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Summary 

The quote “Not everything that can be counted counts and not everything that 

counts can be counted”, often attributed to Albert Einstein, expresses in some extent 

the challenges we are facing when dealing with the human genome. The unprecedent 

amount of data derived from sequencing experiments forced us to find something that 

counts within an overwhelming number of genetic variants. In the present thesis, we 

try to assess this issue in the context of Coronavirus disease 2019 (COVID-19), an 

infectious disease caused by the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2). While most infected individuals experience only mild or no 

symptoms, severe cases can rapidly evolve toward a critical respiratory distress 

syndrome and multiple organ failure [1]. COVID-19 has demonstrated itself to be a 

heterogeneous and multifactorial infection having a broad spectrum of clinical 

presentations influenced by age, gender, comorbidities, ethnic groups, and host 

genetics, including human leukocyte antigen (HLA) genotypes [2]. In this challenging 

context, our aim was to study host genetic factors associated with COVID-19 

severity. A better understanding of the interplay between host genetics and SARS-

CoV-2 is, in fact, essential for disease prediction and to support the development of 

targeted therapies. Several efforts have been done worldwide to discover the genetic 

determinants of COVID-19 susceptibility, severity, and outcomes. As a matter of fact, 

COVID-19 represents one of the hot research topic areas for its relevance among the 

whole community (The COVID-19 Host Genetics Initiative, HGI, and the COVID 

Human Genetic Effort, HGE, Consortia). 

This dissertation presents a novel approach to identify host risk factors 

predisposing to the disease. The innovation consists in taking into account different 

aspects of genome variability, from Single Nucleotide Variants (SNVs) to Copy 

Number Variations (CNVs) through a gene-based approach to represent genetic data. 

The gene-based Boolean representations were the input features of machine learning 

models and were tested separately and ultimately all together to improve our ability 
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to predict COVID-19 outcomes and to identify genes and variants predisposing to 

severe outcomes. Overall, this method led us to identify some important genetic 

determinants involved in COVID-19 severity that will be discussed in the final 

chapters of the thesis.   

The first Chapter of this thesis will provide an overview of the background 

and state of the art technologies to guide the reader in the comprehension of the work. 

Chapter 2 will provide an exhaustive description of the bioinformatic pipelines, 

optimization procedures and methods adopted in our work. Chapters 3 and 4 will 

show our first findings and introduce the reader to the complexity of the study. The 

effective applications of our novel approach, i.e., the Boolean features and machine 

learning model, are reported in Chapter 5, 6 and 7. The last chapter of the results, 

Chapter 8, will discuss the challenges and results of the application of machine 

learning methods on Boolean features representing copy number variants. The main 

stages and discoveries of our research will be reported and commented in the 

Concluding remarks, that end the dissertation on Chapter 9. 
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1. Introduction 

In this chapter, we outline the characteristics of COVID-19, focusing our 

attention on the role played by host genetics in predisposing to COVID-19 severity. 

As an adequate method able to represent and explain the complexity of COVID-19 

disease is required, the key components of our novel approach, e.g., synthetic 

representation of genetic data and machine learning models, are described in this 

chapter. In particular, the choice of Whole Exome Sequencing is contextualized in 

section 1.2 followed by the description of the variants included in our analyses. A 

brief overview of the machine learning techniques is illustrated in section 1.6.  

1.1 Disentangling complex diseases: the COVID-19 pandemic 

The coronavirus disease 2019 (COVID-19, 'CO' stands for corona, 'VI' for 

virus, and 'D' for disease) pandemic, caused by infections with severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), that firstly appeared in 

December 2019 in Wuhan (China), has resulted in an enormous challenge to the 

world’s healthcare systems. Globally, as of 14th October 2021, there have been 

239.007.759 confirmed cases of COVID-19 and 4.871.841 deaths, while in Italy the 

confirmed cases are attested around 4.707.087 and 131.421 deaths, reported to the 

World Health Organization (WHO) [3]. As the virus continues to circulate 

worldwide, the risk of occurrence of new variants, that might have higher infectivity, 

transmissibility, and virulence, is elevated. Up to now, four SARS-CoV-2 variants of 

concern (VOCs) have been defined: Alpha (B.1.1.7, first documented in the UK), 

Beta (B.1.351, first documented in South Africa), Gamma (P.1, first documented in 

Brazil), and Delta (B.1.617.2, first documented in India) [4]. 

It is well known now that COVID-19 is characterized by a highly 

heterogeneous phenotypic presentation. A wide range of symptoms have been 

reported including fever, cough, difficulty breathing or shortness of breath, fatigue, 
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loss of taste or smell, sore throat, headache, diarrhoea, muscle or body aches and rush 

on skin (https://www.who.int/health-topics/coronavirus). Mild cases are defined as 

patients having, just to mention a few, fever, cough, chest pain, nausea, and body pain 

while severe and critical cases are those experiencing dyspnoea, respiratory failure 

and/or septic shock (www.cdc.gov/coronavirus/). While most infected individuals 

experience only mild or no symptoms, severe cases can rapidly evolve toward a 

critical respiratory distress syndrome and multiple organ failure, or to persistent 

disease (long COVID), or death [1], [5]. The risk of severe COVID-19 outcomes is 

strongly correlated with age, with a doubling in risk every 5 years from the age of 5 

years ahead and a strong rise after the age of 65 years [6]. Additionally, other known 

risk factors are sex, as a male bias in mortality has emerged during the pandemic [7], 

and the presence of underlying medical conditions like cardiovascular disease, 

asthma, diabetes, chronic respiratory disease, chronic kidney disease, or cancer [8]. 

Early in 2020, Italy was the first European country to experience the COVID-

19 outbreak with an overall case fatality rate of 7.2%, substantially higher than in 

China (2.3%) [9]. For this reason, we started investigating the population-specific 

variation of the coding variants of Angiotensin-converting enzyme 2 (ACE2), the 

SARS-CoV-2 receptor for host cell entry [10]. During the infection, SARS-CoV-2 

binds to ACE2 receptor through the Spike glycoprotein (S) and the invasion process 

is then triggered by host cell proteases (furin, trypsin, TMPRSS2 and cathepsin). 

When viral RNA enters the host cell, translation of the polyproteins begins [11]. For 

its role in the virus entry into the host cell, ACE2 gene was the first target of our study. 

Later, we established a consortium, the GEN-COVID Multicenter Study, to 

study the COVID-19 Host Genetics factors 

(https://sites.google.com/dbm.unisi.it/gen-covid). In fact, while being a male, 

increasing age and higher mass index are recognised to be risk factors correlating 

with disease severity, they do not explain alone all the observed variability among 

individuals [12]. The interindividual variability in COVID-19 susceptibility and 

disease severity suggests that a predisposing host genetic background can play a role 

in the pathogenesis of the disease.  
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Existing studies suggest that variability in the host genetic constitution, along 

with immunological features, may modulate the inter-individual and population-scale 

differences in COVID-19 severity and clinical outcomes [13], [14]. Identifying host-

specific genetic factors may provide insight about biological mechanisms leading to 

disease and consequentially help to support the development of novel treatments. As 

new virus variants arise, the search for therapies is, in fact, still relevant despite the 

recent development of vaccines. 

Classical studies, such as Genome-Wide Association Studies (GWASs) have 

been extensively employed to identify some loci associated with COVID 

susceptibility/protection. As a result, some common polymorphisms in relevant genes 

have been found in the course of the last two years [15], [16]. However, COVID-19 

has demonstrated to be a complex disorder where both common and rare variants 

contribute to the likelihood of developing a severe form of the disease. Since GWAS 

studies focus primarily on common variants (MAF>5%), rare variants constitute a 

missed heritability for this method. Moreover, the variants identified through GWAS 

explain only a small fraction of trait variability and being mostly non-coding, they 

make it difficult to interpret the results: follow-up analyses are therefore necessary to 

identify the relevant genes.  

In our effort to untangle COVID-19 complexity, we employed Whole Exome 

Sequencing (WES) to characterize both common and rare variants as potential 

contributors to the severe phenotypes. An overview of the strengths and 

characteristics of this technology is provided in the next section.  

