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Abstract
By applying robust control, the decision maker wants to make good decisions when 
his model is only a good approximation of the true one. Such decisions are said to 
be robust to model misspecification. In this paper it is shown that, in many situations 
relevant in economics, a decision maker applying robust control implicitly assumes 
that today’s worst-case adverse shock is serially uncorrelated with tomorrow’s 
worst-case adverse shock. Then, further investigation is needed to see how strong is 
the ‘immunization against uncertainty’ provided by these popular frameworks.

Keywords  Linear quadratic tracking problem · Optimal control · Robust 
optimization · Time-varying parameters

JEL Classification  C61 · C63 · D81 · D91 · E52 · E61

1  Introduction

A characteristic “feature of most robust control theory”, observes Bernhard (2002, 
p. 19), “is that the a priori information on the unknown model errors (or signals) is 
nonprobabilistic in nature, but rather is in terms of sets of possible realizations. Typi-
cally, though not always, the errors are bounded in some way…. As a consequence, 
robust control aims at synthesizing control mechanisms that control in a satisfactory 
fashion (e.g., stabilize, or bound, an output) a family of models”.1 Then “standard 
control theory tells a decision maker how to make optimal decisions when his model 
is correct (whereas) robust control theory tells him how to make good decisions when 
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1  Robust control has been a very popular area of research in economics in the last two decades and 
shows no sign of fatigue. See, e.g., Giannoni (2002, 2007), Hansen and Sargent (2001, 2003, 2007a, 
2007b), Hansen et al. (1999, 2002), Onatski and Stock (2002), Rustem (1992, 1994, 1998), Rustem and 
Howe (2002) and Tetlow and von zur Muehlen (2001a, b). However the use of the minimax approach in 
control theory goes back to the 60’s as pointed out in Basar and Bernhard (1991, pp. 1–4).
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his model approximates a correct one” (Hansen and Sargent 2007a, p. 25). In other 
words, by applying robust control the decision maker makes good decisions when it 
is statistically difficult to distinguish between his approximating model and the cor-
rect one using a time series of moderate size. “Such decisions are said to be robust to 
misspecification of the approximating model” (Hansen and Sargent 2007a, p. 27).2

Tucci (2006, p. 538) argues that “the true model in Hansen and Sargent (2007a) … is 
observationally equivalent to a model with a time-varying intercept.” In the sense that, 
unless some prior information is available, it is impossible to distinguish between the two 
models by simply observing the output. Then he goes on showing that, when the same 
worst-case adverse shock and objective functional are used in both procedures, robust 
control is identical to the optimal control associated with time-varying parameters, or 
TVP-control, only when the transition matrix in the law of motion of the parameters is 
zero. He concludes that this decision maker implicitly assumes that today’s worst-case 
adverse shock is serially uncorrelated with tomorrow’s worst-case adverse shock.

This is a relevant conclusion because it applies to a robust control set up widely 
used in economics. Moreover, as commonly understood, the robust control choice 
accounts for all possible kinds of persistence of worst-case shocks, which may take 
a very general form. Then, it is not immediately obvious why they look linearly 
independent when the decision maker cares only of the induced distributions under 
the approximating model and is indifferent between utility processes with identical 
induced distributions. Namely, when He/She is assumed having preferences defined 
by using a single constraint, or penalty, on the adverse shocks.

At this stage however, it is unclear if this result holds when a more general frame-
work is considered. For instance, when the decision maker has a different constraint 
for each type of adverse shocks. This may be the case when He/She is looking for 
decisions robust to perturbations in a situation where parts of the state vector are 
unobservable. Then two types of statistical perturbations are considered. One that 
distorts the adopted model conditional on the knowledge of hidden state and the 
other that distorts the distribution of the hidden state. This decision maker is some-
times referred to as the non-“probabilistically sophisticated” decision maker and 
contrasted with the “probabilistically sophisticated” decision maker, who considers 
only one kind of perturbation, described above.3 Alternatively robust control may 
be applied to situations where the decision maker wants to be “immunized against 
uncertainty” related to unknown structural parameters as in Giannoni (2002, 2007).4

The goal of this paper is to carry on the comparison between TVP-control and 
robust control for a much larger class of models in discrete-time.5 Namely, the case 
of a non-“probabilistically sophisticated” decision makers who want to make deci-
sions robust with respect to unstructured uncertainty à la Hansen and Sargent, i.e. 
a nonparametric set of additive mean-distorting model perturbations. And the class 
of models where uncertainty is related to unknown structural parameters. This is a 
necessary step to determine if Tucci’s (2006) result holds only in the simplest case 

2  For a general discussion of the robust control methodology see Ben-Tal et al. (2009).
3  See, e.g., Hansen and Sargent (2007a, section 19.3).
4  The reasons that may lead to prefer this formulation are discussed in Giannoni (2007, p. 182).
5  Therefore all recent literature on robust control with continuous time, see e.g. Hansen and Sargent 
(2010, 2016), is ignored.



281

1 3

How Robust is Robust Control in Discrete Time?﻿	

or is valid for a much larger class of models. In the former case it may be treated as 
an interesting special case of limited, or no, practical relevance because it does not 
affect the most commonly used robust control frameworks. In the latter it is a clear 
indication that further investigation, outside the scope of the present work, is needed 
to see how large is the uncertainty set associated with these frameworks. In other 
words, how strong is the ‘immunization against uncertainty’ provided by the linear-
quadratic robust control set up widely used in economics in discrete-time.6

The remainder of the paper is organized as follows. Section 2 reviews the sim-
plest robust control problem with unstructured uncertainty à la Hansen and Sargent. 
An example of a non-“probabilistically sophisticated” decision maker is discussed 
in Sect.  3. In Sect.  4 both problems are reformulated as linear quadratic tracking 
control problems where the system equations have a time-varying intercept follow-
ing a mean reverting, or ‘Return to Normality’, model and the associated TVP-con-
trols are derived. Then the optimizing model for monetary policy used in Giannoni 
(2002, 2007) is presented (Sect. 5). Section 6 reports some numerical results and the 
main conclusions are summarized in Sect. 7. For the reader’s sake, the major result 
of each section is stated as a proposition and its proof confined to the “Appendix”.

2 � Robust Control à la Hansen and Sargent: The Standard Case

Hansen and Sargent (2007a, p. 140) consider a decision maker “who has a unique 
explicitly specified approximating model but concedes that the data might actually 
be generated by an unknown member of a set of models that surround the approxi-
mating model”.7 Then the linear system

with yt the n × 1 vector of state variables at time t, ut the m × 1 vector of control vari-
ables and εt+1 an l × 1 identically and independently distributed (iid) Gaussian vec-
tor process with mean zero and an identity contemporaneous covariance matrix, is 
viewed as an approximation to the true unknown model

(1)�t+1 = ��t+��t+��t+1 for t = 0,… ,∞,

(2)�t+1 = ��t+��t+�(�t+1 + �t+1) for t = 0,… ,∞.

6  See de Klerk et al. (2019) for a discussion of distributionally robust optimization techniques.
7  See Hansen and Sargent (2007a, Ch. 2 and 7) for the complete discussion of robust control in the time 
domain.
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The matrices of coefficients A, B and C are assumed known and y0 given.8
In Eq. (2) the vector ωt+1 denotes an unknown l × 1 process, that can feed back in 

a possibly nonlinear way on the history of y, and is introduced because the iid ran-
dom process εt+1 can represent only a very limited class of approximation errors. In 
particular it cannot depict the kind of misspecified dynamics characterizing models 
with nonlinear and time-dependent feedback of yt+1 on past states.9 To express the 
idea that (1) is a good approximation of (2) the ω’s are restrained by

where E0 denotes mathematical expectation evaluated with respect to model (2) and 
conditioned on y0 and η0 measures the set of models surrounding the approximating 
model.10

The decision maker’s looking for good decisions over a set of models (2) satis-
fying (3) is indeed solving a constraint problem or a multiplier problem. The con-
straint robust control problem is defined as11 

with r(yt, ut) the one-period loss function, subject to (2)–(3) where η* > η0 and η* 
measures the largest feasible set of perturbations. The multiplier robust control 
problem is formalized as

subject to (2) with θ, 0 < θ* < θ ≤ ∞, a penalty parameter restraining the minimizing 
choice of the {ωt+1} sequence. The “breakdown point” θ*represents a lower bound 
on θ needed to keep the objective of the two-person zero-sum game convex in ωt+1 

(3)E0

[
∞∑
t=0

𝛽 t+1��
t+1

�t+1

]
≤ 𝜂0 with 0 < 𝛽 < 1

(4)max
�

min
�

−E0

[
∞∑
t=0

� tr(�t, �t)

]
,

(5)max
�

min
�

−E0

{
∞∑
t=0

� t
[
r(�t, �t) − ����

t+1
�t+1

]}

8  It is assumed, see e.g. page 140 in Hansen and Sargent (2007a), that the pair 
�√

��,�
�
 is stabilizable, 

i.e. the eigenvalues of A − BFt, where Ft is the ‘feedback’ matrix (i.e. ut = − Ftyt), have absolute values 
strictly less than 1

�√
� where β is a discount factor between 0 and 1. The matrix C is sometimes called 

the “volatility matrix” because, given the assumptions on the ε’s, it “determines the covariance matrix 
C′C of random shocks impinging on the system” (p. 29).
9  See Hansen and Sargent (2007a, p. 26) for details. When Eq. (2) “generates the data it is as though the 
errors in… (1) were conditionally distributed as N(�

t+1, �l) rather than as N(�, �
l
) … (so) we capture the 

idea that the approximating model is misspecified by allowing the conditional mean of the shock vector 
in the model that actually generates the data to feedback arbitrarily on the history of the state” (Hansen 
and Sargent 2007a, p. 27).
10  See Hansen and Sargent (2007a, p. 11).
11  See pp. 27–32 and Chapters 6–8 in Hansen and Sargent (2007a) for details.
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and concave in ut.12 Both problems can be reinterpreted as two-player zero-sum 
games where one player is the decision maker maximizing the objective functional 
by choosing the sequence for u and the other player is a malevolent nature choos-
ing a feedback rule for a model-misspecification process ω to minimize the same 
criterion function.13 For this reason, the constraint and the multiplier robust control 
problem are also referred to as the constraint and multiplier game, respectively.

