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Abstract: Although pollen structure and morphology evolved toward the optimization of stability
and fertilization efficiency, its performance is affected by harsh environmental conditions, e.g., heat,
cold, drought, pollutants, and other stressors. These phenomena are expected to increase in the
coming years in relation to predicted environmental scenarios, contributing to a rapid increase in
the interest of the scientific community in understanding the molecular and physiological responses
implemented by male gametophyte to accomplish reproduction. Here, after a brief introduction
summarizing the main events underlying pollen physiology with a focus on polyamine involvement
in its development and germination, we review the main effects that environmental stresses can
cause on pollen. We report the most relevant evidence in the literature underlying morphological,
cytoskeletal, metabolic and signaling alterations involved in stress perception and response, focusing
on the final stage of pollen life, i.e., from when it hydrates, to pollen tube growth and sperm cell
transport, with these being the most sensitive to environmental changes. Finally, we hypothesize
the molecular mechanisms through which polyamines, well-known molecules involved in plant
development, stress response and adaptation, can exert a protective action against environmental
stresses in pollen by decoding the essential steps and the intersection between polyamines and pollen
tube growth mechanisms.

Keywords: plant reproduction; pollen tube growth; environmental stress; polyamines

1. Polyamines in Pollen Development

Polyamines (PAs), i.e., spermine, spermidine, and putrescine (Figure 1) are small
organic polycations with a widespread presence in all living organisms [1]. Another
tetra-amine, i.e., thermospermine, has been detected in archaea, diatoms, and plants, but
not in animals or bacteria [2]. PAs in plants are involved in many processes, such as
organogenesis, embryogenesis, floral and fruit development, leaf senescence, and plant
abiotic and biotic stress responses. PAs are also highly critical in the process of plant
reproduction, from pollen development to fertilization [3,4] to self-incompatibility [5]. In
cells, their concentration depends on the balance among biosynthesis, degradation, and
transport [6]. More generally, PAs regulate plant cell growth and are involved in external
stimuli perception and in counteracting adverse environmental conditions [7–9]. Changes
in plant PA metabolism occur in response to a variety of abiotic and biotic stresses [10];
their levels can increase dramatically, and for example, putrescine can reach up to 1.2% of
dry matter, or approximately 20% of total nitrogen in stressed plants. Pas can act as cellular
signals in a crosstalk with hormonal pathways, including abscisic acid (ABA) to cope with
abiotic stress [11]. Similar to other aliphatic Pas, a role in defense against stresses has also
been proposed for thermospermine [12].
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Figure 1. The main Pas identified in plant reproductive organs. Molecules were drawn using 
ACD/ChemSketch Freeware software (https://www.acdlabs.com/index.php, accessed on 4 January  
2022). 

We recently reviewed the involvement of Pas during the main pollen developmental 
stages, a complex and well-coordinated process governed by genetic and enzymatic pro-
cesses, some of which are modulated by Pas [3]. When pollen lands on the stigma of a 
receptive flower, it hydrates and produces a growing pollen tube to transport sperm cells 
and the vegetative nucleus. The pollen tube grows through the stigma and style following 
a precise set of extracellular signals [13,14], including PAs, which are released into the 
germination medium together with RNAs, neo-synthesized proteins, and the PAs cross-
linking enzyme transglutaminase (TGase), suggesting their possible involvement in pol-
len tube/style adhesion [15]. Pollen tube growth occurs exclusively in the apical region 
through the accumulation of secretory vesicles carrying new cell wall material, new 
plasma membrane, and proteins [16]. Methyl-esterified pectins accumulate at the extreme 
apex of the pollen tube and are then converted to acidic pectins, thereby stiffening the cell 
wall by cross-linking with calcium ions. Subsequently, the cell wall is further strengthened 
by substantial deposition of callose and cellulose [17]. The process of cell wall deposition 
and modification depends on the control of vesicular secretion and in turn on a specific 
organization of the cytoskeleton. All these events rely on a central regulatory system 
based on membrane receptor proteins, GTPases, calcium ions, intracellular pH gradients, 
actin-binding proteins, as well as changes in the level of reactive oxygen species (ROS) 
and phosphoinositides (PI) [18–23]. PAs regulate all the above-mentioned aspects of pol-
len tube growth, as they take part in cell-wall structuring, Ca2+ and ROS-signaling as well 
as the organization of the cytoskeleton [3]. This regulatory system is the target of stressful 
conditions that can affect one or more molecular dowels that allow the pollen tube to 
grow. 

