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review,
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Summary

The quote “Not everything that can be counted counts and not everything that
counts can be counted”, often attributed to Albert Einstein, expresses in some extent
the challenges we are facing when dealing with the human genome. The unprecedent
amount of data derived from sequencing experiments forced us to find something that
counts within an overwhelming number of genetic variants. In the present thesis, we
try to assess this issue in the context of Coronavirus disease 2019 (COVID-19), an
infectious disease caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). While most infected individuals experience only mild or no
symptoms, severe cases can rapidly evolve toward a critical respiratory distress
syndrome and multiple organ failure [1]. COVID-19 has demonstrated itself to be a
heterogeneous and multifactorial infection having a broad spectrum of clinical
presentations influenced by age, gender, comorbidities, ethnic groups, and host
genetics, including human leukocyte antigen (HLA) genotypes [2]. In this challenging
context, our aim was to study host genetic factors associated with COVID-19
severity. A better understanding of the interplay between host genetics and SARS-
CoV-2 is, in fact, essential for disease prediction and to support the development of
targeted therapies. Several efforts have been done worldwide to discover the genetic
determinants of COVID-19 susceptibility, severity, and outcomes. As a matter of fact,
COVID-19 represents one of the hot research topic areas for its relevance among the
whole community (The COVID-19 Host Genetics Initiative, HGI, and the COVID
Human Genetic Effort, HGE, Consortia).

This dissertation presents a novel approach to identify host risk factors
predisposing to the disease. The innovation consists in taking into account different
aspects of genome variability, from Single Nucleotide Variants (SNVs) to Copy
Number Variations (CNVs) through a gene-based approach to represent genetic data.
The gene-based Boolean representations were the input features of machine learning

models and were tested separately and ultimately all together to improve our ability



Summary

to predict COVID-19 outcomes and to identify genes and variants predisposing to
severe outcomes. Overall, this method led us to identify some important genetic
determinants involved in COVID-19 severity that will be discussed in the final
chapters of the thesis.

The first Chapter of this thesis will provide an overview of the background
and state of the art technologies to guide the reader in the comprehension of the work.
Chapter 2 will provide an exhaustive description of the bioinformatic pipelines,
optimization procedures and methods adopted in our work. Chapters 3 and 4 will
show our first findings and introduce the reader to the complexity of the study. The
effective applications of our novel approach, i.e., the Boolean features and machine
learning model, are reported in Chapter 5, 6 and 7. The last chapter of the results,
Chapter 8, will discuss the challenges and results of the application of machine
learning methods on Boolean features representing copy number variants. The main
stages and discoveries of our research will be reported and commented in the
Concluding remarks, that end the dissertation on Chapter 9.
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1. Introduction

In this chapter, we outline the characteristics of COVID-19, focusing our
attention on the role played by host genetics in predisposing to COVID-19 severity.
As an adequate method able to represent and explain the complexity of COVID-19
disease is required, the key components of our novel approach, e.g., synthetic
representation of genetic data and machine learning models, are described in this
chapter. In particular, the choice of Whole Exome Sequencing is contextualized in
section 1.2 followed by the description of the variants included in our analyses. A

brief overview of the machine learning techniques is illustrated in section 1.6.

1.1  Disentangling complex diseases: the COVID-19 pandemic

The coronavirus disease 2019 (COVID-19, 'CO' stands for corona, 'VI' for
virus, and 'D' for disease) pandemic, caused by infections with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), that firstly appeared in
December 2019 in Wuhan (China), has resulted in an enormous challenge to the
world’s healthcare systems. Globally, as of 14th October 2021, there have been
239.007.759 confirmed cases of COVID-19 and 4.871.841 deaths, while in Italy the
confirmed cases are attested around 4.707.087 and 131.421 deaths, reported to the
World Health Organization (WHO) [3]. As the virus continues to circulate
worldwide, the risk of occurrence of new variants, that might have higher infectivity,
transmissibility, and virulence, is elevated. Up to now, four SARS-CoV-2 variants of
concern (VOCs) have been defined: Alpha (B.1.1.7, first documented in the UK),
Beta (B.1.351, first documented in South Africa), Gamma (P.1, first documented in
Brazil), and Delta (B.1.617.2, first documented in India) [4].

It is well known now that COVID-19 is characterized by a highly
heterogeneous phenotypic presentation. A wide range of symptoms have been

reported including fever, cough, difficulty breathing or shortness of breath, fatigue,
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loss of taste or smell, sore throat, headache, diarrhoea, muscle or body aches and rush
on skin (https://www.who.int/health-topics/coronavirus). Mild cases are defined as
patients having, just to mention a few, fever, cough, chest pain, nausea, and body pain
while severe and critical cases are those experiencing dyspnoea, respiratory failure
and/or septic shock (www.cdc.gov/coronavirus/). While most infected individuals
experience only mild or no symptoms, severe cases can rapidly evolve toward a
critical respiratory distress syndrome and multiple organ failure, or to persistent
disease (long COVID), or death [1], [5]. The risk of severe COVID-19 outcomes is
strongly correlated with age, with a doubling in risk every 5 years from the age of 5
years ahead and a strong rise after the age of 65 years [6]. Additionally, other known
risk factors are sex, as a male bias in mortality has emerged during the pandemic [7],
and the presence of underlying medical conditions like cardiovascular disease,

asthma, diabetes, chronic respiratory disease, chronic kidney disease, or cancer [8].

Early in 2020, Italy was the first European country to experience the COVID-
19 outbreak with an overall case fatality rate of 7.2%, substantially higher than in
China (2.3%) [9]. For this reason, we started investigating the population-specific
variation of the coding variants of Angiotensin-converting enzyme 2 (ACE2), the
SARS-CoV-2 receptor for host cell entry [10]. During the infection, SARS-CoV-2
binds to ACE2 receptor through the Spike glycoprotein (S) and the invasion process
is then triggered by host cell proteases (furin, trypsin, TMPRSS2 and cathepsin).
When viral RNA enters the host cell, translation of the polyproteins begins [11]. For

its role in the virus entry into the host cell, ACE2 gene was the first target of our study.

Later, we established a consortium, the GEN-COVID Multicenter Study, to
study the COVID-19 Host Genetics factors
(https://sites.google.com/dbm.unisi.it/gen-covid). In fact, while being a male,
increasing age and higher mass index are recognised to be risk factors correlating
with disease severity, they do not explain alone all the observed variability among
individuals [12]. The interindividual variability in COVID-19 susceptibility and
disease severity suggests that a predisposing host genetic background can play a role

in the pathogenesis of the disease.
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Existing studies suggest that variability in the host genetic constitution, along
with immunological features, may modulate the inter-individual and population-scale
differences in COVID-19 severity and clinical outcomes [13], [14]. Identifying host-
specific genetic factors may provide insight about biological mechanisms leading to
disease and consequentially help to support the development of novel treatments. As
new virus variants arise, the search for therapies is, in fact, still relevant despite the

recent development of vaccines.

Classical studies, such as Genome-Wide Association Studies (GWASS) have
been extensively employed to identify some loci associated with COVID
susceptibility/protection. As a result, some common polymorphisms in relevant genes
have been found in the course of the last two years [15], [16]. However, COVID-19
has demonstrated to be a complex disorder where both common and rare variants
contribute to the likelihood of developing a severe form of the disease. Since GWAS
studies focus primarily on common variants (MAF>5%), rare variants constitute a
missed heritability for this method. Moreover, the variants identified through GWAS
explain only a small fraction of trait variability and being mostly non-coding, they
make it difficult to interpret the results: follow-up analyses are therefore necessary to

identify the relevant genes.

In our effort to untangle COVID-19 complexity, we employed Whole Exome
Sequencing (WES) to characterize both common and rare variants as potential
contributors to the severe phenotypes. An overview of the strengths and

characteristics of this technology is provided in the next section.

1.2  Whole Exome Sequencing (WES)

Advances in Next Generation Sequencing, technologies for massive-parallel
DNA sequencing, have resulted in an extraordinary amount of genomic sequence data
allowing for a more comprehensive understanding of human genetics. Despite Whole
Genome Sequencing (WGS) provides the most extensive analyses of the entire

human genome (3 billion base pairs), this approach is not yet considered to offer
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sufficiently improved clinical utility with its markedly higher costs compared to
exome sequencing and gene panels. A common alternative to WGS is Whole Exome
Sequencing (WES) [17], a more cost-effective method that delivers a higher
coverage, allowing for detection of variants at lower percentage within the sample
(e.g., somatic mutations, mosaics, heteroplasmy). The WES analysis workflow is
reported in Figure 1. WES focuses mainly on the protein coding regions of the
genome (exons), which encompasses only 3.09% (30Mb) of the latest release of the
human reference genome, GRCh38 [18]. Different exome capture kits and providers
are available, which primarily differ in their specific genomic target regions covered,
size and number of probes [19]. In most cases, the target enrichment strategy includes
~22,000 genes and harbours more than 85% of the variants causing single-gene
disorders [19]. For these reasons, WES has been widely and successfully used for the
identification of the genetic basis of both Mendelian diseases as well as complex

traits.

On average, the WES of a patient generates more than 20,000 variants. The
challenge is to determine which of these variants underlie or are responsible for the
inherited components of phenotypes by filtering out common variants and prioritizing
candidate variants [20]. There are different classes of genetic variations such as
Single Nucleotide Variants (SNVs), small insertion and deletion variants (INDELS),
Copy Number Variants (CNVs), and large Structural Variants (SVs). While SNVs
and INDELSs are routinely detectable by WES variant calling, the ability to detect

CNVs and SVs has only recently emerged and presents considerable challenges.



E. Benetti - Identifying host genetic risk factors for COVID-19 from Exome Sequencing

1.  DNA extraction 1. Fastq e Variant calling (VCF)
2. DNA fragmentation 2. Mapping e Variant annotation
3. Adaptor ligation 3. Duplicate removal « Variant filtering
4, Hybridization and 4. Local realignment
targeted exome capture 5.  Base quality score
5. Sequencing recalibration
6. BAM

Figure 1. Whole Exome Sequencing workflow

1.3 Single nucleotide variants (SNVs) and small insertion and
deletion variants (INDELS)

Single nucleotide variants (SNVs) are among the most frequent and
widespread alterations in the genome [21]. The vast majority of these changes are
functionally neutral; however, some variants produce dramatic phenotype and may
cause diseases as a consequence. While not as common as SNVs, INDELS are widely
spread in the genome. They are a type of genetic variation in which a specific
nucleotide sequence is inserted or deleted. A comprehensive summary of the types of

sequence variation is reported in Figure 2, taken from (https://m.ensembl.org/).
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Figure 2. Diagram showing the location of sequence variation. (Picture taken

from https://m.ensembl.org/)

A variant may fall within the coding region of genes (synonymous variants,
missense variants, frameshift caused by INDELs, in frame variants, stop gained),
non-coding regions of genes (e.g., 5’UTR variants, 3’UTR variants), in the
boundaries between exons and introns (splice variants), or in the intergenic regions
between genes (intergenic variant, upstream and downstream gene variants). SNVs
within a coding sequence do not necessarily change the amino acid sequence of the

protein, due to degeneracy of the genetic code (synonymous variants).

Nearly half of the known inherited disease mutations are non-synonymous
SNVs (nsSNVs) [22], which by causing an amino acid change can destroy the
function of the encoded proteins. The high number of detected variants make
impossible to investigate the functional effect of every nsSNVs experimentally. Thus,
the interpretation of genetic variants remains an enormous challenge and further
development of methods to prioritize variants that are clinically relevant is essential
to maximize the utility of sequencing data. As a consequence, variants’ annotation —
which assigns functional information to DNA variants — is a key step in any
bioinformatic pipeline for the analysis of WES data. Multiple tools have been
developed for predicting deleteriousness of genetic variants such as SIFT,
MutationTaster, PhyloP, FATHMM, MutationAssessor, POLYPHENZ2, CADD,
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GERP++. These programs rely on different methods and provide a score that
measures how likely an nsSNVs is to be deleterious, along with its binary prediction.
Some tools measure evolutionary sequence conservation (e.g. SIFT, PhyloP and
MutationAssessor) using mathematical operations. Other tools evaluate the impact of
variants on protein structure and function using physical and comparative factors
(e.g., PolyPhen-2), classifying variants according to Bayesian methods. Another class
of tools is represented by the ones that predict the overall pathogenic potential of a
variant integrating a number of genomic information, such as sequence context,
epigenetic measurements, gene model annotation, and using a machine learning
approach to categorize variants as benign or deleterious (e.g., CADD). Despite the
important guidance on variant interpretation provided by these tools, the predictions
can vary greatly when applied to the same variants [23], suggesting that further
improvements are still needed. In particular, the low specificity of the current tools
entails a high rate of false positive predictions, which complicate the identification of

causative variants.

1.4 Copy number variations (CNVs)

The routine use of WES is generating a great amount of inconclusive data. As
a matter of fact, most patients with a suspected genetic condition are left undiagnosed
even after a thorough analysis of rare coding SNVs and INDELSs [24]. This can occur
for various reasons, including the lack of knowledge of genes leading to a focused
analysis of only known disease genes, but it can also be due to different type of
variation not routinely detectable by WES analysis pipelines, such as structural

variations.

The term “structural variations” comprises microscopic and sub-microscopic
variants which include duplications and deletions, collectively called copy-number
variants or copy-number polymorphisms, as well as insertions, inversions and
translocations [18]. These variations may impact the dosage or the regulation of one

or more genes or generate somatic genome instability and age-dependent diseases.
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Deletions and duplications are a type of structural variation referred to as copy
number variations (CNVs) involving copy number changes of DNA fragments
typically longer than 1 Kb [25]. The 1000 bp threshold derives from earlier studies
based on microarray methods but currently the size of CNVs is defined from 50bp to
several Mbs after the application of sequencing technologies [26].

CNVs are common features of the human genome and account for more inter-
individual variation than do single-nucleotide variants. Their impact ranges from no
obvious effect on common variability of physiological traits, to substantial
contribution to common and rare diseases susceptibility [27]. Pathogenic CNVs have
been found to cause Mendelian disorders [28] or to be associated with complex
multifactorial diseases, including cancer [29], -cardiovascular [30] and
neurodevelopmental disorders [31], and to contribute to susceptibility to infectious
diseases [32].

1.4.1 Mechanisms of CNVs formation

There are four major mechanisms giving rise to CNVSs, reported in Figure 3.
Two recombination-based mechanisms such as NAHR (Non-Allelic Homologous
Recombination) between repeat sequence and NHEJ (Non-Homologous End-
Joining) have been linked to genomic rearrangements and the formation of CNVs
together with retrotransposition and a replication-based mechanism termed FoSTeS
(fork stalling and template switching) [33]. NAHR appears to be the predominant
pathway underlying recurrent rearrangements of the genome. It is caused by the
alignment and the following crossover between two nonallelic (i.e., paralogous) DNA
sequence repeats sharing high similarity to each other. NAHR can take place in
meiosis where it results in unequal crossing over leading to constitutional genomic
rearrangements, but it can also occur in mitosis resulting in mosaic populations of
somatic cells carrying copy number variations. NHEJ is responsible for many of the
nonrecurrent rearrangements [28]. This mechanism is used by human cells to repair

double strand breaks and can result in several nucleotides loss or addition at the join
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point [33]. The FoSTeS model can also account for Complex Genomic
Rearrangements and CNVs. According to this mechanism, the DNA replication fork
can stall, the lagging strand separates from the original template and switches to
another replication fork and restarts DNA synthesis on the new fork by priming it via
the microhomology between the switched template site and the original fork [33].
Depending on whether the new fork is located downstream or upstream of the original
fork, the template switching results in either a deletion or a duplication. Moreover,
depending on the orientation of the replication fork, the erroneously inserted fragment
could be in direct or inverted orientation compared to its original position. This whole
procedure can take place multiple times in series resulting in complex
rearrangements. Even if the vast majority of gene duplications results in a new copy
located adjacent to the original gene, a substantial number of new duplicates are
inserted far from the original locus in humans [34]. In this case, the underlying
mechanism is the retrotransposition in which a mRNA transcript is reverse-
transcribed and reinserted into a random location in the genome, yielding a new

intron-less gene copy.

NAHR NHEJ FoSTeS L1
retrotrasposition
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Figure 3. Mechanisms of CNVs formation.
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1.4.2 CNV detection methods

CNV detection methods can be divided into two major categories: locus-
specific detection, which requires prior knowledge of the region of interest; and
genome-wide detection, which allows CNVs detection across the whole genome or a
considerable part of it [35]. Among locus-specific methods are multiplex ligation-
dependent probe amplification (MLPA), quantitative polymerase chain reaction
(gPCR) and Fluorescence in situ hybridization (FISH). Even if the locus-specific
techniques are considered to be the most reliable, they present some drawbacks,
above all the fact that in most cases which region need to be tested for CNVs is not
known a priori. Therefore, locus specific methods are often employed to validate
selected findings of genome-wide methods. Among genome-wide techniques are
array comparative genomic hybridization (aCGH), SNP-arrays and WES or WGS.
With these techniques, it is not possible to achieve the same reliability of locus-
specific methods, but they often provide an overview of many potential events.

The gold standard for CNV detection in clinics are MLPA and aCGH. MLPA
is a targeted PCR-based method that simultaneously analyses multiple genomic
regions of interest to detect abnormal copy numbers at an exon-level resolution. It
works by quantifying probes that hybridize to genomic DNA and are amplified by
PCR. The products are then separated by capillary electrophoresis. Relative amounts
of probe amplification products reflect the relative copy number of target sequence
[36]. aCGH is based on the principle of comparative hybridization of two labelled
samples (test and reference) to a set of hybridization targets. The resulting fluorescent
ratio is then measured, converted to a log2 ratio, and used as a proxy for copy number.
An increased log2 ratio corresponds to a gain in copy number in the test compared
with the reference; conversely, a decrease indicates a loss in copy number [26].
Detection of a CNVs typically requires a signal from at least 3 to 10 consecutives
probes. aCGH can reliably call large CNVs (in the order of megabases) but shows
poor performances when dealing with small CNVs affecting only one or a few small
exons, due to its low resolution (approximately 10~25 kbp) [37]. Employing WES to

predict CNVs could extend the diagnostic yield and increase the utility of these

10
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previously unused data, saving time and reducing costs of laboratories, while creating
a more comprehensive snapshot of genomic variation with a single assay [24].

1.4.3 CNV prediction from Sequencing data

Reliable CNV calls from sequencing data presents considerable challenges and
depends on high depth and uniformity of coverage across targets. Additionally, no
accepted standard protocols or quality control measures are available so far [38], [39].
Limitations of this approach arise from the differences in probe hybridization and
efficiency, which introduce bias and noise affecting the uniformity and consistency
of coverage across all target sites. A robust bioinformatics approach is required to
deal with the size and complexity of the data. Many tools have been developed to
detect gains or losses of genetic information from sequencing data and rely essentially
on 4 different strategies: Read Depth (RD), Paired-end mapping (PEM), Split read
(SR), and Assembly (AS) (Figure 4).

Read Depth (RD) methods are based on the hypothesis that there is a
correlation between depth of coverage of a genomic region and the copy number of
the region. These tools compare the number of reads mapping to a chromosome
window with its expectation under a statistical model. Deviations from this
expectation are indicative of CNV calls. Limitations of this method are the need of
high coverage for high resolution, deletions are detected more easily than duplications

and repeats and GC content might introduce artefacts.

Orientation and Distance of Paired-end read mapping (PEM) is based on the
distances between a pair of paired-end reads through discordantly mapped reads. A
discordant mapping is produced if the distance between two ends of a read pair is
significantly different from the average insert size. This approach has the potential to

find any type of structural variant (SV) and not only deletions and duplications.

Split reads (SR) method uses reads from paired-end sequencing where only

one read of the pair has a reliable mapping while the other one fails to map to the
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genome either completely or partially. The unmapped reads are a potential source of
breakpoints at the single base pair level.

Unlike the RD, PEM and SR approaches that first align sequencing reads to a
known reference genome before the detection of CNVs, in the Assembly (AS)
approach contigs are reconstructed from short reads by linking overlapping reads.
Genomic regions with discordant copy numbers are detected by comparing the

assembled contigs to the reference genome [40], [41].
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Figure 4. Different strategies of CNV prediction from sequencing data.

