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Théorique UMR7332, 13288 Marseille, France

E-mail: ghofrane.belhadjaissa@gmail.com, gori6matteo@gmail.com,
roberto.franzosi@ino.it and pettini@cpt.univ-mrs.fr

Received 19 August 2020
Accepted for publication 9 December 2020
Published 24 February 2021

Online at stacks.iop.org/JSTAT/2021/023206
https://doi.org/10.1088/1742-5468/abda27

Abstract. Phase transitions do not necessarily correspond to a symmetry-
breaking phenomenon. This is the case of the Kosterlitz–Thouless (KT) phase
transition in a two-dimensional classical XY model, a typical example of a tran-
sition stemming from a deeper phenomenon than a symmetry-breaking. Actually,
the KT transition is a paradigmatic example of the successful application of topo-
logical concepts to the study of phase transition phenomena in the absence of an
order parameter. Topology conceptually enters through the meaning of defects
in real space. In the present work, the same kind of KT phase transition in a
two-dimensional classical XY model is tackled by resorting again to a topological
viewpoint, however focussed on the energy level sets in phase space rather than
on topological defects in real space. Also from this point of view, the origin of the
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KT transition can be attributed to a topological phenomenon. In fact, the tran-
sition is detected through peculiar geometrical changes of the energy level sets
which, after a theorem in differential topology, are direct probes of topological
changes of these level sets.

Keywords: classical phase transitions, dynamical processes, numerical simula-
tions
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1. Introduction

Phase transitions (PTs) encompass a very large number of phenomena that span from
the cosmological scale down to the subnuclear scale and thus cover a huge range of ener-
gies and spatial dimensions. Despite their relevance and the extremely vast literature on
this topic, a general and complete theory is not yet available. The successful and powerful
phenomenological theory due to Landau associates PT with the spontaneous symmetry
breaking phenomenon. However, there are many systems undergoing PT in the absence
of symmetry-breaking: the liquid-gas PT which is a first order transition; systems with
continuous symmetry which cannot be broken spontaneously at any finite temperature
in dimensions two or lower according to the Mermin–Wagner theorem [1]; systems with
local symmetries (gauge theories) which, after the Elitzur theorem [2], undergo PTs
in the absence of an order parameter; glasses and supercooled liquids; amorphous and
disordered systems; homopolymers and proteins undergoing folding transitions.

A paradigmatic example of PT in the absence of symmetry-breaking is provided by
the Kosterlitz–Thouless (KT) transitions [3] which manifest in several kinds of two-
dimensional systems in condensed matter, such as the XY ferromagnet [4] describing
spins on a 2D lattice, or a 2D Bose liquid as in the case of a 2D film of superfluid 4He,
with O(2) symmetry [5], or two-dimensional superconductors [6], or a 2D liquid crystal
[7], 2D melting into a ‘liquid crystal’ phase with sixfold orientational order [8], or the
‘quasi-condensation’ of a uniform 2D fluid of identical bosons [9].

Other transitional phenomena which are experimentally well known but are still at
odds with the existing theoretical frameworks, are PTs occurring in small systems, far
from the thermodynamic limit which is commonly considered as a necessary requisite
after the Yang–Lee theory [10]. Among many examples we can mention the formation
of nanoscopic snowflakes [11], Bose–Einstein condensation [12], homopolymer [13] and
protein [14] folding. Therefore the motivation for a better understanding of the deep
origin of PTs is mainly twofold: there are many PT phenomena occurring without
a symmetry-breaking that are obviously not encompassed by the Landau–Ginzburg
theory, and there are PTs occurring in nanoscopic or mesoscopic systems (far from the
thermodynamic limit) that are not encompassed by the Yang–Lee theory or by the
Dobrushin–Ruelle theory [15].

During the last two decades, the mentioned deeper level of description of PTs has
been found to be rooted in a novel and successful explanation of the origin of chaos
in Hamiltonian dynamics tackled by means of Riemannian differential geometry [16].
Actually, a Hamiltonian flow can be identified with a geodesic flow on a Riemannian
manifold equipped with a suitable metric tensor. Then, by combining together this
geometrization of Hamiltonian dynamics with the microcanonical study of PT by means
of Hamiltonian dynamics, a question arose naturally: are there peculiar changes of
the geometry of the mechanical manifolds in correspondence of a phase transition?
The answer turned out in the affirmative and, more precisely, it has been found
that the topological properties of certain submanifolds of phase space are at the
very grounds of the occurrence of PT [16]. For a system described by a Hamilto-

nian of the form H(p, q) =
∑N

i=1
1
2
p2i + V (q1, . . . , qN), the relevant manifolds are equiv-

alently the energy level sets ΣE = {H(p1, . . . pN , q1, . . . , qN) = E ∈ R} and the balls

https://doi.org/10.1088/1742-5468/abda27 3

https://doi.org/10.1088/1742-5468/abda27


J.S
tat.

M
ech.

(2021)
023206

Geometrical and topological study of the Kosterlitz–Thouless phase transition in the XY model in two dimensions

{ME = H−1((−∞,E])}E∈R bounded by the ΣE in phase space, or the potential level
sets Σv = {V (q1, . . . , qN ) = v ∈ R} and the balls {Mv = V −1((−∞, v])}v∈R bounded by
the Σv in configuration space.

The main difference between the topological approach and the usual association of
PTs with some kind of singularity of the statistical measures is that the topological
approach puts in evidence that all the information concerning the appearance of a PT
is already ‘encoded’ in the interactions among the degrees of freedom of a system. A
fact which is upstream of any signature, singular or not, of a PT. Otherwise said, the
statistical measures are conceptual tools, not directly accessible to experiments, the
singularities of which are used to interpret the occurrence of PTs phenomena, to the
contrary the interactions among the constituents of a system have their own physical
reality (experimentally accessible) and their knowledge is sufficient to predict the occur-
rence of a PT by suitably analysing the energy level sets H(p1, . . . , pN , q1, . . . , qN ) = E,
or the potential energy level sets V (q1, . . . , qN ) = v.

Besides its application to more traditional transitions [17], this topological approach
has been already successfully used to tackle the PT of a gauge model in the absence
of an order parameter [18]. Moreover, peculiar topological changes entailing a PT can
take place at any finite number of degrees of freedom, thus allowing to go beyond the
thermodynamic limit dogma.

Remarkably, topological concepts are at the core of the KT theory independently of
the above mentioned approach, in fact for the planar model of classical spins and for a
superfluid two dimensional film there are spatial vortexes and their cores are holes in
the surface where the system lives. Hence a vortex is called a topological defect [20].
Adding holes to a surface makes a change of its homotopy type.

Also in the present work we aim at characterizing the KT phase transition of the
XY -2D model in a topological framework, however, instead of looking at topological
changes in real space we will focus on certain aspects of the geometry—tightly related
to the topology—of the high dimensional manifolds ΣE and ME in phase space.

A previous attempt to tackle the topological origin of the KT transition by suitably
sampling the critical points of the potential function is reported in [19] where the authors
checked a conjecture about a possible origin of a singularity in configurational entropy
density. Even though the conjecture put forward had reasonable basis, its application to
the KT transition turned out to be inconclusive, as recognized by the authors, perhaps
because of numerical limitations of the hard task of finding an adequate set of critical
points of the potential.

2. The 2D-XY model

The XY model is a two-vector model on a two-dimensional lattice Z2: a two-dimensional
unit-vector si = (six, siy) = ( cos θi, sin θi) is associated to each site i ∈ λ2.

The standard Hamiltonian for this model is

Hstd(θ) = −J
N∑

〈i,j〉=1

si · sj = −J
∑

〈i,j〉∈λ2
cos(θi − θj), (1)
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where 〈i, j〉 indicates all the pairs of nearest neighbors (resulting in short-range interac-
tions) and J is the coupling constant. Such a model can be regarded as a generalization
of the Ising model in the sense that spins can rotate in two dimensions instead of point-
ing only in two directions. Moreover, the Hamiltonian is invariant under the action of the
symmetry group O(2), so that Kosterlitz and Thouless proved that the Mermin–Wagner
theorem applies here because this continuous symmetry is not spontaneously broken at
finite temperature, but there is still a phase transition, with a diverging correlation
length, at some finite temperature in this system. Below some critical temperatures, the
two-point spin correlation 〈s(r) · s(0)〉 = (r/a)−kBT/2πJ , where a is the lattice spacing,
is asymptotically vanishing for r →∞, so that there is no long ranged order, whereas
approaching the transition temperature from above it is 〈s(r) · s(0)〉 = e−r/ξ, where ξ is
the spatial correlation length.

