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ABSTRACT The complete genome sequence of Streptococcus pneumoniae strain Rx1, a
Hex mismatch repair-deficient standard transformation recipient, was obtained by combin-
ing Nanopore and Illumina sequencing technologies. The genome consists of a 2.03-Mb
circular chromosome, with 2,054 open reading frames and a GC content of 39.72%.

S treptococcus pneumoniae is a human pathogen and the most important model orga-
nism for studying bacterial genetics and genomics. Widely used laboratory strains

include type 2 Avery’s strain D39 and its derivatives Rx1 and R6, which are standard
transformation recipients (1, 2). We characterized the complete genome sequence of
Rx1, a highly transformable and Hex mismatch repair system-deficient strain. To track
the genomic changes that gave rise to Rx1, we also sequenced the genome of its unen-
capsulated parental strain R36A (Table 1). Strains, which were obtained from the Guild
laboratory collection (3), were grown in tryptic soy broth at 37°C for 4 h until they
reached an optical density at 590 nm (OD590) of 0.8. Pneumococcal cells were harvested
by centrifugation (5,000 � g for 30 min at 4°C), and the cell pellet was dry vortex-mixed
and lysed in 0.1% deoxycholate-0.008% SDS. High-molecular-weight DNA was purified
three times with 1 volume of chloroform-isoamyl alcohol (24:1 [vol/vol]), precipitated in
0.6 volumes of ice-cold isopropanol, and spooled on a glass rod. DNA was resuspended
in 10� saline-sodium citrate (SSC) buffer (1� SSC is 0.15 M NaCl plus 0.015 M sodium ci-
trate) and then adjusted to 1� SSC and maintained at 4°C. The DNA solution was ho-
mogenized using a rotary mixer. Oxford Nanopore Technologies MinION and Illumina
HiSeq 2500 instruments were used for DNA sequencing. DNA was not sheared; size
selection was obtained with 0.8 volumes of AMPure XP beads (Beckman Coulter). The
Nanopore sequencing library was prepared using the SQK-LSK108 kit (Oxford Nanopore
Technologies) following the manufacturer’s instructions, and the sample was sequenced
using an R9.4 flow cell (FLO-MIN106). Postsequencing high-accuracy base calling and
adapter trimming of raw Nanopore reads were performed using Guppy v4.0.11 with con-
figuration dna_r9.4.1_450bps_hac, and base-called reads were analyzed with NanoPlot
v1.18.2 (4). Illumina sequencing was performed at MicrobesNG (University of Birmingham)
using the Nextera XT library preparation kit (Illumina Inc.), followed by paired-end
sequencing. Illumina reads were trimmed using Trimmomatic v0.30 (5) and analyzed with
FastQC v0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Nanopore and
Illumina sequencing generated 3,892 long reads (26,780,859 bp [N50, 18.3 kbp]) and 86,582
read pairs (2 � 250 bp), respectively, for Rx1, whereas 4,771 long reads (27,433,219 bp
[N50, 16.9 kbp]) and 278,462 read pairs were obtained for R36A. Sequence coverage was
31.6� for Rx1 and 67.0� for R36A. A hybrid assembly of Nanopore and Illumina reads was
obtained using Unicycler v0.4.712 (6). Assembly completeness and quality were assessed
using Bandage v.0.8.1 (7) and Ideel (https://github.com/mw55309/ideel), respectively.
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Annotation was performed with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP)
v5.1 (8). Default parameters were used for all tools unless otherwise specified. The Rx1
genome consists of a 2,030,186-bp single circular chromosome containing 2,054 open
reading frames (ORFs), of which 1,813 have a predicted function. The 2,039,955-bp circular
chromosome of R36A contains 2,059 ORFs, of which 1,834 have a putative function. Both

TABLE 1 Genealogy of the S. pneumoniae Rx1 strain

Strain Descriptiona Relevant propertiesb GenBank accession no. (year)a

D39 Avery’s strain, clinical isolate (1916); type 2,
virulent (3, 19–23)

pDP11, Hex1, DpnI1, comC1-comD1, pspC3.1 CP000410.1 (2007) (24)

R36 D39 passaged 36 times in anti-type 2 serum
(1944); rough, avirulent (3, 21, 22)

pDP11, Hex1, DpnI1, comC1-comD1, pspC3.1 Not available

R36A Highly transformable R36 colony
morphology variant (1944); rough,
avirulent (3, 20, 23, 25)

pDP12, Hex1, DpnI1, comC1-comD1, pspC3.1 CP079922 (2021) (this study)

