

Genome-Wide Identification and Comparison of Cysteine Proteases in the Pollen Coat and Other Tissues in Maize

OPEN ACCESS

Edited by:

Klára Kosová, Crop Research Institute (CRI), Czechia

Reviewed by:

Ghulam Qanmber, Cotton Research Institute (CAAS), China Chaoyou Pang, Chinese Academy of Agricultural Sciences (CAAS), China Yu-Jin Kim, Kyung Hee University, South Korea

*Correspondence:

Fuju Tai taifuju@henau.edu.cn Wei Wang wangwei@henau.edu.cn Giampiero Cai giampiero.cai@unisi.it

Specialty section:

This article was submitted to Plant Proteomics and Protein Structural Biology, a section of the journal Frontiers in Plant Science

Received: 14 May 2021 Accepted: 24 August 2021 Published: 23 September 2021

Citation:

Li Y, Niu L, Wu X, Faleri C, Tai F, Zhang M, Liu H, Wang W and Cai G (2021) Genome-Wide Identification and Comparison of Cysteine Proteases in the Pollen Coat and Other Tissues in Maize. Front. Plant Sci. 12:709534. doi: 10.3389/fpls.2021.709534 Yanhua Li¹, Liangjie Niu¹, Xiaolin Wu¹, Claudia Faleri², Fuju Tai^{1*}, Man Zhang¹, Hui Liu¹, Wei Wang^{1*} and Giampiero Cai^{2*}

¹ National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China, ² Department of Life Sciences, University of Siena, Siena, Italy

Cysteine proteases, belonging to the C1-papain family, play a major role in plant growth and development, senescence, and immunity. There is evidence to suggest that pollen cysteine protease (CP) (ZmCP03) is involved in regulating the anther development and pollen formation in maize. However, there is no report on the genome-wide identification and comparison of CPs in the pollen coat and other tissues in maize. In this study, a total of 38 homologous genes of ZmCP03 in maize were identified. Subsequently, protein motifs, conserved domains, gene structures, and duplication patterns of 39 CPs are analyzed to explore their evolutionary relationship and potential functions. The cis-elements were identified in the upstream sequence of 39 CPs, especially those that are related to regulating growth and development and responding to environmental stresses and hormones. The expression patterns of these genes displayed remarked difference at a tissue or organ level in maize based on the available transcriptome data in the public database. Quantitative reverse transcription PCR (RT-gPCR) analysis showed that ZmCP03 was preferably expressed at a high level in maize pollen. Analyses by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot, immunofluorescence and immunogold electron microscopy all validated the cellular localization of ZmCP03 in both the pollen coat and pollen cytoplasm. In addition, 142 CP genes from Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and cotton (Gossypium hirsutum), together with 39 maize CPs, were retrieved to analyze their evolution by comparing with orthologous genes. The results suggested that ZmCP03 was relatively conservative and stable during evolution. This study may provide a referential evidence on the function of *ZmCP03* in pollen development and germination in maize.

Keywords: cysteine protease, expression analysis, immunofluorescence microscopy, immunogold electron microscopy, gene duplication, maize pollen, phylogenetic analysis

1

INTRODUCTION

The pollen coat is the outermost surface of pollen grains that contain the haploid male gametes and actively participates in the pollination and fertilization in plants (Zhang et al., 2016). Its composition mainly includes lipids, pigments, proteins, and aromatic compounds, which provide the pollen coat with a hydrophobic feature. Thus, the pollen coat can protect pollen grains from dehydration during pollen release and germination in the stigmatic surface (Edlund et al., 2004; Murphy, 2006; Quilichini et al., 2015; Wu et al., 2015; Zhang et al., 2016).

Previous studies in Brassica, Arabidopsis, and Olea europaea have showed that the pollen coat serves in pollen-stigmatic adhesion, recognition, and hydration and pollen germination through pollen coat-derived proteins, such as S-locus cysteinerich protein 11 (SCR/SP11), pollen coat protein B class, extracellular lipase 4, and caleosin (Pacini and Hesse, 2004; Updegraff et al., 2009; Marshall et al., 2011; Zienkiewicz et al., 2011; Rejón et al., 2016; Wang et al., 2017). In particular, SCR/SP11 plays a vital role in regulating self-incompatibility in Brassica (Schopfer et al., 1999; Takayama et al., 2000; Marshall et al., 2011). Pollen coat protein B class (PCP-Bs) are key regulators of compatible pollen hydration in Arabidopsis. After knocking out AtPCP-B genes, pollen hydration was impaired and pollen tube growth was obviously delayed in *pcp-b* mutants (Wang et al., 2017). In maize, two pollen coat rich-proteins, β-glucanase and xylanase, have been proved to regulate pollen germination and tube growth (Suen et al., 2003; Suen and Huang, 2007). Pollen coat β -expansin 1 (Zea m 1) has been identified as a cell wall-loosening agent (Yennawar et al., 2006), and the pollen tubes of expb1 mutant penetrated through the stigma and the style slower than the wild-type ones (Valdivia et al., 2007, 2009). Up to date, only a small number of pollen coatderived proteins have been identified with definite functions in pollen-stigmatic interactions and pollen germination. Proteomic and bioinformatics analyses have implicated the important role of many functional-unknown pollen coat-derived proteins in maize (Gong et al., 2015; Wu et al., 2015) and rice (Dai et al., 2006). Recently, high-throughput sequencing and bioinformatic analyses have provided comprehensive perspectives in exploring the roles of pollen coat-derived proteins in cotton (Yang et al., 2020).

In the previous study, cysteine protease was found to be present at a high abundance in maize pollen coats (Wu et al., 2015). The enzyme, denoted as ZmCP03, belongs to the papain-like cysteine protease family (subfamily C1A) based on a domain structure analysis (Niño et al., 2020). Previously, ZmCP03 was found in the vacuoles of tapetum cells at a late stage of anther development (Li et al., 2012). Accumulating reports implicate that papain-like cysteine proteases play a role in tapetal programmed cell death (PCD) (Zhang et al., 2014; Shukla et al., 2019), biotic (Niño et al., 2020) and abiotic stresses (Pechan et al., 2000), and seed germination (Lu et al., 2015). For example, in Arabidopsis, a cysteine protease CEP1 has been found to participate in tapetal PCD and pollen development, while the *cep1* mutant and *cep1* overexpression both cause pollen infertility and abnormal tapetal PCD (Zhang et al., 2014).

At present, there is limited information on the role of ZmCP03 in maize pollen development and tube germination, and especially a lack of the genome-wide identification and comparison of cysteine protease (CPs) in pollen coats and other maize tissues. The evolutionary relationships of the CPs in maize and in three other plant species were performed to provide insights into the biological functions of ZmCP03, especially in pollen development and germination.

