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Abstract: Anderson-Fabrydisease is an X-linked lysosomal storage disorder caused by a deficiency
in the lysosomal enzyme α-galactosidase A. This results in pathological accumulation of glycosphin-
golipids in several tissues and multi-organ progressive dysfunction. The typical clinical phenotype
of Anderson-Fabry cardiomyopathy is progressive hypertrophic cardiomyopathy associated with
rhythm and conduction disturbances. Cardiac imaging plays a key role in the evaluation and manage-
ment of Anderson-Fabry disease patients. The present review highlights the value and perspectives
of standard and advanced cardiovascular imaging in Anderson-Fabry disease.

Keywords: Anderson-Fabry disease; echocardiography; cardiac involvement; cardiac imaging;
multimodality imaging

1. Introduction

Anderson-Fabry disease (AFD) is classified as an X-linked storage disorder caused by
the abnormal activity of a lysosomal enzyme called α-galactosidase A. AFD results in a
pathological accumulation of glycosphingolipids in several tissues that generates different
disease phenotypes according to the extent and severity of the involved organ [1–3] Renal
failure, cardiomyopathy, as well as peripheral and central nervous system involvement are
the leading causes of morbidity in these patients [1]. Cardiomyopathy is the leading cause
of death in AFD, accounting for 38% of all-cause mortality [4].

The prevalence of AFD varies depending on the screening method used. Neona-
tal screening programs reported an unexpectedly high incidence ranging from 1:1250
to 1:7800 [5,6]. Because of its X-linked recessive inheritance, female carriers can exhibit
mild-to-severe symptoms due to variable expression according to random X inactivation
(“Lyonization”) of the affected gene in embryogenesis. The typical clinical phenotype of
AFD cardiomyopathy is progressive hypertrophic cardiomyopathy associated with heart
failure, rhythm and conduction disturbances [7–10]. Glycosphingolipids accumulation
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in the myocyte macroscopically expresses itself as left ventricular hypertrophy (LVH) in
early phases and myocardial fibrosis replacement in the late disease stages [9–11]. AFD
cardiomyopathy can mimic clinical and structural features of hypertrophic cardiomyopathy
(HCM) [9–13]. Its prevalence among patients presenting with late-onset HCM is estimated
to be 6% among men and 12% among women [14,15]. Early diagnosis of AFD cardiomy-
opathy is crucial because AFD is treatable with disease-specific treatments, such as enzyme
replacement therapy (ERT) or chaperone therapy with Migalastat [16–19]. Timely ERT
initiation is crucial, since in patients with advanced Fabry disease, it does not seem to
prevent progression towards severe organ failure and death [20].

Therefore, prompt diagnosis and treatment of patients with Fabry disease seem warranted.
LVH should always be evaluated together with family history and extracardiac symp-

toms. LVH is a more common finding in AFD male patients than female (53% versus 33%
in untreated patients) [10]. In males, LVH occurs at a younger age (42 vs. 50.1 years) than
in females [21]. Careful medical history collection and thorough physical examination are
mandatory in the setting of LVH. The presence of characteristic symptoms and signs, such
as corneal opacity, angiokeratoma, hypohidrosis, albuminuria andacroparesthesia, in a
patient with LVH should immediately raise the suspicion of AFD. However, in some rare
cases, the heart may be the only organ involved making the diagnosis of AFD challenging
even with sophisticated imaging techniques.

2. Standard and Advanced Echocardiography

Standard echocardiography (Table 1) is the first-line imaging modality for the identifi-
cation of the typical features of AFD cardiomyopathy, such as unexplained left ventricular
hypertrophy, preserved left ventricular ejection fraction (LVEF) until end-stage of the
disease, progressive diastolic dysfunction and right ventricular (RV) free wall thicken-
ing [22,23]. However, these findings are not specific to AFD, as they may occur in other
types of left ventricular hypertrophy.

Table 1. Standard echocardiography in ADF cardiomyopathy.

