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Abstract: Obesity is a risk factor for osteoarthritis (OA) development and progression due to an
altered biomechanical stress on cartilage and an increased release of inflammatory adipokines from
adipose tissue. Evidence suggests an interplay between loading and adipokines in chondrocytes
metabolism modulation. We investigated the role of loading, as hydrostatic pressure (HP), in
regulating visfatin-induced effects in human OA chondrocytes. Chondrocytes were stimulated
with visfatin (24 h) and exposed to high continuous HP (24 MPa, 3 h) in the presence of visfatin
inhibitor (FK866, 4 h pre-incubation). Apoptosis and oxidative stress were detected by cytometry,
B-cell lymphoma (BCL)2, metalloproteinases (MMPs), type II collagen (Col2a1), antioxidant enzymes,
miRNA, cyclin D1 expressions by real-time PCR, and β-catenin protein by western blot. HP exposure
or visfatin stimulus significantly induced apoptosis, superoxide anion production, and MMP-3,
-13, antioxidant enzymes, and miRNA gene expression, while reducing Col2a1 and BCL2 mRNA.
Both stimuli significantly reduced β-catenin protein and increased cyclin D1 gene expression. HP
exposure exacerbated visfatin-induced effects, which were counteracted by FK866 pre-treatment.
Our data underline the complex interplay between loading and visfatin in controlling chondrocytes’
metabolism, contributing to explaining the role of obesity in OA etiopathogenesis, and confirming
the importance of controlling body weight for disease treatment.

Keywords: hydrostatic pressure; adipokines; visfatin; Wnt/β-catenin; mechanical loading;
osteoarthritis; obesity; chondrocytes; microRNA; oxidative stress

1. Introduction

Obesity represents one of the most influential risk factors for osteoarthritis (OA)
incidence, progression, and disability [1]. Its effect on the joint has been traditionally
attributed to altered mechanical loading on the articular cartilage of weight-bearing
joints [2–5]; indeed, different mechanical forces in the form of compression, shear stress,
and hydrostatic pressure (HP) can affect cartilage homeostasis, leading to irreversible and
deleterious effects [5].

Several in vitro studies demonstrated that the application of injurious static HP in-
duced chondrocyte catabolic processes, including degradation of extracellular matrix (ECM)
components, production of inflammatory cytokines, oxidative stress, and dysregulation of
miRNA expression [6–14].
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Obesity also increases the risk in developing OA in non-weight-bearing joints, ascrib-
ing a prominent role of metabolic factors in the OA pathogenesis [2,15,16]. Interestingly,
obesity induces a low-grade chronic inflammatory state mainly through the production
of inflammatory mediators, such as adipokines, cytokines, chemokines, and complement
factors by white adipose tissue [17]. Adipokines, including adiponectin, leptin, resistin,
chemerin, and visfatin, are metabolically active proteins that emerged as crucial regu-
lators of immune system response and chronic inflammation [18,19]. Their critical role
in the pathogenesis of immune-mediated rheumatic diseases and degenerative OA has
been amply demonstrated [20–23]. Among them, visfatin is a functionally multi-faceted
and ubiquitously protein with insulin-mimetic properties and pro-inflammatory and im-
munomodulating functions [23–25]. Circulating visfatin levels were found higher in
patients with OA than those in healthy controls [20,26]; furthermore, pro-inflammatory,
catabolic, and pro-degradative effects of visfatin in OA chondrocytes and synovial fibrob-
lasts were revealed [27–30].

Interestingly, some in vitro studies demonstrated the effect of shear stress or mechani-
cal overloading on adipokine-induced OA damage, exacerbating the loss of chondrocyte
homeostasis and accelerating the formation of OA phenotype [31–33]. However, the results
are still limited and inconclusive, and further investigations to address the characteris-
tics of the interplay between loading and adipokines in the regulation of chondrocytes
metabolism and function are needed.

Therefore, the purpose of the present study was to investigate the in vitro role of 3 h
of a high continuous HP (24 MPa) in regulating visfatin-induced effects in human OA
chondrocyte cultures. In particular, we evaluated the cell viability, the apoptosis ratio,
the transcriptional levels of the anti-apoptotic marker B-cell lymphoma (BCL)2 and of the
main extracellular matrix-degrading enzymes, metalloproteinase (MMP)-3, MMP-13, and
of collagen type II alpha 1 chain (Col2a1). The production of mitochondrial superoxide
anion and the gene expression of antioxidant enzymes (superoxide dismutase (SOD)-2,
catalase (CAT), glutathione peroxidase (GPx)4, of nuclear factor erythroid 2 like 2 (NRF2)),
and of a pattern of miRNA (mir-27a, miR-34a, mir-140, miR-146a, miR-155, miR-181a, and
miR-let7e) involved in OA pathogenesis were also assessed.

Furthermore, based on our previous results, we analyzed the regulation of the Wnt/β-
catenin signaling pathway following HP exposure. To confirm the role of visfatin effects on
underlying mechanisms of chondrocytes, cells were pre-treated for 4 h with the visfatin
inhibitor FK866.

