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Price of Fairness

in Two-Agent Single-Machine Scheduling Problems*

Alessandro Agnetis� Bo Chen� Gaia Nicosia§ Andrea Pacifici¶

September 13, 2018

Abstract

We investigate the concept of price of fairness in resource allocation and apply it to two-
agent single-machine scheduling problems, in which two agents, each having a set of jobs,
compete for use of a single machine to execute their jobs. We consider the situation where
one agent aims at minimizing the total of the completion times of his jobs, while the other seeks
to minimize the maximum tardiness with respect to a common due date for her jobs. We first
explore and propose a definition of utility, then we study both max-min and proportionally
fair solutions, providing a tight bound on the price of fairness for each notion of fairness. We
extend our study further to the problem in which both agents wish to minimize the total of
the completion times of their own jobs.

Keywords: two-agent scheduling, max-min fairness, Kalai-Smorodinsky fairness, propor-
tional fairness, price of fairness

1 Introduction

Fairness issues arise in many applications and are studied in different research areas of economics,
operations research and mathematics, to name a few. Fairness concepts have been widely studied
in the context of fair division problems and in many other application scenarios (see, e.g., Brams
and Taylor (1996) for a general overview). In cooperative game theory, classical two-player
bargaining is a class of crucial problems that encapsulate the difficulty of fair division of a limited
resource between two agents by suitably comparing their utility functions (Chun, 1988; Forsythe
et al., 1994; Kalai and Smorodinsky, 1975).

In this paper, we address fairness concepts in the context of classical single-machine schedul-
ing. There are two agents and each owns a set of jobs, which must be scheduled on a common
processing resource. Each schedule implies a certain utility for each agent. We use weighted sum
of the agents’ utilities as an index of collective satisfaction (system utility) and we refer to any
solution that maximizes system utility as a system optimum. Recently, a certain amount of
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literature has addressed scheduling problems in which jobs are partitioned among two or more
agents (Agnetis et al., 2014). In two-agent situations, research mainly focuses on complexity and
algorithmic results for the problems of (a) maximizing an agent’s utility under the constraint that
the other agent’s utility does not fall below a certain threshold, (b) generating all Pareto optimal
solutions, or (c) maximizing system utility. Starting from classical basic single-machine models,
research is now addressing these problems in increasingly complex settings (see, e.g., Tang et al.,
2017). Now, even if it maximizes system utility, a system optimum may well be highly unfair
to (and hence unacceptable by) the worse-off agent. Rather, a solution that incorporates some
criterion of fairness may be more acceptable. In this paper, although we also consider com-
plexity issues related to finding fair solutions, our main concern is to investigate is how much
system utility has to be sacrificed in order to reach a fair solution. The quantity that captures
this concept is known as the price of fairness (PoF). Given a bargaining problem, and a certain
definition of fairness, the PoF is the maximum (over all instances of the given problem) relative
loss in overall system utility of a fair solution with respect to the system optimum. We are not
aware of any such study in the context of classical single-machine scheduling.

Depending on the specific problem setting and also on the agent perception of what a fair
solution is, assorted definitions of fairness can be found in the scientific literature. In this paper
we focus on two of the most popular fairness notions, namely Kalai-Smorodinsky fairness (Kalai
and Smorodinsky, 1975) and proportional fairness (Kelly, Maulloo, and Tan, 1998).

Caragiannis et al. (2012) are the first to introduce the concept of PoF in the context of fair
allocation problems. They compare the total value of agents’ utilities at system optimum with
the maximum total of agents’ utilities obtained over all fair solutions based on several notions of
fairness, such as proportionality, envy-freeness and equitability. Bertsimas, Farias, and Trichakis
(2011) focus on proportional fairness and max-min fairness and provide a tight characterization
of PoF for a broad family of allocation problems with compact and convex utility sets of the
agents. Nicosia, Pacifici, and Pferschy (2017) establish a number of properties for the PoF,
which hold for any general multi-agent problem without any special assumption on the agents’
utilities, focusing on max-min, Kalai-Smorodinsky and proportional fairness. Situations in which
the agents pursue the minimization of their costs (rather than maximization of their utilities)
have been dealt with by Ertogral and Wu (2000), who derive a measure of fairness among a set
of supply chain members. Through an experimental study, they evaluate the degradation of the
solution quality with respect to a system optimum, when imposing some fairness level. Another
example of fairness in the presence of cost allocations can be found in Bohm and Larsen (1994).

For the scheduling setting addressed in this paper, we can refer the reader to the situations
addressed by multi-agent scheduling models (Agnetis et al., 2014), or by decentralized scheduling
models (Wellman et al., 2001). Whenever two or more agents compete for the use of a resource
over time, the fairness issue arises naturally. As an example, scheduling aircraft on a runway
entails fairness considerations, as different flights belong to different companies (Soomer and
Franx, 2008). The problem addressed in Section 3 applies to an incoming flight having a nominal
arrival time, which has to be inserted within a sequence of flights belonging to another carrier. As
another example, one can consider the production problem addressed by Lang and Fink (2015),
in which different companies (or departments) jointly hold the production facilities (machines)
and compete for their usage, each pursuing its own objective, as is the case of industrial districts
(Albino et al., 2005). In order to reach a compromised schedule, a facilitator may impose a
negotiation protocol (as proposed by Lang and Fink (2015)), or can enforce a fair schedule if the
agents are willing to disclose the information of their jobs, as in the approach adopted in this
paper.

Our study of fairness in this paper is organized as follows. In Section 2 we introduce the basic
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notation and the concepts of agent and system utilities, define the notions of fair solutions (such
as Kalai-Smorodinsky and proportionally-fair solutions) and that of Price of Fairness (PoF).
Sections 3 and 4 are devoted respectively to two scheduling problems with different agents’
objectives. In the first scheduling problem, one agent aims to minimize the total completion time
of his jobs, and the other the maximum tardiness with respect to a common due date for her
jobs. In the second scheduling problem, both agents wish to minimize the total completion time
of their jobs. For the above two problems, we investigate whether a specific kind of fair solution
exists and, if so, the complexity of finding one. Finally we establish (bounds on) the PoF in the
four resulting cases. We provide a further discussion of our results in Section 5.

