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Highlights

• Duality between cognitive wireless networking and WSN-based target

detection systems.

• Novel analytical performance evaluation framework.

• Clustered and unclustered topologies are ecompassed.

• CD/FA probabilities and energy consumption are evaluated.

• Existing trade-offs are quantified and design guidelines are provided.
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Abstract

In this paper, we consider a surveillance scenario, where nodes of a Wireless

Sensor Network (WSN) cooperate to detect an event of interest, e.g., the

presence of a mobile target in a monitored region. The considered scenario

refers, for example, to ELectronic-signals INTelligence (ELINT), since detec-

tion is based on sensing the presence of anomalous electromagnetic signals

in the monitored area. Leveraging previous results in the field of cognitive

wireless networking, we derive proper decision and fusion strategies. We

investigate both clustered (where no direct communication between sensors

and the Communication and Control center, C2, is allowed and intermediate

data fusion is performed at Cluster Heads, CHs) and unclustered (with direct

communications between sensor nodes and the C2). System performance is

analyzed in terms of False Alarm (FA)/Correct Detection (CD) probabili-

ties and energy consumption, quantifying inherent tradeoffs between these

performance indicators.

Keywords: Wireless Sensor Network (WSN), ELectronic-signals

INTelligence (ELINT), False Alarm (FA), Correct Detection (CD),

clustering, energy consumption.
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1. Introduction

Wireless Sensor Networking (WSN) is one of the most promising tech-

nologies that have applications ranging from health care to military scenar-

ios [1], because of the following appealing features: low installation cost,

unattended network operations, etc. Target detection is a critical task for

WSN-based surveillance applications. Detection of unauthorized targets in

a monitored area can be carried out by monitoring the presence of a signal

of interest, which may be of different nature, e.g., seismic, electromagnetic,

etc [2].

Different target detection schemes for surveillance scenarios have been

proposed in the literature. In many cases, the main performance indicators

used for system design are related to the network detection capabilities, e.g.,

the probability that the target presence is correctly detected (see, e.g., [3, 4]

and references therein). However, WSNs for target surveillance applications

have to cope with limitations in terms of energy consumption and latency.

Therefore, various approaches have been proposed in the literature to de-

sign WSN-based solutions for target detection that also minimize the overall

latency [5] or the energy consumption [6]. Event-triggered communica-

tion/networking protocols have also been exploited in other ap-

plications, e.g., in distributed consensus, where rapid convergence

without communication burden is desired [7–9].

Target detection and event-based detection are problems strictly related

to the field of cognitive networking, where some unlicensed secondary nodes

need to detect the presence of licensed primary nodes’ activities [10]. In

cooperative spectrum sensing, secondary nodes send their data (raw sensed

data or preliminary decisions) to a common collector, which uses such data
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to take a decision on the occupation of the considered bandwidth portion.

In [11], the authors consider a single-hop collaborative cognitive network

and derive optimal fusion strategies with and without the knowledge of the

nodes’ positions in the network.

In this paper, we devise energy-efficient information fusion strategies

triggered by the detection of a mobile target, e.g., an Unmanned Aerial

Vehicle (UAV). We consider an ELectronic-signals INTelligence (ELINT)

scenario, where the event detection is based on the radio signal emitted

by the mobile target [12]. Motivated by the recent advances in SubGHz

communication technologies, which allow relatively inexpensive wireless de-

vices to communicate at distances of the order of kilometers [13], we first

consider a scenario with direct communications between the WSN nodes

and the Communication and Control center (C2). In order to reduce the

energy consumption and prolonging the network lifetime, we consider the

presence of clustering, so that the communication range can be reduced.

In this case, local decisions are collected by a Cluster Head (CH) using

short-range communications. Proper intermediate (at the CHs) and final

(at the C2) fusion rules are designed. Although event-based communi-

cation/networking protocols and target detection are well-known

problems, the novelty of our work can be summarized as follows.

First, we exploit a duality between cognitive wireless networking

and WSN-based target detection systems to efficiently tackle the

target detection problem. Moreover, in this context we propose

an analytical framework which allows to evaluate two different

performance indicators: (i) detection capability, in terms of False

Alarm (FA) and Correct Detection (CD) probabilities; and (ii) the

overall network energy consumption. The obtained results show
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Figure 1: Illustrative scenarios of interest for mobile target detection: (a) direct sensor-C2

communications and (b) clustered (2-hop) topology.

the inherent tradeoff between these two performance indicators.

The rest of the paper is structured as follows. In Section 2, we present the

system model. In Section 3, we derive an analytical performance framework,

in terms of FA/CD probabilities and energy consumption. In Section 4,

a comparative (clustered-vs-unclustered and simulation-based-vs-analytical)

performance evaluation is carried out. Finally, concluding remarks are given

in Section 5.

2. System Model

2.1. Reference Scenarios

In Figure 1, the two illustrative scenarios of interest for mobile target

(denoted as “intruder”) detection are shown. In both cases, the C2 is placed

at the center of the Region Of Interest (ROI), which is assumed to be a cir-

cular region with a given radius R, while N sensors are independent and

identically distributed (i.i.d.), according to a spatial uniform distribution,

in the ROI. The proposed approach can, however, be generalized to other
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types of ROIs (at the cost of a reduced analytical tractability) and the C2

could be placed outside the ROI. For the sake of simplicity, in the remainder

of this paper we will assume that R = 1 (normalized radius, e.g., 1 km),

i.e., the ROI is a circle with unitary radius. The two scenarios of interest

in Figure 1 refer to two different topologies. In case (a), one-hop long-range

communications between all N sensors and the C2 are allowed. Long-range

communications are motivated by the recent advances in SubGHz commu-

nication technologies, which allow relatively inexpensive wireless devices to

communicate at distances of the order of kilometers [13]. In order to save

energy, in case (b) nodes are grouped into a fixed number (denoted as Nc) of

clusters and, in each cluster, one of the inner nodes acts as CH. Short-range

communications (e.g., IEEE 802.15.4 or IEEE 802.11) between sensors and

CHs are used inside the clusters, whereas long-range communications be-

tween CHs and the C2 are allowed. It is worth observing that in case (b)

each CH is likely to be always active (in order to be able to receive reports

from the controlled nodes): hence, it consumes more energy than other

nodes in its cluster. Therefore, if the CH is kept fixed, its energy will de-

plete sooner than those of the other non-CH nodes. In order to equalize the

energy consumption within a cluster, we will adopt a CH rotation strategy,

giving all nodes the same probability of becoming CH.

