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Abstract: The intake of tomato glycoalkaloids can exert beneficial effects on human health. For this
reason, methods for a rapid quantification of these compounds are required. Most of the methods for
α-tomatine and dehydrotomatine quantification are based on chromatographic techniques. However,
these techniques require complex and time-consuming sample pre-treatments. In this work, HPLC-
ESI-QqQ-MS/MS was used as reference method. Subsequently, multiple linear regression (MLR)
and partial least squares regression (PLSR) were employed to create two calibration models for the
prediction of the tomatine content from thermogravimetric (TGA) and attenuated total reflectance
(ATR) infrared spectroscopy (IR) analyses. These two fast techniques were proven to be suitable and
effective in alkaloid quantification (R2 = 0.998 and 0.840, respectively), achieving low errors (0.11 and
0.27%, respectively) with the reference technique.

Keywords: tomatine; chromatography; thermogravimetric analysis; mid-infrared spectroscopy;
multivariate analysis

1. Introduction

Fruit ripening is a complex process that causes considerable changes in color, texture
and flavor. Additionally, the chemical composition of fruits is affected during this process,
including conversion of starch to sugars, biosynthesis and accumulation of pigments and
aromatic volatiles, as well as modification of cell wall ultrastructure [1].

In tomatoes, a significant decrease in steroidal glycoalkaloid content (i.e., α-tomatine
and dehydrotomatine) occurs as a function of the ripening process. These components
are not useful for plant growth but play a significant role in defense mechanisms against
pathogens. According to their specific function, the glycoalkaloid concentration is highest
in stems and leaves, during the first stages of plant growth. In the fruits, the glycoalkaloid
content decreases as a function of the ripening process and at the same time, the color
changes from green to red [2–5]. It is well known that the tomato glycoalkaloids are bio-
synthesized and then degraded during fruit ripening. In particular, in tomato fruits, the
tomatine content decreases as the fruits grow and it is completely degraded when the fruits
turn red [4,6,7].

It is now well known that glycoalkaloids also possess beneficial effects for human
health [6,8–10], as well as many other secondary metabolites [11–16]. Thus, rapid methods
for the quantification of α-tomatine and dehydrotomatine in tomato fruits are poten-
tially useful.

Most of the studies on natural glycoalkaloid quantification are based on chromato-
graphic techniques [17], including the quantification of tomatine [6,7,10]. Although high-
performance liquid chromatography (HPLC) still remains the gold standard technique for
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quantifying organic substances [18], other methods are under development to overcome
some disadvantages of this analytical technique. Liquid chromatography is, indeed, very
powerful, but it is time-consuming and requires considerable manual work for sample
pre-treatments (e.g., extraction and purification of the analytes). In many cases, spectro-
scopic methods combined with chemometric approaches can overcome these problems.
Attenuated total reflection–Fourier transform mid-infrared spectroscopy (ATR-FT-MIR)
is widely used because it is a reliable, rapid, low-cost and non-destructive technique.
Moreover, combined with chemometric methods, it can highlight the spectral differences
between similar samples, modeling the systematic variance of the data and presenting
it in a simpler way [19–21]. This approach can allow the quantitative determination of
bioactive molecules [22]. Although chemometric methods combined with ATR-FT-MIR
have been widely applied to classify various food and agricultural products, according
to our knowledge, there are no studies about the determination of tomatine in tomato
species. Similarly, differential scanning calorimetry (DSC) is a technique that can be applied
for quantitative food analysis [23,24]. On the contrary, very few applications of thermo-
gravimetry (TGA) in food analysis are reported, usually related to evaluating thermal
stability during processing and the action of environmental conditions more than analyte
quantification [25,26]. However, TGA is a very quick and user-friendly technique, and does
not require specific sample pre-treatments.

The objective of this study is to evaluate the ability of TGA and ATR-FT-MIR as fast
techniques to predict the tomatine content in tomatoes, through multivariate statistical
approaches, using HPLC coupled with an electrospray ionization and triple quadrupole
mass spectrometer (HPLC-ESI-QqQ-MS/MS) as a comparative reference technique.