Standard Echofindings Description Features

LV Hypertrophy

-Usuallysymmetric with concentric
geometry

-Rarely asymmetric septal hypertrophy,
apical hypertrophy or eccentric geometry

-Predominant manifestation of AFD
cardiomyopathy

-Occurs in the 4th decade of life in men,
later in women

Binary Sign
-Hyperechogenic endocardial surface

adjacent to a hypoechogenic
subendocardial layer

-Once considered pathognomonic
-Overall low sensitivity and specificity

Prominent Papillary Muscles -Papillary muscle thickening and
hyperechogenicity -Late sign, not for screening purposes

Preserved LV EF -LV EF is usually in the normal range
-LV systolic dysfunction is a marker of
severe cardiac involvement related to a

poor prognosis

Diastolic Dysfunction

-Mitral flow Doppler parameters
alteration

-E/e’ ratio increase
-LA dilation

-In AFD patients with LV hypertrophy,
diastolic dysfunction underlies the

symptoms of heart failure

Right Ventricle Hypertrophy
-Usually RV systolic function is preserved

-Often associated withRV diastolic
dysfunction

-Its prevalence varies between studies
-No sex differences

LV: left ventricle; AFD: Anderson-Fabry disease; EF: ejection fraction; LA: left atrial; RV: right ventricle.
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2.1. Left Ventricular Morphology and Systolic Function

AFD cardiomyopathy is characterized by concentric remodeling usually progressing
to concentric hypertrophy [24]. In AFD patients, LVH is most commonly homogeneously
distributed, as opposed to asymmetric HCM (Figure 1A), and only rarely occurs as asym-
metric septal hypertrophy or eccentric hypertrophy [24]. LV outflow tract obstruction has a
very low incidence at rest but is reported in 43% of patients during effort [25]. LVEF is usu-
ally preserved or even supranormal in the early stages of cardiac involvement [26]. LVEF
reduction, in the advanced phases of the disease, is correlated to a worse prognosis [7]. In
some patients, the posterior and inferior LV wall may appear hypokinetic or akinetic as an
expression of myocardial fibrosis.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 3 of 17 
 

 

-Often associated withRV diastolic  

dysfunction 

-No sex differences 

LV: left ventricle; AFD: Anderson-Fabry disease; EF: ejection fraction; LA: left atrial; RV: right ventricle. 

2.1. Left Ventricular Morphology and Systolic Function 

AFD cardiomyopathy is characterized by concentric remodeling usually progressing 

to concentric hypertrophy [24]. In AFD patients, LVH is most commonly homogeneously 

distributed, as opposed to asymmetric HCM (Figure 1A), and only rarely occurs as 

asymmetric septal hypertrophy or eccentric hypertrophy [24]. LV outflow tract obstruc-

tion has a very low incidence at rest but is reported in 43% of patients during effort [25]. 

LVEF is usually preserved or even supranormal in the early stages of cardiac involve-

ment [26]. LVEF reduction, in the advanced phases of the disease, is correlated to a worse 

prognosis [7]. In some patients, the posterior and inferior LV wall may appear hypoki-

netic or akinetic as an expression of myocardial fibrosis. 

 

Figure 1. Parasternal long axis shows symmetrical hypertrophy in AFD patient (A); echocardiographic binary sign of left 

ventricular endocardial border in AFD patient (B); hypertrophy of papillary muscles in AFD patient: in apical long axis 

view (C) and in parasternal short axis (D). 

In the past, the echocardiographic binary appearance of the LV endocardial border, 

namely the binary sign, was considered the pathognomonic sign to discriminate patients 

suffering from AFD from those with familial HCM [27]. This sign consists of a hy-

perechogenic endocardial surface and hypoechogenic subendocardial layer (Figure 1B). 