In this work we tackle a modified version of the XY -model in equation (1) by adding
a standard quadratic kinetic energy term of the conjugate momenta pi, together with
a fixed constant 2NJ so that the low energy limit of the potential function is well
approximated by the potential energy of a set of coupled harmonic oscillators. This
modified Hamiltonian reads as

H(p, θ) =
n∑

i=1

n∑
j=1

p2(i,j)
2

+ J
[
cos(θ(i,j) − θ(i,j+1)) + cos(θ(i,j) − θ(i+1,j))− 2

]
. (2)

which is considered with periodic boundary conditions. According to Noether’s theorem,
this system has two first integrals, the total energy H(p, θ) = E and the total momen-
tum P (p) =

∑
i∈λpi associated to the global O(2) symmetry θi → θi + α. Thus the

flow associated with the Hamiltonian (2) belongs to the regular submanifolds ΣE,P of
phase space Λ, that is ΣE,P = {x ∈ Λ|H(x) = E ∧ P (x) = P}. We have N = dim Λ =
2(n× n).

The only way of tackling the KT transition on the basis of the Hamiltonian in
equation (1) is through the canonical statistical ensemble, whereas by rewriting the
model Hamiltonian as in equation (2) allows us to tackle the same problem in the
microcanonical statistical ensemble because the invariant measure of the phase space
flow associated to this nonintegrable Hamiltonian is the microcanonical measure.

3. A bridge between topology and extrinsic geometry of energy surfaces ΣE ,P of
the phase space

According to the topological hypothesis on the origin of PT mentioned in the Intro-
duction, a phase transition stems from a suitable topological change of the energy level
sets, immersed into the phase space of a given system. Therefore, one is confronted
with problem of computing topological invariants of the regular m-dimensional man-
ifolds Σm

E,f , level sets of energy and other first integrals of motions. This problem is,
in general, a tough task, as the cohomology groups of a manifold can be directly com-
puted only in very few cases through algebraic topology techniques. However, in some
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Figure 1. Level sets H = E over the submanifolds P = P immersed into the phase
space Λ.

cases it is possible to compute or, at least, to estimate topological invariants of sub-
manifolds using the few existing results that make a link between global geometry and
topology.

3.1. Basic geometrical quantities of ΣE ,P

We are interested in studying the extrinsic geometry of the codimension-two subman-
ifolds of phase space ΣE,P when P is fixed while E can change. So, we simplify the
problem by considering ΣE,P as a codimension-one submanifold, immersed into ΣP,
foliated by the level sets H = E.

This is schematically represented in figure 1 where n1 and n2 are normal vector fields
to ΣE,P, and the vector field eA belongs to the tangent bundle of ΣE,P, i.e. eA ∈ TΣE,P,
(see appendices A.1 and A.2). The vector n2 is defined through the function

fHP = H − 1

N

P 2

2
. (3)

as

n2 =
∇fHP

‖∇fHP‖
, (4)

which is necessary to define relevant geometric quantities.
A basic geometric quantity characterizing the extrinsic geometry of ΣE,P is the mean

curvature Mn2
along the vector n2 given by (see appendix A.4)

Mn2
=

1

2N − 2

[
HessfHP(∇fHP,∇fHP)

‖∇fHP‖3
− ΔfHP

‖∇fHP‖

]
. (5)

To get some meaningful information about the topology of the co-dimension-one man-
ifolds {ΣE,P} immersed in the Euclidean space ΣP, the dispersion of the principal
curvatures σ2

n2
(ki) is computed from

σ2
n2(ki) = 〈k2

i 〉 − 〈ki〉2 =
Tr (W 2

n2
)

2N − 2
− (TrW n2

)2

(2N − 2)
2 , (6)

where W is the shape-operator (Weingarten map) defined in equation (37) of the
appendix A.1, where Tr W n2

/(2N − 2) = Mn2
, and where
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Tr(W 2
n2
) = Tr

[
(HessfHP)

2

‖∇fHP‖2

]
− (HessfHP∇fHP)

2

‖∇fHP‖4
+

− 1

‖∇fHP‖2

[
(‖HessfHP) (∇fHP) ‖2

‖∇fHP‖2
− ‖ (HessfHP) (∇fHP)

2‖2
‖∇fHP‖4

]
.

(7)

An important quantity connecting thermodynamics to the differential geometry of ΣE,P

is the geometrical temperature given by

Tgeo(E,P) =

(∫
ΣE,P

μdiv ξ

)−1

= (〈div ξ〉μc(E,P))−1, (8)

where ξ = n2

‖∇fHP‖ and 〈·〉μc(E,P) indicates the averages over the energy level sets ΣE,P

with the probability measure μ.
(for all the details of this section, see all of the appendices).

3.2. A theorem of differential topology

One of the mentioned possibilities of relating geometrical and topological properties of
a manifold is provided by Pinkall’s theorem [21]. In order to apply it we first need to
define the dispersion of the principal curvatures {ki}i=1,...,n−m, for any submanifold Mm

of codimension m immersed in an Euclidean space En (for details, see appendix A.2),
as follows

σ2(ki) =
1

(n−m)2

∑
i<j

(ki − kj)
2 =

1

n−m

n−m∑
i=1

(
ki − k̄

)2
, k̄ =

1

n−m

n−m∑
i=1

ki .

(9)

Then the Pinkall’s inequality reads

1

Vol (Sn)

∫
NMm

[
σ2
ξ (ki)

](n−m)/2
dξ �

n−m−1∑
i=1

(
i

n−m− i

)(n−m)/2−i

bi (M
m) ,

(10)

where Vol (Sn) is the volume of the n-dimensional sphere of unit radius, NMm is the
unitary normal bundle over Mm, dξ is the volume element on it and bi (M

m) is the ith
Betti number (the diffeomorphism-invariant dimension of the ith cohomology groups
of the submanifold Mm) [22]. We notice that on the right-hand side of equation (10)

there is a weighted sum of Betti numbers: the weights wi = [i/(n− i)]n/2−i emphasize
the contributions coming from the (co)homology groups Hi(M

m) with i � n/2.
In [18], Pinkall’s theorem was applied to the case of a system undergoing a ther-

modynamic phase transition in the absence of a global symmetry-breaking, where it
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has been shown that the phase transition is marked by an abrupt change in both the
geometry and the topology of the potential level sets ΣV . A direct numerical compu-
tation of the geometrical quantity in the left-hand side of equation (10) is prohibitive
for large Hamiltonian systems because for large values of n (n� 100), the (n−m)/2-th
power of σ2

ξ (ki) is practically untreatable. This difficulty can be overcome by resorting
to Hölder inequality [23], that allows to consider the 2/(n−m)-th power of the integral
in equation (10) for a codimension-one manifold Σ ∈ R

N

∫
Σ

[σ(ki)]
2 dμ �

[∫
Σ

{
[σ(ki)]

2
}(n−1)/2

dμ

]2/(n−1)[∫
Σ

dμ

]1/[1−2/(n−1)]

, (11)

that for large n becomes[∫
Σ

dμ

]−1∫
Σ

[σ(ki)]
2dμ �

[∫
Σ

{
[σ(ki)]

2
}n/2

dμ

]2/n
. (12)

Moreover, Hölder inequality becomes an equality when [σ(ki)]
n equals its average value

almost everywhere on Σ. So we can introduce a reminder r(Σ) to rewrite the last
equation as[∫

Σ

dμ

]−1 ∫
Σ

[σ(ki)]
2dμ =

[∫
Σ

{
[σ(ki)]

2
}n/2

dμ

]2/n
− r(Σ) (13)

where we recognize on the left-hand side the average with respect to the measure dμ of
the dispersion of principal curvatures. In the case where the dispersion of the principal
curvatures of Σ displays a limited variability from point to point, the remainder r(Σ)
turns to be a small correction and, consequently, the Hölder inequality is tight

〈[σ(ki)]2〉μ =

[∫
Σ

{
[σ(ki)]

2
}n/2

dμ

]2/n
− r(Σ)

=

[
Vol (Sn)

n∑
i=1

(
i

n− i

)n/2−i

bi (Σ)

]2/n
− r(Σ) (14)

under the hypothesis that dμ is the induced Riemannian measure on Σ.

4. Simulation of the Hamiltonian dynamics

The standard numerical approach to the study of the KT transition has been through
Monte Carlo canonical algorithms. An alternative approach, that is, performed in the
framework of microcanonical ensemble, has been put forward two decades ago in refer-
ence [24], where the transitional behaviour of 2D XY model—described by the Hamil-
tonian in equation (2)—was first investigated by means of the associated Hamiltonian
flow for which the ergodic invariant measure is the microcanonical measure. In what
follows this approach is adopted to investigate the underlying geometrical/topological
origin of the KT transition. It is worth mentioning that sophisticated microcanonical
Monte Carlo algorithms are available [25, 26] and, in principle, these could be used
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as well, however Hamiltonian dynamics has the advantage of naturally sampling a
constant energy surface with the appropriate measure, and it allows to compute dynam-
ical observables, like Lyapunov exponents, that are not accessible via Monte Carlo
simulations. Additionally, Lyapunov exponents are tightly related to the geometry and
topology of the energy surfaces [16].

