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Abstract: In this paper, we use Generative Adversarial Networks (GANs) to synthesize high-quality
retinal images along with the corresponding semantic label-maps, instead of real images during
training of a segmentation network. Different from other previous proposals, we employ a two-step
approach: first, a progressively growing GAN is trained to generate the semantic label-maps, which
describes the blood vessel structure (i.e., the vasculature); second, an image-to-image translation
approach is used to obtain realistic retinal images from the generated vasculature. The adoption
of a two-stage process simplifies the generation task, so that the network training requires fewer
images with consequent lower memory usage. Moreover, learning is effective, and with only a
handful of training samples, our approach generates realistic high-resolution images, which can be
successfully used to enlarge small available datasets. Comparable results were obtained by employing
only synthetic images in place of real data during training. The practical viability of the proposed
approach was demonstrated on two well-established benchmark sets for retinal vessel segmentation—
both containing a very small number of training samples—obtaining better performance with respect
to state-of-the-art techniques.

Keywords: deep learning; convolutional neural networks; semantic segmentation; generative adversarial
networks; retinal images; image augmentation

1. Introduction

The retinal microvasculature is the only part of human circulation that can be directly
and non-invasively visualized in vivo [1]. Hence, it can be easily acquired and analyzed
by automatic tools. As a result, retinal fundus images have a multitude of applications,
including biometric identification, computer-assisted laser surgery, and the diagnosis of
several disorders [2,3]. One important processing step in such applications is the proper
segmentation of retinal vessels. Image semantic segmentation aims to make dense predic-
tions by inferring the object class for each pixel of an image and, indeed, the segmentation
of digital retina images allows us to extract various quantitative vessel parameters and
to obtain more objective and accurate medical diagnoses. In particular, the segmentation of
retinal blood vessels can help the diagnosis, treatment, and monitoring of diseases such as
diabetic retinopathy, hypertension, and arteriosclerosis [4,5].

Deep Neural Networks (DNNs) has become the standard approach in semantic seg-
mentation [6–8] and in many other computer vision tasks [9–12]. DNN training, however,
requires large sets of accurately labeled data, so the availability of annotated images is
becoming increasingly critical. This is particularly true in medical applications, where data
collection is often difficult and expensive. For this reason, generating synthetic data is of
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great interest. Nevertheless, synthesizing high-resolution realistic medical images remains
an open challenge. Most of the leading approaches for semantic segmentation, in fact, rely
on thousands of supervised images, while supervised public datasets for retinal vessel
segmentation are very small (most datasets contain fewer than 30 images).

To face the scarcity of data, we propose a new approach for the generation of retinal
images along with the corresponding semantic label-maps. Specifically, we propose a
novel generation procedure based on two distinct phases. In the first phase, a generative
adversarial network (GAN) [13] generates the blood vessel structure (i.e., the vasculature).
The GAN is trained to learn the typical semantic label-map distribution from a small set of
training samples. To generate high-resolution label-maps, the Progressively Growing GAN
(PGGAN) [14] approach has been employed. In a second, distinct phase, an image-to-image
translation algorithm [15] is used to translate blood vessels structures into realistic retinal
images (see Figure 1).

Figure 1. The proposed two-step image generation method.

The rationale behind this approach is that, in many applications, the semantic structure
of an image can be learned regardless of its visual appearance. Once the semantic label-map
has been generated, visual details can be incorporated using an image-to-image translation
algorithm, thus obtaining realistic synthesized images. By separating the whole process
into two stages, the generation task is simplified and the number of samples required for
training is significantly reduced. Moreover, the training is very effective and we obtained
retinal images with an unprecedented high resolution and quality, along with their semantic
label-maps. It is worth noting that the proposed two-step approach also reduces the GPU
memory requirements with respect to a single-step method. Finally, the generation of the
label-maps, based on GANs, allows us to synthesize a virtually infinite number of different
training samples with different vasculature.