Hansen and Sargent (2007a, p. 139) notice that if the parameters η0 and θ 
are appropriately related the two “games have equivalent outcomes.” Equiva-
lent in the sense that if there exists a solution u*, ω* to the multiplier robust con-
trol problem, that u* also solves the constraint robust control problem with 
�0 = �∗

0
= E0[

∑∞

t=0
� t+1�∗�

t+1
�∗

t+1
].14 Then, in Appendix C of Ch. 7, two sets of for-

mulae to compute the robust decision rule are provided and it is pointed out that 
the Riccati equation for the robust control problem (5) looks like the Riccati equa-
tion for an ordinary optimal linear regulator problem (also known as the linear 
quadratic control problem) with controls (��t ��

t+1
)� and penalty matrix defined as 

diag(�,−���l).15

Therefore the robust rules for ut and the worst-case shock ωt+1 can be directly 
computed from the associated ordinary linear regulator problem. In particular, when 
the one-period loss function r(yt, ut) is specified as16 

with Q a positive semi-definite matrix, R a positive definite matrix, W an n × m 
array, �d

t
 and �d

t
 the desired values of the states and controls, respectively, for period 

t, the robust control rule is derived by extremizing, i.e. maximizing with respect to 
ut and minimizing with respect to ωt+1, the objective function17 

(6)
(
�t − �̃d

t

)�
�
(
�t − �̃d

t

)
+ 2

(
�t − �̃d

t

)� ⌢

�
(
�t − �d

t

)
+
(
�t − �d

t

)�
�
(
�t − �d

t

)
,

12  Hansen and Sargent (2007a, pp. 12–14) argue that entropy is the most appropriate way to measure 
model misspecification. Then the “lower bound is associated with the largest set of alternative models, 
as measured by entropy, against which it is feasible to seek a robust rule… This cutoff value of θ… is 
affiliated with a rule that is robust to the biggest allowable set of misspecifications” (Hansen and Sargent 
2007a, p. 40). See also Ch. 7 in the same reference and Hansen and Sargent (2001) for a further discus-
sion of the restrictions on the robustness parameter θ.
13  See Hansen and Sargent (2007a, p. 35).
14  See Hansen and Sargent (2007a, pp. 159–160).
15  This is due to the fact that the “Riccati equation for the optimal linear regulator emerges from first-
order conditions alone, and that the first order conditions for [the max–min problem (5) subject to (2)] 
match those for an ordinary, i.e. non-robust, optimal linear regulator problem with joint control process 
{ut, ωt+1}” (Hansen and Sargent 2007a, p. 43).
16  This is a minor generalization of the case discussed in Hansen and Sargent (2007a, Ch. 2 and 7) where 
the desired values for the states and controls are 0 and there are no cross products between states and 
controls in the objective function. See their Ch. 4 and pages 167–168 for a transformation of the control 
problem that eliminates cross products between states and controls in the objective function.
17  Indeed, as pointed out in Intriligator (1971, p. 342, fn. 4) Eq. (7) is a functional dependent on the con-
trol trajectory whereas the solution to the problem is a function dependent on the parameters given by the 
initial state y0 and the initial time t = 0.
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with

subject to

where18 

and �̃ = [� � ] with O and 0 null arrays of appropriate dimension.
At this point the following result can be stated:

Proposition 1  Extremizing the objective function (7) subject to (9), with defini-
tions as in (8) and (10), yields the θ-constrained worst-case control for the decision 
maker19 

and for the malevolent nature20 

with21 

(7)−E0

[
∞∑
t=0

𝛽 tr(�t, �̃t)

]

(8)
r(�t, �̃t) =

(
�t − �d

t

)�
�
(
�t − �d

t

)
+ 2

(
�t − �d

t

)�
�̃

(
�̃t − �̃d

t

)
+
(
�̃t − �̃d

t

)�
�̃
(
�̃t − �̃d

t

)

(9)𝐲t+1 = 𝐀𝐲t + 𝐁̃𝐮̃t + 𝐂𝛆t+1 for t = 0,… ,∞

(10)�̃ =

[
� �

� −𝛽𝜃�l

]
, �̃t =

[
�t

�t+1

]
, �̃ =

[
� �

]
, �̃d

t
=

[
�d
t

�

]

�t = −
(
�t + ���∗

t+1
�
)−1[(

���∗
t+1

� +��
t

)
�t + ���∗

t+1
+ �t

]

�t+1 =
(
���l − ���t+1�

)−1
���t+1

{[
� − �

(
�t + ���∗

t+1
�
)−1(

���∗
t+1

� +��
t

)]
�t

−�
(
�t + ���∗

t+1
�
)−1(

���∗
t+1

+ �t
)
+ �−1

t+1
�t+1

}

�∗
t+1

= �t+1+�t+1�(���l − ���t+1�)
−1���t+1

�∗
t+1

=
[
�n+�t+1�(���l − ���t+1�)

−1��
]
�t+1.

18  The penalty matrix �̃ implies that each component of the vector process ωt+1 is penalized in the same 
way.
19  See, e.g., Equations (7.C.18)–(7.C.19) in Hansen and Sargent (2007a, p. 169). As suggested on page 
35 of the same reference Eq. (2.11) “can be represented as”
 −��

t
�
t
�
t
− 2��

t
�
t
= max

�
−
[
��

t
�

t
�
t
+ ��

t
�

t
�
t
+ 2��

t
�

t
�
t
+ 2��

t
�
t
+ 2��

t
�
t
+ ��

t+1�
∗
t+1

�
t+1 + 2��

t+1�
∗
t+1

]
  subject to the approximating model (1) instead of the distorted model (2).
20  See, e.g., Equation (7.C.9) in Hansen and Sargent (2007a, p. 168). As pointed out on page 139 of the 
same work, these two-player zero-sum dynamic games have identical outcomes both when the u-player 
chooses before the ω-player, at time 0 or in each period t ≥ 0, and vice versa.
21  See, e.g., Equations (2.5.6) on p. 35 and (7.C.10) on p. 168 in Hansen and Sargent (2007a) where the 
quantity �−1�∗

t+1
 is denoted by D(P).
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where the “robust” Riccati arrays �∗
t+1

 and �∗
t+1

 are always greater or equal to Pt+1 
and pt+1, respectively, because it is assumed that, in the “admissible” region, the 
parameter θ is large enough to make (���l − ���t+1�) positive definite.22 They are 
equal when θ = ∞.23

3 � Robust Filtering Without Commitment

The previous section has considered the case where the decision maker is “proba-
bilistically sophisticated” in the sense that He/She is indifferent between utility pro-
cesses with identical induced distributions. However robust control can be applied 
also to situations where there are multiple penalty functions (i.e. more than one θ), in 
other words cases where the decision maker is not “probabilistically sophisticated.” 
This is the case when the decision maker does not observe parts of the state useful 
to forecast relevant variables. Then the approximating model includes an ordinary 
(i.e. non robust) Kalman filter estimator of this hidden portion of the state. To obtain 
“decision rules that are robust with respect to perturbations of the conditional dis-
tributions associated with the approximating model, the decision maker imagines 
a malevolent agent who perturbs the distribution of future states conditional on the 
entire state as well as the distribution of the hidden state conditional on the history 
of signals” (Hansen and Sargent 2007a, p. 383). This is sometimes referred to as the 
“robust filtering without commitment” problem.

The law of motion for the states in the approximating model is

with

where now the state vector is partitioned into two parts with y1 containing the n1 
observed variables and y2 the n2 hidden state variables, with n1 + n2 = n, and ut and 

(11)�t+1 = ��t + ��t + ��t+1

�t+1 =

[
�1
�2

]

t+1

, � =

[
�11 �12

�21 �22

]
, � =

[
�1

�2

]
, � =

[
�1

�2

]
, �t+1 =

[
�1
�2

]

t+1

22  See, e.g., Theorem 7.6.1 (assumption v) in Hansen and Sargent (2007a, p. 150).
23  The parameter θ is closely related to the risk-sensitivity parameter, say σ, appearing in intertempo-
ral preferences obtained recursively. Namely, it can be interpreted as minus the inverse of σ. See, e.g., 
Hansen and Sargent (2007a, pp. 40–41, 45 and 225), Hansen et  al. (1999) and the references therein 
cited.
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εt+1 are as in the previous section.24 The decision maker ranks sequences of states 
and controls according to

with the one-period utility function U defined as

with the matrices Q, R and W as in the previous section and y1,0, the observed por-
tion of the state vector at time 0, given.

