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Abstract
The best evaluation for the proportion of defective units in a batch of fruits and vegetables 
can be achieved by an exhaustive checking of all the boxes in the batch, that is prohibitive 
to perform in most cases. Usually, only a sample of boxes is checked. In EU countries, EU 
regulations establish to estimate the proportion of defective units in a batch by the propor-
tion of defective units in the sample, without giving any rule for selecting boxes. Therefore, 
results are highly dependent on the subjective choice of boxes. In the present study, an 
objective design-based approach is considered to select boxes from batches, adopting bal-
anced spatial schemes with equal inclusion probabilities. The schemes are able to select 
samples of boxes evenly spread throughout the batch also ensuring good statistical proper-
ties for the proportion of defective units in the sample as estimator of the proportion of 
defective units in the batch. The performance of these strategies is evaluated by means of a 
simulation study performed on real and artificial batches of apples, peppers and strawber-
ries. A case study is considered to estimate the proportion of defective units in a batch of 
courgettes stored in a distribution center of a supermarket chain in Central Italy.

Keywords Equal probability sampling · EU regulation · Horvitz-Thompson estimator · 
Monte Carlo simulation · Sample proportion of defective units · Spatial balance

1 Introduction

The distribution center of a supermarket chain has the aim of receiving and storing goods, 
performing a daily distribution of them to sale points. Owing to deteriorating propension 
of fruit and vegetables, there is the necessity of ensuring the quality of these products by 
suitable control protocols to be performed on the batches stored in the warehouse before 
their distribution to sale points. Product controls are essential to guarantee high qualitative 
standards, to reduce complaints and to construct defect indexes ruling relationships with 
providers.
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In most cases, controls are performed at two levels. The first-level control consists 
on a visual checking of batches without any destructive testing of fruits and vegetables 
and of their packages. The second-level control consists on a quantitative assessment of 
deterioration for those batches that do not pass the first-level control. More precisely, the 
second-level control consists in determining the fraction of fruit and vegetable units show-
ing characteristics that do not comply with current legislations, henceforth referred to as 
defective units. Regarding the EU countries, unit defects are those mentioned in the EU 
Reg 543/2011 for all fruits and vegetables ruled by CMO codification or those not satisfy-
ing UNECE standards for fruits and vegetables not ruled by EU Reg 543/2011. In prac-
tice, defects of fruits and vegetables are determined by: i) presence of molds and rots; ii) 
absence of the main characteristics of the product; iii) size outside the established range. 
The occurrence of at least one of these defects is sufficient to declare the unit as defective.

From a procedural point of view, it is obvious that the second-phase control cannot be 
performed for all the items in the stored batch, as controls entails item destruction in most 
cases. Therefore, controls can be performed only for a subset/sample of units. In particu-
lar, regarding fruits and vegetables supplied in boxes, EU Reg 543/2011 establishes strict 
guidelines for performing the control: a fixed number of boxes to be checked is determined 
as function of the total number of boxes in the batch (see Table 1); all the units in the boxes 
is checked and classified as defective or not; the fraction of defective units is reckoned and 
the batch is refused if the fraction is greater than 10%.

Despite the strictness of these rules, surprisingly EU Reg 543/2011 does not give any 
detail about the way in which the fixed number of boxes have to be selected. It simply 
states that the selected boxes must be evenly distributed (both in vertical and horizontal 
sense) throughout the pallets they are located. Therefore, the fractions of defective units 
achieved by these rules strictly depend on the subjective selection of boxes to check, pre-
cluding any objective evaluation about their accuracy and precision and about the subse-
quent acceptance or rejection of batches.

For these reasons, we were recently involved by managers of the Distribution Center of 
Conad del Tirreno, a large supermarket chain settled in Central Italy, to construct a statisti-
cally sound procedure for estimating fractions of defective units with the possibility of esti-
mating sampling errors and providing confidence intervals but, at the same time, respecting 
the guidelines established by EU Reg 543/2011 regarding the number of boxes to select, 
their even distribution throughout batches, and the estimation criterion.

The novel proposal of this work, never pursued before in the framework of fruits and veg-
etables quality control, is to adopt probabilistic sampling schemes of boxes able to ensure 
balanced samples with respect to box positions in the batch, in such a way that the fraction 
of defective units in the sample can constitute a design-based unbiased estimator of the frac-
tion of defective units in the batch with a design-based variance that can be conservatively 
estimated in order to provide a cautionary estimation of the precision. A simulation study is 

Table 1  Number of boxes to 
be checked as function of the 
number of boxes in the batch 
in accordance with EU Reg 
543/2011

Total number of boxes (N) Number of boxes 
to be checked (n)

N ≤ 100 5
100 < N ≤ 300 7
300 < N ≤ 500 9
500 < N ≤ 1000 10
N > 1000 11
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performed starting from data from some real batches of fruits and vegetables in order to assess 
the power of the rejection rule established by EU Reg 543/2011.

Details about sampling boxes from a batch, and the description of the sampling schemes 
mentioned in the paper are given in the Appendix, together with some practical examples. 
Data adopted in the simulation study are reported in a supplementary material file.