To assess the usefulness and correctness of the proposed approach, the generation
procedure has been applied on two public datasets (i.e., DRIVE [16] and CHASE_DB1 [17]).
Moreover, the two-step generation procedure has been compared with a single-stage gener-
ation, in which label-maps and retinal images have been generated simultaneously in two
different channels (see Figure 2). Indeed, in our experiments, the multi-stage approach
allows us to significantly improve performance of vessels segmentation when used for data
augmentation. In particular, the generated data have been used to train a Segmentation
Multiscale Attention Network (SMANet) [18]. Comparable results have been obtained by
training the SMANet on the generated images in place of real data. It is interesting to
note that, if the network is pre-trained on the synthesized data and then fine-tuned on
real images, the segmentation results obtained on the DRIVE dataset come very close to
those obtained by the best state-of-the-art approach [19]. If the same approach is applied
to the CHASE_DB1 benchmark, the results overcome (to the best of our knowledge) those
obtained by any other previously proposed method.
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Figure 2. The single-stage image generation scheme.

This paper is organized as follows. In Section 2, the related literature is reviewed.
Section 3 presents a description of the proposed approach. Section 4 shows and discusses
the experimental results. Finally, Section 5 draws the conclusions and future perspectives.

2. Related Work
2.1. Synthetic Image Generation

Methods for generating images can be classified into two main categories: model-
based and learning-based approaches. The most conventional procedure is to formulate
a model of the observed data and to render the images using a dedicated engine. This
approach has been used, for example, to extend the available datasets of driving scenes
in urban environments [20,21] or for object detection [22]. In the field of medical image
analysis, synthetic image generation has been extensively employed. For example, realistic
digital brain-phantom has been synthesized in [23], while more recently, synthetic agar
plate images have been generated for image segmentation [24,25]. The design of specialized
engines for data generation requires an accurate model of the scene and deep knowledge
of the specific domain. For this reason, in recent years, the learning-based approach has
attracted increasing research resources. In this context, machine learning techniques are
used to capture the intrinsic spatial variability of a set of training images, so that the specific
domain model is acquired implicitly from the data. Once the probability distribution that
underlies the set of real images has been learned, the system can be used to generate new
images that are likely to mimic the original ones. One of the most successful machine
learning models for data generation is the Generative Adversarial Network (GAN) [13].
A GAN is composed of two competing networks: a generator G and a discriminator D.
G is trained to map a latent random variable z ∈ RZ into fake images x̃ = G(z), whereas
D aims to distinguish fake samples from real data. The GAN training is formulated as
a min-max game between G and D. GANs strive to generate images that resemble real
data. If the synthetic images are close enough to the real ones, they can be used to enlarge
existing datasets for training machine learning models. For example, GANs have been
used in [26] to augment data for a patch-based approach to OCT chorio-retinal boundary
segmentation. In [27], synthetic chest X-ray (CXR) images are generated by developing an
Auxiliary Classifier Generative Adversarial Network (ACGAN) model, called CovidGAN.
Synthetic images produced by CovidGAN were used to improve the performance of a
standard CNN for detecting COVID-19.

In [28], synthetic abnormal MR images containing brain tumors are generated. An
image-to-image translation algorithm is employed to construct semantic label-maps of real
MR brain images, distortions are introduced on the generated segmentation (i.e., tumors are
shrunk or enlarged, or their position is changed), and then the segmentation is translated
back to images. Indeed, manually introducing distortions on the generated label-maps is
not trivial because they can alter the image semantic—for instance, in the case of retinal
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image generation, enlarging or reducing blood vessels is not meaningful. We solve this
issue directly by learning the semantic label-map distribution with a GAN.

The fundamental idea behind this work is the decomposition of the hard problem
of image generation in multiple stages to simplify the generation process. In particular,
we aim to generate the semantic structure of the scene in the initial phase, while all of the
visual details are incorporated in the second phase. Our experiments demonstrate that this
approach is preferable to a single-step generation procedure, resulting in higher-quality
images that can be used for data augmentation.

2.2. Image-to-Image Translation

Recently, beside image generation, adversarial learning has also been extended to
image-to-image translation, in which the goal is to translate an input image from one
domain to another. Many computer vision tasks, such as image super-resolution [29], image
inpainting [30], and style transfer [31] can be casted into the image-to-image translation
framework. Both unsupervised [32–35] and supervised approaches [14,36,37] can be used.
Supervised training uses a set of pairs of corresponding images {(si, ti)}, where si is an
image of the source domain and ti is the corresponding image in the target domain. As an
example, Pix2Pix [36] consists of a conditional GAN that operates in a supervised way,
and Pix2PixHD [14] employs a coarse-to-fine generator and discriminator, along with a
feature-matching loss-function, to translate images with higher resolution and quality.

