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Abstract
Bertrand–Edgeworth competition has recently been analyzed under imperfect buyer 
mobility, as a game in which, once prices are chosen, a static buyer subgame (BS) 
is played where the buyers choose which seller to visit (see, e.g., Burdett et  al. in 
J Political Econ 109:1060–1085, 2001). Our paper considers a symmetric duopoly 
where two buyers play a two-stage BS of imperfect information after price setting. 
An “assessment equilibrium” of the BS is shown to exist in which, with prices at the 
two firms sufficiently close to each other, the buyers keep loyal if previously served. 
Conditional loyalty is proved to increase the duopolists’ market power: at the corre-
sponding subgame perfect equilibrium of the entire game, the uniform price is higher 
than that corresponding to the equilibrium of the BS in which the buyers are persis-
tently randomizing.

Keywords Bertrand–Edgeworth competition · Matching · Imperfect buyer mobility · 
Conditional loyalty · Assessment equilibrium

JEL Classification D430 · L130

Introduction

In models of Bertrand–Edgeworth competition with homogeneous product it has 
customarily been taken for granted that no firm is selling below capacity while an 
equally expensive firm is facing excess demand or some positive quantity is sold by 
a more expensive firm. Such mismatchings would in fact be immediately ruled out if 
the buyers could instantly and costlessly move across sellers. Quite differently, some 
models have incorporated imperfect buyer mobility by letting the buyers visit just 
one seller in the buyer subgame (BS) that is played after price decisions are made 
(see Peters 1984 and 2000; Deneckere and Peck 1995; Burdett et  al. 2001). Then, 
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even if total capacity could meet total demand, the buyer’s payoff would depend 
on the perceived service probability as well as the price to be paid if served. Even 
with relatively few buyers, there are many pure strategy equilibria (PSEs) of the BS 
when prices at the different sellers are sufficiently close to each other: thus, ever since 
Peters (1984), the attention has understandably been focused on the (symmetric) 
mixed strategy equilibrium (MSE) of the BS, where mismatchings of the aforemen-
tioned type arise with positive probability. But then, lack of ex-post buyer mobility 
significantly affects pricing. To see this, consider the following setting. A number of 
identical firms produce on demand a homogeneous good, at constant unit cost up to 
their fixed capacity. Each identical buyer demands a fixed quantity, at any price not 
higher than the reservation price, and total demand is equal to total capacity. As in 
Burdett et al. (2001), the firms set prices whereupon each buyer makes his decision. 
Unlike with perfect mobility, equilibrium prices are less than the reservation price: 
in fact, with uniform prices, expected output is less than each firm’s capacity at the 
MSE of the BS; consequently, with the rival firms charging the reservation price it 
pays to undercut since all buyers would then try the cheapest firm.

Subsequent contributions to this literature on pricing and “directed” search allow 
for an influence of realized demand on prices. In Camera and Selcuk (2009), the pro-
file of prices posted by the sellers determines the probability distribution of the buy-
ers across the sellers; imperfect commitment to the posted price may leave room to 
renegotiating the price in light of actual demand. In Geromichalos (2014), each seller 
specifies how his own price will depend on his forthcoming demand; based on these 
price schedules, a mixed strategy equilibrium obtains. In either case, differences in 
prices at equilibrium are derived in terms of different pressure of demand over capac-
ity at the various sellers. Another recent innovation in this literature is contained in 
Shi (2016), where a multi-stage model is developed in which, in each stage, the firms 
announce prices as well as any service priority they might offer to loyal buyers while 
the buyers, based on this information and the history of previous matchings at the 
various firms, choose the probability of visiting any seller.

In this paper we address Bertrand–Edgeworth competition with imperfect buyer 
mobility along an alternative approach, seemingly not in contrast with what is often 
observed in reality. It is assumed below that a certain good is demanded repeatedly by 
each buyer over a certain period in which prices are fixed and that, each time the demand 
decision is made, the buyer also chooses which seller to visit in search for the good. 
Also, we assume that, when making this choice, the buyer does not have perfect infor-
mation about pressure of demand on capacity at the various sellers in the recent past; 
at the same time, she can make some inference in this respect, based on her personal 
experience with the seller(s) she visited in the past. A previous inquiry on buyers’ incen-
tives in such a context is in De Francesco (2005), limited to the case in which prices 
are exogenously given and equal at the existing sellers. It was shown that, in a dynamic 
buyer game in which each buyer repeatedly chooses which seller to try, there is scope for 
the emergence of a norm of “conditional loyalty”, according to which each buyer keeps 
loyal to the seller previously chosen conditional on having been served, while switching 
to any seller not yet tried before if previously rationed. More specifically, it was shown 
that, if all the buyers are conditionally loyal, then, when total industry capacity is enough 
to meet total demand, mismatchings between demand and supply at the seller’s level will 
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disappear with unit probability in a finite number of stages of the buyer game. Not only 
this, but conditional loyalty was proven to be an “assessment equilibrium” in the two-
seller case, again, taking prices as exogenously equal.

The present contribution purports to further develop that approach. The scope for 
conditional loyalty will here be analyzed in a setup in which prices might differ at the 
various sellers, which in its turn will allow us to see the implications of conditional loy-
alty for price determination in the first place. We construct a very simple model to deal 
with buyers’ imperfect mobility and information in a dynamic setting: we assume there 
are just two sellers and two buyers; after prices are set by the duopolists, a two-stage BS 
is assumed to be played where, in each stage, each buyer chooses independently which 
seller to visit with no direct knowledge, when playing the second stage, of the choice 
made by the other buyer in the first stage. In such a model, the aforementioned coordina-
tion problem affecting the PSEs of the static BS might appear to be less severe than with 
several buyers and sellers; yet, the problem is still there and, furthermore, the two-seller, 
two-buyer, two-stage BS greatly simplifies the analysis of the dynamic BS and hence of 
pricing. Here are the main findings that, in our view, provide helpful insights for more 
general settings. Two alternative types of equilibria of the dynamic BS are character-
ized, leading to different predictions for BSs in which prices are sufficiently close to 
each other. In one equilibrium, the buyers’ beliefs on previous matchings at the firms 
are irrelevant to their moves in the second stage of the BS inasmuch as the MSE of the 
static BS is played repeatedly. But another equilibrium exists, in which the beliefs of the 
buyers on previous matches play a key role. In this “assessment equilibrium”, so long as 
prices at the two sellers are sufficiently close, in the second stage each buyer keeps loyal 
to the seller previously chosen if served, while moving to the other seller if rationed: 
on the corresponding equilibrium path, both buyers are served in the second stage of 
the BS. It deserves to be emphasized that the driving force behind conditional loyalty is 
just the strategic interaction among the buyers under imperfect information: if the other 
buyer is expected to keep loyal when served, then being conditionally loyal maximizes 
one’s own service probability. Most importantly, under the assumptions of the model of 
the present paper, the pattern of conditional loyalty reduces the incentive to undercut the 
rival’s price: at the (subgame-perfect) equilibrium of the entire game, the uniform price 
is higher than it would be under persistent randomization on the part of the buyers.

The rest of the paper is organized as follows. To prepare the ground for our positive 
contribution, “Pricing under a static buyer subgame” recounts, with a few additional 
qualifications, Burdett et al.’s two-seller two-buyer version (2001, pp. 1062–1067) of 
their more general model of price determination under a static BS. “Pricing under 
a dynamic buyer subgame” develops our model of duopoly price determination in 
which two buyers are playing a two-stage BS of imperfect information, in each stage 
choosing which seller to visit. The last section briefly concludes.