2. Results
2.1. HP Regulates Cellular Apoptosis and Cartilage Turnover

Figure 1 summarizes the effects of 3 h-application of high continuous HP of 24 MPa on
viability, apoptosis ratio, and the regulation of matrix-degrading enzymes, MMP-3, -13, and
of Col2a1. The exposure of the cells to HP significantly reduced the percentage of survival
and the transcriptional levels of the anti-apoptotic marker BCL2, while it raised apoptosis
and induced an up-regulation of MMP-3, MMP-13 gene expression, and a decrease of
Col2a1, in comparison to the basal condition (p < 0.01, Figure 1A–F).
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Figure 1. Hydrostatic pressure (HP) exposure regulates chondrocyte metabolism. Human osteoarthritic (OA) 
chondrocytes were examined at basal condition and after 3 h of high continuous HP (24 MPa). (A) Evaluation of cell 
viability by MTT assay. (B) Apoptosis detection performed by flow cytometry analysis and measured with Annexin Alexa 
fluor 488 assay. Data were expressed as the percentage of positive cells for Annexin-V and propidium iodide (PI) staining. 
(C–F) Expression levels of B-cell lymphoma (BCL2), metalloproteinase (MMP)-3, -13, type II collagen (Col2a1), analyzed 
by quantitative real-time PCR. The percentage of survival cells, the ratio of apoptosis, and the gene expression were 
referenced to the ratio of the value of interest and the value of basal condition, reported equal to 100 or 1. Data were 
expressed as mean ± standard deviation (SD) of triplicate values. ** p < 0.01 versus basal condition. 

2.2. HP Influences Oxidative Stress Balance and miRNA Expression Profile 
High HP significantly promoted the production of mitochondrial superoxide anion 

(p < 0.01) and the gene expression of the antioxidant enzymes, SOD-2 (p < 0.001), CAT (p < 
0.05), and of the transcriptional factor NRF2 (p < 0.01), with respect to baseline (Figure 2A–
C,E). On the contrary, no detectable changes have been observed in GPx4 mRNA levels 
(Figure 2D). 

Figure 3 shows the effect of continuous HP of 24 MPa in regulating the gene 
expression of a pattern of miRNA known to be implicated in OA pathogenesis. The 
transcriptional levels of miR-27a and miR-140 resulted significantly reduced (p < 0.01) in 
cells exposed to HP in comparison to those at the basal condition (Figure 3A,C). On the 
other hand, the studied pressurization upregulated, in a significant manner, the gene 
levels of miR-34a (p < 0.01), miR-146a (p < 0.01), miR-155 (p < 0.001), miR-181a (p < 0.01), and 
miR-let7e (p < 0.01) (Figure 3B,D–G). 

Figure 1. Hydrostatic pressure (HP) exposure regulates chondrocyte metabolism. Human osteoarthritic (OA) chondrocytes
were examined at basal condition and after 3 h of high continuous HP (24 MPa). (A) Evaluation of cell viability by MTT
assay. (B) Apoptosis detection performed by flow cytometry analysis and measured with Annexin Alexa fluor 488 assay.
Data were expressed as the percentage of positive cells for Annexin-V and propidium iodide (PI) staining. (C–F) Expression
levels of B-cell lymphoma (BCL2), metalloproteinase (MMP)-3, -13, type II collagen (Col2a1), analyzed by quantitative
real-time PCR. The percentage of survival cells, the ratio of apoptosis, and the gene expression were referenced to the ratio
of the value of interest and the value of basal condition, reported equal to 100 or 1. Data were expressed as mean ± standard
deviation (SD) of triplicate values. ** p < 0.01 versus basal condition.

2.2. HP Influences Oxidative Stress Balance and miRNA Expression Profile

High HP significantly promoted the production of mitochondrial superoxide anion
(p < 0.01) and the gene expression of the antioxidant enzymes, SOD-2 (p < 0.001), CAT
(p < 0.05), and of the transcriptional factor NRF2 (p < 0.01), with respect to baseline
(Figure 2A–C,E). On the contrary, no detectable changes have been observed in GPx4
mRNA levels (Figure 2D).

Figure 3 shows the effect of continuous HP of 24 MPa in regulating the gene expression
of a pattern of miRNA known to be implicated in OA pathogenesis. The transcriptional
levels of miR-27a and miR-140 resulted significantly reduced (p < 0.01) in cells exposed to
HP in comparison to those at the basal condition (Figure 3A,C). On the other hand, the
studied pressurization upregulated, in a significant manner, the gene levels of miR-34a
(p < 0.01), miR-146a (p < 0.01), miR-155 (p < 0.001), miR-181a (p < 0.01), and miR-let7e
(p < 0.01) (Figure 3B,D–G).
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Figure 2. Hydrostatic pressure (HP) exposure regulates oxidative stress balance. Human osteoarthritic (OA) chondrocytes 
were examined at the basal condition and after 3 h of high continuous HP (24 MPa). (A) Mitochondrial superoxide anion 
production evaluated by MitoSox Red staining at flow cytometry. (B–E) Expression levels of superoxide dismutase (SOD)-
2, catalase (CAT), glutathione peroxidase (GPx)4, nuclear factor erythroid 2 like 2 (NRF2) analyzed by quantitative real-
time PCR. The production of superoxide anion and gene expression were referenced to the ratio of the value of interest 
and the value of basal condition, reported equal to 1. Data were expressed as mean ± standard deviation (SD) of triplicate 
values. * p < 0.05, ** p < 0.01, *** p < 0.001 versus basal condition. 

Figure 2. Hydrostatic pressure (HP) exposure regulates oxidative stress balance. Human osteoarthritic (OA) chondrocytes
were examined at the basal condition and after 3 h of high continuous HP (24 MPa). (A) Mitochondrial superoxide anion
production evaluated by MitoSox Red staining at flow cytometry. (B–E) Expression levels of superoxide dismutase (SOD)-2,
catalase (CAT), glutathione peroxidase (GPx)4, nuclear factor erythroid 2 like 2 (NRF2) analyzed by quantitative real-time
PCR. The production of superoxide anion and gene expression were referenced to the ratio of the value of interest and the
value of basal condition, reported equal to 1. Data were expressed as mean ± standard deviation (SD) of triplicate values.
* p < 0.05, ** p < 0.01, *** p < 0.001 versus basal condition.
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Figure 3. Hydrostatic pressure (HP) exposure modulates miRNA expression. Human osteoarthritic (OA) chondrocytes
were examined at the basal condition and after 3 h of high continuous HP (24 MPa). (A–G) Expression levels of miR-27a,
miR-34a, miR-140, miR-146a, miR-155, miR-181a, and miR-let7e analyzed by quantitative real-time PCR. The gene expression
was referenced to the ratio of the value of interest and the value of basal condition, reported equal to 1. Data were expressed
as mean ± standard deviation (SD) of triplicate values. ** p < 0.01, *** p < 0.001 versus basal condition.
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2.3. Visfatin Induces Cellular Apoptosis and Regulates Cartilage Turnover