When dealing with WES data, the best approach to detect CNVs is through RD
based methods, due to the improved sequencing technologies and at the same time
the reduced costs which lead to higher coverage data. Like aCGH, the ratio of read
counts between a test and a reference sample is preferable than a single-sample
analysis in order to correct for the usually broad variability in capture efficiency

across exons. PE, SR and AS approaches are instead not suitable for identifying
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CNVs from WES data, as exome relies on short and discontinuous exonic regions
across the genome [40]. RD-based approaches follow a three-step procedure:
mapping, normalization, and estimation of copy numbers. In the mapping stage, short
reads are aligned to the reference genome and the read depth is computed according
to the number of mapped reads in predefined windows. The second step consists of
normalization and correction of potential biases in read depth mainly caused by GC
contents and repetitive regions. Lastly, copy number along the chromosomes are
estimated to determine deletions or duplications [42]. Currently, a high level of
sensitivity can be achieved with these CNV detection tools, but at the cost of low
specificity, which increases the workload in interpretation and annotation of CNVs
[43].

CNV calls from exomes in this thesis were generated using two RD-based tools
which are widely used for this purpose in the field, ExomeDepth [44], and CONIFER
[45]. ExomeDepth and CoNIFER use different statistical models for CNV calling.
ExomeDepth is based on Hidden Markov Models and uses a robust beta-binomial
model for the modelling. This tool uses a cohort of samples for normalization. An
aggregate reference set is created selecting the most suitable control set for each
exome by using read count data. This optimized reference set is built in order to
maximize the power to detect CNVs [44]. CoNIFER, instead, performs the
unsupervised decomposition of the signal using principal component analysis
(singular value decomposition). It is based on the assumption that the main source of
variability is due to stochastic noise and not to real events. For this reason, the
developers of CoNIFER suggest cleaning the cohort of stochastic noise using SVD-

based normalization [45].

1.4.4 Challenges associated with detecting CNVs from sequencing data

The advent of high-throughput sequencing technologies is transforming our
ability to detecting CNVs. Mainly due to the decreasing cost of sequencing and the

increase of high-coverage data, RD-based methods have recently become a major
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approach to estimate copy numbers from WES data, where deletions or duplications
are identified as decrease or increase of RC across multiple consecutive windows.

RD approach relies on the assumption that the sequencing is uniform, i.e., the
coverage follows the Poisson distribution and the number of reads mapped to a region
is proportional to the number of copies. A genomic region that has been deleted
(duplicated) will have less (more) reads mapping to it than a region not deleted
(duplicated). However, the uniformity of coverage across targets might be affected
regardless of the copy number of the region, resulting in false positive calls [38]. The
main bias against uniform distribution of reads in WES is the capture itself, along
with the fact that information is available only on discrete regions. Other biases
associated with the sequencing technology exist, including short read lengths, GC-
content and mappability.

The percentage of guanine and cytosine in a genomic region varies markedly
along the genome and has been found in several studies to influence coverage on
many sequencing platforms especially when the GC content is very high or low [46]—
[48].

The mappability bias, instead, arises during the alignment step, when a huge
number of short reads map to multiple positions in the presence of repetitive regions
in the reference genome. (Low mappability regions show large read count
overdispersion). As a result, under/over sampled regions caused by biases in
sequencing depth other than changes in copy number, affect our ability to detect true
deletions/duplications. In order to reduce the effect of these causes of variation and
make data comparable within and between samples, Read Counts need to be

normalized.

1.5  Mapping genetic variants to gene-based Boolean features

Sequencing-based approaches have been applied in the attempt to identify rare
genetic determinants for COVID-19, as they can be associated especially with

extreme clinical presentations. With this method, some rare families were identified
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with a Mendelian form of inheritance [13], [49]. However, these patients represent
only a small fraction of those severely affected by COVID-19. As also common
variants might play a role in the contribution to the severe phenotype, we wanted to
assess their likely different impact within the same model. In this dissertation, we
present a novel approach to consider all genome variability, including variants found
at any frequency within a population. Moreover, we were the first, to our knowledge,
to evaluate the potential impact of different type of variants, i.e., CNVs, to the overall
complex pathogenesis of COVID-19. In 2020, we started to investigate how common
variants may combine with rare variants to determine COVID-19 severity in WES
data using a first small cohort of hospitalized patients. This pilot analysis revealed
that the combination of rare and common variants could potentially impact clinical
outcome. In particular, common variants in susceptibility genes may represent the
favourable background in which additional host private mutations may determine
disease progression [50]. This hypothesis was in line with our previous suggestion
that both polymorphic and rare variants in ACE2 gene, may affect infectivity and

partially explain the observed inter-individual clinical variability [10].

Starting from these preliminary results, we aimed to further refine our analysis.
In the proposed model, SNVs and CNVs predicted from WES data were converted to
gene-based Boolean features, as described in section 2.5. This helped us, on one side,
to reduce the dimensionality of the problem (being the number of input features
orders of magnitude higher than the number of patients), and, on the other side, to
analyse various sources of information within the same model. These Boolean
representations were the input features for our analyses to detect the genetics basis of
COVID-19 severity.

1.6 Machine Learning

The main idea of Machine Learning (ML) algorithms is to automatically
learn relevant information from data. Since their performance generally improves as

the number of samples increases, the availability of massive genomic datasets has led
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to the exponential application of ML techniques in the classification/clustering tasks
related to many biological and medical fields.

A classical distinction of ML algorithms is among supervised learning (SL)
and unsupervised learning (UL). The difference between these two classes of
algorithms is that SL is based on the existence of a dataset, training-set, where the
relationship between input features and target variable is known, which instead is not
needed in UL. The goal of SL is to take advantage of the training-set for learning a
function that best approximates the general relationship between input features and
target variable. UL, on the other hand, does not have explicitly labelled outputs, and
its goal is to deduce the natural structure presents within a dataset [51].

The effectiveness of ML algorithms depends almost entirely on the
particularities of the problem in relation to the available dataset [52]. Usually, SL
models are divided into classification or regression problems. In classification
problems, labelled data are used to make prediction among a limited set of restricted
classes. In these cases, the output variable must be categorical. Instead, in regression
models, the target variable is continuous and consequently the goal of the model is to

map input features to a continuous output.

Common algorithms in SL include logistic regression (LR), decision tree
(DT), support vector machines (SVM), neural networks (NN), and random forests
(RF) [52]. K-means clustering and principal component analysis (PCA) are instead

some of the most common algorithms for UL.

One of the most critical issue in ML is overfitting. Overfitting, or high
variance, refers to learning a function that tries too hard to fit the target variable in
the training set. As a result, the function fails to generalize to new data points. This
can happen when dealing with an overcomplex model (with too many parameters) or
when there are too many features compared to the number of observations. Two
common strategies to avoid overfitting are to reduce the number of features or to use

a regularization technique. Various types of regularization techniques are available,
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and they usually operate by adding a penalty term that discourages high values for
the model parameters that are not strongly correlated with the output [53].

1.6.1 Application to severity prediction and gene discovery in
COVID-19

In our attempt to study host genetic risk factor for COVID-19, we aimed to
predict the severity of COVID-19 using information extracted from WES, and at the
same time to identify the most relevant genes involved in the classification. For this
reason, in this thesis we adopted the Least Absolute Shrinkage and Selection Operator
(LASSO) logistic regression that provides a feature selection method within the
binary classification tasks (mild vs severe) able to enforce both the sparsity and the
interpretability of the results [54]. In fact, the coefficients of the LR model are directly
linked to the importance of the corresponding features, and LASSO regularization
shrinks close to zero the coefficients of features that are not relevant in predicting the
response, reducing overfitting and giving direct interpretability of the model
predictions in terms of few features importance. In this classification task, the positive
weights of the LASSO LR reflect a susceptible behaviour of the features (i.e., genes)
to the target COVID-19 severity, whereas the negative weights reflect a protective
action of the feature.

As already mentioned in section 1.6, the input features of LASSO logistic
regression were the gene-based Boolean representations developed to map the genetic
variability into a set of informative features. The decision to move from simple
genetic variants to Boolean representations at gene level is due to the necessity of
reducing the number of features and at to increase the interpretability of the biological
meaning of the extracted features. The target variable, instead, was the COVID-19
severity (severe cases vs mild subjects). The assessment of COVID-19 clinical

category is described in the next chapter.
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2. Methods

This chapter describes the bioinformatic pipelines used for variants’ calling
and for the detection of CNVs from WES data. The high dimensionality of the
features extracted by these bioinformatic pipelines prevents the application of
standard statistical methods for the identification of relevant associations. In order to
reduce the dimensionality of the problem and, at the same time, to include prior
knowledge into the analysis pipeline, the information extracted from WES were
converted into Boolean features. The methods adopted for this conversion are
described in section 2.5.1 for SNVs and 2.5.2 for CNVs. The Boolean features
defined here will form the bases for applications of Machine Learning models to
COVID-19 in the following chapters.

2.1  The GEN-COVID Biobank

The GEN-COVID Multicenter Study involves a network of Italian hospitals
and healthcare facilities with the aim to collect and organize biological samples and
clinical data along with patient-level phenotypic and genotypic data. To globally
share samples and data among COVID-19 researchers, a GEN-COVID Biobank
(GCB) and a GEN-COVID Patient Registry (GCPR) were established using already
existing biobanking and patient registry infrastructures. For each patient, basic
demographic information (sex, age and ethnicity) together with family history, (pre-
existing) chronic conditions, and SARS-CoV-2 related symptoms were collected via
an extensive clinical questionnaire.

The study protocol also provides access to patients’ medical records and
continual clinical data updating in order to secure continuity for patient follow-up.
The COVID-19 severity was assessed using a slightly modified version of the World
Health Organization COVID-19 Outcome Scale [55] as coded into the following

seven categories:
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-1. resistors to infection (those who despite significant exposure to the virus
remain negative)

0. not hospitalized

1. hospitalized, without oxygen support

2. hospitalized, receiving low-flow supplemental oxygen

3. hospitalized, receiving continuous positive airway pressure (CPAP) or
bilevel positive airway pressure (BiPAP) ventilation

4. hospitalized receiving invasive mechanical ventilation; and

5. deceased

A total of 2262 samples taken from the GEN-COVID consortium are analysed
in this dissertation for the CNVs analysis (Chapter 8). Subsets of this cohort, taken at
different time points in the enrolling process, are analysed in the studies presented in
Chapter 4,5,6,7. The mean age of the entire cohort is 60.7 years (range 18-99). The
cohort is predominantly male (58.6%) with a mean age of 60.9 years (range 18-99);
the mean age of the females is 60.4 years (range 18-98) (Table 1). About 31.1% of
the cohort has at least one comorbidity. The overall case-fatality rate is 6.8% (155)
deaths among 2262 enrolled subjects with a mean age of 77 years (range 39-98).
Regarding the ethnicity, the cohort is composed of 2101 White (92.88%,), 52
Hispanic (2.03%), 27 Black (1.19%), and 31 Asian (1.37%) patients (Table 1). Data
on ethnicity and clinical category is not available for 15 out of 2262 patients.

Table 1. Cohort characteristics

No. of subjects 2262
Mean age (range) 60.7 (18-99)
Gender no. (%)
Male 1326 (58,6%)
Female 936 (41.4%)
Ethnicity no. (%)
White 2101 (92.88%)
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Hispanic 52 (2.03%)
Black 27 (1.19%)
Asian 31 (1.37%)
Clinical category no. (%)

Deceased (group 5) 155 (6.8%)
Hospitalized intubated (group 4) 143 (6.3%)
Hospitalized CPAP/BIPAP (group 3) 470 (20.8%)
Hospitalized with oxygen support (group 2) 704 (31.1%)
Hospitalized w/o oxygen support (group 1) 273 (12.1%)
Not hospitalized oligo/asymptomatic (group 0) 470 (20.8%)
Resistors to infection (group -1) 35 (1.5%)

2.2 Sequencing

Whole exome sequencing of 2262 SARS-CoV-2-infected participants from the
Italian GEN-COVID cohort was performed using the lllumina NovaSeq6000 System
(MMumina, San Diego, CA, USA). Library preparation was performed using the
Illumina Exome Panel 45 Mb (lllumina) according to the manufacturer's protocol.
Library enrichment was tested by gPCR, and the size distribution and concentration
were determined using Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA, USA). All samples were aligned to the GRCh38 human genome assembly using
BWA mem v0.7.17. SAMtools v1.7 was used to sort and index BAM files. Variant
calling was performed according to the GATK best practice guidelines. Annotation
was performed with ANNOVAR and VEP.

2.3 Normalization

For CNV prediction, BAM files underwent a series of preparation steps before

read depth calculation. These steps included removal of duplicated sequences and
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removal of sequences with low mapping quality (MQ). Through Picard’s Mark
Duplicates tool, technical and optical duplicates were removed. The main reason for
removing duplicates is to mitigate the effects of PCR amplification introduced during
library construction. Optical duplicates are instead removed because they result from
a single amplification cluster and are incorrectly detected as multiple clusters by the
optical sensor. The mappability issue was addressed by removing reads with low MQ
score (MQ < 20), which usually fall in repetitive regions of the reference genome or
have low base quality, which was done using samtools [56]. This step was not
necessary for ExomeDepth since it is already included in its pipeline by default. To
reduce the GC bias, regions with %GC content higher than 80 were removed from
the Exome kit by bedtools [57].

2.4  CNV detection pipeline

24.1 CoNIFER

CoNIFER v.0.2.2 was run with default settings. BAM files were used to
calculate RPKM values. RPKM values were then transformed into standardized z-
scores (termed ZRPKM values) based on the mean and standard deviation across all
analysed WES. CNV detection from WES data was performed separately by sex and
by chromosomes (autosomal vs sexual). Mitochondrial DNA (mtDNA) and chrY
were excluded from the analysis because the number of probes covering these regions
were fewer than samples in the analysis. To reduce heterogeneity, the analyses were
firstly performed separately by batch of sequencing runs for a total of twelve batches

of around 200 samples each.

To assess the quality control of exomes, it is common practice to examine the
standard deviation of samples and to remove those samples with extremely high
values. As the standard deviation of all SVD-ZRPKM values for each individual was
poor for most of samples, the analysis was repeated with only two batches regardless

of the sequencing run. The percentage of samples with low standard deviation (< 0.6)
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increased from 22% to 46% when analysing two batches vs twelve batches and went
up to 87.7% when looking for standard deviation below 0.7. For this reason, the
following analyses were performed using two batches of 1000 samples. After setting
the number of batches, the number of singular values decomposition (svd) to be
removed was chosen for each batch according to the inflection point of the generated
scree plot, as suggested by Krumm et. al (Figure 5). Nine components were removed
for both batches. We set the discovery threshold at -1.5 SVD-ZRPKM for deletions
and +1.5 for duplications, and required at least three exome probes to exceed the
threshold.

Figure 5. Scree plot of the two batches of samples. 9 svd were removed from both batches.

2.4.2 ExomeDepth

ExomeDepth v1.1.15 was used with default settings. The analysis was
performed on autosomal and gonosomal chromosomes separately for males and
females, as recommended. Read count data was computed from BAM files and stored
into GRanges objects from R. The correlation coefficient between test sample and
reference control set was checked to estimate the quality. As it is highly
recommended, this value should be above 0.97 or the calling would be less reliable
(i.e., most likely a high false positive rate). Most of the samples satisfied this
requirement. (Figure 6) ExomeDepth typically selected 10-20 experiments as

background.
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Figure 6. Correlation coefficient between test and reference set separately for
autosomes and gonosomes. Most samples have an optimal correlation coefficient
above 0.97.

2.4.3 CNV intersection

CNVs predicted with CoNIFER and ExomeDepth were intersected to get a
set of more reliable calls. A non-reciprocal overlap was considered, i.e., the two
events did not require to have the same minimum overlap. The following commands

were used to perform the intersection (Bedtools v2.30).
bedtools intersect -a conifer.calls -b exomedepth.calls -wao -F 0.50
bedtools intersect -a conifer.calls -b exomedepth.calls -wao -f 0.50

Where:

24



E. Benetti - Identifying host genetic risk factors for COVID-19 from Exome Sequencing

o -wao option writes the original A (CoNIFER) and B (ExomeDepth)
entries plus the number of base pairs of overlap between the two tools. However, A

features w/o overlap are also reported with a NULL B feature and overlap = 0.

o -F option is the minimum overlap required as a fraction of B
(exomedepth calls). This was chosen because CoNIFER generally detects longer but
fewer CNVs than ExomeDepth and we wanted to check if CoNIFER CNVs
encompass several ExomeDepth events.

o -f option is the minimum overlap required as a fraction of A (conifer
calls). We also performed this intersection to take into account also the (few) CNVs

which are longer in ExomeDepth than CoNIFER.

Finally, the union of these two sets of overlapped calls was made.

25 Definition of the Boolean features

WES data were converted in a binary mode on a gene-by-gene basis. Several
types of Boolean representations were implemented to try to cover all the possible
genome variation and are described in detail in the next sections. The Boolean

representation were then used as input features for LASSO logistic regression models.

2.5.1 Boolean representations of SNVs and INDELs

SNVs and INDELSs from WES experiments were collapsed at gene-level and
codified into 13 sets of Boolean features. The full list of Boolean representations of
SNVs and INDELSs is reported in Table 3.

Common variants where the reference is the minor allele were switched.
Firstly, any variant not impacting on the protein sequence was discarded. In
particular, these were the skipped categories: 'downstream’, ‘intergenic',
'ncRNA_exonic', 'ncRNA _intronic', 'ncRNA_splicing', 'upstream’, 'UTR3', 'UTR5',

'ncRNA_exonic;splicing’, ‘upstream;downstream’, ‘upstream;downstream’,
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'UTR5;UTR3', 'intronic' except for variants classified as pathogenic in Clinvar. Then
the remaining variants were classified according to their minor allele frequency

(MAF) as reported in gnomAD for the reference population as:

. ultra-rare, MAF < 0.1%

. rare, 0.1% < MAF <1%

o low-frequency, 1% < MAF < 5%
. common, MAF > 5%.

Non-Finnish European (NFE) was used as a reference population. SNVs with
MAF not available in gnomAD were treated as ultra-rare. INDELs with frequency
not available in gnomAD were treated as ultra-rare when present only once in the

cohort and otherwise discarded as possible artefacts of sequencing.

The rational of the subdivisions based on frequency is to give the appropriate
weight to the single variants. A polymorphism is expected to have less impact on the
phenotype in respect to a rare variant. More generally, as the frequency decreases, the
impact on the protein function is expected to increase. By putting variants of any
frequency together in the model, the underlying weight and impact is lost. Ultra-rare
and rare variants were divided as the ultra-rare ones, being private, are more likely to

have a higher impact for that specific patient,

For the ultra-rare variants, 3 alternative Boolean representations were
defined, which were designed to capture the autosomal dominant (AD), autosomal

recessive (AR), and X-linked (XL) model of inheritance, respectively.

The AD and AR representations included a feature for all the genes on
autosomes. These features were equal to 1 when the corresponding gene presented at
least 1 for the AD model, or 2 for the AR model, variants in the ultra-rare frequency
range and O otherwise. The XL representation included only genes belonging to the
X chromosome. These features were equal to 1 when the corresponding gene
presented at least 1 variant in the ultra-rare frequency range and 0 otherwise. The
same approach was used to define AD, AR, and XL Boolean features for the rare and

low-frequency variants. The rational for isolating X chromosomes from autosomal
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ones is to preserve the difference between females and males. As males have only
one copy of the X chromosome, their AD model for genes on chrX would have a

different meaning in respect to genes on autosomes.

Common variants were represented using a different approach that is
designed to better capture the presence of alternative haplotypes. For each gene, all
the possible combinations of common variants were computed. For instance, in the
case of a gene belonging to an autosome with 2 common variants (named A and B),
3 combinations are possible (A, B, and AB), and (consequently) 3 Boolean features
were defined both for the AD and AR model. In the AR model each of these 3 features
was equal to 1 if all the variants in that particular combination were present in the
homozygous state and 0 otherwise. The same rule was used for the AD model but
setting the feature to 1 even if the variants in that particular combination are in the
heterozygous state. In both models, AD and AR, a further feature was defined for
each gene to represent the absence of any of the previously defined combinations. In
the AD model this feature was equal to 1 if no common variant is present and 0
otherwise; in the AR model, it is equal to 1 if no common variant is present in the

homozygous state and 0 otherwise.

The same approach was used to define the set of Boolean features for
common variants in genes belonging to the X chromosome.