2  Statement of the problem

The target population U is constituted by a batch of N boxes of fruits or vegetables (see Fig. 4 
in the Appendix). Then, denote by yj the number of fruit or vegetable units in the box j and 
by dj the number of defective units in the same box. Let the fraction of defective units in the 
whole batch

be the target parameter to be estimated from a sample S of n boxes selected from U.
Following the EU Reg 543/2011 guidelines, once the sample S is selected, all the fruit or 

vegetable units in each selected box are exhaustively examined to count the total of units yj 
and the defective units dj in the box j ∈ S . Then, the unknown proportion P has to be esti-
mated by means of the proportion of deteriorated items observed in the whole sample, i.e. by 
means of the estimator

irrespective of the sampling scheme adopted for selecting boxes.
On the other hand, if boxes were selected by means of a without-replacement sampling 

scheme, this scheme univocally induces the first-order inclusion probabilities �j , i.e., for each 
j ∈ U , the probability that the box j enters the sample, as well as the second-order inclusion 
probabilities �j,h , i.e., for each h≠j ∈ U , the probability that boxes j and h both enter the sam-
ple. Therefore, the unknown totals D and Y could be estimated exploiting the first-order inclu-
sion probabilities of the selected boxes by means of the Horvitz-Thompson (HT) estimators 
D̂HT and ŶHT , respectively, and the proportion P could be estimated in a very natural way by 
means of their ratio, i.e.

Being the ratio of two estimators, P̂HT has an intractable mean and variance. However 
using Taylor series linearization (Särndal et al., 1992, Result 5.6.2, p.178), P̂HTconstitutes 
an approximately unbiased estimator for P, with approximated variance

P =

∑

j∈U dj
∑

j∈U yj
=

D

Y
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It is worth noting that for some fruits and vegetables (e.g. melons, cabbages, etc) there is 
an equal number of units stored in the boxes, i.e. yj = y

0
 for each j ∈ U . In these cases, the 

total number of units Y is known to be Ny
0
 while the total number of units in the sample is 

known to be ny
0
 . Accordingly, the proportion of defective units in the sample becomes

while the estimator of P achieved exploiting the first-order inclusion probabilities becomes

Because the estimator (5) is simply a linear transformation of the HT estimator D̂HT , it is 
unbiased with a well-known variance expression that is given by

(e.g., Hedayat and Sinha , 1991, equation  3.4, p.48). It is apparent from the previous 
expressions that the estimators (2) and (5) coincide with the EU estimation rules (1) and 
(4), respectively, when boxes are selected with constant first-order inclusion probabilities 
�j = n∕N . Practically speaking, in order to provide a statistically sound estimation strategy 
that at the same time fulfils EU estimation guidelines, the sampling scheme adopted to 
select boxes should ensure the same first-order inclusion probabilities for all boxes in the 
batch.

3  Problems in performing balanced, equal‑probability sampling 
of boxes

The simplest way to draw n boxes out of the N in the batch with constant first-order 
inclusion probabilities equal to n/N is to use simple random sampling without replace-
ment, usually referred to as SRSWOR (see Appendix for a description of the scheme). 
In this case, from equation (3), the approximated variance of (1) reduces to

where

is the variance of the errors occurred in the population predicting the dj s as Pyj . Usually (6) 
is estimated by
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∑
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where

is the sample mean, and

is the variance of the errors occurred in the sample predicting the dj s as P̂EUyj (e.g. Särndal 
et al., 1992, Example 5.6.2, p.179). When boxes in the batch contain an equal number of 
units, from equation (6) the variance of (4) reduces to

where

is the variance of the number of defective units in the boxes of the population and D̄ = D∕N 
is their mean. The very familiar estimator of (9) is given by

where

is the variance of the number of defective units in the boxes of the sample and

is their mean.
Despite its simplicity, SRSWOR does not completely accomplish EU guidelines that 

recommend an even distribution of the selected boxes throughout the batch. In order to 
achieve a balanced selection, it should be pointed out that the population U of N boxes 
is partitioned into K pallets U1

,… ,UK and, in turn, each pallet Uk is constituted by Lk 
levels Uk,1,… ,Uk,Lk

 each constituted by 4 or 6 boxes. In some cases, Lk may be equal for 
all the pallets in the batch, but this is not true in general (see e.g., the case study).

Generally speaking, the sampling scheme to be adopted should be able to ensure 
a well-spread distribution of boxes throughout pallets and levels. Indeed, it could be 
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likely that nearby boxes or boxes belonging to the same pallet contain a similar propor-
tion of deteriorated items than boxes far apart, as well as boxes at lower levels in the 
pallets contain more deteriorated pieces than boxes at higher levels due, for example, to 
higher moisture expositions. On the other hand, SRSWOR can even provide samples of 
boxes all belonging to the same pallet or to the same level (see Fig. 5 in the Appendix). 
For these reasons, SRSWOR cannot constitute a solution and it is simply considered as 
a benchmark to determine the gain achieved when using balanced schemes.

A balanced selection could be readily ensured if we were able to partition the popula-
tion U into n blocks/strata of contiguous levels, in such a way that each block belonged to 
the same pallet and was constituted by the same number of boxes. In this case, balance was 
simply achieved by using systematic sampling or one-per-stratum sampling (Breidt, 1995), 
i.e. selecting a box in a block and repeating its position in the remaining blocks, or ran-
domly and independently selecting a box in each block. Unfortunately, in most situations, 
the partition of population into n blocks constituted by an equal number of contiguous lev-
els belonging to the same pallet is impossible. The issue is considered in the Appendix, 
where it is exemplified as the systematic selection of boxes with equal first-order inclusion 
probabilities is always possible but at the cost of allowing the sample size to vary from 
n − 1 to n and the first-order inclusion probabilities to be different from n/N. Similarly in 
the Appendix it is also shown as the one-per-stratum sampling of n boxes is always pos-
sible but at the cost of allowing the first-order inclusion probabilities to vary with blocks. 
As a consequence, the subsequent estimators (2) and (5) differ from that requested by EU 
regulations.