2. Results and Discussion
2.1. HPLC-ESI-QqQ-MS/MS Glycoalkaloid Determination in Different Industrial Tomato
Varieties at Different Vine-Ripe Stages

The present study reports the quantification of α-tomatine and dehydrotomatine, in
eight industrial varieties of tomatoes, carried out via an HPLC-ESI-QqQ-MS/MS protocol
in hydroalcoholic acidic extracts of lyophilized samples. The results are summarized in
Table 1. In agreement with other studies [4,6,7,27] on the same variety, a higher content
of glycoalkaloids was found in green tomatoes. The turning stage represents the ripening
phase at which the most significant changes occur. Indeed, up to a 77% decrease of the
two glycoalkaloids was observed. A further decrease between 24 to 77% was observed in
the pink ripening stage. Only the H7204 red ripened tomato variety showed a very low
α-tomatine content, corresponding to 1.3% of the α-tomatine found in the corresponding
green tomatoes, while dehydrotomatine was detected only in trace amounts.

The pseudo-exponential decrease in tomatine (the sum of α-tomatine and dehydro-
tomatine) as a function of the ripening stage is strictly related to the variety, and the
equations that describe the decreasing pattern are reported in Figure 1.

Nevertheless, more significant differences were found among varieties. In particular,
H1301 and H3406 varieties were the richest in α-tomatine and dehydrotomatine (Table 1)
whereas the lowest values were found in H5108 and Lyco1 varieties. It is possible to
notice that the α-tomatine content at the green ripening stage is strongly influenced by the
varietal factor, covering a wide range of concentrations of glycoalkaloids (from 1772 ± 33
to 552 ± 45 mg/kg dry weight, DW). The difference in the α-tomatine content among the
different tomato varieties became less significant proceeding through the ripening stages,
from the green to the pink ripening stage. In the latter, the range of the α-tomatine content
was rather narrow, ranging from 238 ± 17 to 120 ± 11 mg/kg DW. Interestingly, the rate
of α-tomatine degradation, due to the ripening process of the fruits, also differed within
the different varieties, underlining that this process is mainly influenced by the intrinsic
genetic differences linked to the variety of the plants.
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Table 1. α-Tomatine and dehydrotomatine contents in vine-ripened industrial tomato varieties. The
values are expressed as mg/kg DW and mean ± SD (standard deviation; n = 9). The content of
tomatine (sum of the two glycoalkaloids) is also reported.

