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Abstract. The purpose of this work is to introduce time delays in an Oregonator-based model [11] to
describe molecular communication in a system of coupled chemical oscillators [5]. With this approach
we assume that the molecules responsible for communication (signal molecules) take a non-zero time
τ to cross the barrier (phospholipid membrane) which physically separate the oscillators. In particular,
here we present numerical results and we discuss and highlight the differences between delayed and
non-delayed models.

1 INTRODUCTION

Networks of confined and relatively simple chemical oscillators are being used to model complex bi-
ological processes, such as cell-cell communication, neuronal signal transmission and passive diffu-
sion across plasma membranes [26, 27]. From an experimental point of view, the confinement of the
Belousov-Zhabotinsky (BZ) reaction [3, 28, 29] in various dispersed systems [10], revealed to be a valid
tool to understand universal synchronisation behaviours, when the network communication is mediated
by either activatory or inhibitory signals. The BZ reaction is one of the most famous example of self-
organised chemical system, which can exhibit several dynamical regimes: periodic, aperiodic and chaotic
oscillations [18, 20], autocatalysis and bistability [24], Turing structures and pattern formation [4, 19]. In
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the last years, especially thanks to microfluidic techniques, it was possible to assess the impact of several
factors on the global dynamics of BZ networks: arrangement geometry (arrays, squares, etc.), messenger
molecules (inhibitors/activators) and type of confinement (surfactants, phospholipids, oils, etc.) [26].
In this context, to model the oscillations of the coupled BZ oscillators, several variants of the Oregona-
tor system [11] were employed, either coupled through simple mass-transfer (ODE systems) or through
molecular diffusion (PDE systems). Being the Oregonator stiff, several studies were also devoted to
its numerical resolution. D’Ambrosio et al. [7, 8], for example, have recently used adapted numerical
methods to follow the apriori known qualitative behavior of the solution. To solve efficiently stiff ODEs
systems of which we know certain properties of the solution, one can use the Exponential Fitting (EF)
technique, thus constructing methods adapted to the problem [16]. By proceeding in this way, it is also
possible to construct semi-implicit Runge-Kutta methods whose coefficients depend on the Jacobian ma-
trix of the system [9, 13, 14, 15].
In this paper we introduce a modelling strategy based on delayed coupled ordinary differential equations
(DDE) to understand whether this approach could improve some quantitative aspects for the description
of BZ networks. To this aim, we started form an ODEs system proposed by Budroni et al. to describe the
communication in a network of diffusively coupled BZ oscillators, confined in phospholipid-separated
micro-compartments [5]. In this example, communication between successive oscillators is controlled
by the exchange of membrane-permeable molecules acting as activator (HBrO2) or inhibitor (Br2), thus
some properties of the membrane (composition, permeability, lamellarity, etc.) influence the crossing
time of the messenger molecules. By inserting a delay time in one of the two coupling terms (in this
case related to Br2) of the ODEs system, we can reproduce the effect of the membrane barriers and also
explore the parameter space to predict and guide future experiments. Since the resulting DDEs system
is also stiff, we used an ad hoc numerical algorithm (see [1] Supporting Information) for the numerical
integration. Our results display a qualitative accordance with the experimental dynamics and with the
previous ODE model (anti-phase synchronisation of adjacent oscillators), but a quantitative matching
with experiments is yet to be attained. Interestingly, spanning the parameter space, we found an unex-
pected in-phase synchronisation scenario for large delay time. This observation is a starting point for
further studies to guide future experiments.
This work is structured as follows: we will first analyse, in Section 2, the ODEs model proposed by
Budroni et al., discussing the reasons for the insertion of the delay time together with the formulation
of the DDEs system. Next, in Section 3, we will show and analyse the numerical results of the DDEs
system. Finally, in Section 4, some conclusions will be drawn and possible future implications will be
discussed.

2 THE MODEL WITH DELAY

As aforementioned, arrays of phospholipid separated BZ micro-oscillators provide a relatively simple
picture of the basic features responsible for the intercellular biological communication, when mediated
by passive diffusion of activatory and/or inhibitory signal molecules. The mathematical description of
such systems has been developed along the years starting from the classic scheme of the BZ reaction
known as Oregonator [11, 25] and successively refined to include the effect of the membrane perme-
ability [21], composition [27] and the simultaneous exchange of both activatory and inhibitory signals
among micro-oscillators [5, 6].
In brief, the basic backbone of the kinetic scheme regulating the oscillatory regime of the BZ reaction
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consists in three main stages: inhibition (Process A), autocatalysis (Process B) and chemical clock reset
(Process C), described by the following chemical processes:

Process A: BrO−3 + Br− + 2 H+→ HBrO2 + HBrO

Process B: BrO−3 + HBrO2 + 3 H+ + 2 M(red)→ 2 HBrO2 + 2 M(ox)

Process C: BrMA + MA + 2 M(ox)→ f Br− + 2 M(red)

The original set of Oregonator ordinary differential equations was derived from Processes A–C, here we
report the latest version of the equations modified to simulate the behaviour of an arbitrary long array of
BZ micro-oscillators [5, 6]:
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where the index i represents the i-th micro-oscillator, the rate constants ki are known and the functions
ci

j(t) indicates the concentration of the substance j in the cell i at time t. In particular, the chemicals of
the system are

ci
1=[HBrO2], ci

2=[Br−], ci
3=[Br2] and ci

4=[Fe3+].