4.1. Integration algorithm

It is well known that in order to faithfully represent the true trajectories of a Hamil-
tonian flow by means of numerical pseudo-trajectories one has to resort to symplectic
algorithms. The simplest one is the leap-frog algorithm which, for the Hamiltonian of
interest of the form

H(θ,p) =
N∑
i=1

p2i
2

+ V (θ) (15)

reads as

θi(t+Δt) = θi(t) + Δt pi(t)

pi(t+Δt) = pi(t)−Δt ∇̄iV [θ(t+Δt)] ,
(16)

where ∇̄V =
(

∂
∂θ1

. . . ∂
∂θN

)
. In order to work with a more precise integration scheme, we

used a second order bilateral symplectic algorithm [27], i.e.

(θ(0),p(0)) = [θ(t),p(t)]

θ
(1)
i = θi(t)

p
(1)
i = pi(t)−

1

2
Δt ∇̄iV

[
θ(1)
]

θ
(2)
i = θ

(1)
i +Δt p

(1)
i

p
(2)
i = p

(2)
i − 1

2
Δt ∇̄iV

[
θ(2)
]

p
(3)
i = p

(2)
i

θ
(3)
i = θ

(2)
i +

1

2
Δt p

(3)
i

p
(4)
i = p

(3)
i −Δt ∇̄iV

[
θ(3)
]

θ
(4)
i = θ

(4)
i +Δt p

(3)
i

[θ(t+ 2Δt),p(t+ 2Δt)] = (θ(4),p(4)).

(17)

Symplectic algorithms compute the time evolution of the coordinates, that is
{pi(t), qi(t)} → {pi(t+Δt), qi(t+Δt)}, by performing a canonical transformation at
each time step [28], therefore all the Poincaré invariants in phase space are conserved,
in particular energy conservation and phase space volumes conservation (Liouville
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theorem) are fulfilled. Energy fluctuations ΔE/E can be made arbitrarily small by
reducing the integration time step. Any other kind of integration scheme, no matter if
of high order, would not faithfully represent a Hamiltonian flow. We used a bilateral
scheme (which takes into account the exchangeability of the {pi(t)} and {qi(t)}) under
a suitable canonical transformation) because for any given Δt it is more precise with
respect to the basic scheme in equation (16).

4.2. Initialization of the system

The system was initialized by setting the total energy equal to some given value E and
by setting the total angular momentum P , without loss of generality, equal to zero, i.e.
P = P = 0.

To do so, we first considered the initial value of each spin θij as a random variable
uniformly distributed in the interval [0, 2πα], where 0 < α < 1. Then, we computed the
corresponding potential energy value V (θ). If this was found larger than the value of
the initially assigned total energy E, then the variables {θij} were tentatively rescaled
through a new parameter αnew < α. This procedure was iterated until the condition
E − V = K > 0 was fulfilled (where K is the kinetic energy). Then the momenta were
initialized by dividing them into two sets, say A and B, and choosing them randomly
to satisfy the condition

∑
ij∈Ap

2
ij = K. This is obtained by choosing a unit vector v on

the S (N/2−1) sphere, and then setting pij =
√
2 K vij (where vij are the components of

the unit vector v). Finally, to impose the condition P = 0, we chose the momenta in
the set B equal and opposite to those of the set A: pi,j+N/2 = −pi,j, where i ∈ [1,N ]
and j ∈ [1,N/2].The dynamics of the XY 2D model is chaotic, as it has been reported
in reference [24], and thus, being a non-integrable system, after the Poincaré–Fermi
theorem the system has no non-trivial constant of motion besides energy. Hence the
dynamics is bona fide ergodic and mixing so that there is no dependence of time averages
on the initial conditions, provided that the integration time is sufficiently long to observe
a good convergence of the time averages. Nevertheless, in what follows, to reduce as
much as possible the errors on the numerical outcomes we have performed a double
averaging, that is, in time and on different initial conditions randomly sampled on any
given hypersurface of constant energy and vanishing total momentum.

4.3. Numerical evidence of the KT phase transition

Numerical integration of the Hamiltonian dynamics of the system was performed by
setting J = 1 and time step Δt = 10−3. After a transient of 105 time steps to make the
system thermalise, the averages of any observable have been computed by considering
a total number of steps equal to 2× 106, and 250 different trajectories. The results
obtained have very small fluctuations so that in the figures that follow error bars are
not shown because are always smaller than the size of the symbols.

Microcanonical averages were computed through arithmetic averages of the
sequences of values taken by any given observable along the dynamical trajectories,
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Figure 2. Caloric curves. (Left) Geometrical temperature vs specific energy from
equation (8), N=6×6 (red circles), N=10×10 (blue triangles), N=20× 20 (pur-
ple diamonds), N = 40× 40 (green squares), N = 70× 70 (pink triangles). (Right)
The thermodynamic temperature T th from equation (19) versus energy density ε
is reported only for N = 40× 40 (green squares) and N = 70× 70 (pink triangles)
to put in evidence the inflection point through the blue dashed line. For both pan-
els the vertical dotted line marks the transition point at εc = 1.25. The horizontal
dotted line identifies the critical temperature T c = 1.03.

that is, if Aj(i) is the value of the observable A at the ith step along the jth trajectory

〈A〉μc =
1

Ntrj

Ntrj∑
j=1

(∑Nstep

i=1 Aj(i)

Nsteps

)
, (18)

where N trj is the number of trajectories and N step is the number of integration steps. In
order to locate the phase transition, we have computed the caloric curve (thermodynamic
temperature T th versus energy density ε = E/N) and the constant volume specific heat.

The microcanonical expressions for these quantities are developed in [29], based on
a method proposed in [30], and obtained in the form

Tth =

[(
1

2
− 3

2N

)〈
κ−1
〉
μc

]−1

. (19)

for the thermodynamic temperature, and

cv =
1

N

[
1−

(
1− 5

N

)
〈κ−2〉μc(

1− 3
N

)
〈κ−1〉2μc

]−1

. (20)

for the specific heat, where κ = K/N is the specific kinetic energy.
In figures 2 and 3, the results for the specific heat and the geometrical and

thermodynamic temperature as functions of the specific energy have been reported.
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Figure 3. Specific heat vs energy density ε, for different lattice dimensions: N =
6× 6 (red circles), N = 10× 10 (blue triangles), N = 20× 20 (purple diamonds),
N = 40× 40 (green squares), N = 70× 70 (pink triangles). The vertical dotted line
marks the transition point εc.

As a matter of fact, we are tackling the KT phase transition in the framework of
the microcanonical ensemble because the microcanonical measure is the ergodic invari-
ant measure for a non-integrable Hamiltonian flow. Therefore, we identify the phase
transition point by following a recent and brilliant classification scheme of PT in the
microcanonical ensemble given by Qi and Bachmann [31, 32]. In the absence of an order
parameter—as is the case of the 2D XY model—this consists of locating the inflec-
tion point of the caloric curve. In so doing, the inflection point of T th(ε) reported in
figure 2 identifies the phase transition point at the energy density εc = 1.25 in perfect
agreement with the peak of the specific heat reported in figure 3 (where the points
obtained with lattices of 40× 40 and 70× 70 sites superpose). This agreement is con-
sistent with the fact that the caloric curve T = T (E) and the specific heat are related
by Cv = (∂T/∂E)−1. Through the caloric curve we obtain T c = T (εc = 1.25) � 1.03.

Other phenomenological indicators of the transition that we have computed,
and reported in figure 4, are the derivatives of the specific volume ρN =
[ΩN (Nε)/ΩN(Nεmin)]

1/N where ΩN (Nε) is the volume (see equation (54))

ΩN (Nε) =

∫
ΣE,P

dσΣE,P√
G (∇H,∇P )

(21)

and ΩN (Nεmin) is the microcanonical volume at the lowest value (arbitrary) of the energy
density considered so that ρN(εmin) = 1. Thus, apart from a constant depending on the
choice of εmin, the microcanonical specific entropy is SN (ε) = log ρN(ε), so that ∂ρN/∂ε =
ρN (ε)(∂SN/∂ε) = ρN (ε)β(ε), where β(ε) is the inverse of temperature of equation (19).
This quantity measures the way the density of energy-states varies as a function of the
energy. Also this function displays an inflection point at εc = 1.25.
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Figure 4. (Left) The first derivative of the density of states ∂ρN/∂ε versus
energy density ε displays an inflection point at the transition energy density
εc = 1.25. (Right) The third derivative of the density of states tends to develop
a step-like pattern at increasing N . N = 6× 6 (red circles), N = 10× 10 (blue tri-
angles),N = 20× 20 (purple diamonds),N = 40× 40 (green squares),N = 70× 70
(pink triangles).

