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Short Communication 

The SGLT2-inhibitor dapagliflozin improves neutropenia and neutrophil 
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d Animal Facility, IRCCS Ospedale Policlinico San Martino, Genova, Italy 
e Medical, Surgical, and Dental Department, Università degli Studi di Salerno, Salerno, Italy. 
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A B S T R A C T   

Glycogen Storage Disease type 1b (GSDIb) is a genetic disorder with long term severe complications. Accumu-
lation of the glucose analog 1,5-anhydroglucitol-6-phosphate (1,5AG6P) in neutrophils inhibits the phosphory-
lation of glucose in these cells, causing neutropenia and neutrophil dysfunctions. This condition leads to serious 
infections and inflammatory bowel disease (IBD) in GSDIb patients. We show here that dapagliflozin, an inhibitor 
of the renal sodium-glucose co-transporter-2 (SGLT2), improves neutrophil function in an inducible mouse model 
of GSDIb by reducing 1,5AG6P accumulation in myeloid cells.   

1. Introduction 

GSDIb is an inherited rare disease caused by a defect in glucose-6- 
phosphate (G6P) translocase,(G6PT/SLC37A4). GSDIb is characterized 
by severe hypoglycemia, growth retardation, osteoporosis, and long- 
term risk of liver tumors and renal failure (1). In addition, GSDIb pa-
tients are affected by neutropenia and myeloid dysfunctions that pre-
dispose to inflammatory bowel disease (IBD) and recurrent bacterial 
infections sometimes leading to life-threatening complications. 

Treatment with granulocyte colony stimulating factor improves neu-
tropenia and reduces the frequency of infections and severity of IBD but 
increases the risk to develop myeloid neoplasm (2,3). 

The cause of neutropenia and neutrophil dysfunction in GSDIb was 
recently ascribed to the lack of transportation of the glucose-6- 
phosphate analog 1,5-anhydroglucitol-6-phosphate (1,5AG6P) by 
G6PT into the endoplasmic reticulum, to be dephosphorylated by the 
phosphatase G6PC3. It was proposed that the failure to destroy this non- 
canonical metabolite causes its accumulation in neutrophil cytosol, 
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inhibiting glucose phosphorylation by hexokinases and thus glycolysis 
in these cells (4). Gliflozins are drugs currently used for treating type 2 
diabetes mellitus, since they reduce the renal threshold for glucose 
reabsorption by blocking the renal sodium-glucose co-transporter-2, 
SGLT2, and by causing glycosuria (5). Since it was shown that glucose 
competes with the renal re-uptake of 1,5-anhydroglucitol (1,5AG) (6,7), 
treatment with gliflozins should ameliorate neutrophil dysfunction by 
increasing urine excretion of 1,5AG. In fact, in recent studies, it was 
shown that treatment with empagliflozin improves neutrophil function 
in G6PC3-deficient mice and in a few G6PC3- or G6PT- deficient patients 
(4,8). 

We have addressed the problem of neutrophil dysfunction in a mouse 
model of GSDIb (9). We report here that dapagliflozin treatment 
significantly improves myeloid cells’ function in these mice. 

2. Material and methods 

2.1. TM-G6PT− /− mice 

6–8-week-old G6PTlox/lox.creER/wt mice, hereafter referred to as 
G6PT+/+, were injected intraperitoneally with 1 mg/10 g body weight/ 
day of tamoxifen (TM) for five consecutive days to obtain TM-G6PT− /−

mice, as described (9). Dapagliflozin was obtained from AstraZeneca 
(NCR-16-12,171) and administered to adult mice in drinking water (1.5 
mg/kg/day) for 10 days, starting three days before TM induction. All 
animal experiments were reviewed and approved by the internal Review 
Board (OPBA) and authorized by the Italian Ministry of Health, 
accordingly with the current National and European regulations and 
guidelines for the care and use of laboratory animals (D.L. 26/2014; 86/ 
609/EEC Directive). 

2.2. Evaluation of myeloid cell functions 

Bone marrow (BM) cells were harvested from femoral and tibia 
bones by flushing with 3 ml of PBS. Neutrophils were harvested as 
previously described (9). Analysis of neutrophil functional activity and 
hematopoietic progenitor cell assays were performed with standard 
techniques, as described (9). Tunel assay was performed using the In 
Situ Cell Death Detection Kit, Fluorescein (Roche, Cat. No. 
11684795910) according to the manufacturer’s instructions. Quantifi-
cation of neutrophil extracellular trap (NET) was done using the 
membrane-impermeable DNA binding dye SYTOX green (10). Calcium 
fluxes were measured as previously reported (9). Three or four mice 
were used per group. 