1.2 Whole Exome Sequencing (WES) 

Advances in Next Generation Sequencing, technologies for massive-parallel 

DNA sequencing, have resulted in an extraordinary amount of genomic sequence data 

allowing for a more comprehensive understanding of human genetics. Despite Whole 

Genome Sequencing (WGS) provides the most extensive analyses of the entire 

human genome (3 billion base pairs), this approach is not yet considered to offer 
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sufficiently improved clinical utility with its markedly higher costs compared to 

exome sequencing and gene panels. A common alternative to WGS is Whole Exome 

Sequencing (WES) [17], a more cost-effective method that delivers a higher 

coverage, allowing for detection of variants at lower percentage within the sample 

(e.g., somatic mutations, mosaics, heteroplasmy).  The WES analysis workflow is 

reported in Figure 1. WES focuses mainly on the protein coding regions of the 

genome (exons), which encompasses only 3.09% (30Mb) of the latest release of the 

human reference genome, GRCh38 [18]. Different exome capture kits and providers 

are available, which primarily differ in their specific genomic target regions covered, 

size and number of probes [19]. In most cases, the target enrichment strategy includes 

~22,000 genes and harbours more than 85% of the variants causing single-gene 

disorders [19]. For these reasons, WES has been widely and successfully used for the 

identification of the genetic basis of both Mendelian diseases as well as complex 

traits.  

On average, the WES of a patient generates more than 20,000 variants. The 

challenge is to determine which of these variants underlie or are responsible for the 

inherited components of phenotypes by filtering out common variants and prioritizing 

candidate variants [20]. There are different classes of genetic variations such as 

Single Nucleotide Variants (SNVs), small insertion and deletion variants (INDELs), 

Copy Number Variants (CNVs), and large Structural Variants (SVs). While SNVs 

and INDELs are routinely detectable by WES variant calling, the ability to detect 

CNVs and SVs has only recently emerged and presents considerable challenges. 



E. Benetti - Identifying host genetic risk factors for COVID-19 from Exome Sequencing 

5 
 

 

Figure 1. Whole Exome Sequencing workflow 

 

1.3 Single nucleotide variants (SNVs) and small insertion and 

deletion variants (INDELs) 

Single nucleotide variants (SNVs) are among the most frequent and 

widespread alterations in the genome [21]. The vast majority of these changes are 

functionally neutral; however, some variants produce dramatic phenotype and may 

cause diseases as a consequence. While not as common as SNVs, INDELs are widely 

spread in the genome. They are a type of genetic variation in which a specific 

nucleotide sequence is inserted or deleted. A comprehensive summary of the types of 

sequence variation is reported in Figure 2, taken from (https://m.ensembl.org/). 
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A variant may fall within the coding region of genes (synonymous variants, 

missense variants, frameshift caused by INDELs, in frame variants, stop gained), 

non-coding regions of genes (e.g., 5’UTR variants, 3’UTR variants), in the 

boundaries between exons and introns (splice variants), or in the intergenic regions 

between genes (intergenic variant, upstream and downstream gene variants). SNVs 

within a coding sequence do not necessarily change the amino acid sequence of the 

protein, due to degeneracy of the genetic code (synonymous variants). 

Nearly half of the known inherited disease mutations are non-synonymous 

SNVs (nsSNVs) [22], which by causing an amino acid change can destroy the 

function of the encoded proteins. The high number of detected variants make 

impossible to investigate the functional effect of every nsSNVs experimentally. Thus, 

the interpretation of genetic variants remains an enormous challenge and further 

development of methods to prioritize variants that are clinically relevant is essential 

to maximize the utility of sequencing data. As a consequence, variants’ annotation – 

which assigns functional information to DNA variants – is a key step in any 

bioinformatic pipeline for the analysis of WES data. Multiple tools have been 

developed for predicting deleteriousness of genetic variants such as SIFT, 

MutationTaster, PhyloP, FATHMM, MutationAssessor, POLYPHEN2, CADD, 

Figure 2. Diagram showing the location of sequence variation. (Picture taken 

from https://m.ensembl.org/) 
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GERP++. These programs rely on different methods and provide a score that 

measures how likely an nsSNVs is to be deleterious, along with its binary prediction. 

Some tools measure evolutionary sequence conservation (e.g. SIFT, PhyloP and 

MutationAssessor) using mathematical operations. Other tools evaluate the impact of 

variants on protein structure and function using physical and comparative factors 

(e.g., PolyPhen-2), classifying variants according to Bayesian methods. Another class 

of tools is represented by the ones that predict the overall pathogenic potential of a 

variant integrating a number of genomic information, such as sequence context, 

epigenetic measurements, gene model annotation, and using a machine learning 

approach to categorize variants as benign or deleterious (e.g., CADD). Despite the 

important guidance on variant interpretation provided by these tools, the predictions 

can vary greatly when applied to the same variants [23], suggesting that further 

improvements are still needed. In particular, the low specificity of the current tools 

entails a high rate of false positive predictions, which complicate the identification of 

causative variants. 

1.4 Copy number variations (CNVs) 

The routine use of WES is generating a great amount of inconclusive data. As 

a matter of fact, most patients with a suspected genetic condition are left undiagnosed 

even after a thorough analysis of rare coding SNVs and INDELs [24]. This can occur 

for various reasons, including the lack of knowledge of genes leading to a focused 

analysis of only known disease genes, but it can also be due to different type of 

variation not routinely detectable by WES analysis pipelines, such as structural 

variations.  

The term “structural variations” comprises microscopic and sub-microscopic 

variants which include duplications and deletions, collectively called copy-number 

variants or copy-number polymorphisms, as well as insertions, inversions and 

translocations [18]. These variations may impact the dosage or the regulation of one 

or more genes or generate somatic genome instability and age-dependent diseases. 



Chapter 1 - Introduction 

8 
 

Deletions and duplications are a type of structural variation referred to as copy 

number variations (CNVs) involving copy number changes of DNA fragments 

typically longer than 1 Kb [25]. The 1000 bp threshold derives from earlier studies 

based on microarray methods but currently the size of CNVs is defined from 50bp to 

several Mbs after the application of sequencing technologies [26].  

CNVs are common features of the human genome and account for more inter-

individual variation than do single-nucleotide variants. Their impact ranges from no 

obvious effect on common variability of physiological traits, to substantial 

contribution to common and rare diseases susceptibility [27]. Pathogenic CNVs have 

been found to cause Mendelian disorders [28] or to be associated with complex 

multifactorial diseases, including cancer [29], cardiovascular [30] and 

neurodevelopmental disorders [31], and to contribute to susceptibility to infectious 

diseases [32]. 

1.4.1 Mechanisms of CNVs formation 

There are four major mechanisms giving rise to CNVs, reported in Figure 3. 

Two recombination-based mechanisms such as NAHR (Non-Allelic Homologous 

Recombination) between repeat sequence and NHEJ (Non-Homologous End-

Joining) have been linked to genomic rearrangements and the formation of CNVs 

together with retrotransposition and a replication-based mechanism termed FoSTeS 

(fork stalling and template switching) [33]. NAHR appears to be the predominant 

pathway underlying recurrent rearrangements of the genome. It is caused by the 

alignment and the following crossover between two nonallelic (i.e., paralogous) DNA 

sequence repeats sharing high similarity to each other. NAHR can take place in 

meiosis where it results in unequal crossing over leading to constitutional genomic 

rearrangements, but it can also occur in mitosis resulting in mosaic populations of 

somatic cells carrying copy number variations. NHEJ is responsible for many of the 

nonrecurrent rearrangements [28]. This mechanism is used by human cells to repair 

double strand breaks and can result in several nucleotides loss or addition at the join 
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point [33]. The FoSTeS model can also account for Complex Genomic 

Rearrangements and CNVs. According to this mechanism, the DNA replication fork 

can stall, the lagging strand separates from the original template and switches to 

another replication fork and restarts DNA synthesis on the new fork by priming it via 

the microhomology between the switched template site and the original fork [33]. 

Depending on whether the new fork is located downstream or upstream of the original 

fork, the template switching results in either a deletion or a duplication. Moreover, 

depending on the orientation of the replication fork, the erroneously inserted fragment 

could be in direct or inverted orientation compared to its original position. This whole 

procedure can take place multiple times in series resulting in complex 

rearrangements. Even if the vast majority of gene duplications results in a new copy 

located adjacent to the original gene, a substantial number of new duplicates are 

inserted far from the original locus in humans [34]. In this case, the underlying 

mechanism is the retrotransposition in which a mRNA transcript is reverse-

transcribed and reinserted into a random location in the genome, yielding a new 

intron-less gene copy. 