2 Preliminaries

The problems we address are formally described as follows. There are two agents, namely A and
B. Each agent owns a set of jobs and each job has to be performed (for a given period of time)
by a single machine that is shared by the two agents. A feasible schedule is an assignment of
all jobs to their respective starting times such that processing of each job is uninterrupted once
started and the machine can only process one job at a time. We use the terms A-jobs and B-jobs
to refer to the jobs of the respective agents.

Given a feasible schedule σ, we let fA(σ) and fB(σ) denote the cost values for the two agents
respectively. If two schedules σ and σ′ incur the same costs for the two agents, i.e., f i(σ) = f i(σ′)
for i = A,B, then we are not interested in distinguishing between them and consider σ and σ′ as
equivalent and regard them as a single solution. A schedule σ∗ is said to be Pareto optimal, if
there is no feasible schedule σ, such that f i(σ) ≤ f i(σ∗) for i = A,B and at least one of the two
inequalities is strict. In other words, given a Pareto optimal schedule, any other feasible schedule
that makes one agent better off will make the other agent worse off. Throughout the paper, we
consider as bargaining set the set ΣP of Pareto optimal schedules, as they include all sensible
compromise schedules.

For each schedule σ ∈ ΣP , we want to define utility values uA(σ) and uB(σ), so that, for
i = A,B, ui(σ) ≥ 0 and ui(σ) increases as f i(σ) decreases. To this end, we propose the
following definition of utility (an alternative definition is briefly discussed in Section 5). Let
f i∞ = max{f i(σ) ∶ σ ∈ ΣP }. For regular functions f i(σ) (i.e., functions that are non-decreasing
in the completion times of agent i’s jobs), this is the minimum cost agent i bears if his jobs are
scheduled after all the jobs of the other agent. Then we define agent utilities as follows:

ui(σ) = f i∞ − f i(σ), i = A,B. (1)

In other words, the utility of an agent is represented by the saving achieved with respect to the
worst schedule for the agent.

Let us now consider the concept of system utility. Perhaps the most common definition,
mostly adopted in economics, is to define system utility as the sum of the individuals’ utilities.
This is also the definition given by Bertsimas, Farias, and Trichakis (2011). Such a definition is
especially appropriate if the agents hold similar objectives. However, this may not be the case in
general under our scheduling setting, in which, e.g., one agent may be interested in minimizing
the makespan of her jobs, while the other agent the total of his job completion times. For this
reason, we consider a more general system utility, obtained as a (positively) weighted sum of
the agents’ individual utilities. Therefore, without loss of generality, given a schedule σ, for any
exogenously given and fixed value α > 0, we define the system utility U(σ) as follows:

U(σ) = uA(σ) + αuB(σ). (2)
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We also let σ∗ denote the schedule that maximizes system utility (system optimum), i.e.,

U(σ∗) = max
σ∈ΣP

{U(σ)}.

Denote f i∗ = min{f i(σ) ∶ σ ∈ ΣP }. The main purpose of our study concerns the comparison in
terms of system utility between a fair schedule and a system optimal schedule. We consider the
following two fairness notions.

Kalai-Smorodinsky fairness. Given σ ∈ ΣP , let

ūi(σ) =
ui(σ)

f i∞ − f i∗
(3)

be the normalized utility of σ for agent i. Consider the set ΣKS ⊆ ΣP of schedules that maximize
the normalized utility of the agent who is worse-off, i.e.,

ΣKS = {σKS ∶ σKS = arg max
σ

min
i=A,B

{ūi(σ)}} . (4)

We say that all the schedules in ΣKS are KS-fair. Notice that ΣKS is always nonempty. In
bargaining games for which the bargaining set is compact and convex, ∣ΣKS∣ = 1 (Kalai and
Smorodinsky, 1975). Note that in our scheduling setting, it may be indeed ∣ΣKS∣ > 1. This
implies that some care has to be taken when defining the price of fairness.

Another classical notion of fairness, known as max-min fairness, arises if we use in Equation (4)
the agents utility as defined in Equation (1), instead of the normalized utility (3). Indeed, the
two concepts of Kalai-Smorodinsky and max-min solution coincide if fA∞ − fA∗ = fB∞ − fB∗. Max-
min fairness makes sense in contexts where the the range of values of the agent objectives are
comparable. This is not the case in our study, at least when the two agents pursue different
objectives that take values which may be far apart from each other.

Proportional fairness. A schedule σPF is proportionally fair if, for any other Pareto optimal
schedule σ, it holds that

uA(σ) − uA(σPF)

uA(σPF)
+
uB(σ) − uB(σPF)

uB(σPF)
≤ 0. (5)

In other words, when moving from schedule σPF to any other schedule σ, the relative benefit any
one agent may obtain is at the cost of a no-smaller relative utility decrease of the other agent.
This is actually the same rationale behind the concept of Nash Bargaining Solution (NBS) (Nash,
1950). In fact, the two concepts coincide when the bargaining set is compact and convex, in which
case it is the (unique) allocation maximizing the product of the two agents’ utilities. If this is
not the case and the feasible set of alternatives is finite—as it is in the present setting—the
problem of extending the concept of NBS is not trivial: A comprehensive discussion can be found
in, e.g., Mariotti (1998). Indeed, one can always define the NBS as the one maximizing such
product (see, e.g., Agnetis, de Pascale, and Pranzo (2009)), yet the existence of an NBS does
not guarantee that there is a proportionally fair solution. On the other hand, one can show that
if a proportionally fair solution exists, then it is unique (Nicosia, Pacifici, and Pferschy, 2017).
Clearly, the latter general property holds true also in our scheduling setting.