As pollen and pollen tube growth are critically important in sexual plant reproduc-
tion, they have been the subject of a multitude of studies dealing with those environmental 
changes that can impair plant reproduction in both natural and anthropized areas [24,25]. 
Stress-induced effects include early or delayed flowering, asynchrony between male and 
female reproductive development, alteration and abnormal functioning of parental tis-
sues, and defects in male and female gametes [26]. Pollen and pollen tubes are highly 
sensitive to stress conditions, sometimes more than the female gametophyte [27,28], and 
the impact of stress on pollen viability is well documented. Scientific research has focused 
on how abiotic stress causes pollen damage, how pollen implements tolerance mecha-
nisms, and how pollen from different plant varieties or genotypes may differ in stress 
tolerance [29–31]. 

Here, we review recent evidence of how abiotic stress affects pollen performance. 
Considering that the topic is of great interest and is broad, we have made a careful selec-
tion of the bibliography. Therefore, not all recent bibliography has been cited, but only 
those closely related to the topic of the article. Finally, we discuss the outstanding issues 
and directions for future research that will further clarify our understanding of the in-
volvement of PAs in overcoming stressful conditions. 

Figure 1. The main Pas identified in plant reproductive organs. Molecules were drawn using
ACD/ChemSketch Freeware software (https://www.acdlabs.com/index.php, accessed on 4 Jan-
uary 2022).

We recently reviewed the involvement of Pas during the main pollen developmen-
tal stages, a complex and well-coordinated process governed by genetic and enzymatic
processes, some of which are modulated by Pas [3]. When pollen lands on the stigma of
a receptive flower, it hydrates and produces a growing pollen tube to transport sperm
cells and the vegetative nucleus. The pollen tube grows through the stigma and style
following a precise set of extracellular signals [13,14], including PAs, which are released
into the germination medium together with RNAs, neo-synthesized proteins, and the PAs
cross-linking enzyme transglutaminase (TGase), suggesting their possible involvement
in pollen tube/style adhesion [15]. Pollen tube growth occurs exclusively in the apical
region through the accumulation of secretory vesicles carrying new cell wall material, new
plasma membrane, and proteins [16]. Methyl-esterified pectins accumulate at the extreme
apex of the pollen tube and are then converted to acidic pectins, thereby stiffening the cell
wall by cross-linking with calcium ions. Subsequently, the cell wall is further strengthened
by substantial deposition of callose and cellulose [17]. The process of cell wall deposition
and modification depends on the control of vesicular secretion and in turn on a specific
organization of the cytoskeleton. All these events rely on a central regulatory system
based on membrane receptor proteins, GTPases, calcium ions, intracellular pH gradients,
actin-binding proteins, as well as changes in the level of reactive oxygen species (ROS) and
phosphoinositides (PI) [18–23]. PAs regulate all the above-mentioned aspects of pollen
tube growth, as they take part in cell-wall structuring, Ca2+ and ROS-signaling as well as
the organization of the cytoskeleton [3]. This regulatory system is the target of stressful
conditions that can affect one or more molecular dowels that allow the pollen tube to grow.

As pollen and pollen tube growth are critically important in sexual plant reproduction,
they have been the subject of a multitude of studies dealing with those environmental
changes that can impair plant reproduction in both natural and anthropized areas [24,25].
Stress-induced effects include early or delayed flowering, asynchrony between male and
female reproductive development, alteration and abnormal functioning of parental tissues,
and defects in male and female gametes [26]. Pollen and pollen tubes are highly sensitive
to stress conditions, sometimes more than the female gametophyte [27,28], and the impact
of stress on pollen viability is well documented. Scientific research has focused on how
abiotic stress causes pollen damage, how pollen implements tolerance mechanisms, and
how pollen from different plant varieties or genotypes may differ in stress tolerance [29–31].