2.3. Retinal Image Synthesis

One of the first applications of retinal image synthesis has been described in seminal
work [38], in which an anatomic model of the eye and of the surrounding face has been
implemented for surgical simulations. More recently, in [39], a large dictionary of small
image patches containing no vessels, has been used to model the retinal background and
fovea. A parametric intensity model, in which the parameters have been estimated from
real images, is used to generate the optical disk. Complementary to [39], the contribution
in [40] focuses on the generation of the vascular network, based on a parametric model,
in which the parameters are learned from real vessel trees. Despite these methods provid-
ing reasonable results, they are complex and heavily depend on the domain knowledge.
To reduce the knowledge requirements, a completely learning-based approach has been
proposed in [41], where an image-to-image translation model has been employed to trans-
form existing vessel networks into realistic retinal images. Vessel networks used for learning
have been obtained using a suitable segmentation technique applied to a set of real retina
images. However, the quality of the generated images heavily depends on the segmentation
module performance. In [42], a generative adversarial approach, together with a style
transfer algorithm, is used to reduce the need for annotated samples and to improve the
representativeness (e.g., the variability) of synthesized images. The model still relies on
pre-existing vessel networks (obtained manually or by a suitable segmentation technique).
In [43], an adversarial auto-encoder for retinal vessel synthesis has been adopted to avoid
the dependence of the model on the availability of pre-existent vessel maps. Nevertheless,
this approach allows us to generate only low-resolution images, and the performance in
vessel segmentation using synthesized data is far below that of the state-of-the-art. Higher-
resolution retinal images, along with their segmentation label-maps, have been generated
in [44], using Progressively Growing GANs (PGGANs) [14]. This method allows us to
generate images up to a resolution of 512× 512 pixels. A set of 5550 images segmented by a
pre-trained U-Net [45] have been used during training. Unfortunately, the usefulness of the
generation for image segmentation is not demonstrated.

The present paper improves previous approaches generating synthetic images up
to a resolution of 1024× 1024 pixels. The generation is based on a very small set of pre-
existing images (actually, 20 images with supervised segmentation maps). Both the retinal
images and the corresponding semantic label-maps (the vasculature) are generated. Fur-
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thermore, we prove that combining real retinal images with synthesized ones for training a
segmentation network improves the final segmentation performance.

2.4. Retinal Vessel Segmentation

During recent decades, several approaches for retinal vessel segmentation have been
proposed, both supervised and unsupervised. Unsupervised methods depend heavily on
prior knowledge on the vessel structure. For example, the so-called vessel tracking tech-
niques define an initial set of seed points and, thereafter, by chaining pixels that minimize
a given cost function, iteratively extract the vasculature [46,47]. In [48], retinal images are
convolved with a 2D filter to produce a Gaussian intensity profile of the blood vessels, that
is subsequently thresholded to give the vessel map. Adaptive thresholding has been used
in [49] and in [50]. An active contour model that combines intensity and local phase infor-
mation is used in [51]. In [52], a hybrid unsupervised approach was proposed. To obtain
the vessel location map, the composition of two pre-processed images is fused with the en-
hanced image of B-COSFIRE filters followed by thresholding. Instead, an ensemble strategy
automatically combining multiple segmentation results is presented in [53]. Moreover, since
the retinal blood vessels’ diameter significantly changes based on the distance from the optic
disc, multi-scale approaches can be particularly effective for the vessel segmentation [54,55].
Supervised methods are currently the leading techniques in semantic segmentation. In this
framework, true annotations are used to train a classifier aimed at distinguishing the vessels
from the background. Various classification models have been employed for blood vessel
segmentation based on a preliminary feature engineering stage [56–58], which, however,
has a fundamental impact on performance.