To confirm the direct effect of visfatin in the modulation of the apoptosis process and
cartilage metabolism, OA chondrocytes were incubated for 4 h with 10 µM of visfatin in-
hibitor (FK866) prior to 24 h of treatment with visfatin (10 µg/mL) (Figure 4). The stimulus
of chondrocytes with visfatin significantly reduced the percentage of cell viability (p < 0.01)
and the expression levels of BCL2 (p < 0.05), while increasing the amount of apoptotic
cells (p < 0.05), in comparison to baseline (Figure 4A–C). Furthermore, visfatin induced the
over-expression of MMP-3 and MMP-13 genes (p < 0.05) and the downregulation of Col2a1
(p < 0.05) (Figure 4D–F). The incubation of the cells with the FK866 inhibitor significantly
counteracted visfatin-induced effects (Figure 4A–F).
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2.4. Visfatin Modulates Oxidant/Antioxidant System and miRNA Expression Profile 
The potential role of visfatin in the regulation of oxidant/antioxidant balance was 

assessed in visfatin-stimulated chondrocytes pre-treated with a visfatin inhibitor (FK866) 
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Figure 4. Visfatin regulates chondrocyte metabolism. Human osteoarthritic (OA) chondrocytes were examined at basal
condition, after 4 h of pre-incubation with Nicotinamide Phosphoribosyltransferase Inhibitor (FK866, 10 µM), and after 24 h
of incubation with visfatin (10 µg/mL). (A) Evaluation of cell viability by MTT assay. (B) Apoptosis detection performed
by flow cytometry analysis and measured with Annexin Alexa fluor 488 assay. Data were expressed as the percentage
of positive cells for Annexin-V and propidium iodide (PI) staining. (C–F) Expression levels of B-cell lymphoma (BCL2),
metalloproteinase (MMP)-3, -13, type II collagen (Col2a1), analyzed by quantitative real-time PCR. The percentage of
survival cells, the ratio of apoptosis, and the gene expression were referenced to the ratio of the value of interest and the
value of basal condition, reported equal to 100 or 1. Data were expressed as mean ± standard deviation (SD) of triplicate
values. * p < 0.05, ** p < 0.01 versus basal condition. ◦ p < 0.05 versus visfatin.

2.4. Visfatin Modulates Oxidant/Antioxidant System and miRNA Expression Profile

The potential role of visfatin in the regulation of oxidant/antioxidant balance was
assessed in visfatin-stimulated chondrocytes pre-treated with a visfatin inhibitor (FK866)
(Figure 5).
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Figure 5. Visfatin regulates oxidative stress balance. Human osteoarthritic (OA) chondrocytes
were examined at the basal condition, after 4 h of pre-incubation with nicotinamide phosphori-
bosyltransferase inhibitor (FK866, 10 µM), and after 24 h of incubation with visfatin (10 µg/mL).
(A) Mitochondrial superoxide anion production evaluated by MitoSox Red staining at flow cytometry.
(B–E) Expression levels of superoxide dismutase (SOD)-2, catalase (CAT), glutathione peroxidase
(GPx)4, and nuclear factor erythroid 2 like 2 (NRF2) analyzed by quantitative real-time PCR. The
production of superoxide anion and the gene expression were referenced to the ratio of the value of in-
terest and the value of basal condition, reported equal to 1. Data were expressed as mean ± standard
deviation (SD) of triplicate values. * p < 0.05, ** p < 0.01 versus basal condition. ◦ p < 0.05, ◦◦ p < 0.01
versus visfatin.

Flow cytometry and PCR analysis demonstrated a significant increase of mitochon-
drial superoxide anion production (p < 0.05) and of SOD-2 (p < 0.01), CAT (p < 0.05),
GPx4 (p < 0.01), and NRF2 (p < 0.05) transcriptional levels in cells stimulated with visfatin
compared to baseline (Figure 5A–E). Conversely, the incubation of the cells with FK866 sig-
nificantly reduced the ROS production (p < 0.05) and antioxidant enzymes’ gene expression
(p < 0.05, p < 0.01) (Figure 5A–E).

Furthermore, pre-treatment of chondrocytes with the inhibitor decreased the ROS
release (p < 0.05) and the expression of SOD-2, CAT, GPx4, and NRF2 (p < 0.01) induced by
visfatin, in comparison to the cells incubated with the adipokine alone (Figure 5A–E).

The evaluation of the miRNA expression profile showed a significant down-regulation
of miR-27a and miR-140 (p < 0.05) gene levels, and an over-expression of miR-34a (p < 0.05),
miR-146a (p < 0.05), miR-155 (p < 0.01), miR-181a (p < 0.05), and miR-let7e (p < 0.01) in
visfatin-stimulated cells in comparison to the control cultures (Figure 6A–G). As expected,
opposite regulation on the miRNA expression profile was obtained in OA cells incubated
with visfatin inhibitor (Figure 6A–G).