MATERIALS AND METHODS

Sequence Retrieval From Public Databases

The sequences of ZmCP03 gene and its encoded protein were used as queries to identify the homologous genes and proteins in maize from the National Center for Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov/gene/?term= zea%20mays; February 15, 2021; species, zea mays; 68,633 sequences) using basic logical alignment search tool (BLAST) searches. After removing the redundant and incomplete sequences, 39 unique gene and protein sequences of maize CPs were collected. The sequences of CPs in Arabidopsis (Arabidopsis thaliana) were collected from the TAIR v.10 database (https:// www.arabidopsis.org; February 15, 2021) (Richau et al., 2012), those for rice (Oryza sativa) from the NCBI database (https:// www.ncbi.nlm.nih.gov/gene/?term=rice; February 15, 2021; species, Oryza sativa; 80,075 sequences) (Wang et al., 2018), and those for cotton (Gossypium hirsutum) from Cottongene (https:// www.cottongen.org/organism/Gossypium/hirsutum; July 15, 2021; species, Gossypium hirsutum; 12,877,329 sequences) (Zhang et al., 2019). The definitions of the CP domains were based on a Pfam (PF00112) analysis (http://pfam.xfam.org/), and the domains of maize CPs were examined by Web CD-Search Tool (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb. cgi) (Marchler-Bauer et al., 2017).

Gene Structure and Protein Sequence Analysis of *ZmCP* Genes

The structure of the *ZmCP* genes was created by the Gene Structure Display Server 2.0 (GSDS; http://gsds.gao-lab.org/) (Hu et al., 2015). The physiochemical properties of ZmCPs, especially theoretical isoelectric point (pI), molecular weights (MW), instability index, and grand average of hydropathy (GRAVY) values, were calculated by the ExPASy Protparam tool (https://web.expasy.org/protparam) (Artimo et al., 2012; Qanmber et al., 2019b).

Phylogenetic Tree Construction, Chromosomal Distribution, and Collinearity Analysis of *ZmCP* Genes

The proteins sequences of 39 ZmCPs were aligned using "align by muscle" and the unrooted phylogenetic tree was created by MEGA X with neighbor-joining (NJ) algorithm. The parameters were set on 1,000 replicates for bootstrapping, p-distance, and 50% partial deletion site coverage cut-off (Kumar et al., 2018). The position information of *ZmCPs* on chromosomes was obtained from a gff3-file of maize genome annotation data (https://www.ncbi.nlm.nih.gov/genome/?term=maize) and presented using the TBtools toolkit (Chen et al., 2020). The collinear pairs of the *CP* genes were identified using MCScanX (Wang et al., 2012) and the collinearity map was built using the TBtools toolkit (Chen et al., 2020).

Motif Analysis of ZmCPs and Promoter *cis*-elements Analysis of *ZmCPs*

The protein motifs were analyzed using the MEME (Multiple EM for Motif Elicitation) tool (https://meme-suite.org/tools/meme) (Bailey et al., 2015). The parameters were set as follows: the motif width: 6–80 amino acids; the motif maximum number: 15 (Niu et al., 2020). The 2,000 bp upstream sequence regions of 39 *ZmCP* genes were collected to analyze the promoter *cis*-elements using the database PlantCARE (http://bioinformatics.psb.ugent. be/webtools/plantcare/html/) (Lescot et al., 2002).

Calculation of Ka/Ks Values

The number of synonymous (*Ks*) and non-synonymous (*Ka*) substitutions per site of duplicated cystatin genes were calculated by TBtools (Chen et al., 2020). *Ka/Ks* < 1 means negative selection, Ka/Ks = 1 means neutral selection, and Ka/Ks > 1 means positive selection.

Expression Profiles of the *ZmCP* Genes in Different Tissues

Tissue-specific expression data were collected from MaizeGDB (https://www.maizegdb.org). The expression abundances were determined for replicated mRNA-sequencing datasets from 79 tissues and abiotic (salt stress, drought, and temperature stress) or biotic stress treatments (*Colletotrichum graminicola* and *Cercosporazeina* infection). The transcript abundances of *ZmCPs* were calculated as fragments per kilobase per million mapped fragments (FPKM) in an unstranded mode, a maximum intron length of 60 kb, and utilizing reference bias correction (Hoopes et al., 2019). The heatmap of the tissue-specific expression was created using expression values in different tissues by TBtools (Chen et al., 2020).

RNA Extraction and Quantitative Reverse Transcription PCR (RT-qPCR)

The root, stem, and leaves of maize inbred line B104 were sampled at the three-leaf seedling stage, and pollen grains were sampled at the pollen shed stage. Total RNA was extracted using RNA-Solv[®] reagent (Omega Bio-Tek, Norcross, GA, USA). Single-stranded cDNA was synthesized using a $5 \times$ All-In-One MasterMix with an AccuRT Genomic DNA Removal Kit (Applied Biological Materials Inc., Richmond, Canada) according to the instructions of the manufacturer.

The gene-specific primers of ZmUBI and ZmCP03 were designed using the Primer Premier 5.0 software (http://www.premierbiosoft.com/) and commercially synthesized (Biomed Cooperation, Beijing, China) as follows: ZmUBI, 5'-TAAGCTGCCGATGTGCCTGCG-3'. 5'-CTGAAAGACAGAACATAATGAGCACAG-3'; and

ZmCP03, 5'-AAGAAGCGGGCCAACGTATC-3', and 5'-CCCTGTCGTGATCTTGGTGA-3'. The *ZmUBI* was used as an internal control to normalize the data.

A quantitative reverse transcription PCR (RT-qPCR) was carried out using the StepOnePlusTM Real-Time PCR Instrument Thermal Cycling Block (Applied Bio-systems). The PCR conditions contained an initial denaturation step at 95°C for 5 min, followed by 40 cycles at 95°C for 10 s and 60°C for 30 s. The quantification method $2^{-\Delta\Delta CT}$ (Livak and Schmittgen, 2001) was used to assess the relative expression level of *ZmCP03* in different maize tissues. Data were presented as relative expression (mean \pm SD) from three biological replicates after normalization based on *ZmUBI* expression. Significant differences in expression changes among tissues were analyzed by Student's *t*-test (*p < 0.05, **p < 0.01) in the GraphPad Prism 8.0 software (San Diego, CA, USA).

Preparation of Monoclonal Antibodies and Immunoblot Analysis

A 15 amino acid polypeptide, PVRRDAGKKRANVSS, from N_{115} to N_{130} of ZmCP03 was used to prepare anti-ZmCP03 antibodies. The synthesized peptide was sequenced by a matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis to verify its sequence. Mice were sequentially immunized on days 1, 15, 35, and 56 with the synthesized peptide. Splenocytes were harvested from mice on day 61 and fused with syngeneic myeloma cells to form hybridoma cells, which were selectively cultured. The positive hybridoma cells were then selected and clonally expanded before inoculation into the peritoneal cavity of mice. After 1–2 weeks, mouse ascites was removed and monoclonal antibodies were immunoaffinity purified.