4  Balanced spatial sampling schemes as solution

Grafström and Tillé (2013) propose the use of the doubly balanced spatial scheme (DBSS) 
obtained combining a generalization of the local pivotal method (LPM) by Grafström 
et al. (2012) and the cube method by Deville and Tillé (2004). DBSS is tailored to well-
spread samples with pre-fixed first-order inclusion probabilities. While the generalized 
LPM ensures spatially balanced samples avoiding the selection of neighbouring units, the 
cube method ensures nearly balanced samples with respect to M auxiliary variables, i.e. 
variables whose values are known for each unit in the population. Like in the generalized 
regression estimator, the cube method ensures that the totals of these variables estimated 
from the sample are almost the same as in the population (see the Appendix for a more 
accurate description of LPM, cube method and DBSS).

As stated in the Appendix, in order to obtain samples of fixed size n, the first-order 
inclusion probabilities of points must be chosen as an auxiliary variable, in such a way 
that their sum equals n. Moreover, regarding the choice of the other balancing variables, 
Grafström and Tillé (2013) suggest to use the unit coordinates. In this case, DBSS not only 
provides samples of units well spread throughout the population, but the sample estimates 
of the average coordinates are similar to the true averages in the population. In this sense, 
the sampling is doubly balanced.

From these considerations, it is at once apparent that DBSS can be suitably applied for 
selecting well-spread samples of boxes from a batch with equal inclusion probabilities n/N, 
thus providing a suitable solution that fulfills EU guidelines. Moreover, because boxes are 
equipped by four spatial x-coordinates xj,1, xj,2, xj,3, xj,4 identifying their position in the batch, 
the transformed z-coordinates zj,1 = 100xj,1, zj,2 = 10xj,2, zj,3 = xj,3, zj,4 = xj,4 can be used as 
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additional auxiliary variables, in such a way to emphasize the Euclidean distances between 
boxes belonging to different pallets and, with smaller amounts, between boxes belonging to 
different levels (see the Appendix for more details on this points). In this way, by the use of 
M = 5 auxiliary variables, the resulting samples of boxes are not only well spread throughout 
the pallet, but the sample means of the four z-coordinates are similar to the averages coordi-
nates in the pallets (see the example of Fig. 8 in the Appendix).

However, as stated by Deville and Tillé (2004, pp. 901-903), the rounding problem - that 
invariably occurs for satisfying the balancing equations - strictly depends on the number of 
balancing variables M and quickly becomes negligible if the sample size is large with respect 
to M. Therefore, it could be unsuitable to adopt M = 5 auxiliary variables with very small 
sample sizes that, in accordance with Table 1, never exceed n = 11 boxes. Accordingly, we 
also consider the alternative, simpler use of LPM, a scheme fully described in the Appendix, 
that can be viewed as a particular case of DBSS when no balancing variable is adopted with 
the exception of the first-order inclusion probabilities. Obviously, LPM only provides the even 
spread of the selected boxes throughout the batch without no calibration with respect to the 
box coordinates.

Because DBSS and LPM avoid the selection of neighbouring boxes, the variance of (1) that 
is approximated by equation (3) cannot be estimated unbiasedly. Indeed, it is a well known 
result of finite population sampling that the variance of an HT estimator can be estimated 
unbiasedly if, and only if, the sampling scheme ensures second-order inclusion probabilities 
that are invariably positive (see e.g., Hedayat and Sinha , 1991, Corollary 3.2, p.49). In this 
case, a solution is to adopt the Hansen-Hurvitz (HH) estimator for both the schemes, that in 
this case gives rise to

The HH estimator constitutes by far the most familiar alternative when unbiased variance 
estimation is not possible and, as proven by Wolter (1985, Theorem 2.4.6, pp. 44–45), it 
tends to be conservative for most designs. When boxes in the batch contain an equal num-
ber of fruit or vegetable units, the HH estimator for the variance of (4) reduces to

DBSS is also referred to as the local cube in the widely used BalancedSampling R 
package by Grafström and Lisic (2019) that also performs the LPM when the first-order 
inclusion probabilities are adopted as the sole balancing variable.

5  Simulation study

The performance of the estimator P̂EU under SRSWOR, DBSS and LPM was empirically 
checked by means of a simulation study carried out on real batches.
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5.1  Real and artificial batches

For simulating different situations in which defective fruits and vegetables are placed 
within boxes in the batch, we started from three real batches that were exhaustively checked 
in the Conad del Tirreno Distribution Center at Pistoia (Tuscany):

(APPLES) a batch of 2 pallets each of them constituted by 9 levels of 4 boxes of 33 
apples;

(PEPPERS) a batch of 2 pallets each of them constituted by 10 levels of 4 boxes of an 
unknown number of peppers;

(STRAWBERRIES) a batch of 2 pallets each of them constituted by 24 levels of 4 boxes 
of 10 strawberries.

The characteristics of the three batches are summarized in Table 2 and graphically 
represented in Fig.  1, where boxes with no defective units are represented in white 
(type-0 boxes) and boxes with a fraction of defective units lower than the first quartile 

Table 2  Descriptive characteristics of the three batches adopted in the simulation

Product APPLES PEPPERS STRAW-
BER-
RIES

Number of pallets 2 2 2
Number of levels 9 10 24
Number of boxes per level 4 4 4
Number of units per box 33 Not fixed 10
Total number of boxes (N) 72 80 192
Number of boxes to select (n) 5 5 7
Total number of units 2376 1243 1920
Total number of defective units 49 189 552
Percentage of defective units ( P × 100) 2.06 15.21 28.75

Fig. 1  Graphical representation of box allocations within pallets and levels in the real cases (SA1) for the 
three batches of apples, peppers and strawberries(*)
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(type-1 boxes), between first and second quartile (type-2 boxes), between second and 
third quartile (type-3 boxes) and greater than third quartile (type-4 boxes) are repre-
sented in pink, light red, red and dark red, respectively.