Here, we review recent evidence of how abiotic stress affects pollen performance.
Considering that the topic is of great interest and is broad, we have made a careful selection
of the bibliography. Therefore, not all recent bibliography has been cited, but only those
closely related to the topic of the article. Finally, we discuss the outstanding issues and
directions for future research that will further clarify our understanding of the involvement
of PAs in overcoming stressful conditions.
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2. Effects of Environmental Stress on Pollen Tube Growth

Any stress condition affecting pollen and the pollen tube can act at various levels,
from cytological to biochemical to genetic. This is known already from the turn of the 1980s
and 1990s, when pollen started to be analyzed for its responsiveness to stress conditions,
showing the different response of distinct genotypes and proposing pollen for environmen-
tal monitoring [32–34]. Below, we report the main effects that environmental stresses can
cause on pollen, categorized according to type of stress.

2.1. Heat Stress

Heat stress is probably the most studied stressful condition in pollen and plants in
general. Investigation of pollen response to high temperatures started decades ago [35,36];
unfortunately, the knowledge about the mechanism of pollen tube growth was rather
limited at that time and did not allow for the correlation between damage and cellular
mechanisms. Currently, due to new evidence and abundant literature, pollen response to
heat stress is much more understood both at the molecular and physiological levels. When
released from anthers, pollen can be susceptible to heat stress, leading to partial or complete
failure of reproduction. The effects of heat stress on pollen have been studied in several
crop plants of agronomic interest, i.e., rice [28], sorghum [37], tomato [4], wheat [38], and
maize [39], as well as in pea [30]. Plant models have also been investigated for deciphering
pollen response to heat stress, i.e., A. thaliana [40] and tobacco [41]. In all cases, the
studies focused on understanding how pollen might overcome the damage induced by heat
stress. In addition, for crop plants, the selection of heat-resistant genotypes has also been
undertaken. The large research interest in this field and the lack of standardized protocols
for different plant species has recently led to a comprehensive review with suggested
guidelines [25].

Pollen response to heat stress involves transcriptomic, proteomic, metabolomic and
morphological alterations and results in reduced pollen performance. Pollen tube growth
reduction might be explained by several pathways activated simultaneously after heat
perception. While several heat shock protein genes (HSPs) and genes involved in de-
fense responses are usually overexpressed and translated, a significant downregulation
of genes encoding for proteins associated with growth and translation initiation was also
demonstrated [39–41]. Moreover, genes involved in starch, hexose pools and fatty acids
inter-conversion are strongly affected, resulting in reduced energy production [39] and
possibly affecting pollen cell wall deposition. Heat stress also affects the mechanism of
pectin secretion and conversion, similarly to cold stress [42,43]. The abovementioned alter-
ations morphologically result in smaller and less viable pollen. The reduced performance
in terms of pollen germination is associated with deep alterations in the cytoskeleton, Ca2+

and ROS localization, and pH profile [41,42,44–46]. While the literature mostly deals with
plants of agronomic interest, few evidence concerns heat stress impact in natural habitats,
addressing the problem of forest tree mortality associated with unusually dry and hot
climatic conditions [47,48].