 

Figure 3. Mechanisms of CNVs formation. 
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1.4.2 CNV detection methods 

CNV detection methods can be divided into two major categories: locus-

specific detection, which requires prior knowledge of the region of interest; and 

genome-wide detection, which allows CNVs detection across the whole genome or a 

considerable part of it [35]. Among locus-specific methods are multiplex ligation-

dependent probe amplification (MLPA), quantitative polymerase chain reaction 

(qPCR) and Fluorescence in situ hybridization (FISH). Even if the locus-specific 

techniques are considered to be the most reliable, they present some drawbacks, 

above all the fact that in most cases which region need to be tested for CNVs is not 

known a priori. Therefore, locus specific methods are often employed to validate 

selected findings of genome-wide methods. Among genome-wide techniques are 

array comparative genomic hybridization (aCGH), SNP-arrays and WES or WGS. 

With these techniques, it is not possible to achieve the same reliability of locus-

specific methods, but they often provide an overview of many potential events.  

The gold standard for CNV detection in clinics are MLPA and aCGH.  MLPA 

is a targeted PCR-based method that simultaneously analyses multiple genomic 

regions of interest to detect abnormal copy numbers at an exon-level resolution. It 

works by quantifying probes that hybridize to genomic DNA and are amplified by 

PCR.  The products are then separated by capillary electrophoresis. Relative amounts 

of probe amplification products reflect the relative copy number of target sequence 

[36]. aCGH is based on the principle of comparative hybridization of two labelled 

samples (test and reference) to a set of hybridization targets. The resulting fluorescent 

ratio is then measured, converted to a log2 ratio, and used as a proxy for copy number. 

An increased log2 ratio corresponds to a gain in copy number in the test compared 

with the reference; conversely, a decrease indicates a loss in copy number [26]. 

Detection of a CNVs typically requires a signal from at least 3 to 10 consecutives 

probes. aCGH can reliably call large CNVs (in the order of megabases) but shows 

poor performances when dealing with small CNVs affecting only one or a few small 

exons, due to its low resolution (approximately 10~25 kbp) [37]. Employing WES to 

predict CNVs could extend the diagnostic yield and increase the utility of these 
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previously unused data, saving time and reducing costs of laboratories, while creating 

a more comprehensive snapshot of genomic variation with a single assay [24]. 

1.4.3 CNV prediction from Sequencing data 

Reliable CNV calls from sequencing data presents considerable challenges and 

depends on high depth and uniformity of coverage across targets. Additionally, no 

accepted standard protocols or quality control measures are available so far [38], [39]. 

Limitations of this approach arise from the differences in probe hybridization and 

efficiency, which introduce bias and noise affecting the uniformity and consistency 

of coverage across all target sites. A robust bioinformatics approach is required to 

deal with the size and complexity of the data. Many tools have been developed to 

detect gains or losses of genetic information from sequencing data and rely essentially 

on 4 different strategies: Read Depth (RD), Paired-end mapping (PEM), Split read 

(SR), and Assembly (AS) (Figure 4). 

Read Depth (RD) methods are based on the hypothesis that there is a 

correlation between depth of coverage of a genomic region and the copy number of 

the region. These tools compare the number of reads mapping to a chromosome 

window with its expectation under a statistical model. Deviations from this 

expectation are indicative of CNV calls. Limitations of this method are the need of 

high coverage for high resolution, deletions are detected more easily than duplications 

and repeats and GC content might introduce artefacts. 

Orientation and Distance of Paired-end read mapping (PEM) is based on the 

distances between a pair of paired-end reads through discordantly mapped reads. A 

discordant mapping is produced if the distance between two ends of a read pair is 

significantly different from the average insert size. This approach has the potential to 

find any type of structural variant (SV) and not only deletions and duplications. 

Split reads (SR) method uses reads from paired-end sequencing where only 

one read of the pair has a reliable mapping while the other one fails to map to the 
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genome either completely or partially. The unmapped reads are a potential source of 

breakpoints at the single base pair level. 

Unlike the RD, PEM and SR approaches that first align sequencing reads to a 

known reference genome before the detection of CNVs, in the Assembly (AS) 

approach contigs are reconstructed from short reads by linking overlapping reads. 

Genomic regions with discordant copy numbers are detected by comparing the 

assembled contigs to the reference genome [40], [41]. 



E. Benetti - Identifying host genetic risk factors for COVID-19 from Exome Sequencing 

13 
 

When dealing with WES data, the best approach to detect CNVs is through RD 

based methods, due to the improved sequencing technologies and at the same time 

the reduced costs which lead to higher coverage data. Like aCGH, the ratio of read 

counts between a test and a reference sample is preferable than a single-sample 

analysis in order to correct for the usually broad variability in capture efficiency 

across exons. PE, SR and AS approaches are instead not suitable for identifying 

Figure 4. Different strategies of CNV prediction from sequencing data. 
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CNVs from WES data, as exome relies on short and discontinuous exonic regions 

across the genome [40]. RD-based approaches follow a three-step procedure: 

mapping, normalization, and estimation of copy numbers. In the mapping stage, short 

reads are aligned to the reference genome and the read depth is computed according 

to the number of mapped reads in predefined windows. The second step consists of 

normalization and correction of potential biases in read depth mainly caused by GC 

contents and repetitive regions. Lastly, copy number along the chromosomes are 

estimated to determine deletions or duplications [42]. Currently, a high level of 

sensitivity can be achieved with these CNV detection tools, but at the cost of low 

specificity, which increases the workload in interpretation and annotation of CNVs 

[43].  

CNV calls from exomes in this thesis were generated using two RD-based tools 

which are widely used for this purpose in the field, ExomeDepth [44], and CoNIFER 

[45]. ExomeDepth and CoNIFER use different statistical models for CNV calling. 

ExomeDepth is based on Hidden Markov Models and uses a robust beta-binomial 

model for the modelling. This tool uses a cohort of samples for normalization. An 

aggregate reference set is created selecting the most suitable control set for each 

exome by using read count data. This optimized reference set is built in order to 

maximize the power to detect CNVs [44]. CoNIFER, instead, performs the 

unsupervised decomposition of the signal using principal component analysis 

(singular value decomposition). It is based on the assumption that the main source of 

variability is due to stochastic noise and not to real events. For this reason, the 

developers of CoNIFER suggest cleaning the cohort of stochastic noise using SVD-

based normalization [45]. 

1.4.4 Challenges associated with detecting CNVs from sequencing data 

The advent of high-throughput sequencing technologies is transforming our 

ability to detecting CNVs. Mainly due to the decreasing cost of sequencing and the 

increase of high-coverage data, RD-based methods have recently become a major 
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approach to estimate copy numbers from WES data, where deletions or duplications 

are identified as decrease or increase of RC across multiple consecutive windows.   

RD approach relies on the assumption that the sequencing is uniform, i.e., the 

coverage follows the Poisson distribution and the number of reads mapped to a region 

is proportional to the number of copies. A genomic region that has been deleted 

(duplicated) will have less (more) reads mapping to it than a region not deleted 

(duplicated). However, the uniformity of coverage across targets might be affected 

regardless of the copy number of the region, resulting in false positive calls [38]. The 

main bias against uniform distribution of reads in WES is the capture itself, along 

with the fact that information is available only on discrete regions. Other biases 

associated with the sequencing technology exist, including short read lengths, GC-

content and mappability.  

The percentage of guanine and cytosine in a genomic region varies markedly 

along the genome and has been found in several studies to influence coverage on 

many sequencing platforms especially when the GC content is very high or low [46]–

[48]. 

The mappability bias, instead, arises during the alignment step, when a huge 

number of short reads map to multiple positions in the presence of repetitive regions 

in the reference genome. (Low mappability regions show large read count 

overdispersion). As a result, under/over sampled regions caused by biases in 

sequencing depth other than changes in copy number, affect our ability to detect true 

deletions/duplications. In order to reduce the effect of these causes of variation and 

make data comparable within and between samples, Read Counts need to be 

normalized. 