For each population, three different allocations of boxes were artificially generated 
throughout pallets. The first simulated allocation (SA1) is the real one (see Fig. 1). In 
the second simulated allocation (SA2), boxes were re-allocated in such a way that type-4 
boxes were present only in the first pallet and were randomly distributed throughout lev-
els of that pallet (see Fig. 2). Finally, in the third simulated allocation (SA3), starting 
from SA2 allocation, type-4 boxes of the first pallet were re-allocated in the lower pallet 
levels (see Fig. 3). Fractions of deteriorated pieces for each population do not vary with 
allocations and are reported in Table 2. The complete data set, that contains the number 
of defective units in each boxes of the three simulated population and the three batches 

Fig. 2  Graphical representation of box allocations within pallets and levels in the real cases (SA2) for the 
three batches of apples, peppers and strawberries(*)

Fig. 3  Graphical representation of box allocations within pallets and levels in the real cases (SA3) for the 
three batches of apples, peppers and strawberries(*)
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is reported as supplementary material in the excel file Data_apples_peppers_strawber-
ries.xlsx.

5.2  Sampling and estimation

SRSWOR, DBSS and LPM were considered for selecting n boxes from the batches, were 
the sample size n was determined according to EU guidelines of Table  1. DBSS was 
performed adopting equal inclusion probabilities and the four z-coordinates of boxes as 
the M = 5 balancing variables. For each product, each box allocation and each sampling 
scheme, 100000 samples of size n were independently selected. LPM was performed 
adopting equal inclusion probabilities as the unique balancing variable. For each gener-
ated sample, the estimate of the proportion of deteriorated units was computed by means 
of equation (1) in the case of peppers, where the number of units per box is unknown, and 
by means of equation (4) in the case of apples and strawberries, where the number of unit 
per box was known. Moreover, in the case of peppers, sampling variances were estimated 
by means of equation (8) under SRSWOR and by means of equation (11) under DBSS and 
LPM, while in the case of apples and strawberries sampling variances were estimated by 
means of equation (10) under SRSWOR and by means of equation (12) under DBSS and 
LPM. Once the variance estimates were achieved, the standard errors estimates were com-
puted by the square root of variance estimates.

5.3  Performance indexes

On the basis of the resulting Monte Carlo distributions, the bias values for the estimator of 
the proportion of defective units (BIAS), the standard errors (SE) and the expectations of 
the standard error estimators (ESEE) were empirically determined. Because all the simu-
lated strategies ensured unbiased or approximately unbiased estimators of P, true bias val-
ues were invariably equal to or close to 0. Therefore, bias values achieved from simulation 
were reported just to confirm the reliability of the simulation study.

Moreover, because EU guidelines entail the rejection of the whole batch when the pro-
portion of defective items in the sample is greater than 10% , the percentage of times in 
which the estimated proportion is greater than 10% (OV10) was computed in order to deter-
mine the probability of taking the right decision.

5.4  Simulation results

Results from the simulation study are reported in Tables 3. The Monte Carlo values of bias 
invariably turned out to be smaller than 0.1% , confirming the reliability of the simulation 
study to approximate estimator performance.

For all the three populations and the three allocations, the performance of DBSS and 
LPM are practically identical both in terms of standard errors and probabilities of taking 
the right decision, as well as in term of variance estimation. Moreover, the use of DBSS 
or LPM does not provide significant improvements with respect to SRSWOR when the 
real allocation of boxes is  considered (SA1). That is probably due to the fact that in 
these situations the presence of defective units does not depend to box allocation, as 
it can be noticed from Fig. 1, where boxes with high percentages of defective units are 
evenly spread over pallets and levels of the three batches. On the other hand, DBSS and 



Balanced sampling of boxes from batches for assessing quality…

1 3

Ta
bl

e 
3 

 M
on

te
 C

ar
lo

 p
er

ce
nt

ag
e 

va
lu

es
 o

f b
ia

s (
B

IA
S)

, s
ta

nd
ar

d 
er

ro
r (

SE
), 

ex
pe

ct
at

io
n 

of
 th

e 
st

an
da

rd
 e

rr
or

 e
sti

m
at

or
 (E

SE
E)

, a
nd

 p
er

ce
nt

ag
e 

of
 ti

m
es

 in
 w

hi
ch

 th
e 

pr
op

or
-

tio
n 

es
tim

at
e 

is
 g

re
at

er
 th

an
 10

%
 (O

V
10

) f
or

 th
e 

th
re

e 
ba

tc
he

s o
f a

pp
le

s, 
pe

pp
er

s a
nd

 st
ra

w
be

rr
ie

s, 
fo

r e
ac

h 
si

m
ul

at
ed

 a
llo

ca
tio

ns
 (S

A
1,

 S
A

2,
 S

A
3)

 u
nd

er
 si

m
pl

e 
ra

nd
om

 sa
m

-
pl

in
g 

w
ith

ou
t r

ep
la

ce
m

en
t (

SR
SW

O
R

), 
do

ub
ly

 b
al

an
ce

d 
sp

at
ia

l s
am

pl
in

g 
(D

B
SS

) a
nd

 lo
ca

l p
iv

ot
al

 m
et

ho
d 

(L
PM

)

Pr
od

uc
t

A
llo

ca
tio

n
SA

1
SA

2
SA

3

Sc
he

m
e

SR
SW

O
R

D
B

SS
LP

M
SR

SW
O

R
D

B
SS

LP
M

SR
SW

O
R

D
B

SS
LP

M

A
PP

LE
S

B
IA

S
0.

01
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
P
=
2
.0
6

SE
1.

14
1.

15
1.

16
1.

14
1.

08
1.

07
1.

14
0.

90
0.

88
A

cc
ep

ta
tio

n
ES

EE
1.

14
1.

17
1.

17
1.

13
1.

19
1.

19
1.

13
1.

23
1.

23
O

V
10

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

PE
PP

ER
S

B
IA

S
-0

.0
1

0.
00

0.
00

-0
.0

1
0.

00
0.