Variety Ripening Stage α-Tomatine Dehydrotomatine Tomatine

H1015 Green 1028 ± 53 a 147 ± 9 a 1176 ± 54 a

Turning 441 ± 28 b 78 ± 8 b,c 519 ± 29 b

Pink 180 ± 19 c,d,e 34 ± 5 d,e 213 ± 20 c,d

H1301 Green 1614 ± 40 f 215 ± 4 f 1829 ± 41 e

Turning 400 ± 17 b 57 ± 3 g 457 ± 17 b,f

Pink 141 ± 12 c 21 ± 2 h 161 ± 12 c,g

H3402 Green 688 ± 40 g 109 ± 11 i 796 ± 41 h

Turning 535 ± 19 h 86 ± 7 c,j 621 ± 20 i

Pink 120 ± 11 c 21 ± 3 h 141 ± 11 g

H3406 Green 1772 ± 33 i 221 ± 3 f 1993 ± 33 j

Turning 388 ± 18 b 61 ± 4 g 449 ± 18 f,k

Pink 155 ± 11 c,d 26 ± 3 d,h 181 ± 12 c,d,g

H5108 Green 552 ± 45 h 111 ± 7 i 663 ± 46 i

Turning 420 ± 27 b 69 ± 7 b 489 ± 28 b,f

Pink 238 ± 17 e,j 42 ± 6 e 279 ± 18 l,m

H7204 Green 1088 ± 34 a 143 ± 12 a 1231 ± 36 a

Turning 314 ± 16 k 75 ± 6 b,c 388 ± 17 k

Pink 148 ± 17 c 28 ± 4 d,h 176 ± 17 c,g

Red 14 ± 2 l <LOD 14 ± 2 n

Lyco1 Green 678 ± 62 g 90 ± 8 j 768 ± 63 h

Turning 294 ± 22 j,k 26 ± 3 d,h 320 ±22 m

Pink 217 ± 32 d,e 25 ± 4 d,h 242 ± 32 d,l

Fokker Green 952 ± 101 m 128 ± 15 k 1080 ± 102 o

Values marked with the same letter within the same column are not statistically different (Tukey’s test, p > 0.05).
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Figure 1. Graphical representation of the pseudo-exponential decrease in tomatine content as
a function of the ripening stage for the different industrial tomato varieties. The R2 calculated
parameters are also reported.

2.2. Thermogravimetric Analysis (TGA)

Thermogravimetry has already been applied to analyze and quantify vegetal com-
pounds in complex matrices [28,29]. The weight loss of each freeze-dried sample in the
ranges 120–200 and 200–400 ◦C are summarized in Table 2.
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Table 2. Results of TGA analysis: mean ± SD (n = 3) of the weight loss (in percentage) in the ranges
120–200 ◦C and 200–400 ◦C as a function of ripening stages.

Variety Ripening Stage Weight Loss

120–200 ◦C 200–400 ◦C

H1015 Green 17.5 ± 0.2 38.2 ± 0.3
Turning 19.0 ± 0.2 36.4 ± 0.2
Pink 19.3 ± 0.2 34.4 ± 0.5

H1301 Green 15.9 ± 0.1 39.7 ± 0.8
Turning 19.0 ± 0.4 36.3 ± 0.3
Pink 20.4 ± 0.3 33.8 ± 0.2

H3402 Green 16.9 ± 0.3 37.8 ± 0.4
Turning 17.5 ± 0.5 38 ± 0.1
Pink 20.5 ± 0.1 33 ± 0.3

H3406 Green 14.9 ± 0.1 40.1 ± 0.2
Turning 18.5 ± 0.6 36.7 ± 0.3
Pink 20.3 ± 0.2 33.3 ± 0.5

H5108 Green 18.4 ± 0.3 36.7 ± 0.6
Turning 18.7 ± 0.2 36.3 ± 0.5
Pink 20.3 ± 0.4 34.6 ± 0.2

H7204 Green 14.1 ± 0.2 40.1 ± 0.3
Turning 18.9 ± 0.3 34.3 ± 0.4
Pink 24.2 ± 0.3 33.2 ± 0.6

Lyco1 Green 16.9 ± 0.5 37.7 ± 0.4
Turning 19.9 ± 0.4 33.9 ± 0.6
Pink 19.5 ± 0.2 33.7 ± 0.4

Fokker Green 16.8 ± 0.2 37.4 ± 0.5

The weight loss in the range 120–200 ◦C increases from 16 ± 1% for tomatoes at
the green stage to 18.7 ± 0.5% and 21 ± 1% for tomatoes at the turning and pink stages,
respectively. Concerning the decomposition between 200–400 ◦C, a clear trend can be
observed in the analyzed samples: moving from the green to pink stage, a decrease in
weight loss is observed. Indeed, in the green stage, a mean weight loss of about 38 ± 1%
is found that decreases to 36 ± 1% in the turning stage and reaches 33.7 ± 0.4% in the
pink stage.