Assuming that the decision maker believes that the distribution of the ini-
tial value of the unobserved part of the state is �2,0 ∼ N(

⌣

�2,0,�0) and taking into 
account that y1 is observed, the ordinary Kalman filter gives the projected value 
of y1,t+1 conditional on all the available information at time t, i.e. E

(
�1,t+1|It

)
 , and 

the updated value of y2,t+1 conditional on all the available information at time t + 1, 
namely ⌣�2,t+1 ≡ E

(
�2,t+1|It+1

)
.25 Under the approximating model, y2,t is distributed 

as N(⌣�2,t,�t) , with �t = E[(�2,t −
⌣

�2,t)(�2,t −
⌣

�2,t)
�] , and the mean and variance of 

the state represent sufficient statistics for the distribution of the unobserved part of 
the state at time t.26 Equation (11) is then rewritten with the system equations for y2 
replaced by the associated ordinary Kalman filter updating equation and the law of 
motion for the observed subvector expressed in terms of the updated estimate of the 
hidden state and the discrepancy between this value and the true one, i.e.27

(12)−E0

[
∞∑
t=0

� tU
(
�1,t, �2,t, �t

)]

(13)
U
�
�1,t, �2,t, �t

�
=
�
��1,t �

�
2,t �

�
t

�⎡⎢⎢⎣

�11 �12 �1

��
12 �22 �2

��
1 ��

2 �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�1,t
�2,t
�t

⎤
⎥⎥⎦

≡
�
��t �

�
t

�� � �

�� �

��
�t
�t

�

24  In Ch. 18, Hansen and Sargent (2007a) consider the general case where at time t + 1 the 
decision maker observes a vector s that includes y1 and possibly other signals about the hid-
den subset of the state. The law of motion relating these signals with the states and con-
trols is written as �

t+1 = �1�1,t + �2�2,t +��
t
+��

t+1 and the relationship between 
y1 and s is �1,t+1 = ���t+1 +��1

�1,t +���t . Then the arrays in (11) are defined as 
�11 = ���1 +��1

,�12 = ���2,�1 = ��� +�� and �1 = ��� . When the vector s is simply y1, the 
matrices ��1

 and �� are null, �� = � and �11 ≡ �1, �12 ≡ �2, �1 ≡ � and �1 ≡ �.
25  See Hansen and Sargent (2007a, p. 386). As well known, see e.g. Hamilton, Eq. 13.2.13, the updating 
value for y2,t+1 can be written as

 
E(�2,t+1|It+1) = E(�2,t+1|It) + {E[(�2,t+1 − E(�2,t+1|It))(�t+1 − E(�

t+1|It))�]}
× {E[(�

t+1 − E(�
t+1|It))(�t+1 − E(�

t+1|It))�]}−1(�t+1 − E(�
t+1|It))

  when s is the vector of observed signals.
26  In this case, the equation for updating the covariance estimate is 
�
t+1 = �22�t

��
22 + �2�

�
2 − (�22�t

��
12 + �2�

�
1)(�12�t

��
12 + �1�

�
1)

−1(�22�t
��

12 + �2�
�
1)

� . As 
pointed out in Hansen and Sargent (2007a, p. 387) “Δt evolves exogenously with respect to… (�1,

⌣

�2) so 
that given an initial condition Δ0 a path {�

t
}∞
t=0

 can be computed before observing anything else.”.
27  This equation corresponds to the first two rows of Eq. (18.2.7) in Hansen and Sargent (2007a, p. 387). 
As pointed out in footnote 5 on page 386 of the same reference, in the case of robust filtering with com-
mitment the “approximate model… (does) not include the law of motion for an estimate of the hidden 
state induced by applying the ordinary Kalman Filter”.
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with28

where �(�t) = (�22�t�
�
12 + �2�

�
1)(�12�t�

�
12 + �1�

�
1)

−1, �t+1 ∼ N(�, �l) and 
�2,t ∼ N(

⌣

�2,t,�t).
In this approximating model appear two random vectors: εt+1 and �2,t −

⌣

�2,t . Let 
ω1,t and ω2,t represent the perturbation to the distribution of εt+1 and of the hidden 
state conditional on ( �1,t,

⌣

�2,t ), respectively.29 Then the misspecified model is written 
as30

and the associated return function is

where θ1 and θ2 penalize distortions ω1,t and ω2,t, respectively.31

When �d
t
 and �d

t
 denote the vectors of desired values of the states and controls, 

respectively, for period t, Eq. (16) can be rewritten as32

(14)
⌣

�t+1 = �
⌣

�t + ��t +
⌣

�1(�t)�t+1 +
⌣

�2(�t)
(
�2,t −

⌣

�2,t

)

⌣

�t+1 =

[
�1
⌣

�2

]

t+1

,
⌣

�1(�t) =

[
�1

�(�t)�1

]
,

⌣

�2(�t) =

[
�12

�(�t)�12

]
,

(15)
⌣

�t+1 = �
⌣

�t + ��t +
⌣

�1(�t)
(
�t+1 + �1,t

)
+

⌣

�2(�t)
(
�2,t + �2,t −

⌣

�2,t

)

(16)U
(
�1,t, �2,t, �t

)
− �1

||�1,t
||2 − �2�

�
2,t
Δ−1

t
�2,t

28  In the general case discussed in footnote 24 the second block in 
⌣

�1(�t
) and 

⌣

�2(�t
) is 

�(�
t
)� and �(�

t
)�2 , respectively, with �(�

t
) = (�22�t

��
2 + �2�

�)(�2�t
��

2 +���)−1 and 
�
t+1 = �22�t

��
22 + �2�

�
2 − �(�

t
)(�22�t

��
2 + �2�

�).
29  This is as though �

t+1 and �2,t −
⌣

�2,t , conditionally on 
(
�1,t ,

⌣

�2,t

)
 , are distributed as N(�1,t, �l) and 

N(�2,t,�t
) , respectively, rather than as N(�, �

l
) and N(�,�

t
) , respectively, as in the approximating model. 

See footnote 9 above.
30  See Hansen and Sargent (2007a, p. 390).
31  As underlined in Hansen and Sargent (2007a, p. 387) in the case of robust filtering with commitment 
the “benchmark model… (is repeatedly modified because) past distortions alter the current period refer-
ence model.” On the other hand when applying robust filtering without commitment “each period the 
decision maker retains the same original benchmark model. By itself this diminishes the impact of robust 
filtering.” They suggest to let “θ2 to be smaller than θ1 thereby giving the current period minimizing 
agent more flexibility to distort the distribution of the current hidden state.”.
32  The penalty matrix Q corresponds to Π22 in Hansen and Sargent’s (2007a, Ch. 18) notation, �̃ to Π11 
with the blocks in the second row and column appearing in the third row and column and vice versa and 
�̃ to Π21 with the second and third column inverted.
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where33

�̃ = (� �∗) with �∗ = [� �2] , O being a null matrix of dimension n × l and 
Q2 the matrix of dimension n × n2 obtained deleting the first n1 columns of matrix 
Q in (13), �̃d

t
=
(
�d�
t
��
)� and 0 a null (l + n2)-dimensional vector. As stressed in 

Hansen and Sargent (2007a, p. 389) “assigning different values to θ… lets the deci-
sion maker to focus more or less on misspecifications of one or the other of the two 
distributions being perturbed.”

For the linear quadratic problem at hand, (�1,
⌣

�2)-contingent distortions ω1,t and 
ω2,t and the associated robust rule for u can be computed by solving the determinis-
tic, certainty equivalent, problem34

subject to

where

and the Gaussian random vectors with mean zero have been dropped as in the previ-
ous section.35

(17)
r
(

⌣

�t, �̃t

)
=
(

⌣

�t − �d
t

)�

�
(

⌣

�t − �d
t

)
+
(
�̃t − �̃d

t

)�
�̃(�t)

(
�̃t − �̃d

t

)

+ 2
(

⌣

�t − �d
t

)�

�̃
(
�̃t − �̃d

t

)

�̃(�t) =

[
� �∗

�∗� ��(�t)

]
with �∗

m×(l+n2)
=
[
�
m×l

��
2

m×n2

]
, ��(�t) =

[
−𝜃1�l �

� �22 − 𝜃2�
−1
t

]
,

(18)max
�t

min
�1,�2

[
−

∞∑
t=0

𝛽 tr
(

⌣

�t, �̃t

)]

(19)
⌣

�t+1 = �
⌣

�t + �̃(�t)�̃t

⌣

�t+1 =

[
�1
⌣

�2

]

t+1

, �̃t =

[
�

�

]

t

, �t =

[
�1

�2

]

t

,

�̃(�t) =
[
�

⌣

�1(�t)
⌣

�2(�t)

]
=
[
�

⌣

�(�t)

]

33  “In the special case that the decision maker conditions on an infinite history of signals and in which 
Δt has converged we can set �

t+1 = �
t
 ” (Hansen and Sargent 2007a, p. 301). Then the matrices �̃(�

t
) 

and ��(�t
) can be simply denoted by �̃ and �� , respectively, and are constant over time.