As for immunoblot analysis, protein samples were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (12.5% gel), and electrophoretically transferred onto hydrophilic polyvinylidene fluoride (PVDF) membranes (Hybond-P, Amersham, Uppsala, Sweden). After blocking with bovine serum proteins, the blots were incubated with anti-ZmCP03 (1:5000 dilution) for 1 h. After rinsing, it was incubated with rabbit anti-mouse IgG (1:2000 dilution) labeled with horseradish peroxidase for 1 h and stained by AmershamTM ECLTM prime kit (Cytiva, Marlborough, MA, USA).

Immunofluorescence Microscopy

Pollens were fixed in paraformaldehyde, rinsed, dehydrated, and resin embedded. Sections (150-nm thick) were cut and placed on drops of water on glass slides and dried at 45°C. Sections were blocked with bovine serum albumin (BSA) and incubated with anti-ZmCP03 (1:100 dilution) for 1 h. After washing, sections were incubated with rabbit anti-mouse antibody labeled with fluorescein for 1 h, rinsed, and observed under a fluorescence microscope (Nikon C2-ER; Nikon Corp, Tokyo, Japan).

Immunogold Electron Microscopy

The immunogold electron microscopy localization of ZmCP03 was carried out as in our previous report (Wang et al., 2006). Briefly, pollen grains were fixed with paraformaldehyde, rinsed,

dehydrated, and resin embedded. Ultrathin sections (80-nm thick) were blocked with bovine serum proteins and incubated with anti-ZmCP03 (1:100 dilution) for 1 h. After rinsing, it was incubated with gold particles (10 nm) conjugated with rabbit anti-mouse IgG for 1 h. Sections were sequentially negatively stained with uranyl acetate (10 min) and lead citrate (5 min), rinsed, and examined by transmission electron microscopy (Hitachi HT-7700, Tokyo, Japan).

RESULTS

Biophysical Properties of CPs in Maize

The information about the protein length, MW, pI, and GRAVY values of 39 maize CP proteins is listed in **Table 1**, and the nucleotide and amino acid sequences are provided in **Supplementary Dataset 1**. Based on the instability index, 31 of 39 CPs were stable, whereas the others, including ZmCP03, were instable. Besides, their pIs ranged from 4.73 to 8.36, and eight CPs were alkaline proteins (pI > 7). All of the 39 CPs were hydrophilic with negative GRAVY values.

Evolutionary Analysis of *CP* Genes in Selected Plant Species

A total of 142 CP genes were identified in three plant species (Arabidopsis, cotton, and rice) as papain-like cysteine proteases. Among them, 31 were obtained from Arabidopsis (Richau et al., 2012), 78 from cotton (Zhang et al., 2019), and 33 from rice (Wang et al., 2018).

To examine the evolutionary events in the four plant species, a phylogenetic tree was created by MEGA X (**Figure 1**). The tree was divided into nine subfamilies, similar to the presentation of CPs in cotton (Zhang et al., 2019), namely, the subfamilies responsive to desiccation 21 (RD21), cysteine endopeptidase (CEP), xylem cysteine peptidase (XCP), xylem bark cysteine peptidase 3 (XBCP3), Th1 immune response-associated cysteine protease (THI), senescence-associated gene 12 (SAG12), responsive to desiccation19 (RD19), aleurain-like protease (ALP), and cathepsin B-like (CTB). Therefore, the present study used the same nomenclature as previous studies (Richau et al., 2012; Zhang et al., 2019).

The SAG12 is the largest subfamily, whereas the subfamily XBCP3 had the fewest members (only eight). Previously, GhRD19-7 was in the same group with GhRD19-9 (Zhang et al., 2019), but it fell in the clade with GhRD19-9 in the results, possibly because the phylogenetic tree was built using four different plant species here, whereas the tree in the previous report (Zhang et al., 2019) was created using cotton and Arabidopsis.

Evolutionary Analysis, Motif Composition, and Gene Structure of *ZmCPs*

To reveal the evolutionary relationship of the *ZmCPs*, a multiple sequence alignment of 39 maize CP proteins was carried out and used to construct an unrooted phylogenetic tree. As a result, the ZmCPs were divided into nine groups, namely, SAG12, THI, CEP, XCP, XBCP3, RD21, ALP, and RD19 (**Figure 2A**). Group SAG12 was composed of 12 ZmCPs, group THI had 9 members

(including ZmCP03), group CEP had 6 members, while group XBCP3, ALP, and RD19 all had only one member. A similar phylogenetic tree was created using the maximum likelihood method (**Supplementary Figure 1**).

Furthermore, the conserved domains of ZmCPs were visualized (Figure 2B). All ZmCPs contain the peptidase C1 domain, which is the known typical domain of peptidase family C1 (Rawlings et al., 2010). All ZmCPs also contained the inhibitor I29 domain (MEROPS peptidase inhibitor family I29). The I29 domain is also found at the N-terminus of a variety of peptidase precursors that belong to the MEROPS peptidase subfamily C1A (Groves et al., 1996). It forms an α -helical domain that runs through the substrate-binding site and prevents access. The removal of this region by proteolytic cleavage results in the activation of the enzyme (Rawlings et al., 2010). Besides, six ZmCP proteins (ZmCP27, 28, 30-33) from the subfamily XCPB3 and RD21 had a C-terminal extension domain named the GRAN domain (granulins). Granulins were first found in animals as growth hormones released after wounding events (Bateman and Bennett, 2009; Wang et al., 2018).

Fifteen different motifs with variable amino acid lengths and sequences were identified in 39 ZmCPs by the MEME search tool (https://meme-suite.org/tools/meme) (**Figure 2C**). Of them, motifs 1, 2, 6, and 7 existed in all examined ZmCPs, forming the catalytic triad Cys-His-Asn. The 38 ZmCPs, except for ZmCP37, possessed motifs 4 and 8, which were the conversed domain inhibitor I29 (Wang et al., 2018). The sequence of motif 8 is ExxxRxxFxxNxxxI/VxxxN with one mismatch. Besides, motif 15 was special to the subfamily CEP except for ZmCP37. The sequence of motif 12 is Cx5Cx5CCCx7Cx4CCx6CCx5CCx6Cx6C (the GRAN domain), which existed in the C-terminal extensions of XBCP3 and five members from RD21.

The gene structure analysis showed that 5 genes contained no intron, 21 (most belonging to the subfamilies SAG12 and THI) contained only a single intron, and the remaining 13 contained 2–7 introns (**Figure 2D**). Obviously, the structures of the 39 *ZmCP* genes were similar to those reported in rice (Wang et al., 2018).