In Figure 2, a comparison between thermographs of H7204 variety samples at different
ripening stages is depicted, showing the peculiar increase in weight loss between 120 and
200 ◦C. In this temperature range, the degradation of volatiles occurs [30]. The increase
in weight loss observed in this region of the thermogram could be explained by the
accumulation of flavor and aromatic compounds as a consequence of the ripening process.
Concurrently, a decrease in weight loss between 200 and 400 ◦C is observed. At these
temperatures, macromolecules such as cellulose, hemicellulose, pectin and starch are
thermally degraded [30,31]. During the ripening process, many hydrolytic enzymes are
involved in cell wall metabolism, causing the softening of fleshy fruits. At the same
time, the depolymerization of many polysaccharides to sugars occurs. Consequently, the
content of these macromolecules in tomatoes progressively decreases as a function of the
ripening process.
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As shown in Figure 3, strong correlations showing opposite trends were found be-
tween the logarithm of the tomatine content detected by HPLC-ESI-QqQ-MS/MS and the
weight loss in both of the temperature ranges (Pearson’s correlation coefficients, r = −0.879
and 0.958, respectively).
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Therefore, a multiple linear regression (MLR) model was proposed to extrapolate
the tomatine concentration in lyophilized tomato samples from TGA, taking into account
the weight loss in the selected temperature ranges. The MLR analysis gave the equation
Y = −0.0472X1 + 0.0983X2 (R2 = 0.999 and adjusted R2 = 0.998). The intercept of the
regression model was forced to zero since it was not statistically significant (p > 0.05), while
both the coefficients of X1 and X2 were significantly different from zero (p << 0.05). The
F-test showed that the overall model is significant (p << 0.05), with a root mean square
error (RMSE) of 0.11. The relationship between the tomatine concentrations predicted by
the MLR model and the measured ones is reported in Figure 4a. The residual plot of the
model (Figure 4b), reporting the autoscaled Y-residuals vs. the predicted Y, gave a random
distribution between ± 3 (99% confidence interval) for all the samples, confirming that
the MLR model reported here is able to predict tomatine values along the whole range of
concentrations employed.
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2.3. Attenuated Total Reflection–Fourier Transform Mid-Infrared Spectroscopy (ATR-FT-MIR)

Figure 5a reports the spectrum of a dried tomato sample (as an example). None of
the spectra deviate from the example, if not considered in terms of peak intensity. In the
spectra displayed, the specific bands of vegetal samples are highlighted and assigned as
follows. The band at 3289 cm−1 is characteristic of NH and OH stretching vibrations. The
region of 2923–2853 cm−1 can be assigned to the symmetrical and asymmetric stretching
modes of the CH3 and CH2 groups. The 1720 cm−1 band corresponds to the stretching of
the C=O ester carbonyl or carboxylic acid groups, which are characteristic of fatty acids
and polysaccharides. The amide I band at 1652 cm−1 results from the C=O stretching in
the amides I, II and III, while the amidic band II at 1520 cm−1 originates from the bending
vibrations of the N-H groups.
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Table 3 summarizes bands in the IR region from 1800 to 900 cm−1 that include the
“fingerprint” region, which includes bands corresponding to the vibrations of the C-O, C-C,
C-H and C-N bonds. This region is, on the one hand, very rich in information, but, on
the other hand, difficult to analyze due to its complexity. This area provides important
information about organic compounds, such as sugars, alcohols and organic acids, present
in the sample by featuring their molecular vibrations (stretching, bending and torsions of
the chemical bonds) in specific infrared regions. This region was dominated by a broad
band centred at 1055, 1035 cm−1, with evident shoulders at 1145 and 1100 cm−1, due to
strong vibrational modes of various carbohydrates and acids, which are abundant groups
in tomatoes. Tomatine shows main bands in the region between 1100 and 950 cm−1, which,
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however, are covered by the stronger sugar and polysaccharide absorption and are not
useful for quantitative analysis as the absorbance band at 956 cm−1 corresponds to a trans
–CH=HC– bending out of plane deformation band that is the unique IR marker band
specific to lycopene [32].

Table 3. Main functional groups assigned to ATR-FTIR spectra of tomato [33].

Wavenumber (cm−1) Proposed Assignment

1720 C=O ester
1650 Amide I, β-sheet
1604 C–C aromatic
1551 C–C aromatic
1520 Amide II, C≡N stretching
1410 CH2 bending of lipids and fatty acids

1350 CH3 bending proteins and lipids and CH2
wagging and twisting

1240 OH bending
1196 C–O–C ester stretching
1145 C–O–C ester stretching
1055 C–O–C glycosidic bond
955 CH(trans OOP)

As discussed, the spectra contain a multitude of bands that are characteristic of vegetal
samples which do not allow to obtain information on a specific compound without the
interference of the matrix as whole. For this reason, we used an ATR-FT-MIR “fingerprint”
analytical approach [21,34] for the structural identification of compounds considering
that no two chemical structures will have the same ATR-FT-MIR spectrum. ATR-FT-MIR
provides a characteristic signature of chemical or biochemical substances present that can
be used for chemometric studies.

