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Abstract
The neurosteroid allopregnanolone (3α-	hydroxy-	5α-	pregnan-	20-	one;	AP)	elicits	plei-
otropic	effects	in	the	central	nervous	system,	ranging	from	neuroprotective	and	anti-	
inflammatory functions to the regulation of mood and emotional responses. Several 
lines	of	research	show	that	the	brain	rapidly	produces	AP	in	response	to	acute	stress	
to reduce the allostatic load and enhance coping. These effects not only are likely 
mediated	 by	GABAA receptor activation but also result from the contributions of 
other	mechanisms,	such	as	the	stimulation	of	membrane	progesterone	receptors.	In	
keeping	with	this	evidence,	AP	has	been	shown	to	exert	rapid,	potent	antidepressant	
properties	and	has	been	recently	approved	for	the	therapy	of	moderate-	to-	severe	
postpartum	depression.	In	addition	to	depression,	emerging	evidence	points	to	the	
potential	of	AP	as	a	therapy	for	other	neuropsychiatric	disorders,	including	anxiety,	
seizures,	post-	traumatic	stress	disorder	and	cognitive	problems.	Although	this	evi-
dence	has	spurred	 interest	 in	further	therapeutic	applications	of	AP,	some	investi-
gations suggest that this neurosteroid may also be associated with adverse events 
in	specific	disorders.	For	example,	our	group	has	recently	documented	that	AP	 in-
creases	tic-	like	manifestations	in	several	animal	models	of	tic	disorders;	furthermore,	
our	results	indicate	that	inhibiting	AP	synthesis	and	signalling	reduces	the	exacerba-
tion	of	tic	severity	associated	with	acute	stress.	Although	the	specific	mechanisms	
of	these	effects	remain	partially	elusive,	our	findings	point	to	the	possibility	that	the	
GABAergic	activation	by	AP	may	also	lead	to	disinhibitory	effects,	which	could	inter-
fere	with	the	ability	of	patients	to	suppress	their	tics.	Future	studies	will	be	necessary	
to	verify	whether	these	mechanisms	may	apply	to	other	externalising	manifestations,	
such	as	impulse-	control	problems	and	manic	symptoms.
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1  | INTRODUC TION

The neurosteroid allopregnanolone (3α-	hydroxy-	5α-	pregnan-	20-	
one;	 AP)	 is	 the	 product	 of	 a	 two-	step	 biosynthetic	 process	 from	
progesterone:	the	first	step,	catalysed	by	the	enzyme	5α-	reductase	
(5αR),	 is	 the	 irreversible	 conversion	 of	 progesterone	 into	 5α-	
dihydro-	progesterone	 (DHP);	 the	 second	 step,	 mediated	 by	 3α-	
hydroxysteroid oxidoreductase (3α-	HSOR),	is	the	reduction	of	DHP	
into	AP1	(Figure	1).

This metabolic pathway is expressed in several brain areas im-
plicated	 in	 emotional	 regulation,	 including	 the	 cortex	 and	 limbic	
regions,	 underscoring	 the	 role	 of	 this	 neurosteroid	 in	 affective	
modulation.	 In	addition	to	this	mechanism,	the	same	two	enzymes	
catalyse	the	synthesis	of	other	neurosteroids,	such	as	tetrahydrode-
oxycorticosterone (3α,21-	dihydroxy-	5α-	pregnan-	20-	one;	 THDOC)	
and 3α-	androstanediol	(5α-	androstane-	3α,17β-	diol).2

The	 best-	characterised	mechanism	 of	 action	 of	 AP	 (as	well	 as	
THDOC and 3α-	androstanediol)	 is	the	activation	of	GABAA recep-
tor,3	a	chloride	ion	channel	consisting	of	five	subunits	(out	of	19	dif-
ferent subtypes: six α,	three	β,	three	γ and three ρ	subunits,	and	one	
each of ϵ,	δ,	θ and π	 subunits).	 AP	 binds	 to	 two	 highly	 conserved	
sites	within	GABAA	receptors,	 localised	within	the	transmembrane	
domains of α and β	subunits,	in	a	distinct	position	from	the	benzo-
diazepine site.4,5	The	 strength	and	duration	of	 the	action	of	AP	 is	
also	influenced	by	the	subunit	composition	of	GABAA	receptors.	For	
example,	AP	enhances	either	the	tonic	or	phasic	inhibition	mediated	
by	these	receptors,	depending	on	the	presence	of	δ or γ2	subunits,	
respectively.6-	10	In	addition	to	GABAA	receptor	subunit	composition,	
the	effects	of	AP	vary	depending	on	its	concentrations.	In	the	nano-
molar	range,	AP	acts	as	a	positive	allosteric	modulator	by	prolong-
ing spontaneous chloride currents.11,12	However,	at	concentrations	
higher than 10 μm (such as those that occur in the brain at the end 
of	 the	pregnancy),13	AP	acts	as	a	GABAA	receptor	agonist,	and	 its	
effect is sufficient to suppress excitatory neurotransmission.14

The	mechanisms	of	action	of	AP	are	not	limited	to	GABAA recep-
tors.	For	example,	low	concentrations	of	AP	activate	several	mem-
brane	 progesterone	 receptors	 (mPRs).15	 These	G	 protein-	coupled,	
cell-	surface	receptors	are	expressed	in	several	brain	regions,	such	as	
the	limbic	system,	striatum,	substantia	nigra	and	cerebellum.16 The 
functional	roles	of	mPRs	are	still	poorly	understood,	although	some	
of	these	receptors	have	been	shown	to	 influence	GABAA receptor 
signalling,	by	affecting	its	trafficking17 or facilitating the phosphory-
lation of β3 subunits.18,19	Other	mechanisms	of	action	of	AP	include:

•	 the	activation	of	pregnane-	X-	receptor,20 a nuclear receptor that 
controls the metabolism of xenobiotics.21	The	 interaction	of	AP	

with this receptor has been shown to mediate some of its neuro-
protective and behavioural effects20,22,23;

•	 the	positive	modulation	of	P2X4	purinergic	receptors24;
• the inhibition of nicotinic receptors25;
•	 the	inhibition	of	toll-	like	receptors	2,	4	and	7.26,27

However,	the	specific	contributions	of	each	of	these	receptors	to	
the	behavioural	effects	of	AP	remain	poorly	understood.