Enrichment Analysis of *cis*-elements Motifs in the Promoters of *ZmCP* Genes

The upstream region of a gene, containing the promoter and the binding site of transcription factors, regulates the gene expression. Thus, a *cis*-element analysis helps to understand gene regulation and function (Higo et al., 1998, 1999; Qanmber et al., 2019a). To identify the putative *cis*-acting regulatory DNA elements, the 2,000-bp upstream sequences from the translation start codons of *ZmCP* genes were retrieved and analyzed in the PlantCARE database (Lescot et al., 2002). As a result, the promoters of *ZmCP* genes contained most elements or sites responsive to environmental factors (e.g., light, temperature, and moisture). The existence of defense and stress responsive elements and MYB binding sites suggested that *ZmCPs* genes were involved in drought and anaerobic responsive elements and may play an important role in counteracting abiotic stress (**Figure 3**). The hormone-responsive elements, ~40% of

TABLE 1	Physiochemical	properties	of the identified	ZmCP protei	ns in maize.

No	Gene name	Protein name	Protein ID	Family	Protein size	mW (Da)	pl	Instability index	GRAVY
1	ZmCP01	Uncharacterized protein LOC100382061 precursor	NP_001355124.1	C1	355	39,029	7.64	40.88	-0.472
2	ZmCP02	Low quality protein: ervatamin-B	XP_008653318.3	C1	373	40,870	8.36	38.08	-0.422
3	ZmCP03	Cysteine protease	NP_001146834.1	C1	352	38,089	8.02	51.56	-0.209
4	ZmCP04	Thiol protease SEN102	NP_001150062.1	C1	349	38,111	7.66	31.93	-0.344
5	ZmCP05	Ervatamin-B	XP_008660699.2	C1	359	39,515	6.96	33.53	-0.379
6	ZmCP06	Ervatamin-B	XP_020400118.1	C1	347	38,151	7.57	33.25	-0.522
7	ZmCP07	Cysteine proteinases superfamily protein	XP_008662986.1	C1	390	43,331	5.82	42.92	-0.454
8	ZmCP08	Thiol protease SEN102 precursor	NP_001356222.1	C1	374	39,956	6.33	40.50	-0.258
9	ZmCP09	Vignain	NP_001148894.2	C1	356	38,140	6.83	32.93	-0.165
10	ZmCP10	Cysteine proteinase 1 precursor	NP_001358577.1	C1	371	40,303	6.01	30.76	-0.304
11	ZmCP11	Cysteine proteinase 2 precursor	NP_001105479.2	C1	360	38,959	7.55	23.57	-0.131
12	ZmCP12	Senescence-specific cysteine protease SAG12	NP_001130503.1	C1	354	37,634	4.73	20.78	-0.245
13	ZmCP13	Senescence-specific cysteine protease SAG12	NP_001140922.1	C1	354	37,674	4.80	20.40	-0.248
14	ZmCP14	Vignain	NP_001141984.1	C1	362	38,849	4.87	26.31	-0.291
15	ZmCP15	Cysteine protease 1 isoform X1	XP_035823976.1	C1	340	35,812	8.37	30.79	-0.114
16	ZmCP16	Senescence-specific cysteine protease SAG39	XP_008663073.1	C1	352	37,723	4.73	25.36	-0.291
17	ZmCP17	Senescence-specific cysteine protease SAG39	XP_020398957.1	C1	343	37,085	5.73	21.43	-0.196
18	ZmCP18	Senescence-specific cysteine protease SAG39	XP_008669668.1	C1	343	37,253	5.34	28.42	-0.221
19	ZmCP19	Senescence-specific cysteine protease SAG39	XP_008669672.3	C1	307	33,778	5.15	24.17	-0.424
20	ZmCP20	Senescence-specific cysteine protease SAG39	XP_008669676.1	C1	347	37,191	5.35	13.98	-0.223
21	ZmCP21	Senescence-specific cysteine protease SAG39	XP_020395776.1	C1	340	36,855	5.03	17.02	-0.307
22	ZmCP22	Senescence-specific cysteine protease SAG39	XP_008659446.1	C1	340	36,675	5.09	20.38	-0.296
23	ZmCP23	Senescence-specific cysteine protease SAG39	XP_008659445.1	C1	340	36,754	5.09	21.10	-0.268
24	ZmCP24	Cysteine protease XCP1	NP_001150119.1	C1	385	41,596	4.99	42.46	-0.420
25	ZmCP25	Cysteine protease5	NP_001149806.1	C1	377	41,174	5.08	30.16	-0.398
26	ZmCP26	Cysteine protease XCP1	XP_008646166.1	C1	359	39,129	6.16	31.66	-0.236
27	ZmCP27	Xylem bark cysteine peptidase 3	NP_001141813.1	C1	460	48,740	6.55	41.87	-0.198
28	ZmCP28	Maize insect resistance 2 precursor	NP_001104878.2	C1	493	53,020	5.56	41.58	-0.402
29	ZmCP29	Cysteine protease Mir1	NP_001105571.1	C1	398	42,624	5.05	35.59	-0.356
30	ZmCP30	Putative cysteine protease RD21B	NP_001357489.1	C1	465	49,914	5.75	30.56	-0.308
31	ZmCP31	Cysteine protease 1 precursor	NP_001150196.1	C1	470	50,228	5.47	30.15	-0.260
32	ZmCP32	Insect resistance3	NP_001105993.2	C1	465	50,366	5.07	32.62	-0.405
33	ZmCP33	Cysteine protease 1 precursor	NP_001149658.2	C1	469	50,759	5.04	37.16	-0.411
34	ZmCP34	Uncharacterized protein LOC100272949 precursor	NP_001140873.2	C1	379	41,080	5.90	35.14	-0.419
35	ZmCP35	KDEL-tailed cysteine endopeptidase CEP1	NP_001130571.2	C1	368	17,874	6.47	36.63	-0.434
36	ZmCP36	KDEL-tailed cysteine endopeptidase CEP1	NP_001309915.1	C1	384	42,087	6.28	43.53	-0.612
37	ZmCP37	Uncharacterized protein LOC100284911	NP_001151278.2	C1	377	29,969	5.92	32.62	-0.437
38	ZmCP38	Cysteine proteinases superfamily protein	XP_008671849.1	C1	376	40,720	7.48	32.89	-0.173
39	ZmCP39	Uncharacterized protein	NP_001136636.1	C1	361	39,383	6.37	39.51	-0.156

total elements, including abscisic acid (ABA), salicylic acid, gibberellin, auxin, and methyl jasmonate (MeJA) -responsive elements, were found within the ZmCP gene promoters.

Moreover, 73 elements related to plant growth and development, namely, 23 meristem expression elements, 13 seed-specific regulation elements, 8 endosperm expression elements, 6 circadian control elements, 19 zein metabolism regulation elements, 3 cell cycle regulation elements, and 1 root specific element, were identified within the *ZmCP* gene promoters, indicating that some *ZmCP* genes may regulate plant growth and development.

Chromosomal Location, Collinearity, and Gene Duplication of *ZmCP* Genes

The locations of ZmCP genes were mapped according to the data of gene locus, and they were unevenly distributed on chromosomes (**Figure 4**). Specifically, chromosome 2 contained more ZmCP genes (9), chromosomes 4, 7, and 8 each contained three, and chromosomes 1, 5, 6, 9, and 10 contained two, four, five, four, and five, respectively. Only ZmCP35 was localized on chromosome 3. The target gene ZmCP03 was located on chromosome 1. These indicated that genetic variations existed during the evolutionary process

FIGURE 3 | Promoter *cis*-elements analysis of *ZmCP* genes. (A) The position of elements in ZmCP promoters. (B) The number of occurrences cis-elements in the promoter region of *ZmCP* genes.