2.2. Heavy Metal-Induced Stress

Knowledge of the impact of heavy metals on pollen and the pollen tube is different.
Pioneering [49] and more recent studies have shown that heavy metals have significant
effects on pollen function; however, general consequences cannot be ruled out due to plant-
and metal-specific responsiveness. Studies on Picea wilsonii pollen have shown that pollen
might show metal-specific effects. In addition, distinct metals can alter the shape of the
pollen tube in different ways or induce cytoplasmic aberrations (vacuolization) [50]. For
example, Cd has severe effects on tobacco and lily pollen, causing pollen tube deformations
and irregularities in Ca2+ distribution [51]. Tobacco pollen has also been tested for studying
the effects of several heavy metals, including Ni, Fe, Pb, Co, Cd, Hg, Al, Zn and Cu, showing
their detrimental effects both on pollen tube germination and growth [52]. Similar effects
were also found for Jatropha curcas pollen [53], albeit with metal-specific effects. In apple,
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various heavy metals cause effects proportionally to the dose applied [54] and different
apple varieties exhibit specific sensitivities to heavy metals [55]. A dose-effect linearity was
also found for apricot and cherry pollen [56]. Nickel shows combined effects, as it does not
block germination but prevents pollen tube growth [57]. Lead treatment causes profound
alterations in pollen tubes, which show cessation of growth and uneven distribution
of cell wall components, most likely by targeting the cytoskeleton [58]. Environmental
contamination with arsenic can adversely affect pollen biology. Arsenic species such as
arsenite, arsenate, monomethylarsonate, and dimethylarsinate show cytotoxic effects on
the pollen tube growth assay of Nicotiana sylvestris. The 50% inhibition concentration of
pollen tube growth was determined and compared with the LD50 values of the compounds
in the literature. Compared to inorganic species, higher cytotoxicity was found for arsenate
in the pollen tube growth assay [59]. In kiwi, Cr(III) and Cr(VI) differentially affect the
profile of PAs in pollen, with spermidine increasing in pollen tubes treated with Cr(III)
but not Cr(VI). In addition, chromium-induced effects are partially counteracted by the
accumulation of putrescine, the spermidine precursor, suggesting that tolerance to heavy
metals can be achieved by altering the balance of polyamines [60].

2.3. Light (UV-B) Stress

UV-B radiation is known to adversely affect plants at several levels, from physiological
to morphological. Although pollen has been used as a vector for UV-B-induced muta-
tions [61], there are few studies on the direct effects of UV-B radiation on pollen. UV-B
radiation certainly affects pollen to a degree dependent on the targeted species and the
plant’s adaptations to specific environments. As shown in soybean, the sensitivity of the
male gametophyte to UV-B radiation might be dose-dependent [62]. It is therefore reason-
able that pollen of different species (or varieties) exhibits distinct behaviors in relation to
UV-B [63]. In some cases, this diverse response results in an enhancement of pollen tube
germination by UV-B treatment [64]. An increase in pollen tube germination rate was also
observed after brief UV-B exposure, such as in Nicotiana plumbaginifolia [65]. On the contrary,
in maize, UV-B radiation causes reduced pollen tube germination and growth, probably
due to excessive production of ROS and consequent lipid peroxidation [66]. A significant
reduction in germination and pollen tube length was also observed in olive after UV-B
treatment [67]. How UV-B radiation negatively affects pollen is not fully known. Some
evidence points to an involvement of nitric oxide (NO) overproduction and accumulation
with deleterious effects on pollen [68]. Most likely, however, there are pathways of damage
that are independent of NO. For example, increased production of ROS with associated
reduction in germination and pollen tube growth was observed in Brassica [69]. UV-B
radiation also modulates endogenous hormone levels, as shown in tomato where alteration
in the levels of specific hormones following UV-B radiation decreases pollen germination
but increases fruit number [70]. During evolution, pollen most likely responded to UV-B
treatment by thickening its cell wall to increase the level of protection, as in the case of Salix
polaris pollen [71]. Studies have shown that a different composition in the sporopollenin
layer may have been an important evolutionary trait in pollen because of the different
ability to absorb UV-B radiation [72]. For example, the increased synthesis of phenolamides
(HCAAs), PAs bound to phenylpropanoids, has been associated with a photoprotective
role [73]. It cannot be ruled out that a different shape of flower was an evolutionary trait
necessary to protect the pollen [74].

2.4. Osmotic Stress

Similar to all plant cells, pollen and pollen tube are characterized by a turgor pressure
necessary for growth that must be balanced with the external osmotic pressure. Pollen
resistance to osmotic stress has also been used as a parameter for the selection of drought
tolerant genotypes [75]. The response to altered osmosis conditions requires pollen to im-
plement compensatory mechanisms based on the use of specific membrane phospholipids
(PIP2 and phosphatidic acid) [76,77]. Tolerance to osmotic stress may also require the pres-
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ence of specific proteins, such as proline-rich proteins, that confer resistance during pollen
tube growth [78]. Focusing on the mechanism of pollen tube growth, changes in osmotic
pressure revealed how the pollen tube can adapt to new external environments [79] because
pollen tubes growing under hyperosmotic or hypoosmotic conditions show changes in cell
wall structure, as well as in the tube growth profile [80]. Thereby, the typical periodicity
of acidic pectins deposition in tobacco pollen tubes was lost after manipulating osmotic
pressure. This was a clear indication that the tube oscillatory growth is affected by external
physicochemical conditions and readapts to the new environment. However, it must be
emphasized that the change in turgor pressure does not necessarily represent a directional
force (i.e., to determine the growth of pollen tubes). Some authors argue that the turgor
pressure does not differ within the pollen tube and that it is therefore the overall strength of
turgor pressure, but not local differences, that promotes the growth of pollen tubes [81,82].