2.4. Chemometric Approach

The average spectrum of 22 samples, as regards the most informative regions located
at low wavenumbers (752–1800 cm−1), is reported in Figure 5b. This was used to build
the regression model. The predictive model for the determination of tomatine in extracted
tomato samples was obtained by applying the partial least squares regression (PLSR)
model to 16 samples of the calibration set, after data pre-treatment and column mean
centering. The uncertainty test identifies 48 significant variables, leading to a decrease in
the sample/variable ratio. This also determines a decrease in the risk of finding random
correlation and leads to an increase in the reliability of the regression model [35].

The first two components have been identified as significant for tomatine quantifica-
tion. In more detail, in the final model, the first three latent variables explain 95% of the
Y-variance and 73% of the variance in the X-block, with Pearson’s regression coefficient
R2 = 0.95 and root mean square of calibration (RMSEC) = 0.11.

Figure 6a shows the relationship between the measured values and the predicted
ones for the calibration set; all the samples are randomly distributed around the regression
line with a negligible dispersion for the whole range of variability. In Figure 6b, the
relationship between the autoscaled Y-residual and the predicted ones is shown: all the
samples are randomly distributed within ± 3 values that correspond to the 99% confidence
interval. Therefore, it is possible to confirm that the regression model presents a comparable
predictability along the whole concentration interval with a negligible BIAS value.
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Figure 6. PLS output, (a) measured vs. predicted values of tomatine concentration and (b) model residuals.

Finally, the model was validated on the test set. The tomatine contents, predicted
by the PLS regression model, were compared with the experimental data to evaluate the
actual predictability of the proposed model. The performances were evaluated through the
joint analysis of the Pearson’s regression coefficient, R2

pred, and the root mean square error
in prediction, RMSEP:

RMSEP =

√
∑N

i (yi − ŷi)
2

N
(1)

where yi − ŷi is the difference between the measured and predicted value for the i-th
sample in the test set.

The quality parameters calculated for the proposed model confirmed its goodness in
predicting tomatine concentration, from spectral features of tomato extract, showing a high
R2

pred in prediction (0.84) and a low RMSEP (0.27), as well as a negligible BIAS value (0.08).
Table 4 reports the comparison between experimental data obtained via HPLC-ESI-

QqQ-MS/MS determination of tomantine and predicted data through the combined
experimental/statistic approaches: TGA/MLR and the ATR-FT-MIR/PLS model. The
data have been statistically compared via two-way ANOVA followed by Dunnett’s test.
It is evident that the results are not statistically different considering the 95% of confi-
dence interval (Dunnett’s test, p >> 0.05). This result underlines that the two alternative
semi-quantitative methods, TGA/MLR and ATR-FT-MIR/PLS, that do not require any
pre-treatment extraction of the lyophilized and ground tomato material, are reasonable
alternatives to the quantitative HPLC-ESI-QqQ-MS/MS determination (strictly dependent
on a solid/liquid extraction).

In conclusion, the complex changes occurring during the ripening process produce
significant changes in the chemical composition of tomato fruits. TGA and ATR-FT-MIR
analyses revealed significant differences in tomatoes at the different ripening stages, proba-
bly due to the variation in the macromolecule content, as a consequence of the enzymatic re-
actions occurring during fruit growth and maturation. Through chemiometric approaches,
these variations were found to correlate with the glycoalkaloid content. The MLR and
the PLS regression models constructed on the values detected by HPLC-ESI-QqQ-MS/MS
analyses as a reference allowed us to accurately quantify tomatine in the tomato samples
via TGA and ATR-FT-MIR analyses. These two techniques may represent a valid alternative
in the quantification of tomatine in tomatoes, permitting the omission of the pre-treatments
required for chromatographic analyses.
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Table 4. Comparison between HPLC-ESI-QqQ-MS/MS experimental data and TGA and ATR-FT-MIR
predicted data, via MLR and PLS statistic models, respectively. The values within the same row are
not statistically different (two-way ANOVA, Dunnett’s test, p >> 0.05).