Another interesting quantity is the third derivative of the specific volume

∂3ρN(ε)

∂ε3
= ρN(ε)

[
∂3SN

∂ε3
+ 3

∂SN

∂ε

∂2SN

∂ε2
+

(
∂SN

∂ε

)3
]
, (22)

which is computed through the time averages of 〈κ−n
N 〉 [29] entering the derivatives of

the entropy

∂SN

∂ε
=

(
1

2
− 3

2N

)〈
κ−1
N

〉
μc

∂2SN

∂ε2
= N

[(
1

2
− 3

2N

)(
1

2
− 5

2N

)〈
κ−2
N

〉
μc
−
(
1

2
− 3

2N

)2〈
κ−1
N

〉2
μc

]

∂3SN

∂ε3
= N 2

(
1

2
− 3

2N

)(
1

2
− 5

2N

)(
1

2
− 7

2N

)〈
κ−3
N

〉
μc
+

− 3

(
1

2
− 3

2N

)2(
1

2
− 5

2N

)〈
κ−1
N

〉
μc

〈
κ−2
N

〉
μc
+ 2

(
1

2
− 3

2N

)3〈
κ−1
N

〉3
μc

]
,

(23)

and by deriving ρN from the numerical integration of the function ∂εSN , i.e.

ρN (ε) = ρN (εmin) exp

[∫ ε

εmin

∂SN

∂ε
(ε)

]
dε = ρN(εmin) exp

[∫ ε

εmin

(
1

2
− 3

2N

)〈
κ−1
N

〉
time

]
dε.

As is shown in figure 4, ∂3ρN/∂ε
3 displays a remarkable property, that is, at increasing

N its ε-shape tends to develop a step-like pattern. This is suggestive of the divergence
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of the fourth derivative of ρN (ε) as N →∞. In other words, and within the limits of
numerical simulations, there is also a quantity which is singular at εc = 1.25.

On the other hand, as already stated above, the common way of numerically
tackling the phase transition in the 2D XY model is in the framework of canonical
ensemble. By means of Monte Carlo canonical simulations the critical temperature of
the transition is fitted through the divergence of the spatial correlation length ξ ∼
exp{b[(T − Tc)/Tc]

−1/2} in the spin–spin correlation function 〈si · sj〉 ∼ exp(−a|i− j|/ξ)
where a and b are constants. Even though there has been some controversy about the
extent of the critical region, as was discussed in a thorough analysis in reference [33]
confirmed in reference [34], the transition temperature is fixed at kBT c/J = 0.8929, in
excellent agreement with early findings of kBT c/J � 0.894 reported in [35–37]. While
we estimate a higher transition temperature with respect to this value, it is worth men-
tioning that results worked out by means of nonperturbative renormalization group in
[38] gave 0.9 < kBT c/J < 1 for the critical temperature, and by means of functional
renormalization in [39] the authors found 0.91 < kBT c/J < 1.02. Both of these intervals
of values are reasonably compatible with our estimate of T c � 1.03. Last but not least,
the peak of specific heat that we report at T � 1.03 is in agreement with old and recent
findings in references [35–37, 39].

As a final remark on the estimate of the transition temperature, finding the energy at
which the pairs of vortices unbind in order to locate the transition as is commonly done in
Monte Carlo simulations, would have—as a consequence—that the correspondence with
what we are after in the present work (the topological origin of the KT transition) would
be lost. Equations (27) and (28) relate microcanonical entropy S(E) with topological
invariants of the submanifolds of phase space ME and ΣE respectively, therefore we
needed to locate the phase transition through entropy-related quantities: T = T (E),
since T (E) = (∂S/∂E)−1, and specific heat, since Cv = −(∂S/∂E)2(∂2S/∂E2)−1, and
∂3ρN (ε)/∂ε

3. In this way the results reported in the following are consistent with our
estimate of εc = Ec/N = 1.25.

5. Numerical results on the geometry and the topology of the submanifolds ΣE,0

in the XY-2D model

In the case of geometrical observables we are interested in the computation of the
averages with respect to the Riemannian induced measure σΣE,0

, i.e.

〈A〉geo =
∫
ΣE,0

A σΣE,0∫
ΣE,0

σΣE,0

. (24)

As the numerical simulation of the Hamiltonian dynamics allows to sample the sub-
manifold ΣE,0 according to the microcanonical measure, we have to express the geo-
metric averages (24) as functions of microcanonical averages computed according to the
equation (18). As shown in [40], the geometrical averages can be estimated as follows
(see equation (55) of appendix A.2)

〈A〉geo =
〈Aχ−1〉μc
〈χ−1〉μc

(25)
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Figure 5. Geometrical average of the mean curvature for forN = 6× 6 (red circles),
N = 10× 10 (blue triangles), N = 20× 20 (purple diamonds), N = 40× 40 (green
squares),N = 70× 70 (pink triangles). The vertical dotted line marks the transition
point εc.

First we have computed—by means of the geometrical measure—what has been
defined a basic quantity characterizing the extrinsic geometry of the energy level sets,
that is, the total mean curvature

√
N 〈Mn2

〉 as a function of the specific energy. Since
the average of the mean curvature (i.e. the total mean curvature) is not an intensive

observable, the factor
√
N allows to compare the curves obtained at different N . The

results are displayed in figure 5. The ε-pattern of
√
N 〈Mn2

〉 displays a concavity change

at the transition point. At ε > εc the values of
√
N 〈Mn2

〉 fall on a straight line, whereas
at ε < εc they fall on a curve. However, this provides a weak geometric signal at the tran-
sition point, reflecting the somewhat weak thermodynamic signal shown by the caloric
curve. Sharper signals of the transition can be obtained by resorting to observables that
are to some extent sensitive to the details of the geometric fabric of the energy level
sets. Actually, this is what is observed by means of the variance of the mean curvature
reported in figure 6.

Here the change of concavity of σ2
geo(Mn2

), and thus of an abrupt variation of its
second derivative with respect to ε, is definitely more marked than in the case of the
average mean curvature. A sharpening with N of this effect is also very clear, what
appears as an inflection point for the smaller lattice sizes considered, then seems to
evolve towards a ‘corner’ point at larger N . The variance of the mean curvature is a
measure of the deviation from isotropy of a manifold, loosely speaking a measure of the
degree of ‘bumpiness’ of its landscape and of the presence of high dimensional ‘holes’.

However, the geometric observable which is of central interest in the present work is
the average variance of the principal curvatures of the ΣE,0, that is, 〈σ2(ki)〉geo, reported
in figures 7 and 8. As explained in section 3, after Pinkall’s theorem this observable
makes the link between geometry and topology of the {ΣE,0}E∈R foliating phase space.
A peculiar ε-change of this geometric property of the manifolds {ΣE,0}E∈R, occurring at
the εc which pinpoints the KT phase transition, is the ‘shadow’ of a deeper phenomenon:
a peculiar ε-change of the topology of these manifolds. An upstream phenomenon at the
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Figure 6. Geometrical variance of the mean curvature for N = 6× 6 (red circles),
N = 10× 10 (blue triangles), N = 20× 20 (purple diamonds), N = 40× 40 (green
squares),N = 70× 70 (pink triangles). The vertical dotted line marks the transition
point εc.

Figure 7. Lattice size dependence of the geometrical average of the dispersion of
the principal curvatures for N = 6× 6 (red circles), N = 10× 10 (blue triangles),
N = 20× 20 (purple diamonds), N = 40× 40 (green squares), N = 70× 70 (pink
triangles). The vertical dotted line marks the transition point εc.

very grounds of a phase transition, at variance with the common viewpoint attributing
the origin of PT to a loss of analyticity of statistical measures.

