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Abstract: In this work, we investigate whether the performance of pansharpening methods depends
on their input data format; in the case of spectral radiance, either in its original floating-point format or
in an integer-packed fixed-point format. It is theoretically proven and experimentally demonstrated
that methods based on multiresolution analysis are unaffected by the data format. Conversely, the
format is crucial for methods based on component substitution, unless the intensity component
is calculated by means of a multivariate linear regression between the upsampled bands and the
lowpass-filtered Pan. Another concern related to data formats is whether quality measurements,
carried out by means of normalized indexes depend on the format of the data on which they are
calculated. We will focus on some of the most widely used with-reference indexes to provide a
novel insight into their behaviors. Both theoretical analyses and computer simulations, carried
out on GeoEye-1 and WorldView-2 datasets with the products of nine pansharpening methods,
show that their performance does not depend on the data format for purely radiometric indexes,
while it significantly depends on the data format, either floating-point or fixed-point, for a purely
spectral index, like the spectral angle mapper. The dependence on the data format is weak for
indexes that balance the spectral and radiometric similarity, like the family of indexes, Q2n, based on
hypercomplex algebra.

Keywords: data formats; multispectral images; pansharpening; remote sensing; reproducibility;
statistical quality indexes

1. Scenario and Motivations

Among remote sensing image fusion techniques, panchromatic (Pan) sharpening,
or pansharpening, of multispectral (MS) images has recently received considerable atten-
tion [1,2]. Pansharpening techniques take advantage of the complementary characteristics
of spatial and spectral resolutions of MS and Pan data, originated by constraints on the
signal-to-noise ratio (SNR) of broad and narrow bands, to synthesize a unique product that
exhibits as many spectral bands as the original MS image, each with same spatial resolution
as the Pan image.

After the MS bands have been interpolated and co-registered to the Pan image [3],
spatial details are extracted from Pan and added to the MS bands according to the injection
model. The detail extraction step may follow the spectral approach, originally known as
component substitution (CS), or the spatial approach, which may rely on multiresolution
analysis (MRA), either separable [4] or not [5]. The dual classes of spectral and spatial
methods exhibit complementary features in terms of tolerance to spatial and spectral
impairments, respectively [6,7].

The Pan image is preliminarily histogram-matched, that is, radiometrically trans-
formed by a constant gain and offset, in such a way that its lowpass version exhibits mean

Remote Sens. 2021, 13, 4399. https://doi.org/10.3390/rs13214399 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1584-4631
https://orcid.org/0000-0003-3933-2320
https://orcid.org/0000-0002-8984-938X
https://orcid.org/0000-0003-2332-780X
https://doi.org/10.3390/rs13214399
https://doi.org/10.3390/rs13214399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214399
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214399?type=check_update&version=2


Remote Sens. 2021, 13, 4399 2 of 21

and variance equal to those of the component that shall be replaced [8]. The injection
model rules the combination of the lowpass MS image with the spatial detail of Pan. Such a
model is stated between each of the resampled MS bands and a lowpass version of the Pan
image having the same spatial frequency content as the MS bands; a contextual adaptivity
is generally beneficial [9]. The multiplicative injection model with haze correction [10–13]
is the key to improving the fusion performance by exploiting the imaging mechanism
through the atmosphere. The injection model is crucial for multimodal fusion, where the
enhancing and enhanced datasets are produced by different physical imaging mechanisms,
like thermal sharpening [14] and optical and SAR data fusion [15]. In the latter case, since
measures of spectral reflectance and radar reflectivity of the surface cannot be directly
merged, the optical views are enhanced by means of noise-robust texture features extracted
from the SAR image [16].

Remote sensing image data are generally available in packed fixed-point formats,
together with floating-point gains and offsets, a pair for each band of each scene, that
allow floating-point calibrated values to be recovered [17]. While the maximum value of
each band of the scene is mapped onto the largest digital number (DN) of the fixed-point
representation, offsets are generally set equal to the minimum value, such that the active
range of floating-point values of the scene is exactly mapped onto the dynamic range of the
DN representation. If the offsets are taken all equal to zero, the DN and the floating-point
representations differ only by a scaling factor, which, however, may be different from one
band to another in the same scene, thereby originating an alteration in the spectral content
of the data.

A problem seldom investigated in the literature is whether it makes difference if fusion
is accomplished in the packed DN format or in the original floating-point format. In this
work, we are concerned with how the performance of pansharpening methods depends on
their input data format. It is theoretically proven and experimentally demonstrated that
MRA methods are unaffected by the data format, which instead is crucial for CS methods,
unless their intensity component is calculated by means of a multivariate linear regression
between the upsampled bands and the lowpass-filtered Pan, as it is accomplished by the
most advanced CS methods, e.g., [18].

Quality assessment of the pansharpened images is another debated problem. Notwith-
standing achievements over the last years [19–25], the problem is still open, being inherently
ill-posed. A further source of uncertainty, which has been explicitly addressed very sel-
domly [26], is that also the measured quality may depend on the data format. The quality
check often entails the shortcoming of performing fusion with both MS and Pan datasets de-
graded at spatial resolutions lower than those of the originals, in order to use non-degraded
MS originals as quality references [27]. In this study, several widespread with-reference
(dis)similarity indexes are reviewed and discussed in terms of the reproducibility of their
output values towards the data format. We wish to stress that in the present context the
term quality represents the fidelity to a hypothetically available reference, and has no rela-
tionship with the intrinsic quality of the data produced by the instrument, which mainly
depends on the modulation transfer function (MTF) of the multiband system and on the
SNR, due to a mixed noise model, both photon and electronic [28,29].