Pricing under a static buyer subgame

Two identical and risk-neutral firms, A and B, sell a homogeneous and indivisible 
commodity to two identical and risk-neutral buyers, h and k. When no ambiguity can 
arise, we refer to the generic buyer as buyer h. Each firm i ∈ {A,B} has productive 
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capacity yi = 1 and independently announces its own price pi ; the chosen price pair 
identifies a BS, in the following referred to as a “ (pA, pB)-BS”. In this section we ana-
lyze static (pA, pB)-BSs, in which any buyer h demands one unit of the commodity if 
min{pA, pB} ≤ 1—where 1 is the buyer’s reservation price—and chooses a probabil-
ity distribution (�h, 1 − �h) for his visit to sellers A and B, respectively. For brevity, we 
denote by (�h, �k) , rather than by ((�h, 1 − �h), (�k, 1 − �k)) , the profile of probability 
distributions. Firm i costlessly produces quantity yi , the smaller of its forthcoming 
demand and its capacity.

For the sake of comparison, it is worth to preliminarily look at the polar case of 
perfect mobility of buyers. In that case, with, say, pB < pA ≤ 1 , it pays for each buyer 
to try seller B in the first place since, if rationed, the buyer would still be able to 
purchase the commodity by quickly moving to seller A. Consequently, charging the 
buyer’s reservation price is for each seller a strictly dominant strategy since, no mat-
ter pB , seller A would then sell its capacity output for any pA ≤ 1.1

Coming back to our setting in which the buyer can visit just one seller in the static 
BS, we will take it for granted that2

We denote by Eh the set of all possible events that buyer h may face and by �h its 
generic element: �h ∈ Eh =

{

Ash,Arh,Bsh,Brh
}

 , where, for instance, Ash (resp. Arh ) 
is the event of buyer h visiting seller A and being served (resp. rationed) there. With 
both buyers at seller i, each of them is served with probability 1/2. We denote by 
�(�h(�h, �k)) the probability of the event �h under some profile (�h, �k) of probabil-
ity distributions; and, for brevity, for any given price pair (pA, pB) , we denote by 
uh(�h, �k) , rather than by uh(�h, �k;pA, pB) , buyer h’s payoff (expected surplus) under 
the profile of probability distributions (�h, �k) . Clearly,

With pA and pB sufficiently close to each other, the BS has a symmetric equilib-
rium (�h, �k) = (�̃, �̃) : for �k = �̃ , buyer h is indifferent between visiting either seller, 
hence �̃ is the solution of the equation

namely,

The equilibrium (�h, �k) = (�̃, �̃) exists if and only if

(1)pi ∈ [0;1], i ∈ {A,B}.

(2)
uh(�h, �k) = �h�(Ash(1, �k))(1 − pA) + (1 − �h)�(Bsh(0, �k))(1 − pB)

= �h

(�k

2
+ 1 − �k

)

(1 − pA) + (1 − �h)

(

�k +
1 − �k

2

)

(1 − pB).

(3)
(

�

2
+ 1 − �

)

(1 − pA) =
(

� +
1 − �

2

)

(1 − pB),

(4)�̃ = �̃(pA, pB) =
1 − 2pA + pB

2 − pA − pB
.

1 The buyer is assumed to purchase the good, when indifferent between purchasing or not.
2 As will be argued below, one can actually take it for granted that pi ∈ (0;1).



SN Bus Econ (2021) 1:147 Page 5 of 20 147

Note that the interval 
[

2pB − 1,
1+pB

2

]

 exists if pB ≤ 1 and degenerates to 1 if pB = 1 . 
If system (5) holds and pB < 1 , then pA < 1 and, more thoroughly: if

then

namely, the symmetric equilibrium is in mixed strategies; if3

then

if

then

Finally, if system (5) holds and pB = 1 , then pA = 1 . For definiteness, we let

Holding system (6), two asymmetric pure strategy equilibria (PSEs) also 
exist, (�h, �k) = (1, 0) and ( �h, �k) = (0, 1) , yielding payoffs 1 − pA and 1 − pB 
to the buyers. Either PSE Pareto-dominates the mixed strategy equi-
librium (MSE) (�h, �k) = (�̃, �̃) : indeed, taking into account Eq. (3), 
uh(�𝜐,�𝜐) =

2−�𝜐

2
(1 − pA) =

�𝜐+1

2
(1 − pB) < min{1 − pA, 1 − pB} . On the other hand, in order 

for the buyers to play any such PSE they should somehow coordinate ex-ante their 
moves in the game. This is problematic since pre-play communication might be 
unfeasible or quite costly to the buyers. Furthermore, a major difficulty in agreeing 

(5)2pB − 1 ≤ pA ≤
1 + pB

2
.

(6)2pB − 1 < pA <
1 + pB

2
,

(7)�̃(pA, pB) ∈ (0, 1),

(8)2pB − 1 = pA <
1 + pB

2
,

(9)�̃(pA, pB) = 1;

(10)2pB − 1 < pA =
1 + pB

2
,

(11)�̃(pA, pB) = 0.

(12)�̃(1, 1) =
1

2
.

3 Note that if 2pB − 1 = pA , then pB ≥
1

2
 since pi ≥ 0 (see condition (1)).
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to play a PSE arises on distributive grounds whenever pA ≠ pB , since then each 
buyer obviously prefers the PSE in which he visits the cheaper seller.4

Finally, with pB < 1 , playing �h = 0 (resp. �h = 1) is dominant if pA ≥ (1 + pB)∕2 
(resp. pA ≤ 2pB − 1)—strictly dominant if the inequality is strict.

Based on all the above, for any price pair (pA, pB) ∈ [0, 1]2 we assume that the 
symmetric equilibrium (�h, �k) = (�∗, �∗) of the BS is played, where5

and �̃ = �̃(pA, pB) (see Eq. (4)). The function �∗ = �∗(pA, pB) presents a discontinuity 
at (pA, pB) = (1, 1) : �∗(1, 1) = 1∕2 (see Eq. (12)) whereas limpA↗1 �

∗(pA, 1) = 1 . We 
denote by Eyi(�) ( i = A,B ) firm i’s expected output for any profile (�h, �k) = (�, �) : 
clearly,

and

Firm A’s expected output at the symmetric equilibrium of some (pA, pB)-BS, is writ-
ten Ey∗

A
(pA, pB) = EyA(�

∗(pA, pB)) . We can safely let

since pA = 1 and pA = 0 are never-best responses when (�h, �k) = (�∗, �∗) . In fact, 
firm A’s payoff (expected profit) at the symmetric equilibrium of any (pA, pB)-BS is 
EΠ∗

A
(pA, pB) = pAEyA(�

∗(pA, pB)) and therefore: if pB < 1 , then 
[

EΠ∗
A
(pA, pB)

]

pA∈
(

0,
1+pB
2

) > EΠ∗
A
(1, pB) = 0 (see Eqs. (4), (6), (13) and (14)); if 

pB = 1 , then limpA↗1 EΠ
∗
A
(pA, 1) = 1 > EΠ∗

A
(1, 1) = 3∕4 (see Eqs. (13), (14), and 

(12)).
Conditional on the equilibrium (�h, �k) = (�∗, �∗) to be played in any BS, the rate 

of change of firm A’s expected profit with respect to its own strategy (henceforth, 
firm A’s marginal payoff) is

(13)𝜐∗ = 𝜐∗(pA, pB) =

⎧

⎪

⎨

⎪

⎩

1 if pA < 2pB − 1

�𝜐 ∈ [0, 1] if 2pB − 1 ≤ pA ≤
1+pB

2

0 if pA >
1+pB

2
.

(14)EyA(�) = �2 + 2�(1 − �),

(15)EyB(�) = (1 − �)2 + 2�(1 − �).

(16)pi ∈ (0, 1), i ∈ {A,B},

(17)
�EΠ∗

A
(pA, pB)

�pA
= EyA(�

∗) + pA
dEyA(�)

d�
∣�=�∗

��∗(pA, pB)

�pA
.

5 Taking into account Eqs. (9) and (11)), it should be noted that, for pB < 1 and pA = 2pB − 1 (resp. 
pA = (1 + pB)∕2 ), the second line of Eq. (13) selects the profile of weakly dominant strategies 
(�h, �k) = (�̃, �̃) = (1;1) (resp. (�h, �k) = (�̃, �̃) = (0;0) ), out of the continuum of equilibria (�h, �k) = (�̃, �k) 
(any �k ∈ [0;1]).