Similar	to	the	other	GABAA	receptor	activators,	AP	elicits	potent	
sedative and anticonvulsant effects.28-	32 Recent clinical data show 
that	AP	elicits	potent	antidepressant,	and	anxiolytic	effects.	Indeed,	
brexanolone	(an	exogenous	analogue	of	AP)	was	recently	approved	
by	the	US	Food	and	Drug	Administration	for	the	treatment	of	post-
partum	 depression,33 a condition associated with a physiological 
decline	in	progesterone	and	its	metabolites,34-	36 following the suc-
cessful	results	of	two	multicentre,	double-	blind,	placebo-	controlled	
trials.37	 Notably,	 several	 studies	 have	 documented	 a	 reduction	 in	
plasma	and	cerebrospinal	AP	levels	of	individuals	affected	by	major	
depression.38,39 Similar declines have been documented in anxiety 
and	post-	traumatic	 stress	disorder,40-	42 potentially opening up the 
development	 of	 AP-	based	 treatments	 for	 these	 conditions.	 The	
beneficial	effects	of	AP	are	not	only	 limited	to	epilepsy	and	affec-
tive	disorders,	but	also	may	extend	to	neurodegenerative	disorders,	
likely	given	the	well-	documented	neurogenetic43 and neuroprotec-
tive properties of this neurosteroid.44-	47	In	particular,	several	lines	of	
research	point	to	the	therapeutic	potential	of	AP	for	Alzheimer's	dis-
ease.48,49	Indeed,	AP	administration	once	a	week	for	6	months	was	
found	to	promote	neurogenesis,	reduce	β-	amyloid	accumulation	and	
improve	memory	 and	 learning	 in	 one	of	 the	 best-	validated	 animal	
models	of	Alzheimer's	disease,	the	triple	transgenic	mouse.50

A	detailed	presentation	of	 the	 therapeutic	potential	and	appli-
cations	of	AP	 is	beyond	 the	scope	of	 this	article,	although	several	
excellent reviews are available.32,49,51,52

Given	these	highly	promising	horizons,	it	may	be	tempting	to	re-
gard	AP	as	a	panacea	for	a	broad	array	of	neuropsychiatric	problems.	
Nevertheless,	 just	as	 in	 the	case	of	other	endogenous	compounds	
with	therapeutic	potential,	caution	should	be	advocated	about	over-
generalising	 the	 beneficial	 effects	 of	 AP.	 Although	most	 research	
attention	has	been	devoted	to	the	therapeutic	potential	of	AP	and	
other	neurosteroids,	some	emerging	evidence,	particularly	in	animal	
models,	suggests	that	there	may	be	another	side	of	the	coin.	A	poi-
gnant	example	of	this	concept	is	offered	by	the	potential	role	of	AP	
as a causal factor for dysphoria and negative mood in women with 
premenstrual	dysphoric	disorder	 (PMDD).53 This condition is char-
acterised	by	a	cluster	of	irritability,	aggression,	and	emotional	lability	
during the luteal phase of the menstrual cycle (when progesterone 

F I G U R E  1  Allopregnanolone	(AP)	
synthesis pathway. 5αR,	5α-	reductase;	
DHP,	dihydroprogesterone;	3αHSOR,	3α-	
hydroxysteroid oxidoreductase



     |  3 of 14BORTOLATO eT AL.

levels	 are	exceptionally	high).54	Although	no	 consistent	difference	
in	AP	levels	has	been	shown	between	PMDD-	affected	women	and	
healthy	controls,55-	57 Timby et al58 reported that this condition is as-
sociated	with	alterations	of	AP	sensitivity	over	the	menstrual	cycle.	
Indeed,	 pharmacological	 inhibition	of	5αR by finasteride has been 
proposed as a potential remedy to mitigate symptoms in women 
with	PMDD.59

Another	critical	question	awaiting	experimental	verification	con-
cerns	the	applicability	of	AP	to	conditions	that	 lie	on	the	opposite	
side	of	depression	along	the	affective	spectrum,	such	as	hyperthy-
mia,	hypomania	and	mania.	Several	 studies	have	documented	 that	
treatment	with	canonical	antidepressants,	even	 in	 individuals	with	
unipolar	 depression,	 significantly	 increases	 the	 risk	of	mania.60 To 
the	best	of	our	knowledge,	no	evidence	is	currently	available	on	the	
potential	liability	of	AP	for	these	conditions;	nevertheless,	the	possi-
bility	that	AP	may	also	increase	the	risk	for	this	type	of	switch	should	
not	 be	 regarded	 as	 beyond	 the	 realms	 of	 possibility.	 Indeed,	 ket-
amine,	 comprising	 another	 rapid,	 potent	 antidepressant	 treatment	
(albeit based on a completely different mechanism of action than 
AP),	has	been	recently	reported	to	cause	affective	switch	to	manic	
symptoms	in	bipolar	patients,61-	63 even though this untoward effect 
does not appear to apply to major depression.64