Other fixed and constant parameters of the system (1) are c0, cmin and the coupling constants kX and kW .
Finally, the vector a has dimension equal to the number of droplets considered, and each component is
used to modulate the natural frequency of the corresponding oscillator. Coupling terms kX (ci

1− c j
1) and

kW (ci
3− c j

3) accounts for the intercellular communication between subsequent droplets mediated by the
activator HBrO2 and the inhibitor Br2. The coupling intensity is given by the constants kX and kW , which
depend on compartmentalisation constraints, such as permeability or lamellarity of the membrane, which
also account for the droplets distance.
Starting from the set of ODEs (1), in this work we insert a delay time (τ), which affect the coupling term
of adjacent micro-oscillators. The corresponding DDEs set is reported in (2). To understand whether the
new model improves the matching with experimental results, we will compare our simulations with the
experiments reported in [5] previously simulated with ODEs (1).

3



Giovanni Pagano, Marcello Antonio Budroni, Raffaele D’Ambrosio, Dajana Conte, Ali Abou Hassan,
Sandra Ristori, Federico Rossi and Beatrice Paternoster



dci
1

dt
=−k1 ci

1 ci
2 + k2 ai ci

2−2 k3 (ci
1)

2 + k4 ai ci
1

(c0− ci
4)

(c0− ci
4 + cmin)

−kX (ci
1− ci+1

1 (t))− kX (ci
1− ci−1

1 (t))
dci

2
dt

=−3 k1 ci
1 ci

2−2 k2 ai ci
2− k3 (ci

1)
2 + k6 ci

3 + k9 ci
4

dci
3

dt
= 2 k1 ci

1 ci
2 + k2 ai ci

2 + k3 (ci
1)

2− k6 ci
3− kW (ci

3− ci+1
3 (t− τ))

−kW (ci
3− ci−1

3 (t− τ))

dci
4

dt
= 2 k4 ai ci

1
(c0− ci

4)

(c0− ci
4 + cmin)

− k9 ci
4

(2)

3 NUMERICAL RESULTS

The general form of the DDEs system (2) is{
y′(t) = f (t,y(t),y(t− τ)) t ≥ t0
y(t) = φ(t) t ≤ t0

(3)

the history function φ(t) represents the value of the concentrations of substances involved in the DDEs
system (2) before the initial instant t0 = 0. In our case, we have fixed the history function equal to a
constant vector y0. To compare our results with those reported in [5], we considered an array of eight
coupled micro-oscillators (i= 8) and we analysed the simulated oscillation period (OP) for each oscillator
and the phase difference among consecutive oscillators (∆Φ).
We employed several Matlab routines to solve the DDEs system (3). The stiffness [17] of our DDEs
created some problems with the dde23 routine [2, 23] (high integration time and random crash of the
code). For this reason we finally employed the dde15s code, written by Dr. Lawrence F. Shampine
(Southern Methodist University, Dallas, TX) for the numerical resolution of the model proposed in [1].
This numerical algorithm is based on the Matlab ode15s [22] routine for solving stiff ODEs systems;
radar5 code [12] also yields similar results.
As preliminary results, we simply explored the influence of the delay time on the oscillation parameters

by fixing the initial conditions and all the constants and by varying τ. Figures 1 and 2 show that, from an
initial anti-phase synchronisation between consecutive oscillators, which occurs when there is no delay,
an in-phase synchronisation when τ = 110 s is achieved. Changes in the oscillation period of the system
droplets and in the phase differences are shown in Figure 3. In this case, we can observe that, due to a
very large delay, the oscillation period tends to lower by about 20/30 s compared to the case where there
is no delay. Synchronization between consecutive oscillators is perfectly in-phase in the case with delay.
With delays smaller than τ = 110 s, the numerical results are quite similar to the case when there is no
delay.

4 CONCLUSIONS

At present, our preliminary results do not allow to make a direct comparison between the ODEs-based
modelling (1) and the introduction of the delay time in (2). However, our analysis showed a significant

4



Giovanni Pagano, Marcello Antonio Budroni, Raffaele D’Ambrosio, Dajana Conte, Ali Abou Hassan,
Sandra Ristori, Federico Rossi and Beatrice Paternoster

5000 6000 7000 8000 9000 10000

t (s)

0

1

2

3

4

5

c
4
 (

M
o

l)

10-3

O1

O2

(a) MOs one and two with τ=0

5000 6000 7000 8000 9000 10000

t (s)

0

1

2

3

4

5

c
4
 (

M
o

l)

10-3

O3

O4

(b) MOs three and four with τ=0

5000 6000 7000 8000 9000 10000

t (s)

0

1

2

3

4

5

c
4
 (

M
o

l)

10-3

O5

O6

(c) MOs five and six with τ=0

5000 6000 7000 8000 9000 10000

t (s)

0

1

2

3

4

5

c
4
 (

M
o

l)

10-3

O7

O8

(d) MOs seven and eight with τ=0

Figure 1: Trend of c4 for all eight MicroOscillators (MOs) of the system, with τ=0.

impact of τ on the global dynamics of the coupled micro-oscillators. In fact, by increasing the delay
time, an initial anti-phase synchronisation scenario shifts to an in-phase configuration.
This observation is just a starting point for the ongoing investigation we are carrying out. A phase
diagram of the system with respect to the modelling parameters is being mapped out. In addition, we
are also assessing a more detailed parametrisation of the DDEs system with respect to the chemical
properties of the molecules involved, this, for example, will suggest the insertion of a new different
delay time for the activator species, now doesn’t set.
Finally, we are also investigating in details the numerical resolution of the DDEs system (2) to overcome
the stiffness issue. For example, we are adapting the works of D’Ambrosio et al. [7, 8], based on the EF
technique, to consider the apriori known oscillating trend of the DDEs system solution.
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Figure 2: Trend of c4 for all eight MicroOscillators (MOs) of the system, with τ=110.
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