34  Equations  (18)–(19) in the text correspond to Eqs.  (18.2.16) and (18.2.17) in Hansen and Sargent 
(2007a, Ch. 18).
35  The modified certainty equivalence principle discussed in Hansen and Sargent (2007a, Ch. 2) guar-
antees that omitting these terms does not affect the computations of ω1,t and ω2,t. See also footnote 8 
in Ch. 18 of the same reference. Finally it should be stressed that problem (18)–(19) allows to compute 
the decision rule u and the distortion ω2,t that solves the general ‘misspecification problem’ stated in 
Eq.  (18.2.12) of the same chapter but it does not provide the distortion ω1,t conditional on (�1, �2,

⌣

�2) . 
This computation requires additional steps that go beyond the scope of the present work (Hansen and 
Sargent 2007a, Sect. 18.2.9).
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This result is stated as:

Proposition 2  Extremizing the objective function (18) subject to (19), with defini-
tions as in (17), yields the (θ1, θ2)-constrained worst-case control for the decision 
maker36

In this general case, where the arrays �∗
t
 and �∗

t
 are not necessarily null matrices, 

Proposition 2 cannot be written as Proposition 1 with

In any case the following relations

always hold because it is assumed that θ1 and θ2 are large enough to make Θt posi-
tive definite.37 The equality signs prevail when θ1 = θ2 = ∞.

�t = −

{
�t + ���t+1� +

(
�∗
t
+ ���t+1

⌣

�(�t)

)
�−1

t

(
�∗
t
+ ���t+1

⌣

�(�t)

)�}−1

×

{[
���t+1� +��

t +

(
�∗
t
+ ���t+1

⌣

�(�t)

)
�−1

t

(
�∗�

t
+

⌣

�(�t)
��t+1�

)]
�t

+

(
�∗
t
+ ���t+1

⌣

�(�t)

)
�−1

t

⌣

�(�t)
��t+1 + ���t+1 + �t

}
.

�∗
t+1

= �t+1 + �t+1

⌣

�(�t)�
−1
t

⌣

�(�t)
��t+1.

(20a)

���t+1� +

(
�∗
t
+ ���t+1

⌣

�(�t)

)
�−1

t

(
�∗
t
+ ���t+1

⌣

�(�t)

)�

≥ ���t+1�,

(20b)

���t+1� +

(
�∗
t
+ ���t+1

⌣

�(�t)

)
�−1

t

(
�∗�

t
+

⌣

�(�t)
��t+1�

)
≥ ���t+1�

(20c)
(
�∗
t
+ ���t+1

⌣

�(�t)

)
�−1

t

⌣

�(�t)
��t+1 + ���t+1 ≥ ���t+1

36  See, e.g., Equations (7.C.18)–(7.C.19) in Hansen and Sargent (2007a, p. 169). As suggested on page 
35 of the same reference Eq. (2.11) “can be represented as”
 −��

t
�
t
�
t
− 2��

t
�
t
= max

�
−
[
��

t
�

t
�
t
+ ��

t
�

t
�
t
+ 2��

t
�

t
�
t
+ 2��

t
�
t
+ 2��

t
�
t
+ ��

t+1�
∗
t+1

�
t+1 + 2��

t+1�
∗
t+1

]
  subject to the approximating model (1) instead of the distorted model (2).
37  See Eq. 18.2.19 in Hansen and Sargent (2007a, p. 391).
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4 � Optimal Control of a Linear System with Time‑Varying Parameters

Tucci (2006) argues that the model used by a “probabilistically sophisticated’ deci-
sion maker to represent dynamic misspecification, i.e. Equation (2), is observation-
ally equivalent to a model with a time-varying intercept. Namely, unless some prior 
information is available, it is impossible to distinguish between the two models 
by simply observing the output. When this intercept is restricted to follow a mean 
reverting, or ‘Return to Normality’,38 model and the symbols are as in Sect.  2, 
Eq. (2) can be rewritten as

with

where a is the unconditional mean vector of �t+1, � the l × l transition matrix with 
eigenvalues strictly less than one in absolute value to guarantee stationarity and �t+1 
is a Gaussian iid vector process with mean zero and an identity covariance matrix. 
The matrix A1 is such that �1�t + �� in (21) is equal to Ayt in (2).39 Obviously, the 
robust control formulation is more general than model (21)–(22) because in (2) the 
vector ωt+1 can represent a very general, and possibly complicated, process.

Then the approach discussed in Kendrick (1981) and Tucci (2004) can be used to 
find the set of controls ut which maximizes40

where

subject to (21)–(22). This control problem can be solved treating the stochastic 
parameters as additional state variables. If the same objective functional used in the 
robust control problem is optimized, the expression in square bracket is identical to 
the one-period loss function defined in (6).

When the hyper-structural parameters a and Φ are known, the original problem is 
restated in terms of an augmented state vector zt as: find the controls ut maximizing41

(21)�t+1 = �1�t + ��t + �
(
�t+1 + �t+1

)
for t = 0,… ,∞,

(22a)�t+1 = � + �t+1 for t = 0,… ,∞,

(22b)�t+1 = ��t + �t+1 for t = 0,… ,∞,

(23)J = E0

[
−

∞∑
t=0

Lt
(
�t, �t

)]
,

(24)
Lt
(
�t, �t

)
= � t

[(
�t − �d

t

)�
�
(
�t − �d

t

)
+ 2

(
�t − �d

t

)�
�
(
�t − �d

t

)
+
(
�t − �d

t

)�
�
(
�t − �d

t

)]
,

38  See, e.g., Harvey (1981).
39  When a is a null vector, A1 ≡ A. If a is not zero, A1 is identical to A except for a column of 0’s associ-
ated with the intercept and Ca is identical to the column of A associated with the intercept.
40  Kendrick (1981, Ch. 10) analyzes the case where a = 0 and the hyperstructural parameter Φ is known. 
Tucci (2004) deals with the case where a and Φ are estimated. An alternative approach can be found in 
Savin and Blueschke (2016).
41  See Kendrick (1981, Ch. 10) or Tucci (2004, Ch. 2).
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subject to42

with43

and the arrays zt and � (�t, �t) having dimension n + l, i.e. the number of original 
states plus the number of stochastic parameters. For this ‘augmented’ control prob-
lem the L’s in Eq. (25) are defined as

with �∗
t
= � t�∗,�∗ = diag

(
�, −���l

)
,�∗

t
= � t[�� �� ]� and �t = � t� and this 

proposition can be stated:

Proposition 3  Maximizing the objective function (25) subject to (26), with defini-
tions as in (27) and (28), yields a TVP-control equal to

with

when �t+1 ≡ �t+1 . Namely, the same shock is used to determine both robust control 
and TVP-control.

The quantity �+
11,t+1

 in Proposition 3 collapses to the ‘robust’ Riccati matrix �∗
t+1

 
in Proposition 1 when �t+1 = �11,t+1 and �12,t+1 is a null matrix. This means that 
robust is control is insensitive to the true value of Φ appearing in the law of motion 
for the stochastic parameters. This is due to the fact that when the same objective 
functional is optimized both in the robust and TVP-control problems, the only dif-
ference between the associated Bellman Eqs. is that the former, implicitly, sets 
�t = �11,t, �t = �1,t and K12,t, K21,t, K22,t and k2,t equal to null arrays. Therefore, by 
construction, the control applied by the decision maker who wants to be “robust to 

(25)J = E0

[
−

∞∑
t=0

Lt
(
�t, �t

)]

(26)�t+1 = � (�t, �t) + �∗
t+1

for t = 0,… ,∞,

(27)�t =

[
�t
�t+1

]
, �
(
�t, �t

)
=

[
�1�t + ��t + ��t+1

��t+1 +
(
�l −�

)
�

]
and �∗

t
=

[
�t
�t+1

]
.

(28)
Lt
(
�t, �t

)
=
(
�t − �d

t

)�
�∗

t

(
�t − �d

t

)
+ 2

(
�t − �d

t

)�
�∗

t

(
�t − �d

t

)
+
(
�t − �d

t

)�
�t

(
�t − �d

t

)

�t = −(�t + ���+
11,t+1

�)−1[(���+
11,t+1

� +�t�)�t + ���+
11,t+1

�−1
11,t + 1

�1,t+1 + �t]

�+
11,t+1

= [�n + (�11,t+1� +�12,t+1�)(���l − ���t+1�)
−1��]�11,t+1.

42  When the error term is assumed iid it is equivalent to write the system equations as in (26) or as in 
Tucci (2004, Ch. 2).
43  Equations (4.2) are rewritten as αt − a = Φ(αt−1 −a) + εt in (27). In Tucci (2006, p. 540), the symbol αt 
should be replaced by αt+1 and ωt by ωt+1.
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misspecifications of the approximating model” implicitly assumes that the ω’s in (2) 
are serially uncorrelated.

The framework laid out in this section can be used also to study the case of robust 
control without commitment discussed in Sect. 3. Then, the following result holds:

Proposition 4  Maximizing the objective function (25) subject to (26), with defini-
tions as in (27) when

and the arrays zt and � (�t, �t) have dimension n + (l + n2) and as in Eq.  (28) with 
�∗

t
= � t�∗,�t = � t� and �∗

t
= � t�∗ where

yields a TVP-control equal to

when the worst-case adverse shock determined in Sect. 3 is used.