In an experimental setup, GeoEye-1 and WorldView-2 data are either fused in their
packed 11-bits DN format or converted to spectral radiance before fusion is accomplished,
by applying gain and offset metadata. In the former case, fusion results are converted to
spectral radiance before quality is measured. In the latter case, fusion results are prelim-
inarily converted to DNs. Results exactly match the theoretical investigations. For the
majority of CS fusion methods, which do not feature a regression-based intensity calcula-
tion, results are better whenever they are obtained from floating-point data. Furthermore,
the assessment of nine pansharpened products from as many algorithms, carried out both
on floating-point and on packed fixed-point data, reveals that the quality evaluations may
be misleading whenever they are performed on fixed-point DN formats.
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2. Data Formats and Products

Remote sensing optical data, specifically MS and Pan, are available in spectral radiance
format, that is radiance normalized to the width of the spectral interval of the imaging
instrument, and in reflectance formats. The reflectance, which is implicitly spectral, ranges
in [0,1] and can be defined either as top-of-atmosphere (TOA) reflectance or as surface re-
flectance, also called bottom-of-atmosphere (BOA) reflectance, if it is measured at sea level.
The former is the reflectance as viewed by the satellite and is given by the TOA spectral
radiance rescaled by the TOA spectral irradiance of the Sun. The latter represents the
spectral signature of the imaged surface; its determination requires the estimation, through
parametric modeling and/or measurements, of the upward and downward transmittances
of the atmosphere and of the upward scattered radiance at TOA, also known as path
radiance [30].

Besides the TOA spectral radiance, which is a level-one (L1) product, the TOA re-
flectance, another L1 product, is generally available for systems featuring a nadiral ac-
quisition and a global Earth coverage, like ASTER, Landsat 7 ETM+, Landsat 8 OLI, and
Sentinel-2. On the contrary, extremely high resolution (EHR) systems (IKONOS, QuickBird,
GeoEye-1, WorldView-2/3/4, Pléiades 1AB) perform sparse acquisitions with maneuver-
able acquisition angles and may not have the TOA reflectance format available. The surface
reflectance is a level-two (L2) product and is distributed for global-coverage systems
(OLI, Sentinel-2), only where an instrument network is available for atmospheric measure-
ments [31], though it has been recently shown that robust estimates of surface reflectance
can be achieved through the same data that shall be atmospherically corrected [32].

In order to store and distribute fixed-point data (typically 8 to 16 bits per pixel per
band), more compact and practical than floating-point data, the spectral radiance/reflectance
values are rescaled to fill the 256 to 65,536 digital number (DN) counts of the binary repre-
sentation. A negative bias may be introduced to force the minimum radiance/reflectance
value in the zero DN. If p denotes the wordlength of the fixed point representation and Lmax
(Lmin) the maximum (minimum) spectral radiance value, the conversion rule to DN is:

DN =

⌊
L− Lmin

Lmax − Lmin
× (2p − 1) + 0.5

⌋
. (1)

For each band, the reciprocal of the scaling factor, i.e. (Lmax − Lmin)/(2p − 1), and the
bias changed of sign, i.e., Lmin, which are generally different for each band, are placed in
the file header as gain and offset metadata and are used to restore calibrated floating-point
values from the DNs, which are identical for the three formats, spectral radiance, and
reflectances; only gains and offsets change. In some cases, the offsets are set equal to zero,
for all bands, including Pan, regardless of the actual minimum, Lmin, which implies that
the minimum DN may be greater than zero. This strategy is generally pursued when the
wordlength of the packed DN is 11 bits or more. In the following of this study, we will show
that such a choice is highly beneficial for the reproducibility of pansharpening methods
and quality indexes.

We wish to remark that the packaging of floating-point data into DNs does not penalize
the original precision of the calibrated data, which are obtained starting from the integer
samples produced by the on-board analog-to-digital converter (ADC). Thus, the calibrated
samples exhibit a finite number of floating-point values, which can be accommodated
in a DN of suitable wordlength, comparable to that of the ADC; generally one bit less,
because the ADC span is designed to encompass the dark signal, which is removed before
calibration, and to leave an allowance to prevent saturation.

Eventually, for the kth spectral channel, the following relationships hold between the
floating-point calibrated data, TOA spectral radiance, LTOA, TOA reflectance, ρTOA, and
surface reflectance, ρBOA, and the packed fixed-point DN format that is distributed:
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LTOA
k = αk ·DNk + βk (2a)

ρTOA
k = αTOA

k ·DNk + βTOA
k (2b)

ρBOA
k = αBOA

k ·DNk + βBOA
k (2c)

in which the DNks are the same for the three formats, while the gains, αk, and the offsets,
βk, are constant over the scene and variable from one band to another, including Pan. In
the case of TOA reflectance, αTOA

k and βTOA
k are equal to αk and βk divided by the the solar

irradiance, which cannot be assumed spatially constant if the scene is large. Therefore,
αTOA

k and βTOA
k are not constant over the whole scene, but on the sub-scenes of a partition,

e.g. in square blocks. Analogous considerations hold for αBOA
k and βBOA

k . Without loss
of generality, hereafter we will consider only the TOA spectral radiance in Equation (2a),
which will be simply referred to as spectral radiance (SR). Figure 1a,b show the meaning
of α and β: α is the slope and β the intercept of the inverse trans-characteristic that maps
DN counts onto SR values. For the direct conversion in Figure 1a the slope is 1/α and
the intercept −β/α. So, if gains and offsets are different for the bands of an MS image,
including Pan, Figure 1c shows that the same DN value is mapped onto different values
of SR depending on the band. Thus, there is a spectral alteration, a sort of miscalibration
occurring if the DN counts are not converted back to physical units before their use. As
it clearly appears from Figure 1c, such a miscalibration vanishes if gains and offsets are
identical for each band, including Pan.
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Figure 1. Forward and inverse trans-characteristics for data-format conversion: (a) packed fixed-point DN counts as a
function of floating-point spectral radiance, Equation (1); (b) floating-point spectral radiance as a function of packed fixed-
point DN counts, Equation (2a); (c) inverse trans-characteristic of all MS bands together, including Pan. If the wordlength of
DN is p (p = 8 in the present case), α and β are equal to (Lmax − Lmin)/(2p − 1) and to Lmin, respectively. The intercept in
(a) is equal to −β/α = −Lmin · (2p − 1)/(Lmax − Lmin).