2.5. Nutrient Depletion

Alterations in the oscillatory growth of the pollen tube also occur when pollen is
energetically stressed, for example by preventing sucrose metabolism. It is known that os-
cillatory pollen tube growth does not strictly require respiratory metabolism [83], although
NAD(P)H levels fluctuate in relation to pollen tube growth [84]. Because of common
molecules and proteins (such as sucrose synthase), metabolism and cell wall synthesis
are strongly linked; therefore, energy stress affects cell wall assembly and the growth
pattern of the pollen tube. In the absence of sucrose, pollen tubes grow slowly and, most
importantly, they lose the regular growth pattern and show no oscillations; in addition,
individual components of the oscillator (such as ROS, pH, and calcium ions) show relevant
changes [85]. ROS are of particular interest because they are produced during pollen grain
rehydration, according to pollen type [86–88], and during pollen tube emergence, they
accumulate at the tube apex as a result of the metabolic activity of mitochondria and of
plasma membrane-associated NAD(P)H oxidases [19]. The latter are supposed to control
pollen tube growth rate by preventing growth accelerations and by coordinating the rate of
vesicular secretion with the cell wall structure [89]. In addition, ROS interface with other
factors such as calcium ions [90] in the apical region of pollen tubes, thereby contributing
significantly to regulating the growth pattern of pollen tubes. When pollen tubes grow
under energy stress, ROS content is low at the tip [91]; as a result, pollen tubes are still
growing but lose their typical growth periodicity.

2.6. Cold Stress

Although cold stress responses in plants have been extensively studied, there are
few investigations into the effect of cold stress on pollen development and function [92],
contrary to heat stress [93]. Cold stress causes several cyto-molecular changes in pollen
tubes, including attenuation of the calcium gradient; cells continue to grow but calcium
ions are uniformly distributed along the tube axis [43]. This might be explained considering
the downregulation of genes encoding for Ca2+-binding proteins [92]. Cold stress also
causes clear deformities in the typical cylindrical shape of pollen tubes [94]. In the case
of cold stress, adequate levels of NO are needed to make the pollen tube more tolerant of
harmful conditions; in Camellia sinensis, low temperatures induce the synthesis of NO that
causes transcriptomic changes in the pollen tube. During pollen tube elongation also Ca2+

gradient, vesicle polarized trafficking as well as cell wall biosynthesis are affected through
the NO signaling pathway [95]. NO levels are strongly affected by PAs, such that a recent
model suggests that PAs regulate pollen tube growth by modulating NO and ROS lev-
els [96]. The network of gene regulation in response to cold stress is complex, with several
genes involved, including genes encoding for protein phosphorylases/dephosphorylases,
receptors, signal transduction and hormone regulation [92]. Today, what is missing is a
further analysis of pollen response to cold stress by mutant analysis and other molecular
and cell biological approaches.
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3. Can Polyamines Ameliorate the Damaging Effect of Stress?

Similar to other plant cells, the ability of pollen to withstand stressful conditions
is related to its intrinsic biochemical, physiological, and cytological characteristics, for
example the production of HSPs or osmoprotectants [97], as well as the fine-tuning of ROS
and Ca2+ levels and the ability to build a cell wall suitable for new conditions [98]. PAs
have often been associated with the environmental stress response as they interface with
various intracellular signaling processes [11,99], such as phosphorylation [100] and cation
transport [8].