Denoting the set of nodes belonging to the i-th cluster (i = 1, . . . , Nc)

as Ci, it follows that
Nc∑

i=1

|Ci| = N

whereas |Ci| is the size of the i-th cluster. In Section 4, clusters will be

formed (with a simulation-based approach) through the well-known k-means

algorithm [14, 15]. Although several clustering algorithms can be consid-

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ered, k-means was selected as it leads, on average, to uniform clusters, i.e.,

|Ci| = bN/Nce, ∀i ∈ {1, . . . , Nc}, where b·e denotes the integer nearest to

the argument. We remark that cluster formation goes beyond the scope of

this paper.

As anticipated in Section 1, the goal of the deployed WSN (either clus-

tered or unclustered) is to detect the presence of a target from its electro-

magnetic emissions (namely, radio communications). This is meaningful

in several scenarios, e.g., in ELINT or cognitive radio applica-

tions. In particular, target detection is performed by scanning a proper

radio bandwidth, over which the target is assumed to transmit its own radio

signal with fixed power1 PT—relaxing this assumption leads to a further

generalization of our approach and is the subject of our current research

activity. Without loss of generality, we assume that all sensors in the ROI

may sense, if present, an electromagnetic signal emitted by the target. In

particular, we assume that each node carries out a spectrum swipe over a

sufficiently large number of subbands. In each subband, target presence

(i.e., its electromagnetic emission) can be modeled by a Bernoulli random

variable S, which can assume the value S0 = 0 (no target) or S1 = 1 (target

is present) with probabilities p0 and p1 = 1− p0, respectively. In particular,

in the applications of interest it holds that p1 � 0.5. We assume that the

electromagnetic signal emitted by the target is received by the nodes in the

WSN according to a classical cellular-like model, accounting for path-loss

1In the remainder of this paper, the dimensional unit of power is not explicitly indi-

cated, as the performance will be investigated in terms of normalized values (as discussed

in more detail later). However, realistic values are expected to be on the order of mWs

and tens of mWs for short-range and long-range communications, respectively.
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and shadowing—this is realistic, given the considered scenarios in Figure 1.

From a statistical point of view, for each subband of the considered

scanned spectrum, event detection at each node is based on binary hypoth-

esis testing. On the basis of the assumptions above, the k-th sensor node

(k = 1, . . . , N) has to distinguish between two independent Gaussian se-

quences:

µk(`) =





sk(`) + nk(`) ifS = S1

nk(`) ifS = S0

` = 1, . . . ,m (1)

where: m is the number of observed consecutive samples in a single sensing

“block”used to take a binary decision on the presence/absence of a sig-

nal; {sk(`)} are the samples of the signal received by the k-th sensor

(and emitted by the target); and the noise terms {nk(`)} are modeled

as i.i.d. zero-mean complex Gaussian random variables with fixed vari-

ance PN (corresponding to the noise power), constant for all sensors. Note

that an implicit assumption in (1) is that the phenomenon status does not

change over m consecutive observations—this is reasonable in ELINT sce-

narios with sufficiently slowly moving (with respect to the nodes’ sampling

rate) target. Since it is reasonable to assume that the sensors have

no a-priori knowledge about the modulation and pulse shaping for-

mats adopted by the target, in (1) {sk(`)} is modeled a sequence of

i.i.d. zero-mean complex Gaussian random variables with variance

P
(k)
R (corresponding to the received power) [16, Section 4.2.1]. The

power P
(k)
R depends on the transmit power PT and on the path-loss and

shadowing terms characterizing the link between the target and the k-th

node. In the following, we assume that path-loss and shadowing terms are

constant over all m consecutive observations: this is compliant with the
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previous assumption of sufficiently slowly varying wireless scenarios.

Describing the bidimensional space of reference (i.e., the ROI)

as the complex plane, we denote as vk and vt the positions of

the k-th sensor and of the target, respectively. We assume that

there is no knowledge of nodes’ positions in the network—this

is an extension left for future work. The Euclidean distance dk

between the target and the k-th sensor is dk = |vt − vk|. Therefore,

the sensing Signal-to-Noise Ratio (SNR) experienced by the k-

th sensor node, with respect to the target, can be expressed as

follows:

γk(dk, h) =
P

(k)
R

PN
=
KhkPT

PNdαk
(2)

where the Friis formula for the received power has been used [17],

in which α is the path-loss attenuation exponent (adimensional, in

the range 2÷4), K is the gain at 1 m from the transmitter (i.e., the

target), and hk is the log-normal shadowing coefficient of the link

between the target and the k-th sensor with standard deviation σ

(adimensional, dB).

The k-th sensor uses the observables {µk(`)} to make a local

binary decision Xk. Under the observation model (1), an Energy

Detection (ED) scheme is the optimal detector in the Neyman-

Pearson sense [18]. In particular, the following decision variable

has to be evaluated:

Wk =
m∑

`=1

|µk(`)|2 (3)

and the binary decision rule at the sensor is given by

Xk = U(Wk − τ) =





1 if Wk ≥ τ
0 if Wk < τ

(4)
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where τ is a properly selected decision threshold and U(·) is the

unit-step function.