Lastly, as common poly-amino acid repeat polymorphisms are usually
missed in the classical analysis, such as GWAS analysis (that focus on common bi-
allelic polymorphisms), we wanted to test their role in determining COVID-19
clinical severity. Genes with repeated regions were considered in the Boolean of poly-
amino acids triplet repeats (C_PR). A total of 40 genes with 43 triplet repeat regions
were identified in UniProtKB. For any of these genes two features were defined, Dij
and lij, with Dij equal to 1 if for the i-th patient the j-th gene presented a deletion in
the region characterized by repeated triplets, O otherwise, and being lij equal to 1 if
for the i-th patient the j-th gene has a repeated region longer than the reference

(insertion), O otherwise.
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Table 2. Boolean representations of SNVs and INDELS

Boolean categories

Representations

1 0
UR AD Ultra-rare variants At least one variant  No this type of
— (dominant) (MAF < 1/1000) variants
UR AR Ultra-rare variants At least 2 variants No this type of
— " (recessive) (MAF < 1/1000) variants

Ultra-rare variants on the X
UR_X chr genes (X-linked
inheritance)

At least one variant  No this type of
(MAF < 1/1000) variants

At least one variant
R_AD Rare variants (dominant)  (MAF between 1/100
and 1/1000)
At least 2 variants
R_AR Rare variants (recessive) (MAF between 1/100
and 1/1000)
Rare variants on the X chr At least one variant
R X genes (X-linked (MAF between 1/100
inheritance) and 1/1000)

No this type of
variants

No this type of
variants

No this type of
variants

At least one variant
(MAF between 5/100
and 1/100) (If more
than one coding low-
frequency variant
impacts in that gene,
different
combinations -
unique-are
represented
separately)

Variant or variant
combination as at
Low-frequency variants LF_AD, in No this type of
(recessive) homozygosity (MAF variants
between 5/100 and

1/100)

At least one variant

(MAF between 5/100

and 1/100) (If more

than one coding low- No this type of
frequency variant variants
impacts in that gene,

different

combinations -

Low-frequency variants
(dominant)

No this type of

LF AD .
_ variants

LF_AR

Low-frequency variants on
LF_X the X chr genes (X-linked
inheritance)
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unique-are
represented
separately)

Common variants

C_AD (dominant)

Common variants

C_AR .
= (recessive)

Common variants on the X
chr genes (X-linked
inheritance)

C_X

At least one variant
(MAF > 5/100) (If
more than one coding
low-frequency
variant impacts in
that gene, different
combinations -
unique-are
represented
separately)

Variant or variant
combination as at C-  No this type of
AD, in homozygosity variants
(MAF > 5/100)

At least one variant
(MAF > 5/100) (If
more than one coding
low-frequency
variant impacts in
that gene, different
combinations -
unique-are
represented
separately)

No this type of
variants

No this type of
variants

Common deletion or
insertion in genes with
repeated regions

C_PR

Ins = 1 if longer than
reference, Del = 1 if
shorter than reference

No this type of
variants

2.5.2 Boolean representations of copy number variants

The overlapped CNVs between CoNIFER and ExomeDepth were filtered for
Bayes Factor (BF), a quality indicator provided by ExomeDepth. BF measures the
CNV confidence and depends upon signals arising from a series of contiguous probes.
Shorter CNVs detected by fewer probes result with low BF values, while longer

CNVs detected by more probes have higher BF values. While it is difficult to assign
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an ideal BF threshold and considering that short exons are penalized, we assumed 10
as the best value that minimizes false positive calling rate and maximizes CNV
calling number. This threshold was calculated by looking at the lowest BF associated
with a confirmed CNV, e.g., with a predicted CNV detected also with another
technique. By setting this threshold we preferred to identify a lower number of short
CNVs with higher confidence.

To build a gene-based Boolean for CNVs, each event was split by genes
spanning through its length, after annotation with AnnotSV [58]. For any of these
genes, a Copy Number (CN) value was assigned based on the ratio between observed
and expected reads. In particular, a CN-value of 0 indicates homozygous deletion, 1
heterozygous deletion, 2 neutral, 3 heterozygous duplication, 4 homozygous/double
duplication, and 5 for duplication values above 4 (Table 2). Three alternative
Boolean representations of CNVs were defined. In the representation named CV
(Copy Variation), each feature was set equal to 1 if the corresponding gene presented
any copy number alteration, and 0 otherwise. The rational of this representation is to
capture any possible genes whose copy alterations might have a functional effect on
predisposition to COVID-19 severity. Two alternative representations considering
only deletion or insertions were defined. In the representation named D (Deletion),
each feature was set equal to 1 if the corresponding gene presented either a
homozygous or heterozygous deletion (CN-value of 0 and 1) and 0 otherwise. While
in the representation named | (Insertion), each feature was set equal to 1 if the
corresponding gene presented any duplication (CNV-value of 3,4 and 5) and 0
otherwise. The rational of these representations is to investigate correlations between

COVID-19 severity and respectively deletions of insertions.

Table 3. Ranges for CN-value based on observed/expected reads ratio

Observed/expected reads =~ CN-value  CNV interpretation

0-0.25 0 Homozygous deletion
0.25-0.75 1 Heterozygous deletion
0.75-1.25 2 Neutral
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1.25-1.75 3 Heterozygous duplication
1.75-2.25 4 Double duplication
>2.25 5 Other duplications
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3. ACE2 gene variants may underlie interindividual
variability and susceptibility to COVID-19 in the Italian

population

In this chapter, we present the results of our first exploratory analysis where
we evaluated if a predisposing genetic background could contribute to the wide
interindividual clinical variability. WES data produced by five Italian centers (Siena,
Naples, Turin, Bologna, and Rome) interconnected by the Network of Italian
Genomes (NIG) were collected to identify variation encompassing the ACE2 gene,
the notoriously SARS-CoV-2 receptor for host cell entry. Computational chemistry
methods were used to estimate how the identified ACE2 variants modify protein
stability and SARS-CoV-2 binding. Also, a higher allelic heterogeneity for ACE2 in
controls compared to cases is shown [10]. This premise led us to extend our research
by collecting more SARS-CoV-2 infected patients within the GEN-COVID
Multicenter Study and by broadening the spectrum of interest to the whole host
genetics, as described in the following chapters.
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Abstract

In December 2019, an initial cluster of interstitial bilateral pneumonia emerged in Wuhan, China. A human-to-human
transmission was assumed and a previously unrecognized entity, termed coronavirus disease-19 (COVID-19) due to a novel
coronavirus (SARS-CoV-2) was described. The infection has rapidly spread out all over the world and Italy has been the first
European country experiencing the endemic wave with unexpected clinical severity in comparison with Asian countries. It
has been shown that SARS-CoV-2 utilizes angiotensin converting enzyme 2 (ACE2) as host receptor and host proteases for
cell surface binding and internalization. Thus, a predisposing genetic background can give reason for interindividual disease
susceptibility and/or severity. Taking advantage of the Network of Italian Genomes (NIG), here we mined whole-exome
sequencing data of 6930 Italian control individuals from five different centers looking for ACE2 variants. A number of
variants with a potential impact on protein stability were identified. Among these, three more common missense changes, p.
(Asn720Asp), p.(Lys26Arg), and p.(Gly211Arg) were predicted to interfere with protein structure and stabilization. Rare
variants likely interfering with the internalization process, namely p.(Leu351Val) and p.(Pro389His), predicted to interfere
with SARS-CoV-2 spike protein binding, were also observed. Comparison of ACE2 WES data between a cohort of 131
patients and 258 controls allowed identifying a statistically significant (P value < 0.029) higher allelic variability in controls
compared with patients. These findings suggest that a predisposing genetic background may contribute to the observed
interindividual clinical variability associated with COVID-19, allowing an evidence-based risk assessment leading to
personalized preventive measures and therapeutic options.

Introduction

In December 2019, a new infectious respiratory disease
emerged in Wuhan, Hubei province, China [1-3]. An initial
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cluster of infections likely due to animal-to-human trans-
mission was rapidly followed by a human-to-human trans-
mission [4]. The disease was recognized to be caused by a
novel coronavirus (SARS-CoV-2) and termed coronavirus
disease-19 (COVID-19). The infection spread within China
and all over the world, and it has been declared as pandemic
by the World Health Organization (WHO) on 2nd March
2020. The symptoms of COVID-19 range from fever, dry
cough, fatigue, congestion, sore throat, and diarrhea to
severe interstitial bilateral pneumonia with a ground-glass
image at the CT scan. While recent studies provide evidence
of a high number of asymptomatic or paucisymptomatic
patients who represent the main reservoir for the infection
progression, the severe cases can rapidly evolve towards a
respiratory distress syndrome which can be lethal [5].
Although age and comorbidity have been described as the
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main determinants of disease progression towards severe
respiratory distress, the high variation in clinical severity
among middle-age adults and children would likely suggest
a strong role of the host genetic asset.

A high sequence homology has been shown between
SARS-associated coronavirus (SARS-CoV) and SARS-
CoV-2 [6]. Recent studies modeled the spike protein to
identify the receptor for SARS-CoV-2 and indicated that
angiotensin converting enzyme 2 (ACE2) is the receptor for
this novel coronavirus [7, 8]. Zhou et al. conducted virus
infectivity studies and showed that ACE2 is essential for
SARS-CoV-2 to enter HeLa cells [9]. Although the binding
strength between SARS-CoV-2 and ACE2 is weaker than
that between SARS-CoV and ACE2, it is considered as
much high as threshold necessary for virus infection. The
spike glycoprotein (S-protein), a trimeric glycoprotein in the
virion surface (giving the name of crown -corona in latin-),
mediates receptor recognition throughout its receptor
binding domain (RBD) and membrane fusion [10, 11].
Based on recent reports, SARS-CoV-2 protein binds to
ACE2 through Leud455, Phe486, GInd93, AlaS01, and
Tyr505. It has been postulated that residues 31,41, 82, 353,
355, and 357 of the ACE2 receptor map to the surface of the
protein interacting with SARS-CoV-2 spike protein [12], as
previously documented for SARS-CoV. Following inter-
action, cleavage of the C-terminal segment of ACE2 by
proteases, such as transmembrane protease serine 2
(TMPRSS?2), enhances the spike protein-driven viral entry
[13, 14]. Thus, it is possible, in principle, that genetic
variability of the ACE2 receptor is one of the elements
modulating virion intake and thus disease severity. ACE2 is
located on chromosome X. Although it is one of the genes
escaping X inactivation several lines of evidence suggest
that a different degree of X-chromosome inactivation (XCI)
is present in distinct tissues [15].

Taking advantage of the Network of Italian Genomes
(NIG), a consortium established to generate a public data-
base (NIG-db) containing aggregate variant frequencies
data for the Italian population (http://www.nig.cineca.it/),
here we describe the genetic variation of ACE2 in the Italian
population, one of the newly affected countries by the
SARS-CoV-2 outbreak causing COVID-19. Three common
¢.2158A>G p.(Asn720Asp), ¢.77A>G p.(Lys26Arg), and
¢.631G>A p.(Gly211Arg) variants and 27 rare missense
variants were identified, 9 of which had not previously been
reported in public databases. We show that p.(Asn720Asp),
which lies in a residue located close to the cleavage
sequence of TMPRSS2, likely affects the cleavage-
dependent virion intake. Along with the other two com-
mon variants, this substitution is represented in the Italian
and European populations but is extremely rare in the Asian
population. We also show that two rare variants, namely,
¢.1051C>G p.(Leu351Val) and ¢.1166C>A p.(Pro389His)
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are predicted to cause conformational changes impacting
RBD interaction. As the uncertainty regarding the trans-
missibility and severity of disease rise, we believe that a
deeper characterization of the host genetics and functional
characterization of variants may help not only in under-
standing the pathophysiology of the disease but also in
envisaging risk assessment.

Materials and methods
Italian population randomization

The work has been realized in the context of the NIG, with
the contribution of centers: Azienda Ospedaliera Uni-
versitaria Senese, Azienda Ospedaliera Universitaria Poli-
clinico Sant’Orsola-Malpighi di Bologna, Citta della Salute
e della Scienza di Torino, Universita della Campania “Luigi
Vanvitelli”, Ospedale Pediatrico Bambino Gesu. The NIG
(http://www.nig.cineca.it/) aim is to create a shared database
(NIG-db) containing data from nucleic acids sequencing of
Italian subjects. This database allows defining an Italian
Reference Genome for the identification of genes respon-
sible for genetic diseases or Italian population susceptibility
to complex disorders and for the detection of genetic var-
iants responsible for interindividual differences in disease
progression ad /or drug response among the Italian popu-
lation. Individuals coming to our centers were offered to
participate to the NIG study and blood withdrawal was
performed upon informed consent. Individuals provided
signed informed consents at each participating center for
whole-exome sequencing analysis (WES), and clinical and
molecular data storage and usage. All subjects were unre-
lated, healthy, and of Italian ancestry. Italian origin was
ascertained asking for parents and grandparents origin.
DNA has been stored in the Telethon Network of Genetic
Biobanks  (project no. GTBI12001), funded by
Telethon Italy.

COVID-19 patients enrollment

The study was consistent with Institutional guidelines and
approved by the University Hospital (Azienda Ospedaliera
Universitaria Senese) Ethical Committee, Siena, Italy (Prot
n. 16929, dated March 16, 2020). Written informed consent
was obtained from all patients and controls. Peripheral
blood samples in EDTA-containing tubes and detailed
clinical data were collected. All these data were inserted in a
section of the established and certified Biobank and Reg-
istry of the Medical Genetics Unit of the Hospital dedicated
10 COVID-19. The cohort of COVID-19 patients consists of
131 individuals out of whom 34 females and 97 males
belonging to the GEN-COVID MULTICENTER STUDY
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([16], Late Breaking Abstract ESHG 2020.2 Virtual Con-
ference “WES profiling of COVID-19). The cohort of
controls consists of 258 italian individuals (129 males and
129 females). All patients are of Italian ethnicity. The
median age is 64 years (range 31-98): median age for
women 66 years and for males 63 years. The population
was clustered into four qualitative severity groups depend-
ing on the respiratory impairment and the need for venti-
lation: high care intensity group (those requiring invasive
ventilation), intermediate care intensity group (those
requiring noninvasive ventilation i.e., CPAP and BiPAP,
and high-flows oxygen therapy), low care intensity group
(those requiring conventional oxygen therapy) and very low
care intensity group (those not requiring oxygen therapy).

Whole-exome sequencing

Targeted enrichment and massively parallel sequencing
were performed on genomic DNA extracted from circulat-
ing leukocytes of 6930 individuals. Genomic DNA was
extracted from peripheral blood samples using standard
procedures. Exome capture was carried out using Sur-
eSelect Human All Exon V4/V5/V6/V7 (Agilent Technol-
ogies, Santa Clara, CA), Clinical Research Exome V1/V2
(Agilent), Nextera Rapid Capture v.1.2 (Illumina, San
Diego, CA), TruSeq Exome Targeted Regions (Illumina,
San Diego, CA), TruSight One Expanded V2 (Illumina, San
Diego, CA), Sequencing-by-Synthesis Kit v3/v4 (Illumina,
San Diego, CA) or HiSeq 2000 v2 Sequencing-by-
Synthesis Kit (Illumina, San Diego, CA), and sequencing
was performed on Genome Analyzer (v3/v4)/HiSeq2000/
NextSeq550/NextSeq500/Novaseq6000  platforms  (Illu-
mina, San Diego, CA). A subset of WES had been out-
sourced (BGI, Shenzhen, China; Mount Sinai, NY, USA;
Broad Institute, Harvard, USA). Alignment of raw reads
against reference genome Hgl9, variant calling and anno-
tation were attained using in-house pipelines [17-19] which
take advantage of the GATK Best Practices workflow [20]
and of Annovar, VEP [21, 22]. The genome aggregation
database gnomAD (https:/gnomad.broadinstitute.org/) was
used to assess allele frequency for each variant among
different populations. The mean depth of coverage of each
ACE2 exon in all participants was 55x. Variants with a
depth of coverage lower that 20x were filtered out accord-
ing to ASHG Guidelines for germline variants [23].

The identified variants have been submitted in LOVD
database:

Variant ID 0000667129 https://databases.lovd.nl/shared/
individuals/00302622;

Variant ID 0000667137 https://databases.lovd.nl/shared/
individuals/00302630;

Variant ID 0000667136 https://databases.lovd.nl/shared/
individuals/00302628;
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Variant ID 0000667138 https://databases.lovd.nl/shared/
individuals/00302629;

Variant ID 0000667131 https://databases.lovd.nl/shared/
individuals/00302624;

Variant ID 0000667133 https://databases.lovd.nl/shared/
individuals/00302626;

Variant ID 0000667130 https://databases.lovd.nl/shared/
individuals/00302621;

Variant ID 0000667134 https://databases.lovd.nl/shared/
individuals/00302625;

Variant ID 0000667132 https://databases.lovd.nl/shared/
individuals/00302623;

Variant ID 0000667128 https://databases.lovd.nl/shared/
individuals/00302620;

Variant ID 0000667126 https://databases.lovd.nl/shared/
individuals/00302618;

Variant ID 0000667127 https://databases.lovd.nl/shared/
individuals/00302619;

Variant ID 0000667125 https://databases.lovd.nl/shared/
individuals/00302617;

Variant ID 0000667123 https://databases.lovd.nl/shared/
individuals/00302615;

Variant ID 0000667124 https://databases.lovd.nl/shared/
individuals/00302616;

Variant ID 0000667118 https://databases.lovd.nl/shared/
individuals/00302610;

Variant ID 0000667120 https://databases.lovd.nl/shared/
individuals/00302612;

Variant ID 0000667122 https://databases.lovd.nl/shared/
individuals/00302614;

Variant ID 0000667121 https://databases.lovd.nl/shared/
individuals/00302613;

Variant ID 0000667119 https:/databases.lovd.nl/shared/
individuals/00302611;

Variant ID 0000667117 https://databases.lovd.nl/shared/
individuals/00302609.

Computational studies

The structure of native human angiotensin converting
enzyme-related carboxypeptidase (ACE2) was downloaded
from Protein Data Bank (https:/www.rcsb.org/) (PDB ID
code 1R42) [24]. The DUET program [25] was used to
predict the possible effect of amino acids substitutions on
the protein structure and function, based on the use of
machine-learning  algorithms  exploiting the three-
dimensional structure to quantitatively predict the effects
of residue substitutions on protein functionality. Molecular
dynamics (MD) simulations of wild-type and variant ACE2
proteins were carried out in GROMACS 2019.3 [26] to
calculate root mean square deviation (RMSD) to define
structural stability. The graphs were plotted by the
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XMGrace software [27]. MD simulations were performed
using a high parallel computing infrastructure (HPCS) with
660 cpu within 21 different nodes, 190T of RAM, 30T hard
disk partition size, and six NVIDIA TESLA gpu with
CUDA support. PyMOL2.3 was used as a molecular gra-
phic interface. The protein structures were solvated in a
triclinic box filled with TIP3P water molecules and Na™/Cl
ions were added to neutralize the system. The whole sys-
tems were then minimized with a maximal force tolerance
of 1000kJ mol~' nm~" using the steepest descendent algo-
rithm. The optimized systems were gradually heated to 310
K in I ns in the NVT ensemble, followed by 10ns equili-
bration in the NPT ensemble at 1 atm and 310 K, using the
V-Rescale thermostat and Berendsen barostat [28, 29].
Subsequently, a further 100 ns MD simulations were per-
formed for data analysis.