When plants are subjected to abiotic stress, one possible adaptive response is the
increase in PA levels. The literature comprehensively describes changes in PA content in
response to altered environmental conditions. For example, during heat and cold stress,
PA levels change, and in some cases, PAs might also be redirected to the synthesis of
uncommon PAs, the latter being more involved in thermotolerance [101]. Under cold
stress, PA rebalance may increase the synthesis of ABA and/or reduce lipid peroxidation
indirectly by inhibiting the synthesis of ROS [102]. Tolerance to salt stress is also mediated
by PAs, which regulate Na+ and K+ fluxes [103,104]. Likewise, under salt stress, Pas might
counteract drought stress by controlling Ca2+ and K+ flux, thereby causing stomata to
close [105]. Exogenous putrescine can mitigate drought by reducing oxidative stress and
increasing the synthesis of endogenous PAs [106]. In the osmotic stress response, PAs likely
facilitate and enhance the synthesis of osmoprotectants [107]. PAs are also involved in the
response to nutrient deficiencies, such as potassium [108], and in counteracting hypoxic
conditions [109]. The protective effect of PAs against abiotic stresses appears therefore
evident, but most likely, the effect is not strictly direct or dose dependent; moreover, the
protective effect might be limited to specific cells and distinct time frames [110].

The association between susceptibility/tolerance to environmental stress and PA levels
is also supported by expression changes of genes encoding for enzymes in the PA synthesis
pathway in transgenic plants [111–114]. Downregulation of the spermidine synthase gene
(SPDS) by RNA interference in Nicotiana tabacum showed that drought and salt stress can
be counteracted by changes in PA content [115]; the mutation enhances tolerance to salinity
and drought conditions due to a constant intracellular pool of putrescine (spermidine
precursor) and spermine (spermidine product), thus highlighting a different action of
the three PAs [116]. This is confirmed by the Arabidopsis mutant defective in spermine
synthesis and consequently hypersensitive to drought and salt stress, whose effects can
be mitigated by pretreatment with spermine [117]. Overexpression of the SAMDC gene in
tobacco led to an accumulation of spermidine and to a concurrent increase in polyamine
oxidase activity, which in turn increased the antioxidant response [118]. Similar results
were obtained following overexpression of the SAMDC gene in rice [113].

The effect of PAs on pollen tubes is only partially known, and many details are missing.
However, the acquired information may help to understand the role of PAs during stress
conditions. When applied to pollen tubes, PAs affect several cytological parameters, such
as Ca2+ and H+ flux, ROS accumulation and tube shape [119,120]. Thus, a balanced content
and localization of ROS, Ca2+ and H+ is likely to normalize pollen tube growth. The action
of PAs and ROS is interconnected; PAs may play a role in tip growth as precursors of ROS.
In Arabidopsis thaliana, ROS accumulation at the tip correlates with pollen tube growth.
In detail, the ABC transporter AtABCG28, which regulates ROS levels, is localized in
secretory vesicles that fuse with the plasma membrane at the pollen tube tip. Deletion of
AtABCG28 results in defective pollen tube growth, failure to localize PAs and ROS at the
tip of growing pollen tube, and complete male infertility [121]. Spermidine-treated pollen
tubes are initially characterized by progressive changes in shape until growth resumes,
despite a larger diameter, concomitantly with extensive rearrangements of actin filaments
and pH gradient [122].