00
-0

.0
2

-0
.0

1
-0

.0
1

P
=
1
5
.2
1

SE
4.

29
4.

17
4.

25
4.

31
3.

78
3.

82
4.

30
3.

46
3.

36
Re

je
ct

io
n

ES
EE

4.
31

4.
47

4.
46

4.
30

4.
56

4.
56

4.
30

4.
62

4.
64

O
V

10
88

.3
6

88
.6

7
88

.5
4

88
.1

6
91

.0
7

90
.9

8
88

.2
0

92
.7

7
93

.7
2

ST
R

AW
B

ER
R

IE
S

B
IA

S
0.

02
-0

.0
1

-0
.0

2
0.

03
0.

00
-0

.0
3

0.
01

0.
04

0.
00

P
=
2
8
.7
5

SE
5.

44
5.

37
5.

45
5.

45
5.

06
5.

05
5.

44
4.

46
4.

38
Re

je
ct

io
n

ES
EE

5.
44

5.
54

5.
54

5.
44

5.
59

5.
60

5.
44

5.
69

5.
70

O
V

10
99

.9
9

99
.9

9
99

.9
8

99
.9

8
99

.9
9

99
.9

9
99

.9
8

99
.9

9
99

.9
9



 S. Franceschi et al.

1 3

LPM outperform SRSWOR in terms of SE when artificial allocations are considered 
(SA2 and SA3) with gains in precision that increase as the uneven distribution of defec-
tive units becomes more marked, i.e. passing from SA2 to SA3. In fact, while gains in 
precision under SA2 are smaller than 10% for the two schemes and the three batches, 
gains increase to about 20 − 25% under SA3. In the case of peppers, the precision gain 
also increases the probability of taking the right decision, i.e. rejecting the batch, that 
under SA3 passes from about 88% in the case of SRSWOR to about 93% in the case of 
DBSS. For the other two batches, the true percentages of defective units are so far from 
the threshold of 10% that the right decision is taken almost certainty in all the cases.

Regarding the estimation of uncertainty, the standard error estimation based on the 
HH estimator provides quite satisfactory results for both DBSS and LPM, being moder-
ately conservative with overestimation smaller than one percentage point in most cases. 
Overestimations slightly greater than 1% only occur for both schemes in the extreme 
case of SA3.

Stated the equivalence of the performance achieved by DBSS and LPM, the simulation 
results suggest that the aim of selecting an evenly distributed sample of boxes with equal 
first-order inclusion probabilities is more straightforwardly achieved by the use of LPM.

6  A case study

Sampling and estimation of defective units in a batch of courgettes was performed as a 
training activity for the staff of the Conad del Tirreno Distribution Center in May 2017. 
The batch was composed by K = 3 pallets, in turn composed by L

1
= 9 , L

2
= 9 and L

3
= 5 

levels of 4 boxes each. In total, the batch was composed by N = 92 boxes. Therefore, in 
accordance with Table 1, the boxes to be checked were n = 5 . The selection of the boxes 
was automatically performed by DBSS, adopting the constant inclusion probabilities 
�j = 5∕92 = 0.0543478 and the four z-coordinates identifying the spatial positions of 
boxes in the batch as balancing variables. The average pallet coordinate in the population 
was 193, the average level index was 45.6, and the averages of vertical and horizontal posi-
tions of boxes were 1.5 in both cases. Owing to the calibration ensured by the DBSS, the 
sample means of these coordinates should be similar with their population counterparts.

The use of DBSS gave rise to the selection of two boxes in the first pallet, one at 
level 4 with vertical position 1 and horizontal position 2 and one at level 6 with vertical 
position 1 and horizontal position 2, two boxes in the second pallet, one at level 2 with 
vertical position 2 and horizontal position 1 and one at level 8 with vertical position 1 
and horizontal position 1, and one box in the third pallet at level 2 with vertical position 
2 and horizontal position 1. Besides the even distribution of the selected boxes through-
out the batch, the average pallet coordinate in the sample was 180, the average level 
coordinate was 44, and the sample estimates of vertical and horizontal positions were 
both equal to 1.4, i.e. values very similar to the averages in the whole batch.

After the staff check, the units counted in the five boxes resulted 28, 27, 32, 31, 30 
and the defective units detected within were 1, 0, 2, 3, 2, respectively. In total the num-
ber of sampled courgettes were 148 with 8 of them defective. Therefore, from equation 
(1), the estimate of the percentage of defective units was 5.41% . Moreover, from equa-
tion (11), the standard error estimate was 1.58% with a nominal 95% confidence interval 
of 2.25% − 8.56%.
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7  Concluding remarks

EU regulations establish strict mandatory guidelines for checking the quality of fruits 
and vegetables. The number of boxes n to be checked is determined as a function of the 
total number N of boxes in the batch, and the batch is rejected when the proportion of 
defective units in the n boxes exceeds 10% . No strict guidelines are instead given regard-
ing the way in which boxes be selected from the batch, only recommending an even 
distribution of selected boxes throughout pallets and levels. Therefore, from a statisti-
cal point of view, sampling effort and estimation criterion are fixed and none has the 
advantage or the will of performing changes. From a side, warehouse managers have 
no convenience in increasing the number of boxes to be checked that would increase 
expenses (in terms of timed and staff) devoted to control. From the other side, providers 
would not accept any rejection based on a criterion differing from that established by 
EU regulations.

In this framework, statisticians can only be involved in the choice of a suitable n-sized 
sampling scheme for ensuring a balanced sample of boxes, in accordance with EU rec-
ommendations, at the same time ensuring good statistical properties for the proportion of 
defective units in the sample that is adopted as estimator of defective units in the batch.