R6 Highly transformable R36A single-colony
isolate (1962); rough, avirulent (3, 26, 27)

pDP12, Hex+, DpnI1, comC1-comD1, pspC3.1 AE007317.1 (2001) (16)

A66 Avery’s strain, clinical isolate (1949); type 3,
virulent (23, 25)

Hex1, DpnI, comC2-comD2, pspC11.4 LN847353.1 (2015) (28)

SIII-N R36A transformed with A66 DNA (1949);
type 3, virulent (20, 23, 25, 29)

comC1-comD1, pspC3.1 Not available

Rx Spontaneous rough derivative of R36A
(1959); reduced type 3 capsule
production, avirulent (3, 17, 23, 30)

pDP12, Hex2 (HexB2), comC1-comD1, pspC3.1 Not available

Rx1 Highly transformable derivative of Rx (1959);
reduced type 3 capsule production (Ugd
mutant), avirulent (3, 31)

pDP12, Hex2 (HexB2), DpnI2 (DpnC2), comC1-
comD1, pspC3.1’

CP079923 (2021) (this study)

aThe year of the first strain description (except for the D39 isolation year) or of the sequence release is reported in parentheses.
bpDP1 is a 3,161-bp cryptic plasmid (32). Hex is the DNA mismatch repair system encoded by hexA and hexB (33). DpnI is a restriction system composed of the DpnI/DpnC
endonuclease and DpnD (34). comC-comD competence genes encode the competence-stimulating peptide (CSP) and its ComD receptor (35–38). pspC encodes the
virulence surface protein PspC (39, 40).

FIG 1 S. pneumoniae capsule locus. Rx1 harbors a type 3 capsule locus acquired by A66 DNA through a double crossover between IS630-SpnI and aliA. At
the 39 end, recombination produced the insertion of an ISL3 transposase and a 950-bp deletion of the aliA 59 end, as in the A66 capsule locus. IS1548
identifies (i) a 59 fragment, common to all serotypes (14), that contains wzg and wzh pseudogenes and wzd and wze genes and is not involved in type 3
capsular synthesis (15) and (ii) a 39 fragment containing ugd/cap3D/cap3A UDP-glucose dehydrogenase gene, wchE/cps3S/cap3B synthase gene, galU/cps3U/
cap3C, and pgm/cps3M/cap3D genes involved in UDP-glucose biosynthesis (15–17). The nucleotide change g.317,495C.T in ugd/cps3A/cps3D (indicated
with an asterisk) causes p.R320C in the UDP-glucose dehydrogenase UDP-binding domain. The type 2 capsule locus of R36A harbors a 7,505-bp deletion
involving the 39 end of wzg/cps2A, seven genes (namely, wzh/cps2B, wzd/cps2C, wze/cps2D, wchA/cps2E, wchF/cps2T, wchG/cps2F, and wchH/cps2G), and the
59 end of wzy/cps2H (18). The deletion event left an inverted 25-bp fragment (indicated with an open box) belonging to the lost wzg/cps2A 39 end.
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genomes have (i) a GC content of 39.72%, (ii) 58 tRNA genes, 3 rRNA operons, and 3 struc-
tural RNAs, (iii) a 36.6-kb pneumococcal pathogenicity island 1 (PPI1) (9), (iv) prophage
remnants, and (v) remnants of the integrative and conjugative element Tn5253 (10–12).
Rx1 and R36A capsule loci are schematized in Fig. 1. Rx1 harbors type I restriction-modifica-
tion system SpnD39III variant C, while R36A harbors variant D (13). In Rx1, g.168,614C.A,
g.1,979,527G.A, and g. 1,629,603delA nucleotide changes introduce premature termination
codons in hexB, pspc3.1, and dpnC, respectively.

Data availability. The complete genome sequences of R36A and Rx1 are available
under GenBank accession no. CP079922 and CP079923, respectively. The sequencing
project is available under NCBI BioProject accession no. PRJNA748391. Nanopore and
Illumina sequencing reads are available under Sequence Read Archive (SRA) accession
no. SRR15216323 and SRR15216322, respectively, for R36A and SRA accession no.
SRR15216380 and SRR15216379, respectively, for Rx1.
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