The quantities

�t+1 =

�
�1,t+1

�2,t+1

�
, � =

⎡
⎢⎢⎣

�11
l×l

�

� �22
n2×n2

⎤
⎥⎥⎦
,� isreplaced by �∗ =

�
�
n×l

�
n×n2

�

�∗ =

⎡
⎢⎢⎣

�
n×n

�∗

n×(l+n2)

�∗� ��(�t)
(l+n2)×(l+n2)

⎤
⎥⎥⎦
, �∗ =

�
�
n×m

�∗�

(l+n2)×m

�
and �∗

m×(l+n2)
=
�
�
m×l

�
m×n2

�

�t = −

{
�t + ���11,t+1� +

(
���11,t+1

⌣

�(�t) + ���12,t+1� + �∗
t

)
�−1

t

(
�∗�
t
+

⌣

�(�t)
��t+1�

)}−1

×

{[
���11,t+1� +��

t +

(
���11,t+1

⌣

�(�t) + ���12,t+1� + �∗
t

)
�−1

t

(
�∗�

t
+

⌣

�(�t)
��t+1�

)]
�t

+

(
���11,t+1

⌣

�(�t) + ���12,t+1� + �∗
t

)
�−1

t

⌣

�(�t)
��t+1 + ���1,t+1 + �t

}
.

(29a)

���11,t+1� +

(
���11,t+1

⌣

�(�t) + ���12,t+1� + �∗
t

)
�−1

t

(
�∗�
t
+

⌣

�(�t)
��t+1�

)

(29b)

���11,t+1� +

(
���11,t+1

⌣

�(�t) + ���12,t+1� + �∗
t

)
�−1

t

(
�∗�

t
+

⌣

�(�t)
��t+1�

)

(29c)
(
���11,t+1

⌣

�(�t) + ���12,t+1� + �∗
t

)
�−1

t

⌣

�(�t)
��t+1 + ���1,t+1
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in Proposition 4 are identical to the corresponding quantities in Proposition 2 when 
�11,t+1 ≡ �t+1 and �11,t+1 ≡ �t+1 and �12,t+1 is a null matrix.44 Therefore even this 
non “probabilistically sophisticated” decision maker implicitly assumes that ω1,t and 
ω2,t, i.e. the perturbation to the distribution of εt+1 and of the hidden state conditional 
on ( �1,t,

⌣

�2,t ), respectively, in (15) are both independent and serially uncorrelated.
Before leaving this section, it is worth it to emphasize two things. First of all, 

the results in Propositions  3 and 4 do not imply that robust control is implicitly 
based on a very specialized type of time-varying parameter model or that one of 
the two approaches is better than the other. Robust control and TVP-control rep-
resent two alternative ways of dealing with the problem of not knowing the true 
model ‘we’ want to control and are generally characterized by different solutions. 
In general, when the same objective functional and terminal conditions are used, 
the main difference is due the fact that the former is determined assuming for ωt+1 
the worst-case value, whereas the latter is computed using the expected conditional 
mean of �t+1 and taking into account its relationship with next period conditional 
mean. As a side effect even the Riccati matrices common to the two procedures, 
named P and p in the robust control case and K11 and k11 in the TVP-case, are dif-
ferent. The use of identical Riccati matrices and of an identical shock in the two 
alternative approaches, i.e. setting �11,t+1 ≡ �t+1, �11,t+1 ≡ �t+1 and �t+1 ≡ �t+1 
or �t+1 ≡ [��

1,t
��

2,t ]
� , has the sole purpose of investigating some of the implicit 

assumptions of these procedures.
Secondly the results of this section do not claim that the worst-case adverse 

shocks are serially uncorrelated or that the perturbation to the distribution of εt+1 
and of the hidden state conditional on ( �1,t,

⌣

�2,t ) in (15) are both independent and 
serially uncorrelated. It simply shows that in all models where the agent is assumed 
to behave both in a “probabilistically sophisticated” and in a probabilistically ‘unso-
phisticated’ manner robust control implicitly assumes that these shocks are serially 
uncorrelated. This follows from the Bellman Equation associated with this type of 
problem.

5 � Robust Control in the Presence of Uncertain Parameters 
in the Structural Model

The robust control problems discussed in the previous sections deal with unstruc-
tured uncertainty à la Hansen and Sargent. However, sometimes robust control is 
applied to situations where uncertainty is related to unknown structural parameters. 
Giannoni (2002, 2007) considers an optimizing model for monetary policy. This 
is a structural forward-looking model where the constant structural parameters are 
unknown to the policymaker but are known to agents in the private sector. It “is 
composed of a monetary policy rules and two structural equations—an intertempo-
ral IS equation and an aggregate supply equation—that are based on explicit micro-
economic foundations… (namely, they) can be derived as log-linear approximations 

44  By comparing the Bellman Eqs. for Propositions 2 and 4, it is apparent that the two are identical when 
�
t
= �11,t,�t = �1,t and K12,t, K21,t, K22,t and k2,t are null arrays as it is the case for Propositions 1 and 3.
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to equilibrium conditions of an underlying general equilibrium model with sticky 
prices” (Giannoni 2002, pp. 112–114).45

In Giannoni (2007), the demand side of the economy is written as46

where Et denotes the expectation formed at time t, xt the output gap, πt the rate of 
inflation, 𝜄t the percentage deviation of the nominal interest rate from its constant 
steady state value, δt a demand shock and ηt an “adverse efficient supply shock”. 
By output gap is meant the percentage deviation of actual output from its constant 
steady state value minus the percentage deviation of the efficient rate of output.47 
The aggregate supply curve takes the form48

with μt the percent deviation of the desired markup from steady state,49 κ a param-
eter greater than zero and β the discount factor.50 As pointed out in Giannoni (2007, 
p. 187), the parameters σ and ϖ represent “the inverse of the intertemporal elasticity 
of substitution in private expenditure (and) … the elasticity of each firm’s real mar-
ginal cost with respect to its own supply”, respectively.51 Finally, it is assumed that 
the exogenous shocks δt, ηt and μt have zero (unconditional) mean, are independent 
of the parameters σ, κ and ϖ and follow an AR(1) process,52 i.e.

(30)xt = Etxt+1 + 𝜎−1Et𝜋t+1 − 𝜎−1𝜄t +
𝜛

(𝜛 + 𝜎)𝜎
𝛿t +

1

(𝜛 + 𝜎)
𝜂t

(31)�t = �Et�t+1 + �xt +
�

� + �
�t

(32)
⎡⎢⎢⎣

�

�

�

⎤⎥⎥⎦t+1
=

⎡⎢⎢⎣

�� 0 0

0 �� 0

0 0 ��

⎤⎥⎥⎦

⎡⎢⎢⎣

�

�

�

⎤⎥⎥⎦t
+

⎡⎢⎢⎣

��
��
��

⎤⎥⎥⎦
.

45  The model used to characterize the behavior of the private sector is a variant of the ‘new keynesian’ or 
‘new synthesis’ model presented, e.g., in Clarida et al. (1999) and Woodford (2003). See also Giannoni 
(Giannoni 2007, pp. 186–188) for details.
46  See Giannoni (2002, pp. 113–115) for an intuitive description of a simplified version of this model.
47  Giannoni (2007, p. 187) defines the efficient rate of output as “the equilibrium rate of output that 
would obtain in the absence of price rigidities and market power”.
48  Equations (30)–(31) correspond to (14)–(15) in Giannoni (2007, p. 188). The reader should be aware 
of the fact that the μ in this section bears no relationship with those appearing in the previous sections.
49  Giannoni (2007, p. 188) calls μt “the inefficient supply shock … since it represents a perturbation to 
the natural rate of output that is not efficient.”.
50  As noticed in Giannoni (2002, p. 114) “κ, which is the slope of the short run aggregate supply curve, 
can be interpreted as a measure of the speed of price adjustment. Finally β… (is) the discount factor of 
the price setters … (and) is supposed to be the same as the discount factor of the representative house-
hold.”.
51  In this model the opposite of σ is the slope of the intertemporal IS curve.
52  See also footnote 10 in Giannoni (2007, p. 187).
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In this model “monetary policy has real effects … because prices do not respond 
immediately to perturbations … only a fraction … of suppliers may change their 
prices at the end of each period” (Giannoni 2007, p. 187). The controller determines 
the optimal monetary policy optimizing the following penalty function53

where λx and λy, both positive, “are weights placed on the stabilization of the output 
gap and the nominal interest rate and where x* ≥ 0 represents some optimal level of 
output gap” (Giannoni 2007, p. 189).

Assuming rational expectations, the system (30)–(32) can be rewritten as (1) 
when �t =

(
xt �t �t �t �t

)� and �t = 𝜄t . Then matrix A looks like

where

T is the 3 × 3 diagonal matrix on the right hand side of Eq.  (32) and O is a null 
3 × 2 array, and B is defined as � = ( �−1 0 0 0 0 ) . The vector of disturbances 
�t =

(
�x �� �� �� ��

)� has mean zero and identity covariance matrix and C is appro-
priately defined. Namely, it is such that ��� = E(�t�

�
t
) where ��

t
=
(
�x �� �� �� ��

)
 , 

with ξx and ξπ the errors associated with the output gap and inflation, respectively, 
and E(�t) = �,E(�t�

�
t
) = Σ . Similarly, the one-period loss function implicit in (33) 

can be put in the format (6) when W is a null matrix, � = (1 − �)diag( �x 1 0 0 0 ) 
and � = (1 − �)��.