Given a certain scheduling problem, let I denote the set of all its instances. Given an instance
I ∈ I, let σ⋆(I) and ΣF (I) denote a system optimum and the set of fair schedules for I. We
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next introduce a quantity that indicates how much utility one has to give up (with respect to
the system optimum) in order to get a fair solution. Note that there may be more than one
fair solution (i.e., one may have ∣ΣF (I)∣ > 1), differing in terms of global utility. So, one might
question whether the loss in system efficiency should be measured with respect to the best or
to the worst fair solution. The concept of fairness typically arises as something that has to be
enforced by a super-partes facilitator, who trades some system efficiency for fairness. In this
respect, it seems reasonable that the facilitator chooses the best fair solution. This is also the
point of view adopted in other papers, such as Karsu and Morton (2015) and Naldi et al. (2016),
where a fair solution is selected by a third party or central decision maker who takes into account
the utility functions of the two agents (hence their degree of satisfaction), and the overall system
utility.

Hence, by suitably modifying the definition by Bertsimas, Farias, and Trichakis (2011), we
define the price of fairness as

PoF = sup
I∈I

min
σF ∈ΣF

{
U(σ∗(I)) −U(σF (I))

U(σ∗(I))
} . (6)

Note that this is a definition similar to the well-known Price of Stability (Anshelevich et al.,
2004), replacing the role of Nash equilibrium with fairness.

Hereafter, we indicate with PoFKS and PoFPF the price of Kalai-Smorodinsky fairness and
proportional fairness, respectively. In this paper we investigate the values of PoFKS and PoFPF

in the following scheduling problems:

1. Agent A pursues the minimization of the sum of completion times of his jobs, while agent
B is interested in minimization of the maximum tardiness of her jobs with respect to a
common due date d, where the tardiness of a job with completion time C is defined as
max{0,C − d}. We denote such a problem as

1∣dBj = d ∣ (∑CAj , T
B
max) .

Note that this problem includes as a special case (d = 0) the situation where agent B wishes
to minimize the makespan of her jobs, i.e., 1∣ ∣(∑CAj ,C

B
max).

2. Both agents pursue the minimization of the sum of the completion times of their jobs. We
denote the problem as

1∣ ∣ (∑CAj ,∑CBj ) .

For problem 1∣dBj = d ∣(∑CAj , T
B
max), we show that PoFKS = 2/3 and PoFPF = 1/2. Moreover,

we show that, if the jobs are given in SPT order, i.e., in order of non-decreasing processing times,
in logarithmic time a proportionally fair solution can be computed or proved that it does not
exist. For problem 1∣ ∣(∑CAj ,∑C

B
j ), we show that PoFKS ≥ 2/3 and PoFPF = 1/2. Finally, we

show that it is NP-hard to compute a KS or a proportionally fair schedule even if such a schedule
exists.

3 Problem 1∣dBj = d ∣(∑CA
j , T

B
max)

Let m denote the number of jobs of agent A, and p1, p2, . . . , pm their processing times. Denote
P = ∑

m
j=1 pj . We assume that A-jobs are numbered in shortest processing time (SPT) order.

Using a standard pairwise exchange argument it is easy to prove that in any Pareto optimal
schedule A-jobs are scheduled in SPT order.
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For what concerns agent B, we observe that, in any schedule σ, only the maximum completion
time of a B-job is relevant to the value of fB(σ). Therefore, in each schedule σ ∈ ΣP all the
B-jobs are scheduled consecutively in one block, and as a consequence, with no loss of generality,
in this section we assume that agent B has a single job of length K. (For the sake of simplicity,
and with a small abuse of notation, we refer sometimes to such a job as job K.)

Since in any Pareto optimal schedule the A-jobs are scheduled in SPT order, a Pareto optimal
schedule is completely characterized by the number of A-jobs following the job K. Let σ` denote
the schedule in which ` jobs follow job K, and let P` denote the total processing time of the jobs
scheduled after K, i.e.,

P` =
m

∑
j=m−`+1

pj .

Hence Pm = P .
If K ≤ d, then there exists at least a value of ` ∈ {0,1, . . . ,m} such that the completion time

of job K in σ` does not exceed the due date d, in which case we say job K is early. Let `d be the
smallest among such values of `, noticing that, if K > d, job K cannot be early in any schedule
σ`:

`d =

⎧⎪⎪
⎨
⎪⎪⎩

min0≤`≤m {` ∶ ∑m−`j=1 pj +K ≤ d} , if K ≤ d;

m, if K > d.
(7)

The above definition implies that job K is early in σ` if and only if K ≤ d and ` ≥ `d, i.e.,

P` ≥ P +K − d
K≤d
←→ ` ≥ `d. (8)

In fact, the number of A-jobs processed before job K in the best Pareto optimal solution for
agent B is m − `d.

Example 1. Consider the following instance of problem 1∣dBj = d ∣(∑CAj , T
B
max). Agent A has

m = 9 jobs with processing times pj = 3,4,5,7,8,16,26,88,130, so that P = 287. The B-job has a
processing time K = 33 with common due date d = 43. We have `d = 7. In fact p1+p2+K = 40 ≤ d
and p1 + p2 + p3 +K = 45 > d. Therefore, P`d = ∑

9
`=3 p` = 280, P +K − d = 277. See the upper pane

in Figure 1 for an illustration. Clearly, among Pareto optimal schedules, σ0 is the best schedule
for agent A (and the worst for agent B) and σ`d the best schedule for agent B (and the worst for
agent A), i.e., ūA(σ0) = ū

B(σ`d) = 1, while ūA(σ`d) = ū
B(σ0) = 0. Observe that schedules σ` for

` > `d are not considered, since they are not Pareto optimal.
The lower pane in Figure 1 corresponds to the same instance of the problem except that

d = 30.

3.1 Utility values of Pareto optimal schedules

Note that if `d = 0, then schedule σ0 provides maximum utility to each agent and hence it is
trivially fair, giving PoF = 0 under any fairness measure. Therefore, we assume without loss of
generality that 1 ≤ `d ≤m, which implies that P +K − d > 0.