2.2. Simplified Clustering Model

In order to derive an analytical approach for system performance evalu-

ation, it is necessary to introduce a simplified clustering model (with respect

to a more realistic, but simulation-based, k-means-based approach), espe-

cially to characterize the generic position of the target inside the ROI. To

this aim, we adopt a simple “homogeneous” model according to which: (i)

each cluster covers a circular area with radius r = R/
√
Nc and (ii) the clus-

ters’ centers are regularly arranged inside the ROI following an hexagonal

packing with radius r. We denote by VC,i (i = 1, . . . , Nc) the complex rep-

resentation of the coordinates of the center of the i-th circular cluster. Note

that, in the considered model, there is a slight overlapping among adjacent

clusters, which is due to the assumption of circular clusters. Hence, this

model tends to slightly over-estimate the average cluster size. Considering

the number of nodes |Ci| belonging to cluster Ci, we make the assumption

of uniform distribution of the nodes inside the clusters, i.e., a node belongs

to a given cluster with probability 1/Nc. Accordingly, the Probability Mass

Function (PMF) of the number of nodes in a cluster can be written as

pn = P (|Ci| = n) =

(
N

n

)(
1

Nc

)n(
1− 1

Nc

)N−n
. (5)

Note that in the proposed clustering model the correlation among

different clusters is not taken into account. In fact, we assume,

for simplicity, that the numbers of sensors in different clusters are

independent. However, since the number of sensors N in the ROI

is fixed, the numbers of sensors in different clusters are strictly

10
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correlated. For instance, if Nc = 2 and one of cluster has a small

number of sensors, then the other cluster is forced to have a large

number of sensors. Although this effect is not captured in our

analytical model, simulation results show good trend-wise agree-

ment.

The simplified clustering model introduced above allows to investigate

the system performance analytically. Nevertheless, this model captures the

essence of the detection problem at hand: in fact, in Section 4 simulation-

based and analytical performance results will be in very good agreement.

2.3. Energy Consumption Model

Energy consumption is an important issue for WSNs formed by battery-

equipped sensor nodes. In order to determine the average energy consump-

tion at each node, it is necessary to identify the various states of a node and

the corresponding energy costs. To this aim, we consider a Carrier Sense

Multiple Access with Collision Avoidance (CSMA/CA) random access in

the entire network (in the absence of clustering) or in each cluster (in the

presence of clustering). Being the WSN deployed for surveillance purposes,

we assume the use of beacons to improve the performance of the random

access protocol. In order to simplify the energy consumption model (since

this is not the focus of our paper), we assume that energy consumption com-

plies with the well-established model for the IEEE 802.15.4 standard

with beacon-enabled channel access and Guaranteed Time Slot (GTS) to

each node [19]—we remark that this model is applicable, with minor mod-

ifications, also to other beacon-enabled CSMA/CA-based networks. This

access protocol allows to guarantee low latency transmissions, which is a

very important requirement for the scenario at hand.

11
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As typical in surveillance scenarios, we assume that the C2 withdraws

energy from the power grid and, as such, energy consumption is not a con-

cern. Therefore, in the remainder we focus on the energy consumption at

sensor nodes (in both clustered and unclustered scenarios) and at the CHs

(in clustered scenarios).

2.3.1. Clustered Scenario

In each cluster, the CH plays the role of coordinator and, as such, is

responsible for both managing the superframe structure and sending the

periodic beacon at the beginning of each superframe. The superframe is

divided into an active period (with duration TA) and an inactive period.

During the inactive period, all nodes enter into a sleep node, thus saving

energy.

In the considered sensing scenario, we assume that part of the active pe-

riod is exploited by the nodes to sense the channel with the aim of detecting

the possible presence of the target. Hence, we assume that the remaining

part of the active period is divided into a proper number (denoted as M) of

time slots, each with duration TM : one of them is used to send the beacon

(from the CH to the nodes of its cluster), while the remaining M − 1 slots

(the number of nodes in the cluster must not be larger than M − 1) are

assigned by the CH to the controlled nodes. A dedicated slot is either used

by the node to inform the CH that a target has been detected or is left

unused (if no target has been detected). As for the transmissions from the

CHs towards the C2, we assume that they occur following the same beacon-

enabled strategy with GTSs of the clusters, with the C2 playing the role of

coordinator.

As shown in [20], a node can be in one of the following five states: trans-

12
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mit (Tx), receive (Rx), channel sense (CS), idle, and sleep. The various

states are characterized by different average power (and, thus, energy) con-

sumptions. In particular, for short range communications, i.e., intra-cluster

communications between sensor nodes and CH, we can assume that Tx, Rx,

and CS are characterized by the same power level, referred to as PM in

the following. This is reasonable in IEEE 802.15.4-based networks,

where the corresponding energy consumptions are all on the order

of a few milliwatts [21, 22]. Considering long-range communications,

we assume that the CHs use a transmit power γ times higher than in the

case of inter-cluster communications, i.e., γPM . The power consumptions in

the idle and sleep states are assumed to be negligible with respect to those

in the other states.

Owing to the above assumptions, one can derive the average energy

consumed by a sensor node in a superframe: we denote this energy as ES ,

where S refers to the sensing status (presence/absence of detection). In

each superframe, regardless of the sensing status, a sensor node consumes

energy to read the beacon and to perform channel sensing. In the presence

of target detection (S = S1), further energy is consumed to transmit the

positive decision (i.e., estimated target presence) from the node to the CH.

Hence, denoting by β the time dedicated to target sensing expressed in terms

of equivalent time slots, the overall energy consumption at a sensor node is:

ES =





ES1 = (2 + β)PMTM ifS = S1

ES0 = (1 + β)PMTM ifS = S0

(6)

where: PMTM is the energy consumed in Rx state (receiving the beacon);

PMβTM is the energy consumed in the CS state; and PMTM is the energy

consumed in Tx state (if transmitting a decision to the CH).