1.5 Mapping genetic variants to gene-based Boolean features 

Sequencing-based approaches have been applied in the attempt to identify rare 

genetic determinants for COVID-19, as they can be associated especially with 

extreme clinical presentations. With this method, some rare families were identified 
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with a Mendelian form of inheritance [13], [49]. However, these patients represent 

only a small fraction of those severely affected by COVID-19. As also common 

variants might play a role in the contribution to the severe phenotype, we wanted to 

assess their likely different impact within the same model. In this dissertation, we 

present a novel approach to consider all genome variability, including variants found 

at any frequency within a population. Moreover, we were the first, to our knowledge, 

to evaluate the potential impact of different type of variants, i.e., CNVs, to the overall 

complex pathogenesis of COVID-19. In 2020, we started to investigate how common 

variants may combine with rare variants to determine COVID-19 severity in WES 

data using a first small cohort of hospitalized patients. This pilot analysis revealed 

that the combination of rare and common variants could potentially impact clinical 

outcome. In particular, common variants in susceptibility genes may represent the 

favourable background in which additional host private mutations may determine 

disease progression [50]. This hypothesis was in line with our previous suggestion 

that both polymorphic and rare variants in ACE2 gene, may affect infectivity and 

partially explain the observed inter-individual clinical variability [10]. 

Starting from these preliminary results, we aimed to further refine our analysis. 

In the proposed model, SNVs and CNVs predicted from WES data were converted to 

gene-based Boolean features, as described in section 2.5. This helped us, on one side, 

to reduce the dimensionality of the problem (being the number of input features 

orders of magnitude higher than the number of patients), and, on the other side, to 

analyse various sources of information within the same model. These Boolean 

representations were the input features for our analyses to detect the genetics basis of 

COVID-19 severity. 

1.6 Machine Learning  

The main idea of Machine Learning (ML) algorithms is to automatically 

learn relevant information from data. Since their performance generally improves as 

the number of samples increases, the availability of massive genomic datasets has led 
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to the exponential application of ML techniques in the classification/clustering tasks 

related to many biological and medical fields.  

A classical distinction of ML algorithms is among supervised learning (SL) 

and unsupervised learning (UL). The difference between these two classes of 

algorithms is that SL is based on the existence of a dataset, training-set, where the 

relationship between input features and target variable is known, which instead is not 

needed in UL. The goal of SL is to take advantage of the training-set for learning a 

function that best approximates the general relationship between input features and 

target variable. UL, on the other hand, does not have explicitly labelled outputs, and 

its goal is to deduce the natural structure presents within a dataset [51].  

The effectiveness of ML algorithms depends almost entirely on the 

particularities of the problem in relation to the available dataset [52]. Usually, SL 

models are divided into classification or regression problems. In classification 

problems, labelled data are used to make prediction among a limited set of restricted 

classes. In these cases, the output variable must be categorical. Instead, in regression 

models, the target variable is continuous and consequently the goal of the model is to 

map input features to a continuous output. 

Common algorithms in SL include logistic regression (LR), decision tree 

(DT), support vector machines (SVM), neural networks (NN), and random forests 

(RF) [52]. K-means clustering and principal component analysis (PCA) are instead 

some of the most common algorithms for UL. 

One of the most critical issue in ML is overfitting. Overfitting, or high 

variance, refers to learning a function that tries too hard to fit the target variable in 

the training set. As a result, the function fails to generalize to new data points. This 

can happen when dealing with an overcomplex model (with too many parameters) or 

when there are too many features compared to the number of observations. Two 

common strategies to avoid overfitting are to reduce the number of features or to use 

a regularization technique. Various types of regularization techniques are available, 
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and they usually operate by adding a penalty term that discourages high values for 

the model parameters that are not strongly correlated with the output [53]. 

1.6.1 Application to severity prediction and gene discovery in 

COVID-19 

In our attempt to study host genetic risk factor for COVID-19, we aimed to 

predict the severity of COVID-19 using information extracted from WES, and at the 

same time to identify the most relevant genes involved in the classification. For this 

reason, in this thesis we adopted the Least Absolute Shrinkage and Selection Operator 

(LASSO) logistic regression that provides a feature selection method within the 

binary classification tasks (mild vs severe) able to enforce both the sparsity and the 

interpretability of the results [54]. In fact, the coefficients of the LR model are directly 

linked to the importance of the corresponding features, and LASSO regularization 

shrinks close to zero the coefficients of features that are not relevant in predicting the 

response, reducing overfitting and giving direct interpretability of the model 

predictions in terms of few features importance. In this classification task, the positive 

weights of the LASSO LR reflect a susceptible behaviour of the features (i.e., genes) 

to the target COVID-19 severity, whereas the negative weights reflect a protective 

action of the feature. 

As already mentioned in section 1.6, the input features of LASSO logistic 

regression were the gene-based Boolean representations developed to map the genetic 

variability into a set of informative features. The decision to move from simple 

genetic variants to Boolean representations at gene level is due to the necessity of 

reducing the number of features and at to increase the interpretability of the biological 

meaning of the extracted features. The target variable, instead, was the COVID-19 

severity (severe cases vs mild subjects). The assessment of COVID-19 clinical 

category is described in the next chapter.
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2. Methods 

This chapter describes the bioinformatic pipelines used for variants’ calling 

and for the detection of CNVs from WES data. The high dimensionality of the 

features extracted by these bioinformatic pipelines prevents the application of 

standard statistical methods for the identification of relevant associations. In order to 

reduce the dimensionality of the problem and, at the same time, to include prior 

knowledge into the analysis pipeline, the information extracted from WES were 

converted into Boolean features. The methods adopted for this conversion are 

described in section 2.5.1 for SNVs and 2.5.2 for CNVs. The Boolean features 

defined here will form the bases for applications of Machine Learning models to 

COVID-19 in the following chapters. 

2.1 The GEN-COVID Biobank 

The GEN-COVID Multicenter Study involves a network of Italian hospitals 

and healthcare facilities with the aim to collect and organize biological samples and 

clinical data along with patient-level phenotypic and genotypic data. To globally 

share samples and data among COVID-19 researchers, a GEN-COVID Biobank 

(GCB) and a GEN-COVID Patient Registry (GCPR) were established using already 

existing biobanking and patient registry infrastructures. For each patient, basic 

demographic information (sex, age and ethnicity) together with family history, (pre-

existing) chronic conditions, and SARS-CoV-2 related symptoms were collected via 

an extensive clinical questionnaire. 

The study protocol also provides access to patients’ medical records and 

continual clinical data updating in order to secure continuity for patient follow-up. 

The COVID-19 severity was assessed using a slightly modified version of the World 

Health Organization COVID-19 Outcome Scale [55] as coded into the following 

seven categories:  
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-1. resistors to infection (those who despite significant exposure to the virus 

remain negative) 

0. not hospitalized 

1. hospitalized, without oxygen support 

2. hospitalized, receiving low-flow supplemental oxygen 

3. hospitalized, receiving continuous positive airway pressure (CPAP) or 

bilevel positive airway pressure (BiPAP) ventilation 

4. hospitalized receiving invasive mechanical ventilation; and 

5. deceased 

 

A total of 2262 samples taken from the GEN-COVID consortium are analysed 

in this dissertation for the CNVs analysis (Chapter 8). Subsets of this cohort, taken at 

different time points in the enrolling process, are analysed in the studies presented in 

Chapter 4,5,6,7.  The mean age of the entire cohort is 60.7 years (range 18–99). The 

cohort is predominantly male (58.6%) with a mean age of 60.9 years (range 18–99); 

the mean age of the females is 60.4 years (range 18–98) (Table 1). About 31.1% of 

the cohort has at least one comorbidity. The overall case-fatality rate is 6.8% (155) 

deaths among 2262 enrolled subjects with a mean age of 77 years (range 39-98). 

Regarding the ethnicity, the cohort is composed of 2101 White (92.88%,), 52 

Hispanic (2.03%), 27 Black (1.19%), and 31 Asian (1.37%) patients (Table 1). Data 

on ethnicity and clinical category is not available for 15 out of 2262 patients. 

 

Table 1. Cohort characteristics 

No. of subjects 2262 

Mean age (range) 60.7 (18–99) 

Gender no. (%)  

 Male 1326 (58,6%) 

 Female 936 (41.4%) 

Ethnicity no. (%)  

 White 2101 (92.88%) 
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 Hispanic 52 (2.03%) 

 Black 27 (1.19%) 

 Asian 31 (1.37%) 

Clinical category no. (%)  

    Deceased (group 5) 155 (6.8%) 

 Hospitalized intubated (group 4) 143 (6.3%) 

 Hospitalized CPAP/BiPAP (group 3) 470 (20.8%) 

 Hospitalized with oxygen support (group 2) 704 (31.1%) 

 Hospitalized w/o oxygen support (group 1) 273 (12.1%) 

 Not hospitalized oligo/asymptomatic (group 0) 470 (20.8%) 

    Resistors to infection (group -1) 35 (1.5%) 

 

2.2 Sequencing 

Whole exome sequencing of 2262 SARS-CoV-2-infected participants from the 

Italian GEN-COVID cohort was performed using the Illumina NovaSeq6000 System 

(Illumina, San Diego, CA, USA). Library preparation was performed using the 

Illumina Exome Panel 45 Mb (Illumina) according to the manufacturer's protocol. 