3. Basics of CS and MRA Pansharpening

Classical pansharpening methods can be divided into CS, MRA, and hybrid methods.
The unique difference between CS and MRA is the way to extract the Pan details, either by
processing the stack of bands along the spectral direction or in the spatial domain. Hybrid
methods, e.g., [33,34], are the cascade of CS and MRA, either CS followed by MRA or, more
seldom, MRA followed by CS. In the former case, they are equivalent to MRA that inherits
the injection model from the CS; in the latter case, they behave like CS, with the injection
model borrowed from MRA [8]. Therefore, at least for what concerns the present analysis,
hybrid methods are not a third class with specific properties. The notation used in this
paper will be firstly shown. Afterward, a brief review of CS and MRA will follow.
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3.1. Notation

The math notation used is detailed in the following. Vectors are indicated in bold
lowercase (e.g., x) with the i-th element indicated as xi. 2-D and 3-D arrays are denoted in
bold uppercase (e.g., X). An MS image M = {Mk}k=1,...,N is a 3-D array composed by N
spectral bands indexed by the subscript k. Accordingly, Mk indicates the kth spectral band
of M. The Pan image is a 2-D matrix indicated as P. The MS interpolated and pansharpened
MS bands are denoted as M̃k and M̂k, respectively. Unlike conventional matrix product
and ratio, such operations are intended as product and ratio of terms of the same positions
within the array.

3.2. CS

The class of CS, or spectral, methods is based on the projection of the MS image
into another vector space, by assuming that the forward transformation splits the spatial
structure and the spectral diversity into separate components. The problem may be stated
as how to find the color space that is most suitable for fusion [35].

Under the hypothesis of substitution of a single component that is a linear combination
of the input bands, the fusion process can be obtained without the explicit calculation of
the forward and backward transformations, but through a proper injection scheme, thereby
leading to the fast implementations of CS methods, whose general formulation is [1]:

M̂k = M̃k + Gk ·
(

P(IL) − IL

)
, k = 1, . . . , N (3)

in which k is the band index, G = [G1, . . . , Gk, . . . , GN ] the 3-D array of injection gains,
which in principle may be different for each pixel each band, while the intensity, IL, is
defined as

IL =
N

∑
i=1

wi · M̃i (4)

in which the weight vector w = [w1, . . . , wi, . . . , wN ] is the 1-D array of spectral weights,

corresponding to the first row of the forward transformation matrix [1]. The term P(IL) is P
histogram-matched to IL

P(IL) , (P− µP) ·
σIL

σPL

+ µIL (5)

in which µ and σ denote mean and square root of variance, respectively, and PL is a lowpass
version of P having the same spatial frequency content as IL [8]. Figure 2 shows the typical
flowchart employed by CS methods.

The simplest CS fusion method is the Intensity-Hue-Saturation (IHS) [1], or better its
generalization to an arbitrary number of bands, GIHS, which allows a fast implementation,
given by Equation (3) with unitary injection gains, Gk = 1. The multiplicative or contrast-
based injection model is a special case of Equation (3), in which space-varying injection
gains, G, are defined such that

Gk =
M̃k
IL

, k = 1, . . . , N. (6)

The resulting pansharpening method is described by

M̂k = M̃k +
M̃k
IL
· (P(IL) − IL) = M̃k ·

P(IL)

IL
, k = 1, . . . , N (7)

which, in the case of spectral weights all equal to 1/N, is the widely known Brovey
transform (BT) pansharpening method [1,36].
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Figure 2. Flowchart of a general fusion method belonging to the CS class.

In Gram–Schmidt (GS) [37] spectral sharpening, the fusion process is described by
Equation (3), where the injection gains are spatially uniform for each band, and thus
denoted as {gk}k=1,...,N . They are given by [8]:

gk =
cov(M̃k, IL)

var(IL)
k = 1, . . . , N (8)

in which cov(X, Y) indicates the covariance between X and Y, and var(Y) is the variance of
Y. A multivariate linear regression has been exploited to model the relationship between
the lowpass-filtered Pan, PL, and the interpolated MS bands [1,18],

PL =
N

∑
i=1

ŵi · M̃i + b̂ + ε , ÎL + ε (9)

in which ÎL is the optimal intensity component and ε the least squares (LS) space-varying
residue. The set of space-constant optimal weights, {ŵk}k=1,...,N , and b̂, is calculated as
the minimum MSE (MMSE) solution of Equation (9). A figure of merit of the matching
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achieved by the MMSE solution is given by the coefficient of determination (CD), namely
R2, defined as

R2 , 1− σ2
ε

σ2
PL

(10)

in which σ2
ε and σ2

PL
denote the variance of the (zero-mean) LS residue, ε, and of the

lowpass-filtered Pan image, respectively. Histogram-matching of Pan to the MMSE inten-
sity component, ÎL, should take into account that µP = µPL = µÎL

, from Equation (9). Thus,
from the definition of CD in Equation (10)

P(ÎL) = (P− µP) · R + µP. (11)

This brief review does not include a popular CS fusion method employing principal
component analysis (PCA). The reason is that PCA is a particular case of the more general
GS transformation, in which IL is equal to the maximum-variance first principal component,
PC1, and the injection gains are those of GS, as in Equation (8), [1].

3.3. MRA

The spatial approach relies on the injection of highpass spatial details of Pan into the
resampled MS bands. The most general MRA-based fusion may be stated as:

M̂k = M̃k + Gk ·
(

P(M̃k) − P(M̃k)
L

)
, k = 1, . . . , N. (12)

in which the Pan image is preliminarily histogram-matched to the interpolated kth MS
band [8]

P(M̃k) , (P− µP) ·
σM̃k

σPL

+ µM̃k
(13)

and P(M̃k)
L the lowpass-filtered version of P(M̃k). It is noteworthy that according to either

of Equations (5) and (13), histogram matching of P always implies the calculation of its
lowpass version PL.