Figure 8—where only the outcomes worked out for the two largest sizes of the
lattice are reported—clearly shows that for ε > εc the values of 〈σ2(ki)〉geo are rea-

sonably well fitted by a segment of a straight line, thus ∂2
ε 〈σ2(ki)〉geo = 0 within the

limits of the numerical computation. To the contrary, for ε < εc it is well evident that
∂2
ε 〈σ2(ki)〉geo > 0. The overall ε-pattern of ∂2

ε 〈σ2(ki)〉geo is illustrated by the lower panel of
figure 8 where this function is obtained by numerically deriving twice the points reported
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Figure 8. (Top) Geometrical average of the dispersion of the principal curva-
tures for N = 40× 40 (green squares), and N = 70× 70 (pink triangles). (Bottom)
Numerical second order derivative of the data of the upper panel. The vertical
dotted line marks the transition point εc.

in the upper panel of the same figure according to the expression ∂2
ε 〈σ2(ki)〉 (εi) =

[〈σ2(ki)〉(εi +Δε) + 2〈σ2(ki)〉(εi)− 〈σ2(ki)〉(εi −Δε)]/(Δε)2. Again within the limits of
numerical computations, the results are suggestive of the presence of an angular point
close to the transition energy density. The larger the lattice size the closer the ‘singular’
point of ∂2

ε 〈σ2(ki)〉geo to εc.
Figure 8, and notably its lower panel, shows a marked geometrical signal of topo-

logical meaning of the KT transition. This is already what we aimed at in the present
work.

This notwithstanding, further consequences can be drawn from the main result
reported in figure 8.

According to Pinkall’s theorem, a bifurcation of the second derivative of the topo-
logical term [41] in the right-hand side of equation (13) can entail the bifurcation of the
second derivative of the left-hand side of the same equation.
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Then, in order to make a link between the topological signature and a thermodynam-
ical signature of the KT phase transition, let us resort to the existence of a relationship
between thermodynamic entropy and phase space topology provided by the following
exact formula [16]

S
(−)
N (E) = (kB/N) log

[∫
MN

E

dNp dNq

]
(26)

=
kB
N

log

⎡
⎣vol[MN

E \
N (E)⋃
i=1

Γ(x(i)
c )] +

N∑
i=0

wi μi(M
N
E ) + R

⎤
⎦ , (27)

where μi(M
N
E ) are the Morse indexes (in one-to-one correspondence with topology

changes) of the submanifolds {MN
E = H−1((−∞,E])}E∈R of phase space; in square

brackets: the first term is the result of the excision of certain neighbourhoods of the
critical points of the Hamiltonian from MN

E ; the second term is a weighed sum of the
Morse indexes, and the third term is a smooth function of N and E. Another way of
relating thermodynamical entropy with topology, in this case of ΣN

E in place of MN
E ,

leads to the approximate formula

SN (E) =
kB
N

log

∫
ΣN
E

dμ

‖∇H‖ � kB
N

log

[
vol(SN−1

1 )

N∑
i=0

bi(Σ
N
E ) + R1(E)

]
+ R2(E) , (28)

where R1(E), and R2(E) are smooth functions, and bi(Σ
N
E ) are the Betti numbers of the

energy level sets, and dμ is the measure on the level set.
We see that the variation with E of the topology of the ΣN

E implies also the variation
with E of the total entropy, independently of its definition, that is, equation (26) versus
equation (28). Hence we see that, in general, some adequate variation of the topology
of the ΣN

E foliating the phase space of a given system is sufficient to induce a phase
transition. In principle, different kinds of topology variations can induce PT of different
kinds. More precisely, after the microcanonical definition of the constant volume specific
heat 1/Cv = ∂T (E)/∂E, where T−1 = ∂S(E)/∂E, we have

Cv = −
(
∂S

∂E

)2(
∂2S

∂E2

)−1

, (29)

so that, in the case of the KT phase transition, the cuspy pattern of the specific
heat reported in figure 3 is necessarily related to the energy dependence of the second
derivative of the entropy, since the first derivative appears rather regular after figure 2
reporting (∂S(E)/∂E)−1.

Thus, if the second derivative with respect to the energy of any combination of the
Betti numbers of the ΣN

E , or of the Morse indexes of the μi(M
N
E ), makes a sharp change

at some value of the energy [41], then this affects both the second derivatives with
respect to the energy of 〈σ2(ki)〉geo(ε) and of the entropy.

Actually, as is shown in figure 9, the ε dependence of the second derivative of the
entropy is strongly reminiscent of the ε dependence of the second derivative of 〈σ2(ki)〉geo,
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Figure 9. Second order derivative of the entropy versus energy density. Lattice
sizes: N = 40× 40 (green squares), and N = 70× 70 (pink triangles).

a similarity which is not accidental in the light of the above given arguments. In fact,
even if a rigorous detailed relation has not yet been worked out, a sudden change in
the way of changing of topology with energy is a sufficient condition to entail the same
kind of variation of the entropy, that is, of its second ε derivative. In conclusion, the
deep origin of the KT phase transition is of topological kind also when tackled from the
viewpoint of phase space topology.

6. Discussion

The KT phase transition has been studied in the framework of the microcanonical
ensemble. As is well known, this kind of transition does not correspond to a global
symmetry breaking so that the standard Landau classification does not apply. A possible
way of going beyond the phenomenological level of Landau theory can be achieved by
focussing on the change of geometrical and topological properties of the constant energy
hypersurfaces which foliate the phase space of an XY -2D model. This approach has been
already proved effective when applied to a simple gauge model also lacking a global
symmetry breaking and thus an order parameter [18].

According to an appropriate classification of PT in the microcanonical ensemble
[31], the inflection point in the caloric curve and the peak of the specific heat have been
used to locate the phase transition by numerically solving the Hamilton equations of
motion. Then the variations of the extrinsic geometry of the energy level sets have been
numerically investigated across εc, the critical specific energy of the phase transition
point. The conceptual consequence of this analysis is that the thermodynamic transi-
tional phenomenology has its origin at the more fundamental level of the geometrical
changes of the energy level sets of phase space. In turn, these geometry changes are
probes of deeper changes of the topology of the same energy level sets, as per a theorem
in differential topology.

The KT phase transition has been a paradigmatic topic of a successful application of
topological concepts to broaden the theoretical understanding of PT. In our present work
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we have again tackled this topic with the aid of topological tools. However, at variance
with the original approach focussing on topological defects in real physical space, here we
have focussed on the topology of subsets of phase space. The highly non trivial bridge
between these two levels of description can be traced to the correspondence between
topological defects in real space (spin vortices) and critical points of the potential part
of the Hamiltonian.

An attempt in this direction has already been reported in reference [19], however, as
discussed by the authors, the results were not conclusive because of the hard numerical
task of finding all the critical points of the potential of the 2D XY model, or of locating
at least a relevant subset of them. Another interesting and original approach to the
study of topological aspects of PT in classical spin models has been put forward in
[42]. Though applied to two exactly solvable versions of the XY model, that is its
one-dimensional version and its so-called mean-field version, in this paper the authors
propose an intriguing approach resorting to the so-called integral calculus based on the
Euler characteristic and on the definition of an ‘Euler entropy’ from which they derive an
‘Euler temperature’ which turns out to be identical to the thermodynamic temperature
at the phase transition point, thus providing a topology-based method to compute the
critical temperature of a phase transition.

Finally, in a very recent paper [43], persistent homology , a constructive method in
algebraic topology, has been used to tackle PT in spin systems. The authors confirm a
topological origin of the KT transition of the 2D XY model, though they considered
topological aspects related with real space vortex–antivortex pairs rather than topology
of configurations space. This work provides an independent confirmation of the relevance
of topology for the KT transition and also confirms that the use of persistent homology
is worthwhile to constructively investigate the topological origin of PT in a broad variety
of systems as was first shown in [44].

Acknowledgments

This work has been done within the framework of the Master thesis work of Ghofrane
Bel Hadj Aissa performed under the supervision of Matteo Gori and Marco Pettini
within the framework of the project MOLINT which has received funding from the
Excellence Initiative of Aix-Marseille University-A∗Midex, a French ‘Investissements
d’Avenir’ Programme. Roberto Franzosi and Ghofrane Bel Hadj Aissa thank the support
by the QuantERA, ERA-NET Co-fund 731473 (Project Q-CLOCKS), Italy. Matteo
Gori thanks the financial support of DARPA (USA) for his long term visit at Howard
University at Washington D.C.