2.3. 1,5AG6P determination 

Exactive Orbitrap mass spectrometer coupled to UHPLC Vanquish 
Horizon were used to quantify 1,5AG and 1,5AG6P. BM neutrophils 
were prepared according to the previously published protocol (4). 
Extracted metabolites were separated with hydrophobic interaction 
liquid chromatography columns using A (10 mM ammonium formate in 
H2O, 0.1% formic acid) and B (acetonitrile) eluents. Data were obtained 
in PRM by acquiring the accurate m/z of 243.0275 and 163.0612 Da. 
Data were processed with MSDIAL software (11) using a customized 
database. The extracted areas were normalized by the total ion current. 

2.4. Statistics 

Animal experiments were performed with 3 mice per group. Results 
are reported as means ± SEM of three different experiments. Unpaired 
Student’s t-test was performed using the GraphPad Prism program, 
version 5 (GraphPad Software, San Diego, CA, USA), and Perseus soft-
ware (12). Values were considered statistically significant at p value 
≤0.05. 

3. Results 

We have previously characterized the activity of the neutrophils 
purified from BM of TM-G6PT− /− mice and demonstrated that they were 
affected by the same dysfunctions as GSDIb patients, but with a milder 
phenotype (9). Specifically, we found that an inactive G6PT leads to 
neutrophil apoptosis, hampered chemotaxis and phagocytic activity, 
and that the colony forming units (CFU) of BM precursor cells in 
response to G-CSF and M-CSF was impaired in these mice. In the present 
study we evaluated the functional recovery of neutrophils in TM-G6PT− / 

− mice as a consequence of dapagliflozin treatment. We first showed that 
the number and maturation state of neutrophils was markedly improved 
in mice treated with dapagliflozin (Fig. 1a). Neutrophils of treated TM- 
G6PT− /− mice had a higher phagocytic activity (Fig. 1b) and migratory 
capacity (Fig. 1c). In addition, the CFU of BM precursor cells in response 
to G-CSF (Fig. 1d) improved upon treatment with dapagliflozin. The CFU 
of BM precursor cells also improved in response to M-CSF (Fig. 1e), 
consistent with monocyte/macrophage dysfunction in GSDIb patients. 
Neutrophils of treated mice displayed less apoptosis (Fig. 1f) and 
increased formation of NETs in response to PMA (Fig. 1g), an indication 
of functional recovery of a specific antimicrobial activity. Moreover, 
mobilization of Ca2+ in neutrophils from dapagliflozin-treated mice 
increased in response to fMLP compared to untreated TM-G6PT− /− , 
though not in a statistically significant manner, suggesting a partial 
restoration of calcium fluxes (Fig. 1h). Analysis of 1,5AG6P confirmed 
the reduction of this metabolite in neutrophils of dapagliflozin-treated 
mice. In fact, while 1,5AG was barely detectable in neutrophils, inde-
pendently of the source of the cells, significant accumulation of 1,5AG6P 
was observed in TM-G6PT− /− mice in comparison with G6PT+/+ mice. 
This accumulation was prevented by treatment with dapagliflozin (TM- 
G6PT− /− + DAPA). (Fig. 1i), 

4. Discussion 

The identification of the metabolite 1,5AG6P exerting toxic effects in 
neutrophils has led to therapeutic perspectives for GSDIb (4). Evidence 
of the positive effects of gliflozins in reducing 1,5AG6P accumulation 
and thus improving neutrophil counts and function has been shown for 
G6PC3-deficient mice. These results have consequently led to pre-
liminary off-label use of empagliflozin in few GSDIb patients. Despite 
the rather low number of treated patients, the results obtained are very 
encouraging, demonstrating an approximate 6-fold decrease in the 
concentration of 1,5AG in plasma and of 1,5AG6P in neutrophils which 
leads to a good recovery of neutrophil activity and an improvement of 
GSDIb-associated symptoms (4,8,13,14,15). Here, we report the results 
obtained in the GSDIb mouse model we have generated in terms of 
neutropenia and neutrophils’ functional activity recovery upon treat-
ment with the SGLT2 inhibitor dapagliflozin, an empagliflozin analog. 
We provide statistically significant evidence of the positive role of 
dapagliflozin in improving neutropenia and restoring neutrophil func-
tions in GSDIb. Moreover, we demonstrate that dapagliflozin prevents 
1,5AG6P accumulation in neutrophils and improves response to M-CSF 
of monocyte/macrophage, another cell type that shows metabolic 
dysfunction and signaling defects in GSDIb (16). The use of animal 
models is the cornerstone for understanding the pathophysiology and for 
progressing in the quest for treatment of “neglected” diseases, such as 
GSDIb, and is one of the best ways to thoroughly evaluate a new therapy 
in terms of efficacy and potential risks. We have for now experimented 
and reported here the efficacy of this drug. Based on pharmacokinetic, 
pharmacodynamic, and pharmacologic properties, dapagliflozin has a 
similar affinity for SGLT2 receptor but has a faster onset and a longer 
half life than empagliflozin (17), possibly ensuring a more effective 
treatment of GSD1b neutropenia and neutrophil dysfunction. On the 
other hand, the assessment of potential risks for both drugs will have to 
wait other experimental approaches and long-term evaluation. 
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Fig. 1. Evaluation of the impact of dapagliflozin on myeloid cell functions in a GSD1b mouse model. 
(a) Morphological evaluation of neutrophils and their precursors. Left panel: neutrophil maturation state was determined by microscopy examination (200×
magnification). Right panel: results are shown as bar graphs. p-Values of TM-G6PT+/+ or dapagliflozin treated (+DAPA) relative to untreated (-DAPA) TM-G6PT− /−