According to Equation (12) the different approaches and methods belonging to this
class are uniquely characterized by the lowpass filter employed for obtaining the image PL,
by the presence or absence of a decimator/interpolator pair [38] and by the set of space-
varying injection gains, either spatially uniform, {gk}k=1,...,N or space-varying, {Gk}k=1,...,N .
The contrast-based version of MRA pansharpening is

M̂k = M̃k +
M̃k

P(M̃k)
L

·
(

P(M̃k) − P(M̃k)
L

)

= M̃k ·
P(M̃k)

P(M̃k)
L

, k = 1, . . . , N. (14)

It is noteworthy that, unlike what happens for Equation (7), Equation (14) does not
preserve the spectral angle of M̃k, because the multiplicative sharpening term depends
on k, through Equation (13). Eventually, the projective injection gains derived from GS
(Equation (8)) can be extended to MRA fusion as

gk =
cov(M̃k, PL)

var(PL)
k = 1, . . . , N (15)

whose space varying-version Gk, with statistics calculated locally on a sliding window, coupled
with a pyramid MRA constitutes a popular pansharpening method known as GLP-CBD [1,39].
Figure 3 shows the general flowchart of spatial, a.k.a. MRA, pansharpening methods.
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Figure 3. Flowchart of a typical fusion method belonging to the MRA class. r denotes MS-to-Pan
pixel size ratio, ↓ r decimation by r and ↑ r linear interpolation by r. The dotted block is optional and
switches the à trous analysis into the pyramid analysis [38].

4. Reproducibility of Results of Pansharpening Methods with the Data Format

Here, we derive the conditions that allow CS and MRA pansharpening methods to
attain reproducibility with the input data format. In particular, we will refer to the case of
SR, even though the proof is also valid for reflectance formats:

PSR = αP · PDN + βP

M̃SR
k = αk · M̃DN

k + βk, k = 1, . . . , N
(16)

in which the superscripts SR and DN indicate that the quantity is expressed in SR units
(floating-point) or in DN (fixed-point), respectively.

Upon these premises, we consider a pansharpening method to be reproducible vs.
data-format if:

M̂SR
k = αk · M̂DN

k + βk, k = 1, . . . , N (17)

or, equivalently, if the fusion process preserves the linear affine transformation of the
data-format conversion.
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4.1. CS

The analysis of data-format reproducibility of CS methods is more complicated than
that of MRA methods because the spectral bands are combined together to produce the
intensity component, unlike the band-to-band processing of MRA. Let us start from the
general form of CS methods in Equation (3), considering the projective injection of coef-
ficients of Equation (8) and the intensity component with spectral weights calculated as
MMSE solution of Equation (9):

M̂SR
k = M̃SR

k + gSR
k ·

(
P(ÎSR

L )SR − ÎSR
L

)
, k = 1, . . . , N, (18)

in which

ÎSR
L =

N

∑
i=1

ŵSR
i · M̃SR

i + b̂SR. (19)

From the LS solution of Equation (9), it is easily proven that the following relationships
hold between spectral weights and bias terms in DN and in SR formats:

ŵSR
k = ŵDN

k · αP
αk

, k = 1, . . . , N

b̂SR = αP · b̂DN + βP − αP ·
N

∑
i=1

ŵDN
i · βi

αi

RSR =RDN = R

(20)

It is noteworthy that the degree of matching achieved by the LS solution, given by
Equation (10), is identical for the two formats. Substituting Equation (20) into Equation (19)
yields the relationship between SR and DN intensity components:

ÎSR
L =

N

∑
i=1

ŵSR
i · M̃SR

i + b̂SR

=
N

∑
i=1

ŵDN
i · αP

αi
· (αi · M̃DN

i + βi) + αP · b̂DN + βP − αP ·
N

∑
i=1

ŵDN
i · βi

αi

= αP · (
N

∑
i=1

ŵDN
i · M̃DN

i + b̂DN) + βP

= αP · ÎDN
L + βP

(21)

Hence, the histogram-matching of Pan to ÎSR
L in Equation (11), becomes:

P(ÎSR
L )SR

= (PSR − µPSR) · R + µPSR

= αP ·
[
(PDN + βP/αP − µPDN − βP/αP) · R + µPDN

]
+ βP

= αP · P(ÎDN
L )DN

+ βP.

(22)

Furthermore, the SR and DN injections gains can be related as:

gSR
k =

cov(M̃SR
k , ÎSR

L )

var(ÎSR
L )

=
αk
αP
· cov(M̃DN

k , ÎDN
L )

var(ÎDN
L )

=
αk
αP
· gDN

k .

(23)



Remote Sens. 2021, 13, 4399 10 of 21

Finally, substituting Equations (21)- (22)-(23) into Equation (18), we obtain:

M̂SR
k = M̃SR

k + gSR
k ·

(
P(ÎSR

L )SR − ÎSR
L

)
= αk · M̃DN

k + βk +
αk
αP
· gDN

k · αP ·
(

P(ÎDN
L )DN − ÎDN

L

)
= αk · M̂DN

k + βk.

(24)

It is important to remark that Equation (24) holds only if the relationships of
Equation (20) are satisfied, which implicitly happens to regression-based CS meth-
ods. The unitary injection gain (GIHS) does not affect the reproducibility of fusion if
Equation (20) holds. Conversely, it is easily proven that, when the offsets are nonzero, the
multiplicative injection model of Equation (6) is never reproducible also if Equation (9),
and hence Equation (20), hold. In summary, for CS methods, the key to achieve data-
format reproducibility lies in the relationships of Equation (20) between the spectral
weights calculated in the different data formats, which is implicitly satisfied if the intensity
component is calculated as in Equation (9).

4.2. MRA

Starting from Equation (12), we firstly focus on the detail term and thus set the
band-dependent injection gains all equal to unity:

M̂SR
k = M̃SR

k +

(
P(M̃SR

k )SR − P
(MSR

k )SR
L

)
, k = 1, . . . , N. (25)

Starting from Equation (16), the relationship between histogram-matched Pan, in
either DN or SR format, can be written as:

P(M̃SR
k )SR

= (PSR − µPSR) ·
σM̃SR

k

σPSR
L

+ µM̃SR
k

= αP · (PDN + βP/αp − µPDN − βP/αP) ·
αk
αP
·

σM̃DN
k

σPDN
L

+ αk · µM̃DN
k

+ βk

= αk · P(M̃DN
k )DN

+ βk

(26)

where we have used the following relationships for the mean and standard deviation:
µPSR = αP · µPDN + βP, σPSR

L
= αP · σPDN

L

µM̃SR
k

= αk · µM̃DN
k

+ βk, σM̃SR
k

= αk · σM̃SR
k

, k = 1, . . . , N.
(27)

Finally, Equation (25) can be rewritten as:

M̂SR
k = αk · M̃DN

k + βk + αk ·
(

P(M̃DN
k )DN

+ βk/αk − P
(M̃DN

k )DN
L − βk/αk

)
= αk · M̂DN

k + βk, k = 1, . . . , N.
(28)

In the case of non-unitary injection gains, such as the projective and the multiplicative
coefficients, it is easily proven that the former is independent of the format, analogously
to Equation (23); the latter only if the offsets are zero. In summary, the key to data-format
reproducibility of MRA methods lies in the band-by-band linear histogram matching
operation of Equation (13), thanks to which the sharpening Pan inherits gain and offset
from the MS band that shall be sharpened.
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5. Reproducibility of Quality Indexes Varying with Data Formats

In this section, the most popular statistical similarity/dissimilarity indexes, suitable
for multiband images, will be reviewed and their behavior for DN and calibrated data
formats will be investigated.