In the presence of uncertain parameters, the worst-case parameter vector 
results in worst-case matrices which can be viewed as the algebraic sum of the 
‘baseline case matrices’, A and B, and the ‘worst-case discrepancies’, Aω and 
Bω.54 

(33)L0 = E0

{
(1 − 𝛽)

∞∑
t=0

𝛽 t
[
𝜋2
t
+ 𝜆x

(
xt − x∗

)2
+ 𝜆i𝜄

2
t

]}

(34)� =

[
�̃ �

� �

]
,

(35)

�̃ =

[
1 + (𝜅∕𝛽𝜎) −1∕𝛽𝜎

−𝜅∕𝛽 1∕𝛽

]
,� =

[
−𝜛∕ (𝜛 + 𝜎)𝜎 −1∕ (𝜛 + 𝜎) 𝜅∕ (𝜛 + 𝜎)𝛽𝜎

0 0 −𝜅∕ (𝜛 + 𝜎)𝛽

]
,

53  This corresponds to Eq. (18) in Giannoni (2007, p. 189). As explained on page 199 of the same refer-
ence, it is assumed “that the preference parameters of the policymaker … [in Eq. (33)] are known to the 
policymaker and are kept fixed regardless of the values of the structural parameters”. For a discussion of 
the relationship between the parameters in the objective functional and those in the underlying structural 
model see also footnote 27 on that page.
54  As observed in Giannoni (2007, p. 205) when uncertainty is unstructured à la Hansen and Sargent the 
worst case scenario is always on the boundary of the set of relevant models. This is not necessarily true 
when uncertainty is associated to uncertain parameters. See also Giannoni (2002).
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It follows that the model in the worst case scenario can be written as55

where the term in parenthesis on the right-hand side of the second equality sign 
plays the role of Cωt+1 in Eq. (2). More precisely, the quantity ���t + ���t replaces 
the worst-case adverse shock used to derive the result in Proposition 1, premulti-
plied by the volatility matrix C, in a robust control model where uncertainty is à la 
Hansen and Sargent. Then, robust control for Giannoni’s model case looks like

where �� = � + �� and �� = � + �� . The same worst-case adverse shock can be 
used to compute the associated TVP-control.

6 � Some Numerical Results

The permanent income model is a popular model in the robust control literature (see, 
e.g., Hansen and Sargent 2001, 2003, 2007b; Hansen et al. 1999, 2002). It is a linear 
quadratic stochastic growth model with a habit where a “probabilistically sophisti-
cated” planner values a scalar process s of consumption services according to56

with μb a preference parameter governing the curvature of the utility function.57 
The service s is produced by the scalar consumption process ct via the household 
technology

(36)
�t+1 =

(
� + ��

)
�t +

(
� + ��

)
�t + ���+1 = ��t + ��t + ���+1 +

(
���t + ���t

)

(37)�t = −(�t + ���t+1��)−1[(���t+1�� +�t�)�t + ���t+1 + �t]

(38)E0

[
−

∞∑
t=0

� t
(
st − �b

)2
]

(39a)st = (1 + �)ct − �ht−1

56  This discussion draws heavily on Hansen et al. (2002, Sect. 4). The notation used in the presentation 
of this model is kept as close as possible to that used in the cited reference.
57  See also pp. 47–53, 320–321 and Ch. 10 in Hansen and Sargent (2007a) for a clear discussion of the 
main features of this model. Hall (1978), Campbell (1987), Heaton (1993) and Hansen et al. (1991) have 
applied versions of this model to aggregate U.S. time series data on consumption and investment. Aiya-
gari et  al. (2002) discuss the connection between the permanent income consumer and Barro’s (1979) 
model of tax smoothing.

55  From (17) follows that the worst case in Giannoni’s case corresponds to the worst 
case in Hansen and Sargent’s approach when nature ignores the desired paths and 
�� = �(���

l
− ���

t+1�)
−1���

t+1�,�� = �(���
l
− ���

t+1�)
−1���

t+1� . It is then clear the relationship 
between the robustness parameter θ and the size of the confidence interval underlying �� and ��.
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where 𝜆 ≥ 0, 0 < 𝛿h < 1 and ht is a stock of households habits given by a geometric 
weighted average of present and past consumption. Then a linear technology con-
verts an exogenous (scalar) stochastic endowment dtinto consumption or capital, i.e.

where kt and it represent the capital stock and gross investment, respectively, at time 
t, γ the constant marginal product of capital and δk the depreciation factor for capi-
tal. The endowment is specified as the sum of two orthogonal AR(2) components, 
namely

where d1,t+1 and d2,t+1 are the permanent and transitory component, respectively, and

with �1,t+1 and �2,t+1 as in Sect. 2.58

Rewriting (40b) in terms of ct and substituting it into (39a) yields

Then the one-period loss function (st − �b)
2 in (38) can be expressed as in (6) when 

�t = it, �
d
t
= 0, �t = ( ht−1 kt−1 dt−1 1 dt d1,t d1,t−1 )

�, �d
t
= ( −�b

/
� 0 0 0 0 0 0 )� 5 9 , 

Q = diag(Q†,O2) where

and only the lower portion is reported because the matrix is symmetric, O2is a 
square null matrix of dimension 2, � = (1 + �)� and � = (w1 w2 0 0 w5 0 0 )� 
with w1 = (1 + �)�,w2 = −(1 + �)2� and w5 = −(1 + �)2.

When model misspecification is not ruled out, the equations for the permanent 
and transitory components of the endowment process are rewritten adding the 

(39b)ht = �hht−1 + (1 − �h)ct

(40a)kt = �kkt−1 + it

(40b)ct + it = �kt−1 + dt

(41)dt+1 = �d + d1,t+1 + d2,t+1

d1,t+1 = g1d1,t + g2d1,t−1 + c1�1,t+1

d2,t+1 = a1d2,t + a2d2,t−1 + c2�2,t+1

(42)st = (1 + �)[�kt−1 − it + dt] − �ht−1.

(43)�† =

⎡
⎢⎢⎢⎢⎢⎣

�2 ∙ ∙ ∙ ∙

−(1 + �)�� (1 + �)2�2 ∙ ∙ ∙

0 0 0 ∙ ∙

0 0 0 0 ∙

−(1 + �)� (1 + �)2� 0 0 (1 + �)2

⎤⎥⎥⎥⎥⎥⎦

58  Solving (40a) for it and substituting it into (40b) yields c
t
+ k

t
= Rk

t−1 + d
t
 with R ≡ �

k
+ � the 

“physical gross return on capital, taking into account that capital depreciates over time” (Hansen and 
Sargent 2007a, p. 226). This quantity coincides with the gross return on a one-period risk-free asset in 
the Hansen et al. (1999) model as noticed in fn. 9 of the cited reference.
59  See also Hansen et al. (2002) and Hansen and Sargent (2007a, Ch. 10).
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quantities c1�1,t+1 and c2�2,t+1 , respectively. Then problem (5) is solved subject to 
Eq. (2) with the initial condition y0 given and the matrices of coefficients defined as

and � =
(
b1 1 0 0 0 0 0

)� , where �∗
d
= �d

(
1 − a1 − a2

)
 and 

b1 = −
(
1 − �h

)
.60

Using the parameter estimates in Hansen et al. (2002), robust control for the per-
manent income model is computed for μb = 32 and different values of θ’s.61 The ini-
tial condition is set at y0 = (100 100 13.7099 1.0 13.7099 0 0)′, and it is assumed a 
time horizon of 2 periods.62 As observed in Hansen and Sargent (2007a, p. 47), a 
preference for robustness “leads the consumer to engage in a form of precaution-
ary savings that … tilts his consumption profile toward the future relative to what 
it would be without a concern about misspecification of (the endowment) process.” 
This is confirmed by the results reported in Table 1 where gross investment, the con-
trol variable, increases as θ gets smaller.63

When the observationally equivalent model of Sect.  4 is used, the endowment 
process and its permanent component have time-varying intercepts following a 
mean reverting model, namely

with �∗
d,t+1

= �∗
d
+ c1�1,t+1 + c2�2,t+1 and �∗

d1,t+1
= c1�1,t+1 with �i,t+1 ≡ �i,t+1 + �i,t+1 

for i = 1, 2. Then the time-invariant portion of the intercepts can be interpreted as64

(44)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�h
�
1 − �h

�
� 0 0

�
1 − �h

�
0 0

0 �k 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 a2 �∗
d

a1 g1 − a1 g2 − a2
0 0 0 0 0 g1 g2
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

c1 c2
c1 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(45a)dt+1 = �∗
d,t+1

+ a1dt + a2dt−1 + (g1 − a1)d1,t + (g2 − a2)d1,t−1

(45b)d1,t+1 = �∗
d1,t+1

+ g1d1,t + g2d1,t−1

60  As pointed out in Hansen et al. (2002, Sect. 4), although d2,t+1 is not explicitly included in the state 
vector it can be readily derived from the knowledge of dt+1 and d1,t+1.
61  As reported in Hansen et  al. (2002, Table  1) β = .9971, λ = 2.4433, δh = .6817, μd = 13.7099, 
α1 = .8131, α2 = .1888, ϕ1 = .9978, ϕ2 = .7044, c1 = .1084 and c2 = .1551. In addition the condition 
� =

(
�
k
+ �

)−1 is imposed for stability reasons, with δk equal to .975, as in Hansen and Sargent (2007a, 
p. 247). It should be emphasized that the derivations reported in Tucci (2006) are not general enough to 
handle this case. For this reason in the numerical example carried out in Sect. 7 of that work is set μb = 0.
62  The goal is to compare the first period control in the various cases. Given the recursive nature of this 
‘control game’ considering a 3, 4 or 100 periods time horizon does not change the qualitative results.
63  In this example, the admissible region for θ is approximately between .7 and infinity. When θ = .7, 
robust control is above 81 and nature controls are around − 1935 and − 1648. Robust control is − 51.269, 
with nature controls equal to − .006 and − .01, for θ = 10000.
64  The implicit values of a1 and a2 are 0 and (μd

*/c2), respectively.
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and the stochastic component takes the form

In this case, setting �i,t+1 = 0 and �i,t+1 ≡ �i,t+1 for i = 1, 2, the results reported in 
Sect. 4 hold.