Variety Ripening Stage Tomatine

HPLC-ESI-QqQ-
MS/MS

Experimental

TGA/MLR Model
Predicted

ATR-FT-MIR/PLS
Model

Predicted

H1015 Green 1176 ± 54 851 1177
Turning 519 ± 29 481 482

Pink 213 ± 20 296 213

H1301 Green 1829 ± 41 1422 1820
Turning 457 ± 17 470 458

Pink 161 ± 12 229 160

H3402 Green 796 ± 41 830 797
Turning 621 ± 20 813 621

Pink 141 ± 11 189 144

H3406 Green 1993 ± 33 1735 1874
Turning 449 ± 18 544 454

Pink 181 ± 12 207 182

H5108 Green 663 ± 46 550 664
Turning 489 ± 28 486 461

Pink 279 ± 18 278 280

H7204 Green 1231 ± 36 1893 1182
Turning 388 ± 17 302 371

Pink 176 ± 17 133 177

Lyco1 Green 768 ± 63 811 742
Turning 320 ±22 248 325

Pink 242 ± 32 247 239

Fokker Green 1080 ± 102 766 1039

3. Materials and Methods
3.1. Chemicals

All the following solvents were purchased from Sigma-Aldrich (Milan, Italy): ethanol
(EtOH, gradient grade ≥ 99.9%) and methanol (MeOH, gradient grade ≥ 99.9%), glacial acetic
acid (CH3COOH, reagent grade ≥ 99.8%) and formic acid (HCOOH, ACS grade ≥ 98%).
Tomatidine hydrochloride (≥95%) was also purchased from Sigma-Aldrich whereas toma-
tine (>75%) was purchased from TCI Europe (Belgium). Ultra-pure deionized water was
produced using an Acquinity P/7 purifier system (MembraPure GmbH, Berlin, Germany).

3.2. Plant Materials

Eight different vine-ripened industrial varieties of tomato fruits, harvested in summer
2017 at different ripening stages (green, turning, pink and red) were analyzed (Figure 7).
The samples were classified according to the definitions provided by the California Tomato
Commission and United States Department of Agriculture (USDA, [36]): green (the surface
of the tomato is completely green in color, the shade of green may vary from light to dark),
turning (more than 10%, but not more than 30%, of the total surface shows a definite change
in color from green to tannish-yellow, pink, red or a combination thereof), pink (more than
30%, but not more than 60%, of the total surface is pink or red in color).
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The samples were washed with deionized water and dried. Six tomatoes of each vari-
ety at the different ripening stages were homogenized with a blender (Moulinex, 1000 W)
and the homogenates were freeze-dried (VirTis BenchTop Pro lyophilizer, −51 ± 2 ◦C,
1.3 ± 0.5 mbar) until a constant weight (5 days, averaged samples water content, 92 ± 1%).
Lyophilized samples were then ground in porcelain mortar, sieved to a 500 µm particle
size and stored at −20 ± 1 ◦C before the subsequent analyses.