Against	 this	 background,	 work	 performed	 by	 our	 group	 has	
pointed	 to	 the	possible	 implication	of	AP	and	other	neurosteroids	
in	the	pathophysiology	of	tic	disorders,	a	category	of	neurodevelop-
mental	conditions	characterised	by	rapid,	non-	rhythmic	movements	
or	utterances,	typically	executed	in	a	recurrent,	patterned	fashion.65 
Below,	we	 briefly	 summarise	 the	 clinical	 course	 and	 neurobiology	
of	 these	 disorders,	 as	well	 as	 the	 body	 of	 evidence	 that	 supports	
a	 potential	modulatory	 role	 of	 AP	 for	 tic	 severity.	 Finally,	we	 dis-
cuss	what	putative	mechanisms	may	underlie	AP's	implication	in	tic	
disorders and review how these processes may inform the develop-
ment of new therapies for these and other related neuropsychiatric 
problems.

2  | TIC DISORDERS

2.1 | Clinical course and phenomenology of tics

Although	 approximately	 20%	 of	 children	 exhibit	 isolated	 tics,66,67 
these manifestations are not pathological in the majority of cases. 
However,	when	executed	 in	a	chronic,	pervasive	fashion,	 tics	 limit	
functioning	and	can	lead	to	significant	disability,	negatively	impact-
ing	socioemotional	adjustment,	educational	attainment	and	quality	
of life.68,69 The Diagnostic and Statistical Manual of Mental Disorders,	
5th	edition,	lists	three	tic	disorders	among	the	neurodevelopmental	
disorders,	with	onset	before	age	18	years,	which	are	differentiated	
based on tic characteristics and duration criteria65:

•	 Tourette's	 disorder	 (TD),	 characterised	 by	 multiple	 motor	 tics	
and at least one vocal tic which have been present for more than 
1 year;

•	 Persistent	(chronic)	motor	or	vocal	tic	disorder,	characterised	by	
either motor or vocal tics for more than 1 year;

•	 Provisional	tic	disorder,	described	by	single	or	multiple	tics	for	less	
than 1 year.

These	diagnostic	distinctions,	however,	do	not	likely	reflect	neu-
robiological	differences.	Indeed,	it	has	been	argued	that	tic	disorders	
should	be	regarded	as	a	pathological	spectrum.	In	support	of	this	idea,	
most cases of provisional tic disorder evolve into chronic tic disorders 
because they do not remit within 1 year.70 The most disabling tic disor-
der,	TD,	has	a	prevalence	of	0.5%-	1%	in	the	paediatric	population71-	73 
with a marked male preponderance (male:female =	 3-	4:1).74,75 The 
personal burden of TD is complicated by the very high prevalence of 
comorbid	 psychiatric	 disorders,	 including	 attention-	deficit	 hyperac-
tivity	disorder	(ADHD),	obsessive-	compulsive	disorder	(OCD),	anxiety	
and depression.76-	80	Given	 this	 background,	 the	 current	 pharmaco-
therapies for TD remain highly unsatisfactory. The main pharmaco-
logical strategies for TD are dopaminergic antagonists/partial agonists 
and	alpha	2	agonists,81 which are associated with inconsistent effi-
cacy	 and	multiple	 significant	 adverse	effects,	 including	dyskinesias,	
cognitive dulling and metabolic problems.82,83	 More	 recent	 clinical	
trials	targeting	the	dopaminergic	system,	including	dopamine	agonists	
(pramipexole)	and	vesicular	monoamine	transporters	(valbenazine	and	
deutetrabenazine),	have	been	disappointing.84,85

The clinical course of TD follows a typical developmental trajec-
tory,	with	onset	of	tics	around	6	years	of	age,	a	gradual	progression	
reaching	 lifetime	 peak	 tic	 severity	 around	 10-	12	 years86 and sub-
sequent	attenuation	or	remission87,88;	however,	it	is	estimated	that	
about	24%	of	TD	patients	continue	to	experience	moderate	to	severe	
tics throughout adulthood.89	Aside	from	these	diachronic	changes	in	
severity,	 tics	wax	 and	wane	 over	 the	 course	 of	 days	 and	months.	
These	 fluctuations	 impact	 every	 phenomenological	 aspect	 of	 tics,	
namely	 number,	 frequency,	 intensity,	 complexity	 and	 interference	
in daily life.90	Although	 the	biological	 causes	of	 these	 fluctuations	
remain	elusive,	several	lines	point	to	environmental	stress	as	a	cru-
cial	influence	for	tic	severity.	For	example,	ample	evidence	has	doc-
umented that tic severity is associated with the intensity of stressful 
life events.91,92 This relationship has been confirmed by longitudi-
nal	analyses,	which	have	documented	that	cumulative	psychosocial	
stress predicts future tic severity.93	Furthermore,	other	studies	have	
shown	that	tic	severity	is	correlated	with	self-	report	ratings	of	daily	
stress94 and recent negative events.95	Although	these	studies	sup-
port	 the	 conventional	 framework	 that	 acute	 or	 short-	term	 stress	
has	a	detrimental	 impact	on	tic	severity,	more	detailed	analyses	of	
this relationship have recently outlined a more complex picture. 
For	example,	 tics	may	be	particularly	sensitive	to	specific	types	of	
stressors,	such	as	overstimulation,	 intense	emotional	tension,	frus-
tration,	fatigue	and	sleep	loss.96,97	Conversely,	the	Trier	social	stress	
test,	which	is	an	experimental	task	requiring	participants	to	deliver	a	
speech	to	an	unsympathetic	audience,	was	found	to	decrease,	rather	
than	 increase,	 tic	execution.98 These results indicate that the rela-
tionship between stress and tics is multifaceted and specific to indi-
vidual environmental challenges.
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A	 helpful	 framework	 to	 understand	 the	 source	 of	 complexity	
of	 the	 relationship	 between	 stress	 and	 tics	 requires	 discussion	 of	
premonitory	 urges,	 unpleasant	 sensations	 of	 tension	 and	 discom-
fort that precede tic execution and increase the drive to tic.99 The 
execution of tics relieves the negative feelings associated with pre-
monitory urges. The behavioural model of tic maintenance100,101 
posits that tics are negatively reinforced insofar as they reduce the 
discomfort associated with premonitory urges. This perspective is 
supported by preliminary studies on the stress response in TD pa-
tients.	 In	particular,	 several	 studies	have	documented	 that	TD	pa-
tients respond to acute stressors with a magnified activation of the 
hypothalamic-	pituitary-	adrenal	 axis.102,103	However,	 evening	 corti-
sol	levels	were	negatively	correlated	with	tic	severity,103 suggesting 
that tics may be executed as a possible form of maladaptive stress 
coping	in	TD	patients.	In	line	with	this	perspective,	several	patients	
describe their tics as automatic or even voluntary reactions to sup-
press the premonitory urge.104	Although	both	urges	and	tics	can	be	
temporarily	suppressed,	this	volitional	control	is	generally	stressful	
and aggravates urges up to a point in which tics become insuppress-
ible.	From	 this	perspective,	 recent	 studies	have	 shown	 that	 stress	
does	not	intrinsically	 increase	tics,	but	rather	impairs	the	ability	to	
suppress them105 and control premonitory urges. These studies sug-
gest that the relationship between stress and tic severity is likely 
influenced by a complex functional balance between the severity of 
premonitory urges and the ability to suppress tics.