4 Such distributive dispute could only be overcome if the buyers were able to agree upon some side pay-
ment between them.
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Holding system (6), �∗ = �̃ ∈ (0, 1) , dEyA(𝜐)

d𝜐
∣𝜐=�𝜐= 2(1 − �𝜐) > 0 , d2EyA(�)

d�2
∣�=�̃= −2 , 

𝜕�𝜐(p
A
,p

B
)

𝜕p
A

=
−3(1−p

B
)

(2−p
A
−p

B
)2
< 0 , and 𝜕2�𝜐(pA ,pB)

𝜕p2
A

=
−6(1−pB)

(2−pA−pB)
3
< 0 . All this implies strict concavity of 

EΠ∗
A
(pA, pB) in pA : �2EΠ∗

A
(pA ,pB)

�p2
A

= 2
dEyA(�)

d�
∣�=�̃

��̃(pA ,pB)

�pA
+ pA

d2EyA(�)

d�2
∣�=�̃

(

��̃(pA ,pB)

�pA

)2

+pA
dEyA(𝜐)

d𝜐
∣𝜐=�𝜐

𝜕2�𝜐(pA,pB)

𝜕p2
A

< 0 . (Of course, a similar argument would prove strict con-
cavity of EΠ∗

B
(pA, pB) in pB .) At a symmetric equilibrium of the price game, 

(pA, pB) = (p, p) and �̃ = 1∕2 . As can easily be verified, 
�EΠ∗

A
(pA,pB)

�pA
∣(pA,pB)=(p,p)=

�EΠ∗
B
(pA,pB)

�pB
∣(pA,pB)=(p,p) , so that, without loss of generality, we 

can focus on firm A’s profit maximization. Since [EyA(�)]�= 1

2

=
3

4
 , dEyA(�)

d�
∣�= 1

2

= 1 and 
��∗(pA,pB)

�pA
∣(pA,pB)=(p,p)=

−3

4(1−p)
 , from the first-order condition �EΠ

∗
A
(pA,pB)

�pA
∣(pA,pB)=(p,p)= 0 

for a best response it is obtained p = 1∕2 . This stands in stark contrast with the case 
of perfect mobility, where charging pi = 1 (each i ∈ {A,B} ) is a strictly dominant 
strategy.

Pricing under a dynamic buyer subgame

In this section, it is assumed that, after price setting at stage t = 0 , a two-stage BS 
of imperfect information is played: in each stage t = 1, 2 of the (pA, pB)-BS, each 
buyer h demands one unit of the (perishable) commodity and chooses the probabil-
ity distribution (�h,t, 1 − �h,t) for his visit to sellers A and B. Again, we take it for 
granted that pi ∈ [0;1] ( i ∈ {A,B} ). For brevity, we denote by (�h,t, �k,t)—rather than 
by ((�h,t, 1 − �h,t), (�k,t, 1 − �k,t))—the profile of stage-t probability distributions. In 
stage t, firm i produces quantity yi,t , the lower of its forthcoming demand in t and 
its capacity yi = 1 . We denote by Eyi,t(�) firm i’s stage-t expected output under the 
symmetric profile (�h,t, �k,t) = (�, �) of probability distributions. It is assumed that 
each buyer maximizes the undiscounted sum of his expected surplus over the BS and 
that each firm maximizes the undiscounted sum of its expected profits. We denote by 
Eh,t = {�h,t} =

{

Ash,t,Arh,t,Bsh,t,Brh,t
}

 the set of stage-t possible events buyer h may 
face and by �(�h,t(�h,t, �k,t)) the probability of the event �h,t under the profile (�h,t, �k,t).

With both buyers at seller i in t = 2 , each buyer is assumed to be served with 
probability 1/2, regardless of which buyer that seller served in t = 1 . As clarified 
below, to choose �h,2 in t = 2 it might make sense to buyer h to make an inference 
on �k,1 ∈ Ek,1 = {Ask,1,Ark,1,Bsk,1,Brk,1} from his information set Ih = (�h,1, (pA, pB))

—henceforth, Ih = (�h,1, ⋅), for brevity—and his conjecture on k’s previous move.
A behavioral strategy—call it Θh—for buyer h is a pair of functions 

Θh = (�h,1 = �h,1(pA, pB), �h,2 = �h,2(Ih)) : the probability distribution for t = 1 is a 
function of prices while the probability distribution for t = 2 depends on prices and 
the experience being made by the buyer in t = 1 . We denote by Θh∣2 any strategy con-
taining the same function �h,2 = �h,2(Ih) for t = 2 as Θh does.
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For brevity, we denote by Uh(Θh,Θk) , rather than by Uh(Θh,Θk;pA, pB) , buyer h’s 
ex ante payoff, under strategy profile (Θh,Θk) , over some specified (pA, pB)-BS: 

U
h
(Θ

h
,Θ

k
) =

∑2

t=1
u
h,t(Θh

,Θ
k
)
 , where uh,t(Θh,Θk) ( t = 1, 2 ) is buyer h’s stage-t 

expected surplus, as valued at the onset of the BS. Furthermore, we denote by 
uh,t(�h,t,Θk) buyer h’s ex-ante stage-t expected surplus, when buyer h chooses the 
probability distribution (�h,t, 1 − �h,t) and buyer k adheres to strategy Θk.

We now look at the equilibria of the dynamic BSs. In (pA, pB)-BSs in which 
system (6) does not hold and pi < 1 for some i ∈ {A,B} , the buyers are playing in 
each stage the dominant strategy of the static BS: (�h,t, �k,t) = (1, 1) if pA ≤ 2pB − 1 
and (�h,t, �k,t) = (0, 0) if pA ≥ (1 + pB)∕2.

Turning to (pA, pB)-BSs in which system (6) holds, one type of equilibria is 
such that an equilibrium of the static BS is played already from the first stage. 
For instance, there are equilibria in which one of the two asymmetric PSEs of 
the static BS—(�h,t, �k,t) = (1, 0) or (�h,t, �k,t) = (0, 1)—is played in each stage. But, 
again, we rule out the event of the buyers playing any such equilibrium by assum-
ing that pre-play communication is too costly or unfeasible. So, within that type 
of equilibria, we only remain with equilibria in which the buyers persistently ran-
domize over the BS when prices are close enough so as to meet system (6). This 
leads to the following proposition, whose proof derives straightforwardly from the 
arguments in the previous section.

Proposition 1 Let Θ∗
h
= (�∗, �∗) and Θ∗

k
= (�∗, �∗), where �∗ is defined by Eq. (13). 

The strategy profile (Θ∗
h
,Θ∗

k
) induces a Nash equilibrium in each (pA, pB)-BS.

Once again, in each (pA, pB)-BS in which prices meet system (6) the equilib-
rium induced by the strategy profile (Θ∗

h
,Θ∗

k
) is inefficient. For instance, with 

pA = pB = p , we have �∗ = 1

2
 : hence, in each stage each buyer is served with a 

probability of 3
4
 and each buyer’s equilibrium payoff over the two-stage BS is 

(1 − p)
3

4
× 2 , whereas by repeatedly playing a PSE of the static BS each buyer 

would get (1 − p) × 2 over the two-stage BS.
An interesting question is whether equilibria of a different type exist, in which 

the experience undergone by buyer h in t = 1 will affect h’s prediction on buyer k’s 
move in t = 2 , thereby affecting h’s move in t = 2 . Equilibria of this type do exist: 
in particular, as will be shown later on, there are equilibria in which the following 
norm of “conditional loyalty” (CL) is adhered to when system (6) holds.

Definition 1 According to CL, if previously served a buyer will visit in t = 2 the 
same seller he visited in t = 1 , while visiting the other seller if previously rationed.  
 ◻

Before incorporating the norm of CL into a candidate equilibrium strategy, it is 
important to point out that such a norm is an effective ex-post coordination device 
among the buyers.
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Proposition 2 Under CL, both buyers are certainly served in t = 2; in contrast, 
a unilateral deviation from CL results in each buyer being rationed with positive 
probability.