3.3. HPLC-ESI-QqQ-MS/MS Quantification of Glycoalkaloids

Glycoalkaloid extraction and analytical quantification were carried out via HPLC-
ESI-QqQ-MS/MS as previously validated and reported [6,7], with slight modifications.
Briefly, lyophilized samples were extracted by an hydroalcoholic acidic mixture consisting
of EtOH/CH3COOH 1%, (70:30, v/v) and the extraction was ultrasound assisted (two-cycle
extraction on the solid phase). The extracts were dried under nitrogen flow with subsequent
lyophilization and then reconstituted in MeOH 80%. The analytical determination of α-
tomatine and dehydrotomatine was performed by HPLC-ESI-QqQ-MS/MS analyses. Each
sample was extracted in triplicate. The separation was carried out by a reverse-phase
column (Phenomenex Luna C18(2)-HST, 2.5 µm, 100 × 2.0 mm, 5 µm, 100 Å equipped with
a Phenomenex SecurityGuard ULTRA pre-column) thermostatted at 30 ± 1 ◦C and a linear
gradient with (A) H2O and (B) MeOH both acidified with formic acid 0.1% (v/v): linear
gradient 40–90% B in 15 min (flow rate of 0.2 mL/min). The injection volume was 5 µL.
The ESI-MS conditions were optimized through the direct injection of a tomatine standard
solution in MeOH in positive ionization mode and α-tomatine and dehydrotomatine were
quantified by multiple reaction monitoring mode (MRM; collision energy −31 V and scan
time, 500 ms). The analytical quantification was carried out via an external calibration
method: linearity range, 0.5–30 mg/L of tomatine (a mixture of α-tomatine, 85% and
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dehydrotomatine, 13%). The tomatidine was used as an internal standard, taking into
account that it does not naturally occur as aglycone in tomatoes [4,6,7]. Calibration curves
showing equations with R2 > 0.990 were used for the quantification. The limit of detection
(LOD) and limit of quantification (LOQ) were: 0.20//0.05 and 0.50//0.20 mg/L for α-
tomatine and dehydrotomatine, respectively. The results were expressed as mg/kg of
sample dry weight (DW).

All the samples were extracted in triplicate and each extract was analyzed three times
(n = 9). and results were reported as mean ± standard deviation (SD). The significant
differences between means were assessed by analysis of variance (ANOVA) followed by
Tukey’s post hoc test. All the statistical treatments were run on Microsoft Office Excel 365,
implemented with the Real Statistic subroutine, setting the level of significance at p < 0.05.

3.4. Thermogravimetric Analysis (TGA)

The analyses were performed using a Q1000 thermogravimeter (TA, Instruments)
applying a thermal program from 30 to 900 ◦C with a heating ramp of 10 ◦C/min, under
constant nitrogen flow [37]. Three lyophilized aliquots for each variety (15 mg in weight)
were analyzed.

3.5. Attenuated Total Reflection–Fourier Transform Mid-Infrared Spectroscopy (ATR-FT-MIR)

All the samples were analyzed by FTIR using a Nicolet IS50 FTIR spectrophotometer
(Thermo Nicolet Corp., Madison, WI, USA), equipped with a single-reflection germanium
ATR crystal (Pike 16154, Pike Technologies, Madison, WI, USA) and a deuterated triglycine
sulphate (DTGS) detector. The spectra were acquired (32 scans per sample or background)
in the range of 4000–800 cm−1 at a nominal resolution of 4 cm−1. The spectra were corrected
using the background spectrum of air. The analysis was carried out at room temperature by
spreading a lyophilized sample onto the surface of the ATR crystal. Before each sample was
analyzed, the ATR crystal was carefully cleaned with water-wet cellulose tissue and dried
using a flow of pure nitrogen gas. The cleaned crystal was checked spectrally to ensure
that no residue was retained from the previous sample. The spectrum of every sample
was collected 3 times to check the reproducibility and do a statistical analysis. It should be
noted that the individual spectra of the same tomato did not vary in band wavelength and
varied to some extent in the absorbance. However, the characteristic signatures remained
very similar, so averaged spectra are shown in the results.

The frequency scale was internally calibrated with a helium–neon reference laser to
an accuracy of 0.01 cm−1. OMNIC software (OMNIC software system Version 9.8 Thermo
Nicolet) was used for spectra acquisition and manipulation [38].

3.6. Multiple Linear Regression (MLR)

The multiple linear regression (MLR) analysis was performed in Microsoft Office
Excel 365, implemented with the Real Statistic subroutine, plotting tomatine concentration
(Y) determined by HPLC-ESI-QqQ-MS/MS analyses vs. the weight loss detected by TGA
analyses in the range of temperature, 120–200 ◦C (X1) and 200–400 ◦C (X2). Since the
concentration of tomatine ranged over one order of magnitude, the values were converted
in the logarithmic form to make the data distribution symmetrical. To build the MLR
model, the H7204 sample at the red ripening stage was discarded as a leverage outlier,
since its tomatine content was too low. In this way, the distribution of tomatine content
was fairly symmetrical, allowing us to build a reliable regression model.