Library enrichment was tested by qPCR, and the size distribution and concentration 

were determined using Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, 

CA, USA). All samples were aligned to the GRCh38 human genome assembly using 

BWA mem v0.7.17. SAMtools v1.7 was used to sort and index BAM files. Variant 

calling was performed according to the GATK best practice guidelines. Annotation 

was performed with ANNOVAR and VEP. 

2.3 Normalization 

For CNV prediction, BAM files underwent a series of preparation steps before 

read depth calculation. These steps included removal of duplicated sequences and 
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removal of sequences with low mapping quality (MQ). Through Picard’s Mark 

Duplicates tool, technical and optical duplicates were removed. The main reason for 

removing duplicates is to mitigate the effects of PCR amplification introduced during 

library construction. Optical duplicates are instead removed because they result from 

a single amplification cluster and are incorrectly detected as multiple clusters by the 

optical sensor. The mappability issue was addressed by removing reads with low MQ 

score (MQ < 20), which usually fall in repetitive regions of the reference genome or 

have low base quality, which was done using samtools [56]. This step was not 

necessary for ExomeDepth since it is already included in its pipeline by default. To 

reduce the GC bias, regions with %GC content higher than 80 were removed from 

the Exome kit by bedtools [57]. 

2.4 CNV detection pipeline 

2.4.1 CoNIFER 

CoNIFER v.0.2.2 was run with default settings. BAM files were used to 

calculate RPKM values. RPKM values were then transformed into standardized z-

scores (termed ZRPKM values) based on the mean and standard deviation across all 

analysed WES. CNV detection from WES data was performed separately by sex and 

by chromosomes (autosomal vs sexual). Mitochondrial DNA (mtDNA) and chrY 

were excluded from the analysis because the number of probes covering these regions 

were fewer than samples in the analysis. To reduce heterogeneity, the analyses were 

firstly performed separately by batch of sequencing runs for a total of twelve batches 

of around 200 samples each. 

To assess the quality control of exomes, it is common practice to examine the 

standard deviation of samples and to remove those samples with extremely high 

values. As the standard deviation of all SVD-ZRPKM values for each individual was 

poor for most of samples, the analysis was repeated with only two batches regardless 

of the sequencing run. The percentage of samples with low standard deviation (< 0.6) 
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increased from 22% to 46% when analysing two batches vs twelve batches and went 

up to 87.7% when looking for standard deviation below 0.7. For this reason, the 

following analyses were performed using two batches of 1000 samples. After setting 

the number of batches, the number of singular values decomposition (svd) to be 

removed was chosen for each batch according to the inflection point of the generated 

scree plot, as suggested by Krumm et. al (Figure 5). Nine components were removed 

for both batches. We set the discovery threshold at -1.5 SVD-ZRPKM for deletions 

and +1.5 for duplications, and required at least three exome probes to exceed the 

threshold. 

 

 

2.4.2 ExomeDepth 

ExomeDepth v1.1.15 was used with default settings. The analysis was 

performed on autosomal and gonosomal chromosomes separately for males and 

females, as recommended. Read count data was computed from BAM files and stored 

into GRanges objects from R. The correlation coefficient between test sample and 

reference control set was checked to estimate the quality. As it is highly 

recommended, this value should be above 0.97 or the calling would be less reliable 

(i.e., most likely a high false positive rate). Most of the samples satisfied this 

requirement. (Figure 6) ExomeDepth typically selected 10-20 experiments as 

background. 

Figure 5. Scree plot of the two batches of samples. 9 svd were removed from both batches. 
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Figure 6. Correlation coefficient between test and reference set separately for 

autosomes and gonosomes. Most samples have an optimal correlation coefficient 

above 0.97. 

2.4.3 CNV intersection 

CNVs predicted with CoNIFER and ExomeDepth were intersected to get a 

set of more reliable calls. A non-reciprocal overlap was considered, i.e., the two 

events did not require to have the same minimum overlap. The following commands 

were used to perform the intersection (Bedtools v2.30). 

bedtools intersect -a conifer.calls -b exomedepth.calls -wao -F 0.50 

bedtools intersect -a conifer.calls -b exomedepth.calls -wao -f 0.50 

Where: 
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• -wao option writes the original A (CoNIFER) and B (ExomeDepth) 

entries plus the number of base pairs of overlap between the two tools. However, A 

features w/o overlap are also reported with a NULL B feature and overlap = 0.  

• -F option is the minimum overlap required as a fraction of B 

(exomedepth calls). This was chosen because CoNIFER generally detects longer but 

fewer CNVs than ExomeDepth and we wanted to check if CoNIFER CNVs 

encompass several ExomeDepth events. 

• -f option is the minimum overlap required as a fraction of A (conifer 

calls). We also performed this intersection to take into account also the (few) CNVs 

which are longer in ExomeDepth than CoNIFER. 

Finally, the union of these two sets of overlapped calls was made. 

2.5 Definition of the Boolean features 

WES data were converted in a binary mode on a gene-by-gene basis. Several 

types of Boolean representations were implemented to try to cover all the possible 

genome variation and are described in detail in the next sections. The Boolean 

representation were then used as input features for LASSO logistic regression models. 

2.5.1 Boolean representations of SNVs and INDELs 

SNVs and INDELs from WES experiments were collapsed at gene-level and 

codified into 13 sets of Boolean features. The full list of Boolean representations of 

SNVs and INDELs is reported in Table 3. 

Common variants where the reference is the minor allele were switched. 

Firstly, any variant not impacting on the protein sequence was discarded. In 

particular, these were the skipped categories: 'downstream', 'intergenic', 

'ncRNA_exonic', 'ncRNA_intronic', 'ncRNA_splicing', 'upstream', 'UTR3', 'UTR5', 

'ncRNA_exonic;splicing', 'upstream;downstream', 'upstream;downstream', 
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'UTR5;UTR3', 'intronic' except for variants classified as pathogenic in Clinvar. Then 

the remaining variants were classified according to their minor allele frequency 

(MAF) as reported in gnomAD for the reference population as:  

• ultra-rare, MAF < 0.1% 

• rare, 0.1% ≤ MAF <1% 

• low-frequency, 1% ≤ MAF < 5%  

• common, MAF ≥ 5%. 

 

Non-Finnish European (NFE) was used as a reference population. SNVs with 

MAF not available in gnomAD were treated as ultra-rare. INDELs with frequency 

not available in gnomAD were treated as ultra-rare when present only once in the 

cohort and otherwise discarded as possible artefacts of sequencing.  

The rational of the subdivisions based on frequency is to give the appropriate 

weight to the single variants. A polymorphism is expected to have less impact on the 

phenotype in respect to a rare variant. More generally, as the frequency decreases, the 

impact on the protein function is expected to increase. By putting variants of any 

frequency together in the model, the underlying weight and impact is lost. Ultra-rare 

and rare variants were divided as the ultra-rare ones, being private, are more likely to 

have a higher impact for that specific patient,  

For the ultra-rare variants, 3 alternative Boolean representations were 

defined, which were designed to capture the autosomal dominant (AD), autosomal 

recessive (AR), and X-linked (XL) model of inheritance, respectively.  

The AD and AR representations included a feature for all the genes on 

autosomes. These features were equal to 1 when the corresponding gene presented at 

least 1 for the AD model, or 2 for the AR model, variants in the ultra-rare frequency 

range and 0 otherwise. The XL representation included only genes belonging to the 

X chromosome. These features were equal to 1 when the corresponding gene 

presented at least 1 variant in the ultra-rare frequency range and 0 otherwise. The 

same approach was used to define AD, AR, and XL Boolean features for the rare and 

low-frequency variants. The rational for isolating X chromosomes from autosomal 
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ones is to preserve the difference between females and males. As males have only 

one copy of the X chromosome, their AD model for genes on chrX would have a 

different meaning in respect to genes on autosomes. 