Proof Suppose that, in t = 1 , buyer h is served and buyer k is rationed by A or that h is 
served by A and k is served by B. Then, under CL, (�h,2, �k,2) = (1, 0) and hence both 
buyers will be served in t = 2 . If, instead, buyer h unilaterally deviates, then 𝜐h,2 < 1 
and hence service probability will be 𝜐h,2 +

1−𝜐h,2

2
< 1 for each; if buyer k deviates, 

then 𝜐k,2 > 0 , implying service probability 𝜐k,2
2

+ 1 − 𝜐k,2 < 1 for each.   ◻

Remark 1 The effectiveness of CL as an ex-post coordination device in a dynamic BS 
was already pointed out in Goldman et al. (2004), through a computational model with 
automated buyers and sellers, and in De Francesco (1998 and 2005), in a context in 
which there are m buyers, each of them demanding one unit of a commodity and choos-
ing in each stage which of n sellers to visit, each of the latter endowed, as in our two-
buyer and two-seller model, with capacity yi = m∕n , where m/n is an integer. Unlike in 
our present model, in De Francesco (1998, 2005) the focus was on BSs in which prices 
are exogenously given and the same at all the sellers. As for the static BS, quite intui-
tively, the set of PSEs is made up of any profile of deterministic choices resulting in m/n 
visitors for each seller—which, by the way, represents a perfect matching of buyers and 
sellers (see Proposition 1 in De Francesco 2005). But, of course, there are lots of such 
equilibria:6 thus, in view of the underlying coordination problem already emphasized in 
our two-seller and two-buyer setup, within the context of a static BS one is understand-
ably led to look at the MSE, in which each buyer visits any seller with a probability of 
1/n. At the MSE, the demand di forthcoming to any firm i is clearly a binomial random 
variable, with probability distribution Pr

(

d
i
,m,

1

n

)

=

(

m

d
i

)

(

1

n

)di
(

1 −
1

n

)m−di 

( di = 0,… ,m ). Since total demand equals total capacity and all the firms are visited 
with the same probability by each buyer, expected demand Edi for each firm is equal to 
its capacity m/n.7 At the same time, expected output Eyi is less than capacity: indeed, 
while output falls short of capacity if the number of buyers di visiting the firm is less 
than m/n, output is just equal to capacity if di > m∕n . Thus, each firm’s expected output 
per unit of capacity,Eyi

yi
 — equivalently, the probability for each buyer to be served—will 

be lower than 1. On reflection,

(18)Eyi

yi
=

m
∑

di=0

(

m

di

)

(

1

n

)di
(

1 −
1

n

)m−di
min

{

di,
m

n

}

m∕n
.

6 A moment reflection shows that the number of PSEs is 
n−1
∏

l=0

(

m − l × (m∕n)

m∕n

)

.

7 More formally, from d1 +…+ dn = m it follows that Ed1 +…+ Edn = m ; but Ed1 = … = Edn , hence 
nEdi = m and Edi = m∕n.
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A simple exercise of comparative statics will be instructive. For any given number 
of sellers n, let the number of buyers m—and hence total demand—increase while 
retaining the equality between total demand and total capacity, so that total capacity 
m and each firm’s capacity m/n increase too. By the law of large numbers, the 
demand di forthcoming to each firm converges in probability to its expected level 
m/n as m goes to infinite. As a consequence, given n, Eyi

yi
 is the higher as m is the 

higher and converges to 1 as m goes to infinite. However, as illustrated by Table 1, 
Eyi

yi
 is still significantly lower than 1, even for quite high levels of m/n: in other words, 

the inefficiency deriving from buyers’ random choice is far from negligible even for 
quite high levels of m/n.

Suppose now instead that the buyers are involved in a multi-stage BS: each buyer 
demands repeatedly one unit of the commodity. Rather than playing in each stage 
the MSE of the static BS, the buyers might adhere to a norm of CL. In the context 
here under scrutiny, such a norm stipulates that, in each stage of the dynamic BS, 
a buyer who was served in the previous stage be loyal in the next stage and that a 
buyer who was rationed visit with the same probability any of the sellers she has not 
yet tried thus far, so long as there are any. (In the first stage, each buyer visits any 
seller with probability 1/n.) It was proved (see Proposition 3 in De Francesco 2005) 
that if all buyers are constantly adhering to CL, then with unit probability each seller 
will receive the stable custom of m/n buyers from stage � = (m − yi + 1)(n − 2) + 2 
onwards so that, with unit probability, all buyers will be served and all firms will 
produce at full capacity from stage � onwards.8 This means an increase in efficiency 
compared to the case in which all buyers are playing repeatedly the MSE of the static 
BS: as indirectly illustrated by Table  1, such an improvement remains significant, 
even for quite large levels of m/n.9   ◻

Table 1  For specified numbers 
of sellers and buyers, the last 
column displays expected 
output per unit of capacity—
or, equivalently, each buyer’s 
service probability—when 
sellers are visited with the same 
probability by any buyer

n m m/n Ey
i
∕y

i

2 2 1 0.750
2 100 50 0.960
2 200 100 0.972
4 4 1 0.683
4 200 50 0.951
4 400 100 0.965

10 10 1 0.651
10 500 50 0.947
10 1000 100 0.962

8 Of course, the equation for � gives � = 2 in our setting in which m = n = 2 and yi = 1.
9 For instance, with n = 10 sellers and m = 500 buyers, the probability of being served is 0.947 under 
repeated playing of the MSE of the static BS. This means that, on the other hand, CL eventually leads to 
an increase in service probability by 5.3% compared to persistent randomization.
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Let us come back to our two-seller, two-buyer, and two-stage BS setup. Given the 
benefits of CL in terms of the certainty of obtaining the good in the final stage of the 
BS, one can expect that an equilibrium strategy for the BS that incorporates such a 
norm does exist unless prices differ to such an extent so as to make each buyer’s over-
all prospects—in terms of the price to be paid if served and the probability of being 
served—definitely better when addressing his own demand to the cheapest seller. 
The questions to be answered when characterizing such an equilibrium strategy are, 
first, how precisely the buyer’s choice in t = 1 depends on prices and, second, how 
close prices have to be in order for CL to be a mutual best response in t = 2 . As will 
be proved later on, the equilibrium strategy incorporating CL, to be denoted by Θ∗∗

h
 

(resp., Θ∗∗
k

 ) with reference to buyer h (resp., k) is characterized as follows.

Definition 2 Θ∗∗
h

= (�∗∗
h,1
, �∗∗

h,2
) , where

with

and where

Θ∗∗
k

= (�∗∗
k,1
, �∗∗

k,2
) , with �∗∗

k,1
= �∗∗(pA, pB) (see Eqs. (19) and (20)) and �∗∗

k,2
= �∗∗

k,2
(Ih) , 

where, similarly to �∗∗
h,2
(Ih),

(19)𝜐∗∗
h,1

= 𝜐∗∗(pA, pB) =

⎧

⎪

⎨

⎪

⎩

1 if pA <
3pB−1

2
��𝜐 ∈ [0, 1] if

3pB−1

2
≤ pA ≤

1+2pB

3

0 if pA >
1+2pB

3
,

(20)��𝜐 = ��𝜐(p
A
, p

B
) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1+2p
B
−3p

A

2−p
A
−p

B

= 1 if
3p

B
−1

2
= p

A
<

1+2p
B

3

1+2p
B
−3p

A

2−p
A
−p

B

∈ (0, 1) if
3p

B
−1

2
< p

A
<

1+2p
B

3

1+2p
B
−3p

A

2−p
A
−p

B

= 0 if
3p

B
−1

2
< p

A
=

1+2p
B

3

1

2
if p

A
= p

B
= 1,

(21)𝜐∗∗
h,2

= 𝜐∗∗
h,2
(Ih) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if �h,1 ∈ {Ash,1,Brh,1} and 2pB − 1 < pA <
1+pB