3.7. Chemometric Approach
3.7.1. Data Processing

The ATR-FT-MIR spectra were imported into UnscramblerX Software (Camo Analytics,
Oslo, Norway) for multivariate data analysis. ATR-FT-MIR spectra absorbances at different
wavelengths were stored in a data matrix with samples placed in rows and reference values
of tomatine placed in the first column. As extensively reported in the literature [39–42],
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it is necessary to split the entire database into two subsets, to evaluate the performance
of the prediction model. The first subset, representing 75% of the available samples, was
used to build the regression model, whilst the second subset, consisting in 25% of total
samples, was used to estimate the actual predictability of the model. Therefore, the dataset
was divided into a calibration set and a test set using random sample selection in order to
avoid a biased model. In addition, an internal cross-validation step was performed using
the venetian blind algorithm to find the best modeling settings (i.e., the number of latent
variables, [43]). This procedure consisted in building, optimizing and testing models to
obtain reliable prediction of tomatine concentration for future extracted tomato samples.

3.7.2. Spectral Pre-Processing

The ATR-FT-MIR spectra of the 22 samples were averaged and the most informative
region was located at low wavenumbers and the regression model was built using the
spectral features from 752 cm−1 to 1800 cm−1. The H7204 sample at the red ripening stage
was also discarded in this case.

Usually, when a regression model is built from spectral data, it is necessary to pre-treat
the input variables to remove useless information resulting from unwanted systematic
variations. In the present work, a combination of standard normal variate (SNV) and
second derivative were used to pre-treat spectral data, removing the baseline offset and
differences in global signal intensity [44–46]. SNV transforms the original data according
to the following equation: (

xij
)

SNV =
xij − xi

si
(2)

where xij represents the absorbance for the j-th wavelength and the i-th sample, xi and
si are the average and the standard deviation of the wavelengths for the i-th spectrum,
respectively. For this reason, SNV transformation is also known as row autoscaling.

A second derivative transformation was also applied to FT-MIR spectra pre-treated
with standard normal variate (SNV) transformation. In more detail, a Savitszi–Golay
algorithm was applied using a second order polynomial and symmetric kernel option with
7 smoothing points [46].

3.7.3. Partial Least Squares Regression (PLSR) and Martens’ Uncertainty Test

Partial least squares regression (PLSR) was used on the calibration set to obtain
the model that was subsequently used to predict tomatine content in industrial tomato
samples. Additionally, in this case, tomatine concentration values were converted into the
logarithmic form to make the distribution fairly symmetrical.

A kernel PLS algorithm was used to correlate the logarithm of tomatine concentration
and spectral features transformed as mentioned previously [47]. The best number of latent
variables that was used in the regression function was estimated for the cross-validation
procedure, taking into account the cross-validation root mean square error (RMSECV)
trend with respect to the number of retained components. In the present work, only three
components were necessary to explain the majority of the total X- and Y-variance. Once
the optimal number of latent variables were chosen, Martens’ uncertainty test [48] was
performed in order to remove unimportant information within spectral data. This powerful
tool allowed us to improve the predictability of the model, retaining only the significant
variable by giving a more reliable estimate of the prediction error when the model was
tested on new samples. Moreover, since a reduced number of spectral variables were used,
a simpler model was generated.

In Martens’ uncertainty test, the regression coefficients Bi for each cross-validation
sub-model, chosen with the venetian blind option, were calculated and the differences from
the regression coefficient of the total model, Btot, were computed. The sum of the squares
of the differences in all sub-models was finally evaluated in order to obtain an expression
of the variance of the Bi estimate for a specific wavelength. With a t-test, the significance
(confidence level of 95%) of the estimate of Bi was calculated and the resulting regression
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coefficients were presented with uncertainty limits. Variables with uncertainty limits that
did not contain the zero were significant variables. This procedure was iteratively repeated
until the difference between RMSEC and RMSECV reached a minimum value.
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