TABLE 2 Non-synonymous (Ka)/synonymous (Ks) analysis of ZmCPs in r
--

Duplicated pair	Duplicate type	Ka	Ks	Ka/Ks	Positive selection	
ZmCP01/ZmCP02	Tandenm	0.033075715	0.066598	0.496645	No	
ZmCP22/ZmCP23	Tandenm	0.012837284	0.16599	0.077338	No	
ZmCP28/ZmCP29	Tandenm	0.304310686	0.488655	0.622752	No	
ZmCP01/ZmCP03	Segmental	0.442911131	0.638932	0.693206	No	
ZmCP30/ZmCP31	Segmental	0.042436719	0.36131	0.117453	No	
ZmCP32/ZmCP33	Segmental	0.038677537	0.21077	0.183506	No	

Ka/Ks < 1 means negative selection, Ka/Ks = 1 means neutral selection, and Ka/Ks > 1 means positive selection.

of maize. Similarly, in rice, 33 *OsCPs* were located on 10 chromosomes of 12 chromosomes in an unbalanced pattern (Wang et al., 2018). In cotton, *GhCP* genes were unequally distributed on 21 chromosomes (Zhang et al., 2019). Obviously, the number of *CP* genes differed, and their chromosomal distribution was unequal in the examined plant species.

Duplication is a major driving force for gene expansion during evolution. There are five types of gene duplication in evolution, which are singleton, dispersed, tandem, proximal, and segmental duplication (Zheng et al., 2020). The collinearity of *ZmCP* genes was examined in maize (**Figure 4**). As a result, three pairs (*ZmCP01/ZmCP02*, *ZmCP22/ZmCP23*, and *ZmCP28/ZmCP29*) from *ZmCP* genes were discovered in tandem repeats. Moreover, the three pairs (*ZmCP01/ZmCP03*, *ZmCP30/ZmCP31*, and *ZmCP32/ZmCP33*) probably resulted from the duplicated chromosomal segments, suggesting that *ZmCPs* were expanded by tandem and segmental duplication. There are three types of the preservation of duplicated genes functional divergence during long-term evolution that are neofunctionalization (gaining new functions), sub-functionalization (partition of actual functions), or non-functionalization (loss of actual functions) (Prince and Pickett, 2002). The *Ka* and *Ks* were calculated for six gene pairs to explore whether Darwinian positive selection influenced the divergence of *ZmCP* members after the duplication. The *Ka/Ks* ratio indicates the gene divergence under selection pressure (Hurst, 2002). In maize, all duplicated gene pairs with *Ka/Ks* < 1 indicated negative selection (**Table 2**).

Gene Expression Profile of the *ZmCP* Genes in Different Tissues

To analyze the expression patterns of the ZmCPs, the heatmap of their expression patterns in different maize tissues, including the shoot tip of the vegetative 5th leaf stage (V5), anther at silking stage (R1), primary root at vegetative emergence (VE) and vegetative first leaf stage (V1), pooled leaves from

stage; V9, vegetative 9th leaf stage; V18, vegetative 18th leaf stage; DAP, days after pollination.

vegetative first leaf stage (V1), 11th leaf and 13th leaf at vegetative 9th leaf stage (V9), immature cob at vegetative 18th leaf stage (V18), silk at silking stage (R1), and seed from 4 DAP (days after pollination) (**Figure 5**), were built. The transcriptome data retrieved from MaizeGDB indicated the differential expression patterns of *ZmCP* genes during maize growth and development.

Particularly, ZmCP10, ZmCP11, ZmCP27, and ZmCP32 displayed high expression levels in all examined tissues. ZmCP11 and ZmCP27 had relatively high expression levels in these tissues, especially ZmCP11 in anthers, primary roots (VE and

V1), and *ZmCP27* in leaves (V1). *ZmCP14* and *ZmCP15* represented relatively high expression levels in young leaves but low expression levels in elder leaves. However, *ZmCP01*, *ZmCP02*, and *ZmCP04-07* were highly expressed in old leaves but lowly in young leaves. *ZmCP34* and *ZmCP35* had no expressional information in the primary root and silks and showed very low expression levels in other tissues. *ZmCP26* had no expressional information in the primary root and other organs.

ZmCP03, the gene of interest, showed a tissue-specific expression pattern with unusually high expression levels in anthers but low expression levels in other tissues, suggesting it

ZmCP03 in different organs of maize. Data presented are relative expression (mean \pm SD) from the three biological replicates after normalization based on *ZmUBI* expression levels. Student's *t*-test in the GraphPad Prism 8.0 software was used to compare significant differences (indicated by ** at p < 0.01) in expression levels among different tissues.

may be related with anther development. All members of the subfamily RD21 had high expression levels in anthers, as was the case in cotton (Zhang et al., 2019).

As a comparison with the transcriptome data retrieved from MaizeGDB, the expression levels of ZmCP03 in the root, stem, leaves, and pollen of maize were further analyzed using RT-qPCR. ZmCP03 had a high expression level in pollen grains but a low level in other tissues, consistent with the results of the transcriptome data (**Figure 6**).

To examine the accumulation and localization of ZmCP03 in pollen grains, a monoclonal antibody (anti-ZmCP03) was prepared using a synthetic 15 peptide to immunize mice. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblot analyses revealed the abundant accumulation of ZmCP03 in pollen grains, especially in the pollen coat component (**Figure 7**). In addition, fluorescence microscopy showed distinct bright spots detected on the pollen surface of intact pollen grains (**Figures 8A–C**). The presence of ZmCP03 was further examined by fluorescence microscopy using semi-thin sections of pollen grains. Obviously, ZmCP03 signals were most present on the pollen surface (coat) and in small quantities inside pollen grains (the cytoplasm) (**Figures 8D,E**).

Finally, immunogold electron microscopy was carried out to examine the subcellular localization of maize pollen ZmCP03. Ultrathin sections of maize pollen grains were probed with the anti-ZmCP03. The results clearly demonstrated that ZmCP03 was located on the pollen surface (coat), but particularly in the inner layer of the wall (arrows). Furthermore, ZmCP03 signaling was also in the pollen cytoplasm (**Figures 9B–D**).

DISCUSSION

Several reports investigated the evolutionary relationship of papain-like cysteine proteases (PLCP) family in Arabidopsis

FIGURE 7 | Detection of ZmCP03 in pollen grains of maize. Proteins were separated on an equal amount of pollen fresh weight. (A) Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), 12.5% resolving gel; (B) Immunoblotting, detection with anti-ZmCP03 (1: 5000 dilution). Lanes 1, pollen grains; 2, pollen coats. Asterisks indicate ZmCP03.