PAs, either produced internally or imported from outside, or directly targeting the
surface of pollen tubes, can regulate several molecular processes during pollen tube growth,
such as the proper balance of Ca2+, protons, and ROS. The mechanism is not known in
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detail, but currently, available data suggest possible pathways, depicted schematically
in Figure 2. In the pollen tube, the exact correlation between Ca2+ and H+ fluxes and
ROS synthesis is not known, although data suggest that Ca2+ and ROS may interact. The
correlation between Ca2+ and H+ fluxes is also unknown, although data suggest that
increasing Ca2+ precedes high growing rates in the pollen tube, whereas H+ flux follows
fast growth [21]. It is assumed that both Ca2+ and H+ enter the apical region and are
expelled at the subapical region; almost certainly, H+ is expelled at the level of the alkaline
band, while Ca2+ can be actively pumped into organelles. As suggested for other biological
systems, if PAs trigger active Ca2+ pumping, this will result in dissipation of the cytosolic
Ca2+ gradient [123]. If Ca2+ levels control H+ content (either by activating H+ influx or
inhibiting active H+ pumping) and if PAs promote dissipation of the Ca2+ gradient, this
implies that PAs promote more H+ efflux, resulting in dissipation of the H+ gradient. The
catabolism of PAs produces ROS, which in turn modulates Ca2+ [8]. Therefore, PAs could
first dissipate the Ca2+ gradient, but the subsequent ROS production due to PA catabolism
could trigger a new increase in Ca2+ levels. Conversely, that PAs can alter ROS levels is
well-known and PA metabolism leads to ROS production because of the activity of enzymes
such as diamine oxidase (DAO) and PA oxidase (PAO) [96]. Finally, the accumulation of
Ca2+ levels is also regulated by plasma membrane phospholipases, i.e., phospholipases C
(PLC) and phospholipases D (PLD) through distinct pathways. These enzymes modulate
cytoskeleton organization [124], are involved in autophagy-mediated cytoplasmic deletion
that is necessary for pollen tube emergence [125] and that affect the Ca2+ level [126].
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Figure 2. Diagram illustrating some of the mechanisms regulated by PAs underlying Ca2+ and proton
balance in pollen tube growth. It is supposed that the accumulation of both proton and Ca2+ ions,
highlighted in the apex, depends on their influx through specific plasma membrane channels. Ion
channels are under the control of other effectors; specifically, Ca2+ channels are regulated by receptors
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and small GTPases that mediate external signals. Ca2+ accumulation could hypothetically activate
proton channels. Ca2+ levels are also controlled through another signaling pathway; the GTPase-
receptor complex can activate the plasma membrane-associated phospholipase C (PLC) [126], which
in turn generates IP3. The latter can stimulate the opening of Ca2+ channels. The membrane receptor
system most likely also activates the production of ROS through NAD(P)H oxidase; in turn, ROS can
affect Ca2+ flux. The action of PAs could be implemented in two distinct ways: PAs could activate the
efflux of Ca2+ in the subapical region, while PAs could contribute to ROS production through the PAO
enzyme, thus causing an increase in Ca2+ influx. The diagram also shows how the activation of PLC
can lead to an increase in Ca2+ as mediated by IP3 production. Among the membrane phospholipases,
phospholipase D (PLD) [127] should also be recalled because it is responsible for the production of
phosphatidic acid, a chemical mediator during stressful conditions.

The question now is: can PAs play a protective role in pollen against stress? Unfor-
tunately, the current literature reports only a limited amount of useful information. PAs
may exert a protective role possibly by regulating the levels of ROS, whose content varies
significantly, such as under heat stress [4]. As further evidence, the appropriate dosage of
PAs was found to be important in heat-stressed tomato pollen during germination, again
underscoring the protective effect of these molecules [128]. Studies in Prunus have shown
that the protective effect of PAs against stress is dependent on the concentration and type
of PAs [129,130], indicating that the beneficial effect of PAs is calibrated on their concen-
tration and that concentrations above a certain threshold have inhibitory effects on pollen
tube growth (PAs often have a hormetic effect, and their action involves a dose/response
relationship with a biphasic effect, i.e., opposite depending to the dose). Pollen deformities
caused by cold stress can also be restored by the addition of spermidine, which allows for
normal growth, possibly by recalibrating the pollen tube oscillatory growth. Although cold
treatment strongly alters the pH gradient, simultaneous treatment with cold and spermi-
dine causes no apparent damage, and the pollen tubes maintain their normal morphology.
The same ameliorative effect is obtained on ROS levels and Ca2+ [93]. Further evidence
comes from the analysis of transgenic plants. Pollen viability under stress conditions is
severely compromised when a key enzyme in PA metabolism (SAMDC) is downregu-
lated [131,132], suggesting that optimal PA levels are required for proper functioning and
pollen tolerance capacity.

The action of PAs in counteracting abiotic stresses could also be carried out in concert
with enzymatic activities that metabolize PAs; among these is the cross-linking enzyme
TGases [87,133], whose activity is enhanced by events that increase cytosolic Ca2+, such
as rehydration, light, developmental differentiation and stresses as injury, pathogens and
induction of programmed cell death (PCD). In some cases, the action of PAs could be
mediated by TGase, i.e., pollen cell modeling, ion fluxes regulation and cytoskeleton
organization. For more information on the relationship between transglutaminase and
pollen tube growth, readers are kindly referred to more specific reviews [134].