5.1. SAM

Spectral angle mapper (SAM) was originally introduced for the discrimination of
materials starting from their reflectance spectra [40]. Given two spectral vectors, v and v̂,
both having N components, in which v = {v1, v2, · · · , vN} is the reference spectral pixel
vector and v̂ = {v̂1, v̂2, · · · , v̂N} is the test spectral pixel vector, SAM denotes the absolute
value of the spectral angle between the two vectors:

SAM(v, v̂) , arccos
(

< v, v̂ >

||v||2 · ||v̂||2

)
. (29)

SAM is usually expressed in degrees and is equal to zero iff the test vector is spectrally
identical to the reference vector, i.e., the two vectors are parallel and may differ only by
their moduli. A global spectral dissimilarity, or distortion, index is obtained by averaging
Equation (29) over the scene. From Equation (2) it is evident that whether Equation (29) is
calculated with the two vectors in DN or SR, makes a difference. The angle measured in
the two formats is identical if the offsets, βk, are all zero and the gains, αk, are the same for
each band. Whenever this does not occur, the angle measured by Equation (29) is different
for the two formats, which is a reasonable conclusion for a spectral distortion measure.

5.2. ERGAS

ERGAS, the French acronym for relative dimensionless global error in synthesis [41], is a
normalized dissimilarity index that offers a global indication of the distortion towards the
reference of a test multiband image, as produced by a pansharpening method:

ERGAS , 100
dh
dl

√√√√ 1
N

N

∑
k=1

(
RMSE(k)

µ(k)

)2

(30)

where dh/dl is the ratio between pixel sizes of Pan and MS, e.g., 1/4, µ(k) is the mean
(average) of the kth band of the reference and N is the number of bands. Low values of
ERGAS indicate high similarity between fused and reference MS data. Since ERGAS is
nothing more than the cumulative normalized root mean square error (NRMSE), multiplied
by the Pan-to-MS scale ratio and expressed in percentage, its value is insensitive to changes
in the spectral gains, αk, of individual bands. Instead, the presence of nonzero band offsets,
βk, produces lower values of the mean, µ(k), and hence values of ERGAS higher than those
with offsets that are all equal to zero.

5.3. Multivariate UIQI

Q2n is the multiband extension of the universal image quality index (UIQI) [42] and
was introduced for quality assessment of pansharpened MS images [43]. Each pixel of an
image with N spectral bands is accommodated into a hypercomplex (HC) number with
one real part and N − 1 imaginary parts.

Let z = z(m, n) and ẑ = ẑ(m, n) denote the HC representation of the reference and
test spectral vectors at pixel (m, n). Analogously to UIQI, namely, Q20 = Q, Q2n may be
written as the product of three terms:

Q2n =
|σzẑ|
σzσẑ

· 2σzσẑ

σ2
z + σ2

ẑ
· 2|z̄|| ¯̂z|
|z̄|2 + | ¯̂z|2 (31)
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the first of which is the modulus of the HC correlation coefficient (HCCC) between z and ẑ.
The second and third terms, respectively, measure contrast changes and mean bias on all
bands simultaneously. Statistics are calculated on square blocks, typically, 32 × 32, and
Q2n is averaged over the blocks of the whole image to yield the global score index. Q2n

takes values in [0,1] and is equal to 1 iff z = ẑ for all pixels. From the definitions of mean,
variance, and covariance of HC random variables, it can be proven that the covariance, and
hence the HCCC, is sensitive to gains, αk, but only if such gains are not equal for all bands.
The contrast-change term is always insensitive to offsets, but not to band-varying gains. In
the presence of nonzero band offsets, βk, also the mean-bias term may change.

Analogously, it can be easily proven that the univariate index UIQI, often calculated
on the individual bands and averaged to yield a unique quality index, is independent
of any choice of gains, also different from one another, but is affected by the presence of
offsets, also equal to one another.

In conclusion, while ERGAS and average UIQI are independent of gains, whichever
they are, all the four indexes measure different values for the two formats, in the presence
of offsets, also equal to one another.

6. Experimental Results and Discussion
6.1. Data Sets

Two test images, acquired by two different platforms, GeoEye-1 and WorldView-2,
have been used in the simulations. In this section, besides describing the two datasets, we
propose an index to measure the spectral alteration of the DN representation and present an
analysis of the solution of the multivariate regression of Equation (9) for the two datasets.

6.1.1. Collazzone Dataset

The GeoEye-1 image has been acquired over the area of Collazzone, a rural locality in
Central Italy, on 13 July 2010. The spatial sampling interval (SSI) is 2 m for MS and 0.5 m
for Pan, resulting in a scale ratio equal to four. The MS image features four spectral bands:
blue (B), green (G), red (R) and near infra-red (NIR). The image size is 512 × 512 pixels
for MS and 2048 × 2048 for Pan. The radiometric resolution of the DN format is 11 bits;
the conversion coefficients to the SR format, extracted from the metadata, are reported in
Table 1. It is noteworthy that the offsets are all equal to zero.

Table 1. Gains and offsets for conversion to SR of GeoEye-1—Collazzone.