(Richau et al., 2012), rubber (Zou et al., 2017), papaya (Liu et al., 2018), rice (Wang et al., 2018), castor bean and physic nut (Zou et al., 2018), and cotton (Zhang et al., 2019), and soybean (Yuan et al., 2020). In maize, a report analyzed the evolutionary relationship of *CP* genes only through building phylogenetic tree (Richau et al., 2012). In the present study, 39 *CP* genes in maize were analyzed using several bioinformatic tools, especially comparing *CP* in pollen and other tissues, to provide insights on the potential function of ZmCP03 in pollen development and germination.

The results here showed that the number of subfamilies of papain-like cysteine protease differed greatly in maize. SAG12 (12 members) and THI (9 members) were the two largest subfamilies, like in rice (Wang et al., 2018). However, the two subfamilies owned much more members in *Ficus carica* (Zhai et al., 2021) and Arabidopsis (Richau et al., 2012), implying that SAG12 may be generated earlier than the formation of individual species. Usually, SAG12 is significantly increased during leaf senescence, thus it is most widely used as a senescence-associated reference gene (James et al., 2018). The CTB subfamily has a negative role in regulating cryo-injury tolerance and cell viability *via* mediating the PCD event in plant cryopreservation in Arabidopsis and *Agapanthus praecox* (Chen et al., 2021). However, no CTB subfamily was identified in maize in the present study, perhaps being lost during evolution.

The results here further showed that the family of papainlike cysteine protease is relatively conservative during the

evolution events based on their motif, conserved domain, and gene structure (Figure 2). All 39 ZmCP proteins are composed of the peptidase C1 domain and inhibitor I29 domain. In the same subfamily, most members have similar exonintron structures, suggesting affinity and the conservation of evolutionary relationships. Meanwhile, segmental duplications and tandem duplications may have the same effect on expanding this family in maize. Ka/Ks < 1 indicates that duplicated gene pairs in ZmCPs were all purified selection, according to the theory that a species is more likely keeping protein as it is (purified selection) rather than a mutation occurring that changes the protein (Hurst, 2002). Moreover, ZmCP genes maintain conserved and stable evolutionary selection, suggesting that their functions were stabilized in maize. However, the CP genes in rice displayed different evolutionary selection ways, especially five out of seven pairs of tandem duplications were positive selection, and segmental duplications belong to purified selection in rice (Wang et al., 2018).

Previously, ZmCP03 was found to be synthesized in the rough endoplasmic reticulum (ER) and processed during or after its transfer to the vacuole at stage 4 of anther development (Li et al., 2012). In Arabidopsis, *AtTH11 (AtCP51)* participates in pollen exine formation and anther development, and the pollen of transgenic CP51-RNAi plants was aborted due to defective exine and early degrading tapetum (Yang et al., 2014).

According to the phylogenetic trees here, ZmCP03 was in the same clade with OsCP12 and in the same group with GhTHI1, GhTHI2, and AtTHI1. As OsCP12 displayed an organ-special expression pattern with a high expression level in anthers (Wang et al., 2018). ZmCP03 was also highly expressed in anthers but low in other tissues (Figure 6). Moreover, it was verified that ZmCP03 was mainly found in the pollen coat and, to a lesser extent, in the cytoplasm (Figures 8, 9). Therefore, both the previous studies (Li et al., 2012) and the present results supported the speculation that ZmCP03 may be related to the PCD of the tapetum and play a role in pollen development and germination.

In addition, the upstream region of the *ZmCP03* contained the MYB binding site involved in drought-inducibility and the abscisic acid (ABA) -responsive element (ABRE), which is recognized as a necessary element controlling ABA-regulated gene expression (Fujita et al., 2005). A previous report indicated that a C1 cysteine protease was highly induced by drought in soybean (Cilliers et al., 2017), suggesting that *ZmCP03* may be involved in the response to drought stress.

In conclusion, we characterized in this study the *CP* genes family in maize at a genome scale using comprehensive bioinformatic tools and further compared with Arabidopsis, cotton, and rice. Particularly, maize *CPs* in pollen coat and other tissues were emphatically compared. The evolutionary

relationship, gene structure and duplication, chromosomal distribution, sequence characteristics, and expression profiles of ZmCP genes suggest that ZmCP03 is relatively conservative and stable in the process of evolution. This study may provide referential evidence on the function of ZmCP03 in maize pollen development and germination.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

WW and GC conceived the research. YL, LN, CF, GC, and MZ performed the experiments. XW, FT, WW, and GC analyzed the data. YL, HL, and WW drafted the manuscript. LN, GC, and WW

REFERENCES

- Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., et al. (2012). ExPASy: SIB bioinformatics resource portal. *Nucleic Acids Res.* 40, W597–W603. doi: 10.1093/nar/gks400
- Bailey, T. L., Johnson, J., Grant, C. E., and Noble, W. S. (2015). The MEME suite. *Nucleic Acids Res.* 43, W39–W49. doi: 10.1093/nar/gkv416

edited the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by the National Natural Science Foundation of China (Grant 31771700).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2021. 709534/full#supplementary-material

Supplementary Figure 1 | The unrooted phylogenetic tree was generated based on the amino acid sequences of 39 ZmCPs using a maximum likelihood method with 1,000 bootstrap values.

Supplementary Dataset 1 | The nucleotide and amino acid sequences of 39 ZmCPs.

Bateman, A., and Bennett, H. P. (2009). The granulin gene family: from cancer to dementia. *Bioessays* 31, 1245–1254. doi: 10.1002/bies.200900086

- Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al. (2020). TBtools: an integrative Toolkit developed for interactive analyses of big biological data. *Mol. Plant.* 13, 1194–1202. doi: 10.1016/j.molp.2020.06.009
- Chen, G., Zhang, D., Pan, J., Yue, J., and Shen, X. (2021). Cathepsin Blike cysteine protease ApCathB negatively regulates cryo-injury tolerance

in transgenic Arabidopsis and Agapanthus praecox. Plant Sci. 308:110928. doi: 10.1016/j.plantsci.2021.110928