To simplify notation, in the remainder of this section we write f i(`), ui(`), ūi(`) and U(`),
instead of f i(σ`), u

i(σ`), ū
i(σ`) and U(σ`) for i = A,B. In Table 1 the values of cost, utility and

normalized utility for each Pareto optimal solution σ` are reported for both K ≤ d and K > d.
Note that, in particular, for the case K ≤ d, fB(`) = P −P` +K −d > 0 when ` < `d, and fB(`) = 0
when ` = `d. Finally we obtain

U(`) =K(`d − `) + αmin{P`, P +K − d}. (9)
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Figure 1: An example with schedule σ`d when K < d and K > d

Agent A
Agent B

K ≤ d K > d

f i∗ ∑m
j=1∑j

h=1 ph 0 K − d
f i
∞ fA∗ +K`d P +K − d P +K − d

f i(`) fA∗ +K` max{0, P − P` +K − d} P − P` +K − d
ui(`) K(`d − `) min{ P`

`̄<`d

, P +K − d´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
`=`d

} P`

ūi(`) (`d − `)/`d min{P`, P +K − d}/(P +K − d) P`/P

Table 1: Cost and utility values for schedule σ`

It is convenient to plot normalized utilities of the two agents on a chart with ` on the horizontal
axis and ūi(`) on the vertical axis (see Figure 2 for an illustration). Recalling that `d =m when
K > d, as ` varies from 0 to `d, clearly ūA(σ) linearly decreases from 1 to 0. The linear function
ũA(x) = 1 − (x/`d), for x ∈ [0, `d], coincides with ūA(σ) for integer values of x. On the contrary,
as ` varies from 0 to `d, ū

B(σ) goes from 0 to 1. If we consider the piecewise linear curve ũB(x)
obtained from joining consecutive points on the chart, we observe that such a curve is concave,
since pm−`+1 ≥ pm−`, for all 0 ≤ ` ≤ `d. As a consequence, the curve ũB(x) is entirely on or above
the line x/`d. Actually, it coincides with such a line if the `d longest jobs of agent B have the
same length.

In order to better understand the properties of the schedules σ`, we analyze the trends of f i(`)
and ūi(`) when moving from σ`−1 to σ`. To begin with, it is easy to observe that fA increases
by K, so ūA decreases by K/(K`d) = 1/`d (or 1/m if K > d). For what concerns the objective of
agent B, we need to distinguish the cases of K ≤ d and K > d.

IfK ≤ d and ` ≤ `d−1, fB decreases by pm−`+1, and therefore ūB increases by pm−`+1/(P+K−d).
In the schedule σ`d , K is not tardy, and we denote its slack time as ∆ = d− (P −P`d +K) ≥ 0 (see
Figure 1, where ∆ = 3), with ∆ = 0 if and only if K completes exactly at d. Hence, moving from
σ`d−1 to σ`d , fB(σ) decreases by (pm−`d+1 −∆)/(P +K − d), so that ūA(`d) = 1.

IfK > d, `d =m and in the best Pareto optimal schedule σm for agentB, jobK is already tardy.
As above, fB decreases by pm−`+1 while ūB(σ) increases by pm−`+1/P for all values ` = 1, . . . ,m.
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Figure 2: The graphics of normalized utility for Example 1

3.2 KS fairness

Let us characterize σKS among all schedules of ΣP . First of all, we note that the case `d = 1
can be ruled out. In fact, in this case ΣP only consists of σ0 and σ1. These two schedules give
maximum (i.e., 1) normalized utility to one agent and zero (normalized) utility to the other, and
at least one of them is also a system optimum. Such a system optimum can be therefore taken
as σKS, and also in this case PoFKS = 0. In this case, the KS fairness concept fails to capture any
fairness. Hence, from now on we assume `d ≥ 2 in our consideration of KS fairness.

In what follows, we let `KS denote the index such that σ`KS
≡ σKS. Consider the point x = xKS

where the two curves ũA(x) and ũB(x) intersect in Figure 2. From the definition of KS fairness,
one has that if xKS is integer, then xKS = `KS. Otherwise, either `KS = ⌊xKS⌋ or `KS = ⌈xKS⌉,
depending on whether or not min{ūA(⌊xKS⌋), ū

B(⌊xKS⌋)} ≤ min{ūA(⌈xKS⌉), ū
B(⌈xKS⌉)}. Due to

the concavity of ũB(x), the intersection certainly takes place for x ≤ `d/2. In conclusion, if we
denote by ¯̀the smallest ` such that ūA(`) < ūB(`), then `KS ∈ {¯̀−1, ¯̀}. From the monotonicity of
ūA(⋅) and ūB(⋅), the value of ¯̀ (and therefore `KS) can be found through a binary search between
2 and ⌊`d/2⌋. Hence, the following theorem holds.

Theorem 1. If the A-jobs are already sorted in SPT order, then it is possible to find a Kalai-
Smorodinsky fair schedule in O(logm) time.

Example 1 (continued). Since `d = 7 is odd, the curves ūB(x) in Figure 2 intersect at the
fractional point 1 < x < 2 while `KS = 2 (see shaded rectangle R). In addition, the curve ũ′B(`)
illustrates the case corresponding to a different set of processing time values for agent A: p′j =
1,6,32,36,39,40,41,42,50 with P = 287. Everything remains the same for agent B and for the
quantities `d = 7, P`d = 280, P +K − d = 277 and ∆ = 3. In this case, because ũ′B(x) is only
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slightly concave, the intersection x′ lies between ⌊`d/2⌋ and ⌈`d/2⌉. We are in the case `d = ⌊`d/2⌋,
and ũ′B(`KS) < 1/2 (see rectangle R′).

Lemma 1. If `d is even, then ūB(`KS) ≥ 1/2.

Proof. Since xKS ≤ `d/2 and `d/2 is integer, ⌈xKS⌉ ≤ `d/2. Because of the concavity of ũB(x),
if ūB(⌊xKS⌋) ≥ 1/2 we are done. Otherwise, if ūB(⌊xKS⌋) < 1/2, then certainly ūB(⌈xKS⌉) ≥ 1/2,
and also in this case ūB(`KS) ≥ 1/2. ◻

Lemma 2. For any `d ≥ 2, it holds that `KS ≤ `d/2.

Proof. Let us distinguish the cases ⌈xKS⌉ ≤ `d/2 and ⌈xKS⌉ > `d/2. In the former case, `KS can be
either ⌊xKS⌋ or ⌈xKS⌉, and we are done. Let us therefore consider the case ⌈xKS⌉ > `d/2 (according
to Lemma 1 this can occur only if `d is odd). In this case (see Figure 2 for an illustration),

ūA(⌊`d/2⌋) > ū
B
(⌊`d/2⌋) > ū

A
(⌈`d/2⌉)

and
ūB(⌈`d/2⌉) > ū

A
(⌈`d/2⌉).