Int. J. Mol. Sci. 2021, 22, 2745 7 of 20
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 6. Visfatin modulates miRNA expression. Human osteoarthritic (OA) chondrocytes were 
examined at the basal condition, after 4 h of pre-incubation with the nicotinamide 
phosphoribosyltransferase inhibitor (FK866, 10 μM), and after 24 h of incubation with visfatin (10 
μg/mL). (A–G) Expression levels of miR-27a, miR-34a, miR-140, miR-146a, miR-155, miR-181a, and 
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Figure 6. Visfatin modulates miRNA expression. Human osteoarthritic (OA) chondrocytes were
examined at the basal condition, after 4 h of pre-incubation with the nicotinamide phosphoribo-
syltransferase inhibitor (FK866, 10 µM), and after 24 h of incubation with visfatin (10 µg/mL).
(A–G) Expression levels of miR-27a, miR-34a, miR-140, miR-146a, miR-155, miR-181a, and miR-let7e
analyzed by quantitative real-time PCR. The gene expression was referenced to the ratio of the
value of interest and the value of the basal condition, reported equal to 1. Data were expressed as
mean ± standard deviation (SD) of triplicate values. * p < 0.05, ** p < 0.01 versus basal condition.
◦ p < 0.05, ◦◦ p < 0.01 versus visfatin.

2.5. HP Increases Cellular Apoptosis and Cartilage Damage Caused by Visfatin

Figure 7 shows the implication of HP in regulating visfatin-induced effects on carti-
lage metabolism; human OA chondrocytes were treated for 24 h with visfatin 10 µg/mL
(4 h pre-incubation with 10 µM of visfatin inhibitor, FK866) and, then exposed to 3 h of
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continuous HP (24 MPa). The concomitant exposure of the cells to visfatin and a cycle of
HP significantly exacerbated the regulation on chondrocyte survival, apoptosis, and carti-
lage turnover caused by the only stimulus with visfatin or HP (Figure 7A–F). In addition,
the pre-treatment of chondrocytes with FK866 significantly limited the effects of HP in
comparison to what is observed after the pressurization alone (Figure 7A–F).
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Figure 7. Hydrostatic pressure (HP) exposure exacerbates the effect of visfatin on chondrocyte
metabolism. Human osteoarthritic (OA) chondrocytes were examined at the basal condition, after
24 h of incubation with visfatin (10 µg/mL) (4 h of pre-incubation with nicotinamide phosphoribosyl-
transferase inhibitor (FK866, 10 µM)), and after 3 h of high continuous HP (24 MPa). (A) Evaluation
of cell viability by MTT assay. (B) Apoptosis detection performed by flow cytometry analysis and
measured with Annexin Alexa fluor 488 assay. Data were expressed as the percentage of positive
cells for Annexin-V and propidium iodide (PI) staining. (C–F) Expression levels of B-cell lymphoma
(BCL2), metalloproteinase (MMP)-3, -13, type II collagen (Col2a1), analyzed by quantitative real-time
PCR. The percentage of survival cells, the ratio of apoptosis, and the gene expression were referenced
to the ratio of the value of interest and the value of basal condition, reported equal to 100 or 1. Data
were expressed as mean ± standard deviation (SD) of triplicate values. * p < 0.05, ** p < 0.01 versus
basal condition. ◦ p < 0.05, ◦◦ p < 0.01 versus visfatin. # p < 0.05, ## p < 0.01, ### p < 0.001 versus HP.
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2.6. HP Exacerbates Oxidative Stress Balance Caused by Visfatin

The effects of visfatin in the regulation of oxidative stress balance were significantly
increased (p < 0.05) when chondrocytes were also subjected to a high HP of 24 MPa, in
comparison to only visfatin stimulus or HP exposure (Figure 8A–E). Furthermore, the
activation of oxidant/antioxidant factors was significantly reduced in pressurized cells
pre-incubated with FK866 with respect to the only HP exposure (Figure 8A–E).
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Figure 8. Hydrostatic pressure (HP) exposure increases the effect of visfatin on oxidative stress balance. Human os-
teoarthritic (OA) chondrocytes were examined at the basal condition, after 24 h of incubation with visfatin (10 µg/mL) (4 h
of pre-incubation with nicotinamide phosphoribosyltransferase inhibitor (FK866, 10 µM)), and after 3 h of high continuous
HP (24 MPa). (A) Mitochondrial superoxide anion production evaluated by MitoSox Red staining at flow cytometry.
(B–E) Expression levels of superoxide dismutase (SOD)-2, catalase (CAT), glutathione peroxidase (GPx)4, nuclear factor
erythroid 2 like 2 (NRF2) analyzed by quantitative real-time PCR. The production of superoxide anion and gene expression
were referenced to the ratio of the value of interest and the value of basal condition, reported equal to 1. Data were expressed
as mean ± standard deviation (SD) of triplicate values. * p < 0.05, ** p < 0.01, *** p < 0.001 versus basal condition. ◦ p < 0.05
versus visfatin. # p < 0.05 versus HP.

2.7. HP Enhances Visfatin Effect on miRNA Gene Expression Profile

The effect of visfatin on miRNA expression became significantly more intensive
(p < 0.05) when OA chondrocytes were also exposed to a cycle of HP with respect to HP or
visfatin stimulus alone (Figure 9A–G). In addition, the pre-treatment of the cells with FK866
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limited, in a significant manner, the simultaneous effect of visfatin and HP on miRNA
regulation in comparison to only visfatin or HP treatments (Figure 9A–G).
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Figure 9. Hydrostatic pressure (HP) exposure increases the effect of visfatin on miRNA expression.
Human osteoarthritic (OA) chondrocytes were examined at the basal condition, after 24 h of incuba-
tion with visfatin (10 µg/mL) (4 h of pre-incubation with nicotinamide phosphoribosyltransferase
inhibitor (FK866, 10 µM)), and after 3 h of high continuous HP (24 MPa). (A–G) Expression levels
of miR-27a, miR-34a, miR-140, miR-146a, miR-155, miR-181a, and miR-let7e analyzed by quantitative
real-time PCR. The gene expression was referenced to the ratio of the value of interest and the value
of the basal condition, reported equal to 1. Data were expressed as mean ± standard deviation (SD)
of triplicate values. * p < 0.05, ** p < 0.01, *** p < 0.001 versus basal condition. ◦ p < 0.05 versus visfatin.
# p < 0.05, ## p < 0.01 versus HP.
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2.8. HP Influences the Regulation of the Wnt/β-Catenin Pathway Induced by Visfatin