13
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We now evaluate the energy, denoted as ECH, consumed by a CH dur-

ing a superframe. We preliminary observe that in the active period of a

superframe a CH is always active, being either in the Rx state (while re-

ceiving packets from sensor nodes) or in the Tx state (while transmitting

the beacon). Moreover, assuming that a CH has sensing capabilities, en-

ergy is consumed also to perform channel sensing. Finally, a CH consumes

energy for packet transmission toward the C2 if a target is detected inside

the cluster. The energy consumed by a CH during a superframe can thus

be expressed as follows:

ECH =





ECH,1 = (γ +M + β)PMTM with target detection

ECH,0 = (M + β)PMTM without target detection.
(7)

In particular, in (7) it has been assumed that while the Tx power (to send

a decision to the C2) increases to γPM, the Rx power (to receive the beacon

from the C2) remains fixed to PM. The estimated presence or absence of

the target inside a cluster depends on the local (inside a cluster) fusion rule

adopted at the CH and will be discussed later.

2.3.2. Unclustered Scenario

In the absence of clustering, i.e., in a scenario where the C2 plays the

role of coordinator for all nodes in the ROI, the energy consumed by a sensor

node in a superframe, denoted as E
(f)
S , can be directly obtained from (6) by

taking into account that the transmit power to reach the C2 is γPM, thus

obtaining:

E
(f)
S =





E
(f)
S1

= (γ + 1 + β)PMTM ifS = S1

E
(f)
S0

= (1 + β)PMTM ifS = S0.
(8)
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2.4. Fusion Rule

2.4.1. Clustered Scenario

The optimum fusion strategy at the CH derives from the application of

the Neyman-Pearson criterion and requires the evaluation of the likelihood

ratio between the probabilities of observing the reports received from the

nodes under the two hypothesis S1 and S0. Denoting Qi = |Ci| as the number

of nodes in i-th cluster, the likelihood ratio can be expressed as follows:

L(X1, . . . , XQi) =
P (X1, . . . , XQi |S1)

P (X1, . . . , XQi |S0)

S1

≷
S0

λi (9)

where λi is a decision threshold which, in general terms, should be opti-

mized for the i-th cluster (e.g., depending on the value of Qi). According

to the considered communication setup, only the nodes which detect the

target transmit to the CH: this is equivalent to considering that all the

other nodes send a null report. Note that under hypothesis S1, {Xk} are

not independent, since they jointly depend on the position VT of the target.

However, owing to the symmetry of the considered scenario and to the lack

of a-priori information about the positions of the nodes, the probability as-

sociated with the reports received by the CH is permutation-invariant, i.e.,

P (X1, . . . , XQi |S1) = P (Σ(X1, . . . , XQi)|S1) for any permutation Σ. Then,

it follows that L(X1, . . . , XQi) depends only on the number of ones contained

in (X1, . . . , XQi), i.e., on the value of the following random variable:

X
(i)
tot =

Qi∑
k=1

Xk. (10)

Therefore, X
(i)
tot is a sufficient statistic for detection in the i-th cluster. Due

to the nature of the problem at hand, we also argue that L(X1, . . . , XQi)

is a monotonically increasing function of X
(i)
tot, thus leading to the following
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reformulation of the optimal decision rule at the CH:

X
(i)
tot

S1

≷
S0

TCH (11)

where TCH is a threshold whose value must be selected to obtain the desired

FA and CD probabilities at the CH. Note that, unlike the general formu-

lation in (9), in (11) the decision threshold is independent of the cluster

index i: this is consistent with the simplified clustering model introduced in

Subsection 2.2.

As for the final decision rule at the C2, following the same considerations

outlined above, it is straightforward to express the optimal decision rule as

follows:

Ytot =
Nc∑
i=1

X
(i)
tot

S1

≷
S0

TC2 (12)

where TC2 is a threshold to be properly selected in order to obtain the final

FA and CD probabilities.

2.4.2. Unclustered Scenario

In the absence of clustering, i.e., in the presence of direct communications

between the sensor nodes and the C2, the decision rule at the C2 can be

easily obtained from the derivation in the clustered scenario. In particular,

from (10) one can write:

Ytot−unc =

N∑

k=1

Xk

S1

≷
S0

TC2−u (13)

where the value of the decision threshold TC2−u has to be properly selected.
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3. Analytical Performance Evaluation

3.1. Local Performance: CD and FA Probabilities at a Sensor Node

The local FA and CD probabilities, under the proposed ED scheme, can

be defined as follows (see, e.g., [23] and references therein):

P
(k)
FA , P (Xk = 1|S0) = P (Wk ≥ τ |S0)

P
(k)
CD , P (Xk = 1|S1) = P (Wk ≥ τ |S1).

Using straightforward manipulations, the local FA and CD probabilities at

a sensor with ED can then be expressed as [18]

P
(k)
FA = Γu (mτN,m)

P
(k)
CD = Γu

(
mτN

1 + γk(dk, h)
,m

)
(14)

where τN = PNτ is the normalized threshold with respect to the noise power

and Γu(a, n) ,
∫∞
a xn−1e−x dx/(n − 1)! is the upper incomplete gamma

function [24].

Note that the FA probability is the same for all sensors and does not

depend on their distances from the target: we thus denote P
(k)
FA = PFA,

∀k ∈ {1, 2, . . . , N}. The CD probability, instead, depends on the distance

dk and on the shadowing term hk. Averaging with respect to the statistical

distribution of the shadowing term, the following expression for the average

CD probability at distance dk can be obtained:

PCD(dk) = Ehk
[
P

(k)
CD(dk, hk)

]

=
1√

2πσ2

∞∫

−∞

Γu

(
mτN

1 + γk(dk, 10S/10)
,m

)
e−

S2

2σ2 dS (15)

which has no closed-form solution, but can be numerically evaluated. Note

that, since the average CD probability in (15) is a function of dk only, for

notational simplicity we have removed the superscript k.
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3.2. Global Performance

3.2.1. Preliminary Geometric Considerations

Denote the position of the target (in the complex plane centered at the

C2) as VT = Xej2πΦ. Owing to the circular ROI with unitary radius, it

follows that Φ ∼ Unif(0, 1) and the Probability Density Function (PDF) of

X can be written as:

fX(δ) =





2δ δ ∈ (0, 1)

0 otherwise.
(16)

Owing to the circular symmetry of the scenario, we can consider Φ = 0:

therefore, VT = X. Denote now: Ri as the distance between the center of i-

th cluster and the target, i.e., Ri = Ri(X) =
√
|VC,i −X|2; D as the distance

between a generic node belonging to cluster i and the target at position

VT. The PDF of D, denoted as fD (ρ|Ri(X) = ri(x)), can be derived by

considering two different cases, depending on the relative position (outside

or inside) of the target with respect to the the i-th cluster.