This echocardiographic finding reflects the endocardial and subendocardial glyco-

sphingolipids compartmentalization. More recent studies have reduced the relevance of 

this sign because of its very low sensitivity and specificity [28,29]. Another characteristic 

feature of AFD cardiomyopathy is the presence of prominent papillary muscles (Figure 

Figure 1. Parasternal long axis shows symmetrical hypertrophy in AFD patient (A); echocardiographic binary sign of left
ventricular endocardial border in AFD patient (B); hypertrophy of papillary muscles in AFD patient: in apical long axis
view (C) and in parasternal short axis (D).

In the past, the echocardiographic binary appearance of the LV endocardial border,
namely the binary sign, was considered the pathognomonic sign to discriminate patients
suffering from AFD from those with familial HCM [27]. This sign consists of a hypere-
chogenic endocardial surface and hypoechogenic subendocardial layer (Figure 1B). This
echocardiographic finding reflects the endocardial and subendocardial glycosphingolipids
compartmentalization. More recent studies have reduced the relevance of this sign because
of its very low sensitivity and specificity [28,29]. Another characteristic feature of AFD car-
diomyopathy is the presence of prominent papillary muscles (Figure 1C,D) [30]. However,
this is not an early sign and, therefore, should not be used for screening purposes.

2.2. Left Ventricular Diastolic Function

LV diastolic dysfunction occurs early in the AFD disease stages (Figure 2) and rep-
resents the substrate for the onset of symptoms and the leading cause of heart failure in
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these patients [31]. However, LV diastolic dysfunction is not usually severe in AFD. In
a report by Palecek et al., 44% of 81 echocardiographic examinations in 35 patients with
Fabry disease had a normal LV filling pattern, while 63% showed impaired LV diastolic
function. Of these, only 4% had a restrictive filling pattern, while 60% had a pseudo-normal
filling pattern, and 36% impaired relaxation [32].
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Figure 2. Diastolic dysfunction in AFD patients with preserved LVEF. (A) E/A ratio tissue. (B) Doppler recordings of septal
mitral annular velocities. (C) Tissue Doppler recordings of lateral mitral annular velocities.

Diastolic dysfunction in AFD cardiomyopathy is related to progressive myocardial
wall thickening. Its severity increases in the advanced stages of LVH [33–35]. However,
compromised diastolic function, evaluated with tissue Doppler analysis, can anticipate
LVH. Thus, the appearance of reduced TDI velocities might be the initial finding of car-
diac involvement in AFD [35,36]. Furthermore, unlike LVEF, the severity of LV diastolic
dysfunction is closely related to the NYHA class severity [37].

Diastolic function indices, such as mitral flow Doppler parameters and the Tei index, a
marker for combined diastolic and systolic function, are often altered in AFD patients with
LVH [38]. The Tei index does not provide any additional diagnostic contribution compared
to TDI in the evaluation of ERT response [31]. In AFD patients with preserved LVEF, there
is an association between diastolic dysfunction indices and the presence of late gadolinium
enhancement (LGE) detected by cardiac magnetic resonance (CMR) imaging. In particular,
a cut-off of 14.8 for the septal E/e’ ratio has shown to be the best predictor of the presence
of LGE [39].
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Diastolic dysfunction leads to the enlargement of the left atrium. In AFD, left atrial dila-
tion occurs in the early stages of Fabry disease, even before the development of LVH [39–41].
Atrial damage may be the consequence of the accumulation of glycosphingolipids that has
also been reported in atrial myocytes [42].

This suggests that the evaluation of atrial damage may be useful in the early diagnosis
of AFD.

In most cases, atrial dilatation occurs as mild or moderate, becoming severe only in
the presence of significant mitral valve disease, myocardial fibrosis and major LVH [43,44].