One chemical form through which PAs could counteract abiotic stress is phenolamides
(HCAAs); these are derived from the binding of PAs to phenylpropanoids, particularly
hydrocinnamic acids (HCAs). These molecules have been known since the pioneering
studies of Martin-Tanguy and coworkers [135], which led to the identification of HCAAs
in the male reproductive organs of maize. HCAs, such as ferulic acid, are bound to the
primary and secondary amine groups of PAs (putrescine, spermidine, and/or spermine).
HCAAs are pollen specific and synthesized exclusively in the tapetum of developing
flowers through the activity of spermidine hydroxycinnamoyltransferase (SHT) [136].
Based on the current data, the requirement of phenylpropanoids for eudicotyledon pollen
fertility is unclear, although some evidence (as in the case of SHT-deficient Arabidopsis
with an irregular pollen coat) suggests a structural role in the pollen cell wall [136,137].
An interesting function of phenylpropanoids is protection against UV radiation [73]; the
binding of all four nitrogen atoms of spermine to HCAAs increases the UV absorbance
of a single molecule by about 30% compared to spermidine (which contains only three
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nitrogen atoms). HCAAs, whether bound to spermidine or spermine, show absorption
maxima of 315–330 nm, covering part of the UV-B and UV-A spectrum and thus helping
plants cope with this abiotic stress. Finally, HCAAs also play a role as antioxidants and
in plant–pollinator interactions. Tris-coumaroyl spermidine, in addition to lipids and
flavonols from sunflower pollen, has been reported to stimulate insect feeding [138]. PAs
contain nitrogen atoms that could be taken up by insects for their metabolism. If plant–
pollinator interactions are stimulated by a cocktail of metabolites that attract pollinators,
this could be one reason for the evolutionary success of angiosperms starting with the
pioneer Amborella trichopoda.

Thus, the role of PAs in mitigating the detrimental effects of abiotic stresses on pollen
and fertilization is exerted at several levels, including structural and biochemical. All of
this underscores the substantial contribution that PAs can make to plant reproduction,
but leaves several questions open, including whether the protective effect is exerted by a
specific PA or by an appropriate mix of PAs, which is the optimal concentration of PAs and
the best developmental stage for their action.

4. Conclusions

Various abiotic stresses in the climate change scenario threaten plant productivity
worldwide, while food demand is expected to increase due to population growth and
rising incomes. Currently, there are many options available to address this impending
food security problem; primarily, priming processes or selection of plant genotypes that
are particularly tolerant to stress conditions. Today, the selection process requires several
methodological approaches, including phenotyping, marker-assisted selection, but also
the identification of genotypes characterized by tolerant pollen. In this perspective, pollen
and the pollen tube become markers of stress tolerance. It follows that any methodology
or molecular approach that can increase stress tolerance is of great benefit to enable the
reproductive process, particularly when it concerns plants of economic interest. PAs are
one of the possible targets of these strategies. As highlighted in this review, the synthesis
and accumulation of PAs, indicators of plant well-being or stress-relieving agents, can be
beneficial for pollen tube growth. Although the role of PA metabolism for pollen abiotic
stress tolerance is only beginning to be understood, pollen capable of accumulating and/or
biosynthesizing adequate amounts of specific PAs at a given stage of development may be
more capable to promote and support plant reproduction under stressful conditions. Many
efforts are still needed to understand in detail the molecular mechanism of the protective
role of PAs in tolerance to pollen abiotic stress. High throughput analyses including
microarrays, transcriptomics, metabolomics, and reverse genetics approaches would be
helpful to elucidate the involvement of pollen PAs in stress perception and response.
In addition, three-dimensional structural studies of PA interaction partners would also
be of significant help in confirming the stress resistance mechanisms hypothesized here.
Improving plant tolerance and crop production could also be achieved by exogenous PAs
during the most susceptible phases of plant reproduction, as highlighted in this review.
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