In the first case, the target is outside the i-th cluster, i.e., ri(x) > 1.

This situation is illustrated in Figure 2 (a). For ρ < ri(x)− 1, the annulus

centered at VT with inner radius ρ and outer radius ρ + dρ is outside the

cluster with radius 1 and, therefore, we have fD (ρ|ri(x)) = 0. On the other

hand, when ri(x) − 1 ≤ ρ < ri(x) + 1 only a portion of the annulus lies

within the cluster and, therefore, fD (ρ|ri(x)) is obtained by dividing the

area of this portion and the area of surface of the cluster. Through simple

geometric considerations, one obtains:

fD (ρ|ri(x)) =
2ρ

π
cos−1

(
ρ2 + r2

i (x)− 1

2ρri(x)

)
. (17)

Finally, for ρ ≥ ri(x) + r the annulus is fully outside the cluster and, hence,

fD (ρ|ri(x)) = 0.
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ρ < ri(x)-r 

ri(x)-r≤ρ< ri(x)+r 

ρ≥ri(x)+r 

  

R 
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VC,i VT 
r 

ρ < r-ri(x) 

r-ri(x)≤ρ< ri(x)+r 

ρ≥ri(x)+r 

  

ri(x) 

(a) (b)

Figure 2: Computation of fd(ρ|ri(x)): (a) the target is outside the cluster; (b) the target

is inside the cluster.

In the second case, the target inside the i-th cluster, i.e., ri(x) ≤ 1. This

situation is illustrated in Figure 2 (b). Following similar considerations as

above, we note that for ρ < 1 − ri(x) the annulus centered at VT with

inner radius ρ and outer radius ρ + dρ is fully included into the cluster

and, therefore, it follows that fD(ρ|ri(x)) = 2ρ. On the other hand, when

1−ri(x) ≤ ρ < ri(x)+1 only a portion of the annulus lies within the cluster

and, in this case, fD(ρ) can be expressed as follows:

fD (ρ|ri(x)) =
2ρ

π

[
π − cos−1

(
1− ρ2 − r2

i (x)

2ρri(x)

)]
. (18)

Finally, for ρ ≥ ri(x) + 1 the annulus is fully outside the cluster and, hence,

fd (ρ|ri(x)) = 0.

3.2.2. CD and FA Probabilities

Denote as PCD(ri(δ)) the average probability of CD of a generic node

belonging to the i-th cluster, averaged over all possible distances d with
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respect to the target, for a given target position X = δ. One can thus write:

PCD(ri(δ)) =

∫

ρ

PCD(ρ)fd(ρ|ri(δ))dρ (19)

where PCD(ρ) is given by (15).

Denote now as P
(i)
CD(δ,Qi) the final CD probability at the CH of the i-th

cluster, conditioned on the target position δ and on the number of nodes Qi

in the i-th cluster: in other words, P
(i)
CD(δ,Qi) is the CD probability achieved

by fusing all the received reports at the i-th CH. Taking into account the

fusion rules outlined in Subsection 2.4, one can write:

P
(i)
CD(δ,Qi) =

Qi∑

k=TCH

(
Qi
k

)[
PCD(ri(δ))

]k [
1− PCD(ri(δ))

]Qi−k (20)

where TCH has been introduced in (11). By averaging over the number Qi

of elements in the i-th cluster, one obtains:

P
(i)
CD(δ) =

N∑

n=0

P
(i)
CD(δ, n)pn (21)

where pn is given by (5).

It is now possible to get the final CD probability P
(f)
CD(δ) at the C2

conditioned on δ. To this aim, denote: Nc = {1, . . . , Nc}, i.e., the set

of integers indexing all the clusters in the network; A(m, k) as the set of

integers containing the m-th combination, out of all possible combinations

of elements in Nc taken k at a time, with m = 1, . . . ,
(
Nc

k

)
and k = 0, . . . , Nc;

A′(m, k) as the complementary set of A(m, k), i.e., the set of all elements in

Nc which are not in A(m, k). Using the introduced notations, one obtains:

P
(f)
CD(δ) =

Nc∑

k=TC2

(Nc
k )∑

m=1

∏

i∈A(m,k)

P
(i)
CD(δ)

∏

i∈A′(m,k)

[
1− P (i)

CD(δ)
]
. (22)

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Taking into account the PDF in (16), from (22) the unconditional CD prob-

ability at the C2 can be expressed as follows:

P
(f)
CD = 2

1∫

0

P
(f)
CD(δ)δ dδ. (23)

We now turn our attention to the FA probability. Since, in this case, the

local decisions (at the sensors) do not depend on the position of the target, it

can be concluded that the FA probability is the same for all clusters. Hence,

denoting by PFA(Qi) the FA probability at the i-th CH conditioned on the

number of sensors Qi in the cluster, one has:

PFA(Qi) =

Qi∑

k=TCH

(
Qi
k

)
(PFA)k(1− PFA)Qi−k. (24)

By averaging over the number Qi of elements in the i-th cluster, taking

into account the distribution of the number of nodes per cluster given by (5),

the average FA probability at each CH can be expressed as follows:

P
(c)
FA =

N∑

n=0

PFA(n)pn. (25)