Results
ACE2 variants identification

The extent of variability along the entire ACE2 coding
sequence and flanking intronic stretches was assessed using
6930 Italian WES, out of which 4171 males and 2759
females which sum up to 9689 alleles. Identified variants
and predicted effects on protein stability are summarized in
Tables 1, 2, and Table S1, and represented in Fig. 1. Three
more common variants, ¢.2158A>G p.(Asn720Asp),
c.77A>G p.(Lys26Arg), c.631G>A p.(Gly211Arg), were
identified. The ¢.2158 A>G p.(Asn720Asp) substitution was
estimated to have a frequency of 0.011 (103/9689 alleles),
which is in line with the frequency of the variant reported in
the gnomAD database (0.016), and is lower than the fre-
quency reported in gnomAD for the European non-Finnish
population (0.025, 2195/87966 analyzed alleles). Given the
ACE2 localization on X chromosome we focused our
attention on the females alleles. All analyzed females (2759
out of 6930) belonging to the Italian population, were het-
erozygotes for the variant. Notably, this variant has not been
reported in the Eastern Asia population (13,784 exomes).
The ¢.77A>G p.(Lys26Arg), c.631G>A p.(Gly211Arg)
variants were found with a frequency of 0.0011 (lower than
the frequency in the European non-Finnish population,
0.0058) and 0.0012 (European non-Finnish population fre-
quency, 0.0019), respectively. Out of ~92,708 analyzed
alleles in the European non-Finnish population, one
homozygous female has been reported for the ¢.77A>G p.
(Lys26Arg) while no homozygous females were reported
for the ¢.631G>A p.(Gly211Arg). According to gnomAD,
the allele frequency of the ¢.77A>G p.(Lys26Arg) variant in
the Eastern Asia population was 6x 1075, while the
¢.631G>A p.(Gly211Arg) has not been reported in 14.822
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exomes. In addition to these variants, 28 rare missense
variants were identified, out of which ten had not previously
been reported in GnomAD database and nine truncating
variants that had not been reported in gnomAD database
(Table 1 and Supplementary Table 1). Out of these variants,
two fall in the neck domain, which is essential for dimer-
ization and one in the intracellular domain. Many of them
truncate the protein in different positions of the Protease
domain embedded in the extracellular domain, which con-
tains the receptor binding site for SARS-CoV-2. Only three
truncating variants have been previously described for
ACE2 likely due to a low-tolerance for loss-of-function
variants. In line with this evidence, all these variants were
very rare and no homozygous females were detected for the
identified variants. Three missense changes ¢.1517T>C p.
(Val506Ala), ¢.626T>G p.(Val209Gly), and ¢.1129G>T p.
(Gly377Glu) were predicted to have destabilizing structural
consequences (Table 2); among these, c.1517T>C p.
(Val506Ala) is indeed the only amino acid change reported
in the European non-Finnish population (rs775181355;
allele frequency 1.40 x 10, CADD 27.2) and is predicted
as probably damaging for the protein structure by Polyphen
and deleterious by SIFT. Similarly, ¢.1051C>G p.
(Leu351Val) and ¢.1166C>A p.(Pro389His), which affect a
highly hydrophobic core, were predicted to induce con-
formational changes influencing the interaction with spike
protein. The amino acid substitution ¢.1166C>A p.
(Pro389His) (rs762890235, European non-Finnish popula-
tion allele frequency: 2.45x 107>, CADD 24.8) was pre-
dicted to be probably damaging by Polyphen and
deleterious by SIFT. Moreover, this rare variant has never
been reported in Asian populations.

ACE2 variants likely affect protein stability and
SARS-CoV-2 binding

MD analysis provides bona fide simulations of protein
structural changes caused by missense variants effects. Yet,
its computationally expensive procedure led us to perform
MD simulation for only a selection of representative can-
didate variants. Indeed, we selected the following five
variants and corresponding effects: ¢.1517T>C p.
(Val506Ala) which has the higher destabilizing effect,
¢.77A>G p.(Lys26Arg) and ¢.631G>A p.(Gly211Arg) with
higher allele frequency along with ¢.1051C>G p.(Leu351-
Val) and the ¢.1166C>A p.(Pro389His) with a predicted
effect on spike protein interaction. To analyse differences in
protein structure between wild type and mutants, we per-
formed 100 ns MD simulations. The comparison was per-
formed by RMSD analysis. The global effects of the residue
substitutions on flexibility and global cormrelated motion of
ACE?2 protein are represented in Fig. 2 and the simulation is
provided in Supplementary Video S1, S2, S3, S4, S5. While
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& g's a similar trend for wild-type, ¢.77A>G p.(Lys26Arg) and
§ & o E.E c.I517T>C p.(Val506Ala) was observed with a steady
£ s a R course in the RMSD value, which stabilizes at an average of
E 2 0.2, 0.25, and 0.3 nm, respectively (Fig. 3a), the ¢.1166C>A
ﬁ g coco |53 p.(Pro389His) and ¢.1051C>G p.(Leu351Val) variants
S 'é’_ g é g 8 'g_ show a difference in comparison with the native protein
Z & 228 8|S ] with a gradual increase in RMSD value, which stabilizes at
= a ? an average of 0.5nm (Fig. 3a). Finally, the c.631G>A p.
= o Nees 58 e 25 (Gly211Arg) shows a bigger difference with a higher
L g g g g g o8 increase in RMSD value, which stabilizes at an average of
Z33|a = = = a %% 0.6nm (Fig. 3a). Structural analysis between WT and
& g : mutant ¢.1517T>C p.(Val506Ala) MD simulations showed
5 Eg that the ¢.1517T>C p.(Val506Ala) forms a hydrophobic
g %3 center together with Leud56, LeuS03, and PheS16 with
g O o g 'f minimum differences in protein rearrangements when the
i §- i residue is mutated in Ala as reported in Fig. 2 and Sup-
2 5 2 plementary Video S1. The ¢.77A>G p.(Lys26Arg) is loca-
g'i E :'3’- ted at the N-terminus and the sidechain engages a hydrogen
% 3 : bond with Asn90 thus determining a minimal destabilizing
2 e | | predicted effect as shown in Table 2 and confirmed by
= %g RMSD analysis. The ¢.1166C>A p.(Pro389His) and the
g ;"g ¢.1051C>G p.(Leu351Val) variants, located in the region
£ Eg for the spike protein interaction, are characterized by a
E 'é 3 partially overlapping destabilizing effect. The ¢.1166C>A
- =t = 5'2 p.(Pro389His) variant sidechain being more bulky causes
a = > © -;:: 2 the shift of ACE2 (30-40) helix involved in spike protein
E E § 2 g g 32, interaction which being freer to move engages an interac-
g e, § |3 g: tion with GIn96 (Fig. 2 and Supplementary video S5). The
NI ¢.1051C>G p.(Leu351Val) shorter sidechain is enable to
E3 = B % Eé g interact with the hydrophobic core composed by Trp349
5 é g 3 é é ?_,u and Leud5 with a consequent rearrangement of the protein
z < E § s ) conformation. Finally, while ¢.631G>A p.(Gly211Arg) has
= BB RE|SS theoretically a smaller destabilizing effect because of an
E é": external sidechain which is not involved in particular
;r & ‘,‘g interaction network, as shown by MD simulation, it confers
9: D~ %on o -,-;f g a wide flexibility to this region because the polar sidechain
) S=&s32 _jé is able to engage different interactions with vicinal amino
g 8 é 4 acid residues (Fig. 2 and Supplementary Video S2). During
§ -5 _: 1) MD simulations, we have also investigated the surrounding
5 33 9¢|8% g region of ACE2 WT and previously selected variants by
g g E % § § E E_g calculating change in solvent accessibility surface area
E é Zz E_f; __% E 2 g 5 (SASA). Differences in average SASA value would suggest
< faddadl|gg é for the native protein a wider surface exposed to solvent and
‘é, Z s subsequently a different ability to interact with spike SARS-
_;.:j E'g E CoV-2 in comparison with the studied variants (Fig. 3b).
3 = =0 g :3
~|3 883 3 8524 Differences in ACE2 allelic variability in COVID-19
8 2 E S228Rq|28 é 2 patients compared with controls
E ; R é 2 E
£l 2o ro §§ = In order to shed light on the role of ACE2 variants on
213 2 =88 8|[235% interindividual variability and susceptibility to COVID-19
2|22 228822 i—g in Italian population we performed WES analysis on a
= E Sl XRRKKRI|IERE cohort of 131 patients and 258 controls who agreed in
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Table 2 Predicted changes in ACE2 protein stability as consequence of residues changes.

v A Y180, L456, R460, P500, A501, S502, L503, F504, H505, N506, S507
v G -2,363 Y207, E208, V209, N210, G211, V212, Y215, D216, Y217, P565, T567
G E 2231 H373, . M376, G377, , 1379, A380, Y381, F315, H401, V404, G405, M408
A 264 G -1555 L262, P263, A264, H265, L266, L267, W271, W4T78, V487, V488, E489, P490, W165 Destabilizing
c 498 R -1,539 Y497, C498, D499, P500, A501, S502, G173, R177, L176, Y180, W459, W473, M474 M
A 246 T -1454 A242, Y243, V244, R245, A246, K247, 248, M249 m
G 3 w -1318 (H373 . M376, G377, . 1379, A380, Y381, F315, H401, V404, G405, M408 Destabilizing
L 351 v 1173 W349, D350, L351, G352, D355, R357, Y41, S44, L45, W48 Destabilizng
P 389 H -1,161 |A387, Q388, P389, F390, L391, L392, N33, T92, Q96 M
A -0.948 N53, 154, T55, E56, ES7, N58, V59 Destabilizng
D 206 G -0.87 W203, G205, D206, Y207. A396, N397, E398, G399 Destabilizing
K 26 R -0.79 E22, E23, Q24. A25, K26, T27. L29, N90. V93 Destabilizng
N 580 D 0629 M579, N580, V581, R582, P583, Q524 Destabilizing
s 547 c <0611 1544, S545, N546, S547, T548, E549, A550, G551 Destabilizing
A 65 v 0423 N61, M62, N63. N64, A65, G66, D67, K68, Q42. 543, 544, A46 Destabilizing
H 505 R -0.345 L503, F504, M505, F512, Y515, Y510, S511, R273 Destabilizng
T v 0322 N90, L91, T92, VB3, L95, Q96, P389, L392, S563, ES64 Destabilizng
E 329 G -0.302 Q325, G326, F327, W328, E329. N330, §331 Destabilizing
G 1 R 0,283 V209, N210, G211, V212, D213, D216 Destabilizng
1 0,155 N80, L91, T92, VO3, L95, Q96, P389, L392, S563, ES64 Destabilizng
D 494 L 0,041 H493, D494, E495, T496, Y497 Destabilizng
Q 102 P 0,036 (Q98, A99, Q102, N103, G104 (Stabilizing)

DUET program results that display predicted change in folding free energy upon ACE2 missense variant (AAG in kcal/mol). In the first three
columns are reported single missense variants with specific position on ACE2 protein. The residues in the first column highlighted in gray are
involved in N-glycosylation pattem NxT/S, those mi variants ine the loss glycosylation of Asparagine 53 and 90,
respectively. In the fourth column is reported AAG analysis predict effects of missense variants on protein stability using an integrated
computational approach. The column “Interaction Network around (5 A)” shows for each single missense variant the residues around 5 A. In this
column, we highlight in green residues involved in spike SARS-CoV protein interaction, in yellow residues involved in Zinc coordination and
finally in magenta residues of Asn involved in N-glycosylation. The last column defines the outcome of protein stability for each single missense
variant. An increasing negative value for the AAG is correlated with a higher destabilizing effect, while a positive value is associated with a variant

predicted as stabilizing.

participating to the study (see “Materials and methods”).
Data analysis of ACE2 variants identified a different dis-
tribution of variants in controls compared with patients
(Fig. 4) with the ¢.2158A>G p.(Asn720Asp) variant being
present in two hemizygous male patients (allele frequency
0.012) compared with seven heterozygous female and four
hemizygous male controls (allele frequency 0.028). A silent
variant the ¢.2247G>A p.V749V, was also detected in 26
control individuals (allele frequency 0.069) compared with
five COVID-19 patients (allele frequency 0.030). Although
any single variant was not statistically significantly enriched
in one cohort compared to the other, a cumulative analysis
of the identified variants detected a statistically significant
higher ACE2 allelic variability (P value <0.029) in the
control group compared with the patient cohort.
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Discussion

According to recent reports, ACE2 is essential for SARS-
CoV-2 to enter cells. Recent single-cell RNA studies have
also shown that ACE2 is expressed in human lung cells
[30]. The majority of ACE2-expressing cells are alveolar
type 2 cells. Other ACE2-expressing cells include alveolar
type | cells, airway epithelial cells, fibroblasts, endothelial
cells, and macrophages although their ACE2-expressing
cell ratio is low and variable among individuals. The
expression and distribution of the ACE2 receptor can thus
justify the route of infection and the main localization at the
alveolar level. Although the different density of ACE2
receptors in the upper respiratory tract among individuals
can partially give reason for the clinical variability, which
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Fig. 1 ACE2 crystal structure with PDB ID 1R42. Surface and
cartoon representations of protein in gray. In blue stick are represented
each single mutated positions, cartoon region in yellow represent
segment between amino acid 3041, cartoon in green represent

ranges from asymptomatic/paucisymptomatic patients to
severely affected ones, it could not be the only reason for
such variability. In addition, recent works did not observe
significantly different viral loads in nasal swabs between
symptomatic and asymptomatic patients [31]. Italy has been
the first European country that experienced the COVID-19
outbreak with a rapid increase in the positive cases in a very
short-time period and a morbidity and lethality (~10%)
definitely higher in comparison with Asian countries, such
as China (4%) and South Korea (1.2%) [32]. These con-
siderations raise the possibility of a predisposing genetic
background accounting for or contributing to the wide
interindividual clinical variability, as well for the differ-
ential morbidity and lethality observed among different
countries,  population awareness, and  constrictive
measures apart.

We integrated genomic WES data produced by five Ita-
lian centers (Siena, Naples, Turin, Bologna, and Rome)
interconnected by the NIG in the attempt to identify var-
iation encompassing the ACE2 gene, which could account
for a difference in SARS-CoV-2 spike binding affinity,
processing, or intemalization. Previous studies showed that
the residues near lysine 31, and tyrosine 41, 82-84, and
353-357 in human ACE2 are important for the binding of
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Bl Mutated positions

I ACE2 region aa (353-357)
I ACE2 region aa (82-84)
1 ACE2 region aa (30-41)

segment between amino acid 353-357 and cartoon in red represent
segment between amino acid 82-84 that are protein regions respon-
sible of interaction with 2019-nCOv spike glycoprotein.

S-protein to coronavirus [12]. In line with previous reports
[33], we did not find polymorphism or rare variants in these
residues in the Italian population. However, we identified
three variants namely ¢.2158A>G  p.(Asn720Asp),
¢.1166C>A p.(Pro389His), and ¢.1051C>G p.(Leu351Val),
one of which polymorphic ¢.2158A>G p.(Asn720Asp),
moderately expressed in the Italian and European non-
Finnish populations and with a very low allele frequency or
not occurring in the Eastern Asia population. These variants
which surround residual essentials for the SARS-CoV-2
spike protein binding were predicted to likely affect the
cleavage-dependent virion intake, such as the polymorphic
¢.2158A>G p.(Asn720Asp) (allele frequency 0.011) which
lies four amino acids from the cleavage sequence of
TMPRSS2 or to have a substantial impact on protein
structure and spike protein interaction by MD simulation
(Fig. 3a). The relatively frequent ¢.631G>A p.(Gly211Arg)
(allele frequency 0.0012, 12/6930 individuals) was pre-
dicted to confer a wide flexibility to the region because of
the ability to engage different interactions with the nearby
amino acid residues. Along with these more common
variants we also identified very rare variants such as
the ¢.1166C>A  p.(Pro389His) and the ¢.1051C>G
p.(Leu351Val), some of which only described in the non-
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W a

Fig. 2 ACE2 wild-type and variants superimposed structures after
100 ns MD ion. Cartoon of ACE2 wild type
(orange) and varants (green) in blue sticks the wild-type residues

Root Mean Square Deviation (RMSD)

while in red the comresponding variants. In cyan and pink sticks resi-
dues interacting with cach specific position.
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Fig. 3 § ¢ superimpositi pshot b wild-type
protein and variant proteins. a Root mean square deviation
(RMSD) trends for the backbone of ACE2 WT (black line) and some
selected variants (colored lines, see legend) during 100 ns of simula-
tion. The molecular dynamics simulation shows a good stability for all
systems with exception of G211R mutants. RMSD is a parameter used

Finnish European population, that could give reason for a
different affinity for the SARS-CoV-2 spike protein
(Figs. 2, 3a and Supplementary Video S4). Interestingly all
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Residue

to define the stability of an element. Wild type shows a steady course
in the RMSD value, stabilizing at an average of 0.2nm, while, the
G211R variant shows a gradual increase in RMSD value, stabilizing at
an average of 0.6 nm. b SASA graphical representation of ACE2 WT
(black line) and ACE2 variants (colored lines, see legend).

the studied variants affect residues highly conserved among
species (Supplementary Fig. S1). Given their rarity in other
populations, we cannot exclude that these variants can
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Fig. 4 Differences in ACE2 variants in COVID-19 patients com-
pared with controls. The figure shows the variants located in the
ACE2 protein domains. The variants present in controls are shown in

partially account for the clinical outcome observed in the
Italian population. WES data generated from a wide cohort
of COVID-19 Italian patients revealed a statistically sig-
nificant (P <0,029) higher allelic heterogeneity for ACE2 in
controls compared with patients with a higher chance to find
at least one ACE2 variant in the cohort of controls compared
with the cohort of patients. Therefore, it is plausible to think
that the effect of allelic variability on ACE2 conformation
would at least partially account for the interindividual
clinical differences and likely modulate clinical severity.
This finding reinforces the hypothesis that at least some of
the identified variants or the cumulative effect of few of
them confer a different susceptibility to virus cell entry and
consequently to disease onset and progression. We cannot
exclude that also silent variants such as the ¢.2247G>A (p.
Val749Val) with no effect on the protein could play a role
because of an unpredictable impact at a posttranscriptional
level.

Notably, morbidity and lethality have been reported
definitely higher in men compared with women (~70% vs.
30%, 20th March 2020 ISS report). Although several
parameters have been brought to case to explain this dif-
ference, i.e., smoking, differences in ACE2 localization
and/or density in alveolar cells, hormonal asset, it is note-
worthy that ACE2 is located on chromosome X and that
given the low allele frequency of the identified variants the
rate of homozygous women is extremely low (see Results
section). The XCI is incomplete in humans and some genes
show a degree of XCI escape which vary between indivi-
duals and tissues [34]. ACE2 is one of the genes escaping X
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black while the variants in cases are shown in red. The number of
patients carrying the variant is shown in brackets.

inactivation, but it belongs to a subgroup of X-chromosome
genes showing a higher expression in men in several tissues
thus mostly suggesting that ACE2 gene XCI is present
although different in distinct tissues [15]. Therefore, the
impact of X inactivation on the altemate expression of the
two alleles would guarantee, in the affected tissues, a het-
erogeneous population of ACE2 molecules, some of which
protective towards the infection until the point of a complete
or almost complete protection in the case of a X inactivation
skewed towards the less SARS-CoV-2-binding prone allele.
This hypothesis would justify the high rate of asymptomatic
or paucisymptomatic patients. However, the presented data
does not allow to confirm a clear cause-effect relationship
and, since most of the identified variants have very low
frequencies, further functional studies are needed to validate
these results. ACE2 is definitely one of the main molecules
whose genetic heterogeneity can modulate infection and
disease progression; however, a deeper characterization of
the host genetics and functional variants in other pathway-
related genes may help in understanding the pathophysiol-
ogy of the disease opening up the way to a stratified risk
assessment and to tailored preventive measures and
treatments.
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4. Clinical and molecular characterization of COVID-19

hospitalized patients

In the present chapter we provide a comprehensive characterization of
COVID-19 hospitalized patients from a clinical and molecular point of view. A
multiple-organ involvement is shown, confirming that COVID-19 is a systemic
disease rather than just a lung disorder. Considering the great variability of clinical
symptoms, the need for a model that could account for both common and rare variants
is delineated [50]. The analysis of the contribution of common and rare variants on
COVID-19 severity asks for automated procedure that could extract relevant
information from the massive datasets derived from WES experiments. Chapters 5,
6, 7 and 8 will provide applications of ML models to address this issue.
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Abstract

Clinical and molecular characterization by Whole Exome Sequencing (WES) is reported in
35 COVID-19 patients attending the University Hospital in Siena, Italy, from April 7 to May 7,
2020. Eighty percent of patients required respiratory assistance, half of them being on
mechanical ventilation. Fiftyone percent had hepatic involvement and hyposmia was ascer-
tained in 3 patients. Searching for common genes by collapsing methods against 150 WES
of controls of the Italian population failed to give straightforward statistically significant
results with the exception of two genes. This result is not unexpected since we are facing
the most challenging common disorder triggered by environmental factors with a strong
underlying heritability (50%). The lesson learned from Autism-Spectrum-Disorders
prompted us to re-analyse the cohort treating each patient as an independent case, follow-
ing a Mendelian-like model. We identified for each patient an average of 2.5 pathogenic
mutations involved in virus infection susceptibility and pinpointing to one or more rare disor-
der(s). To our knowledge, this is the first report on WES and COVID-19. Our results suggest
a combined model for COVID-19 susceptibility with a number of common susceptibility
genes which represent the favorite background in which additional host private mutations
may determine disease progression.