An	 additional,	 yet	 critical	 dimension	 in	 this	 imbalance	 is	 the	
contribution of impulsivity. Several studies have shown that TD is 
characterised by an impairment of inhibitory control of behaviour.106 
Recent	studies	have	shown	that,	in	TD	patients,	tic	severity	was	cor-
related	with	waiting	motor	impulsivity,	as	tested	with	the	four-	choice	

serial reaction time task.107	However,	it	should	be	noted	that	TD	pa-
tients	do	not	show	greater	impulsivity	across	all	cognitive	tasks,108 
suggesting that specific domains of motor impulsivity may drive tics.

2.2 | Neurobiological mechanisms of tics

Several lines of evidence indicate that tic disorders are underpinned 
by a broad set of anatomical and functional alterations within the 
cortico-	basal	ganglia-	thalamo-	cortical	circuitry	(Figure	2).

In	 particular,	 structural	 imaging	 studies	 have	documented	 that	
TD	patients	display	a	slight,	yet	significant,	reduction	of	the	volume	
of	the	dorsal	striatum	(caudate	and	putamen),109 as well as several 
compartments of the cortex.110,111	Functional	imaging	studies	have	
shown that tics are caused by a transient excess of activity of the 
connectivity	between	the	cortex	and	the	basal	ganglia	(and,	in	par-
ticular,	 the	striatum).112 Tic execution is generally preceded by ac-
tivation	of	the	supplementary	motor	and	anterior	cingulate	cortex,	
followed by stimulation of the putamen and the cerebellum.113,114

The molecular and neurobiological causes of these alterations 
remain	poorly	understood,	 even	 though	 several	 studies	have	doc-
umented	 a	 selective	 loss	 in	 cholinergic	 and	 parvalbumin-	positive	
GABAergic	interneurones	in	the	dorsal	striatum	of	individuals	with	
severe TD.115-	117	Building	on	this	evidence,	it	is	possible	that	a	local	
reduction in striatal interneurones (likely a result of genetic and 
early-	life	inflammatory	factors)	may	lead	to	the	formation	of	"focal	
disinhibition	areas"	in	the	dorsal	striatum.118	In	addition,	several	lines	
of	research	have	shown	a	reduction	in	GABA	content	in	the	cortex	of	
TD patients.119,120	Another	critical	factor	in	tic	ontogeny	is	the	over-
activation of dopaminergic neurotransmission in the nigrostriatal 

F I G U R E  2   Schematic presentation of 
the	cortico-	basal	ganglia-	thalamo-	cortical	
(CBGTC)	circuit.	MSN,	medium	spiny	
neurone



     |  5 of 14BORTOLATO eT AL.

pathway,121-	125	which	may	favour	the	emergence	of	off-	target	move-
ments by inhibiting the indirect pathway.126

The	mechanisms	of	 premonitory	 urges	 are	 less	 clear,	 although	
functional imaging studies suggest that these phenomena are driven 
by	connectivity	of	the	motor	cortex,	insula	and	supplementary	motor	
area.127-	129	Overall,	these	data	highlight	that	premonitory	urges	and	
other sensory antecedents of tics are based on the activation of cor-
tical regions involved in the modulation of sensory processing and 
motor output.