The final FA probability P
(f)
FA at the C2 thus becomes

P
(f)
FA =

Nc∑

i=TC2

(
Nc

i

)
(P

(c)
FA )i(1− P (c)

FA )Nc−i. (26)

It can be observed that, setting Nc = 1, the just derived analytical

framework (in terms of CD and FA probabilities) for a scenario with clus-

tering can be easily extended to evaluate the CD and FA probabilities in

the absence of clustering. Indeed, in this case the PMF {pn} of the number

of nodes in the single (network-wide) cluster in (5) reduces to

pn =





1 if n = N

0 otherwise

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

which corresponds to the case with a fixed number (N) of nodes in the

cluster. Moreover, in this case the single cluster VC,1 is located at the ori-

gin of the ROI and, accordingly, ri(δ) = δ. We remark that, given the

model considered in Section 2, the CD and FA probabilities obtained in the

unclustered scenario are exact (there is no analytical approximation).

3.2.3. Energy Consumption

Leveraging the previous analysis, the goal of this section is to

derive the per-node average energy consumption as a function of

the detection performance. In fact, sensors consume energy when

they perform target detection and, therefore, they have data to be

transmitted to the final collector. In particular, we distinguish between

the cases with the presence (S = S1) and absence (S = S0) of the target.

Let us first consider the case with S = S1, i.e., when the target is present

in the ROI, and assume to have a clustered network, i.e., Nc > 1. Denote by

E
(1)
S (i, δ) the average energy consumption of a sensor node in i-th cluster,

conditioned on the position δ of the target. Hence, referring to the results

derived in Subsection 2.3 and Subsection 3.2.2, one can write

E
(1)
S (i, δ) = ES,1PCD(ri(δ)) + ES,0

[
1− PCD(ri(δ))

]
. (27)

Denote by E
(1)
CH(i, δ, n) the average energy consumption of the CH in the

i-th cluster, conditioned on the target position δ and on the number of nodes

n in the cluster. Leveraging again the results derived in Subsection 2.3 and

Subsection 3.2.2, it follows:

E
(1)
CH(i, δ, n) = ECH,1P

(i)
CD(δ, n) + ECH,0

[
1− P (i)

CD(δ, n)
]
. (28)

Assume that, in each cluster, each node periodically becomes the CH (i.e.,

a rotation CH election strategy is used): this corresponds to assuming that
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each node has probability 1/n of becoming a CH, n being the number of

nodes in the cluster. At this point, the average consumed energy per node

in the i-th cluster, conditioned on δ, can be expressed as:

E
(1)
avg(i, δ) =

N∑

n=1

[
n− 1

n
E

(1)
S (i, δ) +

1

n
E

(1)
CH(i, δ, n)

]
pn. (29)

The overall network-wide per-node average energy consumption E
(1)
avg can

now be evaluated by averaging over (i) the clusters and (ii) the position δ

of the target, thus obtaining:

E
(1)
avg = 2

1

Nc

1∫

0

[
Nc∑

i=1

E
(1)
avg(i, δ)

]
δ dδ. (30)

Note that, in the absence of clustering, there is no CH and, hence, it is

straightforward to derive the average per-node consumed energy E
(1,f)
avg as

follows:

E
(1,f)
avg = 2

1∫

0

[
E

(f)
S,1PCD(δ) + E

(f)
S,0(1− PCD(δ))

]
δ dδ (31)

where PCD(δ) can be evaluated by setting Nc = 1, as discussed at the end

of Subsection 3.2.2.

The case with S = S0 can be straightforwardly investigated by replacing

PCD with PFA. In particular, in the clustered scenario one obtains:

E
(0)
S = ES,1PFA + ES,0(1− PFA)

E
(0)
CH(n) = ECH,1PFA(n) + ECH,0 [1− PFA(n)]

E
(0)
avg =

N∑

n=1

[
n− 1

n
E

(0)
S +

1

n
E

(0)
CH(n)

]
pn.

In the absence of clustering, the average per-node consumed energy can

be expressed as follows:

E
(0,f)
avg = E

(f)
S,1PFA + E

(f)
S,0(1− PFA). (32)
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4. Simulation-based Performance Evaluation

4.1. Parametric Optimization

The analytical framework derived in Section 3 allows to evaluate the per-

formance of the system in terms of CD/FA probabilities (and, then, energy

consumption) as a function of a set of parameters that are not explicitly

indicated in the CD/FA derivations to avoid abuse of notations. We quickly

recall the following parameters embedded in the analytical framework:

• the transmit power PT of the target;

• the noise power PN;

• the shadowing parameter σ and the path loss exponent α;

• the number m of samples in the acquisition phase at each sensor node;

• the ROI radius R (set to 1 in the analytical framework in Section 3);

• the number of nodes N and the number of clusters Nc;

• the local decision threshold τN (at each sensor node) and the fusion

thresholds TCH (at CHs) and TC2 (at the C2).

While some of these parameters are out of control (namely, PT, PN, σ and

α), the other parameters can be considered as design parameters and we

adopt the following optimization strategy: upon fixing the parameters m,

R, N , and Nc, the values of the thresholds τN , TCH and TC2 are selected in

order to optimize the performance.

In order to highlight the dependency of P
(f)
CD and P

(f)
FA on τN , TCH, and

TC2, we introduce the following functions:

P
(f)
FA = F (τN , TCH, TC2)

P
(f)
CD = G (τN , TCH, TC2) .