2.3. Right Ventricle

Right ventricular hypertrophy (RVH) (Figure 3) is frequent in AFD patients and
correlates with LVH and disease severity in most cases. In contrast to LVH, which is
more prevalent in men, RVH prevalence is similar in men and women and is estimated at
~40–70% of all patients with Fabry disease, and its prevalence increases with age [45,46].
RV systolic function is preserved in about half of the cases of AFD, even in the presence of
RVH. Thus, the assessment of TAPSE, a parameter for global right ventricular function, is
not useful for the evaluation of right ventricular involvement in AFD [46]. RV diastolic
dysfunction is detectable in about half of the cases of AFD [45,47].
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(B) in two different AFD patients.

2.4. Aorta

In AFD, a remodeling process may affect the aorta. Barbey et al. [37] found aortic
dilation at the sinus of Valsalva and ascending aorta in 32.7% of males and 5.6% of females
and aneurysms in 9.6% of males and 1.9% of females among 106 patients with AFD, who
underwent transthoracic echocardiography.

2.5. Valve Disease

The process of accumulation of glycosphingolipids may involve the valvular appa-
ratus [48]. A thickening of the valve leaflets is present in about 25% of patients [49]. The
most affected valves are the aortic and mitral valves [50]. Mitral valve insufficiency may
also be induced by papillary muscle prominence. Valvular disease is usually mild, and
severe valvular disease is only detectable when other contributing causes are present [44].
In a large series of AFD patients, valve disease was reported in 14.6% of patients (17% in
males, 12% in females), but only 0.4% of cases were referred to surgical correction [25].

3. Speckle Tracking Echocardiography

Speckle tracking echocardiography (STE) (Table 2) has an incremental value in dif-
ferentiating between primary and secondary LVH and in the differential diagnosis with
storage diseases [51]. Moreover, STE enables early detection of intrinsic myocardial dys-
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function before LVEF reduction [51]. Shanks et al. demonstrated that strain and strain rate
(SR) analysis are useful in identifying AFD patients with reduced myocardial function,
independently of LVH [52]. They found that longitudinal systolic strain and diastolic
isovolumic SR were more accuratethan the other conventional echocardiographic measure-
ments of myocardial contraction and relaxation. In AFD cardiomyopathy, STE-derived LV
involvement appears to be complex and heterogeneous (Figure 4). Our group identified
four distinct patterns of longitudinal strain (LS) impairment: the first with a normal or near-
normal regional LS, the second with LS reduction in septal and anterior regions, the third
with LS reduction in both septal/anterior and inferolateral regions and the fourth with LS
reduction in the inferolateral region. However, all patients had a greater impairment of the
basal segments compared to the apical segments of the left ventricle (Figure 4) [53]. The
longitudinal strain bull’s eye pattern is markedly different between patients affected by
HCM and AFD. In HCM patients, the involved region with reduced longitudinal strain is
mainly located in the septum, while in late-stage AFD patients, it is located at the lateral
and posterior walls [54]. Interestingly, the base-to-apex circumferential strain (CS) gradient
is also different between patients affected by nonobstructive HCM and AFD. The preser-
vation of base-to-apex circumferential strain gradient in non-obstructive HCM, but not
in AFD, may help to differentiate these two cardiomyopathies from an echocardiography
perspective [55]. In addition to the impairment of global LS and base-to-apex CS gradient,
a reduced global CS can also differentiate AFD patients with LVH from those affected by
HCM, who show an increased global CS [55].

Table 2. Advanced echocardiography in AFD cardiomyopathy.

Advanced Echocardiography Description Features

GLS
-Reduction in LV GLS with a
prevalent involvement of the
infero-lateral wall of the LV

-Correlates with LGE at CMR

GCS -Reduction in the normal
base-to-apex CS gradient

-Differential diagnosis with
HCM where GCS increases

with a preserved base-to-apex
gradient

RVLS -Reduction in the RV
Longitudinal strain -Early sign of RV dysfunction

GLS: global longitudinal strain; LGE: late gadolinium enhancement; CMR: cardiovascular magnetic resonance;
GCS: global circumferential strain; HCM: hypertrophic cardiomyopathy; RVLS: right ventricle longitudinal strain.