Common variants were represented using a different approach that is 

designed to better capture the presence of alternative haplotypes. For each gene, all 

the possible combinations of common variants were computed. For instance, in the 

case of a gene belonging to an autosome with 2 common variants (named A and B), 

3 combinations are possible (A, B, and AB), and (consequently) 3 Boolean features 

were defined both for the AD and AR model. In the AR model each of these 3 features 

was equal to 1 if all the variants in that particular combination were present in the 

homozygous state and 0 otherwise. The same rule was used for the AD model but 

setting the feature to 1 even if the variants in that particular combination are in the 

heterozygous state. In both models, AD and AR, a further feature was defined for 

each gene to represent the absence of any of the previously defined combinations. In 

the AD model this feature was equal to 1 if no common variant is present and 0 

otherwise; in the AR model, it is equal to 1 if no common variant is present in the 

homozygous state and 0 otherwise.  

The same approach was used to define the set of Boolean features for 

common variants in genes belonging to the X chromosome.  

Lastly, as common poly-amino acid repeat polymorphisms are usually 

missed in the classical analysis, such as GWAS analysis (that focus on common bi-

allelic polymorphisms), we wanted to test their role in determining COVID-19 

clinical severity. Genes with repeated regions were considered in the Boolean of poly-

amino acids triplet repeats (C_PR). A total of 40 genes with 43 triplet repeat regions 

were identified in UniProtKB. For any of these genes two features were defined, Dij 

and Iij, with Dij equal to 1 if for the i-th patient the j-th gene presented a deletion in 

the region characterized by repeated triplets, 0 otherwise, and being Iij equal to 1 if 

for the i-th patient the j-th gene has a repeated region longer than the reference 

(insertion), 0 otherwise. 
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Table 2. Boolean representations of SNVs and INDELs 

 Representations 
Boolean categories 

1 0 

UR_AD 
Ultra-rare variants 

(dominant) 

At least one variant 

(MAF < 1/1000) 

No this type of 

variants 

UR_AR 
Ultra-rare variants 

(recessive) 

At least 2 variants 

(MAF < 1/1000) 

No this type of 

variants 

UR_X 

Ultra-rare variants on the X 

chr genes (X-linked 

inheritance) 

At least one variant 

(MAF < 1/1000)  

No this type of 

variants 

R_AD Rare variants (dominant) 

At least one variant 

(MAF between 1/100 

and 1/1000) 

No this type of 

variants 

R_AR Rare variants (recessive) 

At least 2 variants 

(MAF between 1/100 

and 1/1000) 

No this type of 

variants 

R_X 

Rare variants on the X chr 

genes (X-linked 

inheritance) 

At least one variant 

(MAF between 1/100 

and 1/1000) 

No this type of 

variants 

LF_AD 
 Low-frequency variants 

(dominant) 

At least one variant 

(MAF between 5/100 

and 1/100) (If more 

than one coding low-

frequency variant 

impacts in that gene, 

different 

combinations -

unique-are 

represented 

separately) 

No this type of 

variants 

LF_AR 
Low-frequency variants 

(recessive) 

Variant or variant 

combination as at 

LF_AD, in 

homozygosity (MAF 

between 5/100 and 

1/100) 

No this type of 

variants 

LF_X 

Low-frequency variants on 

the X chr genes (X-linked 

inheritance) 

At least one variant 

(MAF between 5/100 

and 1/100) (If more 

than one coding low-

frequency variant 

impacts in that gene, 

different 

combinations -

No this type of 

variants 
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unique-are 

represented 

separately) 

C_AD 
Common variants 

(dominant) 

At least one variant 

(MAF > 5/100) (If 

more than one coding 

low-frequency 

variant impacts in 

that gene, different 

combinations -

unique-are 

represented 

separately) 

No this type of 

variants 

C_AR 
 Common variants 

(recessive) 

Variant or variant 

combination as at C-

AD, in homozygosity 

(MAF > 5/100) 

No this type of 

variants 

C_X 

Common variants on the X 

chr genes (X-linked 

inheritance) 

At least one variant 

(MAF > 5/100) (If 

more than one coding 

low-frequency 

variant impacts in 

that gene, different 

combinations -

unique-are 

represented 

separately) 

No this type of 

variants 

C_PR 

Common deletion or 

insertion in genes with 

repeated regions 

Ins = 1 if longer than 

reference, Del = 1 if 

shorter than reference 

No this type of 

variants 

 

2.5.2 Boolean representations of copy number variants 

The overlapped CNVs between CoNIFER and ExomeDepth were filtered for 

Bayes Factor (BF), a quality indicator provided by ExomeDepth. BF measures the 

CNV confidence and depends upon signals arising from a series of contiguous probes. 

Shorter CNVs detected by fewer probes result with low BF values, while longer 

CNVs detected by more probes have higher BF values. While it is difficult to assign 
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an ideal BF threshold and considering that short exons are penalized, we assumed 10 

as the best value that minimizes false positive calling rate and maximizes CNV 

calling number. This threshold was calculated by looking at the lowest BF associated 

with a confirmed CNV, e.g., with a predicted CNV detected also with another 

technique. By setting this threshold we preferred to identify a lower number of short 

CNVs with higher confidence. 

To build a gene-based Boolean for CNVs, each event was split by genes 

spanning through its length, after annotation with AnnotSV [58]. For any of these 

genes, a Copy Number (CN) value was assigned based on the ratio between observed 

and expected reads. In particular, a CN-value of 0 indicates homozygous deletion, 1 

heterozygous deletion, 2 neutral, 3 heterozygous duplication, 4 homozygous/double 

duplication, and 5 for duplication values above 4 (Table 2).  Three alternative 

Boolean representations of CNVs were defined. In the representation named CV 

(Copy Variation), each feature was set equal to 1 if the corresponding gene presented 

any copy number alteration, and 0 otherwise. The rational of this representation is to 

capture any possible genes whose copy alterations might have a functional effect on 

predisposition to COVID-19 severity. Two alternative representations considering 

only deletion or insertions were defined. In the representation named D (Deletion), 

each feature was set equal to 1 if the corresponding gene presented either a 

homozygous or heterozygous deletion (CN-value of 0 and 1) and 0 otherwise. While 

in the representation named I (Insertion), each feature was set equal to 1 if the 

corresponding gene presented any duplication (CNV-value of 3,4 and 5) and 0 

otherwise. The rational of these representations is to investigate correlations between 

COVID-19 severity and respectively deletions of insertions.  

 

Table 3. Ranges for CN-value based on observed/expected reads ratio 

Observed/expected reads CN-value CNV interpretation 

0 - 0.25 0 Homozygous deletion 

0.25 – 0.75 1 Heterozygous deletion 

0.75 – 1.25 2 Neutral 
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1.25 – 1.75 3 Heterozygous duplication 

1.75 – 2.25 4 Double duplication 

> 2.25 5 Other duplications 
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3. ACE2 gene variants may underlie interindividual 

variability and susceptibility to COVID-19 in the Italian 

population 

In this chapter, we present the results of our first exploratory analysis where 

we evaluated if a predisposing genetic background could contribute to the wide 

interindividual clinical variability. WES data produced by five Italian centers (Siena, 

Naples, Turin, Bologna, and Rome) interconnected by the Network of Italian 

Genomes (NIG) were collected to identify variation encompassing the ACE2 gene, 

the notoriously SARS-CoV-2 receptor for host cell entry. Computational chemistry 

methods were used to estimate how the identified ACE2 variants modify protein 

stability and SARS-CoV-2 binding. Also, a higher allelic heterogeneity for ACE2 in 

controls compared to cases is shown [10]. This premise led us to extend our research 

by collecting more SARS-CoV-2 infected patients within the GEN-COVID 

Multicenter Study and by broadening the spectrum of interest to the whole host 

genetics, as described in the following chapters. 
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4. Clinical and molecular characterization of COVID-19 

hospitalized patients 

In the present chapter we provide a comprehensive characterization of 

COVID-19 hospitalized patients from a clinical and molecular point of view. A 

multiple-organ involvement is shown, confirming that COVID-19 is a systemic 

disease rather than just a lung disorder. Considering the great variability of clinical 

symptoms, the need for a model that could account for both common and rare variants 

is delineated [50]. The analysis of the contribution of common and rare variants on 

COVID-19 severity asks for automated procedure that could extract relevant 

information from the massive datasets derived from WES experiments. Chapters 5, 

6, 7 and 8 will provide applications of ML models to address this issue. 
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5. Shorter androgen receptor polyQ alleles protect against 

life-threatening COVID-19 disease in European males 

Male sex has been reported as a risk factor for worse COVID-19 outcome 

even if men and women are similarly infected by the virus. In this study we aim to 

evaluate if the variability in COVID-19 severity among males and females may be 

explained by differences in the host genome. 