Figure 10 describes the regulation of HP on the Wnt/β-catenin pathway activated by
visfatin. For the detection of β-catenin protein levels, OA chondrocytes were treated for 4 h
with visfatin 10 µg/mL (4 h pre-incubation with 10 µM of visfatin inhibitor, FK866), and
then exposed to 3 h of high continuous HP of 24 MPa. Western blot analysis of cell lysates
showed the β-catenin band at approximately 92 KDa. The densitometric quantification
of the bands revealed that β-catenin protein levels were significantly reduced in OA cells
subjected to HP (p < 0.05) or following 4 h of visfatin stimulus (p < 0.05) in comparison
to baseline, while no changes upon the incubation with FK866 inhibitor were observed
(Figure 10A,B). A significant increase of β-catenin protein expression (p < 0.05) was found
in visfatin-treated chondrocytes pre-incubated with FK866 compared to visfatin stimulus
alone. Furthermore, FK866 pre-treatment of OA cells simultaneously stimulated with
visfatin and HP induced a significant increase of β-catenin expression (p < 0.05) with
respect to visfatin or HP stimuli alone (Figure 10A,B).
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Figure 10. Hydrostatic pressure HP exposure regulates the effect of visfatin on Wnt/β-catenin pathway. Human os-
teoarthritic (OA) chondrocytes were examined at basal condition, after 4 h of incubation with visfatin (10 µg/mL) (4 h of
pre-incubation with nicotinamide phosphoribosyltransferase inhibitor (FK866, 10 µM)), and after 3 h of high continuous
(24 MPa) hydrostatic pressure (HP). (A,B) Representative immunoblotting image and densitometric analysis of β-catenin
protein levels by western blot. (C) Expression levels of cyclin D1 analyzed by quantitative real-time PCR. The protein levels
and the gene expression were referenced to the ratio of the value of interest and the value of the basal condition, reported
equal to 1. Data were expressed as mean ± standard deviation (SD) of triplicate values. * p < 0.05 versus basal condition.
◦ p < 0.05 versus visfatin. # p < 0.05 versus HP.
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The stimulus of the cells with visfatin or their exposure to HP significantly up-
regulated the gene levels of cyclin D1 (p < 0.05) in comparison to those at basal condition,
whereas a significant reduction after FK866 incubation was observed (p < 0.05) (Figure 10C).
FK866 pre-incubation of visfatin-treated chondrocytes significantly reduced the expression
of cyclin D1 (p < 0.05) compared to visfatin stimulus alone (Figure 10C). A significant
increase of cyclin D1 expression levels (p < 0.05) was observed in OA cells simultane-
ously exposed to visfatin and HP compared to only visfatin or HP stimulus; the increase
of cyclin D1 was counteracted by the pre-incubation with FK866 inhibitor (p < 0.05)
(Figure 10C).

3. Discussion

Accumulating evidence reported the complex interplay between mechanical loading
and adipokines in the development and the progression of OA [3,13,20,34], even if the exact
mechanisms underlying this relationship has not completely elucidated and additional
studies are required.

The present research aimed to evaluate the potential role of HP in regulating visfatin-
induced effects on cartilage turnover, apoptosis, and oxidative stress, and on the modula-
tion of a pattern of miRNA, in human OA chondrocytes. Our experiments were performed
using a prototype of the HP system, developed for in vitro cell cultures. In particular,
we tested a high continuous HP of 24 MPa, exceeding the range of physiological loading
measured in vivo [35]; this pressurization, applied for a period of 3 consecutive hours,
approximately reproduced the conditions that occur in the human joints [6,36,37]. Further-
more, to inhibit the enzymatic activity of visfatin, our cultures were pre-treated with FK866,
in agreement with other authors [38]. FK866 is a pharmacologic competitive inhibitor that
binds the catalytic pocket of nicotinamide and reduces the intracellular NAD content in a
time- and concentration-dependent manner [38].

Our results showed the up-regulation of the gene expression of matrix-degrading
enzymes, MMP-3 and MMP-13, and the reduction of Col2a1 in OA chondrocytes exposed to
HP or stimulated with visfatin, in agreement with previous studies [6,8,9,13,27,29,39–43].

Furthermore, we first demonstrated that the effect of visfatin on MMPs and Col2a1 was
increased when OA chondrocytes were simultaneously subjected to high continuous HP,
while the use of visfatin inhibitor limited both visfatin- and HP-induced effects. Evidence
from Su et al. [32] partially confirmed our data even if the studies are not comparable.
The authors showed a higher increase of cyclooxygenase (COX)-2 gene expression in OA
chondrocytes treated for 4 h with resistin and meanwhile exposed to fluid shear stress than
the resistin stimulus alone.

The continuous HP of 24 MPa applied to our OA chondrocytes raised the percentage
of apoptotic cells, with a concomitant reduction of the gene expression of the anti-apoptotic
marker BCL2, in agreement with previous studies. Indeed, an increase of apoptosis rate
has been reported in human cartilage explants exposed to a single static pressure of 14 MPa
for 500 ms under radially unconfined compression [44], and in human or bovine OA
chondrocytes subjected to 10 or 20 MPa of loading for a maximum timing of 3 h [13,45,46].