Of	 relevance	 to	 the	 present	 discussion,	 several	 studies	 have	
shown that tic suppression and cognitive control of motor be-
haviour are underpinned by the activation of the prefrontal cortex 
(PFC).130-	132	Interestingly,	the	relationship	between	tic	severity	and	
waiting impulsivity is mediated by connectivity between the orbitof-
rontal	cortex	(a	subregion	of	the	PFC	particularly	susceptible	to	the	
adverse	effects	of	stress)	and	the	caudate	nucleus.107

2.3 | Animal models of tic disorders

One of the best research tools for examining the functional and mo-
lecular substrates of tics is provided by animal models.128	However,	
a critical conceptual hurdle in modelling TD is that very few animals 
display	spontaneous	tic-	like	behaviours	with	a	compelling	construct	
and predictive validity.133

One of the few mouse models that exhibits these responses is 
afforded	 by	 D1CT-	7	 mice,	 a	 transgenic	 line	 harbouring	 a	 cholera	
toxin subunit in neurones expressing D1 dopamine receptors.134,135 
A	synopsis	of	the	phenotypes	of	D1CT-	7	and	their	relevance	to	TD	
and comorbid entities is provided in Table 1. These animals display 
short	 (0.05-	0.1	s)	clonic	bursts,	highly	 isomorphic	with	simple	tics.	
Additionally,	D1CT-	7	mice	also	display	other	phenotypes	reminiscent	
of	ADHD	and	OCD,	 including	 hyperlocomotion	 and	 perseverative	
responses.	 In	addition	to	this	face	validity,	D1CT-	7	mice	also	carry	
a	high	degree	of	predictive	validity,	underscored	by	 their	 sensitiv-
ity	 to	hallmark	 therapies	 for	TD,	 such	as	antipsychotics	and	cloni-
dine.136,137	D1CT-	7	mice	respond	to	acute	environmental	stressors	
with	a	marked	exacerbation	of	 tic-	like	behaviours.	Specifically,	we	
found that spatial confinement in a cylinder within the home cage 
leads	to	a	substantial	increase	in	tic-	like	behaviours	and	prepulse	in-
hibition	 (PPI)	deficits.	Both	of	 these	behavioural	 abnormalities	are	
countered	by	benchmark	therapies	for	TD,	such	as	haloperidol	and	
clonidine.136	 Although	 their	 construct	 validity	 as	 a	 TD	model	was	
initially	questioned,137 recent discoveries on tic ontogeny have doc-
umented	that	the	origin	of	tic-	like	responses	 is	based	on	the	same	
type of sensorimotor cortical hyperactivation observed in TD (a de-
tailed	discussion	of	this	issue	is	provided	elsewhere	133).

Aside	 from	the	case	of	D1CT-	7	mice,	 several	questions	 remain	
open on the heuristic criteria to define which behavioural abnormal-
ities in rodents can be used to model tics.138	Models	of	focal	disinhi-
bition,	generated	by	microinjections	of	GABAA receptor antagonists 
(bicuculline	 and	 picrotoxin)	 in	 the	 dorsal	 striatum,139,140 are criti-
cal for validating the causal implication of the proximal ontogenic 

mechanisms	of	tics	because	they	also	engage	in	rapid,	tic-	like	bursts	
of	activation	of	isolated	muscle	groups.	However,	these	models	are	
not well suited for studying tic phenomenology or validate novel 
therapies because they are based only on striatal mechanisms rather 
than	on	the	modulatory	processes	from	other	brain	regions,	such	as	
the	cortex,	midbrain	and	cerebellum.	A	viable	alternative	is	provided	
by spontaneous or pharmacologically induced stereotypies (and 
particularly	grooming,	digging,	and	rearing	sequences).	Just	like	tics,	
these	 responses	 are	 perseverative,	 purposeless,	 can	 be	 increased	
by	 dopaminergic	 agonists	 and	 environmental	 stress,	 and	 respond	
to	most	benchmark	pharmacological	therapies	for	TD.	Another	be-
havioural paradigm used to probe the biological foundation of tic 
disorders	 is	offered	by	PPI,	defined	as	the	attenuation	of	the	star-
tle response that occurs when the eliciting stimulus is preceded by 
a weaker signal.141 PPI is generally used as an operational index of 
sensorimotor	gating,	namely	the	perceptual	domain	that	enables	the	
exclusion of irrelevant information.142 Several premises underscore 
the	translational	relevance	of	PPI	with	respect	to	TD:	first,	PPI	defi-
cits have been documented in TD patients143-	145;	second,	the	biolog-
ical	substrates	of	PPI	overlap	with	the	CBTCG	circuitry146,147;	third,	
this index is impaired by dopaminergic agonists148-	150 and reduced 
by antipsychotic medications149;	and,	fourth,	PPI	is	impaired	by	envi-
ronmental stressors in rodents and humans.151,152