2
,

1 if pA ≤ 2pB − 1 < 1,

1 if pA < pB = 1,

0 if �h,1 ∈ {Bsh,1,Arh,1} and 2pB − 1 < pA <
1+pB

2
,

0 if
1+pB

2
≤ pA < 1,

0 if pA = 1 > pB
1

2
if pA = pB = 1;
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  ◻

Remark 2 Since the definition above is quite cumbersome, reviewing it in plain lan-
guage will be helpful when it comes to prove that the strategy profile (Θ∗∗

h
,Θ∗∗

k
) is 

an equilibrium for the dynamic BS. According to the first and the fourth line of Eqs. 
(21) and (22) Θ∗∗

h
 and Θ∗∗

k
 prescribe CL if and only if prices are sufficiently close to 

each other so as to meet system (6). According to the remaining lines, if that system 
does not hold, then: with pA ≠ pB , the cheapest seller has to be chosen in t = 2 ; with 
(pA, pB) = (1, 1) , the stipulated prescription is to pick either seller with probability 
1/2.10

Consider now the prescriptions of Θ∗∗
h

 and Θ∗∗
k

 for t = 1 . According to the second 
line of Eqs. (19) and (20), in order for either seller to be chosen with strictly positive 
probability—i.e., in order for ̃̃�(pA, pB) ∈ (0, 1)—prices have to be close enough so as 
to meet both inequalities in system

as strict inequalities, for otherwise the cheapest seller has instead to be chosen. The 
interval 

[

3pB−1

2
,
1+2pB

3

]

 is non-empty since pB ≤ 1 and degenerates to 1 if pB = 1 : 
indeed,

and

Notice, furthermore, that system (23) is more restrictive than system (5) whenever 
pB < 1 : indeed,

(22)𝜐∗∗
k,2

= 𝜐∗∗
k,2
(Ih) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if �k,1 ∈ {Ask,1,Brk,1} and 2pB − 1 < pA <
1+pB

2
,

1 if pA ≤ 2pB − 1 < 1,

1 if pA < pB = 1,

0 if �k,1 ∈ {Bsk,1,Ark,1} and 2pB − 1 < pA <
1+pB

2
,

0 if
1+pB

2
≤ pA < 1,

0 if pA = 1 > pB
1

2
if pA = pB = 1.

(23)
3pB − 1

2
≤ pA ≤

1 + 2pB

3
,

(24)pB < 1 ⟺
3pB − 1

2
<

1 + 2pB

3
< 1,

(25)pB = 1 ⟺
3pB − 1

2
=

1 + 2pB

3
= 1.

(26)pB < 1 ⟺ 2pB − 1 <
3pB − 1

2
<

1 + 2pB

3
<

1 + pB

2
< 1.

10 One might as well stipulate that CL applies even with (pA, pB) = (1, 1) (see footnote 16).
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If, instead, pB = 1 , then system 3pB−1

2
≤ pA ≤

1+2pB

3
 is equivalent to system 

2pB − 1 ≤ pA ≤
1+pB

2
 and implies pA = 1:

Consequently, if the system of inequalities (23) holds then: with pB < 1 , at least one 
of the two inequalities (23) is strict and we have that system (6) a fortiori holds and 
pA < 1 ; with pB = 1 , system (23) is equivalent to system (5) and pA = 1 . Next, let us 
see why, according to equation (20), firm A has to be visited with probability 
̃̃�(pA, pB) =

1+2pB−3pA

2−pA−pB
 in t = 1 when 3pB−1

2
< pA ≤

1+2pB

3
 or 3pB−1

2
≤ pA <

1+2pB

3
 . As one 

can easily verify, this value is in fact the unique solution in �h,1 of the equation

where �(Ask,1(�h,1, 1)) =
�h,1

2
+ 1 − �h,1 (resp., �(Bsk,1(�h,1, 0)) = �h,1 +

1−�h,1

2
 ) is the 

probability that buyer k is served in t = 1 when k visits A (resp., B) and h is visiting 
A with probability �h,1 . Note that, in view of Proposition 2, the LHS (resp., the RHS) 
of Eq. (28) is buyer k’s payoff over the BS if visiting A (resp., B) in t = 1 , condi-
tional on buyer h visiting A with probability �h,1 in t = 1 and on buyers h and k 
adhering to CL in t = 2 : in fact, under these circumstances, when visiting A (resp., 
B) in t = 1 buyer k obtains a total surplus of 2(1 − pA) (resp., 2(1 − pB) ) over the BS 
if served in t = 1 and a total surplus of 1 − pB (resp., 1 − pA ) if rationed in t = 1 . 
Thus, ̃̃�(pA, pB) =

1+2pB−3pA

2−pA−pB
∈ [0, 1] turns out to be the level of �h,1 which makes 

buyer k’s payoff (under CL by h and k in t = 2 ) be the same no matter whether k vis-
its A or B in t = 1.

There is no meaningful solution to Eq. (28) if system (23) does not hold: 
under such an event, according to equation (19) the cheapest seller has to be 
visited in t = 1.11 Notice, finally, that except for a discontinuity at 
(pA, pB) = (1, 1) ,12 the function �∗∗(pA, pB) is continuous over the domain [0;1]2 : 
in fact, with pB < 1 , ̃̃�(pA, pB) is continuous for pA ∈

[

3pB−1

2
,
1+2pB

3

]

 and, further-

more, �∗∗(pA, pB) = 1 for pA ≤
3pB−1

2
 and �∗∗(pA, pB) = 0 for pA ≥

1+2pB

3
 (note that 

�∗∗(pA, pB) =
̃̃� = 1 for pA =

3pB−1

2
 and �∗∗(pA, pB) = ̃̃� = 0 for pA =

1+2pB

3
 ).   ◻

We are now in a position to establish the following result.

Proposition 3 The strategy profile (Θ∗∗
h
,Θ∗∗

k
) induces a Nash equilibrium in each 

(pA, pB)-BS.

Proof In the Appendix.   ◻

(27)pB = 1 ⟺ 2pB − 1 =
3pB − 1

2
=

1 + 2pB

3
=

1 + pB

2
= 1.

(28)
�(Ask,1(�h,1, 1))2(1 − pA) + [1 − �(Ask,1(�h,1, 1))](1 − pB)

= �(Bsk,1(�h,1, 0))2(1 − pB) + [1 − �(Bsk,1(�h,1, 0))](1 − pA),

11 The cheapest seller has also to be visited in t = 1 if one of the weak inequalities in system (23) holds 
as an equality.
12 𝜐∗∗(1, 1) = ��𝜐(1, 1) = 1∕2 < limpA↗1 𝜐

∗∗(pA, 1) = 1.
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Since any dynamic (pA, pB)-BS has no proper subgames, any of its Nash equilibria is 
subgame perfect. Hence one should check that, at information sets off the equilibrium 
path, a buyer is actually making a best response by adhering to his equilibrium strategy. 
This check is immediate for the equilibrium (Θ∗

h
,Θ∗

k
) : no matter �h,1 and what buyer 

h believes about k’s previous move, by playing �h,2 = �∗ buyer h is obviously making 
a best response to �k,2 = �∗ . As for the equilibrium (Θ∗∗

h
,Θ∗∗

k
) , Proposition 4 below 

will show that, along with a proper system of beliefs, that strategy profile represents an 
“assessment equilibrium”,13 in the specific meaning we are now going to specify.

At any information set Ih , buyer h holds a belief �(Ek,1 ∣ Ih) , namely, an (ex-post) 
probability distribution over the set of events Ek,1 that buyer k may have faced in t = 1 . 
This allows buyer h to compute uh,2(�h,2,Θ∗∗

k∣2
;�(Ek,1 ∣ Ih) ∣ Ih) , namely, his expected 

surplus for t = 2 , conditional on Ih , when playing �h,2 and with buyer k adhering to 
the prescriptions of Θ∗∗

k
 in t = 2 . A “structurally consistent” system of beliefs is such 

that, at any information set Ih , the belief �(Ek,1 ∣ Ih) is derived by Bayes’ rule and the 
strategy buyer k is conjectured to have followed in t = 1 . According to Proposition 4 
below, for any structurally consistent belief system, the strategy profile (Θ∗∗

h
,Θ∗∗

k
) is 

“sequentially rational”: at any information set Ih , by playing �h,2 = �∗∗
h,2
(Ih) buyer h 

maximizes uh,2(�h,2,Θ∗∗
k∣2
;�(Ek,1 ∣ Ih) ∣ Ih).