PLOS ONE | https://doi.org/10.1371/journal.pone.0242534
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Introduction

Italy has been the first European Country experiencing the epidemic wave of SARS-CoV-2
infection, with an apparently more severe clinical picture, compared to other countries.
Indeed, the case fatality rate has peaked to 14% in Italy, while it remains stable around 5% in
China. At the time of the study, 12 May 2020, SARS-CoV-2 positive subjects in Italy have
reached the threshold of 200.000 cases [1]. Since the beginning of the epidemic wave, one of
the first observations has been a highly heterogeneous phenotypic response to SARS-CoV-2
infection among individuals. Indeed, while most affected subjects show mild symptoms, a sub-
set of patients develops severe pneumonia requiring mechanical ventilation with a 20% of
cases requiring hospitalization; 5% of cases admitted to the Intensive Care Unit (ICU), and
6,1% requiring intensive support with ventilators or extracorporeal oxygenation (ECMO)
machines [2]. Although patients undergoing ventilatory assistance are often older and are
affected by other diseases, like diabetes [3], the existing comorbidities alone do not fully
explain the differences in clinical severity. As demonstrated for other viral diseases, the basis of
these different outcomes there are host predisposing genetic factors leading to different immu-
nogenicity/cytokine responses as well as specific receptor permissiveness to virus and antiviral
defence [4-6]. Similarly, during the study of host genetics in influenza disease, a pattern of
genetic markers has been identified which underlies increased susceptibility to a more severe
clinical outcome (as reviewed in [7]). This hypothesis is also supported by a recent work
reporting 50% heritability of COVID-19 symptoms [8].

The identification of host genetic variants associated with disease severity is of utmost
importance to develop both effective treatments, based on a personalized approach, and novel
diagnostics. Also, it is expected to be of high relevance in providing guidance for the health
care systems and societal organizations. However, nowadays, little is known about the impact
of host genome variability on COVID-19 susceptibility and severity.

On March 16th, 2020 the University Hospital in Siena launched a study named GEN-CO-
VID with the aim to collect the genomic DNA of 2,000 COVID-19 patients for host genetic
analysis. More than 30 different hospitals and community centers throughout Italy joined the
study and are providing samples and clinical detailed information of COVID-19 patients. This
study is aimed to identify common and rare genetic variants of SARS-CoV-2 infected individ-
uals, using a whole exome sequencing (WES) analysis approach, in order to establish an associ-
ation between host genetic variants and COVID-19 severity and prognosis.

Results

Clinical data

The cohort consists of 35 COVID-19 patients (33 unrelated and 2 sisters) admitted to the Uni-
versity Hospital in Siena, Italy, from April 7 to May 7, 2020. All patients are of Caucasian eth-
nicity, except for one North African and one Hispanic. The mean and median age is 64 years
(range 31-98): 11 females (median age 66 years) and 24 males (median age 62 years).

The population is clustered into four qualitative severity groups depending on the respira-
tory impairment and the need for ventilation (groups 1-4 in Table 1 and different colors in Fig
1) (see Methods section). In the two most severe groups (groups 1 and 2, including 13 patients)
there are 11 males and 2 females, while in the two mildest groups (groups 3 and 4 including 22
patients) males are 13 while females are 9.

Patients were also assigned a lung imaging grading according to X-Rays and CT scans. The
mean value is 13 for high care intensity group, 12 for intermediate care intensity group, 8 for
low care intensity group and 5 for very low care intensity group.
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Table 1. Clinical characteristics COVID19 patients admitted to the University Hospital of Siena (Italy).

Subject characteristics | Group 1 Group2  Group3 Group 4
No. of subjects (%) | 6(17.1%) | 7(20%) | 15(42.9%) 7(20%)
Mean age (SD) 63 (6.2) 61.6 (123) 70 (14) 54(15.7)
Gender
Male[n(%)] | 5(14%) | 617%) | 7(20%) { 6(17.1%)
Female[n (%)] 1(2.8%) 1(2.8%) 8 (22.8%) 1(2.8%)
Pa0,/FiO; [median (IQR)]
94.5(37.7) 156 (74) 279.5 (162) l 304(73.5)
Lung imaging grading (CXR score) . :
[median (IQR)] | 13 (3.7) 13(3) | 8(4) { 5(6)
Laboratory findings
CD4" T cells count
[median (IQR)] 300 (330.7) 582 (661) 458 (906) 623 (360)
NK cells count
[median (IQR)] | 795(722) | 73(110) | 112(90) 204 (174)
IL-6 value |
[median (IQR)] | 598(777.7) | 567(6482) | 149 (28.4) 19(5.3)
Fibrinogen | | |
[median (IQR)] | 406 (409.7) | 518(29%) 566 (209) 546 (239)
CRP |
[median (IQR)] 1.22 (24.54) 043(46) | 036(1.52) 3.14(4.97)
LDH |
[median (IQR)] | 377 217) 1407 (319) 272 (121) 255(81)
D-Dimer | |
[median (IQR)] | 5069.5(20183) | 1526(54221) | 1167 (2022) 884.5 (786.3)
Hyposmia (VAS score) [n (%)]
<2(mormal)|  4(113%) | 6(17.1%) |  14(40%) 7(20%)
2-5 (intermediate) | 12.8%) | 0 [ 0 0
>5 (severe) | 0 | 1(2.8%) 1(2.8%) 0
Hypogeusia (VAS score) [n (%)] | | |
No 4(11.3%) 6(17.1%) 13(37.1%) 7(20%)
Yes 1(2.8%) 1(2.8%) 2(5.7%) 0
Heart involvement [n (%)]
Yes | 4(11.3%) 3(8.6%) | 6(17.1%) 0
T = T-Troponin >15 (ng/L); B= pro-BNP M > 88 (pg/ml); F > 153 (pg/ml); A = arrhythmia)| T/B2(5.7%) | T/B1(28%) | T/B2(5.7%)
B 2(5.7%) L T1(28%) | T/A1(2.8%)
A1Q28%) | B/A1(2.8%) |
A 1(2.8%)
| | | B1(2:8%)
No | 2(5.7%) 4(11.3%) 9(25.7%) 7(20%)
Unknown 0 0 | 0 0
Hepatic (H)/Pancreatic involvement (P) [n (%)] | | |
HandP | 2(5.7%) 5(143%) | 6(17.1%) 1(2.8%)
Honly|  3(8.6%) 0 | 128%) 1(2.8%)
Ponly | 0 | 0 | 128%) 1(2.8%)
Nore | 1(2.8%) 2(5.7%) 7(20%) 4(11.3%)
Kidney involvement [n (%)] | |
Yes 0 3(8.6%) 5(14.3%) 1(2.8%)
(Continued)
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Table 1. (Continued)
Subject characteristics Group 1 Group 2 Group 3 ‘ Group 4
No 6(17.1%) 4(113%) 10(286%) | 6(17.1%)
Co-morbidities [n (%)] ‘
Cardiovascular disease 1(2.8%) 2(5.7%) 3(8.6%) ‘
Hypertension 2(5.7%) 2(5.7%) 8(228%) |
Tumor | 2(5.7%) 1(2.8%) 2(5.7%) ‘ 1(2.8%)
Diabetes 4(113%) |
Pulmonary disease 1(2.8%) ‘ 1(2.8%)

COVID-19 cohort is grouped in 4 qualitative severity groups depending on the respiratory impairment and the need of ventilation. Group 1 requires invasive
ventilation. Group 2 requires CPAP/BiPAP/high-flows oxygen therapy. Group 3 requires conventional oxygen therapy. Group 4 does not require oxygen therapy.

Clinical characteristics are listed and the number of patients are indicated for each of them.

https://doi.org/10.1371/journal.pone.0242534.1001

Regarding immunological findings, a decrease in the total number of peripheral CD4" T
cells were identified in 13 subjects, while NK cells’ count was impaired in 10 patients. Six
patients showed a reduction of both parameters. IL-6 serum level was elevated in 13 patients.

Hyposmia was present in 3 out of 34 evaluated cases (8.8%), and hypogeusia was present in
the same subjects plus another case. These four cases belong to the first three severity groups.
Liver involvement was present in 7 cases (20%), while pancreas involvement in 4 cases (11%);
10 patients presented both (29%). Heart involvement was detected in 13 cases (37%). 9 patients
(25%) showed kidney involvement. Fibrinogen values below 200 mg/dL were identified in 2
cases (6%), between 200 and 400 mg/dL in 7 cases (20%), and above 400mg/dL in 22 cases
(63%). D-dimer value below 500 ng/mL was present in 1 case (3%), between 500 and 5000 ng/
mL in 26 cases (74%), and in 7 cases (20%) was 10 times higher than the normal value (>5000
ng/mL) (Table 1).

Unbiased collapsing gene analysis

At first, we tested the hypothesis that susceptibility could be due to one or more common fac-
tor(s) in the cohort of patients compared to controls. According to this idea, damaging vari-
ants of that/those gene(s) should be either over- or under- represented in patients vs
controls. We used, as controls, individuals of the Italian population assuming that the major-
ity of them, if infected, would have shown no severe symptoms. WES data of 35 patients were
compared with those of 150 controls (the Siena cohort of the Network of Italian Genomes
NIG: http://www.nig.cineca.it) using a gene burden test which compares the rate of disrupt-
ing mutations per gene. The variants were collapsed on a gene-by-gene basis, in order to
identify genes with mutational burden statistically different between COVID-19 samples and
controls. The analysis identified genes harboring deleterious mutations (according to the
DANN score) with a statistically significant higher frequency in controls than in COVID-19
patients such as the olfactory receptor gene OR4C5 (adjusted p-value of 1.5E-10), (Fig 2 and
S1 Table) and NDUFAF7, although to a lesser extent (Fig 2 and S1 Table). For all these genes,
the susceptibility factor is represented by the functioning (or more functioning) gene. We
also identified two additional genes, PRKRA and LAPTM4B, for which the probability of
observing a deleterious variant was computed higher in the COVID-19 samples compared to
controls (Fig 2 and S2 Table). In these latter cases, the functioning gene represents indeed a
protective factor.
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Fig 1. Clinical characteristic |nd mutated genes. The population is clustered into four qualitative severity groups indicated with different colors
di on the respi y impai and the need for ventilation. Red color is used for high care intensity group (those requiring invasive

ilation), orange for . diate care intensity group (those requiring non invasive ventilation i.e. CPAP and BiPAP, and high-flows oxygen
therapy), pink for low care intensity groups (those requiring conventional oxygen therapy) and light blue for very low care intensity groups (those not
requiring oxygen therapy). Patients COV132-57 and COV133-58 are reported in grey because they are siblings. A detailed clinical characterization is
provided (i.e multiple organs invol presence of comorbidity, clinical laboratory parameters, etc.) along with the genetic background for each
patient. Liver and pancreas involvement is indicated in green color, heart involvement in magenta and kidney involvement in purple. The presence of
hyposmia, classified from 0 to 10 using VAS score, is indicated in light blue. A darker shade of color represents a more severe organ damage. In-silico
predicted deleterious variants in genes relevant for infection and pathogenic variants (both common and rare) reported in ClinVar Database are
described and a further subdivision between genes involved in a mendelian disorder and/or viral infection susceptibility is provided. For all thcsc gene
categories, dark grey is used to identify the homozygous status of the variants while light grey for the h status. In the end,
significant genes obtained after Gene Burden analysis are listed: PRKRA and LAPTM4B mutational burden resulted to be enriched in the 35 COVID-19
patients compared to the controls, while OR4C5 and NDUFAF7 have proven to have an opposite trend, having a mutational burden more enriched in
canl.rols For this mson, for NDUFAF7, OR4C5 genes the grey color and the white color are inverted because having less variants and by consequence a
more fi I gene a y factor. For this category, white color underlies a higher mutational burden while grey color indicates
lower mutational bmrdm Cl\mllmuwn €0~ morbxdmes CHF (Congestive Heart Failure), Hy (Hypertension), CC (Colon Cancer), Le (Leukemia), DM
(Diabetes mellitus), pHBV (Previous HBV infection), AMI (Acute myocardial infarction), BC (Breast Cancer), Ht (Hypothyroidism), IC (Ictus Cerebri),
O (Obesity), Dy (Dysllp:d:mna), KF (Kidney Failure), CR (Congenital Rickets), AF (Atrial Fibrillation), Di (Diverticolosis), Br (Bronchiectasis), COPD

(Chronic b y disease), D (Dep ), Tn (Thyroid Nodules) PC(PmsmeCancer),M(Mdanoma) BCC (Basal cell carcinoma).
therapy T(Tm ili b), R ( litinib), B(Bancmmb) Steroids: M (Methylp l D (D i Other anti-COVID19 drugs:
HCQ (Hydroxicloroquine), A (Azithromycine), REM (Remdesevir), L/R (Lopinavir/Ritonavir), C (Cloroqui

https://doi.org/10.1371/journal.pone.0242534.9001

Gene analysis using the Mendelian-like model

We then tested the hypothesis that COVID-19 susceptibility is due to different variants in dif-
ferent individuals. A recently acquired knowledge on the genetic bases of Autism Spectrum
Disorders suggests that a common disorder could be the sum of many different rare disorders
and this genetic landscape can appear indistinguishable at the clinical level [9]. Therefore, we
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Fig 2. Mutational burden at the gene level. The significance threshold including the Bonferroni correction is shown as a red line (¢ = 0.05, number of
test, m = 7196). P-values for genes below the significance threshold are shown as grey dots. Black circles are used for the 4 genes that were identified as
statistically different between COVID-19 samples and controls.

https://doi.org/10.1371/journal.pone.0242534.9002

analyzed our cohort treating each patient as an independent case, following a Mendelian-like
model. According to the “pathogenic” definition in ClinVar database (https://www.ncbi.nlm.
nih.gov/clinvar/), for each patient, we identified an average of 1 mutated gene involved in viral
infection susceptibility and pinpointing to one or more rare disorder(s) or a carrier status of
rare disorders (Fig 1). Following the pipeline used in routine clinical practice for WES analysis
in rare disorders we then moved forward checking for rare variants “predicted” to be relevant
for infection by the means of common annotation tools. We thus identified an average of addi-
tional 1-5 variants per patient which summed up to the previous identified pathogenic vari-
ants (Fig 1, S3 Table).

Known common susceptibility/protective variants analysis

We then checked the cohort for known non rare variants classified as either “pathogenic” or
“protective” in ClinVar database and related to viral infection. Variants in six different genes
matched the term of “viral infection” and “pathogenic” according to ClinVar (Fig 1). Overall, a
mean of 3 genes with “pathogenic” common variants involved in viral infection susceptibility
were present (Fig 1).

Among the common protective variants, we list as example three variants which confer pro-
tection to Human Immunodeficiency Virus (HIV), the first two, and leprosy, the third one: a

PLOS ONE | https://doi.org/10.1371/journal.pone.0242534 November 18, 2020
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CCR2 variant (rs1799864) identified in 8 patients, a CCR5 (rs1800940) in one patient and a
TLR1 variant (rs5743618) in 26 patients (not shown). A IL4R variant (rs1805015) associated
with HIV slow progression was present in 8 patients (not shown).

Candidate gene overview

Although not identified by unbiased collapsing gene analysis a number of obvious candidate
genes were specifically analyzed. First, we noticed that SARS-CoV-2 receptor, ACE2 protein is
preserved in the cohort, only a silent mutation V749V being present in 2 males and 2 heterozy-
gous females. This is in line with our previous suggestion that either rare variants or polymor-
phisms may impact infectivity [10]. The IFITM3 polymorphism (rs12252) was found in
heterozygosity in 4 patients as expected by frequency. Eight patients had heterozygous mis-
sense mutations in CFTR gene reported as VUS/mild variants, 7 / 8 being among the more
severely affected patients.

Discussion

In this study, we present a cohort of 35 COVID-19 patients admitted between April and May
2020 to the University Hospital of Siena who were clinically characterized by a team of 29
MDs belonging to 7 different specialties. As expected, the majority of hospitalized patients are
males, confirming previously published data reporting a predominance of males among the
most severe COVID-19 affected patients [11]. Lung imaging involvement, evaluated through a
modified lung imaging grading system, did not completely correlate with respiratory
impairment since among the 13 patients who required mechanical ventilation (group 1and 2),
grading was either moderate (10) or mild (3). In line with our previous data, lymphocyte sub-
set immunophenotyping revealed a decrease in the total number of CD4 and NK cells count,
especially in the most severe patients [12]. Laboratory tests revealed a multiple-organ involve-
ment, confirming that COVID-19 is a systemic disease rather than just a lung disorder (Fig 1).
We thus propose that only a detailed clinical characterization can allow to disentangle the
complex relationship between genes and signs/symptoms.

In order to test the hypothesis that the COVID-19 susceptibility is due to one or more
genes in common among patients, we used the gene burden test to compare the rate of dis-
rupting mutations per gene. This test has already been successfully applied to discover suscep-
tibility genes for Respiratory Syncytial Virus infection [13]. We identified 2 genes whose
damage represents a susceptibility factor. Mutations in PRKRA (protein kinase activator A,
alias PACT; OMIM# '603424), a protein kinase activated by viral double-stranded RNA may
impair the down-stream IFN-mediated immune response [14, 15]. Mutations in LAPTM4B
(Lysosomal Protein Transmembrane 4 Beta) gene, may impair endosomal network, eventually
compromising productive viral infection [16, 17].

We then identified 2 genes whose damage represents a protective factor: OR4C5 and NDU-
FAF7. OR4C5 is a “resurrected” pseudogene, known to be non functioning in half of the Euro-
pean population, with a frequency of inactive allele of 0.62 in Asians, 0.48 in Europeans and
0.16 in Africans [18, 19]. Expression of the “resurrected” pseudogene OR4C5 may help in trig-
gering the natural immunity leading to virus and cell death [20, 21]. It is interesting to note
that protein atlas shows OR4C5 protein expression in the liver without the corresponding
mRNA expression (www.proteinatlas.org) suggesting that OR4C5 reaches the liver through
nerve terminals [22]. If this is the case, those individuals expressing the resurrected OR4C5
gene may have more triggers of innate immunity and subsequently higher liver damage, in
agreement with the putative expression of OR4C5 (white boxes) in patients with liver
impairment (Fig 1).

PLOS ONE | https:/doi.org/10.1371/journal.pone.0242534 November 18, 2020 7/16

51



Chapter 4 - Clinical and molecular characterization of COVID-19 hospitalized patients

PLOS ONE

COVID-19 cohort characterization

Previous studies reported a prevalence of olfactory disorders in COVID-19 population
ranging from 5% to 98%. A recent meta-analysis of 10 studies demonstrated a 52.73% preva-
lence for smell dysfunction in COVID-19 subjects [23]. In our population, only 3/35 (8.6%)
subjects reported olfactory disorders. Both the limited sample size and the characteristic of the
population (severely affected hospitalized subjects) could explain this result. However, a report
focusing on smell dysfunction in severely affected hospitalized subjects reported a prevalence
of 23.7% among 59 patients [24].

We explored the hypothesis that each patient could have one unique combination of rare
pathogenic/highly relevant variants related for different reasons to infection susceptibility [9]
(Fig 1): G6PD-deficient cells are more susceptible to several viruses including coronavirus and
have down-regulated innate immunity (in line with the observed very low levels of IL-6) (Fig
1) [25]; ZEBI-linked comneal dystrophy, known to function in immune cells, and playing an
important role in establishing both the effector response and future immunity in response to
pathogens [26]; TGFBI mutations (associated with corneal dystrophy); ABCC6 gene mutations
(associated with pseudoxanthoma elasticum); likely hypomorphic mutations in CHD7 or
COLS5A 1/2 variants, playing a role as modulators of immune cells activity and/or response to
infections [27-34]; ADAR, involved in viral RNA editing; CLEC4M, an alternative receptor for
SARS-CoV [35] HCRTR1/2, receptors of Hypocretin, important in the regulation of fatigue
during infections [36]; FURIN, a serine protease that cleaves the SARS-Cov-2 minor capsid
protein important for ACE2 contact and viral entry into the host cells [37, 38].

Finally, interesting rare variants have been identified in NitricOxide synthase NOS3 and
Opioid receptor OPRM1. Opioid ligands may regulate the expression of chemokines and che-
mokine receptors [39]. NitricOxide (NO), mainly produced by epithelial and white blood cells
(iNOS) and to a lesser extent by endothelial cells (eNOS), is able to significantly reduce viral
infection and replication of SARS-CoV in normal condition through two distinct mechanisms:
impairment of the fusion between the spike protein and its receptor ACE2, and reduction of
viral RNA production [40]. Mutations in NO synthase may disrupt one or both the above
reported functions and clinical trials are ongoing to evaluate the effectiveness of inhaled NO in
COVID-19 patients [41, 42].