The relationship between the value of Φ and the optimal control at various θ’s is 
shown in Fig. 1 where Φ = ϕI and several values of ϕ are used. As shown in Sect. 4, 
the TVP-control derived assuming that the intercept follows a ‘Return to Normality’ 
model and ϕ = 0 is identical to robust control when the same malevolent shocks are 
used. On the other hand, knowing that tomorrow’s shocks are negatively correlated 
with today’s ones would make the household, facing a negative ‘malevolent nature’ 
shock, to save less for a given β. For instance, when θ = 100, savings decrease from 
− 51.1894 at ϕ = 0 to − 57.7563 at ϕ = −.1. Then the controls at the various θ’s 
associated with negative ϕ’s are always below the corresponding robust controls 
and they go farther and farther from them as the absolute value of ϕ increases. The 
opposite occurs for positive values of ϕ. Again, the line farther from the ‘robust con-
trol line’ is that associated with a higher absolute value of ϕ.

(46a)
[
�∗
d

0

]
=

[
c1 c2
c1 0

] [
a1
a2

]

(46b)
[
�1
�2

]

t+1

=

[
�11 �12

�21 �22

] [
�1
�2

]

t

+

[
�1
�2

]

t+1

.

Table 1   Linear quadratic control (QLP) versus robust control at time 0

The QLP control is independent of θ and is reported only for the case θ = 100

QLP control θ Robust control  Nature Controls

− 51.269756 100.0 − 51.189376 − 1.170727 − 0.997060
95.0 − 51.185117 − 1.232762 − 1.049892
85.0 − 51.175084 − 1.378892 − 1.174346
75.0 − 51.162353 − 1.564327 − 1.332273
65.0 − 51.145665 − 1.807385 − 1.539276
55.0 − 51.122837 − 2.139869 − 1.822438
45.0 − 51.089718 − 2.622255 − 2.233267
35.0 − 51.037320 − 3.385424 − 2.883226
25.0 − 50.941904 − 4.775164 − 4.066811
15.0 − 50.713597 − 8.100463 − 6.898831

5.0 − 49.438034 − 26.679050 − 22.721448
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A meaningful example of robust control applied to situations where uncertainty is 
related to unknown structural parameters of the model has been discussed in Sect. 5. 
When the parameter values are as in Giannoni (2007, pp. 189–191 and 200) both for 
the baseline case and for the worst case, the matrices in (36) look like65

and

with66

� =

⎡⎢⎢⎢⎢⎣

1.1530 −6.4297 −4.7781 −1.5873 .2429

−.0240 1.0101 0 0 −.0382

0 0 .35 0 0

0 0 0 .35 0

0 0 0 0 .35

⎤⎥⎥⎥⎥⎦
, � =

⎡⎢⎢⎢⎢⎣

6.3654

0

0

0

0

⎤⎥⎥⎥⎥⎦

�� =

⎡
⎢⎢⎢⎢⎣

.1870 −4.6097 −3.4856 −1.0779 .6633

−.0071 0 0 0 −.0448

0 0 .45 0 0

0 0 0 .45 0

0 0 0 0 .45

⎤
⎥⎥⎥⎥⎦
, �� =

⎡
⎢⎢⎢⎢⎣

4.5636

0

0

0

0

⎤
⎥⎥⎥⎥⎦
.

Table 2   Linear quadratic control 
(QLP), robust control and TVP-
control at time 0

The QLP control and robust control are independent of Φ

QLP control Robust control Φ TVP-control

.75411 .79657 .0 .79657
.1 .79667
.2 .79677
.5 .79707

− .1 .79647
− .2 .79637
− .5 .79607

66  It is assumed that the matrix   Σ is block diagonal. The 2 × 2 North-East block has been constructed 
using the variances of output and inflation reported in Table 2 of Rotemberg and Woodford (1998) on the 
main diagonal and their covariance, reflecting a correlation of .004 as in Fig. 2 of the cited work, as the 
off-diagonal element. The 3 × 3 South-West block is identical to that in Giannoni (2007, Tab. 1 on p. 192) 
for the case ν = 1. The relationship between the models presented in Giannoni and Rotemberg and Wood-
ford is discussed in footnote 13 on pages 189–190 of the same reference.

65  The vector of uncertain parameters � =
[
� � � �� �� �� �

]� is p = [.1571, .0238, .4729, 
.35, .35, .35, .5]′ in the baseline case and pw = [.0915, .0308, .2837, .8, -, .8, 1]′ in the worst case, when 
it is assumed that “uncertainty about the critical structural parameters is given by the approximate 95% 
intervals” (Giannoni 2007, p. 190). As explained on page 200 of the same reference, in the worst-case ρ 
“may take any value in the allowed interval [0, 1] since the loss is maximized when … there are no effi-
cient supply shocks.”.
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Setting the initial condition y0 = (.03 .05 1.0 0 .01)′,67 the desired path for the out-
put gap equal to .01 and the parameters in the penalty matrices equal to λx = .0483, 
λt = .2364 and β = .99 yields the results in Table 2, for a time horizon of 2 periods.68 
In this example, robust control is more active than that associated with the familiar 
linear regulator problem (or quadratic linear problem) and it is identical to the TVP-
control when the transition matrix Φ is equal to zero. For this problem specification, 
the TVP-control is higher than robust control when Φ is positive. The opposite is 
true for negative values of Φ. As already noticed the difference between the two 
controls gets larger and larger as Φ gets farther from the null matrix.

7 � Conclusion

In this paper a robust control problem with unstructured uncertainty à la Hansen 
and Sargent, i.e. uncertainty that takes the form of a nonparametric set of additive 
mean-distorting model perturbations, and a decision maker who cares only of the 
induced distributions under the approximating model has been introduced. Then 
the more complicated case of a decision maker with a different constraint for each 
type of adverse shocks has been discussed. At this point both problems have been 
reformulated as linear quadratic tracking control problems where the system equa-
tions have a time-varying intercept following a mean reverting, or ‘Return to Nor-
mality’, model. By comparing the robust control solution with the associated TVP-
control, when the same worst-case adverse shock and objective functional are used 
in both procedures, it is shown that in all these cases a decision maker who wants 
to be robust against misspecification of the approximating model implicitly assumes 
that today’s worst-case adverse shock is serially uncorrelated with tomorrow’s 
worst-case adverse shock. Moreover, the same result holds when uncertainty is not 
unstructured but is related with unknown structural parameters of the model.

This is a relevant conclusion because it applies to a large set of popular robust con-
trol frameworks in economics. As commonly understood, the robust control choice 
accounts for all possible kinds of persistence of malevolent shocks, which may take 
a much more general form than the VAR(1) assumed in these pages. Then, it is not 
immediately obvious why they look linearly independent in this set of models. The 
fact that the transition matrix does not appear in the relevant expression does not 

� =

⎡
⎢⎢⎢⎢⎣

2.1886 0 0 0 0

0.0060 1.51 0 0 0

0 0 1.7364 0 0

0 0 0 0 0

0 0 16.2558 0 15.0793

⎤
⎥⎥⎥⎥⎦
.

67  The initial values for the unexpected demand shock and inefficient supply shock are similar to those 
used in Giannoni (2007, pp. 194–195).
68  When the demand and supply shocks are set to 0, i.e. at their unconditional mean level, robust control 
is .04975 and TVP-control is lower for positive values of Φ. It is equal to .04972 when Φ = diag(.5, .5) 
and .04977 for Φ = diag(− 5, − .5).



303

1 3

How Robust is Robust Control in Discrete Time?﻿	

necessarily mean that the decision maker does not contemplate very persistent model 
misspecification shocks. For instance, the robust control in the worst case may not 
depend upon the transition matrix simply because the persistence of the misspecifica-
tion shock does not affect the worst case. In other words, the robust decision maker 
accounts for the possible persistence of the misspecification shocks, and that persis-
tence may affect the evolution of the control variables in other equilibria, but it hap-
pens that transition matrix does not play a role in the worst-case equilibrium. While 
for many possible “models”, these misspecification shocks may be very persistent, 
such models happen to result in lower welfare losses than the worst-case model. These 
are some of the aspects that need to be further investigated in order to assess more 
precisely how strong is the ‘immunization against uncertainty’ provided by the linear-
quadratic robust control frameworks widely used in economics in discrete-time.
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Appendix 1

Proof of  Proposition 1  Setting εt+1 = 0 and writing the optimal value of (7) as 
−��t�t�t − 2��t�t,

69 the Bellman equation looks like70

with �t+1 = ��t,�t = � t�,�t = � t�,�t = � t�,�t = −
(
�t�

d
t
+�t�

d
t

)
 and 

�t = −(�t�
d
t
+��

t�
d
t
).71 Then expressing the right-hand side of (47) only in terms 

of yt and �̃t and extremizing it yields the optimal control for the decision maker

(47)

−��t�t�t − 2��t�t = ext
�̃
−
[
��t�t�t + ��t�t�t − 𝛽𝜃��

t+1
�t+1 + 2��t�t�t + 2��t�t

+ 2��t�t + ��t+1�t+1�t+1 + 2��t+1�t+1
]

(48)
�t = −

(
�t + ���t+1�

)−1[(
���t+1� +��

t

)
�t + ���t+1��t+1 + ���t+1 + �t

]

69  See, e.g., Hansen and Sargent (2007a, p. 33).
70  The constant term appearing on the right-hand side and on the left-hand side of the equation have 
been dropped because they do not affect the solution of the optimization problem. See, e.g., Equa-
tion (2.5.3) in Hansen and Sargent (2007a, Ch. 2).
71  When the desired paths for the states and controls are set to 0, �

t
= �

t
= �

t
= 0.

http://creativecommons.org/licenses/by/4.0/
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and the optimal control for the malevolent nature

By substituting (49) into (48) and (48) into (49) gives the θ-constrained worst-case 
controls in Proposition 1.