Proposition 4 The assessment (Θ∗∗
h
,Θ∗∗

k
;�)—� being any structurally consistent sys-

tem of beliefs—meets sequential rationality in any (pA, pB)-BS.

Proof Sequential rationality is trivial to check for (pA, pB) = (1, 1) ; it is also immedi-
ate if 1+pB

2
≤ pA < 1 or pB < pA = 1 (resp., pA ≤ 2pB − 1 < 1 or pA < pB = 1 ) since 

then �∗∗
h,2

= 0 (resp., �∗∗
h,2

= 1 ) is obviously a best response, no matter �k,2 . Next con-
sider BSs in which system (6) holds. At Ih = (Arh,1, ⋅) , h obviously infers that k was 
served by A in t = 1 and hence k is expected to be loyal to A in t = 2 : therefore, 
uh,2(�h,2,Θ

∗∗
k∣2
;�(Ek,1 ∣ (Arh,1, ⋅)) ∣ (Arh,1, ⋅)) = �h,2(1 − pA)∕2 + (1 − �h,2)  (1 − pB) , 

which is maximal for �h,2 = �∗∗
h,2
(Arh,1, ⋅) = 0 since pA > 2pB − 1 . At Ih = (Ash,1, ⋅) , 

any structurally consistent belief is such that �(Ar
k,1 ∣ (Ash,1, ⋅))

+�(Bs
k,1 ∣ (Ash,1, ⋅)) = 1.14 Therefore, buyer k is expected to visit seller B in t = 2 : 

hence uh,2(�h,2,Θ
∗∗
k∣2
;�(Ek,1 ∣ (Arh,1, ⋅)) ∣ (Arh,1, ⋅)) = �h,2(1 − pA) + (1 − �h,2)(1 − pB)∕2

 , which is maximal 
for �h,2 = �∗∗

h,2
(Ash,1, ⋅) = 1 since pA <

1+pB

2
 . A similar reasoning applies to informa-

tion sets Ih = (Bsh,1, ⋅)) and Ih = (Brh,1, ⋅) .   ◻

For any (pA, pB)-BS, we denote by Ey∗
A,t
(pA, pB) and 

∑2

t=1
EΠ∗

A,t
(pA, pB) firm 

A’s (ex ante) stage-t expected output and expected total profit, respectively, condi-
tional on the equilibrium (Θ∗

h
,Θ∗

k
) being played: Ey∗

A,t
(pA, pB) = EyA(�

∗(pA, pB)) 
for t = 1, 2 (see Proposition 1 and Eqs. (13) and (14)) and hence 

14 For instance, let the structurally consistent belief be derived from the conjecture that k has adhered 
to Θ∗∗

k
 in t = 1 . Then, as can easily be verified, Bayes’ rule yields �(Ark,1 ∣ (Ash,1, ⋅)) =

̃̃�

2−̃̃�
 and 

�(Bsk,1 ∣ (Ash,1, ⋅)) =
2−2̃̃�

2−̃̃�
 if 3pB−1

2
≤ pA ≤

1+2pB

3
 , �(Bsk,1 ∣ (Ash,1, ⋅)) = 1 if (1 + 2pB)∕3 < pA , and 

�(Ark,1 ∣ (Ash,1, ⋅)) = 1 if pA < (3pB − 1)∕2.

13 As in De Francesco (2005), we borrow this terminology from Binmore (1992, pp. 536–540) to refer to 
a weakened version of Kreps and Wilson’s (1982) “sequential equilibrium.”
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∑2

t=1
EΠ∗

A,t
(pA, pB) = 2pAEyA(�

∗(pA, pB)) . Similarly, we denote by Ey∗∗
A,t
(pA, pB) ) 

and 
∑2

t=1
EΠ∗∗

A,t
(pA, pB) firm A’s (ex-ante) stage-t expected output and expected total 

profit, respectively, conditional on the equilibrium (Θ∗∗
h
,Θ∗∗

k
) being played; note that 

Ey∗∗
A,1

(pA, pB) = EyA(�
∗∗(pA, pB)) (see Eqs. (14), (19) and (20)).

Again, condition (16) can be taken for granted since pA = 0 and pA = 1 are 
never best responses. This fact relies upon the argument in the previous sec-
tion when the equilibrium (Θ∗

h
,Θ∗

k
) is assumed to be played. The point is also 

easy to make under the equilibrium (Θ∗∗
h
,Θ∗∗

k
) : pA = 0 is not a best response, 

even with pB = 0 , since 
∑2

t=1
EΠ∗∗

A,t
(pA, 0) > 0 for pA sufficiently close to 0;15 and 

pA = 1 is not a best response, even with pB = 1 , since 
∑2

t=1
EΠ∗∗

A,t
(1, 1) =

3

4
+

3

4

=
3

2
< limpA↗1

∑2

t=1
EΠ∗∗

A,t
(pA, 1) = 2.16

We are now ready to address price determination at a subgame perfect equilibrium 
(SPE) of the entire game. As the next proposition makes clear, equilibrium prices are 
significantly affected by the equilibrium of the BS that is played by the buyers.

Proposition 5 

 (i) 
(

(pA, pB), (Θh,Θk)) = ((p∗, p∗), (Θ∗
h
,Θ∗

k
)
)

, with p∗ = 1∕2, is a subgame perfect 
equilibrium (SPE) of the entire game.

 (ii) 
(

(pA, pB), (Θh,Θk)) = ((p∗∗, p∗∗), (Θ∗∗
h
,Θ∗∗

k
)
)

, with p∗∗ = 7∕12, is another SPE.

Proof 

 (i) Recall that 
∑2

t=1
EΠ∗

A,t
(pA, pB) = 2pAEyA(�

∗(pA, pB)) . Holding system (5), 

�
∑2

t=1
EΠ∗

A,t
(pA, pB)∕�pA = 2

�

EyA(�̃(pA, pB)) + pA
dEyA(�)

d�
∣�=�̃(pA,pB)

��̃(pA,pB)

�pA

�

 . At 
a  symmet r ic  equ i l ib r ium,  pA = pB = p  and  � = 0.5 :  hence 
�
∑2

t=1
EΠ∗

A,t
(pA, pB)∕�pA = 0

 yields p = 0.5 , as with the static BS.

 (ii) For pB ∈ (0, 1) , 
∑2

t=1
EΠ∗∗

A,t
(pA, pB) can be written as

where the interval 
[

0,
3pB−1

2

)

 pertaining to the first line on the RHS is empty if and 
only if pB ≤ 1∕3 and the intervals in all subsequent lines are non-empty and 
non-degenerate since pB < 1 . If pA ∈ [0,

3pB−1

2
) , then 

∑2

t=1
EΠ∗∗

A,t
(pA, pB) = 2pA 

since firm A is visited by both buyers in t = 1 and by at least one buyer in t = 2 

(29)
2
�

t=1

EΠ∗∗
A,t
(pA, pB) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2pA if pA ∈ [0,
3pB−1

2
),

pAEyA

�

̃̃�(pA, pB)
�

+ pA if pA ∈
�

max

�

0,
3pB−1

2

�

,
1+2pB

3

�

pA if pA ∈
�

1+2pB

3
,
1+pB

2

�

,

0 if pA ∈
�

1+pB

2
, 1

�

,

15 By Eqs. (14), (19) and (20), Ey∗∗
A,1

(pA, 0) =
��𝜐
2

+ 2��𝜐(1 − ��𝜐) > 0 for pA < 1∕3.
16 If we had let CL apply also for (pA, pB) = (1, 1) , still it would have been 