The reduction in the inferolateral region strain has shown to be the most accurate
parameter to identify the presence of LGE on CMR [43]. The possibility to indirectly
predict LGE, i.e., myocardial fibrosis, using STE may be highly relevant in patients with
contraindications to CMR, such as implanted devices, end-stage renal disease, considering
that fibrosis has important prognostic implications in AFD.

STE advancements now make available the analysis of layer-specific myocardial de-
formation. In newly diagnosed, untreated AFD patients, our group demonstrated that
layer-specific strain imaging highlights an impairment of LV longitudinal deformation,
mainly involving subepicardial strain and causing an increase in LS myocardial gradi-
ent. These findings could be useful for identifying the mechanisms underlying early LV
dysfunction in AFD patients [56].

Furthermore, there is evidence that STE-derived left atrial peak longitudinal defor-
mation and RVLS are impaired in AFD patients compared to healthy controls, even when
standard echocardiographic parameters are in the normal range [57,58].
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Mechanical dispersion assessed with STE was observed by Cianciulli et al. in 76%
of patients with AFD and LVH, while it was not evident when LVH was absent [59]. The
use of mechanical dispersion in strain echocardiography is a recognized prognosticator
of ventricular arrhythmias and HF [60,61], thus it may be beneficial to stratify the risk of
disease progression and the need for cardiac resynchronization therapy in AFD.

4. Three-Dimensional Echocardiography

Three-dimensional echocardiography has some advantages over standard two-
dimensional echocardiography. It provides more accurate information on left ventricular
volumes, mass and ejection fraction, which have a better correlation with those measured
using CMR [60]. However, three-dimensional echo is still underutilized in AFD, and there
are no data about its clinical usefulness to improve the outcome of patients with AFD.

5. Cardiac Magnetic Resonance

CMR provides relevant information that contribute to diagnosing, monitoring and
treating patients with AFD (Table 3). One of the main advantages of CMR is the possibility
to assess both cardiac mass, function and changes in tissue characteristics in a single, non-
invasive examination. In comparison with echocardiography, CMR is superior in many
aspects. With its high spatial resolution, a significant advantage of CMR in AFD is that it al-
lows for a more precise assessment of LV wall thickness and the extent of hypertrophy. For
example, in 48 patients with HCM, CMR was capable of identifying regions of LV hyper-
trophy not well recognized by echocardiography [62]. CMR was solely responsible for the
diagnosis of the HCM phenotype in a significant number of patients with non-diagnostic
echocardiography [63]. In 32 AFD patients, Azari et al. showed that echocardiography
consistently overestimates LV mass index compared to CMR [64]. Whereas CMR showed
an increasing trend over time in LV mass index, cardiac ultrasound failed to identify this
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trend, which indicates that differences in this parameter may not be detected by echocar-
diography because of the tendency to always be overestimated and the high variability
between measurements [64]. Because patients treated with ERT had a slower LV mass
increase than those without therapy [65], CMR could be the preferred technique in AFD,
not only for the diagnosis but also for the monitoring of the effectiveness of the treatment.
Another interesting aspect is that CMR allows easier measurement of LV papillary muscle
mass [38,66]. As mentioned above, the presence of LV papillary muscle hypertrophy is
quite common in the advanced stage of the disease, and interestingly, in those cases, the
contribution of LV papillary muscle mass to the total LV mass is much higher in AFD than
in normal subjects (up to 20% in LVH-positive AFD patients compared to approximately
8% in normal hearts). Thus, the presence of disproportionate papillary muscle hypertrophy
could help diagnose ADF in patients without left ventricular hypertrophy [67]. Elevated
LV mass, as assessed by CMR, is known to be associated with ventricular arrhythmia,
in particular when high trabecular and papillary muscle volume is present [68]. Hence,
CMR could be useful to better quantify LV mass as well aspapillary muscle volume for
its prognostic value. Deva et al. reported that patients with elevated CMR-indexed left
ventricular mass had a greater incidence of ventricular arrhythmia [68]. These data suggest
the possibility of a link between high LV mass and ventricular arrhythmia, as also seen in
HCM in which significant hypertrophy predicts adverse events [69].