In this framework, the simplest as well effective solution seems to be the use of the 
equal-probability DBSS and LPM. The equal-probability sampling of boxes ensures that 
the proportion of defective units in the sample coincides with the HT estimator or the 
ratio of two HT estimators, thus ensuring unbiasedness or approximate unbiasedness 
and the possibility of achieving objective, conservative estimates of precision. In addi-
tion, both DBSS and LPM ensure an even distribution of selected boxes in the batch. No 
changes are necessary in the usual way of performing controls, except for the fact that 
positions identifying the n sampled boxes must be communicated to warehouse staff 
before controls. However, based on simulation results, the use of LPM seems to be more 
suitable, being more simple and ensuring a precision similar to that achieved by DBSS.

In this way, the sample proportion of defective units is equipped by an estimate regard-
ing the precision of the strategy. If the estimated proportion is much lower or greater than 
10% and the estimate of the sampling error is small with respect to the estimated propor-
tion, these results are of utility in reaching clear opinions about the reliability of providers. 
If the estimated proportion is near, more or less, to 10% and the estimate of the sampling 
error does not exclude the possibilities of a wrong decision, these uncertainties should be 
declared to providers in order to claim products of better, less uncertain quality.

Appendix: equal‑probability sampling schemes for selecting boxes 
from a batch

As stated in sect.  3, let U be a population of N boxes partitioned into K pallets 
U

1
,… ,UK , where each pallet Uk is constituted by Lk levels, Uk,1,… ,Uk,Lk

 each of them 
constituted by 4 or 6 boxes. Therefore, any box j ∈ U is univocally identified by four 
spatial coordinates xj,1, xj,2, xj,3, xj,4 , where xj,1 ranges from 1 to K and denotes the pal-
let, xj,2 ranges from 1 to Lk and denotes the level in the pallet, xj,3 ranges from 1 to 2 
and denotes the vertical position in the level, and xj,4 ranges from 1 to 2 and denotes the 
horizontal position in the level (see Fig. 4).
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Now, in order to accomplish the EU guidelines, the sampling scheme to select boxes 
should have inclusion probabilities invariably equal to n/N and, at the same time, should 
be able to ensure a well-spread of selected boxes throughout pallets and levels, as exem-
plified in Fig. 5.

The simplest way to select n boxes from a batch of N boxes with equal inclusion prob-
abilities n/N is to adopt SRSWOR, i.e., by performing n random and without replacement 
selections of boxes from the batch, irrespective of their position in the pallets and levels. 
In this way, there are 

(

N

n

)

 possible samples of size n of equal probability 
(

N

n

)−1
 . Owing to 

the complete randomness of the selection, SRSWOR can give rise to unbalanced selec-
tions of boxes. For example, if applied to the population of Fig. 4, SRSWOR gives rise to 
(

32

5

)

= 233504 possible equal probability samples of size 5. In practice, under SRSWOR 
the two samples represented in Fig. 5 have the same probability to be selected. Therefore, 
SRSWOR is likely to be inefficient in batches where nearby boxes tend to be similar in 
terms of defective units.

A stratified design in which the batch of N boxes is partitioned into n blocks of contigu-
ous boxes and a box is selected from each block, probably constitutes the simplest way to 
weaken the possibility of selecting nearby boxes. To this purpose the partition into blocks 
should be suitably performed in such a way to ensure blocks constituted by neighbouring 
boxes, avoiding, as much as possible, the presence in the same block of boxes belonging 
to different pallets or different levels. Therefore, suppose a suitable partition of the batch 
into n − 1 blocks of H boxes and a residual block of N − (n − 1)H boxes. Then, as stated by 
Särndal et al. (1992, Sect. 3.4, pp. 73-75), systematic sampling can be performed by select-
ing a box in the first block and systematically taking a box every H thereafter, until the end 
of the list. In this way, there are N − (n − 1)H possible samples of size n and nH − N sam-
ples of size n − 1 , all of them selected with equal probabilities 1/H that also constitutes the 
first-order inclusion probability of each box in the batch.

For example, the population of Fig. 4 can be suitably partitioned into 4 blocks of H = 7 
boxes and one residual block of 4 boxes, in the following way

Block 1: (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 1, 2, 2), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1)
Block 2: (1, 2, 2, 2), (1, 3, 1, 1), (1, 3, 1, 2), (1, 3, 2, 1), (1, 3, 2, 2), (1, 4, 1, 1), (1, 4, 1, 2)
Block 3: (1, 4, 2, 1), (1, 4, 2, 2), (1, 5, 1, 1), (1, 5, 1, 2), (1, 5, 2, 1), (1, 5, 2, 2), (2, 1, 1, 1)
Block 4: (2, 1, 1, 2), (2, 1, 2, 1), (2, 1, 2, 2), (2, 2, 1, 1), (2, 2, 1, 2), (2, 2, 2, 1), (2, 2, 2, 2)
Block 5: (2, 3, 1, 1), (2, 3, 1, 2), (2, 3, 2, 1), (2, 3, 2, 2)
Then, by selecting one box in the first block and subsequently taking a box every 7, 

there are 4 possible samples of size 5, and 3 samples of size 4, each of them selected with 
probability 1/7, i.e.,

Sample 1: (1, 1, 1, 1), (1, 2, 2, 2), (1, 4, 2, 1), (2, 1, 1, 2), (2, 3, 1, 1)

Fig. 4  Graphical representa-
tion of a batch of N = 32 boxes 
partitioned into K = 2 pallets 
of L