∑2

t=1
EΠ∗∗

A,t
(1, 1) =

3

4
+ 1 < 2.
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(by both buyers if it is also pA ≤ 2pB − 1 ). Note that, for pA ∈
[

0,
1+pB

2

)

 , 
∑2

t=1
EΠ∗∗

A,t
(pA, pB) = pAEyA

�

�∗∗(pA, pB)
�

+ pA is a continuous function of pA . Indeed: 
Ey

∗∗
A,1

(

1+2pB
3

, p
B

)

= Ey
A

(

̃̃�
(

1+2pB
3

, p
B

))

= 0 = lim
pA↗

1+2pB
3

Ey
∗∗
A,1

(p
A
, p

B
)  ;  w i t h  pB ≥ 1∕3  , 

Ey
∗∗
A,1

(

3pB−1

2
, pB

)

= EyA

(

̃̃�
(

3pB−1

2
, pB

))

= 1 = lim
pA↗

3pB−1

2

Ey
∗∗
A,1

(pA, pB) . A discontinuity 

ar ises at pA =
1+pB

2
 since lim

p
A
↗

1+pB
2

Ey
∗∗
A,2

(p
A
, p

B
) = 1 > Ey

∗∗
A,2

(

1+p
B

2
, p

B

)

= 0 .  

F o r  p
A
∈
(

max

{

0,
3p

B
−1

2

}

,
1+2p

B

3

)

 ,  
�
∑2

t=1
EΠ∗∗

A,t
(pA,pB)

�pA
= EyA

�

̃̃�
�

pA, pB
�

�

+pA
dEyA(�)

d�
∣
�=̃̃�(pA,pB)

�̃̃�(pA,pB)

�pA
+ 1 , which is positive on a right neighbourhood 

of max

{

0,
3pB−1

2

}

 since pA
dEyA(�)

d�
∣
�=̃̃�(pA,pB)

= 0 at pA = max

{

0,
3pB−1

2

}

 (note 

that, with 3pB−1
2

> 0 , dEyA,1(�)
d�

∣
�=̃̃�

(

3pB−1

2
,pB

)= 2
(

1 − ̃̃�
(

3pB−1

2
, pB

))

= 0 since 

̃̃�
(

3pB−1

2
, pB

)

= 1 ), and negative on a left neighbourhood of 1+2pB
3

 , since 

lim
pA↗

1+2pB
3

𝜕
∑2

t=1
EΠ∗∗

A,t
(pA,pB)

𝜕pA
=

−1−17pB

5(1−pB)
< 0 . 17 A l so ,  ove r  t he  r ange 

(

max

{

0,
3pB−1

2

}

,
1+2pB

3

)

 , 
∑2

t=1
EΠ∗∗

A,t
(pA, pB) is strictly concave in pA:18 thus, 

Fig. 1  The curve shows firm A’s payoff as a function of pA , for p
B
= p

∗∗ = 7∕12 = 0.583 , conditional on 
the equilibrium (Θ∗∗

h
,Θ∗∗

k
) being played in any (pA, pB)-BS

17 Note that lim
p
A
↗

1+2pB

3

[

Ey
A
(�)

]

�=̃̃�(pA ,pB)
= 0 , lim

pA↗
1+2pB

3

dEyA(�)

d�
∣
�=̃̃�(pA ,pB)

= 2 , lim
pA↗

1+2pB
3

�̃̃�(pA ,pB)

�pA
=

−9

5(1−pB)
.

18 �
2
∑2

t=1
EΠ∗∗

A,t
(pA ,pB)

�p2
A

= 2
d(EyA(�))

d�
∣
�=̃̃�(pA ,pB)

�̃̃�(pA ,pB)

�pA
+ pA

d2EyA(�)

d�2
∣
�=̃̃�(pA ,pB)

�

�̃̃�(pA ,pB)

�pA

�2

+ pA
dEyA(�)

d�
∣
�=̃̃�(pA ,pB)

�2̃̃�(pA ,pB)

�p2
A

 , 

where d(EyA(𝜐))
d𝜐

∣
𝜐=��𝜐(pA ,pB)

= 2

(

1 − ��𝜐(pA, pB)
)

> 0 since ̃̃�(pA, pB) ∈ (0, 1) , d
2EyA(�)

d�2
∣
�=̃̃�(pA ,pB)

=
d2EyA(�)

d�2
= −2 , 

𝜕��𝜐(pA ,pB)

𝜕pA
= −

5(1−pB)

(2−pA−pB)
2
< 0 and 𝜕

2��𝜐(pA ,pB)

𝜕p2
A

=
−10(1−pB)

(2−pA−pB)
3
< 0.
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over that range, 
∑2

t=1
EΠ∗∗

A,t
(pA, pB) has a unique and internal maximum. 

Finally, 
∑2

t=1
EΠ∗∗

A,t
(pA, pB) is kinked at pA =

1+2pB

3
 ( lim

pA↘
1+2pB

3

�
∑2

t=1 EΠ
∗∗
A,t

(pA ,pB)

�pA
= 1 ) 

and increasing for pA ∈
(

1+2pB

3
,
1+pB

2

)

 . Searching for a symmetric equilibrium, 
we put pA = pB into the first-order condition for an internal maximum, to 
obtain pA = pB = p∗∗ =

7

12
= 0.583 . In fact, argmaxpA∈[0,1]

2
∑

t=1

EΠ∗∗
A,t
(pA, p

∗∗) = p∗∗ : 

lim
pA↗

1+p∗∗

2

2
∑

t=1

EΠ∗∗
A,t
(pA, p

∗∗) =
1+p∗∗

2
= 0.7916

<

∑2

t=1
EΠ∗∗

A,t
(p∗∗, p∗∗) = 49∕48 = 1.02083

 (see Fig. 1).   ◻

Remark 3 From Proposition 5 we can see that the outcome of price competition in terms of 
total welfare and its distribution depends on whether, in t = 2 , the buyers keep on rand-
omizing as they do in t = 1 or adhere instead to CL. On the equilibrium path of the SPE of 
the entire game, expected total output over the BS is equal for each firm to 3

4
× 2 =

3

2
 when 

the buyers are persistently randomizing; by contrast, under CL capacity is certainly fully 
utilized in t = 2 and hence each firm’s expected total output is 3

4
+ 1 =

7

4
 . The increase in 

expected total output under CL clearly means an increase in total welfare. At the same 
time, some redistribution of welfare from the buyers to the sellers also takes place since the 
corresponding equilibrium price p∗∗ is significantly higher than the equilibrium price p∗ 
obtaining with persistent randomization ( p∗∗∕p∗ = 1.16) : as a consequence, each firm’s 
equilibrium payoff under CL is approximately 36.1 per cent higher than under persistent 
randomization: 

∑2

t=1
EΠ∗∗

A,t
(p∗∗ ,p∗∗)

∑2

t=1
EΠ∗

A,t
(p∗ ,p∗)

=
7

12
×

7

4

1

2
×

3

2

= 1.361 . As for the buyers, one can check that the nega-

tive effect deriving from the higher equilibrium price under CL slightly outweighs the 
favourable effect deriving from the higher service probability (1 instead of 3

4
 ) in t = 2 : each 

buyer’s expected total surplus under CL is indeed (1 − p
∗∗)

(

3

4
+ 1

)

=
5

12
×

7

4
=

35

48
= 0.72916 , 

slightly less than (1 − p∗)
3

4
× 2 =

1

2
×

3

4
× 2 =

3

4
= 0.75 , her expected total surplus 

under persistent randomization.
The underlying reason for the increase in each firm’s market power under CL is 

worth clarifying. As usual, there are a positive and a negative component in firm A’s 
marginal payoff. To fix ideas, let pA increase. The positive component is the “direct” 
effect of the price increase, namely, the rate of change of A’s revenue if neglecting the 
fall in expected output deriving from the price increase; the negative component is 
the “indirect” effect, namely, the rate of change of A’s revenue deriving from the fall 
in A’s expected total output over the BS. Starting from a uniform pair of prices, we 
have that A’s marginal payoff is

(30)

�
∑2

t=1
EΠ∗∗

A,t
(pA, pB)

�pA
∣(pA,pB)=(p,p) =

�

EyA(�)
�

�=1∕2
+ 1 +

dEyA(̃�̃(pA, pB))

dpA
∣(pA,pB)=(p,p)

=
�

EyA(�)
�

�=1∕2
+ 1 + p

dEyA(�)

d�
∣�=1∕2

�̃̃�(pA, pB)

�pA
∣(pA,pB)=(p,p)

=
�

3

4
+ 1

�

+

�

−
5

4

p

1 − p

�

,
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under the equilibrium (Θ∗∗
h
,Θ∗∗

k
) of the BS while it is equal to

under the equilibrium (Θ∗
h
,Θ∗

k
) . Notice that both the positive and the negative com-

ponents are higher in Eq. (30) than in Eq. (31): 3
4
+ 1 > 2 ×

3

4
 and − 5

4

p

1−p
> −

3

2

p

1−p
 . 