The activation of apoptosis signaling and the reduced expression of the anti-apoptotic
marker was also observed when our cell cultures were stimulated for 24 h with visfatin;
according to our results, other authors previously revealed the pro-apoptotic effect of this
adipokine in endothelial progenitor cells and human OA chondrocytes [13,27,47]. To the
best of our knowledge, we found, for the first time, a significant increase of apoptosis
exposing OA chondrocytes to visfatin and high continuous HP compared to stimulus with
visfatin or HP alone. These results were significantly counteracted upon the pre-incubation
with the visfatin inhibitor FK866.
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Oxidative stress has been increasingly recognized to be involved in joint damage
that occurs in OA. The failure of oxidant/antioxidant balance in chondrocytes deter-
mines an altered redox status in favor of catabolic processes, contributing to OA
pathogenesis [8,48]. The results of the present study showed an increased production
of mitochondrial superoxide anion and an upregulation of the transcriptional levels of
the main antioxidant enzymes, SOD, CAT, GPx4, and NRF2, after the exposure of OA
chondrocytes to HP or visfatin. Similarly, it has been previously reported an excessive ROS
production upon the application of 24 h of static compression ranged from 40 to 120 psi or
3 h of static continuous HP of 10 MPa, in porcine and human OA chondrocytes [13,49]. Fur-
thermore, an increase of mitochondrial ROS release and antioxidant enzymes expression
was shown in human OA chondrocytes and synoviocytes stimulated with visfatin [29,30].
To our knowledge, this is the first paper showing that the concomitant treatment of OA cul-
tures with visfatin and a cycle of high pressurization significantly exacerbated ROS release
and antioxidant enzymes expression; these effects were significantly counterbalanced by
FK866 pre-incubation.

An altered expression of some miRNA was associated with the regulation of chondro-
cyte metabolism, inflammatory response, and oxidative stress during OA damage [29,50–53].
In this experience, we confirmed the up-regulation of miR-34a, miR-146a, and miR-181a
gene expression in OA chondrocytes stimulated with HP, in line with the growing body of
evidence [8,13,46,50,53–55]. Besides, we first demonstrated the dysregulation of miR-27a,
miR-140, miR-155, and miR-let7e after the application of this pressurization schedule. Pre-
vious studies showed an up-regulation of miR-27a, miR-140, miR-146a, and a decrease of
miR-155 and miR-181a gene levels in OA chondrocytes subjected to 3 h of cyclic low HP
(1–5 MPa) [8,10].

Moreover, in the present study, the evaluation of visfatin effects on miRNA regulation
showed a reduction of miR-27a and miR-140 gene levels, and an increase of miR-34a,
miR-146a, miR-155, miR-181a, and miR-let7e in OA chondrocytes, according to our previous
findings in human OA chondrocytes and synoviocytes [27,30].

Finally, we reported a significantly altered expression of the studied miRNA when
OA chondrocytes were simultaneously treated with visfatin and exposed to high contin-
uous HP. This combined effect was counteracted by the pre-incubation of the cells with
FK866 inhibitor.

The pivotal role of the canonical Wnt/β-catenin signaling pathway in articular carti-
lage homeostasis and joint disease has been extensively reported [56,57].

Based on our previous findings, in this study we evaluated the regulation of Wnt/β-
catenin signaling after a cycle of mechanical loading and/or adipokines stimulus. The
exposure of our OA chondrocytes to HP or visfatin stimulus showed a reduction of total
β-catenin protein expression. This expression resulted intensified when the cells were
simultaneously treated with visfatin and high HP, while it was partially counteracted by
the pre-treatment with FK866.

Previous studies found increased protein levels of Wnt-3a and β-catenin in articular
cartilage of an injured exercise-induced OA rat model and in OA rat chondrocytes cultures
subjected to cyclic mechanical strain with a 0.5 Hz sinusoidal curve at 10% elongation
for 8 h/day [58,59]. Recently, Cheleschi et al. showed a reduction of β-catenin protein
expression in OA chondrocytes exposed to 3 h of low cyclic sinusoidal HP (1–5 MPa) [8],
while its increase was found upon the application of a static continuous HP of 10 MPa [13].

Furthermore, increased protein levels of Wnt-3a and β-catenin were reported after
the incubation of human chondrocyte cell lines (C-28/I2 and T/C-28a2) and human OA
primary osteoblasts for 24 h with leptin and resistin, respectively [60,61].

Our results seem to be in contrast with the current literature since the apparent non-
activation of the signaling pathway following the negative stimuli applied to our cultures.
However, this discrepancy could be related to the use, in our experiments, of a non-specific
antibody for the assessment of β-catenin expression; indeed, our antibody seemed to
be useful in detecting the total β-catenin protein levels, while not able to discriminate
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between the active non-phosphorylated form and the inactivate phospho-β-catenin la-
beled for ubiquitination and proteasomal degradation [8,62,63]. In this regard, to confirm
the activation of the studied pathway, we also investigated the transcriptional levels of
cyclin D1, a downstream target gene of Wnt/β-catenin signaling cascade and a central
player in cell cycle regulation, cell proliferation, and apoptosis during OA [64]. In this
experience, we observed the up-regulation of cyclin D1 gene expression when OA chon-
drocytes were exposed to HP and/or to visfatin stimulus. Similar results were found after
the exposure of osteoblastic cell lines to 5 h of 3400 microstrains of mechanical loading
(2 Hz, 7200 cycles/h) or upon the application of 12 h of 12% cyclical tensile stress at hu-
man osteosarcoma cell lines [65,66]. Furthermore, the stimulus of endometrial carcinoma
cell lines with visfatin for 24 h induced the expression of cyclin D1, which was reduced
following FK866 [67].

Finally, we first observed the strong increase of cyclin D1 gene levels after the combined
treatment of chondrocytes with visfatin and HP; the HP effect was reduced by the pre-
incubation of the cells with FK866 inhibitor.