 In this chapter, we report the first analysis carried out by exploiting the 

LASSO logistic regression on the genetic dataset of COVID-19. This is our first 

application of a synthetic representation of genetic variants in a machine learning 

model. To deepen the sex differences in COVID-19, we evaluate the potential impact 

of poly-amino acids repeat polymorphisms, via the Boolean feature of poly-amino 

acids triplet repeats (C_PR described in chapter 2, section 2.5.1). The polyQ tract of 

the Androgen Receptor (AR) gene resulted a key determinant [59].  
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6. Association of Toll-like receptor 7 variants with life-

threatening COVID-19 disease in males: findings from a 

nested case-control study 

Recently, loss-of-function variants in TLR7 were identified in males with 

severe COVID-19 with a mean age of 26 years. As age and male sex are two major 

risk factors for developing life-threatening COVID-19 after infection, we 

investigated whether the two reported families represent the tip of the iceberg of a 

subset of young COVID-19 male patients.  

In the previous chapter LASSO logistic regression model was used to identify 

a gene's common variants that is predictive for the severe or the mild COVID-19 

phenotype. Here we report the analyses carried out by applying LASSO logistic 

regression method to the rare and ultra-rare genetic variants on the X chromosome 

(R_X and UR_X Boolean features described in chapter 2, section 2.5.1). This study, 

along with other published studies, shows that COVID-19 segregates like an X-linked 

recessive disorder environmentally conditioned by SARS-CoV-2. This type of 

inheritance contributes to disease susceptibility in up to 2% of severe COVID-19 

[60].  
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7. SELP Asp603Asn and severe thrombosis in COVID-19 

males 

While thromboembolism is a frequent cause of severity and mortality in 

COVID-19, the etiology of this phenomenon is not well understood. Zang et 

colleagues showed that the SARS-CoV-2 virus directly activates platelets and 

enhances their prothrombotic function and inflammatory response via binding of 

Spike to ACE2 [61]. However, why the excess of thromboembolic events happens in 

some individuals and not in others is still unexplored.  

In the present chapter, by applying the LASSO logistic regression model on 

the Boolean representation of common variants (Recessive model) of autosomal 

genes (C_AR Boolean described in chapter 2, section 2.5.1) we identified SELP as 

the genetic factor predisposing males to thromboembolism and severe COVID-19 

[62]. We also showed that the predisposition increases if the protective effect of 

testosterone is lost either by age or because of additional genetic factors such as 

polyQ≥23 in the androgen receptor (AR) gene (presented in Chapter 5). 
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8. Computational prediction of CNVs from WES of 

COVID-19 infected patients 

In the previous chapters, we showed that both polymorphisms and rare 

variants are involved in COVID-19 severity. However, SNVs are not the only type of 

variation that can be detected with WES experiments, as we introduced in chapter 1. 

Therefore, we started evaluating the potential impact of a different type of variation, 

e.g., copy number variations, in predisposing to COVID-19 disease. Many challenges 

arise when dealing with computationally predicted CNVs from WES data, as 

described in chapter 1 section 1.4.4. These shortcomings associated with CNVs 

detection from WES adds to the complexity of the modelling task, i.e., predicting 

COVID-19 severity from genetic data. The results presented in this chapter represents 

a first, preliminary, attempt to study the potential association of CNVs with COVID-

19 severity. 

8.1 Results of the computational algorithms show striking 

variation in the length and number of CNVs predicted by the 

different programs 

Results of the computational prediction demonstrated a wide range in both 

CNV counts and size when using different bioinformatic tools (Figure 7). CoNIFER 

tends to be more specific and thus detected fewer events of interest (median 11, range 

1-1303) while ExomeDepth errs on the side of sensitivity and returned more CNVs 

per sample (median 392, range 18-695).  Also, the size of the predicted CNVs differed 

between the tools, being 49.94 kbp (median length) for CoNIFER (range 454 bp to 

23.089 Mbp) and 1.49 kbp (median length) for ExomeDepth (range 60 bp to 45.4 

Mbp). 

 



Chapter 8 - Computational prediction of CNVs from WES of COVID-19 infected patients 

94 
 

 

 

Figure 7. Count and length distributions of CNVs predicted by ExomeDepth (red) 

and CoNIFER (light blue). In yellow the distributions of overlapped CNVs between 

the two tools. 

8.2 Results of CNVs detected by both CoNIFER and ExomeDepth 

As it is essential to filter out results that are unlikely to be true/relevant from 

our analysis, we selected only the most reliable CNVs, i.e., those predicted by both 

tools. Since CoNIFER detected fewer and longer events, it was considered as the 

limiting factor in the contrast. A total of 24850 CNVs were in common between the 

two tools when the CNV detected by CoNIFER overlapped at least 50% the CNVs 

predicted by ExomeDepth (-F option). The percentage of overlap was on average 

equal to 68%. By looking at the reverse contrast, i.e., when imposing that at least 50% 

of CNV predicted by CoNIFER overlapped with ExomeDepth CNV (-f option), a 

total of 16130 were found in common (Figure 8). The union of these two sets of 

overlapped calls was considered for further analyses. 38.3% of events were found in 

both contrasts as reported in Figure 8. The vast majority of overlapped CNVs derived 

from the -F contrast as expected. Finally, taking together the results of the two 
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comparisons, the percentage of overlap among the two tools increases from 68% to 

81% (29631 overlapped CNVs out of 36492 detected initially by CoNIFER). 

 

 

8.3 Results of the LASSO logistic regression: CNVs and COVID-

19 severity 

The LASSO logistic regression model was fitted on the cohort using as input 

features the Boolean representation of CNVs described in Chapter 2. In the chosen 

Boolean representation, the gene was set to 1 if it presented any copy number 

alteration, and 0 otherwise. Cases were defined as deceased or patients needing 

endotracheal intubation or CPAP/biPAP ventilation or oxygen support only (category 

Figure 8. Overlapped CNVs between CoNIFER and ExomeDepth. We imposed 50% 

of non-reciprocal overlap between the CNVs detected by the two tools. In light blue 

are reported the overlapped CNVs obtained from the first contrast (-F) and in yellow 

the ones deriving from the first contrast (-F) and in yellow the ones deriving from the 

second contrast (-f). 38.3% of intersections were found in both contrasts. 
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5/4/3/2). As controls, participants were selected if being hospitalized without oxygen 

support or oligo/asymptomatic not requiring hospitalization (category 1 and 0). After 

the fitting of the model, the performances were evaluated by looking at the Receiver 

Operating Characteristic (ROC) curve (Figure 9, Panel C) which provides an Area 

Under the Curve (AUC) score of 52%, which is not significantly different than 

random guess. Results were examined with a Chi Square Test. The first 20 features 

for importance and the relative p-values are reported in Table 4. No significant 

association was found after correction for multiple testing. 

 

Figure 9. Results of the LASSO logistic regression for the Boolean of CNV. Panel 

A. The histogram of LASSO logistic regression weights represents the importance of 

each feature for the classification task. Panel B. Cross validation ROC-AUC score 

for the grid of LASSO regularization parameters; the optimal regularization 

parameter is chosen by selecting the one with highest cross-validation score (red 

point). Panel C. ROC curve for the 10 folds of the cross-validation. 



E. Benetti - Identifying host genetic risk factors for COVID-19 from Exome Sequencing 

97 
 

Table 4. First 20 features for importance with the respective p-value in the LASSO 

logistic regression of the Boolean of CNV. The total number of features tested was 

7153. 