Table 3. Cardiovascular magnetic resonance in AFD cardiomyopathy.

CMR Sequences Description Features

Cine-sequences
-Measurement of LV mass, ventricular
volumes, LV and RV EF, wall motion

assessment

-Better quantification of LV papillary
muscle mass

LGE

-Fibrosis usually localized at mid-wall in
the basal infero-lateral area of LV

-Very extensive and diffuse in advanced
AFD

-Suggestive of AFD when in the typical
localization

-Additionally present in patients without
LVH

-Strongly correlated with more CV events

T1 mapping -Lower native T1 times

-Early sign of cardiac involvement
-Pathognomonic of AFD

-Pseudo-normalization of T1 times
correlates with the presence of LGE

T2 mapping -Elevation of T2 times in inferolateral
wall or LGE areas

-Suggestive of myocardial inflammation
-T2 times elevation correlates with

troponin elevation
-No pathognomonic

ECV Normal values except in LGE areas -No pathognomonic
-Reflects interstitial fibrosis

Speckle Tracking Analysis

-GLS shows no significant differences
-GCS has a significant increase in LVH
patients with loss of base-to-apex GCS

gradient

-GCS may be an early marker of cardiac
involvement

-Speckle tracking analysis is not
commonly used in CMR, further

investigations are required

CMR: cardiovascular magnetic resonance; AFD: Anderson-Fabry disease; LV: left ventricle; RV: right ventricle; EF: ejection fraction; LGE:
late gadolinium enhancement; LVH: left ventricle hypertrophy; CV: cardiovascular; ECV: extracellular volume; GLS: global longitudinal
strain; GCS: global circumferential strain.

6. Tissue Characterization
6.1. T1 and T2 Mapping

Tissue characterization is crucial for a better evaluation of AFD. CMR is the primary
imaging modality for myocardial tissue characterization. Parametric mapping techniques
with CMR allow the quantification of changes in myocardial composition (e.g., glycosphin-
golipid accumulation in AFD) based on changes in T1, T2 and T2* relaxation times and
extracellular volume [70]. Unlike T1-, T2-or T2*-weighted images, mapping permits both
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visualization and quantification of the disease process, independent of whether myocardial
disease is focal or diffuse. Native T1 is low in AFD, unlike what occurs in any other cause
of hypertrophy, except for iron overload [69]. T1 shortening is due to sphingolipid accumu-
lation (Figure 5). Thompson et al. have demonstrated that there is a sex difference in T1
values with longer myocardial T1 values in female AFD patients [71]. T1 is low in around
half of patients with Anderson-Fabry, even in the absence of hypertrophy. Thus, lower
myocardial T1 in AFD patients without evidence of LVH might be useful to detect early
cardiac involvement [72]. However, it is important to recognize that segmental pseudo-
normalization or elevation of T1 may occur over time in the basal inferolateral wall of the
left ventricle, likely reflecting the presence of areas of either mixed storage and fibrosis
or inflammation. A significant percentage of patients with AFD have renal dysfunction,
the paradoxical increase in T1 values could allow identification of focal fibrosis without
contrast injection [73]. The finding of high T2 values observed in the basal inferolateral
region, or, in general, in LGE areas, suggests that inflammation may contribute to the
pathogenesis of AFD cardiomyopathy. This finding is not observed in HCM or chronic
myocardial infarction [74,75]. Moreover, it has been demonstrated that a reduction in T2
relaxation times is correlated with a reduction in LV mass after 45 or 48 months of ERT [76].
Thus, it may be useful to use the time T2 to monitor the progress of the therapy.
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Figure 5. T1 mapping sequence shows a lower T1 time in the posterior interventricular septum in an
AFD patient.