4. Materials and Methods
4.1. Isolation and Culture of Human OA Chondrocytes

Human OA articular cartilage was obtained from femoral heads of five non-obese
(body mass index ranging from 20 to 24 kg/m2) and non-diabetic patients (two men
and three women, age ranging from 63 to 76) with coxarthrosis according to American
College of Rheumatology criteria [68], undergoing to hip replacement surgery. OA grades
ranged from moderate to severe, and cartilage showed typical OA changes, with the
presence of chondrocyte clusters, fibrillation, and loss of metachromasia (Mankin degree
3–7) [69]. The femoral heads were supplied by the Orthopaedic Surgery, University of
Siena, Italy. The use of human articular samples was permitted after the authorization
of the Ethic Committee of Azienda Ospedaliera Universitaria Senese/Siena University
Hospital (decision no. 13931/18), and the informed consent of the donor.

After surgery, cartilage fragments were aseptically dissected from each donor and
processed by an enzymatic digestion as previously described [29]. For growth and expan-
sion, cells were cultured in Dulbecco’s modified eagle medium (DMEM) (Euroclone, Milan,
Italy) with phenol red and 4 mM L-glutamine (Euroclone, Milan, Italy), supplemented
with 10% fetal bovine serum (FBS) (Euroclone, Milan, Italy), 200 U/mL penicillin, and
200 µg/mL streptomycin (P/S) (Sigma–Aldrich, Milan, Italy). The medium was changed
every 2–3 days and the cell morphology was examined daily with an inverted microscope
(Olympus IMT-2, Tokyo, Japan) [70]. For each single experiment, a cell culture from a
unique donor was used.

4.2. OA Chondrocytes Exposure to HP

The HP was generated by a unique prototype of pressurization system described
in detail by Nerucci et al. [35]; the system has been validated in a number of in vitro
studies [6,8,13,71].

In the present study, OA chondrocytes were seeded in Petri dishes (35 × 10 mm2)
(Euroclone, Milan, Italy) at a starting density of 1 × 105 cells, until they became 85%
confluent, in DMEM supplemented with 10% FBS for 24 h. Then, the medium was removed,
and substituted with DMEM with 0.5% FBS for the treatment procedure. Petri dishes were
completely filled with the culture medium and sealed with a special membrane (Surlyn
1801 Bynel CXA 3048 bilayer membrane, Du Pont, Biesterfeld polychem s.r.l, Milan, Italy),
excluding air to avoid implosions due to the presence of air between the membrane and
the medium, suitable for preserving a stable environment. The dishes were arranged
inside the pressure chamber filled with distilled water at a temperature of 37 ◦C. Then,
the cells were subjected to a high continuous pressure of 24 MPa, for a period of 3 h.
Some dishes, used as controls, were maintained in the same culture conditions without
receiving any pressurization. Chondrocytes at basal condition and immediately after
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receiving pressure were collected to perform flow cytometry, quantitative real-time PCR,
and western blot analysis.

4.3. OA Chondrocytes Treatment

Human OA chondrocytes were plated in 6-well dishes at a starting density of
1 × 105 cells/well until 85% confluence. Human recombinant visfatin (Sigma–Aldrich,
Milan, Italy) was dissolved in phosphate buffered saline (PBS) (Euroclone, Milan, Italy), in
accordance with the manufacturer’s instructions, and then directly diluted in the culture
medium for the treatment in order to obtain the final concentration required.

The cells were cultured in DMEM enriched with 0.5% FBS and 2% P/S, and stimulated
for 24 h with visfatin at concentration of 10 µg/mL, according to previous studies [27,29,47].
Some dishes were pre-incubated for 4 h with 10 µM of nicotinamide phosphoribosyltrans-
ferase inhibitor, FK866 (Sigma–Aldrich, Milan, Italy) [63].

After the treatment, the cells were recovered and immediately processed to carry out
flow cytometry, quantitative real-time PCR, and western blot analysis.

4.4. Cell Viability

The viability of the cells was evaluated by MTT (3-[4,4-dimethylthiazol-2-yl]-2,5-
diphenyl-tetrazoliumbromide) (Sigma–Aldrich, Milan, Italy) for each experimental condi-
tion. The experimental procedure was performed as previously described [30]. The per-
centage of survival cells was evaluated as (absorbance of considered sample)/(absorbance
of control) × 100. Data were reported as OD units per 104 adherent cells.

4.5. Apoptosis Detection

Apoptotic cells were measured by using an Annexin V-FITC and propidium iodide
(PI) kit (ThermoFisher Scientific, Milan, Italy). OA chondrocytes were seeded in 12-well
plates (8 × 104 cells/well) for 24 h in DMEM with 10% FBS, before replacement with 0.5%
FBS used for the treatment. The procedure was performed as previously described [13].
A total of 10,000 events (1 × 104 cells per assay) were measured by the instrument. The
results were examined with Cell Quest software (Version 4.0, Becton Dickinson, San Jose,
CA, USA).

The instrument permitted to discriminate intact cells (annexin-V and PI-negative),
early apoptosis (annexin-V-positive and PI-negative), and late apoptosis (annexin-V and PI
positives). Cells simultaneously stained with Alexa Fluor 488 annexin-V and PI were con-
sidered for the evaluation of apoptosis [72]. The results were expressed as the percentage
of positive cells to each dye (total apoptosis).

4.6. Mitochondrial Superoxide Anion (·O2-) Assessment

OA chondrocyte were seeded in 12 well-plates (8 × 104 cells/well) for 24 h in DMEM
with 10% FCS, before replacement with 0.5% FBS used for the treatment procedure. The
procedure has been performed as previously described [13]. A density of 1 × 104 cells
per assay (a total of 10,000 events) were measured by flow cytometry and data were
analyzed with CellQuest software (Version 4.0, Becton Dickinson, San Jose, CA, USA).
Results were collected as the median of fluorescence (AU) and represented the mean of
three independent experiments.