As noted in Hansen and Sargent (2007a, p. 11), the first order conditions for prob-
lem (47) subject to (9) imply the matrix Riccati equation

where �̃t = 𝛽 t�̃ and �̃t = 𝛽 t�̃ , and the Riccati equation for the p vector72

where �̃t = 𝛽 t�̃, �̃t = 𝛽 t�̃ and �̃t = ( ��t �
�
l )

� . It is straightforward to show that the 
right-hand side of Eqs. (50)–(51) can be rewritten as

and

respectively. Equations  (50) and (51) reduce to the usual Riccati equations of the 
linear quadratic tracking control problem when ωt+1 = 0.73

Appendix 2

Proof of  Proposition 2  As in “Appendix 1”, writing the optimal value of (18) as 
−

⌣

�
�

t�t

⌣

�t − 2
⌣

�
�

�t, the Bellman equation looks like

with �
t+1 = ��

t
,�

t
= � t�,�

t
= � t�,�∗

t
= � t�∗,��,t(�t

) = � t��(�t
),

�
t
= 𝛽 t�,�∗

t
= 𝛽 t�∗, �

t
= −

(
�

t

⌣

�
d

t
+�

t
�d
t

)
 and �t = −(�t�

d
t
+�t�

⌣

�
d

t
). Then 

(49)�t+1 = (���l − ���t+1�)
−1(���t+1��t + ���t+1��t + ���t+1).

(50)
𝐏t = 𝐐t + 𝐀�𝐏t+1𝐀 −

(
𝐀�𝐏t+1𝐁̃ + 𝐖̃t

)(
𝐁̃�𝐏t+1𝐁̃ + 𝐑̃t

)−1(
𝐀�𝐏t+1𝐁̃ + 𝐖̃t

)�
,

(51)𝐩t = 𝐪t + 𝐀�𝐩t+1 −
(
𝐀�𝐏t+1𝐁̃ + 𝐖̃t

)(
𝐁̃�𝐏t+1𝐁̃ + 𝐑̃t

)−1(
𝐁̃�𝐩t+1 + 𝐫̃t

)

�t + ���
∗

t+1
� −

(
���

∗

t+1
� +�t

)(
�t + ���∗

t+1
�
)−1(

���
∗

t+1
� +�t

)�

�t + ���
∗

t+1
−
(
���

∗

t+1
� +�t

)(
���

∗

t+1
� + �t

)−1(
���

∗

t+1
+ �t

)
,

(52)

−
⌣

�
�

t�t

⌣

�t − 2
⌣

�
�

t�t = ext
�,�

−

[
⌣

�
�

t�t

⌣

�t + ��t�t�t + 2��t�
∗
t
�t − ��

t
��,t(�t)�t

+ 2
⌣

�
�

t�t�t + 2
⌣

�
�

t�
∗
t
�t + 2

⌣

�
�

t�t+2�
�
t�t +

⌣

��t+1�+1t

⌣

�t+1 + 2
⌣

��t+1�t+1

]

73  See, e.g., Kendrick (1981, Ch. 2).

72  This recursion is not necessary when the desired paths are set to 0 as in Hansen and Sargent (2007a, 
Ch. 2, 7).
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expressing the right-hand side of (52) only in terms of ⌣�t and �̃t and extremizing it 
yields the optimal control for the decision maker, i.e.

and the optimal control for the malevolent nature

with �t = −[��,t(�t) +
⌣

�(�t)
��t+1

⌣

�(�t)] . By substituting (54) into (53) yields the 
result in Proposition 2.

As in Proposition 1, the first order conditions for problem (18) subject to (19) imply 
the matrix Riccati equation

where �̃t(�t) = 𝛽 t�̃(�t) and �̃t = 𝛽 t�̃ . The Riccati equation for the p vector looks 
like74

Both Eqs. (55) and (56) reduce to the usual Riccati equations of the linear quadratic 
tracking control problem when �t = �.

Appendix 3

Proof of  Proposition 3  By replacing �1�t + ��t+1 with ��t + ��t+1 in (27), treat-
ing the vector of stochastic components νt+1 as additional state variables, setting 
�∗
t+1

= � and using the deterministic counterpart to (25)–(28), namely

with

(53)
�t = −

(
�t + ���t+1�

)−1

×

[(
���t+1� +��

t

)⌣

�t +

(
�∗
t
+ ���t+1

⌣

�(�t)

)
�t + ���t+1 + �t

]
,

(54)

�t = �−1
t

[(
�∗�

t
+

⌣

�(�t)
��t+1�

)
⌣

�t +

(
�∗�
t
+

⌣

�(�t)
��t+1�

)
�t +

⌣

�(�t)
��t+1

]

(55)

�t = �t + ���t+1�

−
[
���t+1�̃(�t) + �̃t

][
�̃(�t)

��t+1�̃(�t) + �̃t(�t)
]−1[

���t+1�̃(�t) + �̃t

]�

(56)

�t = �t + ���t+1

−
[
���t+1�̃(�t) + �̃t

][
�̃(�t)

��t+1�̃(�t) + �̃t(�t)
]−1[

�̃(�t)
��t+1 + �t

]
.

(57)�t+1 = �∗�t + �∗�t for t = 0,… ,∞,

74  Again, this recursion is not necessary when the desired paths are set to 0.
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the optimal value of (25) can be written as −��t�t�t − 2��t�t and it satisfies the Bell-
man equation

with �t+1 = ��t . Again, expressing the right-hand side of (59) only in terms of zt 
and ut and maximizing it yields the optimal control in the presence of time-varying 
parameters (or TVP-control), i.e.75

The matrices K11 and K12 in (60) denote the n × n North-West block and the n × l 
North-East block, respectively, of the Riccati matrix

Consequently they are defined as76

and

It is apparent from (62b) that even when K12,t+1 is zero, it is sufficient that the same 
is not true for K11,t+1, a condition typically met, to have a non zero K12,t matrix. This 
means that even when the terminal condition for K12 is a null matrix, this array will 
not vanish in all the time periods in the planning horizon except for the last one. 
Consequently, only the last control, namely the control applied at the ‘final period 
minus 1’ of the planning horizon, will be independent of the transition matrix char-
acterizing the time-varying parameters.

(58)�t =

[
�t
�t+1

]
, �∗ =

[
� �

� �

]
and �∗ =

[
�

�

]
,

(59)

−��t�t�t − 2��t�t = max
�t

−
[(
�t − �∗

t

)�
�∗

t

(
�t − �∗

t

)
+
(
�t − �∗

t

)�
�t

(
�t − �∗

t

)

+2
(
�t − �∗

t

)�
�∗

t

(
�t − �∗

t

)
+ ��t+1�t+1�t+1 + 2��t+1�t+1

]

(60)

�t = −
(
�t + ���11,t+1�

)−1
×
[(
���11,t+1� +��

t

)
�t + ��

(
�11,t+1� +�12,t+1�

)
�t+1+

(
���1,t+1 + �t

)]
.

(61)
�t = �∗

t
+ �∗��t+1�

∗

−
(
�∗��t+1�

∗ +�∗
t

)�(
�t + �∗��t+1�

∗
)−1(

�∗��t+1�
∗ +�∗

t

)

(62a)
�11,t = �t + ���11,t+1�

− (���11,t+1� +�t�)�(�t + ���11,t+1�)
−1(���11,t+1� +�t�)

(62b)

�12,t = (���11,t+1� + ���12,t+1�)

− (���11,t+1� +��
t)�(�t + ���11,t+1�)

−1��(�11,t+1� +�12,t+1�).

76  See Tucci (2004, pp. 26–27).

75  See also, e.g., Kendrick (1981, Ch. 2 and 10) and Tucci (2004, Ch. 2).
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The optimal control (60) is independent of the parameter θ which enters the l × l 
South-East block of K, namely

However it depends upon the vector kt which can be partitioned as �t = [ ��1,t �
�
2,t ]

� 
with

When �t+1 ≡ �t+1 , i.e. the same shock is used to determine both robust control and 
TVP-control, the latter is as defined in Proposition 3.

Appendix 4

Proof of Proposition 4  Proceeding as in the proof of Proposition 3 it follows that for 
this problem the TVP-control looks like

Then setting �t+1 ≡ [��
1,t

��
2,t ]

� with ω1,t and ω2,t as in Sect. 3 yields Proposition 4.
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