GE-1 Pan B G R NIR SIF%

αk 0.0178 0.0250 0.0172 0.0277 0.0096 65.34%
βk 0 0 0 0 0 -

6.1.2. Sydney Dataset

The WorldView-2 image, acquired on 21 August 2012, portrays the city of Sydney,
Australia. The SSI is 2 m for MS and 0.5 m for Pan; hence, the scale ratio is still four. The
MS image comprises eight bands: coastal (C), B, G, yellow (Y), R, red edge (RE), NIR1,
and NIR2. The covered area is 1,048,576 m2, corresponding to MS and Pan image sizes
of 512 × 512 and 2048 × 2048 pixels, respectively. The fixed-point representation of the
data employs 11 bits. Table 2 shows the corresponding radiometric calibration coefficients
obtained from the metadata file. Also in this case the offsets are identically equal to zero.

Table 2. Gains and offsets for conversion to SR of WorldView-2—Sydney.

WV-2 Pan C B G Y R RE NIR1 NIR2 SIF%

αk 0.1331 0.1965 0.2322 0.1542 0.1364 0.1923 0.1155 0.1238 0.0908 60.89%
βk 0 0 0 0 0 0 0 0 0 -
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6.2. Spectral Imbalance Factor

The conversion to SR of DN counts in Equation (2a) has the effect of restoring the
original spectral inter-relationships of the calibrated data that have been lost after integer
packaging. In other words, the integer-valued samples may be spectrally altered, if the
gains and/or offsets are not equal to one another. A measure of such a spectral alteration
can be defined as spectral imbalance factor (SIF):

SIF% ,
αmax − αmin

αmax
· exp

(
βmax − βmin

βmax + c

)
× 100 (32)

where αmin (βmin) and αmax (βmax) are respectively the minimum and the maximum values
of the gains (offsets) of the spectral bands, including Pan; c a machine tolerance to avoid
zero-by-zero divisions. SIF% is zero iff the αk, including αP, are equal to one another and
is independent of the offsets iff they are equal to one another, also if they are all zero. As
reported in Tables 1 and 2, SIF% is equal to 65.35% for the Collazzone dataset and 60.89%
for the Sydney dataset. The presence of nonzero offsets would increase SIF%, as it appears
from Equation (32). Note that, for both datasets, the minimum gain is that of the NIR
channel (NIR2 for WorldView-2), the maximum gain is on the red channel for Collazzone
and on the blue one for Sydney, which means that the red/blue bands have been the most
compressed, in order to fit the 11-bit DN representation; the NIR/NIR2 bands, the least.

6.3. Analysis of the LS Intensity Component

The LS solution of the multivariate linear regression of Equation (9) is now discussed
for the two test datasets. Tables 3 and 4 report the MMSE spectral weights of each band
and the bias coefficient, when it is included or not, for both the DN and the SR formats. All
the experimental values match the theoretical investigations of Equation (20); in particular,
the CD, also called R2, is identical for the two formats. The presence or absence of the bias
term produces ŵk somewhat different in the two cases, but this has a very limited impact
on the degree of matching, measured by CD, which changes on the fourth decimal digit.
This happens because in both the test images offsets are not present, i.e., they are identically
zero. In the presence of nonzero offsets, the regression must include the bias term, which
compensates for the offsets of the DN format, according to Equation (20). Note that the
sum of the spectral weights slightly exceeds one, in all cases, less for GE-1 than for WV-2.
This result is in agreement with the layout of spectral bands of the two instruments, since
weights summing to one would indicate that the spectral width of Pan is equal to the total
span of the accompanying MS bands.

Table 3. MMSE coefficients of the multivariate linear regression between interpolated MS bands and
lowpass-filtered Pan, both in either DN or SR format, for the GeoEye-1 Collazzone image. The bias, b̂,
is either set equal to zero or left as a further variable to optimize.

GE-1 B G R NIR b̂ ∑ ŵk CD

ŵDN
k 0.0637 0.4398 0.4609 0.1557 −17.5223 1.1200 0.9858

ŵDN
k −0.1010 0.5408 0.4474 0.1474 - 1.0346 0.9856

ŵSR
k 0.0453 0.4554 0.2956 0.2888 −0.3117 1.0850 0.9858

ŵSR
k −0.0718 0.5600 0.2869 0.2734 - 1.0486 0.9856
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Table 4. MMSE coefficients of the multivariate linear regression between interpolated MS bands and lowpass-filtered Pan,
both in either DN or SR format, for the WorldView-2 Sydney image. The bias, b̂, is either set equal to zero or left as a further
variable to optimize.

WV-2 C B G Y R RE NIR1 NIR2 b̂ ∑ ŵk CD

ŵDN
k 0.3643 −0.0269 0.1127 0.2368 0.2636 0.1353 0.0225 0.1477 −37.5550 1.2560 0.9857

ŵDN
k 0.1170 0.1245 0.0987 0.2934 0.2245 0.1251 0.0233 0.1506 - 1.1571 0.9855

ŵSR
k 0.2468 −0.0154 0.0973 0.2311 0.1825 0.1560 0.0242 0.2166 −4.9996 1.1390 0.9857

ŵSR
k 0.0792 0.0714 0.0852 0.2864 0.1555 0.1442 0.0251 0.2208 - 1.0678 0.9855

6.4. Simulations

Nine pansharpening algorithms, including the plain interpolated MS image, without
injection of details, denoted by EXP, have been selected from the Pansharpening Tool-
box [39]. Figure 4 shows the flowchart of the experimental setup. The goal is twofold:
(i) to determine the possible dependence of quality assessment metrics on the specific data
format, in which they are evaluated; (ii) to check which pansharpening methods perform
identically, regardless of the data format. After the original MS + Pan dataset has been
spatially degraded, all fusion methods are run twice: once on the DN data and once on
the DN data preliminarily converted to SR. In this way, two sets of fused images are made
available, one in DN and one in SR. Each fused dataset is then converted to the other format:
the output of the fusion process in DN is converted to SR and the output of fusion in SR is
converted back to DN. This procedure allows reproducibility of methods and reproducibil-
ity of indexes to be evaluated in a unique simulation session. Thus, data-format reproducible
pansharpening methods and data-format reproducible quality indexes are jointly identified.

DN Spatial
degradation • •

•

Fusion

Fusion
Spectral
radiance

conversion

DN
conversion

Spectral
radiance

conversion

Quality
assessment Qavg,Q2n,SAM,ERGAS

DN

SR

DN

Quality
assessmentSR

Qavg,Q2n,SAM,ERGAS

Figure 4. Flowchart of fusion and assessment procedure for spectral radiance data in packed DN and floating-point formats.