1
= 5 and L

2
= 3 levels, 

respectively, each constituted by 
4 boxes. The yellow box is the 
box of coordinates (1, 4, 1, 2)
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Sample 2: (1, 1, 1, 2), (1, 3, 1, 1), (1, 4, 2, 2), (2, 1, 2, 1)(2, 3, 1, 2)
Sample 3: (1, 1, 2, 1), (1, 3, 1, 2), (1, 5, 1, 1), (2, 1, 2, 2), (2, 3, 2, 1)
Sample 4: (1, 1, 2, 2), (1, 3, 2, 1), (1, 5, 1, 2), (2, 2, 1, 1), (2, 3, 2, 2)
Sample 5: (1, 2, 1, 1), (1, 3, 2, 2), (1, 5, 2, 1)(2, 2, 1, 2)
Sample 6: (1, 2, 1, 2), (1, 4, 1, 1), (1, 5, 2, 2), (2, 2, 2, 1)
Sample 7: (1, 2, 2, 1), (1, 4, 1, 2), (2, 1, 1, 1), (2, 2, 2, 2)
As the 7 samples constitute a partition of the whole batch, each box has a first-order 

inclusion probability of 1/7. However, in this case it is apparent that systematic sampling 
cannot accomplish the EU guidelines, because the inclusion probabilities of 1/7 differ 
from 5∕32 = 0.15625 that would be necessary for achieving an estimator of type (1) or (4). 
Moreover, the sample size is not invariably equal to 5, as would be requested by Tables 1. 
In practice, systematic sampling can accomplish the EU guidelines only when H = N∕n , 
i.e. when the batch can be partitioned into n blocks of equal size N/n, that is not true in 
general.

Alternatively, the so called one-per-stratum sampling can be performed by partitioning 
the batch into n blocks of contiguous boxes of approximately equal sizes H

1
,… ,Hn , and 

then randomly and independently selecting one box in each blocks (see e.g., Breidt, 1995). 
In this case, there are H

1
…Hn possible samples of equal size n that are selected with equal 

probability (H
1
×… × Hn)

−1 while the inclusion probability of each box in the i-th block is 
equal to 1∕Hi.

For example, the population of Fig.  4 can be suitably partitioned into 3 blocks of 7 
boxes, one block of 6 boxes and one block of 5 boxes, in the following way

Block 1: (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 1, 2, 2), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1)
Block 2: (1, 2, 2, 2), (1, 3, 1, 1), (1, 3, 1, 2), (1, 3, 2, 1), (1, 3, 2, 2), (1, 4, 1, 1), (1, 4, 1, 2)
Block 3: (1, 4, 2, 1), (1, 4, 2, 2), (1, 5, 1, 1), (1, 5, 1, 2), (1, 5, 2, 1), (1, 5, 2, 2), (2, 1, 1, 1)
Block 4: (2, 1, 1, 2), (2, 1, 2, 1), (2, 1, 2, 2), (2, 2, 1, 1), (2, 2, 1, 2), (2, 2, 2, 1)
Block 5: (2, 2, 2, 2), (2, 3, 1, 1), (2, 3, 1, 2), (2, 3, 2, 1), (2, 3, 2, 2)
Then, by randomly selecting one box in each block there are 73 × 6 × 5 = 10290 possi-

ble samples of size 5, and the boxes in the first 3 blocks have first-order inclusion probabil-
ities equal to 1/7, those in the fourth block are equal to 1/6 and those in the fifth block are 
equal to 1/5. Also in this case it is apparent that one-per-stratum sampling cannot accom-
plish the EU guidelines, because the inclusion probabilities of 1/7, 1/6 and 1/5 differ from 

Fig. 5  Graphical representa-
tion of a unbalanced (a) and 
balanced (b) selection of n = 5 
boxes (highlighted in red) from 
the batch of N = 32 boxes of 
Fig. 4
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5∕32 = 0.15625 that would be necessary for achieving an estimator of type (1) or (4). Once 
again, one-per-stratum sampling can accomplish the EU guidelines only when the batch 
can be partitioned into n blocks of equal size N/n, that is not true in general.

Stated the impossibility of ensuring samples of fixed size n and equal first-order inclu-
sion probabilities n/N by the familiar and straightforward systematic and one-per stratum 
sampling, more complex sampling schemes are necessary to avoid the selection of neigh-
bouring boxes and provide well spread samples at the same time addressing the EU guide-
lines. To this purpose, it is necessary to point out that the box coordinates xj,1, xj,2, xj,3, xj,4 
are sufficient to identify box positions in the batch, but they are not suitable to quantify 
distances between boxes. Indeed, if the familiar Euclidean criterion

is adopted to determine the distance between boxes j and h, then, referring for example 
to the population of Fig. 4, the distance of the box (1, 1, 1, 1) to the box (1, 1, 2, 1) in the 
same pallet and the same level is equal to 1. However, 1 is also the distance to the box 
(1, 2, 1, 1) that instead is in the upper level and 1 is even the distance to the box (2, 1, 1, 1) 
that is in the other pallet (see Fig. 6).

To solve the problem and to assign greater distances between boxes belonging to dif-
ferent pallets and different levels, we multiply the pallet coordinate xj,1 by 100 and 
the level coordinate xj,2 by 10, leaving unchanged the vertical and horizontal posi-
tions xj,3 and xj,4 . In this way, the distance dj,h between boxes j and h can be suitably 
determined by the Euclidean criterion of type (A.1) applied to the new z-coordinates 
zj,1 = 100xj,1, zj,2 = 10xj,2, zj,3 = xj,3, zj,4 = xj,4 . Therefore, distances are great between 
boxes belonging to different pallets and if pallets are numbered in accordance with their 
position in the warehouse, distances increase with the physical distances of pallets in the 
batch, because even pallet position may influence the deterioration of fruits and vegetables. 
Distances also increase, even if for smaller amounts, between boxes belonging to different 
levels. In practice, referring to the previous example of Fig. 6, on the basis of z-coordinates 
it follows that the distances of the box (1, 1, 1, 1) to boxes (1, 1, 2, 1), (1, 2, 1, 1) and 
(2, 1, 1, 1) are equal to 1, 10 and 100, respectively.