Several rare variants in Interleukins (ILs) and Interleukins receptors (ILRs) are found. Inter-
leukins are crucial in modulating immune response against all types of infective agents. The
variants reported in this study include different interleukins that are not specifically involved
in the defense against virus but are critical in balancing both innate and specific adaptive
immune response (Fig 1).

Furthemore, we identified common “pathogenic” variants in genes known to be linked to
viral infection, such as MBL2, IRGM and SAA1, and/or specific organ damage as PRSSI. Poly-
morphisms in PRSS1, a serine protease secreted from the pancreas, are associated with autoso-
mal dominant hereditary pancreatitis (OMIM#167800) [43]. Polymorphisms in MBL2, a
mannose-binding lectin secreted by the liver, cause increased susceptibility to infections, possi-
bly due to a negative impact on the ability to mount an immune response [44, 45]. Polymor-
phisms in IRGM may lead to impairment of autophagy which in turn controls innate and
adaptive immunity [46, 47]. SAA1, encoding the serum amyloid A (SAA) protein, is an apoli-
poprotein reactant, mainly produced by hepatocytes and regulated from inflammatory cyto-
kines. In patients with chronic inflammatory diseases, the SAA cleavage product, Amyloid
protein A (AA), is deposited systemically in vital organs including liver, spleen and kidneys,
causing amyloidosis [48].

For the last above reported genes and pathogenic variants or predicted variants relevant for
infection, a statistically significant difference in variant’s frequency was not found between
cases and controls looking at either the single variant or the single gene, as a burden effect of
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variants. However, as depicted in the overall Fig 1, we could hypothesize a combined model in
which common susceptibility genes will sum to less common or private susceptibility variants.
A specific combination of these 2 categories may determine type (organotropism) and severity
of the disease.

Our observations related to the huge amount of data, both on phenome and genome sides,
and represented in Fig 1, could also lay the bases for association rule mining approaches. Arti-
ficial intelligence techniques based on pattern recognition may discover an intelligible picture
which appears blurred at present.

We know that a possible limitation of this study is the heterogeneity of patients and con-
trols, which are not matched for gender, major comorbidities and other clinical characteristics.
For this reason, further analyses in a larger cohort of samples are mandatory in order to test
this hypothesis of a combined model for COVID-19 susceptibility with a number of common
susceptibility genes which represent the fertile background in which additional private, rare or
low frequency mutations confer to the host the most favorable environment for virus growth
and organ damage.

Methods
Patients clinical data and samples collection

The GEN-COVID study was approved by the University Hospital of Siena Ethical Review
Board (Prot n. 16929, dated March 16, 2020). Thirty-five patients admitted to the University
Hospital in Siena, Italy, from April 7 to May 7, 2020 were recruited. WES data of these 35
patients were compared with those of 150 controls (the Siena cohort of the Network of Italian
Genomes NIG http://www.nig.cineca.it). Patients have a mean age of 64 years with a Standard
Deviation (SD) of 14.3 while the controls have a mean age of 46 years with a SD of 9.5. The per-
centage of males (M) and females (F) in patients is 68.5% and 31.4% respectively, while in con-
trols is 51% and 49% respectively. The patients are clustered into four qualitative severity
groups depending on the respiratory impairment and the need for ventilation: high care inten-
sity group (those requiring invasive ventilation), intermediate care intensity group (those
requiring non invasive ventilation i.e. CPAP and BiPAP, and high-flows oxygen therapy), low
care intensity group (those requiring conventional oxygen therapy) and very low care intensity
group (those not requiring oxygen therapy) (groups 1-4 in Table 1 and different colors in

Fig 1).

Peripheral blood samples in EDTA-containing tubes and detailed clinical data were col-
lected. All these data were inserted in a section dedicated to COVID-19 of the established and
certified Biobank and Registry of the Medical Genetics Unit of the Hospital. An example of the
Clinical questionnaire is illustrated in S1 Fig.

Each patient was assigned a continuous quantitative respiratory score, the PaO2/FiO2 ratio
(normal values >300) (P/F), as the worst value during the hospitalization.

Patients were also assigned a lung imaging grading according to X-Rays and CT scans. In
particular, lung involvement was scored through imaging at the time of admission and during
hospitalization (worst score), annotating the chest X-Ray (CXR) score (in 34 patients) and CT
score in 1 patient for whom X-Rays were not available. To obtain the score (from 0 to 28) each
CXR was divided in four quadrant (right upper, right lower, left upper and left lower) and for
each quadrant the presence of consolidation (0 = no consolidation; 1 <50%, 2>>50%), ground
glass opacities (GGOs: 0 = no GGOs, 1<50%, 2 >50%), reticulation (0 = no GGOs, 1<50%, 2
>50%) and pleural effusion on left or right side (0 = no, 1 = minimal; 2 = large) were recorded.
The same score was applied for CT (1 patient).
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For each patient, the presence of hyposmia and hypogeusia was also investigated through
otolaryngology examination, Burghart sniffin’ sticks [49] and a visual analog scale (VAS).
Whenever the sign was present, a score ranging from 0 to 10 was assigned to each patient
using VAS where 0 means the best sense of smell and 10 represents the absence of smell sensa-
tion [50].

The presence of hepatic involvement was defined on the basis of a clear hepatic enzymes
elevation as glutamic pyruvic transaminase (ALT) and glutamic oxaloacetic transaminase
(AST) both higher than 40 UI/L. Pancreatic involvement was considered on the basis of an
increase of pancreatic enzymes as pancreatic amylase higher than 53 U/l and lipase higher
than 60U1/L. Heart involvement was defined on the basis of one or more of the following
abnormal data: Troponin T (>15 ng/L), indicative of ischemic disorder; NT-proBNP (M >88;
F >153 pg/ml), indicative of heart failure and arrhythmias (indicative of electric disorder).
Kidney involvement was defined in the presence of a creatinine value higher than 1,20 mg/dl
in males and higher than 1,10 mg/dl in females (Fig 1).

Whole exome sequencing analysis

Genomic DNA was extracted from peripheral blood using the MagCore " Genomic DNA
Whole Blood kit (RBC Biosciences) according to manufacturer’s protocol. Whole exome
sequencing analysis was performed on Illumina NovaSeq 6000 system (Illumina, San Diego,
CA, USA). DNA fragments were hybridized and captured by Illumina Exome Panel (Illumina)
according to manufacturer’s protocol. The libraries were tested for enrichment by gPCR, and
the size distribution and concentration were determined using an Agilent Bioanalyzer 2100
(Agilent Technologies, Santa Clara, CA, USA). The Novaseq 6000 platform (Illumina), along
with 150 bp paired-end reads, was used for sequencing of DNA.

Genetic data analysis

Reads were mapped to the hg19 reference genome by the Burrow-Wheeler aligner BWA [51].
Variants calling was performed according to the GATK4 best practice guidelines [52].
Namely, duplicates were first removed by MarkDuplicates, and base qualities were recali-
brated using BaseRecalibration and ApplyBQSR. HaplotypeCaller was used to calculate
Genomic VCEF files for each sample, which were then used for multi-sample calling by Geno-
micDBImport and GenotypeGVCF. In order to improve the specificity-sensitivity balance,
variants quality scores were calculated by VariantRecalibrator and ApplyVQSR. Variants
were annotated by ANNOVAR [53], and with the number of articles answering the query
“gene_name AND viral infection” in Pubmed, where gene_name is the name of the gene
affected by the variant.

In order to identify candidate genes according to the Mendelian-like model, rare variants
were filtered by a prioritization approach. We used the ExAC database (http://exac.
broadinstitute.org/), in particular the EXAC_NFE reported frequency to filter variants accord-
ing to a minor allele frequency < 0.01. Synonymous, intronic and non-coding variants were
excluded from the analysis. Mutation disease database ClinVar (ncbi.nlm.nih.gov/clinvar/)
was used to identify previous pathogenicity classifications and variants reported as likely
benign/benign were discarded. Filtering and prioritization of variants was completed using the
CADD_Phred pathogenicity prediction tool. Finally, we selected genes involved in infection
susceptibility using the term “viral infection” as Pubmed database search.
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In order to identify genes with a different prevalence of functionally relevant variants
between COVID-19 patients and control samples, the following score was calculated:

x = i WX, (1)

Where w_i is a weight associated with the i-th variant; and x_(i, j) is equal to 0 if the variant is
not present in sample j, 1 if sample j has the variant in heterozygous state, and 2 if sample j has
the variant is homozygous state. The weight w_i was assumed equal to the DANN score of the
variant [54], which provides an estimate of the likelihood that the variant has deleterious func-
tional effects (i.e. variants more likely to have a functional effect contribute more to the score).
The sum in equation (1) was performed over all the variants in the gene where the DANN
score was available. Genes with less than 5 annotated variants were discarded from the analy-
sis. The scores calculated by equation (1) were ranked for all the samples, and the sum of the
ranking for the COVID-19 samples, named rcovip, was calculated. Then, sample labels were
permuted 10.000 times, and these permutations were used to estimate the average value and
the standard deviation of rcoyip under the null-hypothesis. The p-value was calculated assum-
ing a normal distribution for the sum of the ranking [55]. Moreover, we performed an addi-
tional more stringent quality check of genetic variants in the selected genes in order to remove
calling artifacts that skipped the previous quality control.

Supporting information

S1 Fig. Clinical Data Questionnaire. The Questionnaire includes five different categories of
data: Patient personal anamnesis and family history, Diagnostic Information, Laboratory
Tests, Therapy and Complications. Clinical data were collected in detail for all COVID-19
patients.

(TTF)

S1 Table. List of genes conferring COVID-19 susceptibility identified with the gene burden
test analysis. Genes harboring deleterious mutations with statistically significant higher fre-
quency in control than in COVID-19 patients are ordered based on p-value deriving from
gene burden test analysis. The p-value adjusted is provided after Bonferroni correction.
(XLSX)

S2 Table. List of COVID-19 protective genes identified with the gene burden test analysis.
Genes harboring deleterious mutations with statistically significant higher frequency in
COVID-19 patients than in control are ordered based on p-value deriving from gene burden
test analysis. The p-value adjusted is provided after Bonferroni correction.

(XLSX)

$3 Table. Rare variants identified in patients cohort. Rare variants identified in COVID-19
patients according to the Mendelian-like model are reported (see Methods section).
(XLSX)

Acknowledgments

This study is part of GEN-COVID, https://sites.google.com/dbm.unisi.it/gen-covid the Italian
multicenter study aimed to identify the COVID-19 host genetic bases The Genetic and
COVID-19 Biobank of Siena, member of BBMRI-IT, of Telethon Network of Genetic Biobanks
(project no. GTB18001), of EuroBioBank, and of D-Connect, provided us with specimens. We
thank the CINECA consortium for providing computational resources and Network for

PLOS ONE | https://doi.org/10.1371/journal.pone.0242534 November 18, 2020 11/16

55



Chapter 4 - Clinical and molecular characterization of COVID-19 hospitalized patients

PLOS ONE

COVID-19 cohort characterization

Italian Genomes NIG http://www.nig.cineca.it. We thank private donors’ support to A.R.
(Department of Medical Biotechnologies, University of Siena) for the COVID-19 host genetics
research project (D.L n.18 of March 17th 2020).

GEN-COVID Multicenter Study (composition at May 22, 2020, the representative of
the GEN-COVID multicenter study is Prof. Francesca Mari email: francesca.mari@unisi.it)

Gabriella Doddato’, Susanna Croci’, Laura Di Sarno', Andrea Tommasi'?, Sergio Dagal.
Maria Palmieri', Massimiliano Fabbiani’, Barbara Rossetti’, Giacomo Zanelli**, Paolo
Cameli®, David Bennett®, Simona Marcantonio’, Sabino Scolletta’, Federico Franchi’, Luca
Cantarini’, Bruno Frediani’, Danilo Tacconi'®, Chiara Spenilliw, Marco Feri'!, Alice Donati'!,
Raffaele Scala'?, Luca Guidelli'?, Agostino Ognibene”, Genni Spargi“, Marta Corridi*®,
Cesira Nencioni'®, Leonardo Croci'®, Gian Piero Caldarelli'®, Maurizio Spagnesi'’, Paolo Pia-
centini'’, Anna Canaccini'®, Agnese Verzuri'®, Valentina Anemoli'®, Massimo Vaghi*', Anto-
nella D’ Arminio Monforte??, Esther Merlini*?, Mario Umberto Mondelli***, Stefania
Mantovani**, Serena Ludovisi**, Massimo Girardis®, Sophie Venturelli**, Andrea Cossar-
izza’®, Andrea Antinori*’, Alessandra Vergori®’, Stefano Rusconi®**’, Matteo Siano®**,
Arianna Gabrieli”’, Daniela Francisci***', Elisabetta Schiaroli*’, Pier Giorgio Scotton*?, Fran-
cesca Andretta™, Sandro Panese®, Renzo Scaggiante’“, Saverio Giuseppe Parisi*’, Francesco
Castelli**, Maria Eugenia Quiros Roldan®®, Paola Magro™, Cristina Minardi*®, Matteo Della
Monica®, Carmelo Piscopo®, Mario Capasso®>***’, Massimo Carella*', Marco Castori*!,
Giuseppe Merla®!, Filippo Aucella*?, Pamela Raggi**, Matteo Bassetti****, Antonio Di Biagio*,
Maurizio Sanguinetti***”, Luca Masucci*®*, Chiara Gabbi'?, Serafina Valente'®, Susanna
Guerrini®, Elisa Frullanti', Ilaria Meloni', Maria Antonietta Mencarelli?, Caterina Lo Rizzo?,
Anna Maria Pinto?

10) Department of Specialized and Internal Medicine, Infectious Diseases Unit, San Donato
Hospital Arezzo, Italy

11) Department of Emergency, Anesthesia Unit, San Donato Hospital, Arezzo, Italy

12) Department of Specialized and Internal Medicine, Pneumology Unit and UTIP, San
Donato Hospital, Arezzo, Italy

13) Clinical Chemical Analysis Laboratory, San Donato Hospital, Arezzo, Italy

14) Department of Emergency, Anesthesia Unit, Misericordia Hospital, Grosseto, Italy

15) Department of Specialized and Internal Medicine, Infectious Diseases Unit, Misericor-
dia Hospital, Grosseto, Italy

16) Clinical Chemical Analysis Laboratory, Misericordia Hospital, Grosseto, Italy

17) Department of Prevention, Azienda USL Toscana Sud Est, Italy

18) Territorial Scientific Technician Department, Azienda USL Toscana Sud Est, Italy

19) Independent Scientist, Milan, Italy

20) Department of Cardiovascular Diseases, University of Siena, Italy

21) Chirurgia Vascolare, Ospedale Maggiore di Crema, Italy

22) Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo,
University of Milan, Italy

23) Division of Infectious Diseases and Immunology, Department of Medical Sciences and
Infectious Diseases, Pavia, Italy.

24) Department of Internal Medicine and Therapeutics, University of Pavia, Italy

25) Department of Anesthesia and Intensive Care, University of Modena and Reggio Emi-
lia, Modena, Italy

26) Department of Medical and Surgical Sciences for Children and Adults, University of
Modena and Reggio Emilia, Modena, Italy

27) HIV/AIDS Department, National Institute for Infectious Diseases, IRCCS, Lazzaro
Spallanzani, Rome, Italy

PLOS ONE | https:/doi.org/10.1371/journal.pone.0242534 November 18, 2020 12/16

56



E. Benetti - Identifying host genetic risk factors for COVID-19 from Exome Sequencing

PLOS ONE

COVID-19 cohort characterization

28) 111 Infectious Diseases Unit, ASST-FBF-Sacco, Milan, Italy

29) Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan,
Milan, Italy

30) Infectious Diseases Clinic, Department of Medicine 2, Azienda Ospedaliera di Perugia
and University of Perugia, Santa Maria Hospital, Perugia, Italy

31) Infectious Diseases Clinic, "Santa Maria" Hospital, University of Perugia, Perugia, Italy

32) Department of Infectious Diseases, Treviso Hospital, Local Health Unit 2 Marca Tre-
vigiana, Treviso, Italy

33) Infectious Diseases Department, Ospedale Civile "SS. Giovanni e Paolo", Venice, Italy

34) Infectious Diseases Clinic, ULSS1, Belluno, Italy

35) Department of Molecular Medicine, University of Padova, Italy

36) Department of Infectious and Tropical Diseases, University of Brescia and ASST Spe-
dali Civili Hospital, Brescia, Italy.

37) Medical Genetics and Laboratory of Medical Genetics Unit, A.O.R.N. "Antonio Cardar-
elli’, Naples, Italy.

38) Department of Molecular Medicine and Medical Biotechnology, University of Naples
Federico I, Naples, Italy.

39) CEINGE Biotecnologie Avanzate, Naples, Italy

40) IRCCS SDN, Naples, Italy.

41) Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospi-
tal, San Giovanni Rotondo, Italy.

42) Department of Nephrology and Dialysis, Fondazione IRCCS Casa Sollievo della Soffer-
enza Hospital, San Giovanni Rotondo, Italy.

43) Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza
Hospital, San Giovanni Rotondo, Italy.

44) Department of Health Sciences, University of Genova, Genova, Italy.

45) Infectious Diseases Clinic, Policlinico San Martino Hospital, IRCCS for Cancer
Research Genova, Italy.

46) Microbiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic
University of Medicine, Rome, Italy.

47) Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico
Universitario A. Gemelli IRCCS, Rome, Italy.

Author Contributions

Conceptualization: Annarita Giliberti, Alessandra Renieri, Francesca Mari.
Data curation: Elisa Benetti, Chiara Fallerini, Rossella Tita, Simone Furini.
Formal analysis: Elisa Benetti, Simone Furini.

Investigation: Annarita Giliberti, Arianna Emiliozz, Floriana Valentino, Laura Bergantini,
Federico Anedda, Sara Amitrano, Edoardo Conticini, Miriana d’Alessandro, Francesca
Fava, Simona Marcantonio, Margherita Baldassarri, Mirella Bruttini, Maria Antonietta
Mazzei, Francesca Montagnani, Marco Mandala, Elena Bargagli, Alessandra Renieri, Fran-
cesca Mari.

Project administration: Alessandra Renieri, Francesca Mari.

Software: Simone Furini.
Writing - original draft: Elisa Benetti, Alessandra Renieri, Francesca Mari.

PLOS ONE | https://doi.org/10.1371/journal.pone.0242534 November 18, 2020 13/16

57



Chapter 4 - Clinical and molecular characterization of COVID-19 hospitalized patients

PLOS ONE

COVID-19 cohort characterization

References

1.

2.

13.

14.

17.

21.

Dennison Himmelfarb CR, Baptiste D. Coronavirus Disease (COVID-19). J Cardiovasc Nurs. 2020;
Publish Ah. htips://doi.org/10.1097/jcn.0000000000000710 PMID: 32384299

GuanW, NiZ, HuY, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in
China. N Engl J Med. 2020. https://doi.org/10.1056/NEJM0a2002032 PMID: 32109013

Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019
(COVID-19) Outbreak in China. JAMA. 2020. htips:/doi.org/10.1001/jama.2020.2648 PMID: 32091533

Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, etal. Homozygous defect in HIV-1 corecep-
tor accounts for resistance of some multiply-exposed individuals to HIV-1 i ion. Cell. 1996. https:/
doi.org/10.1016/s0092-8674(00)80110-5 PMID: 8756719

Woziwodzka A, Rybicka M, Szr A R iT,D ki M, Stalke P, et al. TNF-a poly-
morphisms affect persistence and progression of HBV infection. Mol Genet Genomic Med. 2019.
https:/doi.org/10.1002/mgg3.935 PMID: 31441603

Tian T, Huang P, Wu J, Wang C, Fan H, Zhang Y, et al. CD40 polymorphisms were associated with
HCYV infection susceptibility among Chinese population. BMC Infect Dis. 2019. https:/doi.org/10.1186/
$12879-019-4482-5 PMID: 31615434

Nogales A, Dediego ML. Host single nucleotide polymorphisms modulating influenza a virus disease in
humans. Pathogens. 2019. https:/doi.org/10.3390/pathogens8040168 PMID: 31574965

Williams FMK, Freydin M, Mangino M, Couvreur S, Visconti A, Bowyer RCE, et al. Self-reported symp-
toms of covid-19 including symptoms most predictive of SARS-CoV-2 infection, are heritable. MedRxiv.
2020.