Conversely, deep learning methods automatically learn an increasingly complex hi-
erarchy of features from input data, bypassing the need for problem-specific knowledge
and generally providing better results. Indeed, a deep convolutional neural network
(DCNN) for retinal image segmentation has been used in [59], while the training exam-
ples are subjected to various forms of pre-processing and augmented based on geometric
transformations and gamma corrections. A neural network that can be efficiently used
in real-time on embedded systems is proposed in [60]. In [61], a fully convolutional net-
work [6] was described, with an AlexNet [9] encoder. Fully convolutional networks have
also been used in [62,63]. In [64], the segmentation task was remolded into a problem
of cross-modality data transformation from retinal images to vessel maps. A modified
U-Net [45] was used in [65] to exploit a combination between segment-level loss and pixel-
level loss to deal with the unbalanced ratio between thick and thin vessels in fundus images.
A Holistically Nested Edge Detection (HED) network [66]—originally designed for edge
detection—followed by a conditional random field were employed for the retinal blood
vessel segmentation in [67]. Deep supervision was incorporated in some intermediate
layers of a VGG network [68] in [69,70]. In [71], a fully convolutional neural network
used a stationary wavelet transform pre-processing step to improve the network perfor-
mance. Finally, in [19], a CNN was pre-trained on image patches and then fine-tuned at the
image level.

In this paper, we use the Segmentation Multiscale Attention Network (SMANet),
which allows us to obtain excellent results, comparable with the state-of-the-art.

3. Materials and Methods
3.1. The Benchmark Datasets

• DRIVE dataset—The DRIVE dataset [16] includes 40 retinal fundus images of size
584× 565× 3 (20 images for training and 20 for test). The images were collected
by a screening program for diabetic retinopathy in the Netherlands. Among the
40 photographs, 33 showed no diabetic retinopathy, while 7 showed mild early diabetic
retinopathy. The segmentation ground-truth was provided both for the training and
the test sets.
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• CHASE_DB1 dataset—The CHASE_DB1 dataset [17] is composed by 28 fundus images
of size 960× 999× 3, corresponding to the left and right eyes of 14 children. Each
image is annotated by two independent human experts. An officially defined split
between training and test is not provided for this dataset. In our experiments, we
adopted the same strategy as [64,65], selecting the first 20 images for training and the
remaining 8 for testing.

The main goal of this work is to generate realistic retinal images and the corresponding
semantic segmentation masks by using a very small number of training samples. The pro-
posed generation procedure is composed of two steps (see Figure 1): the first one involves
the generation of semantic label-maps of the vessels while, during the second, the synthesis
of realistic images based on label-maps is carried out. The quality of the generated images
was validated by an expert and their usefulness was verified by the performance obtained
on two public benchmark datasets, using the synthesized images to train a segmentation
network. In particular, Section 3.2 gives an overview of the approach used to generate the
semantic label-maps, while Section 3.3 describes the image-to-image translation algorithm
that synthesizes retinal images from the semantic label-maps. Section 3.4 reports the se-
mantic segmentation network used to segment retinal vessels. Finally, some details on the
training method are collected in Section 3.5.

3.2. Vasculature Generation

The generation of the vessel structure is based on the use of PGGANs, which are capa-
ble of learning the distribution of the semantic label-maps. The label-maps are processed to
encode both the retinal fundus and the vasculature (i.e., the vessel distribution). To reduce
the risk related to the lack of an adequate descriptive power, due to the very limited number
of available training samples, data augmentation was applied. Specifically, the semantic
label-maps were slightly rotated (±15◦) and flipped in different ways (horizontal, vertical,
and horizontal followed by vertical flips). The generation started at low resolution, and
then, the resolution was progressively increased by adding new layers to the networks.
The generator and the discriminator were symmetric and grew in sync. The transition from
low-resolution image generation to high-resolution image generation followed the proce-
dure described in [14], to avoid problems related to sudden transitions. The training started
with both the generator and the discriminator having a spatial resolution of 4× 4 pixels,
progressively increasing until the final resolving power was reached. The Wasserstein
loss, with a gradient penalty [72], was used as the loss function for the discriminator. The
learning procedure is illustrated in Figure 3.

Figure 3. Training scheme for the generation of the semantic label-maps. The resolutions of the generator
(G) and the discriminator (D) were progressively increased until the final resolving power was reached.
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It can be observed that the global structure of the vessel distribution was learned at
the beginning of the training, whereas finer details were added as the resolution increased.
The generation procedure allows us to obtain a virtually infinite number of different
vasculatures. To reduce the probability of introducing artifacts, a simple post-processing
was carried out. Specifically, a morphological opening [73] was applied to the generated
retinal fundus mask to improve its circularity. Small holes were filled, and segments of
small dimension were removed from the generated vessel structure.