4.7. RNA Isolation and Quantitative Real-Time PCR

OA chondrocyte were grown and maintained in 6-well dishes at a starting density
of 1 × 105 cells/well until they became 85% confluent in DMEM supplemented with 10%
FBS, before replacement with 0.5% FBS used for the treatment. After treatment, cells were
collected and total RNA, including miRNA, was extracted using TriPure Isolation Reagent
(Euroclone, Milan, Italy) according to the manufacturer’s instructions. The concentration,
purity, and integrity of RNA were evaluated by measuring the OD at 260 nm and the
260/280 and 260/230 ratios by Nanodrop-1000 (Celbio, Milan, Italy).
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Five hundred nanograms of RNA of target genes and miRNA were reverse transcribed
by using the QuantiTect Reverse Transcription (Qiagen, Hilden, German) and the cDNA
miScript PCR Reverse Transcription (Qiagen, Hilden, German) kits, respectively, according
to the manufacturer’s instructions.

Target genes and miRNA were assessed by real-time PCR using QuantiFast SYBR
Green PCR (Qiagen, Hilden, German) and miScript SYBR Green (Qiagen, Hilden, German)
kits, respectively. Primers used for PCR reactions are listed in Table S1.

All qPCR reactions were achieved in glass capillaries by a LightCycler 1.0 (Roche
Molecular Biochemicals, Mannheim, Germany) with LightCycler Software Version 3.5.
The reaction procedure for miRNA and target genes has described in detail by our previ-
ous studies [13,29].

For the data analysis, the Ct values of each sample and the efficiency of the primer set
were calculated through LinReg Software [73] and then converted into relative quantities
and normalized according to Pfaffl model [74]. The normalization was performed consider-
ing actin beta (ACTB) for target genes and small nucleolar RNA, C/D Box 25 (SNORD-25)
for miRNA, as the housekeeping genes [75].

4.8. Western Blot

OA chondrocytes at first passage were seeded in Petri dishes (35 × 10 mm2) at a
starting density of 1 × 105 cells/chamber in DMEM supplemented with 10% FBS for
24 h. After this period, the medium was removed and the cells were cultured in DMEM
with 0.5% FBS for the experiment. After treatment, cells were collected and total lysates
were obtained with M-PER™ Mammalian Protein Extraction Reagent (Thermo Fisher
Scientific, Rockford, IL, USA) containing a protease inhibitor cocktail (Sigma–Aldrich,
Milan, Italy). For each experimental condition, ten micrograms were loaded into 10%
sodium dodecyl sulphate-polyacrylamide electrophoresis gels and separated by molecular
size. Proteins were then transferred to a nitrocellulose membrane and, after blocking
step, incubated at 4 ◦C overnight with mouse monoclonal anti-total β-catenin primary
antibody (sc-59737, Santa Cruz Biotechnology, Milan, Italy) (dilution 1:250), and then
with secondary goat anti-mouse IgG (H + L)-HRP conjugate antibody (1:5000) (Bio-Rad
Laboratories S.r.l., Milan, Italy). The reaction was assessed by chemiluminescence (Bio-
Rad Laboratories S.r.l., Milan, Italy). The blots were re-probed with HRP-conjugated
β-actin (Sigma-Aldrich, Milan, Italy) used as the loading control. Images of the bands were
digitized and the densitometric quantification was performed by Image-J software (LOCI,
University of Wisconsin-Madison, Madison, WI, USA). Results were normalized with the
relative loading control.

4.9. Statistical Analysis

Three independent experiments were carried out and the results were expressed as
the mean ± standard deviation (SD) of triplicate values for each experiment. Data normal
distribution was evaluated by Shapiro–Wilk, D’Agostino and Pearson, and Kolmogorov–
Smirnov tests. Flow cytometry and western blot results were analyzed by ANOVA with
a Bonferroni post-hoc test. Quantitative real-time PCR data were evaluated by one-way
ANOVA with a Tukey’s post-hoc test using 2−∆∆CT values for each sample. All analyses
were performed through the SAS System (SAS Institute Inc., Cary, NC, USA) and GraphPad
Prism 6.1. A p-value < 0.05 was defined as statistically significant.

5. Conclusions

The results of the present study contribute to increasing knowledge about the complex
interplay between HP and visfatin in regulating metabolism in human OA chondrocyte
cultures, via the Wnt/β-catenin signaling pathway.
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We showed that a cycle of high continuous HP of 24 MPa (3 h), exceeding the physi-
ological loading range measured in in vivo joint, caused cartilage degradation, activated
apoptosis signaling, increased oxidative stress, and regulated the expression profile of a
miRNA pattern and β-catenin expression and cyclin D1 proteins. Similar and detrimental
effects were obtained after 24 h of treatment with visfatin.

Further, the simultaneous exposure of OA cells to visfatin stimulus and high continu-
ous HP seemed to be more effective overall than each single treatment.

Finally, the pre-incubation of the cells with a specific visfatin inhibitor, FK866, reversed
both visfatin and HP-induced effects on the analyzed cellular processes.

Taken together, our data support the dual role of obesity in the OA pathogenesis,
ascribing a prominent function both to mechanical overloading and the adipose tissue-
induced low-grade of chronic inflammation, confirming the importance of controlling body
weight in treating the disease.

However, this study reported preliminary results and additional experiments are
required to confirm our hypothesis. The implementation of the same analysis on healthy
primary chondrocytes could be useful to better understand the involvement of HP and
visfatin on chondrocyte homeostasis and, in particular, their relevance in the OA pathogen-
esis. Furthermore, a deeper analysis of the upstream molecular mechanism responsible
for the visfatin-induced effects may contribute to finding out the exact role of mechanical
loading in this process. Finally, the use of a specific Wnt/β-catenin inhibitor points out the
involvement of the pathway in this complex mechanism.
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