Feature P-value 

GH2 0.000743 

DEFB4A 0.001752 

CSH2 0.002236 

CSH1 0.002654 

ZNF705B 0.00267 

OR4M2 0.003571 

LOC642846 0.004747 

DEFB103A 0.005532 

DEFB103B 0.005532 

LINC00115 0.006255 

FAM87B 0.006255 

CROCC 0.006313 

FAM66E 0.006696 

LOC102725021 0.01201 

NBPF12 0.012093 

ARHGAP11B 0.013714 

MIR3690 0.016334 

FRMPD2B 0.016861 

LOC102724159 0.017127 

PWP2 0.017127 

 

Subsequently, we repeated the same analysis but selecting only those genes 

subjected to dosage sensitivity. The list of genes was downloaded from 

https://dosage.clinicalgenome.org/. Results of the LASSO logistic regression are 

reported in Figure 10. The performance of the model remained low, as the ROC curve 

for the 10 folds of the cross-validation provided an Area Under the Curve (AUC) 

score of 51% (Figure 10, Panel C). 

 



Chapter 8 - Computational prediction of CNVs from WES of COVID-19 infected patients 

98 
 

Eventually, we tested deletions and duplications separately using as input 

features of the model the Boolean representation of deletions and the Boolean 

representation of duplications, respectively. Results for deletions are reported in 

Figure 8 and for duplications in Figure 11. Also in these analyses we did not obtain 

good performance in predicting COVID-19 outcomes. 

 

 

Figure 10. Results of the LASSO logistic regression for the Boolean of CNV 

filtered by Dosage-sensitive genes. Panel A. The histogram of LASSO logistic 

regression weights represents the importance of each feature for the classification 

task. Panel B. Cross validation ROC-AUC score for the grid of LASSO 

regularization parameters; the optimal regularization parameter is chosen by 

selecting the one with highest cross-validation score (red point). Panel C. ROC 

curve for the 10 folds of the cross-validation. 
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Figure 8. Results of the LASSO logistic regression for the Boolean of deletions.  Figure 11. Panel A. The histogram of LASSO logistic regression weights represents 

the importance of each feature for the classification task. Panel B. Cross validation 

ROC-AUC score for the grid of LASSO regularization parameters; the optimal 

regularization parameter is chosen by selecting the one with highest cross-validation 

score (red point). Panel C. ROC curve for the 10 folds of the cross-validation. 
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9. Conclusive remarks and future perspectives 

COVID-19 is a condition with a significantly wide range of clinical 

presentations: from asymptomatic infected patients to those expressing severe 

symptoms leading to death. Assuming a relatively low impact of different virus 

variants on the observed interindividual variability, the remaining clinical variability 

might likely be associated with age and host genetics, including sex. In line with 

recent studies [12], [14], [16], [49], [63], we focused our attention on the 

identification of host genetics factors able to explain COVID-19 severity. 

This dissertation describes the results obtained with an approach that 

combines synthetic representations of genetic data and a machine learning model 

starting from Whole Exome Sequencing data to investigate genetic variability in 

COVID-19 infected patients. When at the beginning of 2020 we started to collect 

COVID-19 positive patients from all over Italy in the context of the GEN-COVID 

Multicenter study, we began to face the complex nature of COVID-19 infection. We 

soon realised that host genetics could play an important role in COVID-19 

pathogenesis. By looking at the coding variants in the ACE2 gene, the SARS-CoV-2 

receptor for host cell entry, we found a statistically significant higher allelic 

heterogeneity for ACE2 in controls compared to cases, with a higher chance to find 

at least one ACE2 variant in the cohort of controls compared to the cohort of cases 

[10]. We therefore suggested that the effect of rare variants, likely summing up to the 

effect of more frequent ones, could partially account for the inter-individual clinical 

variability observed.  

This initial hypothesis was further explored in a subsequent pilot study [50] 

where common variants in susceptibility genes seemed to represent the favourable 

background in which additional host private mutations may determine disease 

progression. We realized the need for a new method that could combine common and 

rare variants and, at the same time, extract relevant information from the massive 

datasets derived from WES experiments. We therefore proposed a new approach to 
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identify host risk factors predisposing to the disease. The innovation consisted in 

mapping the genetic variability into a set of informative features, e.g., Boolean 

representations, to predict the COVID-19 severity using LASSO logistic regression. 

The first analysis carried out by exploiting this method on the dataset of 

COVID-19 was aimed to understand if the differences observed in the outcomes 

between men and women could be explained by the host genome. Epidemiological 

studies, in fact, indicate that men and women are similarly infected by SARS-CoV-

2, but COVID-19 outcome is less favourable in men. In this study, reported in chapter 

5, we identified the first genetic polymorphism predisposing some men to develop a 

more severe disease, irrespectively of age, by comparing the extreme ends of the 

cohort (severe vs. oligo-asymptomatic SARS-CoV-2 PCR-positive patients). We 

demonstrated that the number of polyQ repeats in the androgen receptor (AR) gene is 

a predictor of the COVID-19 outcome as polyQ alleles shorter than 22 repeats in the 

receptor conferred protection against severe outcome in COVID-19, independently 

of age. Failure of the endocrine feedback to overcome AR signalling defect by 

increasing testosterone levels during the infection leads to the fact that polyQ 

becomes dominant to testosterone levels for the clinical outcome [59]. This first result 

opens potential of using testosterone as adjuvant therapy for patients with severe 

COVID-19 having defective androgen signalling, defined in this study as PolyQ ≥ 23 

repeats, and inappropriately low levels of circulating androgens. This study shows a 

successful application of the LASSO logistic regression on the Boolean of poly-

amino acids triplet repeats.  

Subsequently, we focused our attention on rare genetic variants. In the study 

reported in chapter 6, we analysed rare variants (MAF<1%) on X chromosome by 

comparing young males (<60 years) of the extreme phenotypes of the GEN-COVID 

cohort. LASSO logistic regression on the XL Boolean feature picked up TLR7 as the 

most important susceptibility gene. Loss-of-function variants in the X-linked 

recessive TLR7 Mendelian form contributed to disease susceptibility in up to 2% of 

severe COVID-19 [60]. These results were validated by functional gene expression 

profile demonstrating a reduction in TLR7-related gene expression in cases compared 
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to controls, underling an impairment in type I and II IFN responses. We therefore 

confirmed the role of TLR7 in COVID-19 susceptibility in young males, previously 

reported by van der Made et colleagues, extending the results in a larger cohort. These 

findings were further validated by other research groups [56]. 

In chapter 7, we identified a common polymorphism, Asp603Asn in SELP, 

associated with severity and thromboembolism, leading to life-threatening disease. 

This result was obtained using LASSO logistic regression on the Boolean 

representation of homozygous common bi-allelic polymorphism of autosomal genes 

in males. In this study we showed that predisposition to thromboembolism increases 

if the protective effect of testosterone is lost either by age or because of additional 

genetic factors such as polyQ ≥23 in the AR gene [62]. This knowledge provides a 

rationale for repurposing anti P-selectin monoclonal antibodies as personalized 

adjuvant therapy in men affected by COVID-19.  

All these results together show that this novel synthetic approach was 

effective to characterize both common and rare variants as potential contributors to 

the severe phenotypes, providing knowledge for potential patients' treatment. 

To evaluate if other type of variation, e.g., Copy Number Variants, could 

account for a part of COVID-19 heritability, we built a Boolean representation of 

CNV to be tested with the same strategy. Limitations associated with CNVs detection 

from WES increases the complexity of the modelling task, i.e., predicting COVID-

19 severity from genetic data. In these preliminary results presented in chapter 8, we 

did not find any association between CNVs, computationally predicted by two 

independent tools, and COVID-19 severity. However, further studies are necessary 

to assess their potential contribution to COVID-19 outcomes. 

In conclusion, the approaches presented in this thesis allowed to identify 

several genetic factors responsible for interindividual variability in the response to 

SARS-COV2 infections. The natural evolution of the work presented here is the 

development of a comprehensive model, that combines the different representations 

of genetic variability into a unified framework. A first attempt in this direction has 
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recently been proposed in the context of the GEN-COVID consortium [65] and in 

collaboration with international cohorts contributing to the WES/WGS working 

group within the HGI (https://www.covid19hg.org/projects/). In the mentioned study, 

we propose an Integrated PolyGenic Score (IPGS) that includes information 

regarding the variants at different frequencies, from ultra-rare to common. The input 

features of the model are the gene-based Boolean features presented in section 2.5.1. 

Severity predictions considering IPGS as an input feature were shown to outperform 

predictions not considering the genetic information [65]. 

This novel approach can significantly improve our ability to estimate the 

contribution of genetic factors to the risk of suffering a severe form of COVID-19 

and can help to understand the potential implications for clinical and public health 

responses. Moreover, besides the relevance for the current pandemic, the methods 

presented could help us to understand the role of genetics in other complex diseases. 
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