3.3. Translating Vessel Maps into Retinal Images

Once the vessel networks were obtained, they were transformed into realistic color
retinal images. Our method is based on Pix2PixHD [14], a supervised image-to-image
translation framework derived from Pix2Pix [36]. In Pix2Pix, a conditional GAN learns to
generate the output conditioned on the corresponding input image. The generator has an
encoder-decoder structure, takes in input images belonging to a certain domain A, and
generates images in a different domain B. The discriminator observes pairs of images,
and the image of A is provided as input along with the corresponding image of B (real or
generated). The discriminator aims to distinguish between real and fake (generated) pairs.
Pix2PixHD improves upon Pix2Pix by introducing a coarse-to-fine generator composed
of two subnetworks that operate at different resolutions. A multiscale discriminator was
also employed, with an adversarial loss that incorporates feature-matching loss for training
stabilization. In our setup, the semantic label-maps, previously generated, were fed into
the generator, which is trained to generate retinal images. An overview of the proposed
setup is given in Figure 4.

Figure 4. Scheme of the Pix2Pix training framework employed to translate label-maps into retinal images.

3.4. The SMANet Architecture

The semantic segmentation network employed in this paper is a Segmentation Multi-
scale Attention Network (SMANet) [18]. The SMANet, originally proposed for scene text
segmentation, comprises three main components: a ResNet encoder, a multi-scale attention
module, and a convolutional decoder (see Figure 5).

The architecture is based on the PSPNet [8], a deep fully convolutional neural network
with a ResNet [74] encoder. In the PSPNet, to enlarge the receptive field of the neural
network, a set of standard convolutions of the ResNet backbone has been replaced with
dilated convolutions (i.e., atrous convolutions [75]). Moreover, in the PSPNet, a pyramid of
pooling layers, with different kernel size, has been employed to gather context information.
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The pooled feature maps are then up-sampled at the same resolution as the ResNet output,
concatenated, and fed into a convolutional layer to obtain an encoded representation. In
the original PSPNet, this representation is followed by a final convolutional layer that
reduces the feature maps to the number of classes. The desired per-pixel prediction is
obtained directly up-sampling to the original image resolution. In the SMANet, a multi-
scale attention mechanism is adopted to focus on the relevant objects present in the image,
while a two-level convolutional decoder is added to the architecture to better handle the
presence of thin objects.

Figure 5. Scheme of the SMANet segmentation network.

3.5. Training Details

The SMANet, used in this work was implemented in TensorFlow. Random crops of
281× 281 pixels were employed during training, whereas a sliding window of the same size
was used for the evaluation. The Adam optimizer [76], based on a learning rate of 10−4 and
a mini-batch of 17 examples, was used to train the SMANet. Early stops were employed
using a validation set of three images, randomly extracted from the real data training set.
Additionally, the PGGAN was realized in TensorFlow, while Pix2PixHD was implemented
in PyTorch. The PGGAN architecture is similar to that proposed in [14], but to speed up
the computation and to reduce overfitting, the maximum number of feature maps for each
layer was fixed to 128. Moreover, since the aim of the generator is to produce a semantic
label-map, the output image has only one channel, instead of three. The PGGAN and
Pix2PixHD hyperparameters were tuned by visually inspecting the quality of the generated
samples. The images were resized to the nearest power-of-two resolution (i.e., the retinal
images in the DRIVE dataset, which have a resolution of 565× 584 pixels, were resized
to 512× 512 pixels, whereas the CHASE images that have a resolution of 999× 960 pixels
were resized to 1024× 1024 pixels).

All of the experiments were carried out in a Linux environment on a single NVIDIA
Tesla V100 SXM2 with 32 GB RAM.

4. Results and Discussion

In this paper, we provide both qualitative and quantitative evaluations of the generated
data. In particular, some qualitative results of the generated retinal images for the DRIVE
and CHASE_DB1 dataset are given in Figures 6 and 7.

In Figure 8, a zoom on a random patch of a high-resolution generated image shows
that the image-to-image translation allows us to effectively translate the generated vessel
structures in retinal images by maintaining the semantic information provided by the
semantic label-map. It is worth noting that, although most of the generated samples closely
resemble real retinal fundus images, few examples are clearly sub-optimal (see Figure 9,
which shows disconnected vessels and an unrealistic optical disc).
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(a)

(b)

(c)

Figure 6. Examples of real and generated DRIVE images. (a) Generated DRIVE images with our
two-step method; (b) Generated DRIVE images with the single-step method; (c) Real DRIVE images.