This is a consequence of the fact that, under the equilibrium (Θ∗∗
h
,Θ∗∗

k
) , capacity is 

fully utilized in t = 2 , even when pA is marginally raised above pB . In particular, as 
for the negative component, while the increase of pA has a stronger impact on A’s 
expected output in t = 1 under the equilibrium (Θ∗∗

h
,Θ∗∗

k
) than under the equilibrium 

(Θ∗
h
,Θ∗

k
)—in fact, dEyA(��𝜐(pA ,pB))

dpA
∣(pA ,pB)=(p,p)= −

5

4(1−p)
<

dEyA(�𝜐(pA ,pB))

dpA
∣(pA ,pB)=(p,p)= −

3

4(1−p)
,19 the 

total impact on A’s expected output over the two stages of the BS is nevertheless 
lower: dEyA(

��𝜐(pA,pB))

dpA
∣(pA,pB)=(p,p)= −

5

4(1−p)
> 2

dEyA(�𝜐(pA,pB))

dpA
∣(pA,pB)=(p,p)= 2 ×

(

−
3

4(1−p)

)

 
and this is because the price increase does not affect A’s output in t = 2 . Thus, at any 
uniform price pair (p, p), the incentive to unilaterally increase the price is higher 
under the equilibrium (Θ∗∗

h
,Θ∗∗

k
) ; as a consequence, since at (pA, pB) = (p∗, p∗) there 

is no incentive to unilaterally deviate if the equilibrium (Θ∗
h
,Θ∗

k
) of the BS is  

played, at that same price pair there is an incentive to unilaterally increase the price 

if the equilibrium (Θ∗∗
h
,Θ∗∗

k
) of the BS is played: 

�
∑2

t=1
EΠ∗∗

A,t
(pA,pB)

�pA
∣(pA,pB)=(p∗,p∗)

=
𝜕
∑2

t=1
EΠ∗∗

B,t
(pA,pB)

𝜕pB
∣(pA,pB)=(p∗,p∗)> 0.

Conclusion

The main message arising from our findings is that the outcome of price competition 
among capacity constrained sellers may depend to some extent on whether the buy-
ers’ decisions are made just once or repeatedly after the setting of prices. Compared 
to previous analyses of Bertrand–Edgeworth competition under imperfect mobility 
and imperfect information on the part of the buyers, this paper has modelled a situ-
ation where the buyers demand a certain commodity repeatedly over the time hori-
zon in which prices are fixed, each time choosing which of the existing sellers to 
try. Reconsidering buyers’ incentives within a dynamic BS has delivered neat results 
in a two-seller, two-buyer and two-stage BS setup. Firstly, whenever price differ-
ences at the sellers are sufficiently small or non-existent, another equilibrium exists 

(31)

�
∑2

t=1
EΠ∗

A,t
(pA, pB)

�pA
∣(pA,pB)=(p,p) = 2

�

EyA(�)
�

�=1∕2
+ 2p

dEyA(�̃(pA, pB))

dpA
∣(pA,pB)=(p,p)

= 2
�

EyA(�)
�

�=1∕2
+ 2p

dEyA(�)

d�
∣�=1∕2

��̃(pA, pB)

�pA
∣(pA,pB)=(p,p)

=
�

2 ×
3

4

�

+

�

−
3

2

p

1 − p

�

,

19 This is because ̃̃�(pA, pB) falls more than �̃(pA, pB) does when pA increases above pB . In fact, as the 
reader can easily check by comparing Eqs. (4) and (20), ̃̃�(pA, pB) ⋚ �̃(pA, pB) according as to whether 
pA ⋛ pB.
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for the dynamic BS, besides that in which the buyers play repeatedly the MSE of 
the static BS: in this alternative equilibrium, the buyers are conditionally loyal to the 
seller previously chosen, which in its turn ensures that, in the second stage of the BS, 
both buyers are served and the capacity of both sellers is fully exploited. In such a 
way, conditional loyalty proves to be an effective (ex-post) coordination device for 
the buyers: through conditional loyalty, a perfect matching—that would obtain any 
time under buyers’ perfect mobility—will certainly be reached by the last stage of a 
two-stage BS. In a sense, through conditional loyalty the buyers learn how to play, 
in the last stage, one of the two PSEs of the static BS obtaining when prices are suf-
ficiently close to each other. Quite remarkably, it pays to adhere to conditional loy-
alty even though, in the present model, the sellers do not give any service priority to 
loyal customers and each buyer has only imperfect information on the other buyer’s 
previous move:20 even when—as it is the case, for instance, at the equilibrium of the 
price game—the two sellers are charging the same price, in the final stage of the BS 
a buyer is not “indifferent” among the two sellers if the other buyer adheres to con-
ditional loyalty. Secondly, the equilibrium of the BS exhibiting conditional loyalty 
positively affects each firm’s market power: at the corresponding equilibrium of the 
price game the uniform price is significantly higher than the equilibrium price arising 
when, in each stage of the dynamic BS, the buyers are playing the MSE of the static 
BS. Consequently, conditional loyalty leads to a remarkable increase in each seller’s 
payoff while leading to a slight decrease in each buyer’s payoff.

At this point, the question naturally arises as to the generality of the foregoing 
results. Although further research is warranted to provide a definite answer, pre-
liminary findings from earlier work suggest that some basic results should extend 
beyond the simple setup envisaged in this paper. First of all, and as already recalled in 
Remark 1, in the presence of several buyers and sellers, conditional loyalty remains 
a powerful coordination device in the sense that mismatchings between demand and 
capacity at the firm’s level will be corrected in a finite number of stages. As illus-
trated by Table 1 above, this may still represent a significant increase in efficiency 
compared to the repeated play of the MSE of the static BS. At the same time, charac-
terizing a buyer’s strategy that, when prices are sufficiently close at the different sell-
ers, calls for conditional loyalty from some stage of a dynamic BS onwards and that, 
along with consistent beliefs, constitutes an “assessment equilibrium”, is a more dif-
ficult task to accomplish in a context in which several sellers are facing several buyers 
who are involved in a several-stage BS after the setting of prices.

A final question is how, in a more general setup, the common adoption of a strat-
egy incorporating conditional loyalty would affect the pricing decisions of the sellers 
compared to the case in which the buyers are playing repeatedly the MSE of the static 
BS. On the one hand, quite intuitively, conditional loyalty should again result in some 
increase in equilibrium prices whenever, as in the present paper, the number and the 
capacity of sellers are fixed and the time horizon of the buyers’ decisions is made up 
of a finite number of stages of a BS over which prices are fixed. On the other hand, 

20 Note that information sets Ih = (Ash,1, ⋅) do not fully reveal k’s previous action to buyer h since they 
are consistent with Ark,1 as well as Bsk,1 . (An analogous remark applies to information sets Ih = (Bsh,1, ⋅).)
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the picture is likely to change significantly if the industry is open to entry: when the 
possibility of entry is taken into account, it seems reasonable to expect that it is the 
buyers who benefit the most from the increased efficiency brought about by condi-
tional loyalty.
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