 0.014 0.007 0.007
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Fig. 8. Models average attention.

One of the advantages of one-hot encoding with respect to Word2Vec is the
possibility to quantify the importance of the single amino acids in each position of the
attention vector. This can be visualized with the help of the heatmap in Fig. 9,
calculated for LSTM III. Each row of the heatmap corresponds to a sequence position
(from top to bottom), while each column corresponds to one amino acid (indicated

by its one letter code).
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Fig. 9. Attention heatmap.

In Fig. 9, the focus of attention on the last three positions of the helix is
highlighted. In particular, the LSTM III network concentrates on the occurrence of
the amino acids which are particularly abundant in those positions (see Table 3):
Leucine (15,8% in position —2E), Alanine (14,6% in position —3E) and Valine (7,4%
in position —2E). On the contrary, the less common residues, such as Glycine (1,9% in
position —2E) and Proline (0,1% in position —2E), seem not so relevant for the
classification, according to the attention mechanism. The correlation between the
heatmap in Fig. 9 (calculated considering 3H helices) and the residue propensity
values in Table 3 is evident and suggests that the network attention principally
focuses on highly concentrated amino acids (f.i., Glutamic acid at the beginning of
the helix, Alanine and Leucine at the end), while it does not take into account down-
concentrated amino acids (f.i., Proline and Glycine at the end of the helix, which are
represented by dark blue cells).

Figure 9 also underlines the fundamental role of Leucine in a-helix stabilization,
as it appears to be the most abundant amino acid at the helix carboxy-termini. The
fact that Leucine is the least affected by translation errors, due to its six different
codons, seems to make it more preferable than other strong a-helix formers, such as
Glutamic acid, Alanine and Methionine, in the position where helices must collapse.

6. Availability and implementation

All the code are implemented in Python, and the experiments were performed on a
single GPU Nvidia 1080 TI. For the sake of reproducibility, data, source codes and
models evaluated in this paper were made freely available at https://github.com/
annavisibelli/DL4Helices.

7. Conclusions

Given a protein sequence (its primary structure), the first step towards the predic-
tion of the three-dimensional native configuration consists in determining its

2050028-13



J. Bioinform. Comput. Biol. Downloaded from www.worldscientific.com

by UNIVERSITY OF GLASGOW on 08/09/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Visibelli et al.

secondary structures. This means telling which backbone regions are likely to form
helices, strands, and -turns, U-bent structures obtained when a (-strand reverses its
direction in an antiparallel 3-sheet.

Secondary structure prediction algorithms employ a variety of computational
techniques, including neural networks, finite state automata, hidden Markov models,
clustering techniques and genetic algorithms.

Based on the intuition that signals should exist, in the form of particular amino
acid concentrations, which determine the formation of secondary structures and
define their extension, in this paper, we carried out a statistical analysis of the amino
acid concentrations in the vicinity of a-helices. We then compared ML approaches to
predict their formation and reveal the fundamental role some positions play in
protein folding. In particular, three different ML methods were used, equipped with
an attention module, to predict the presence of amino acid signals for the occurence
of a-helices. The attention mechanism, integrated in our prediction methods, can
actually derive useful information on protein sequence profiles.

The obtained experimental results demonstrate the power of ML techniques in
extracting information from protein data to make predictions on the protein struc-
tural features, based only on the amino acid sequence. Both MLPs, RFCs and
LSTMs can interpret the nature of protein data and focus on the long-conserved
pieces of information which are fundamental in the formation of secondary struc-
tures. Moreover, having demonstrated that both the statistical an the ML approa-
ches focus on the same positions to ascertain the presence of an a-helix has a twofold
impact. On the one hand, it reinforces the biological intuition of the presence of
amino acid signals delimiting helical moieties; on the other hand, it ensures the
interpretability of the results produced by ML approaches, showing how what we
repute biologically significant is also important for the nework decision.

It is a matter of future research to extend the proposed approach to the prediction
of signals defining other common secondary structures, namely [-sheets and U-turns.
Actually, such a local information can be potentially applied to support 3D protein
structure prediction. Indeed, the combination of the existing sophisticated deep
learning techniques with a deeper knowledge of the primary structure information
content — in the form of amino acid signals which regulate the formation of secondary
structures or of protein residue — residue contacts,?? etc. will play soon a significant
role, at least for a rough but rapid prediction of the structure of new proteins.

Indeed, our results are very encouraging, and suggest to continue using ML
approaches for the secondary structure prediction. Nevertheless, many challenges
remain open, requiring the development of alternative strategies to complement/
improve existing techniques.
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