(a)

(b)

(c)

Figure 7. Examples of real and generated CHASE_DB1 images. (a) Generated CHASE_DB1 images
with our two-step method; (b) Generated CHASE_DB1 images with the single-step method; (c) Real
CHASE_DB1 images.
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Figure 8. Example of a generated image (resolution 1024× 1024) with the corresponding label-map
from the CHASE_DB1 dataset.

To further validate the quality of the generation process, a sub-sample of 100 syntheti-
cally generated retinal images were examined by an expert ophthalmologist. The evaluation
showed that 35% of the images are of medium-high quality. The remaining 65% is visually
appealing but contains small details that reveal an unnatural anatomy, such as an optical
disc with feathered edges—which actually occur only in the case of specific diseases—
or blood vessels that pass too close to the macula—while usually, except in the case of
malformations, the macular region is avascular or at least paucivascular.

Figure 9. Examples of generated images with an unrealistic optical disc and vasculature from DRIVE
(top) and CHASE _DB1 (bottom).
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Table 1 compares the characteristics of the proposed method with respect to other
learning-based approaches for retinal image generation found in the literature.

It can be observed that our approach is able to synthesize higher-resolution images,
with less training samples, with respect to methods that generate both the image and the
corresponding segmentation. Moreover, for such methods, the usefulness of the inclusion
of synthetic images in semantic segmentation was not assessed. Instead, in this paper, we
demonstrate that synthetic images can be effectively used for data augmentation, which
indirectly guarantees the high quality of the generated data.

Table 1. Comparison with other generation approaches.

Methods Gen. Vessels Max Res. Samples

[41] No 512× 512 614
[42] No 2048× 2048 10–20
[43] Yes 256× 256 634
[44] Yes 512× 512 5550
Our Yes 1024× 1024 20

Indeed, the quantitative analysis consists of assessing the usefulness of the generated
images for training a semantic segmentation network. This approach, similar to [77], is
based on the assumption that the performance of a deep learning architecture can be
directly related with the quality and variety of GAN-generated images. The generation
procedure described in Section 3 was employed to generate 10,000 synthetic retinal images
for both the DRIVE and the CHASE_DB1 datasets; the samples were generated in a single
run without any selection strategy. To evaluate the usefulness of the generated data for
semantic segmentation, we employed the following experimental setup:

• SYNTH—the segmentation network was trained using only the 10,000 generated
synthetic images;

• REAL—only real data were used to train the semantic segmentation network;
• SYNTH + REAL—synthetic data were used to pre-train the semantic segmentation

network and real data were employed for fine-tuning.

Tables 2 and 3 report the results of the vessel segmentation for the DRIVE and CHASE_DB1
datasets, respectively.

Table 2. Segmentation performance using the generated and real images from the DRIVE dataset.

Methods AUC Acc

SYNTH 98.5% 96.88%
REAL 98.48% 96.87%

SYNTH + REAL 98.65% 96.9%

Table 3. Segmentation performance using the generated and real images from the CHASE_DB1
dataset.

Methods AUC Acc

SYNTH 98.64% 97.49%
REAL 98.82% 97.5%

SYNTH + REAL 99.16% 97.72%

It can be observed that the semantic segmentation network, trained on synthetic data,
produces results very similar to those obtained by training on real data. This demonstrates
that synthetic images effectively capture the training image distribution, so that they can be
used to adequately train a deep neural network. Moreover, if fine-tuning with real data is
applied after pre-training with synthetic data only, the results further improve with respect



Electronics 2022, 11, 60 12 of 17

to the use of real data only. This fact indicates that the generated data can be effectively
used to enlarge small training sets, such as DRIVE and CHASE_DB1. Specifically, the AUC
is improved by 0.17% and 0.34% on the DRIVE and CHASE_DB1 datasets, respectively.

Another set of experiments was designed to compare the proposed two-stage gen-
eration procedure with a traditional single-step approach. In particular, in the one-stage
method, the label-maps and the retinal images were generated simultaneously. The re-
sults of the single-step approach on the DRIVE and CHASE_DB datasets are shown in
Tables 4 and 5.