Tables 5 and 6 report the numerical results of the simulations performed on the two
datasets. The organization of the tables requires some explications. Each table is composed
of two subtables: the upper one reports the values of quality indexes calculated on data in
DN format; the lower subtable reports the same quality metrics calculated in SR format.
The cell in each table contains two values: the left term refers to fusion performed in DN;
the right one to fusion in SR. In order to check whether a quality index is invariant towards
the data format or not, it is sufficient to check whether the columns in the two subtables
relative to the same index are identical or not.
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Table 5. Scores of GeoEye-1 Collazzone towards ground truth (REF) for nine fusion methods described
in [39]. The upper subtable refers to assessments carried out on data in DN; the lower one in SR. Each
entry of the table contains the values of a quality/distortion index relativ to fusion performed in either
DN or SR. Reproducible indexes are highlighted in green; non-reproducible in red. Reproducible
methods are marked by green squares; non-reproducible by red squares.

DN|SR
DN Qavg •↓ Q4 •↓ SAM •↓ ERGAS •↓

REF � 1 1 0 0

EXP �→ 0.7814 | 0.7814 0.7779 | 0.7779 2.3534 | 2.3534 3.1821 | 3.1821

GS �→ 0.8456 | 0.8544 0.8182 | 0.8291 2.5814 | 2.8921 2.8376 | 2.8127

GSA �→ 0.8595 | 0.8595 0.8673 | 0.8673 2.9923 | 2.9923 2.8786 | 2.8786

GIHS �→ 0.8378 | 0.8694 0.8175 | 0.8654 2.8407 | 2.3580 2.9159 | 2.4197

PCA �→ 0.8490 | 0.8140 0.8332 | 0.8241 2.6032 | 3.6255 3.0049 | 3.3031

BT �→ 0.8670 | 0.8677 0.8599 | 0.8625 2.3534 | 2.3534 2.4315 | 2.4556

MTF-GLP �→ 0.8625 | 0.8625 0.8625 | 0.8625 2.5338 | 2.5338 2.9208 | 2.9208

BDSD �→ 0.8994 | 0.8994 0.9027 | 0.9027 2.5043 | 2.5043 2.1717 | 2.1717

ATWT �→ 0.8723 | 0.8723 0.8688 | 0.8688 2.4686 | 2.4686 2.6631 | 2.6631

DN|SR
SR Qavg •↓ Q4 •↓ SAM •↓ ERGAS •↓

EXP �→ 0.7814 | 0.7814 0.7048 | 0.7048 2.9896 | 2.9896 3.1821 | 3.1821

GS �→ 0.8456 | 0.8544 0.7377 | 0.7472 3.2935 | 3.6044 2.8376 | 2.8127

GSA �→ 0.8595 | 0.8595 0.8021 | 0.8021 3.6930 | 3.6930 2.8786 | 2.8786

GIHS �→ 0.8378 | 0.8694 0.7534 | 0.7998 3.6549 | 2.9516 2.9159 | 2.4197

PCA �→ 0.8490 | 0.8140 0.7652 | 0.7635 3.4756 | 4.5339 3.0049 | 3.3031

BT �→ 0.8670 | 0.8677 0.7862 | 0.7979 2.9896 | 2.9896 2.4315 | 2.4556

MTF-GLP �→ 0.8625 | 0.8625 0.8001 | 0.8001 3.2838 | 3.2838 2.9208 | 2.9208

BDSD �→ 0.8994 | 0.8994 0.8352 | 0.8352 3.0302 | 3.0302 2.1717 | 2.1717

ATWT �→ 0.8723 | 0.8723 0.8033 | 0.8033 3.1489 | 3.1489 2.6631 | 2.6631

REF � 1 1 0 0

• (•): data-format (non-)reproducible quality index. �(�): data-format (non-)reproducible
pansharpening method.
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Table 6. Scores of WV-2 Sydney towards ground truth (REF) for nine fusion methods described in [39].
The upper subtable refers to assessments carried out on data in DN; the lower one in SR. Each entry
of the table contains the values of a quality/distortion index relatively to fusion performed in either
DN or SR. Reproducible indexes are highlighted in green; non-reproducible in red. Reproducible
methods are marked by green squares; non-reproducible by red squares.