(33)
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The threshold τN is then numerically evaluated through the following Neyman-

Pearson approach. Denoting by P
(tgt)
CD the desired (newtork-wide) PCD, for

each possible value of τN we determine all possible threshold pairs (T ∗CH, T
∗
C2)

which allow to achieve P
(tgt)
CD , i.e.:

[T ∗CH(τN ), T ∗C2(τN )] : G (τN , T
∗
CH, T

∗
C2) = P

(tgt)
CD . (34)

Hence, the optimal τN , denoted as τ∗N , is selected as the value which allows

to minimize P
(f)
FA , i.e.:

τ∗N = arg min
τN

F (τN , T
∗
CH(τN ), T ∗C2(τN )) . (35)

To summarize, given a configuration of the input parameters (namely,

PT, PT, σ, α, m, R, N , and Nc) and a value of the target CD probability

P
(tgt)
CD , the decision/fusion thresholds are set to [τ∗N , T

∗
CH(τ∗N ), T ∗C2(τ∗N )]: this

allows to minimize P
(f)
FA and we will refer to this minimum as P ∗FA.

The following setup is considered for the performance analysis carried

out in the next Subsection 4.2. The path-loss exponent α is set to 4 (as-

suming a strong attenuation, realistic for large-scale monitoring scenarios)

and the shadowing parameter σ is set to 5 dB (a typical value for terrestrial

propagation). As anticipated in Section 3, the radius R of the ROI is nor-

malized to 1. Hence, we introduce the ratio γ0 = KPT/PN which, according

to (2) and from the assumption of unitary radius R = 1, represents the av-

erage (averaged over the shadowing) SNR at a sensor located at distance 1

from the target. As for the IEEE 802.15.4 superframe structure, we consider

that the number of time slots M is set to allow, on average, transmission

from all sensors in the cluster during an active period, i.e., M = dN/Nce.
Then, we assume that the maximum number of measurements at each sen-

sor node during a time slot is 16: in general, m ≤ 16 observed consecu-

tive measurements will be considered ({|µk(`)|2}m`=1, according to (3)), so
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that the relative sensing time during an active period can be written as

β = m/16. Finally, the transmit power for long-range communications

(between CH and C2) is assumed 20 times higher than PM , i.e., γ = 20—

typically, IEEE 802.15.4 node have a transmit power of 1 mW, whereas

SubGHz node can transmit up to 300 mW (e.g., Xbee PRO 868 RF mod-

ules, http://ftp1.digi.com/support/documentation/90001020 F.pdf).

4.2. Comparative Performance Evaluation

We now present performance results with the aim of providing a compre-

hensive comparison between clustered and unclustered network topologies.

As the analytical framework developed in Section 3 provides an approximate

(average) performance evaluation, we also show Monte Carlo simulation-

based performance results. In this case, the CD/FA probabilities and the

energy consumption are obtained by averaging over different network topol-

ogy realizations. In particular, at each simulation run, the positions of

sensors and of the target are randomly selected in the ROI (this guarantees

various realizations for the received powers at the sensors); then, clusters

are formed using the well-known k-means algorithm [14, 15] and the CH is

randomly chosen among the nodes of a cluster.2 Simulations have been

performed so that the 95% of confidence interval is achieved. The

confidence interval is denoted in the following by a vertical bar

around the simulation point.

We first investigate the per-node average consumed energy normalized

to PMTM , i.e., normalized to the energy for transmitting/receiving/sensing

2We remark that cluster formation goes beyond the scope of this paper. The use of the

k-means algorithm is reasonable, assuming an initial set-up phase when the sensor nodes

are deployed on the field.
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Figure 3: Average per-node consumed energy as a function of the target MD probability.

Various values of the number of nodes N are considered. For each value of N , analytical

(solid lines) and simulation (dashed lines) results are presented. In all cases, Nc = 4 and

m = 8 (β = 0.5).

over a single slot. More precisely, the normalized energy is evaluated as

a function of: the target network-wide Missed Detection (MD) probabil-

ity P
(tgt)
MD = 1 − P

(tgt)
CD (in Figure 3) and the minimum network-wide FA

probability P
(∗)
FA (in Figure 4). In both figures, clustered scenarios with

Nc = 4 clusters are assumed. The performance results obtained through the

analytical approach (solid lines) are directly compared with those obtained

through simulations (dashed lines). In Figure 3, four values for the number

N of sensors in the ROI are considered (namely, 12, 24, 36, 48), whereas in

Figure 4, to avoid overlap among similar curves, only the two limiting values

of N are considered (namely, 12 and 48). In both figures, m is set to 8, i.e.,
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Figure 4: Average per-node consumed energy as a function of the minimum reachable FA

probability. Two values of the number of nodes N are considered. For each value of N ,

analytical (solid lines) and simulation (dashed lines) results are presented. In all cases,

Nc = 4 and m = 8 (β = 0.5).

β = 0.5. It can be observed that the analytical curves quite tightly upper

bound the simulation-based results, thus validating the analytical frame-

work proposed in Section 3. The same accuracy is achieved also for different

parameter settings, which are omitted here for the sake of conciseness. From

the results in Figure 3 it can be observed, as intuitively expected, that the

energy consumption is a decreasing function of the MD probability: in other

words, in order to achieve a better performance in terms of CD probability

(namely, to lower the MD probability) it is necessary to spend more energy.

On the other hand, for a given CD probability, increasing the number N

of sensors allows to decrease the required energy. Indeed, increasing the
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number of sensors in the ROI allows to guarantee a better coverage of the

area if interest and, ultimately, allows to improve the system performance

in terms of target detection capabilities. Considering the FA probability

(Figure 4), the results need some further discussion. Indeed, in this case the

consumed energy tends to decrease for decreasing values of the FA probabil-

ity and of the number of sensors: in other words, the performance improves

for lower energy consumption and fewer sensors. This is not surprising: in

fact, increasing the number of sensors increases the probability of correctly

detecting a target at the cost of higher consumed energy.