Appendix

A.1. Review of differential extrinsic geometry of codimension m submanifolds

The phase space can be regarded as a 2N dimensional manifold where a set of coordinate
{xμ}μ=1,...,2N can be chosen such that
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x2ν−1 = pν̃ ν = 1, . . . ,N

x2ν = qν̂ ν = 1, . . . ,N.
(30)

Given a set of smooth real functions {F i}i=1,...,m on the phase space Λ, with m < 2N ,
we define the level sets Σf 1,...,fm as follows

Σf 1,...,fm =
{
x ∈ Λ |Fk(x) = fk ∀ k = 1, . . . ,m

}
. (31)

If the following condition

dF 1 ∧ . . . ∧ dFm �= 0 (32)

holds for every point on Σf 1,...,fm then this is a regular submanifold of codimension m.
In order to give a Riemannian geometrical characterization of such a submanifold, a
metric structure (metric tensor) g has to be assigned over the phase space lambda Λ.
In general this assignation can be quite arbitrary. Nevertheless for sake of consistency
with the symplectic structure we should require that the Riemannian volume form

ω =
√

det g dx1 ∧ . . . ∧ dx2N =
√

det g dp1 ∧ dq1 . . . ∧ dpN ∧ dqN (33)

is the invariant volume form for the Hamiltonian system, i.e. LXH
ω = 0. The simplest

metric satisfying this condition is the Euclidean metric g = δμνdx
μ ⊗ dxν, i.e. the phase

space is endowed with the structure of a Euclidean space E2N . Thanks to the metric
structure, it is possible to define the gradient ∇H of a function as a vector field such
that

g(∇H,X) = ıXdH (34)

that in components reads

ı∇Hdx
μ = (∇H)μ = gμν

∂H

∂xν
= ∂μH , (35)

A critical point of the function H is a point such where the gradient is null ∇H = 0.
Thanks to this definition, the condition (32) can be reformulated as the absence of
critical points for any function Fk and the linear independence of the m gradient vector
fields {∇Fk}k=1,...,m for any points of Σf 1,...,fm. In each point of regular submanifold of
codimesnsion m, the tangent bundle of the phase space splits into a tangent bundle to
the submanifold TΣf 1,...,fm and a normal bundle NΣf 1,...,fm

TΛ|Σf1,...,fm
= TΣf 1,...,fm ⊕NΣf 1,...,fm, (36)

where the normal bundle is defined by NΣf 1,...,fm = Span{∇F 1, . . . ,∇Fm}. We define
also an induced metric (or first fundamental form ) on such regular submanifold of
codimension m, which is the assignment to each point of the inner product

〈 , 〉 : TΣf 1,...,fm × TΣf 1,...,fm → R .

From the preceding discussion it follows that it is convenient to introduce an adapted
orthonormal frame {ea}a=1,...,2N that allows to make explicit the split of the tangent
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bundle, i.e. eĀ ∈ NΣf 1,...,fm with Ā = 1, . . . ,m and eA ∈ TΣf 1,...,fm with A = m+
1, . . . , 2N .

This is equivalent to define for each point a set of rotation matrix eνa that allows
to pass from the coordinate natural frame {∂1, . . . , ∂2N} = {∂ν}ν=1,...,2N to the adapted
coordinate orthonormal frame {e1, e2, . . . , e2N} = {ea}a=1,2,...,2N , i.e. ea = eνa∂ν. In analo-
gous way, the inverse matrix ebν are defined allowing to pass from coordinates covec-
tors {dx1, . . . , dx2N} to adapted covector frame {θ1, θ2, . . . , θ2N} (with ıeaθ

b = δba), i.e.
θb = ebμdx

μ.
In order to characterize the extrinsic geometry of the regular submanifold Σf 1,...,fm,

for any normal vector field n ∈ NΣf 1,...,fm, we introduce the shape operator W n (called
also the Weingarten operator) giving by the variation of n along the directions tangent
to the submanifold at any fixed point, i.e. W n :TΣf 1,...,fm → TΣf 1,...,fm s.t.

W n(V ) = −∇V n V ∈ TΛ|Σf1,...,fm
, (37)

where ∇ is the Levi Civita connection on (Λ, g). Let us see first of all that ImW ⊆
TΣf 1,...,fm , in fact

g(W n(V ),n) = −g(∇V n,n) = −1

2
∇V [g(n,n)] = 0 (38)

so the Weingarten map can be rewritten in terms of the orthonormal vector basis

W n(eB)= W n
A
BeA = −∇eBn ⇒ W n

A
B = −θA(∇eBn) (39)

with A,B = m+ 1, . . . , 2N . Using the matrices eAμ and eνB the shape operator can be
expressed in terms of natural coordinates xμ as

W n
A
B = −θA(∇eBn) = −eAμ e

ν
B dxμ(∇νn)

= −eAμ e
ν
B dxμ

[(
∂νn

ρ + Γρ
νλn

λ
)
∂ρ
]
= −eAμ e

ν
B ∇νn

μ. (40)

The eigenvalues k1, . . . , k2N−m of the matrix W n are called principal curvatures . The
average of the principal curvatures at a fixed point is called mean curvature Mn

Mn =
1

2N −m

2N−m∑
i=1

ki =
1

2N −m
Tr W n = − 1

2N −m

2N−m∑
A=3

g(∇eAn, eA).

(41)

Let us introduce the coarea formula (a generalization of the Fubini theorem) which
allows expressing the integral of a function over the phase space Λ in terms of integrals
over the regular submanifolds of Λ. Let us introduce a coordinate system {ua}a=1,...,2N

such that uĀ = F Ā with Ā = 1, . . . ,m on a region M [f0,f1] =
{
x ∈ Λ | fk

0 � Fk(x) � fk
1

}
free of critical points of function fk. It follows that the metric g reads

g = gμνdx
μ ⊗ dxν = gabdu

a ⊗ ub = gĀB̄du
Ā ⊗ duB̄ + gABdu

A ⊗ duB (42)

where, if we consider the inverse matrices of the metric in the two coordinate systems
we have
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gĀB̄ = gμν
∂uĀ

∂xμ

∂uB̄

∂xν
= g(∇FĀ,∇FB̄) . (43)

The Riemannian volume element ω in the two coordinates systems reads

ω = |det gμν|1/2 dx1 ∧ . . . ∧ dx2N = |det gab|1/2 du1 ∧ . . . ∧ du2N =

= |det gĀB̄|1/2du1 ∧ . . . ∧ dum|det gAB|1/2dum+1 ∧ . . . ∧ du2N︸ ︷︷ ︸
σΣ

f1,...,fm

(44)

where σΣf1,...,fm
is the induced Riemannian area form on the submanifold Σf 1,...,fm. So any

integral of a function ψ(uĀ, uA) on M [f0,f1] can be expressed as

∫
M [f0,f1]

ψ(uĀ, uA) ω =

∫ f1

f0

(∫
Σu1,...,um

ψ(uĀ, uA)| det gĀB̄|1/2σΣu1,...,um

)

× du1 ∧ . . . ∧ dum (45)

so it remains to evaluate |det gĀB̄|1/2. We start remembering that for any non-zero
determinant matrix detA−1 = ( detA)−1, so it follows that

|det gĀB̄|1/2 = |det gĀB̄|−1/2 =
[
G(∇F 1, . . ,∇Fm)

]−1/2
(46)

where G(X1, . . . ,Xm) :=det [g(Xi,Xj)i,j=1,...,m] is the so called Grammian, so that the
expression (45) takes the final form

∫
M[f0,f1]

ψ(uA, uĀ) ω =

∫ f1

f0

(∫
Σu1,...,um

ψ(uA, uĀ)
σΣu1,...,um√

G(∇F 1, . . ,∇Fm)

)

× du1 ∧ . . . ∧ dum, (47)

that is usually referred to as coarea formula. When ψ(uĀ, uA) =
∏m

Ā=1 δ(u
Ā − f Ā),

then the equation (47) can be interpreted as the microcanonical partition function
ΩN(f

1, . . . , fm) where m independent first integral of motion
{
F Ā
}
A=1,...,m

has been

fixed, i.e.