DN|SR
DN Qavg •↓ Q8 •↓ SAM •↓ ERGAS •↓

REF � 1 1 0 0

EXP �→ 0.7077 | 0.7077 0.7000 | 0.7000 5.0636 | 5.0636 6.4271 | 6.4271

GS �→ 0.8158 | 0.8288 0.7487 | 0.7861 7.2114 | 6.3689 4.8309 | 4.1664

GSA �→ 0.8460 | 0.8460 0.8495 | 0.8495 4.5789 | 4.5789 3.3967 | 3.3967

GIHS �→ 0.7750 | 0.8247 0.6760 | 0.7888 6.0590 | 4.9979 4.7732 | 3.5853

PCA �→ 0.7912 | 0.8271 0.7138 | 0.7460 7.4372 | 6.1357 7.9097 | 5.9057

BT �→ 0.8030 | 0.8167 0.6940 | 0.7554 5.0636 | 5.0636 4.2299 | 3.4069

MTF-GLP �→ 0.8302 | 0.8302 0.8247 | 0.8247 5.0954 | 5.0954 4.0518 | 4.0518

BDSD �→ 0.8439 | 0.8439 0.8430 | 0.8430 5.0104 | 5.0104 3.8416 | 3.8416

ATWT �→ 0.8366 | 0.8366 0.8310 | 0.8310 4.9530 | 4.9530 3.8678 | 3.8678

DN|SR
SR Qavg •↓ Q8 •↓ SAM •↓ ERGAS •↓

EXP �→ 0.7077 | 0.7077 0.6906 | 0.6906 4.8254 | 4.8254 6.4271 | 6.4271

GS �→ 0.8158 | 0.8288 0.7465 | 0.7835 6.0258 | 5.3841 4.8309 | 4.1664

GSA �→ 0.8460 | 0.8460 0.8377 | 0.8377 4.0870 | 4.0870 3.3967 | 3.3967

GIHS �→ 0.7750 | 0.8247 0.6735 | 0.7807 5.9163 | 4.6071 4.7732 | 3.5853

PCA �→ 0.7912 | 0.8271 0.7100 | 0.7427 6.8330 | 5.4468 7.9097 | 5.9057

BT �→ 0.8030 | 0.8167 0.6924 | 0.7503 4.8254 | 4.8254 4.2299 | 3.4069

MTF-GLP �→ 0.8302 | 0.8302 0.8133 | 0.8133 4.3498 | 4.3498 4.0518 | 4.0518

BDSD �→ 0.8439 | 0.8439 0.8371 | 0.8371 4.5094 | 4.5094 3.8416 | 3.8416

ATWT �→ 0.8366 | 0.8366 0.8199 | 0.8199 4.2917 | 4.2917 3.8678 | 3.8678

REF � 1 1 0 0

• (•): data-format (non-)reproducible quality index. �(�): data-format (non-)reproducible
pansharpening method.

The data-format reproducible quality/distortion indexes have been marked with a
green bullet beside a down arrow, while the non-reproducible ones with a red bullet beside
a down arrow. The upper and lower matching columns are highlighted in light green;
the columns of non-reproducible indexes are highlighted in light red. Therefore, average
UIQI and ERGAS are format-reproducible; multivariate UIQI and SAM are not. These
results match the theoretical investigations, because the offsets are all zero. Otherwise,
none of the indexes would be reproducible. Analogously, in order to check the data-
format reproducibility of a pansharpening method, we need to look at rows instead of
columns. For a given method, if the two values inside every cell of the row are identical
to each other, the pansharpening method is data-format reproducible; otherwise, it is
not. Data-format reproducible methods are marked with a green square beside a right
arrow; non-reproducible methods with red square and arrow. We can verify that all MRA
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methods (ATWT and MTF-GLP) and some CS methods (GSA and BDSD) provide results
invariant with the data format. Conversely, all first-generation CS pansharpening methods,
such as GS, GIHS, BT, and PCA, provide different results depending on the input data
format. The experimental results match the theoretical investigations presented in Section 4,
within the limits that both the available test datasets have zero offsets. In the presence of
nonzero offsets. Incidentally, since M̂k = M̃k, EXP is, by its definition, format-reproducible.
Note that, for methods that are not reproducible, results are always better whenever the
algorithms are run on data in SR format.

The results of the fusion process at reduced resolution for each of the methods are
shown in Figures 5 and 6, for the datasets of Collazzone and Sydney, respectively. For
merely visual convenience, fusion is carried out in DNs and the results are displayed in
the same format. This fact is not surprising, because the earlier SPOT data (G, R, NIR)
were originally distributed in a packed 8-bit format, in order to be directly mapped onto
displaying devices, which usually have 8 bits per color channel.

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 5. Fusion results at reduced resolution, using a true-color representation, for the Collazzone dataset: (a) Pan image;
(b) reference; (c) expanded; (d) GS; (e) GSA; (f) GIHS; (g) PCA; (h) BT; (i) MTF-GLP; (j) BDSD; (k) ATWT.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 6. Fusion results at reduced resolution (512× 512), in natural colors, for the WorldView-2 Sydney dataset: (a) Pan; (b)
reference MS (REF); (c) expanded MS (EXP); (d) GS; (e) GSA; (f) GIHS; (g) PCA; (h) BT; (i) MTF-GLP; (j) BDSD; (k) ATWT.

7. Concluding Remarks

In this work, we have investigated how the performance of a pansharpening method
depends on the input data format, either packed DNs of Equation (1) or SR, as well as
any other floating-point calibrated format. It is theoretically proven and experimentally
demonstrated that MRA methods are unaffected by the data format, which instead is
crucial for CS methods, unless their intensity component is calculated by means of a
multivariate linear regression between the interpolated bands and the lowpass-filtered
Pan, as it is accomplished by the most advanced CS methods. For CS fusion methods
that do not feature a regression-based intensity calculation, results are better whenever
they are obtained from floating-point data. For this reason, whenever the data that are
merged come from different platforms [44] and/or are related to different intervals of the
electromagnetic spectrum [45], the use of floating-point formats is highly recommended.
This study has also demonstrated the necessary non-reproducibility versus the data format
of normalized spectral similarity indexes for multiband images. This is necessary because
if an index yields the same values when it is calculated from data in packed fixed-point or
floating-point formats, it will not necessarily be a spectral index. Conversely, normalized
spatial/radiometric indexes are those and only those that do not depend on the format of
the data that are compared, at least if the band offsets are all zero. Thus, spectral similarity
should be measured on data that are represented as physical units, e.g., SR. Use of packed
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DNs may lead to misestimation of quality, because DN data are spectrally altered, and
hence miscalibrated, if the gains are not equal to one another and the offsets are nonzero.

A viable escape to retain the advantages of a fixed-point processing, mandatory for
most of dedicated hardware implementations, and avoid the drawbacks of the spectral
distortion, originated by the packaging of floating-point calibrated data of Equation (1),
could be:

• convert the available packed DNs to floating-point SR, or any other physical format,
by using Equation (2a);

• convert the SR data obtained at the previous step back to DN by using Equation (1), in
which Lmax is not the maximum of the individual band of the scene, but of the whole
scene, and Lmin = 0.

Thus, it is easily verified that the gains αk are identical to one another and the offsets βk
are all zero. Hence, it turns out that the distortion factor SIF%, Equation (32), is identically
zero. As a final remark, notwithstanding that remote sensing data fusion by means of
extremely sophisticated machine learning (ML) tools, e.g., [46], has nowadays reached
the state of the art [2], the behaviors of such methods can be hardly modeled and hence
predicted because they are based on the outcome of a complex learning process and not on
simple constitutive relations. Consequently, it is not easy to prove or foresee if an ML fusion
method trained on packed DN data gives the same results as the same method trained
on floating-point spectral radiance data. Only an experimental analysis, as carried out in
Section 6, would be feasible for ML-based pansharpening methods, but in this case, the
analysis and its outcome would not be reproducible, thereby invalidating its motivations.
Therefore it is recommended that all the training data are used in floating-point format and
fusion is accomplished and assessed in the same format.
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