Having validated the accuracy of the proposed analytical framework for

performance evaluation, this framework can be exploited to investigate fur-

ther the impact of clustering on the system performance. More precisely,

fixing the number N of sensors in the ROI to 48 and the relative sensing

interval β to 0.5, we investigate the impact of the number of clusters Nc. In

Figure 5, the average per-node consumed energy is shown as a function of the

target MD probability for various values of Nc (namely, 2, 3, 4, 6, 12), while

in Figure 6 the consumed energy is shown as a function of the minimum FA

probability, considering only the limiting values of Nc in the previous figure

(namely, 2 and 12). For comparison purposes, in the two figures we also

report the results obtained in the unclustered scenario (dashed curve). With

reference to the MD probability (see Figure 5), it is worth noting that the

choice of the best clustering setting, i.e., the best value of Nc, depends on

the required CD probability. Indeed, for stringent requirements, i.e., very

low P
(tgt)
MD , it is preferrable to have a smaller number of clusters, whereas

for looser requirements it may be convenient to increase Nc. The rationale

for this behavior lies in the trade-off, at the CH, between the following ten-

dencies: (i) the smaller Nc, the larger the number of sensors in the cluster,
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Figure 5: Average per-node consumed energy as a function of the target MD probability,

for both clustered (solid lines) and unclustered (dashed line) scenarios. In the clustered

case, various values of the number of clusters Nc are considered. In all cases, N = 48 and

m = 8 (β = 0.5).

i.e., the higher M and, accordingly, the higher the energy consumption for

managing the cluster; (ii) the larger Nc, the larger the number of transmis-

sions towards the C2, i.e., the higher the consumed energy. Hence, when

the CD probability is high, the number of transmissions towards C2 is large

and the behaviour described in (ii) is the major source of energy consump-

tion. On the other hand, the opposite situation occurs for lower values of

the CD probability. As for the unclustered scenario, it is worth noting that

for low MD (equivalently, high CD) probabilities the performance is worse

than in the clustered cases, while the opposite situation occurs for looser

CD probability requirements. This behavior is due to the fact that the

higher the target detection probability, the higher the effect of long-range
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Figure 6: Average per-node consumed energy as a function of the minimum achievable

FA probability, for both clustered (solid lines) and unclustered (dashed line) scenarios. In

the clustered case, various values of the number of clusters Nc are considered. In all cases,

N = 48 and m = 8 (β = 0.5).

communications in determining the total consumed energy. Concerning the

FA probability (see Figure 6), it can be observed that for reasonably low

value of the FA probability, the unclustered case allows to achieve a lower

consumed energy with respect to the clustered cases. This is due to the

fact that in this case the number of transmissions towards the C2 is not the

major source of energy consumption. The situation is somehow different for

high FA probability (i.e., P
(∗)
FA close to 1), which, however, is not a case of

practical interest. Eventually, increasing the number of clusters allows to

save energy for low P
(∗)
FA , which is a situation where the case (i) described

above has a higher effect in determining the total consumed energy. On

the contrary, for high values of P
(∗)
FA the energy decreases by decreasing Nc,
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Figure 7: Average per-node consumed energy, for both S1 and S0 cases, as a function of

the number of sensed samples m: comparison between clustered (Nc = 4, solid lines) and

unclustered (dashed lines) scenarios. In all cases, P
(tgt)
MD = 0.02 and N = 48.

since, in this case, the number of transmissions towards the C2 increases.

In the next two figures we show the effect of the number of sensed sam-

ples m on both the energy consumption (Figure 7) and the minimum achiev-

able FA probability P
(∗)
FA (Figure 8), for a predefined target MD probability

P
(tgt)
MD = 0.02. In both figures, clustered (Nc = 4, solid lines) and unclus-

tered scenarios are compared. In Figure 7, the average consumed energies

are evaluated in the cases S = S1 (target presence) and S = S0 (target

absence) and, for each case, in both clustered and unclustered scenarios. In

the S1 case, the energies in the clustered (E
(1)
avg) and unclustered (E

(1,f)
avg ) sce-

narios are increasing functions of m: this is an expected result since, in this

case, setting the CD probability corresponds, approximately, to setting the
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Figure 8: Minimum achievable FA probability as a function of the number of sensed

samples m: comparison between clustered (Nc = 4, solid line) and unclustered (dashed

line) scenarios. In all cases, P
(tgt)
MD = 0.02 and N = 48.

report transmission rate and, hence, the term which mainly influences the

final consumed energy is the sensing period interval. In the S0 case, instead,

increasing m has a two-fold effect: on one hand, it increases the time spent

to sense the channel; on the other hand, it allows to noticeably decrease the

FA probability (as shown in Figure 8) and this, ultimately, tends to decrease

the consumed energy. As a matter of fact, we observe that for low values of

m the energy is a decreasing function of m, whereas increasing m the effect

of increasing the sensing period overcomes the second effect (FA probabil-

ity reduction). From the comparison between the clustered and unclustered

scenarios, it turns out that clustering allows to save energy in the case S1,

while the opposite occurs in the case S0. From the results in Figure 8, it can
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be concluded that the clustered and unclustered scenarios behave almost

identically in terms of P ∗FA.

5. Concluding Remarks

In this paper, we have considered WSN-based surveillance scenarios,

where sensor nodes cooperate to detect the presence of an unwanted target

node over a ROI. Leveraging recent results in cognitive wireless network-

ing, we have first introduced the system model, emcompassing unclustered

and clustered cases. Proper decision rules (at the single sensors) and fu-

sion rules (at CHs and C2) have been derived. An innovative analytical

performance evaluation framework has then been proposed, leading to an

efficient parametric optimization (in terms of decision and fusion thresh-

olds). The accuracy of the proposed analytical framework has been con-

firmed through simulation-based results. The obtained results, by quanti-

fying inherent trade-offs between the per-node consumed energy, topology

(clustered/unclustered), FA/CD/MD probabilities, and sensing duration,

provide useful design guidelines.

While in the current work the positions of the target and the sensor

nodes are assumed to be unknown, future work will focus on the extension

of the current framework exploiting side information, namely, knowledge

of the positions of sensor nodes (as this is a very reasonable assumption

in surveillance systems). Moreover, the use of different fusion rules,

exploiting this side information and/or multi-level quantization at

the sensors, represents an interesting future research direction.
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