Satlers'rom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-Scale Exome
g St Both D pmental and Functional Changes in the Neurobiology of
Autlsm Cel 2020. https://doi.org/10.1016/.cell.2019.12.036 PMID: 31981491

Benetti E, Tita R, Spiga O, Ciolfi A, Birolo G, Bruselles A, et al. ACE2 gene variants may underlie interin-
dividual variability and susceptibility to COVID-19 in the Italian population. Eur J Hum Genet. 2020.
https://doi.org/10.1038/s41431-020-0691-z PMID: 32681121

Cai H. Sex difference and smoking predisposition in patients with COVID-19. The Lancet Respiratory
Medicine. 2020. https://doi.org/10.1016/52213-2600(20)30117-X PMID: 32171067

Dralessandro M, Bennett D, Montagnani F, Cameli P, Perrone A, Bergantini L, et al. Peripheral lympho-
cyte subset monitoring in COVID19 patients: a prospective Italian real-life case series. Minerva Med.
2020. https://doi.org/10.23736/S0026-4806.20.06638-0 PMID: 32407057

Salas A, Pardo-Seco J, Cebey-Lopez M, Gomez-Carballa A, Obando-Pacheco P, Rivero-Calle |, et al.
Whole Exome Sequencing reveals new candidate genes in host genomic susceptibility to Respiratory
Syncytial Virus Disease. Sci Rep. 2017. https:/doi.org/10,1038/s41598-017-15752-4 PMID: 29162850
Chan CP, Yuen CK, Cheung PHH, Fung SY, Lui PY, Chen H, et al. Antiviral activity of double-stranded
RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymer-
ase. FASEB J. 2018; 32: 4380-4393. https:/doi.org/10.1096/fj.201701361R PMID: 29513570
Miyamoto M, Komuro A. PACT is required for MDA5-mediated immu triggered by Cardio-
virus infection via interaction with LGP2. Biochem Biophys Res Commun. 2017 https://doi.org/10.
1016/j.bbrc.2017.10.048 PMID: 29032202

Iwamoto M, Saso W, Sugiyama R, Ishii K, Ohki M, Nagamori S, et al. Epidermal growth factor receptor
is a host-entry cofactor triggering hepatitis B virus intemalization. Proc Natl Acad Sci U S A. 2019.
https://doi.org/10.1073/pnas. 1811064116 PMID: 30952782

TanX, SunY, Thapa N, Liao Y, Hedman AC, Anderson RA. LAPTM4B is a Ptdins(4,5)P 2 effector that
regulates EGFR signaling, | sorting, and ion. EMBO J. 2015. https/doi.org/10
15252/embj.201489425 PMID: 25588945

Olender T, Waszak SM, Viavant M, Khen M, Ben-Asher E, Reyes A, et al. Personal receptor reper-
toires: olfaction as a model. BMC Genomics. 2012. https //doi.org/10.1186/1471-2164-13-414 PMID:
22908908

Waszak SM, Hasin Y, Zichner T, Olender T, Keydar |, Khen M, et al. S ic inference of copy

ber genotypes from personal genome sequencing data reveals extensive olfactory receptor gene con-
tent diversity. PLoS Comput Biol. 2010. https://doi.org/10.1371/ournal.pcbi.1000988 PMID: 21085617
Durrant DM, Ghosh S, Klein RS. The Olfactory Bulb: An Immunosensory Effector Organ during Neuro-
tropic Viral Infections. ACS Chemical Neuroscience. 2016. https://doi.org/10.1021/acschemneuro.
6b00043 PMID: 27058872

Moril, Goshlma F,ImaiY, Kohsaka S Suglyama T, Yoshida T, et al. Oifactory receptor neurons pre-
vent ations of r Avirusinto the brain by undergoing virus-induced

PLOS ONE | https:/doi.org/10.1371/journal.pone.0242534 November 18, 2020 14/16

58



E. Benetti - Identifying host genetic risk factors for COVID-19 from Exome Sequencing

PLOS ONE

COVID-19 cohort characterization

24.

31.

apoptosis. J Gen Virol. 2002; 83: 2109-2116. https:/doi.org/10.1099/0022-1317-83-9-2109 PMID:
12185263

Streba LAM, Vere CC, lonescu AG, Streba CT, Rogoveanu |. Role of intrahepatic innervation in regulat-
ing the activity of liver cells. World Joumal of Hepatology. 2014. https://doi.org/10.4254/wjh v6.i3.137
PMID: 24672643

TongJY, Wong A, Zhu D, Fastenberg JH, Tham T. The Prevalence of Olfactory and Gustatory Dysfunc-
tionin COVID-19 Patients: A Systematic Review and Meta-analysis. Otolaryngology—Head and Neck
Surgery (United States). 2020. https:/doi.org/10.1177/0194599820926473 PMID: 32369429
Giacomelli A, Pezzati L, Conti F, Bemacchia D, Siano M, Oreni L, et al. Self-reported offactory and taste
disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis. 2020. https //doi.org/10.
1093/cid/ciaa330 PMID: 32215618

Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR, Chiu DTY. Glucose-6-phosphate dehydrogenase defi-
ciency enhances human coronavirus 229E infection. J Infect Dis. 2008. https:/doi.org/10.1086/528377
PMID: 18269318

Guan T, Dominguez CX, Amezquita RA, Laidlaw BJ, Cheng J, Henao-Mejia J, et al. ZEB1, ZEB2, and
the miR-200 family form a counterregulatory network to regulate CD8+ T cell fates. J Exp Med. 2018.
https://doi.org/10.1084/jem.20171352 PMID: 29449309

Klamer SE, Dorland YL, Kleijer M, Geerts D, Lento WE, Van Der Schoot CE et al TGFBI expressed by
bone marrow niche cells and t ietic stem and cells Stem
Cells Dev. 2018. https:/doi.org/10.1089%/scd.2018.0124 PMID: 30084753

Ebersole JL, Peyyala R, Gonzalez OA. Biofilm-induced profiles of immune response gene expression
by oral epithelial cells. Mol Oral Microbiol. 2019. https://doi.org/10.1111/omi. 12251 PMID: 30407731

Marton J, Albert D, Wiltshire SA, ParkR BergenA Qureshls etal. Cyclosporine a treatment inhibits
Abcc6-dependent cardiac necrosis and ievirus B3 infection in mice. PLoS
One. 2015. https:/doi.org/10.1371/joumal.pone.0138222 PMID 26375467

Janssen N, Bergman JEH, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, et al. Mutation update on
the CHD7 gene involved in CHARGE syndrome. Human Mutation. 2012. https://doi.org/10.1002/humu.
22086 PMID: 22461308

Theodoropoulos DS, Theodoropoulos GA, Edwards BM, Kileny PR, Van Riper LA. Immune deficiency
and hearing loss in CHARGE association [3]. Pediatrics. 2003. hitps:/doi.org/10.1542/peds 111.3.711-
aPMID: 12612267

Gennery AR, Slatter MA, Rice J, Hoefsloot LH, Barge D, McLean-Tooke A, et al. Mutations in CHD7 in
patients with CHARGE syndrome cause T-B + natural killer cell + severe combined immune deficiency
and may cause Omenn-like syndrome. Clin Exp Immunol. 2008. https://doi.org/10.1111/.1365-2249.
2008.03681.x PMID: 18505430

Randall V, McCue K, Roberts C, Kyriakopoulou V, Beddow S, Barrett AN, et al. Great vessel develop-
ment requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest.
2009. https://doi.org/10.1172/JCI37561 PMID: 19855134

Zhetkenev S, Khassan A, Khamzina A, Issanov A, Crape B, Akilzhanova A, et al. Association of
rs12722 COL5A1 with Pulmonary Tuberculosis infection: a preliminary case-control study in a Kazakh-
stani population. 2019; 2017: 19008995. https:/doi.org/10.1101/19008995

ChanVSF, ChanKYK, ChenY, Poon LLM, Cheung ANY Zheng B, et al. Homozygous L-SIGN
(CLECA4M) plays ap ive role in SARS ion. Nat Genet. 2006. https://doi.org/10.
1038/ng1698 PMID 16369534

Zhan S, Cai GQ, Zheng A, Wang Y, Jia J, Fang H, et al. Tumor necrosis factor-alpha regulates the
Hypocretin system via mRNA degradation and ubiquitination. Biochim Biophys Acta—Mol Basis Dis.
2011. https//doi.org/10.1016/].bbadis.2010.11.003 PMID: 21094253

Braun E, Hotter D, Koepke L, Zech F, GroB3 R, Sparrer KMJ, et al. Guanylate-Binding Proteins 2 and 5
Exert Broad Antiviral Activity by Inhibiting Furin-Mediated Processing of Viral Envelope Proteins. Cell
Rep. 2019. https:/doi.org/10.1016/].celrep.2019.04.063 PMID: 31091448

ShangJ, WanY, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2.
Proc Natl Acad Sci U S A. 2020. https/doi.org/10.1073/pnas.2003138117 PMID: 32376634

Finley MJ, Happel CM, Kaminsky DE, Rogers TJ. Opioid and nociceptin receptors regulate cytokine
and cytokine receptor expression. Cellular Immunology. 2008. https:/doi.org/10.1016/.cellimm 2007.
09.008 PMID: 18279847

Akerstrom S, Gunalan V, Keng CT, Tan YJ, Mirazimi A. Dual effect of nitric oxide on SARS-CoV replica-
tion: Viral RNA production and palmitoylation of the S protein are affected. Virology. 2009. https//doi.
org/10.1016/.virol.2009.09.007 PMID: 19800091

PLOS ONE | https://doi.org/10.1371/journal.pone.0242534 November 18, 2020 15/16

59



Chapter 4 - Clinical and molecular characterization of COVID-19 hospitalized patients

PLOS ONE

COVID-19 cohort characterization

a.

47.

49.

51.

g

Akerstrom S, Mousavi-Jazi M, Klingstrom J, Leijon M, Lundkvist A, Mirazimi A. Nitric Oxide Inhibits the
Replication Cycle of Severe Acute Respiratory Syndrome Coronavirus. J Virol. 2005. hitps://doi.org/10.
1128/JV1.79.3.1966-1969.2005 PMID: 15650225

Zamanian RT, Pollack C V., Gentile MA, Rashid M, Fox JC, Mahaffey KW, et al. Outpatient inhaled
nnnc oxlde in apatient with ive idiopathic p y arterial hypertension and COVID-19

ican Joumnal of F i yand Critical Care Medicine. 2020. https:/doi.org/10.1164/
rcem.202004-0937LE PMID: 32369396
Teich N, Nemoda Z, Kéhler H, Heinritz W, Méssner J, Keim V, et al. Gene conversion between func-
tional trypsinogen genes PRSS1 and PRSS2 associated with chronic pancreatitis in a six-year-old girl.
Hum Mutat. 2005. https://doi.org/10.1002/humu.20148 PMID: 15776435

Thio CL, Mosbruger T, Astemborski J, Greer S, Kirk GD, O'Brien SJ, et al. Mannose Binding Lectin
Genotypes Influence Recovery from Hepatitis B Virus Infection. J Virol. 2005. https:/doi.org/10.1128/
JVI.79.14.9192-9196.2005 PMID: 15994813

Dean MM, Flower RL, Eisen DP Minchinton FM Hart DNJ, Vuckovic S. Mannose-binding lectin defi-
iency infl innate and al g functions of blood myeloid dendiitic cells. Immunology.
2011 https:/doi.org/10. 1111/1 1365 2567 2010 03365.x PMID: 21091907

Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular
mycobacteria. Science (80-). 2006. https:/doi.org/10.1126/science. 1129577 PMID: 16888103

Rufini S, Ciccacci C, Di Fusco D, Ruffa A, Pallone F, Novelli G, et al. Autophagy and inflammatory
bowel disease: Association between variants of the autophagy-related IRGM gene and susceptibility to
Crohn'sdisease. Dig Liver Dis. 2015. https://doi.org/10.1016/.dId.2015.05.012 PMID: 26066377
Zhang Y Zhang J, Sheng H, LiH, Wang R. Acute phase reactant serum amyloid A in inflammation and
otherd in Clinical Chemistry. 2019. https://doi.org/10.1016/bs.acc.2019.01.002
PMID: 3112261 1

Oleszkiewicz A, Schriever VA, Croy |, Hahner A, Hummel T. Updated Sniffin’ Sticks normative data
based on an extended sample of 9139 subjects. Eur Arch Oto-Rhino-Laryngology. 2019. https:/doi.org/
10.1007/s00405-018-5248-1 PMID: 30554358

Klimek L, 1KC, Bi n T, Bousquet J, Hellings P, Jung K, et al. Visual analogue scales
(VAS)—Measuring i forthe of P and therapy monitoring in case of
allergic rhinitis in everyday health care. Allergo J. 2017. hnps //doi.org/10.1007/s40629-016-0006-7
PMID: 28217433

LiH, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics.
2010. https/doi.org/10.1093/bicinformatics/btp698 PMID: 20080505

Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling
accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2017. https://doi.org/10.
1101/201178

Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-through-
put sequencing data. Nucleic Acids Res. 2010. https:/doi.org/10.1093/nar/gkq603 PMID: 20601685
Quang D, ChenY, Xie X. DANN: A deep learning approach for annotating the pathogenicity of genetic
variants. Bioinformatics. 2015. https:/doi.org/10.1093/bioinformatics/btu703 PMID: 25338716

Dering C, Hemmelmann C, Pugh E, Ziegler A. Statistical analysis of rare sequence variants: An over-
view of collapsing methods. Genet Epidemiol. 2011. https://doi.org/10.1002/gepi.20643 PMID:
22128052

PLOS ONE | https://doi.org/10.1371/journal.pone.0242534 November 18, 2020 16/16

60



E. Benetti - Identifying host genetic risk factors for COVID-19 from Exome Sequencing

5. Shorter androgen receptor polyQ alleles protect against

life-threatening COVID-19 disease in European males

Male sex has been reported as a risk factor for worse COVID-19 outcome
even if men and women are similarly infected by the virus. In this study we aim to
evaluate if the variability in COVID-19 severity among males and females may be
explained by differences in the host genome.

In this chapter, we report the first analysis carried out by exploiting the
LASSO logistic regression on the genetic dataset of COVID-19. This is our first
application of a synthetic representation of genetic variants in a machine learning
model. To deepen the sex differences in COVID-19, we evaluate the potential impact
of poly-amino acids repeat polymorphisms, via the Boolean feature of poly-amino
acids triplet repeats (C_PR described in chapter 2, section 2.5.1). The polyQ tract of
the Androgen Receptor (AR) gene resulted a key determinant [59].
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polyQ, possibly indicating receptor resistance (p = 0,042 Mann-Whitney U test). Inappropriately low serum
testosterone level among carriers of the long-polyQ alleles (p = 0.0004 Mann-Whitney U test) predicted the
need for intensive care in COVID-19 infected men. In agreement with the known anti-inflammatory action of
testosterone, patients with long-polyQ and age =60 years had increased levels of CRP (p = 0.018, not account-
ing for multiple testing).
Interpretation: We identify the first genetic poly hism that appears to predi some men to develop
more severe disease. Failure of the endocrine feedback to overcome AR signaling defects by increasing testos-
terone levels during the infection leads to the polyQ tract becoming dominant to serum testosterone levels
for the clinical outcome. These results may contribute to designing reliable clinical and public health meas-
ures and provide a rationale to test testosterone as adjuvant therapy in men with COVID-19 expressing long
AR polyQ repeats.
Funding: MIUR project “Dipartimenti di Eccellenza 2018-2020" to Department of Medical Biotechnologies
University of Siena, Italy (Italian D.L. n.18 March 17, 2020) and “Bando Ricerca COVID-19 Toscana” project to
Azienda Ospedaliero-Universitaria Senese. Private donors for COVID-19 research and charity funds from
Intesa San Paolo.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Added-value of this study

outcome.

Implications of all the available evidence

androgens.

In a cohort of 1178 men and women with COVID-19, we used a

between the poly-glutamine repeat number of the androgen
receptor (AR) gene, serum testosterone concentrations, and
COVID-19 outcome in male patients. Failure of the endocrine
feedback to overcome AR signaling defects by increasing testos-
terone levels during the infection leads to the fact that polyQ >
23 becomes dominant to testosterone levels for the clinical

5 1. Introduction

Research in context

: - Alongside the mode of transmission, viral load, comorbidities, and
Evidence before this study demographic factors (such as age and sex), the host genetic back-
We searched on Medline, EMBASE, and Pubmed for articles ground appears to play an important role in COVID-19 severity and
published from January 2020 to August 2020 using various progression [1-8]. We hypothesized that common polymorphisms
combinations of the search terms “sex-difference”, “gender” may contribute to COVID-19 severity, including poly-amino acids
AND SARS-Cov-2, or COVID. Epidemiological studies indicate repeat polymorphisms, such as the polyQ tract of the Androgen
that men and women are similarly infected by COVID-19, but Receptor (AR). AR contains in its N-terminus domain a polymorphic
the outcome is less f: ble in men, independently of age. polyQ tract, ranging between 9 and 36 repeated CAG units in the nor-
Several studies also showed that patients with hyp di: mal population [9]. In vitro and in vivo studies have demonstrated
tend to be more severely affected. A prompt intervention that the transactivation potential of AR is inversely correlated to
directed toward the most fragile subjects with SARS-Cov-2 repeat length, and Q-tract size can significantly influence androgen-
infection is currently the only strategy to reduce mortality. Glu- dependent physiological functions [9-12].
cocorticoid treatment is a cost-effective measure to improve Several lines of evidence lead to the concept that androgens are
the outcome of severe cases. Clinical algorithms have been pro- relevant to both SARS-CoV-2 infection and COVID-19 disease presen-
posed, but little is known on the ability of genetic profiling to tation; however, they seem to have a Janus bifacial way of action
predict outcome and disclose novel therapeutic strategies. [13,14]. On one side, androgens promote the transcription of the

TMPRSS2 gene that encodes a serine protease known to prime the
spike (S) protein of coronaviruses, facilitating viral entry into the cells
[15]. On the other hand, hypogonadism is known to correlate with
severe COVID-19 | 16] and other chronic conditions, partly due to the

supervised Machine Learning approach on a synthetic repre- loss of ion of the infl, v 2 exerted by
sentation of genetic variability due to poly-amino acid repeats. testosterone (T) [17—19]. a

Comparing the genotype of patients with extreme manifesta-

tions (severe vs. asymptomatic), we found an association 2. Methods

2.1. Patients

We performed a nested case-control study (NCC). Cases and con-
trols were drawn from the Italian GEN-COVID cohort of 1178 subjects
infected with SARS-CoV-2 diagnosed by RT-PCR on nasopharyngeal
swab [2|. Demographic characteristics of patients enrolled in the
cohort are summarized in Table 1 according to their clinical status. In
the current NCC study, cases were selected according to the following

We identify the first genetic polymorphism predisposing some inclusion criteria: i. CPAP/biPAP ventilation (230 subjects); ii. endo-
men to develop a more severe disease irrespectively of age. tracheal intubation (108 subjects). As controls, 300 subjects were
Based on this, we suggest that sizing the AR poly-glutamine selected using the sole criterion of not requiring hospitalization.
repeat has important implications in the diagnostic pipeline of Exdusion criteria for both cases and controls were i. SARS-CoV-2
patients affected by life-threatening COVID-19 infection. Most infection not confirmed by PCR; ii. non-caucasian ethnicity. Demo-
importantly, our studies open to the potential of using testos- graphic characteristics of the subjects in the NCC study are summa-
terone as adjuvant therapy for patients with severe COVID-19 rized in Table 1. A similar Spanish cohort, composed of male COVID-
having defective androgen signaling, defined by this study as 19 patients (117 cases and 41 controls) was used to validate the
>23 PolyQ repeats, and inappropriately low levels of circulating results in another representative European population highly

impacted by COVID-19. All subjects were white European. The Span-
ish Covid HGE cohort is under IRB approval PR127/20 from Bellvitge

University Hospital, Barcelona, Spain.
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Table 1

Demographics characteristics of the Italian GEN-COVID Cohort and NCC study.