By exploiting this distance criterion, the LPM by Grafström et al. (2012) seems to be 
a suitable solution. The idea pursued by the authors is to create a strong negative correla-
tion between the inclusion of closed units at the same time preserving pre-fixed first-order 
inclusion probabilities, whose sum must be equal to n to ensure samples of fixed size n (see 
e.g. Hedayat and Sinha, 1991, p.12). LPM is performed exploiting a selection algorithm 

(A.1)dj,h =

√

√

√

√

4
∑

i=1

(xj,i − xh,i)
2

Fig. 6  Graphical representation 
of boxes (1, 1, 2, 1), (1, 2, 1, 1) 
and (2, 1, 1, 1) (highlighted in 
green) that have equal Euclidean 
distance 1 to the box (1, 1, 1, 1) 
(highlighted in yellow) on the 
basis of the x-coordinates
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referred to as the pivotal method (Deville and Tillé, 1998). The original algorithm ran-
domly selects two units from the undecided ones and randomly updates their first-order 
inclusion probabilities in such a way that one is increased as much as possible and one is 
decreased in the same way, but preserving inalterate their sum until the sampling outcome 
is decided for at least one unit, in the sense that at least one inclusion probability is updated 
to 0 (unit excluded) or 1 (unit selected). Thus, the sampling ends in at most N steps.

In this framework, the suggestion given by Grafström et al. (2012) is to choose the first 
unit at random from the undecided units and to take the nearest undecided unit as the sec-
ond unit, or to choose it at random among the nearest undecided units, when, as in a batch 
of boxes, the nearest units may be more than one. Then, if applied for selecting boxes from 
a batch, the scheme avoids the selection of neighbouring boxes and achieve a well-spread 
sample. For example, Fig.  7 shows the good spreading achieved by a sample of size 5 
selected by LPM from the batch of Fig. 4.

A further suitable solution for effectively selecting boxes is the use of DBSS by Graf-
ström and Tillé (2013) achieved by combining a generalization of the LPM with the cube 
method by Deville and Tillé (2004). As LPM, DBSS is tailored to sample populations of 
units with pre-fixed first-order inclusion probabilities excluding the selection of nearby 
units but at the same time ensuring nearly balanced samples with respect to M auxiliary 
variables. In practice, the totals of these variables estimated from the sample must be 
almost the same as the true totals in the population. It is worth noting that for obtaining 
samples of fixed size n, the first-order inclusion probabilities of units must be chosen as 
one of these variables, in such a way that their sum invariably equals n. The basic idea 
of DBSS is to generalize LPM by randomly selecting clusters of M + 1 nearby undecided 
units (see the cluster selection algorithm by Grafström and Tillé, 2013,  p.125) instead 
of two neighbouring undecided units, as in the LPM algorithm, and to repeatedly apply 
the fast implementation of the so-called flight phase of cube method (e.g. Tillé, 2006, 
Sect.  8.6.2) on these clusters. In practice, for each selected cluster of M + 1 points, the 
flight phase consists in updating the first-order inclusion probabilities while respecting the 
balancing conditions until at least one inclusion probability is updated to 0 (unit excluded) 
or 1 (unit selected). Thus, the flight phase ends in at most N −M steps with a number of 
undecided units smaller than M + 1 . Obviously, when a unit is selected from a cluster, the 
first-order inclusion probabilities of the other units in the cluster are generally decreased 
in order to respect the balancing condition that their sum must be equal to n, while, for the 
same reason, they are generally increased if the unit is excluded. Therefore, because the 
updating is done for clusters of neighbouring units, the scheme, as LPM, ultimately creates 
a strong negative correlation between the inclusion of closed units.

Finally, at the end of the flight phase, if the number of undecided units is 0, there is no 
other action to perform. Otherwise the so called landing phase is necessary to complete the 

Fig. 7  Graphical representation 
of a sample n = 5 boxes (high-
lighted in red) from the batch of 
N = 32 boxes of Fig. 4 by means 
of the local pivotal method
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sample (Deville and Tillé, 2004). In practice, if there are 0 < G < M + 1 undecided units 
and g units have to be selected, the landing phase consists in enumerating all the possible 
sets of size g that can be selected out of the G. Then, one of these sets is selected and the g 
units of the set are adopted to complete the sample. In most cases, owing to rounding prob-
lems, the resulting sample in not exactly but only approximately balanced with respect to 
the Μ auxiliary variables.

If the first-order inclusion probabilities are used as the sole balancing variable, DBSS 
coincides with LPM, only ensuring samples of units well spread throughout the popula-
tion (Grafström and Tillé 2013). If, besides the first-order inclusion probabilities, further 
balancing variables are adopted to quantify some spatial characteristics of the units, then 
it is also possible to force samples to satisfy further properties. In this scenario, a suitable 
option suggested by Grafström and Tillé (2013) is the use of the unit coordinates as balanc-
ing variables. In this case, DBSS not only provides well-spread samples, but samples and 
the population have approximately the same average coordinates.

DBSS can be applied for selecting samples of boxes from a batch with equal inclusion 
probabilities n/N, using the four z-coordinates as additional balancing variables, for a total 
of M = 5 balancing equations. For example, Fig. 8 shows the good spreading achieved by a 
sample of size 5 selected by DBSS from the batch of Fig. 4 joined with the similarity of the 
averages of the z-coordinates in the whole batch, i.e. 137.5, 26.25, 1.5, 1.5, with their HT 
estimates achieved from the selected sample, i.e. 140, 26, 1.4, 1.4, respectively.
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Fig. 8  Graphical representation 
of a sample n = 5 boxes (high-
lighted in red) from the batch of 
N = 32 boxes of Fig. 4 by means 
of the doubly balanced spatial 
sampling
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