Hence `KS = ⌊xKS⌋. ◻

Lemma 3. If ūB(`KS) < 1/2, then `KS = ⌊`d/2⌋.

Proof. Suppose to the contrary that `KS < ⌊`d/2⌋ (recall that `KS cannot exceed `d/2 due to
Lemma 2). In this case, ūA(`KS) ≥ 1/2 and hence ūA(`KS) ≥ ū

B(`KS). We consider two cases.
Case (a): ūB(⌊`d/2⌋) ≥ ū

A(⌊`d/2⌋). Since ūA(⌊`d/2⌋) ≥ 1/2 and ūB(`KS) < 1/2, one has that
min{ūA(⌊`d/2⌋), ū

B(⌊`d/2⌋)} > ū
B(`KS), which contradicts the fact that σ`KS

is KS fair.
Case (b): ūB(⌊`d/2⌋) ≤ ū

A(⌊`d/2⌋). Then min{ūA(⌊`d/2⌋), ū
B(⌊`d/2⌋)} = ūB(⌊`d/2⌋), and in

turn, since ūB(⋅) is an increasing function, ūB(⌊`d/2⌋) > ū
B(`KS). In this case, σ`KS

cannot be
KS fair. ◻

Now let us establish bounds on PoFKS and their tightness.

Theorem 2. If `d is even, then (U(σ∗) −U(σKS))/U(σ∗) ≤ 1/2; if `d ≥ 3 is odd, then (U(σ∗) −
U(σKS))/U(σ∗) ≤ (`d + 1)/(2`d).

Proof. It suffices to prove that, for all 0 ≤ ` ≤ `d with 2 ≤ `d ≤m, the following hold:

U(`KS)

U(`)
≥

⎧⎪⎪
⎨
⎪⎪⎩

1/2, `d even;

(`d − 1)/(2`d), `d odd.
(10)

Let us first focus on the situation of K ≤ d with two steps of proving (10). Since 1/2 ≥ (`d −
1)/(2`d), our first step is to show the first inequality of (10) for even `d and for odd `d with

ūB(`KS) ≥ 1/2. (11)

Note that inequality (11) is automatically satisfied when `d is even according to Lemma 1. Also
note that when `d ≥ 2 we have `KS < `d, which gives uB(`KS) = P`KS

and hence inequality (11)
becomes

2P`KS
≥ P +K − d. (12)
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Recalling the definition of system utility (9), the first inequality in (10) is equivalent to the
following, according to Table 1:

(`d − 2`KS + `)K ≥ α(P` − 2P`KS
), if ` < `d; (13a)

2(`d − `KS)K ≥ α(P +K − d − 2P`KS
), if ` = `d. (13b)

Now consider inequality (13a). Since in this case ` < `d, from (8) one has that P` < P +K − d,
which, along with (12), implies P` < 2P`KS

and hence the right-hand side of (13a) is negative.
Similarly, when ` = `d, the right-hand side of (13b) is non-positive due to (12). On the other
hand, the left-hand sides of inequalities in (13) are both non-negative according to Lemma 2.
Therefore, both inequalities in (13) hold indeed.

Our second step of proving (10) is to show its second inequality for odd `d with ūB(`KS) < 1/2.
From Lemma 3, we get `KS = ⌊`d/2⌋ = (`d − 1)/2. The definition of KS schedule implies

ūB(`KS) ≥ ū
A
(⌈`d/2⌉),

which together with the fact that ūA(⌈`d/2⌉) = (`d − 1)/(2`d) (see Figure 2) implies that

2`dP`KS
≥ (`d − 1)(P +K − d). (14)

With `KS = (`d − 1)/2 the second inequality in (10) is equivalent to the following, according to
Table 1:

(2`d + (`d − 1)`)K ≥ α((`d − 1)P` − 2`dP`KS
), if ` < `d; (15a)

`d(`d + 1)K ≥ α((`d − 1)(P +K − d) − 2`dP`KS
), if ` = `d. (15b)

Again from (8), when ` < `d, one has P` < P +K − d, which together with (14) implies 2`dP`KS
>

(`d − 1)P` and hence the right-hand side of inequality (15a) is negative. Also inequality (14)
implies that the right-hand sides of inequality (15b) is non-positive. Since the left-hand sides of
both inequalities in (15) are obviously non-negative, both inequalities in (15) hold indeed.

Moving from situation of K ≤ d to K > d, all the arguments above remain exactly the same
except inequalities (12) and (14) are replaced, respectively, by 2P`KS

≥ P and 2`dP`KS
≥ (`d−1)P ,

while inequality pairs (13) and (15) are replaced, respectively, by (13a) and (15a) without the
condition “if ` < `d”. ◻

We are now in the position to state our main result. Recall that we have assumed that `d ≥ 2
in our consideration for KS fairness. Since (`d + 1)/(2`d) ≤ 2/3 for all odd `d ≥ 3, the following
theorem is immediate.

Theorem 3. For problem 1∣dBj = d ∣(∑CAj , T
B
max), we have PoFKS =

2
3 .