3  | THE ROLE OF AP IN TIC DISORDERS

3.1 | Clinical findings

Our first exploration of the potential involvement of neurosteroids 
in	the	ontogeny	of	tic	disorders	came	from	a	single-	case	observation	
in	a	34-	year-	old	man	affected	by	severe,	 treatment-	refractory	TD,	
characterised	by	explosive	phonic	 tics,	 stereotyped	coprolalia	 and	
self-	injuring	motor	tics,	as	well	as	cleaning	and	checking	compulsions	
and	contamination-	theme	obsessions.153 Initially inspired by previ-
ous findings on the therapeutic effects of the antiandrogen flutamide 
in	TD,154 we used the 5αR inhibitor finasteride (5 mg day-	1),	which	
also	exerts	well-	recognised	antiandrogenic	properties	by	inhibiting	
the conversion of testosterone into the potent androgen dihydrotes-
tosterone	 (DHT).	 Indeed,	 finasteride	 is	 currently	 approved	 for	 the	
therapy	of	conditions	associated	with	high	DHT	levels,	namely	be-
nign	prostatic	hyperplasia	and	male-	pattern	baldness.155 We found 
that finasteride led to a gradual yet marked improvement of vocal 
and,	to	a	lesser	extent,	motor	tics,	with	no	apparent	adverse	event	
other	than	a	modest	decline	in	libido.	Over	the	course	of	18	weeks,	
finasteride	reduced	total	tic	severity	scores	by	approximately	38%.	
However,	upon	treatment	discontinuation,	 the	symptoms	resumed	
abruptly,	 requiring	 rapid	 reinstatement	 of	 the	 therapy.153 This en-
couraging	 result	 led	 us	 to	 conduct	 a	 proof-	of-	concept	 open-	label	
study	with	16	patients,156,157 which confirmed our initial results and 
showed that the ameliorative effects of finasteride reached signifi-
cance	by	week	6	of	therapy,	with	a	plateau	by	the	week	12	week	of	
finasteride	administration.	Importantly,	our	results	documented	that	
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81.2%	of	these	patients	reported	that	their	tic	reduction	reflected	
their improved ability to suppress tics in stressful contexts. Similar 
results were reported in an independent pilot study conducted in 
Taiwan.158	Despite	these	encouraging	results,	our	plans	to	conduct	
a	 double-	blind,	 placebo-	controlled	 trial	 were	 scuttled	 following	
emerging evidence on the increased risk of depression in a subset of 
patients treated with finasteride.159,160

3.2 | Preclinical findings

Our next step was to investigate the neuroanatomic and molecular 
substrates supporting the effect of finasteride in models of TD. To 
this	end,	we	began	testing	the	behavioural	impact	of	this	drug	on	the	
stereotypies	and	PPI	deficits	caused	by	non-	selective	dopaminergic	
agonists in rats.161 Our findings showed that both finasteride and 
other 5αR	inhibitors,	such	as	dutasteride	and	SKF	105111,	elicited	
potent antidopaminergic effects and reversed both stereotypies 
and PPI deficits induced by the dopaminergic agonists apomorphine 
and d-	amphetamine.161 These studies were followed by several 
experiments aimed at locating the neuroanatomical and molecular 
foundations	of	these	effects.	These	follow-	up	studies	documented	
that the antidopaminergic effects of finasteride were supported 
by	 the	PFC	 and	 the	 nucleus	 accumbens	 shell.162	 Furthermore,	we	
showed that finasteride specifically countered the effects of D1 (and 
possibly D3),	 rather	 than	D2	 dopamine	 receptors,	 both	 in	 rats	 and	
mice.163,164	 Interestingly,	 the	 findings	 of	 antidopaminergic	 proper-
ties of finasteride also led to the discovery of other potential thera-
peutic application of 5αR inhibitors in animal models of other motor 
disturbances,	such	as	levodopa-	induced	dyskinesias,165,166 as well as 
in opioid use disorder.167 It is worth noting that the antidopaminer-
gic effects of finasteride are not associated with extrapyramidal side 

effects,	such	as	catalepsy,161 likely a result of the interference with 
D1,	rather	than	D2 dopamine receptor signalling.

Recognising that the effects of finasteride in patients appeared 
to centre around their increased ability to suppress and camouflage 
tics	in	the	presence	of	stress,	we	hypothesised	that	the	mechanisms	
for	finasteride	might	reflect	the	inhibition	of	the	synthesis	of	AP	and	
other	neurosteroids	implicated	in	the	regulation	of	stress	response,	
rather than DHT. This idea was also supported by the findings that 
the	 antipsychotic-	like	 effects	 of	 finasteride	 were	 present	 in	 both	
castrated male162 and female rats.

The	most	convincing	demonstration	of	a	primary	role	of	AP	in	
the regulation of PPI came from our analyses on the sensitivity of 
5αR1	knockout	mice	to	the	PPI-	disrupting	effects	of	D1	receptor	
agonists.168	Similar	 to	 finasteride-	treated	animals,	 these	mice	ex-
hibited no PPI deficits in response to the potent D1 receptor ag-
onist	 SKF	 82958168;	 however,	 these	 effects	 were	 fully	 restored	
following	 treatment	with	AP,	but	not	other	products	of	5αR me-
tabolism,	indicating	that	this	neurosteroid	is	necessary	for	the	TD-	
related effects of D1 receptor stimulation.168 To address whether 
a	 tic-	exacerbating	 stressor	 may	 also	 lead	 to	 TD-	related	 deficits	
through	the	up-	regulation	of	AP	levels,	we	investigated	the	effects	
of	 sleep	 deprivation	 in	 PPI.	 Building	 on	 our	 discovery	 that	 sleep	
deprivation	 impairs	 sensorimotor	 gating,169 we documented that 
this manipulation increases 5αR	 expression	 in	 the	 PFC.	Notably,	
we reported that sleep deprivation reduced PPI by increasing the 
concentration	of	AP	in	the	PFC.	Indeed,	finasteride	reversed	these	
effects,	 whereas	 exogenous	 administration	 of	 AP	 exacerbated	
these deficits.170

Based	on	 these	 findings,	we	 investigated	whether	AP	or	other	
neurosteroids	 might	 be	 implicated	 in	 the	 ontogeny	 of	 tic-	like	 be-
haviours	and	gating	deficits	in	D1CT-	7	mice.	A	synoptic	view	of	the	
results of these experiments is reported in Table 2.

Phenotypes in DICT- 7 mice
Phenotypes in TD 
patients

Face	validity Sudden axial jerks Tics

PPI deficits PPI deficits

Hyperlocomotion Hyperactivity	in	ADHD	(?)