- Cilliers, M., Wyk, S. V., Heerden, P. V., Kunert, K. J., and Vorster, B. J. (2017). Identification and changes of the drought-induced cysteine protease transcriptome in soybean (glycine max) root nodules. *Environ. Exp. Bot.* 148, 59–69. doi: 10.1016/j.envexpbot.2017.12.005
- Dai, S., Li, L., Chen, T., Chong, K., Xue, Y., and Wang, T. (2006). Proteomic analyses of *Oryza sativa* mature pollen reveal novel proteins associated with pollen germination and tube growth. *Proteomics* 6, 2504–2529. doi: 10.1002/pmic.200401351
- Edlund, A. F., Swanson, R., and Preuss, D. (2004). Pollen and stigma structure and function: the role of diversity in pollination. *Plant Cell* 16, S84–S97. doi: 10.1105/tpc.015800
- Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., et al. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. *Plant Cell* 17, 3470–3488. doi: 10.1105/tpc.105.035659
- Gong, F., Wu, X., and Wang, W. (2015). Diversity and function of maize pollen coat proteins: from biochemistry to proteomics. *Front. Plant Sci.* 6:199. doi: 10.3389/fpls.2015.00199
- Groves, M. R., Taylor, M. A., Scott, M., Cummings, N. J., Pickersgill, R. W., and Jenkins, J. A. (1996). The prosequence of procaricain forms an alphahelical domain that prevents access to the substrate-binding cleft. *Structure* 4, 1193–1203. doi: 10.1016/S0969-2126(96)00127-X
- Higo, K., Ugawa, Y., Iwamoto, M., and Higo, H. (1998). PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res. 26, 358–359. doi: 10.1093/nar/26.1.358
- Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297–300. doi: 10.1093/nar/27.1.297
- Hoopes, G. M., Hamilton, J. P., Wood, J. C., Esteban, E., Pasha, A., Vaillancourt, B., et al. (2019). An updated gene atlas for maize reveals organ-specific and stress-induced genes. *Plant J.* 97, 1154–1167. doi: 10.1111/tpj.14184
- Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., and Gao, G. (2015). GSDS 2.0: an upgraded gene feature visualization server. *Bioinformatics* 31, 1296–1297. doi: 10.1093/bioinformatics/btu817
- Hurst, L. D. (2002). The Ka/Ks ratio: diagnosing the form of sequence evolution. *Trends Genet.* 18:486. doi: 10.1016/S0168-9525(02)02722-1
- James, M., Poret, M., Masclaux-Daubresse, C., Marmagne, A., Coquet, L., Jouenne, T., et al. (2018). SAG12, a major cysteine protease involved in nitrogen allocation during senescence for seed production in Arabidopsis thaliana. *Plant Cell Physiol.* 59, 2052–2063. doi: 10.1093/pcp/pcy125
- Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* 35, 1547–1549. doi: 10.1093/molbev/msy096
- Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., et al. (2002). PlantCARE, a database of plant *cis*-acting regulatory elements and a portal to tools for *in silico* analysis of promoter sequences. *Nucleic Acids Res.* 30, 325–327. doi: 10.1093/nar/30.1.325
- Li, Y., Suen, D. F., Huang, C. Y., Kung, S. Y., and Huang, A. H. (2012). The maize tapetum employs diverse mechanisms to synthesize and store proteins and flavonoids and transfer them to the pollen surface. *Plant Physiol.* 158, 1548–1561. doi: 10.1104/pp.111.189241
- Liu, J., Sharma, A., Niewiara, M. J., Singh, R., Ming, R., and Yu, Q. (2018). Papainlike cysteine proteases in *Carica papaya*: lineage-specific gene duplication and expansion. *BMC Genomics* 19:26. doi: 10.1186/s12864-017-4394-y
- Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25, 402–408. doi: 10.1006/meth.2001.1262
- Lu, H., Chandrasekar, B., Oeljeklaus, J., Misas-Villamil, J. C., Wang, Z., Shindo, T., et al. (2015). Subfamily-specific fluorescent probes for cysteine proteases display dynamic protease activities during seed germination. *Plant Physiol*. 168, 1462–1475. doi: 10.1104/pp.114.254466
- Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., et al. (2017). CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. *Nucleic Acids Res.* 45, D200–D203. doi: 10.1093/nar/gkw1129
- Marshall, E., Costa, L. M., and Gutierrez-Marcos, J. (2011). Cysteinerich peptides (CRPs) mediate diverse aspects of cell-cell communication

in plant reproduction and development. J. Exp. Bot. 62, 1677–1686. doi: 10.1093/jxb/err002

- Murphy, D. J. (2006). The extracellular pollen coat in members of the *Brassicaceae*: composition, biosynthesis, and functions in pollination. *Protoplasma* 228, 31–39. doi: 10.1007/s00709-006-0163-5
- Niño, M. C., Kang, K. K., and Cho, Y. G. (2020). Genome-wide transcriptional response of papain-like cysteine protease-mediated resistance against *Xanthomonas oryzae*pv. oryzae in rice. *Plant Cell Rep.* 39, 457–472. doi: 10.1007/s00299-019-02502-1
- Niu, L., Chu, H. D., Tran, C. D., Nguyen, K. H., Pham, H. X., Le, D. T., et al. (2020). The GATA gene family in chickpea: structure analysis and transcriptional responses to abscisic acid and dehydration treatments revealed potential genes involved in drought adaptation. J. Plant Growth Regul. 39, 1647–1660. doi: 10.1007/s00344-020-10201-5
- Pacini, E., and Hesse, M. (2004). Cytophysiology of pollen presentation and dispersal. *Flora Morphol. Distribut. Funct. Ecol. Plants* 199, 273–285. doi: 10.1078/0367-2530-00156
- Pechan, T., Ye, L., Chang, Y., Mitra, A., Lin, L., Davis, F. M., et al. (2000). A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other *Lepidoptera*. *Plant Cell* 12, 1031–1040. doi: 10.1105/tpc.12.7.1031
- Prince, V. E., and Pickett, F. B. (2002). Splitting pairs: the diverging fates of duplicated genes. *Nat. Rev. Genet.* 3, 827–837. doi: 10.1038/nrg928
- Qanmber, G., Ali, F., Lu, L., Mo, H., and Yang, Z. (2019a). Identification of *histone* h3 (hh3) genes in *Gossypium hirsutum* revealed diverse expression during ovule development and stress responses. *Genes* 10:355. doi: 10.3390/genes10050355
- Qanmber, G., Liu, J., Yu, D., Liu, Z., Lu, L., Mo, H., et al. (2019b). Genomewide identification and characterization of the *PERK* gene family in *Gossypium hirsutum* reveals gene duplication and functional divergence. *Int. J. Mol. Sci.* 20:1750. doi: 10.3390/ijms20071750
- Quilichini, T. D., Grienenberger, E., and Douglas, C. J. (2015). The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. *Phytochemistry* 113, 170–182. doi: 10.1016/j.phytochem.2014.05.002
- Rawlings, N. D., Barrett, A. J., and Bateman, A. (2010). MEROPS: the peptidase database. *Nucleic Acids Res.* 38, D227–D233. doi: 10.1093/nar/gkp971
- Rejón, J. D., Delalande, F., Schaeffer-Reiss, C., Alché, J. D., Rodríguez-García, M. I., Van Dorsselaer, A., et al. (2016). The pollen coat proteome: at the cutting edge of plant reproduction. *Proteomes* 4:5. doi: 10.3390/proteomes4010005
- Richau, K. H., Kaschani, F., Verdoes, M., Pansuriya, T. C., Niessen, S., Stüber, K., et al. (2012). Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. *Plant Physiol*. 158, 1583–1599. doi: 10.1104/pp.112.194001
- Schopfer, C. R., Nasrallah, M. E., and Nasrallah, J. B. (1999). The male determinant of self-incompatibility in *Brassica. Science* 286, 1697–1700. doi: 10.1126/science.286.5445.1697
- Shukla, P., Gautam, R., Singh, N. K., Ahmed, I., and Kirti, P. B. (2019). A proteomic study of cysteine protease induced cell death in anthers of male sterile tobacco transgenic plants. *Physiol. Mol. Biol. Plants* 25, 1073–1082. doi: 10.1007/s12298-019-00642-y
- Suen, D. F., and Huang, A. H. (2007). Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction. J. Biol. Chem. 282, 625–636. doi: 10.1074/jbc.M608567200
- Suen, D. F., Wu, S. S., Chang, H. C., Dhugga, K. S., and Huang, A. H. (2003). Cell wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style. *J. Biol. Chem.* 278, 43672–43681. doi: 10.1074/jbc.M307843200
- Takayama, S., Shiba, H., Iwano, M., Shimosato, H., Che, F. S., Kai, N., et al. (2000). The pollen determinant of self-incompatibility in *Brassica* campestris. *Proc. Natl. Acad. Sci. U.S.A.* 97, 1920–1925. doi: 10.1073/pnas.040556397
- Updegraff, E. P., Zhao, F., and Preuss, D. (2009). The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex. Plant Reprod. 22, 197–204. doi: 10.1007/s00497-009-0104-5
- Valdivia, E. R., Stephenson, A. G., Durachko, D. M., and Cosgrove, D. (2009). Class B beta-expansins are needed for pollen separation and stigma penetration. Sex Plant Reprod. 22, 141–152. doi: 10.1007/s00497-009-0099-y
- Valdivia, E. R., Wu, Y., Li, L. C., Cosgrove, D. J., and Stephenson, A. G. (2007). A group-1 grass pollen allergen influences the outcome of pollen competition in maize. *PLoS ONE* 2:e154. doi: 10.1371/journal.pone.0000154