Proof. We only need to show that the bound of 2/3 can be attained. As part of the problem
specification, parameter α > 0 is exogenously given and fixed, while parameter d ≥ 0 is part of the
input. We are to specify a set of instances with d as a parameter (and hence d = 0 as a special
case) and demonstrate that these instances make the PoF arbitrarily close to 2/3 for any d ≥ 0.
Consider the following instance Iε of the problem indexed by sufficiently small ε > 0. While the
B-job has length K, agent A has an odd number `d ≥ 3 of jobs, with `d − 1 jobs having length p
and one job having length p + ε. We choose K and p such that d ≤ K and K/α < p. Then the
system optimal schedule σ∗ sequences the jobs according to the Smith’s rule (Smith, 1956) of
WSPT (weighted shortest processing time), that is, σ∗ starts with the B-job and finishes with the
longest A-job, with all the remaining `d − 1 A-jobs in the middle. Therefore, we have uA(σ∗) = 0

10
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Figure 3: Schedules σPF and σ∗ in the example on PoF tightness

and uB(σ∗) = (`dp + ε +K) −K = `dp + ε and hence U(σ∗) = α(`dp + ε). It is easy to check that
there exists a unique KS fair schedule, obtained with `KS = (`d − 1)/2. One has uA(σKS) =

`d+1
2 K

and uB(σKS) = (`dp+ε+K)−((
`d+1

2 )p+K) =
`d−1

2 p+ε, and hence U(σKS) =
`d+1

2 K+α (
`d−1

2 p + ε).
As a result, we have

U(σ∗) −U(σKS)

U(σ∗)
=

`d+1
2 (pα −K)

(`dp + ε)α
,

which approaches (`d + 1)/(2`d) (i.e., 2/3 if we set `d = 3) as p goes to infinity and ε to zero. ◻

3.3 Proportional Fairness

Let us now consider the price of proportional fairness. It is known from Nicosia, Pacifici, and
Pferschy (2017) that if a proportionally fair solution exists, then PoFPF is at most 1/2. We show
that for problem 1∣dBj = d ∣(∑CAj , T

B
max) this bound can actually be attained, hence the bound is

tight.
Let α > 0 be exogenously fixed for defining the system utility. Given any input parameter

d ≥ 0, consider an instance in which agent A has m (with m even) identical unit-length jobs
and agent B has a single job of length K, where K ≥ d and K > α. Figure 3 illustrates the
fair schedule σPF and the overall optimal schedule σ∗, which is according to the Smith’s rule, in
WSPT order, as we mentioned in the proof of Theorem 3. We have

fA∞ =
m(m+1)

2 +Km, fB∞ =K +m;

fA(σ∗) = m(m+1)
2 , fB(σ∗) =K;

fA(σPF) =
m(m+1)

2 + mK
2 , fB(σPF) =K + m

2 ;

from which we obtain
uA(σ∗) =Km, uB(σ∗) = 0;

uA(σPF) =
mK

2 , uB(σPF) =
m
2 .

Hence U(σ∗) =Km and U(σPF) =
m(K+α)

2 . Therefore,

PoFPF =
U(σ∗) −U(σPF)

U(σ∗)
= 1 −

m(K + α)/2

Km
=
K − α

2K
,

which approaches to 1/2 as K goes to infinity. This shows the following result.

Theorem 4. For problem 1∣dBj = d ∣(∑CAj , T
B
max), we have PoFPF = 1

2 .
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Existence of proportionally fair schedules

Now we show that the existence of a proportionally fair schedule can be easily determined. As
before, let us focus on the situation of K ≤ d, as the situation of d <K is much easier.

Rewriting (5), a proportionally fair schedule σPF exists if and only if there is an index `PF

such that, for each `, it holds
uA(`)

uA(`PF)
+

uB(`)

uB(`PF)
≤ 2. (16)

Recall from Table 1 that, if ` < `d then uB(`) = P`, while uB(`d) = P +K − d. Hence, for all
` < `d, (16) becomes

`d − `

`d − `PF
+

P`
P`PF

≤ 2, (17)

while for ` = `d one has
P +K − d

P`PF

≤ 2. (18)

If an `PF exists such that (17) is satisfied for all ` < `d, and such that (18) is also satisfied,
then σ`PF

is proportionally fair. Let us first rule out the cases of `d = 0 and `d = 1 by giving the
following proposition.

Lemma 4. If K ≤ d, a proportionally fair schedule can exist only if `d ≥ 2.

Proof. As we have noted in the definition of proportional fairness, for a schedule to be propor-
tionally fair, the utility of each agent should be positive. In our case, the utility K(`d − `PF) of
agent A cannot be positive if `d = 0. On the other hand, if `d = 1, then setting ` = 0 in (17) gives
`PF ≤ 1

2 , which can only be satisfied if `PF = 0, leading to P`PF
= 0, the utility of agent B. ◻

We therefore assume `d ≥ 2. Setting ` = 0 and hence P` = 0 in (17), we get

`d
`d − `PF

≤ 2. (19)

Setting ` = 1 in (17) yields
`d

`d − `PF
−

1

`d − `PF
+

P1

P`PF

≤ 2. (20)

Recall that P1 = pm, i.e., P1 is the length of the longest job. We have

P`PF
≤ `PFP1,

and from (19), `d − `PF ≥ `PF, so that

P`PF
≤ (`d − `PF)P1,

which can be rewritten as

−
1

`d − `PF
+

P1

P`PF

≥ 0.

The latter expression implies that the left-hand side of (20) is not smaller than the left-hand side
of (19). In general, let LHS(`) denote the left hand side of (17). Recalling that P`−P`−1 = pm−`+1,
one can write (17) for any ` as

LHS(`) = LHS(` − 1) −
1

`d − `PF
+
pm−`+1

P`PF

≤ 2. (21)
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In order to find a proportionally fair schedule, we can simply focus on the maximum of LHS(`).
From (21) we observe that, as long as

pm−`+1

P`PF

>
1

`d − `PF
,

LHS(`) is an increasing function. Thereafter, it starts decreasing. Due to the fact that the jobs
of the agent A are SPT-ordered, it means that LHS(`) is indeed concave. Now, we notice that
writing (17) for ` = `PF, the value of the left hand side is precisely

LHS(`PF) =
`d − `PF

`d − `PF
+
P`PF

P`PF

= 2.

As a consequence, for σPF to be a fair schedule, it must hold that LHS(`) reaches its maximum
for ` = `PF, since otherwise there is another value ¯̀ such that LHS(¯̀) > LHS(`) = 2, and (17)
would be violated. To this purpose, since LHS(`) is concave, it is sufficient to verify that
LHS(`PF − 1) ≤ LHS(`PF) and LHS(`PF + 1) ≤ LHS(`PF). Recalling (19), the following result
holds.

Lemma 5. If K ≤ d, then a proportionally fair schedule exists if and only if there exists an
integer 2 ≤ `PF ≤ ⌊`d/2⌋ such that (18) is satisfied and

pm−`PF
≤

P`PF

`d − `PF
≤ pm−`PF+1. (22)

If such an integer exists, then schedule σ`PF
is proportionally fair.