6.2. Late Gadolinium Enhancement

The presence of fibrosis can be assessed by the amount and distribution of the LGE
after gadolinium-based contrast agents administration. Replacement fibrosis is considered
a sign of disease progression [77] and may precede the onset of LVH, particularly in
females [78–80]. Accordingly, by LGE-CMR imaging, fibrosis has been found in both AFD
patients with and without LV hypertrophy.

The typical LGE pattern is at the mid-wall in the basal inferolateral area of the left
ventricle (Figure 5). Therefore, myocardial late enhancement in infero–postero-lateral
region with no affection of the endocardium may be considered a red flag suggestive of
diagnosis of AFD (Figure 6) [81]. However, atypical patterns have been found in 1/5 of
patients with pathological LGE [68]. In patients with asymmetrical septal hypertrophy
and apical hypertrophy, LGE has been described in the basal antero-septum and apical
segments, respectively, miming the presence of HCM. In the advanced disease, the LGE
can be very extensive and diffuse, with a less specific appearance [68,82].
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Hanneman et al. demonstrated that the amount of LGE was strongly correlated with
the incidence of cardiovascular events (arrhythmias, severe heart failure, cardiac death),
stressing the prognostic value of CMR in risk stratification of AFD patients [83].

6.3. Speckle Tracking Analysis in CMR

The use of speckle tracking analysis is less common in CMR than echocardiography.
It can be reliably estimated, using image feature tracking methods applied to SSFP CMR
images [84].

Few studies have analyzed CMR-derived GLS and GCS in AFD patients. No signifi-
cant differences in GLS between AFD patients and controls have been found [85]. Regarding
GCS, a significant increase in circumferential strain in patients with LVH phenotype has
been found, and it may imply the presence of functional cardiovascular impairment [86].
Mathur et al. demonstrated that base-to-apex CS gradient discriminates between AFD
patients without hypertrophy or LGE and healthy controls independent of native T1, sug-
gesting that loss of base-to-apex CS gradient may be an early marker of cardiac involvement
in AFD [85]. More recently, Augusto et al. described a slightly reduced GLS as a primary
cardiac phenomenon, because of the altered myocardial coupling to the systemic vascula-
ture due to systemic endothelial and smooth muscle changes [87]. However, additional
studies will be necessary to validate the utility of CMR speckle tracking in AFD patients.

6.4. Cardiovascular Magnetic Resonance Perfusion Mapping

As shown by Knott et al. [88], AFD patients have reduced perfusion, particularly in
the sub-endocardium with greater reductions in patients with LVH, storage, edema and
scar. Perfusion is reduced even without LVH, suggesting it is an early disease marker.
The reduction in perfusion implies that AFD patients may have an early microvascular
dysfunction thatcould contribute to the progression from storage to fibrosis.

7. Nuclear Scintigraphy and Positron Emission Tomography

In the last few years, the emerging role of nuclear imaging techniques in AFD has
been studied. Glycosphingolipids’ storage also affects endothelial and smooth muscle cells
causing microvascular dysfunction at different levels, including the myocardium. This
process results in a global reduction in coronary flow detected by single-photon emission
computed tomography (SPECT) imaging with 99mTc sestamibi [89].

Myocardial hypoperfusion can also be estimated using positron emission tomography
(PET) imaging. Tomberli et al. demonstrated that a global reduction in coronary flow
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reserve was an early sign of cardiac involvement, regardless of sex and LVH [90]. ERT
therapy seems to not affect coronary microvascular dysfunction [89,91].

Few studies show that PET imaging, and in particular hybrid cardiac PET-MR imaging,
is also useful to detect myocardial inflammation, present in an early phase of the disease,
and to identify different stages of disease progression. The presence of 18F-FDG uptake
correlates with impaired LV longitudinal function at echo [92] and LGE areas [93].