ΩN (f
1, . . . , fm) =

∫
Σf1,...,fm

σΣf1,...,fm√
G(∇F 1, . . ,∇Fm)

=

∫
Σf1,...,fm

σf 1,...,fm. (48)

A.2. Differential geometrical structure of co-dimension two submanifold ΣE ,P in phase
space

In this section the mathematical tools outlined in the previous section, for codimension-
m submanifolds Σf 1,...,fm, are used to study the XY -2D model. In what follows, the bridge
between thermodynamics and geometry of the regular submanifolds ΣE,P of phase space
ΣE,P = {x ∈ Λ|H(x) = E ∧ P (x) = p} is given in the framework of a (generalized)
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microcanonical ensemble where both the total energy

H =
1

2

N∑
μ̃=1

pμ̃pμ̃ + V (q) (49)

and the total momentum

P =
N∑
μ̃=1

pμ̃ (50)

are conserved quantities.
The first step to study the extrinsic geometry of these manifolds consists in defining

the normal bundle of ΣE,P. This requires to compute both the gradient of the total
momentum

∇P =
∑
μ̃

∂μ̃ =⇒ ‖∇P‖ = N 1/2, (51)

and the gradient of the Hamiltonian H

∇H =
∑
μ̃

pμ̃∂μ̃ +
∑
μ̂

∂μ̂V ∂μ̂ =⇒ ‖∇H‖ =

[∑
μ̃

pμ̃pμ̃ + ‖∇̂V ‖2
]1/2

, (52)

where ∇̂f = ∂μ̂f∂μ̂ is the gradient referred only to the set of generalized coordinates qμ̂.
Two normal vector fields can be associated to the two gradient fields in the absence

of critical points

nP =
∇P

‖∇P‖ =

∑
μ̃∂μ̃

N 1/2

nH =
∇H

‖∇H‖ =

∑
μ̃p

μ̃∂μ̃ +
∑

μ̂∂
μ̂V ∂μ̂[∑

μ̃p
μ̃pμ̃ + ‖∇̂V ‖2

]1/2 . (53)

Following the definition of the microcanonical volume ΩN given in appendix A.1,
equation (48) reads in this case

ΩN (E,P) =

∫
Λ

δ(H(p, q)− E) δ(P − P) ω =

∫
ΣE,P

σΣE,P√
G (∇H,∇P )

=

∫
ΣE,P

χσΣE,P
=

∫
ΣE,P

σE,P,

(54)

where the Riemannian volume form on the manifold Λ is ω =
√
det g dp1 ∧ dq1 . . . ∧

dpN ∧ dqN , with g the assigned metric structure over Λ, and the induced form of
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Riemannian area on the submanifold ΣE,P is σΣE,P
, and

χ =
(√

G (∇H,∇P )
)−1

=
(√

‖∇H‖2‖∇P‖2 − (g(∇H,∇P ))2
)−1

(55)

where G(X1, . . . ,Xm) :=det [g(Xi,Xj)i,j=1,...,m] is the Grammian. Finally, to simplify the
notation, we denoted with χσΣE,P

= σE,P.
As in what follows, we will be interested in the derivative with respect to E at fixed

P, let us introduce the vector field ξ, which has to fulfil the two following conditions:

dH (ξ) = 1

dP (ξ) = 0
(56)

and using the gradient definition (34), we obtain

g (∇H, ξ) = 1

g (∇P , ξ) = 0.
(57)

After further calculations, it is found that

ξ = c

(
∇H − g (∇H, ∇P )

∇P

‖∇P‖2

)
, (58)

with c =
(
‖∇H‖2 − g(∇H,∇P )2

‖∇P‖2

)−1

.

We are interested in studying the extrinsic geometry of the codimension-two sub-
manifolds of phase space ΣE,P when P is fixed while E can change. So, we simplify
the problem by considering ΣE,P as a codimension-one submanifold, immersed into ΣP,
foliated by the level sets H = E. Thus we introduce the projector operator PΣE,P

for
vectors on the tangent bundle TΣP, i.e.

PΣE,P
(X) = X − g(X ,nP)nP . (59)

Let us redefine the two normal vector fields on ΣE,P

n1 = nP

n2 =
PΣE,P

(nH)

‖PΣE,P
(nH)‖

=
PΣE,P

(∇H)

‖PΣE,P
(∇H)‖ ,

(60)

where n2 is the normal vector field to the energy level sets on ΣP. We notice that

PΣE,P
(∇H) = ∇H − g

(
∇H,

∇P

‖∇P‖

)
∇P

‖∇P‖ = ∇H − 1

N
g(∇H,∇P )∇P

= ∇H − 1

N
P∇P = ∇H − 1

N
∇
(
P 2

2

)
= ∇fHP,
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where we have introduced the function

fHP = H − 1

N

P 2

2
. (61)

With the definition of the function fHP, the vector field ξ introduced in equation (58)
can be more easily expressed as follows

ξ =
∇fHP

‖∇fHP‖2
. (62)

It is natural to introduce the differential forms θ1 = e1μdx
μ and θ2 = e2μdx

μ, that, in
terms of derivatives of fHP and P , read

ın1
θ1 = e1μn

μ
1 = e1μ

∂μP

‖∇P‖ = 1 ⇒ e1μ =
∂μP

‖∇P‖

ın2
θ2 = e2μn

μ
2 = e2μ

∂μfHP

‖∇fHP‖
= 1 ⇒ e2μ =

∂μfHP

‖∇fHP‖

(63)

whence

θ1 =
∂μPdxμ

‖∇P‖ =
dP

‖∇P‖

θ2 =
∂μfHPdx

μ

‖∇fHP‖
=

dfHP

‖∇fHP‖
.

(64)

With this notation, the volume form on the phase space can be rewritten as follows

ω = θ1 ∧ θ2 ∧ θ2+1 ∧ . . . ∧ θ2N︸ ︷︷ ︸
σΣE,P

= θ1 ∧ θ2 ∧ σΣE,P
, (65)

where σΣE,P
is the induced Riemannian area form on the submanifold ΣE,P.

A.3. Federer–Lawrence formula for co-dimension two manifold and microcanonical
thermodynamic observables

Since the relevant thermodynamic observables are given by derivatives of thermody-
namic potentials (which depend on the statistical ensemble adopted), it is useful to
provide a derivation formula for the integral of functions over ΣE,P with respect to the
energy at fixed total momentum P.

Let us define the function H :(E1,E2)→ R, related to a generic regular function
h ∈ C∞(Λ), as

H (E,P) =

∫
ΣE,P

hσE,P. (66)

Then we derive the explicit form of the operator AE(·) acting on h s.t.

∂H

∂E
(E,P) =

∫
ΣE,P

AE(h) σE,P. (67)
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To work out AE(·), using the notation H ′(E,P) = ∂EH (E,P) and Ω′(E) =
∂EΩ(E,P), consider

H ′(E,P) = lim
ΔE→0

∫
ΣP,E+ΔE

h σP,E −
∫
ΣP,E

hσP,E

ΔE

= lim
ΔE→0

∫
φ(ΣP,E ,ΔE)

hσP,E −
∫
ΣP,E

hσP,E

ΔE

= lim
ΔE→0

∫
ΣP,E

φ∗
ΔE(hσP,E)−

∫
ΣP,E

hσP,E

ΔE

=

∫
ΣP,E

[
lim

ΔE→0

φ∗
ΔE(hσP,E)− hσP,E

ΔE

]

=

∫
ΣP,E

L ξ(hσP,E).

(68)

On the third line φ∗
ΔE is the pullback of the one-parameter group of diffeomorphisms

φ(·, ΔE) among the energy level sets generated by a vector field ξ defined below. In the
last term, the integral is the Lie derivative along the vector field ξ of the (2N − 2)-form
α = hσP,E = hχσΣP,E

, so we obtain

L ξ(hσE,P) = ξ(hχ)σΣE,P
+ hχL ξ

(
σΣE,P

)
. (69)

In order to evaluate the Lie derivative in equation (69) of the induced Riemannian
measure σΣE,P

we use the homotopy formula

L ξ(σΣE,P
) = [ıξd + dıξ]σΣE,P

= ıξ(dın2
ın1

)ω = ‖∇fHP
‖−1ın2

(dın2
ın1

)ω

= ‖∇fHP
‖−1ın2

d(θ3 ∧ . . . ∧ θ2N)

= ‖∇fHP‖−1 div (n2)σΣE,P
,

(70)

that is substituted in equation (69)

L ξ(hσE,P) =

(
L ξ (hχ)

χ
+ h‖∇fHP‖−1 div (n2)

)
χσΣE,P

= AE(h)σE,P. (71)

So we have obtained that

H ′(E,P) =

∫
ΣE,P

AE(h)σE,P, (72)

that generalizes to higher derivatives

H (k)(E,P) =

∫
ΣE,P

A k
E(h)σE,P =

∫
ΣE,P

AE(AE(. . . (AE(h))))︸ ︷︷ ︸
k−times

σE,P. (73)

By simply putting h = 1, one obtains

Ω′
N (E) =

∫
ΣE,P

(
L ξ (χ)

χ
+

div (n2)

‖∇fHP‖

)
χσΣE,P

, (74)
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with

L ξ (χ) = ∇ξ (χ) =
1

‖∇fHP‖2
∇∇fHP

(
1

‖∇fHP‖N 1/2

)

=

(
− 1

2N 1/2

)
1

‖∇fHP‖2
2 g
(
∇fHP ,∇∇fHP

∇fHP

)
‖∇fHP‖3

= −HessfHP (∇fHP,∇fHP)

‖∇fHP‖5 N 1/2
,

(75)

where we have used the definition of the Hessian two-covector

Hessf(X , Y ) ≡ g(∇X∇f , Y ) = Xdf(Y )− df(∇XY ). (76)

So we have

Ω′
N (E) =

∫
ΣE,P

(
−HessfHP (∇fHP,∇fHP)

‖∇fHP‖4
+

div (n2)

‖∇fHP‖

)
σE,P. (77)

Equation (74) can be writen also in this form

Ω′
N (E) =

∫
ΣE,P

(L n2
(‖ξ‖) + ‖ξ‖div (n2))χσΣE,P

=

∫
ΣE,P

div (n2 ‖ξ‖ )σE,P

=

∫
ΣE,P

div (ξ)σE,P.