Moving from situation K ≤ d to K > d, inequality (18) is no longer relevant and we only need
to be concerned with (17) for all `, including ` = `d =m. Therefore, the following lemma follows
immediately.

Lemma 6. If K > d, then a proportionally fair schedule exists if and only if there exists an
integer 2 ≤ `PF ≤ ⌊`d/2⌋, such that (22) is satisfied. If such an integer exists, then schedule σ`PF

is proportionally fair.

With Lemmas 5 and 6, in order to find a proportionally fair schedule if it exists, one can then
try out all values of `PF from 2 to ⌊`d/2⌋, and check whether (22) (and (18) if K ≤ d) are satisfied.
We observe that while the leftmost and rightmost terms of (22) decrease with `PF, the central
term increases with `PF. As a consequence, the value of `PF satisfying (22) (if any) can be found
through a binary search between 2 and ⌊`d/2⌋. Consequently, we have established the following
theorem.

Theorem 5. If the A-jobs are already sorted in SPT order, then in O(logm) time either a
proportionally fair schedule can be found, or it can be certified that it does not exist.

It is interesting to write (22) for the special case where agent A has m identical jobs of length
p. In this case, pm−`PF

= pm−`PF+1 = p and P`PF
= `PFp. Hence, (22) becomes

1

`PF
≤

1

`d − `PF
≤

1

`PF

i.e., (22) is satisfied if and only if there exists a value `PF such that

1

`d − `PF
=

1

`PF
,
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i.e., `PF = `d/2. On the other hand, (18) becomes

mp +K − d

`PFp
≤ 2,

i.e.,
(m − `d)p ≤ d −K,

which is always true according to the definition of `d. In conclusion, since `PF is an integer, the
following result follows.

Corollary 1. If the jobs of agent A are all identical, a proportionally fair schedule exists if and
only if `d is even, and in this case σPF ≡ σ`d/2.

4 Problem 1∣ ∣(∑CA
j ,∑CB

j )

In this section we investigate the problem in which both agents want to minimize the total
completion time of their jobs.

As we have already observed, problem 1∣dBj = d ∣(∑CAj , T
B
max) with d = 0 is a special case

of problem 1∣ ∣(∑CAj ,∑C
B
j ) in which agent B has only one job. Note that, in the proof of

Theorem 3, d ≥ 0 is an input parameter. By specifically setting d = 0, the instance Iε in the proof
of Theorem 3 demonstrates that, for problem 1∣∣(∑CAj ,∑C

B
j ), we have PoFKS ≥ 2/3. However,

the precise value of PoFKS is still unknown.
In problem 1∣dBj = d ∣(∑CAj , T

B
max), the number of Pareto optimal schedules is linear in the

number of A-jobs. On the contrary, in problem 1∣ ∣(∑CAj ,∑C
B
j ), there can be an exponential

number of Pareto optimal solutions, as shown by Agnetis et al. (2004). So, finding a proportion-
ally fair solution, if it exists, seems a non trivial problem.

Given a two-agent scheduling problem, an instance is said to be symmetric if the two agents’
sets of jobs are identical in terms of job lengths.

Theorem 6. Given a symmetric instance of problem 1∣ ∣(∑CAj ,∑C
B
j ), it is NP-hard to decide

whether there exists a proportionally fair schedule among all Pareto optimal schedules, and if
such a schedule does exist, it is NP-hard to find it.

Proof. Consider an instance of Partition, i.e., a set of n integers p1, p2, . . . , pn, and denote
P = ∑

n
i=1 pi. We define a symmetric instance of our scheduling problem in which both agents have

n jobs, of length p1, p2, . . . , pn, respectively. Without loss of generality, we assume p1 ≤ p2 ≤ ⋯ ≤ pn.
Consider a schedule σ having the following structure. The two jobs of length p1 are scheduled
first, followed by the two jobs of length p2, . . . , followed by the two jobs of length pn. We say
that a schedule having such a structure is an SPT schedule. Note that there exist exactly 2n SPT
schedules, depending on which agent’s job comes first for each pair of jobs of equal length. Note
that all SPT schedules are globally optimal and hence Pareto optimal.

Given any SPT schedule σ, let S ⊆ {1,2, . . . , n} be the set of indices j of the A-jobs such that
JAj precedes in σ the corresponding jobs JBj , for j = 1, . . . , n. Denote by x(S) the total length of

the A-jobs in S. Hence, the total length of the jobs JBj that precede the corresponding job JAj is
P − x(S).

It can be easily shown that the total cost for agent A and for agent B are respectively

P + 2
n

∑
i=1

(n − i)pi + (P − x(S))
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and

P + 2
n

∑
i=1

(n − i)pi + x(S).

We say that a schedule is balanced if both agents have the same cost, which is possible in this
case if and only if x(S) = P /2, that is, S is a solution to the original instance of Partition.

We claim that an SPT schedule σ is proportionally fair if and only if it is balanced. Moreover,
if such a schedule exists, it is the unique proportionally fair schedule. Let σ∗ be a balanced SPT
schedule. Since the instance is symmetric, we let f∞ = fA∞ = fB∞ and f = fA(σ∗) = fB(σ∗).
Also, for any other schedule σ, we can assume with no loss of generality that fA(σ) = f − δ and
fB(σ) = f +∆, where ∆ ≥ δ (since otherwise σ would have a smaller total cost than σ∗, which is
impossible as σ∗ is globally optimal). Condition (5) can be therefore written as

f∞ − (f − δ)

f∞ − f
+
f∞ − (f +∆)

f∞ − f
≤ 2,

which clearly holds due to ∆ ≥ δ. So, if an SPT balanced schedule exists, it is proportionally fair.
Now we show that no non-balanced schedule σ′ can be proportionally fair. In fact, suppose

that σ′ is proportionally fair and one has fA(σ′) = f − δ and fB(σ′) = f + ∆. Due to the
symmetry of the instance (and to the symmetry axiom), the schedule σ′′ obtained by exchanging
the positions of the two homologous jobs in each pair should also be proportionally fair, for which
one would have fA(σ′′) = f +∆ and fB(σ′′) = f − δ. However, in Nicosia, Pacifici, and Pferschy
(2017) it is proved that for any symmetric instance, if a proportionally fair solution exists, then
it is unique, so neither σ′ nor σ′′ can be proportionally fair.