- Wang, L., Clarke, L. A., Eason, R. J., Parker, C. C., Qi, B., Scott, R. J., et al. (2017). PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions. *New Phytol.* 213, 764–777. doi: 10.1111/nph.14162
- Wang, W., Milanesi, C., Faleri, C., and Cresti, M. (2006). Localization of group-1 allergen zea m 1 in the coat and wall of maize pollen. *Acta Histochem.* 108, 395–400. doi: 10.1016/j.acthis.2006.06.003
- Wang, W., Zhou, X. M., Xiong, H. X., Mao, W. Y., Zhao, P., and Sun, M. X. (2018). Papain-like and legumain-like proteases in rice: genome-wide identification, comprehensive gene feature characterization and expression analysis. *BMC Plant Biol.* 18:87. doi: 10.1186/s12870-018-1298-1
- Wang, Y., Tang, H., Debarry, J. D., Tan, X., Li, J., Wang, X., et al. (2012). MCScanX: a toolkit for detection and evolutionary analysis of gene syntemy and collinearity. *Nucleic Acids Res.* 40:e49. doi: 10.1093/nar/gkr1293
- Wu, X., Cai, G., Gong, F., An, S., Cresti, M., and Wang, W. (2015). Proteome profiling of maize pollen coats reveals novel protein components. *Plant Mol. Biol. Rep.* 33, 975–986. doi: 10.1007/s11105-014-0812-3
- Yang, Y., Dong, C., Yu, J., Shi, L., Tong, C., Li, Z., et al. (2014). Cysteine Protease 51 (CP51), an anther-specific cysteine protease gene, is essential for pollen exine formation in Arabidopsis. *Plant Cell Tiss. Organ. Cult.* 119, 383–397. doi: 10.1007/s11240-014-0542-0
- Yang, Z., Qanmber, G., Wang, Z., Yang, Z., and Li, F. (2020). Gossypium genomics: trends, scope, and utilization for cotton improvement. *Trends Plant Sci.* 25, 488–500. doi: 10.1016/j.tplants.2019.12.011
- Yennawar, N. H., Li, L. C., Dudzinski, D. M., Tabuchi, A., and Cosgrove, D. J. (2006). Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. *Proc. Natl. Acad. Sci. U.S.A.* 103, 14664–14671. doi: 10.1073/pnas.0605979103
- Yuan, S., Ke, D., Li, R., Li, X., Wang, L., Chen, H., et al. (2020). Genome-wide survey of soybean papain-like cysteine proteases and their expression analysis in root nodule symbiosis. *BMC Plant Biol.* 20:517. doi: 10.1186/s12870-020-02725-5
- Zhai, Y., Cui, Y., Song, M., Vainstein, A., Chen, S., and Ma, H. (2021). Papainlike cysteine protease gene family in Fig (*Ficus carica* L.): genome-wide analysis and expression patterns. *Front. Plant Sci.* 12:681801. doi: 10.3389/fpls.2021. 681801
- Zhang, D., Liu, D., Lv, X., Wang, Y., Xun, Z., Liu, Z., et al. (2014). The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. *Plant Cell* 26, 2939–2961. doi: 10.1105/tpc.114.127282

- Zhang, D., Shi, J., and Yang, X. (2016). Role of lipid metabolism in plant pollen exine development. *SubcellBiochem* 86, 315–337. doi: 10.1007/978-3-319-25979-6_13
- Zhang, S., Xu, Z., Sun, H., Sun, L., Shaban, M., Yang, X., et al. (2019). Genomewide identification of papain-like cysteine proteases in *gossypiumhirsutum* and functional characterization in response to verticillium dahliae. *Front. Plant Sci.* 10:134. doi: 10.3389/fpls.2019.00134
- Zheng, L., Wu, H., Qanmber, G., Ali, F., Wang, L., Liu, Z., et al. (2020). Genomewide study of the GATL gene family in *Gossypium hirsutum* L. reveals that GhGATL genes act on pectin synthesis to regulate plant growth and fiber elongation. *Genes* 11:64. doi: 10.3390/genes11010064
- Zienkiewicz, K., Zienkiewicz, A., Rodríguez-García, M. I., and Castro, A. J. (2011). Characterization of a caleosin expressed during olive (*Olea europaea* L.) pollen ontogeny. *BMC Plant Biol.* 11:122. doi: 10.1186/1471-2229-11-122
- Zou, Z., Huang, Q., Xie, G., and Yang, L. (2018). Genome-wide comparative analysis of papain-like cysteine protease family genes in castor bean and physic nut. *Sci. Rep.* 8:331. doi: 10.1038/s41598-017-18760-6
- Zou, Z., Xie, G., and Yang, L. (2017). Papain-like cysteine protease encoding genes in rubber (*Hevea brasiliensis*): comparative genomics, phylogenetic, and transcriptional profiling analysis. *Planta* 246, 999–1018. doi: 10.1007/s00425-017-2739-z

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Li, Niu, Wu, Faleri, Tai, Zhang, Liu, Wang and Cai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.