Increased perseverative 
behaviours	(digging,	rearing,	
grooming)

Complusions in OCD

Stress-	induced	exacerbation	of	
jerks and repetitive behaviour

Stress-	induced	
exacerbation of tics

Construct validity Neuropotentiation	of	
somatosensory cortex

Hyperactivity of 
somatosensory cortex 
during urges

Predictive validity Response to D2 receptor 
antagonists

Response to haloperidol 
and pimozide

Response to D2 receptor 
antagonists

Response to ecopipam

Response to clonidine Response to clonidine

Abbreviations: ADHD,	attention-	deficit	hyperactivity	disorder;	OCD,	obsessive-	compulsive	
disorder;	PPI,	prepulse	inhibition.

TA B L E  1   Comparison of phenotypes in 
D1CT-	7	mice	and	Tourette's	disorder	(TD)	
patients
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Our	results	showed	that,	in	this	model,	acute	stress	led	to	a	gen-
eralised	enhancement	of	the	levels	of	progesterone,	DHP	and	AP	in	
the	PFC.	We	investigated	the	systemic	effects	of	these	steroids	in	
TD	but	found	that	only	AP	elicited	behavioural	abnormalities	akin	to	
those observed following spatial confinement.171	Notably,	D1CT-	7	
mice	were	 found	 to	 have	 higher	 baseline	 levels	 of	 AP	 in	 the	 PFC	
compared	 to	 their	wild-	type	controls;	however,	 they	did	not	 show	
any	significant	change	in	the	subunit	expression	of	GABAA receptors 
in	 this	area.	Furthermore,	 the	5αR inhibitor finasteride normalised 
behavioural	alterations	 induced	by	stress	 in	D1CT-	7	mice,	without	
producing	any	such	effects	in	wild-	type	littermates.171	Notably,	the	
same results were observed using the endogenous antagonist of 
AP,	 isoallopregnanolone	 (3β-	hydroxy-	5α-	pregnan-	20-	one,	a	natural	
3β	epimer	of	AP).172	Although	 isoallopregnanolone	has	an	efficacy	
comparable to that of finasteride and does not elicit extrapyramidal 
symptoms,	 it	does	not	produce	the	same	profound	depressogenic-	
like effects observed after finasteride treatment.173 These data 
indicate	that,	unlike	finasteride,	 isoallopregnanolone	may	be	a	via-
ble therapy for reducing the adverse effects of acute stress on tic 
exacerbation.

3.3 | Mechanisms of AP in tic exacerbation

At	present,	the	downstream	mechanisms	by	which	AP	exacerbates	
tic-	like	behaviours	and	 impairs	PPI	 in	 rodent	models	of	TD	remain	
unclear.	 AP	 exerts	 a	 broad	 array	 of	 modulatory	 effects	 on	 dopa-
minergic	transmission	and	signalling,	which	may	help	explain	some	
of	 the	 effects	 observed	 in	 animal	models	 of	 TD.	 For	 example,	AP	
prevents the increase in extracellular dopamine concentrations in-
duced by footshock stress174	but	dose-	dependently	increases	dopa-
mine release in the nucleus accumbens both in relation to baseline 

conditions	and	in	response	to	morphine,	a	potent	rewarding	stimu-
lus.175 This action is particularly notable because it may help explain 
previous	data	 indicating	 that	AP	promotes	motivated	and	 reward-	
directed responses176,177	 and	 reinstates	 ethanol-	seeking	 behav-
iour.178,179	Given	that	the	actions	of	AP	on	dopamine	appear	to	be	
state-	dependent,	it	will	be	essential	to	verify	whether	these	effects	
differ	between	animal	models	of	TD	and	their	controls,	under	normal	
conditions or in the presence of stress.

Our	data	also	point	directly	 to	a	 selective	effect	of	AP	on	 the	
signalling	of	D1	receptors.	Although	ongoing	studies	are	focusing	on	
the	molecular	details	of	this	interaction,	it	should	be	noted	that,	in	
line	with	our	results,	previous	studies	have	also	documented	that	AP	
modulates	some	behavioural	effects	of	D1	receptor	activation,180,181 
and	 both	 progesterone	 and	 AP	 affect	 the	 phosphorylation	 of	
DARPP-	32	(dopamine	and	cAMP-	regulated	phosphoprotein	of	mo-
lecular	weight	32	000),	a	critical	neuronal	phosphoprotein	that	 in-
tegrates signalling information in dopaminoceptive neurones.182,183

Irrespective	of	the	specific	interaction	with	D1	receptors,	the	be-
havioural	outcomes	of	AP	are	likely	a	result	of	the	positive	allosteric	
modulation	of	GABAA	receptors	in	the	PFC.	However,	 it	should	be	
noted	that	our	experiments	showed	that,	unlike	the	genetic	inacti-
vation of 5αR1,	neither	 the	GABAA antagonist bicuculline nor the 
genetic	 knockout	 for	 GABAA δ subunit affected the ability of D1 
receptor agonist to impair PPI.168 These studies suggest that other 
receptors	may	be	implicated	in	the	effects	of	AP.	Of	note,	neuroste-
roidogenic	enzymes	are	co-	localised	with	GABAA receptors in cor-
tical	pyramidal	neurones;	 thus,	high	concentrations	of	AP	 in	 these	
cells may lead to aberrant inhibition of projection neurones in the 
PFC,	 resulting	 in	 greater	 stimulation	 of	 the	 striatum.	 Accordingly,	
stress	 has	 been	 shown	 to	 impair	 the	 function	 of	 the	 PFC.184 This 
framework	would	posit	that	AP	may	reduce	the	inhibitory	connectiv-
ity	of	the	PFC	on	the	striatum,	ultimately	countering	the	mechanism	
of	volitional	tic	suppression	and	facilitating	tic	execution	(Figure	3).	
Alternatively,	AP	may	be	sulfonated	into	AP	sulfate,	which	acts	as	a	
negative	allosteric	modulator	of	NMDA	glutamate	receptors.185