In conclusion, in our instance a proportionally fair schedule exists if and only if the original
instance of PARTITION is a yes-instance. ◻

We remark that in problem 1∣ ∣(∑CAj ,∑C
B
j ), deciding whether a proportionally fair solution

exists is not known to be in NP. This is why Theorem 6 only establishes NP-hardness and not
NP-completeness.

With arguments very similar to those in the proof of Theorem 6, the following result can also
be established.

Theorem 7. Given a symmetric instance of problem 1∣ ∣(∑CAj ,∑C
B
j ), it is NP-hard to find a

KS fair schedule among all Pareto optimal schedules. ◻

5 Discussion and conclusions

We have defined a utility function in terms of scheduling cost and, with this utility, studied some
fairness issues. However, there can be different utilities. Fehr and Schmidt (1999) and Cui, Raju,
and Zhang (2007) consider utilities that incorporate fairness concerns of individual agents. Below
we briefly explore the possibility of having another utility that can be used to address fairness as
a global concern.

5.1 A different utility function

Suppose we have the following as an alternative definition of utility,

ui(σ) =
1

fi(σ)
, for i = A,B. (23)
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This definition satisfies the fundamental properties that a utility function is positive and non-
increasing in the cost. However, we argue that such a choice of utility function is not appropriate.

Let us consider proportional fairness. Under definition (23), proportional fairness definition
(5) can be rewritten as

fA(σPF) − f
A(σ)

fA(σ)
+
fB(σPF) − f

B(σ)

fB(σ)
≤ 0 for all σ. (24)

In order to investigate the consequences of (24), let us consider the following example.

Example 2. Consider an instance of problem 1∣ ∣(∑CAj ,C
B
max), in which agent A has m identical

unit-time jobs, while agent B has a single job, of length βm, for some rational β > 0. Clearly,
there are exactly m + 1 Pareto optimal schedules, completely characterized by the number of
unit-time jobs scheduled after the job of agent B. As usual, σ` denotes the schedule in which `
jobs follow the job of agent B, and hence m − ` precede it. We have

fA(σ`) =
m(m + 1)

2
+ β`m, and fB(σ`) = βm +m − `.

Let `PF denote the value of ` corresponding to a proportionally fair solution. Writing (24) for
this example, one has, after some algebra, that for σ`PF

to be a fair schedule, it must hold for
each ` ≠ `PF that

βm(`PF − `)

m(m + 1)/2 + β`m
+

` − `PF

βm +m − `
≤ 0. (25)

Note that `−`PF is a non-zero common factor of the two terms on the left-hand side of inequality
(25), which can be both positive and negative if `PF /∈ {0,m} (i.e., 0 < `PF < m). In such a case,
by taking ` =m and ` = 0, respectively, we obtain from (25) the following two inequalities:

mβ2
−mβ −

m + 1

2
≥ 0, and mβ2

+mβ −
m + 1

2
≤ 0,

which imply that

β ≥
1

2
+

√
3m2 + 2m

2m
, and β ≤ −

1

2
+

√
3m2 + 2m

2m
.

Clearly the above two inequalities cannot be satisfied at the same time. Therefore, we conclude
that no schedule σ` can be proportionally fair unless `PF ∈ {0,m}.

The conclusion of the above example is a bit disappointing. Following the classical definition
of proportionally fair schedule, we find that either a fair schedule does not exist, or it is one
for the two extreme schedules1, which to any intuitive notion of fairness appears indeed as the
most unfair! This suggests that (23) is not a very sensible choice of utility function, at least as
long as our scheduling setting is concerned. This can perhaps be explained as follows. Clearly
ui(σ) becomes increasingly insensitive to increases in cost, while on the contrary it is highly
sensitive when the cost is small. Such cost-proneness is not in accordance with the classical view
of scheduling objectives, in which the cost is typically linear in certain figures (completion time,
tardiness, number of tardy jobs, etc.), hence more in line with a risk-neutrality attitude.

1Recall that, in this case, the two extreme schedules correspond to the two scenarios ` = 0 and ` =m, where one
agent obtains his best solution while the other gets his worst.
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Problem Fair solution Existence Computation PoF

1 ∣dBj = d ∣(∑CAj , T
B
max)

Kalai-Smorodinsky always O(logm)� 2
3

Proportionally fair O(logm)� O(logm)� 1
2

1∣ ∣(∑CAj ,∑C
B
j )

Kalai-Smorodinsky always NP-hard ≥ 2
3

Proportionally fair NP-hard NP-hard 1
2

� A-Jobs are assumed to be already in SPT order.

Table 2: Summary of results

5.2 Future research

In this paper we have carried out a preliminary investigation of the concept of price of fairness
in single-machine scheduling problems. The main findings are summarized in Table 2. The third
and fourth columns respectively display the complexity of establishing whether a fair schedule
exists and, if so, finding a fair schedule. We have that the price of proportional fairness is smaller
than the price of Kalai-Smorodinsky fairness, but the former solution does not always exist.

Different from previous studies, our work adopts a generalized definition of system utility,
expressed as a weighted sum of the agent utilities. We prove that PoFKS and PoFPF are inde-
pendent of particular choice of the weights in the system utility. This also shows, as a byproduct
(when α tends to 0 or +∞), that PoF also bounds the relative loss in one-agent utility of a fair
solution with respect to the best solution for that agent.

We have restricted ourselves to problems in which one of the agents wishes to minimize the
sum of the completion times of his jobs. The only open problem in this respect is determining
whether PoFKS in problem 1∣ ∣(∑CAj ,∑C

B
j ) is strictly larger than 2/3. We expect that further

research would determine the complexity of finding fair solutions and the values of the price
of fairness in different scenarios, such as 1∣ ∣(CAmax,∑w

B
j C

B
j ) or 1∣ ∣(TAmax, T

B
max) when jobs have

individual due dates.
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