Table 4. Segmentation performance, using the single-step method, on the DRIVE dataset.

Methods AUC Acc

SYNTH 93.49% 91.01%
REAL 98.48% 96.87%

SYNTH + REAL 98.57% 96.88%

Table 5. Segmentation performance, using the single-step method, on the CHASE_DB1 dataset.

Methods AUC Acc

SYNTH 66.96% 92.62%
REAL 98.82% 97.5%

SYNTH + REAL 98.87% 97.65%

Tables 6 and 7 allows us to quickly visualize the differences between the two methods.
In can be observed that better results are obtained in all the setups by employing the two-
stage generation approach. In particular, if only synthetic data are used, the AUC increases
by 5.01% (31.68%) with the two-stage method in the DRIVE (CHASE_DB1) dataset. As
expected, the difference between the two methods is smaller if fine-tuning on real data is
applied. Finally, we observe that the gap increases with higher image resolution. In the
CHASE_DB1 dataset, in which the images have twice the resolution of the DRIVE dataset,
the one-step generated images cannot be effectively used as data augmentation.

Table 6. A comparison of the vessel segmentation results on the DRIVE dataset between the one-step
and the two-step methods.

Methods AUC Acc

One-Step (S) 93.49% 91.01%
Two-Step (S) 98.5% 96.88%

One-Step (S + R) 98.57% 96.88%
Two-Step (S + R) 98.65% 96.90%

Table 7. A comparison of the vessel segmentation results on the CHASE_DB1 dataset between the
one-step and the two-step methods.

Methods AUC Acc

One-Step (S) 66.96% 92.62%
Two-Step (S) 98.64% 97.49%

One-Step (S + R) 98.87% 97.65%
Two-Step (S + R) 99.16% 97.72%

In the end, Tables 8 and 9 compare the proposed approach with other state-of-the-
art techniques.
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Table 8. A comparison with the state-of-the-art vessel segmentation methods on the DRIVE dataset.

Methods AUC Acc

[61] 96.80% 95.93%
[64] 97.38% 95.27%
[62] 97.44% 95.33%
[65] 97.52% 95.42%
[69] 97.82% 95.21%
[59] 97.90% 95.35%
[63] 97.92% 95.60%
[71] 98.21% 95.76%
[19] 98.74% 96.90%
Our 98.65% 96.90%

Table 9. A comparison with the state-of-the-art vessel segmentation on the CHASE_DB1 dataset.

Methods AUC Acc

[61] 95.80% 95.91%
[64] 97.16% 95.81%
[65] 97.81% 96.10%
[59] 98.45% 95.77%
[69] 98.12% 95.99%
[71] 98.55% 96.53%
[19] 98.78% 97.37%
Our 99.16% 97.72%

The results show that the proposed approach reaches the state-of-the-art on the DRIVE
dataset, where it is only outperfomed by [19], when the AUC measure is used and out-
performs all of the other methods on the CHASE_DB1 dataset. It is worth remembering
that the experimental setups adopted by the previous approaches are varied and that
a perfect comparison was impossible. For example, CHASE_DB1 does not provide an
explicit training/test split, and in [64,65], the same split as in this paper was employed,
while in [19,69,71] a fourfold cross-validation strategy was applied (in [71], where each
fold included three images of one eye and four images of the other). Moreover, in [59],
only patches that were fully inside the field of view were considered. However, even with
those inevitable experimental limits, the results of Tables 8 and 9 suggest that the proposed
method is promising and is at least as good as the best state-of-the-art techniques.

5. Conclusions

In this paper, we proposed a two-stage procedure to generate synthetic retinal images.
During the first stage, the semantic label masks, which correspond to the retinal vessels,
were generated by a Progressively Growing GAN. Then, an image-to-image translation
approach was employed to obtain the retinal images from the label masks. The proposed
approach allowed us to generate images with unprecedented high resolution and realism.
The reported experiments demonstrate the usefulness of synthetic images, which can be
effectively used to train a deep segmentation network. Moreover, if fine-tuning based on
real images is applied, after a preliminary learning phase based only on synthetic images,
the performance of the segmentation network further improves, reaching the performance
of or outperforming the best methods. It is worth noting that the proposed framework for
image generation is general and not limited to retinal image generation. The possibility of
extending the proposed two-phase generation procedure to different domains is a matter
of further investigations.
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