4  | CONCLUSIONS AND FUTURE 
DIREC TIONS

The data summarised in this review show that converging lines of 
evidence	support	the	 implication	of	AP	 (and	possibly	other	neuro-
steroids)	in	the	pathophysiology	of	tic	disorders.	The	most	convinc-
ing	data	from	our	group	suggest	that	AP	may	mediate	the	adverse	
effects	of	acute	stress	on	tic	severity	and,	possibly,	contribute	to	the	
fluctuations	 in	TD	symptoms	by	modulating	 the	ability	of	 the	PFC	
to	inhibit	the	generation	of	tics	in	the	dorsal	striatum.	Although	this	
process provides a compelling explanation of the observed effects of 
finasteride	 in	TD	patients,	 future	endocrinological	and	neuroimag-
ing	studies	are	warranted	to	verify	how	AP	modifies	tic	suppression	
and	its	underlying	neural	patterns.	From	a	therapeutic	perspective,	
these	ideas	may	lead	to	novel	treatments	aimed	at	stabilising	AP	lev-
els in tic disorders. The demasculinising and depressogenic effects 

TA B L E  2  Effects	of	neurosteroids	and	steroidogenesis	inhibitors	
on	tic-	like	behaviours	in	D1CT-	7	mice

Neurosteroids/drugs
Effects on 
DICT- 7 mice

Progesterone

Dihydroprogesterone

Allopregnanolone

Tetrahydrodeoxycorticosterone

Isoallopregnanolone

Testosterone

Dihydrotestosterone

Finasteride	(5αR	inhibitor)

Dutasteride (5αR	inhibitor)

Indomethacin (3α-	HSOR	inhibitor)
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of finasteride raise significant concerns about its application as a 
therapy	in	children,	particularly	given	consideration	of	the	high	co-
morbidity	of	depression	and	anxiety	in	TD	patients;	however,	our	re-
cent data on isoallopregnanolone as a potential therapy with similar 
effectiveness as finasteride172 in mouse models of TD highlight that 
this	endogenous	AP	antagonist	(or	other	compounds	with	a	similar	
mechanism	of	action)	may	be	a	promising	therapeutic	alternative	for	
TD,	given	its	optimal	profile	of	clinical	tolerability	and	safety.186

Another	critical	question	that	will	need	to	be	addressed	by	future	
investigations	concerns	the	possibility	that	the	processes	by	which	AP	
can	exacerbate	tics	may	apply	to	other	neuropsychiatric	conditions,	
and	 in	 particular	 impulse-	control	 problems,	 given	 the	notable	 neu-
robiological overlap between mechanisms of motor impulsivity and 
tic control.107 This possibility is indirectly supported by preliminary 
data indicating that finasteride reduces impulsivity173 and patho-
logical gambling.157	In	addition,	we	recently	documented	that	finas-
teride	 also	 potently	 reduces	 opioid	 self-	administration,167 another 
behavioural	response	highly	influenced	by	impulsivity.	Assuming	that	
AP	can	reduce	the	prefrontal	control	of	striatal	outputs,	this	mech-
anism	may	also	be	responsible	for	a	disinhibitory	effect,	which	may	
account for the exacerbation of impulsive behaviours in response 
to	acute	stress.	From	this	perspective,	 it	 is	worth	noting	that	other	
GABAA	receptor	activators,	such	as	benzodiazepines,	are	occasion-
ally associated with a significant increase of impulsive and external-
ising	behaviour	in	vulnerable	individuals,	including	children.187 These 
disinhibited	 reactions,	 such	 as	 hyperactivity,	 sexual	 disinhibition,	
hostility	and	rage,	are	also	observed	in	response	to	other	GABAergic	
sedatives,	 such	as	alcohol.	These	paradoxical	 reactions	may	 reflect	
differences	 in	GABAA receptor sensitivity or other neurobiological 
differences	in	inhibitory	control.	From	this	perspective,	it	is	interest-
ing	to	note	that	the	effects	of	AP	on	externalising	behaviour	may	vary	

depending	on	the	endogenous	content	of	this	neurosteroid.	For	ex-
ample,	in	dominant	male	mice,	low	doses	of	AP	increase	aggression	by	
approximately	50%188,189;	conversely,	AP	has	anti-	aggressive	effects	
in	 the	mouse	model	 of	 social	 isolation,	which	 is	 accompanied	by	 a	
dramatic	decline	of	AP	brain	levels.190,191

Building	on	these	premises,	we	hypothesise	that,	in	subjects	with	
high	baseline	AP	concentrations,	this	neurosteroid	may	promote	ex-
ternalising	and	impulsive	reactions	to	acute	stress,	which	may	be	par-
ticularly problematic in the presence of other predisposing factors. 
Conversely,	in	individuals	with	low	endogenous	levels	of	AP,	its	use	
may help reduce internalising responses to stress (such as depres-
sive	and	anxious	symptoms)	by	promoting	euthymia	and	eudaimonia.	
This	framework	posits	that	AP	levels	in	the	brain	may	contribute	to	
the dynamic of internalising and externalising styles of the stress re-
sponse.	If	supported	by	experimental	data,	such	a	conceptualisation	
may point to a much more complex role of this neurosteroid in mood 
and	 personality	 regulation.	 More	 importantly,	 this	 direction	 may	
pave	the	way	to	a	new	generation	of	neurosteroid-	based	therapies	
aimed at reattuning our corticolimbic responses to stress and reward.
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