mice: **p ≤ 0.01. 
(b) Phagocytosis activity of neutrophils and their precursors. Left panel: uptake of E. coli by neutrophils was evaluated by immunofluorescence after incubation at 
37 ◦C for 60 min. Right panel: results are shown as a bar graph and expressed as percentages of cells internalizing E. coli. p-Values of TM-G6PT+/+ or dapagliflozin 
treated (+DAPA) relative to untreated (-DAPA) TM-G6PT− /− mice: *p ≤ 0.05; ***p ≤ 0.001. (c) Chemotactic activity of neutrophils and their precursors measured in 
response to fMLP and CXCL2 by microscopy examination (40× magnification). Results are shown as a bar graph by counting the number of labelled cells on plate- 
well membrane. p-Values of TM-G6PT+/+ or dapagliflozin treated (+DAPA) relative to untreated (-DAPA) TM-G6PT− /− mice: *p ≤ 0.05; **p ≤ 0.01 ***p ≤ 0.001 (d- 
e). Colony-forming unit (CFU) was evaluated following the stimulation of bone marrow cells with G-CSF (d) or M-CSF (e). Results are shown as a bar graph and 
expressed as number of scored colonies after 7–10 days of culture. p-Values of TM-G6PT+/+ or dapagliflozin treated (+DAPA) relative to untreated (-DAPA) TM- 
G6PT− /− mice *p ≤ 0.05; **p ≤ 0.01 ***p ≤ 0.001. (f) Apoptosis of neutrophils and their precursors. Left panel: cells were stained with TUNEL (green) to reveal 
apoptotic cells and nuclei were stained with DAPI (blue). Apoptotic cells are indicated by the arrowheads. Right panel: results are shown as a bar graph and expressed 
as percentages of apoptotic cells. p-Values of TM-G6PT+/+ (CTR) or dapagliflozin treated (+DAPA) relative to untreated (-DAPA) TM-G6PT− /− mice: *p ≤ 0.05. (g) 
NETs formation of neutrophils and their precursors. Left panel: neutrophils were treated with the membrane-impermeable DNA binding dye SYTOX green to reveal 
NET formation. Right panel: NETs were evaluated by counting the percentage of NETs positive cells versus the total number of cells following a 2 h stimulation with 
100 nM PMA. p-Values of PMA stimulated cells relative to unstimulated cells derived from TM-G6PT+/+ and treated (+DAPA) or untreated (-DAPA) TM-G6PT− /−

mice: *p ≤ 0.05. (h) Calcium release in neutrophils and their precursors. Left panel: representative traces of calcium release in Fura-2-loaded-cells derived from TM- 
G6PT+/+ and dapagliflozin treated (+DAPA) or untreated (-DAPA) TM-G6PT− /− mice and stimulated with fMLP. Right panel: results are shown as a bar graph and 
expressed as quantification of calcium release. The mean ± SEM of the AUC of three different experiments is shown. (i) quantification of 1,5AG and 1,5AG6P in 
neutrophils and their precursors. Results are shown as a before-after graph and expressed as quantification of both metabolites. The mean ± SEM of the AUC of three 
different experiments is shown. p-Values of TM-G6PT+/+ or dapagliflozin treated (+DAPA) relative to untreated (-DAPA) TM-G6PT− /− mice: *p ≤ 0.05;**p ≤ 0.01. 
Images shown are representative of three experiments. Each value represents the mean of the measurement of three or four mice. 
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