Using hybrid positron emission tomographymagnetic resonance imaging, Imbri-
aco et al. demonstrated that focal 18F-FDG uptake was associated with a trend towards a
pseudo-normalization of abnormal T1 mapping values in female AFD patients that may
represent an intermediate stage before the development of myocardial fibrosis, suggesting
a potential relationship between progressive myocyte sphingolipid accumulation and
inflammation [94]. Hybrid PET-MR imaging studies could play a role in the early detection
of cardiac involvement, allowing a very timely and more effective therapeutic approach,
well before the development of structural changes and myocardial fibrosis.

Nuclear imaging is useful to study the cardiac effect of autonomic nervous system
dysfunction in AFD [95]. The chemical123I-meta-iodobenzylguanidine (MIBG) imaging
shows a decreased uptake, indicative of regional myocardial denervation. Decreased
uptake correlates with GLS reduction at echo [96] and might precede fibrosis [97,98].

Currently, SPECT and PET imaging are used only for investigation reasons, but they
look promising in detecting early cardiac involvement in AFD patients.

8. Conclusions

“Fabry disease-often seen, rarely diagnosed” is how Hoffmann and Mayatepek titled
their AFD review [99]. Current screening practices likely capture only a small portion of
AFD. A greater awareness in the medical community is needed to emphasize that AFD is
not a very rare disorder and that it is not uncommon at all in high-risk populations in which
screening is usually omitted. Particular attention should be given to patients presenting
with kidney damage, cryptogenic stroke, unexplained LVH, gastrointestinal symptoms,
hearing impairment, lymphedema, diminished perspirations, acroparesthesias, corneal
opacities and angiokeratoma, which are considered clinical markers associated with AFD.
AFD should be suspected in patients with a family history or in those who present with
the clinical features that suggest the diagnosis. The diagnosis is typically confirmed by
enzymatic and/or molecular genetic testing. Regarding the role of cardiac imaging in the
management of Fabry patients, it is involved in many aspects: the initial diagnostic suspi-
cion of AFD in case of evidence of unexplained heart damage associated with extracardiac
AFD red flags, the differential diagnosis with other cardiomyopathies, the early detection
of heart damage in patients with already diagnosed AFD and monitoring its evolution,
to allow decisions regarding the initiation of chaperone or enzyme replacement therapy,
and to guide its follow-up. The echocardiographic examination is the first-line technique
to suspect and manage AFD. However, there are no pathognomonic echocardiographic
features of AFD. CMR has emerged as a powerful imaging tool to identify lesions of AFD
in patients in whom echocardiography fails to detect relevant LVH or other cardiac damage.
Its strength is in characterizing tissue using LGE or T1 and T2 mapping. LGE imaging is the
non-invasive gold standard for the evaluation of replacement fibrosis/scarring. The tissue
damage highlighted by LGE, initially located in the basal inferolateral wall, has prognostic
implications and predicts a lack of response to enzyme replacement therapy. Low native
myocardial T1 values could represent a useful, early biomarker of cardiac involvement in
AFD, superior to left ventricular hypertrophy and LGE imaging. T2 mapping is sensitive
to inflammation. Studies with T2 mapping, supported by histological studies, deny the
model of AFD as simple storage cardiomyopathy and have led to the identification of
an important role of chronic inflammation in the early progression of the disease. This
recognition may have implications on future management strategies including considera-
tion for immunosuppressive therapy in the hope of improving the course of AFD. These
observations justify an increasing role of CMR in the routine clinical evaluation of patients
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with AFD. As with echocardiography, CMR findings in themselves are not diagnostic
of AFD and must be considered within the clinical contest of an individual patient and
confirmed with enzymatic and genetic analysis.

An integrated multi-modality imaging approach including both echocardiography
and CMR might be optimal for the management of AFD patients. In the future, echocar-
diography, by its large availability and low cost, will remain the initial imaging modality
of choice in patients with proven or suspected AFD, but the role of CMR will be likely to
increase so much as toalso become an essential diagnostic test in the initial evaluation.
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