(78)

It follows that the inverse of the microcanonical geometrical temperature is given by

T−1
geo(E,P) =

∫
ΣE,P

div ξ σE,P∫
ΣE,P

σE,P
=

∫
ΣE,P

μ div ξ = 〈div ξ〉μc(E,P), (79)

where 〈·〉μc(E,P) indicates the averages over the energy level sets ΣE,P with the
probability measure μ.

A.4. Geometrical and topological observables in XY 2D model

As we are interested in the extrinsic geometry of ΣE,P, the mean curvature along the
vector n2 is introduced to give, according to equation (41),
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Mn2
= − 1

2N − 2

2N−2∑
A=3

g(∇eAn2, eA)

= − 1

2N − 2

[
2∑

i=1

g(∇ni
n2,ni) +

2N−2∑
A=3

g(∇eAn2, eA)−
2∑

i=1

g(∇ni
n2,ni)

]

= − 1

2N − 2

[∑
μ̃

g(∇∂μ̃n2, ∂μ̃) +
∑
μ̂

g(∇∂μ̂n2, ∂μ̂)− g(∇n1
n2,n1)− g(∇n2

n2,n2)

]

= − 1

2N − 2
[div(n2)− g(∇n1

n2,n1)] ,

(80)

where the vector fields eA belong to the tangent bundle of the submanifold ΣE,P, i.e.
eA ∈ TΣE,P.

The divergence of the vector field n2 can be rewritten as

div(n2) = div

(
∇fHP

‖∇fHP‖

)
=

div(∇fHP)

‖∇fHP‖
− 1

2

∇∇fHP‖∇fHP‖2
‖∇fHP‖3

=

=
ΔfHP

‖∇fHP‖
−

g
(
∇fHP,∇∇fHP

∇fHP

)
‖∇fHP‖3

=
ΔfHP

‖∇fHP‖
− HessfHP(∇fHP,∇fHP)

‖∇fHP‖3
.

(81)

The second term of the last equation in (80) is null. In fact, from ∇∇P∇fHP = 0 it follows

∇n1
n2 =

1

‖∇P‖∇∇P

(
∇fHP

‖∇fHP‖

)
=

∇∇P∇fHP

‖∇P‖‖∇fHP‖

− (∇∇P∇fHP,∇fHP)∇fHP

‖∇P‖‖∇fHP‖3
= 0. (82)

Finally the mean curvature Mn2
of ΣE,P reads

Mn2
=

1

2N − 2

[
HessfHP(∇fHP,∇fHP)

‖∇fHP‖3
− ΔfHP

‖∇fHP‖

]
. (83)

To get some meaningful information about the topology of the co-dimension-one
manifolds ΣE,P immersed in the euclidean space ΣP, the dispersion of the principal
curvatures σ2

n2
(ki) is computed from

σ2
n2(ki) = 〈k2

i 〉 − 〈ki〉2 =
Tr(W 2

n2
)

2N − 2
− (TrW n2

)2

(2N − 2)2
, (84)
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where W is the shape-operator (Weingarten map) defined in equation (37), and

Tr(W 2
n2
) =

2N−2∑
A=3

g(−∇(−∇eA
n2)n2, eA) = −

2N−2∑
A=3

g(n2,∇∇eA
n2
eA)

= −
[
2N−2∑
A=3

g (n2,∇eA∇eAn2) + g(n2, [∇eAn2, eA])

]

=

2N−2∑
A=3

[g (∇eAn2,∇eAn2) + g(n2, [eA,∇eAn2])]

=

2N∑
μ=1

g (∇μn2,∇μn2) +

2N−2∑
A=3

g(n2, [eA,∇eAn2])− g (∇n2
n2,∇n2

n2)

=
2N∑
μ=1

‖∇μn2‖2 − ‖∇n2
n2‖2 +

2N−2∑
A=3

g(n2, [eA,∇eAn2]).

(85)

The first term of the equation (85) is given by

2N∑
μ=1

‖∇μn2‖2 =
2N∑
μ=1

[
∂μ∂

ρfHP∂ρ∂γfHP

‖∇fHP‖2
+

∂ρfHP∂ρfHP

‖∇fHP‖6

× (∂μ∂νfHP∂
νfHP) (∂γ∂σfHP∂

σfHP)+

− 2
(∂μ∂

ρfHP∂ρfHP) (∂γ∂νfHP∂
νfHP

‖∇fHP‖4

]
δγμ

=
2N∑
μ=1

[
∂μ∂

ρfHP∂ρ∂γfHP

‖∇fHP‖2
− (∂μ∂

ρfHP∂ρfHP) (∂γ∂νfHP∂
νfHP)

‖∇fHP‖4

]
δγμ

= Tr

[
(HessfHP)

2

‖∇fHP‖2

]
− (HessfHP∇fHP)

2

‖∇fHP‖4
.

(86)

Knowing that

∇n2
n2 =

∂μfHP

‖∇fHP‖
∇μn2,

the second term then reads

‖∇n2
n2‖2 =

1

‖∇fHP‖2
g (∂μfHP∇μn2, ∂

σfHP∇σn2)

=
1

‖∇fHP‖2

[
(‖HessfHP) (∇fHP) ‖2

‖∇fHP‖2
− ‖ (HessfHP ) (∇fHP)

2‖2
‖∇fHP‖4

]
. (87)
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The last term of the equation (85) is a measure of the integrability of the vector field
distribution {n1, eĀ}Ā in the sense of the Froebenius theorem, where eĀ ∈ NΣE,P, the
normal bundle of the submanifold ΣE,P, with Ā = 1, 2. In particular, if these fields form
a closed algebra

[n1, eĀ] ∈ Span{n1, e2+1, . . . , e2N} (88)

then
∑2N

Ā=3 g(n2,
[
∇eĀn2, eĀ

]
) = 0.

It is convenient to rephrase this condition in the language of differential forms. Let
us introduce the annihilator one-form η defined as

η =
[
∂μ̃H − (∂ν̃H∂ν̃P )∂μ̃P

]
dqμ̃ +

[
∂μ̂H − (∂ν̂H∂ν̂P )∂μ̂P

]
dpμ̂

= [∂μ̃H − (∂ν̃H∂ν̃P )∂μ̃P ]dqμ̃ + ∂μ̂Hdpμ̂
(89)

such that

η(n1) = η(eA) = 0. (90)

So if dη is an annihilator two-form on the space Span{n1, e2+1, . . . , eN} then the fields
{n1, eA}A=2+1,...,N are in involution, i.e.

0 = dη(X , Y ) = Xη(Y )− Y η(X)− η([X , Y ])

= −η([X , Y ]) ∀ X , Y ∈ Span{n1, e1, . . . , e2N−2}. (91)

For the one-form η defined in (89) we can evaluate explicitly dη,

dη = [∂ρ̃∂μ̃H − (∂ρ̃∂ν̃H∂ν̃P + ∂ν̃H∂ρ̃∂
ν̃P )∂μ̃P − (∂ν̃H∂ν̃P )∂ρ̃∂μ̃P ] dqρ̃ ∧ dqμ̃

+ ∂ρ̂∂μ̂H dpρ̂ ∧ dpμ̂ .

(92)

The terms of the form ∂ρ̃∂μ̃f and ∂ρ̂∂μ̂f are symmetric in the permutation of the indexes
and so are null. The derivative of order k � 2 of the function P are null as it is a
linear function in pμ̃. So the only nontrivial term is

(
∂ρ̃∂ν̃H∂ν̃P

)
∂μ̃P dpρ̃ ∧ dpμ̃: as(

∂ρ̃∂ν̃H∂ν̃P
)
∂μ̃P = N it is not antisymmetric with respect to the indexes ρ̃, μ̃ and

the term is zero. So it follows that dη = 0. Finally

Tr(W 2
n2
) = Tr

[
(HessfHP)

2

‖∇fHP‖2

]
− (HessfHP∇fHP)

2

‖∇fHP‖4
+

− 1

‖∇fHP‖2

[
(‖HessfHP) (∇fHP) ‖2

‖∇fHP‖2
− ‖ (HessfHP) (∇fHP)

2‖2
‖∇fHP‖4

]
.

(93)
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