Intubation ~ CPAP/BIPAP  Oxygen Therapy wjo  Oligo™ wjo
Ventilation respiratory support hospitalization
GEN-COVID Number of Sybjects 108 230 352 188 300
Male/Female 80/28 157/73 208/144 104/84 116184
Age males (years)  61,52+1143 62,75+1348 6341+14,53 55,99+1544 47401323
Age females (years) 63.71£1396 66,23+1525 6840£14,74 52,88+16,39 48,61+11,06
Cases Controls
NCCstudy  Number of Subjects 338 300
Male/Female 237101 116/184
Age males (years) 623441284 47401323
Age females (years) 6553+14.94 48,61+11,06
4] i with minor of COVID-19 (mild fever, cough, sore throat, etc.)

22. Ethics

The GEN-COVID study was approved by the University Hospital of
Siena Ethics Review Board (Protocol n. 16917, dated March 16, 2020).
This observational study has been inserted in www.clinicaltrial.org
(NCT04549831). The Spanish Covid HGE cohort is under IRB approval
PR127/20 from Bellvitge University Hospital, Barcelona Spain. Writ-
ten informed consent was obtained from all individuals who contrib-
uted samples and data.

2.3. Analysis of triplets size in the AR locus

To establish allele sizes of the polymorphic triplet in the AR locus,
we used the HUMARA assay with minor modifications [20]. Specifi-
cally, we performed a fluorescent PCR followed by capillary electro-
phoresis on an ABI3130 sequencer. Allele size was established using
the Genescan Analysis software.

24. Binary representation of WES data

Variants calling was performed according to the GATK4 best prac-
tice guidelines, using BWA for mapping, and ANNOVAR for annotat-
ing. WES data were represented in a binary mode on a gene-by-gene
basis. Poly-amino acids triplet repeats were represented in a binary
mode: long and short repeats in respect to the reference sequence on
the genome. A total of 40 genes with 43 triplet repeat regions were
taken from UniProtKB (Supplementary Table S1). In the boolean
representation of poly-amino acids triplet repeats, for each of these
40 genes two features were defined, Dij and lij, with Dij being equal
to 1 if gene i in sample j has a repeated region shorter than the refer-
ence, 0 otherwise, and lij being equal to 1 if gene i in sample j has a
repeated region longer than the reference, 0 otherwise.

2.5. LASSO logistic regression

We adopted the LASSO logistic regression that provides a feature
selection method within the classification tasks able to enforce both
the sparsity and the interpretability of the results. The weights of the
logistic regression algorithm can be interpreted as the importance of
the subset of the most relevant features for the task [21].

The input features of the LASSO logistic regression are the poly-amino
acids triplet repeats as well as gender, comorbidity (1 if there is at least
one comorbidity) and age, the latter as a continuous variable normalized
between 0 and 1. Comorbidities were defined as the presence of one or
more clinical conditions (i.e. cardiac, endocrine, neurological, neoplastic
diseases) at the time of infection. During the fitting procedure, the class
slight unbalancing is tackled by penalizing the misclassification of the
minority class with a multiplicative factor inversely proportional to the
class frequendies. The data pre-processing was coded in Python, whereas
for the logistic regression model we used the scikit-leam module with
the liblinear coordinate descent optimization algorithm.
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2.6. Total Tmeasurement

Blood samples were collected after an overnight fast, immediately
centrifuged at 4 °C and stored at -20 °C until assayed. Serum and
plasma total T (TT), SHBG levels in plasma and serum LH were mea-
sured following standard procedures.

Serum TT was measured using the Access testosterone assay
(Beckman Coulter Inc,, Fullerton, CA, USA) with a minimum detection
limit of 035 nmol/L. Reference range for this assay was
6.07-27.1 nmol/L and liquid chromatography - tandem mass spec-
trometry (LC-MS/MS) according to a previously validated method
provided with reference values between 9.8-28.4 nmol/L [22].
Thawed plasma underwent 15 min incubation at 56 °C for virus inac-
tivation, and TT measured in 100 yI of plasma, with sensitivity limit
being 0.270 nmol/L, imprecision ranging 9.8 to 0.7% and accuracy
90.6 to 101.5% at concentration levels between 1.12 and 39.2 nmol/L.
A stability test under viral inactivation conditions was performed in 6
samples, revealing a T mean (min-max) % loss of 9.7% (4.6-16.7%).

SHBG levels were measured in plasma samples using Quantikine
ELISA Kit (DSHB GOB, R&D Systems, Minneapolis, MN, USA) according
to the manufacturers' instructions. Serum LH was measured using
“Access LH assay* a ch enSert, two-step immu-
noassay (Beckman Coulter Inc, Fullerton, CA, USA). Sensitivity for the
LH determination is 0.2 mIU/mL. Reference range in adult males for
this assay is 1.2—8.6 mlU/mL.

2.7. Statistical analysis

Since serum and plasma T values were not normally distributed,
the statistical analyses were performed using non-parametric tests.
When appropriate, transformation was used for skewed data in
regression models. We used the Mann-Whitney U test to compare T
levels in males with AR long-polyQ (>23) versus males with short-
polyQ repeat (<22). Logistic regression analysis was performed to
test the contribution of age, T, and the number of polyglutamine rep-
etitions on COVID-19 outcome. The only prespecified interaction
tested was the T by polyQ (categorical). Box-Tidwell procedure was
used to assess linearity and the Hosmer and Lemeshow to assess
goodness of fit test. Multicollinearity was assessed by variance infla-
tion factor, and dealt with by dropping the offending variables from
the analysis on the basis of dlinical grounds.

2.8. Role of funders

The work was financially supported by MIUR project “Diparti-
menti di Eccellenza 2018-2020" to Department of Medical Biotech-
nologies University of Siena, Italy (Italian D.L. n.18 March 17, 2020)
and by “Bando Ricerca COVID-19 Toscana” project to Azienda Ospe-
daliero-Universitaria Senese. It was also funded by private donors for
COVID-19 research and charity funds from Intesa San Paolo “Fondo di
Beneficenza n. bj2020/0119". The sponsors of the study had no role
in study design, data collection, data analysis, data interpretation, or
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writing of the manuscript. The authors collected the data, and had full
access to all of the data in the study. They also had the final decision
and responsibility to submit the study results for publication.

3. Results

3.1. Testing the role of common poly-amino acid repeat polymorphisms
in COVID-19 outcome

In order to test the role of common poly-amino acid repeat poly-
morphisms in determining COVID-19 clinical severity, we performed
a NCC, selecting the extreme phenotypic ends of our entire GEN-
COVID cohort (Table 1 and Fig. 1). Among 18,439 annotated genes,

A)

we selected those with amino acid repeats, namely 40 genes, and
represented them as a boolean variable. Logistic regression with
LASSO regularization analysis identified AR as the only protective
gene (Fig. 1, panel a). The 10-fold cross-validation provides good per-
formances in terms of accuracy (77%), precision (81%), sensitivity
(77%), specificity (78%) and Area Under the Curve (AUC) score (86%)
(Fig. 1, panel b). The performances of the logistic regression without
LASSO regularization for the selected set of features (age, gender,
comorbidity and AR gene) are 79% accuracy, 81% precision, 81% sensi-
tivity, 78% specificity, 88% roc-auc. The model shows a slight decrease
of almost all the performance measures when the AR gene is
removed from the set (accuracy -1.2%, precision -1.3%, sensitivity
-1.4%, specificity -1.2%, roc-auc +0.3%). Finally, the logistic regression
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Accuracy 77% 6%
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Sensitivity 77% 7%
Specificity 78% 10%
Roc-auc 86% 6%

Fig. 1. LASSO logistic regression. The bar of the LASSO logistic regression beta coefficients represents the importance of each feature for the classification task (Fig. 1) (Panela). The
positive beta coefficients of the LASSO (upward bars) reflect a susceptible behaviour of the features to the target COVID-19 disease, whereas the negative coefficients (downward
bars) a protective action. The calculated odd ratio of AR short repeats (<22)is 0.79 i.e. protective. Therefore, the odd ratio of long repeats (>23)is 1/0.79 = 1.27 i.e. severity. Panel b:
Table reporting the averages and the standard deviations of accuracy, precision, sensitivity, specificity, and ROC-AUC scores for the 10-folds of the cross-validation.
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on the male cohort with the AR gene alone provides results quite
higher than the random guess (accuracy 58%, precision 71%, sensitiv-
ity 64%, specificity 55%, roc-auc 55%).

3.2. Validation of polyQ polymorphism by sizing the PolyQ repeat of the
AR gene

In order to validate the results on AR obtained by LASSO logistic
regression, we sized the number of triplets in the male subset (351
subjects) using the gold standard technique that uses a fluorescent
PCR reaction followed by the use of GeneScan Analysis software®
(Applied Biosystems) [20]. We identified a 98% concordance between
the results of the two techniques in measuring the polyQ repeats.
Based on the AR polyQ length, male patients were subdivided into
two categories, those having a number of PolyQ repeats less than or
equal to 22 repeats, and those having a number of PolyQ repeats
greater than or equal to 23 repeats, being 23 repeats the reference
sequence on genome browsers and the reported cut-off value |23-
24]. We found that PolyQ repeats below 22 are enriched in the
asymptomatic cohort of males. The difference was statistically signifi-
cant in the group of males younger than 60 years of age in which
genetic factors are expected to have a major impact (p-value 0.024
by x? test) (Table 2; Supplementary Table S2).

3.3. Validation of polyQ polymorphism in the Spanish Cohort

We then sized the polyQ repeat in an independent cohort consist-
ing of 158 <60 years old Spanish males without known comorbidities
(117 cases and 41 controls). The association with shorter repeats (<
22)and protection was confirmed (p-value 0.014 by x? test)(Table 3).

34. Males with longer polyQ have receptor resistance

To functionally link the length of the PolyQ repeats to AR function-
ality, we measured TT in 183 men using LCMS/MS (Supplementary
Table S2). TT was higher in patients carrying >23 vs <22 glutamines
(13.45 vs 11.23 nmol/L, p-value 0.042), reflecting reduced negative
feedback from the less active receptors present in patients carrying a
PolyQ repeat of >23. This difference was evident also comparing the
TT value and polyQ repeats in the case and the control group (Fig. 2).

3.5. Unbalanced T-AR axis in males with longer polyQ repeats

The hormonal status of the entire male cohort revealed lower TT
and calculated free T levels and higher SHBG levels with increasing
age (Supplementary Table S3).

To evaluate whether the AR receptor reduced activity resulted in
signs and symptoms of hypogonadism, subjects were interviewed,
post-infection, using a modified version of the Androstest® [25].
Interviews were available for 61 subjects (43 short and 18 long) rep-
resentative of the extremes genotypes (<19 and >25 repeats) of the
cohort. An Androtest score >8 was found in 38% of men with longer
repeats as compared to 16% of those with <19 glutamines (likelihood
ratio, p = 0.046). Similarly, cryptorchidism (11% in long repeats vs. 2%

Table 2
PolyQ alleles correlation with COVID-19 outcome - males with age <60.
Males <60
<22 >23 Marginal Row Totals
Cases 52(59,1%)  36(409%) 88(48,1%)
Controls 71(74.7%)" 24(253%)  95(51,9%)
Marginal Column Totals 123 (672%)  60(328%) 183 (Grand Total)

* p-value (cases vs controls) =0.024
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Table 3
Validation in Spanish cohort

Spanish validation ( x2) Males global
<22

< =23 Marginal Row Totals
Cases 51(436%)  66(564%) 117(74.1%)
Controls 27(659%)° 14(341%)  41(259%)
Marginal Column Totals ~ 78(49.4%) 80 (506%) 158 (Grand Total)

* p-value (cases vs controls)=0.014 (Significant at p<0.05)

in short repeats), and anemia (11% in long repeats vs. 2% in short
repeats), two powerful sings of low androgenicity, and severe erectile
dysfunction (22% in long repeats vs. 9% in short repeats) were more
frequently reported in subjects with longer repeats, but not osteope-
nia/osteoporosis (6% in long repeats vs. 7% in short repeats) (Supple-
mentary Table $4). These results indicate a trend toward clinical
hypogonadism for those with longer repeats. Conversely, in the
entire male dataset, 6 cases of prostate cancer were found annotated
in the past-medical history, all in the <22 glutamines group, suggest-
ing an increased prostate sensitivity to androgens in this group. No
difference was found in the prevalence of BPH or 5-alpha-reductase
inhibitors use.

As the reduced signal transduction of AR might be partially com-
pensated by higher T levels, we tested whether the decreased AR
negative feedback was sufficient to overcome larger polyQ repeats
size (Fig. 2). Logistic regression was performed to investigate the
joint effect of T level and polyglutamine receptor length on the likeli-
hood that subjects require intensive care during COVID infections,
adjusting for age in the model. The logistic regression model was
highly significant (x? (3) = 18,881, p < 0.0001), with the model
explaining 7.5% (Nagelkerke /R2) of the variance in COVID-19 out-
come (Supplementary Table S5). To test whether the association
between T and the outcome changes when the polyQ is short (< 22)
or long (>23), an interaction term was included in the model. A sig-
nificant interaction was found (p-value 0.018), suggesting impaired
feedback as a predictor of the worst outcome, namely intubation or
CPAP[BiPAP versus hospitalization not requiring respiratory assis-
tance. To provide an intuitive graphical representation, we plotted
the ratio between TT serum concentrations and polyQ number vs.
clinical outcome (Supplementary Figure 1). Results show a
decreased mean ratio, a sign of an inappropriate rise of TT for increas-
ing polyglutamine repeats, and association with a worse outcome
(p =0.0004).

3.6. Inflammatory phenotype in males with longer polyQ repeats

Finally, we tested the relationship between the AR polyQ repeat
size and 5 laboratory markers of immunity/inflammation, including
CRP, Fibrinogen, IL6, CD4 and NK count. We found that older (>60)
males with AR polyQ tract >23 have a higher (55.92 versus 48.21 mg/
dl) mean value of CRP (p-value 0.018, not accounting for multiple
testing) and lower mean value of Fibrinogen and a trend of higher IL6
(Table 4).

4. Discussion

We employed machine learning methodologies to identify a set of
genes involved in the severity of COVID-19. In the presence of very
high dimensionality, as for instance in a WES study, it is crucial to
select the most predictive genes representing patterns of variation
(mutations or variants) in subjects with different classes of response
(ie., disease state: from asymptomatic to severe cases). This problem
is even more complex in diseases where multiple genes are involved
in determining the severity and clinical variability of the pathology.
Here, we wanted to represent poly-amino acids repeat
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Fig. 2. between Total

and polyQ repeats in the case and the control group. Box-plot showing values of Total Testosterone (TT), expressed in nmol/L, in

subjects with shorter (<22) and longer (>23) polyQ repeats in AR gene grouped between controls (left panel) and cases (right panel). The TT median value, represented by the black

horizontal line, is higher in patients with >23 polyQ repeats in the case group, (**p-value = 0.023; Mann-Wh

control group (p-value = 0.088; Mann-Whitney U test).

polymorphisms that are typically missed in cassical GWAS analysis,
which concentrates on bi-allelic polymorphisms.

We used a machine learning approach and logistic regression with
a LASSO regularization to test if using such a simplified representa-
tion could lead to a reliable prediction of extreme clinical outcomes
(asymptomatic versus severely affected). This approach enabled us to
predict such clinical outcomes with 77% sensitivity.

AR contains a highly variable polyglutamine repeat (poly-Q)
located in the N-terminal domain of the protein, spanning from 9 to
36 glutamine residues in the normal population [5]. AR polyQ length
correlates with receptor functionality, with shorter polymorphic glu-
tamine repeats typically associated with higher and longer PolyQ
tracts with lower receptor activity [5]. AR is expressed in both males
and females, but the bioavailability of its ligands T and dihydroT
(DHT) differs significantly, being much higher in males. As previous
studies linked male hypogonadism to a poorer outcome in COVID-19
patients we decided to focus on male patients and demonstrated that
shorter polymorphic glutamine repeats (<22) confer protection
against life-threatening COVID-19 in a subpopulation of individuals
with age <60 years.

We also confirmed the association between polyQ size and recep-
tor activity. Specifically, we showed that longer polyQ size (>23) is
associated with higher serum T levels, suggestive of impaired nega-
tive feedback (p=0.004 at Mann-Whitney U test) at the level of the
hypothalamus and pituitary gland. While this is compensated in
healthy subjects |26], during non-gonadal illnesses (NGI) such as
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y U test). No was present in the

COVID-19, some patients are unable to compensate for the reduced
AR activity with higher T levels [27]. The result is a status of reduced
androgenicity even in the presence of apparently normal T values
[27).

As T is known to have an immunomodulatory activity attenuating
infl, ory i resp [26-32], we hypothesized that a
long PolyQ repeat would lead to a pro-inflammatory status heralded
by increased proinflammatory markers [19,33] by conferring
decreased AR transcriptional activity. Conversely, men with a more
active receptor (short PolyQ tract) would be protected because they
can tame the inflammatory response and increase survival regardless
of serum T levels. We found that -CRP-, one of the main inflammatory
markers, was higher in subjects with a long AR PolyQ tract. This
observation not only is in line with the known anti-inflammatory
function of T, but also reinforces the functional importance of the AR
PolyQ tract and its association with COVID-19 clinical outcome. Fur-
thermore, this observation suggests that CRP is hierarchically more
relevant than serum T level, which can be inappropriately normal
and mask a status of low androgenicity in men with a long PolyQ
repeat.

The allele distribution of the PolyQ repeat length varies among
different populations, with the shortest in Africans, medium in Cau-
casians, and longest in Asians |34]. Interestingly, WHO data on mor-
tality rates during the first pandemic wave indicated a higher fatality
rate in China and Italy (https://covid19.who.int/) [35] with respect to
African. Hence, AR polyQ length variability could represent an
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Table 4
Correlation between polyQ repeats in AR gene and laboratory values
CRP M= 60y cases (RPM <60y cases
Triplets Mean Count Triplets Mean Count
=22 4821 78 =22 545 43
=23 5592 38 >23 2641 29
p-value =0.018 (Significant at p<0,05) p-value =02
Fibrinogen M=60y cases Fibrinogen M < G0y cases
Triplets Mean Count Triplets Mean Count
=22 401,33 57 <22 316,93 2
=23 320,34 27 =23 356,91 19
p-value =0.093 p-value =053

IL6 times the upper limit of normal M>60y cases

IL6 times the upper limit of normal M <60y cases

Triplets Mean Count Triplets Mean Count
=22 54,56 40 =22 4043 17
=23 75.78 16 >23 318 14
p-value = 0,249 p-value =081

CD4 Lymphocytes M=60y cases CD4 Lymphocytes M <60 cases
Triplets Mean Count Triplets Mean Count
=22 264,06 32 =22 503,68 16
= 357,52 21 =23 396,13 15
p-value =0.22 p-value =045

NK Cells M =60y cases NK Cells M <60y cases

Triplets Mean Count Triplets Mean Count
22 7071 28 <22 1473 13
=23 102,25 16 =23 107,14 14
p-value =0.179 p-value = 0,098

explanation for the observed differences in death rate. Moreover,
Africans seem to be more prone to infection [36]. This observation
could be due to a more active AR receptor, leading to a higher expres-
sion of TMPRSS2, a protease essential for SARS-CoV-2 spread | 15].

Different studies have shown an association between hypogonad-
ism or long polyQ repeats and severe COVID-19 [16,37] and other
chronic obstructive pulmonary diseases [17,18]. Our results are in
line with these initial observations and provide a possible mechanism
explaining these associations. The present study brings these obser-
vations to the next level, revealing that is the overall androgenic
effect -resulting from the interaction of polyQ polymorphism and cir-
culating T levels- that predicts the need for intensive care. In infected
men, we observed impaired feedback no longer sufficient to compen-
sate for the reduced AR transcriptional activity, leading to the conclu-
sion that polyQ tract length is hierarchically more important than
serum T levels. This concept helps to solve some inconsistencies,
including the early reports of a slightly better outcome in prostate
cancer patients -who tend to have smaller polyQ repeats, as in our
cohort - when compared to other cancers. Interestingly, previous
studies failed to link polyQ with mortality, in healthy subjects [26] or
individuals with chronic diseases such as diabetes mellitus [38].
Thus, the observed association between low androgenicity and out-
come seems related to the hyperinflammatory state present in severe
COVID-19.

An improvement in peak oxygen saturation in men receiving T
replacement therapy has been demonstrated in a randomized con-
trolled trial [39] and could be one of the mechanisms responsible for
the observed protective effect of AR’s with shorter polyQ tract in
COVID-19 patients. The observations reported in this study prompt

68

organizing a clinical trial where patients selected based on their
serum T concentration and polyQ repeat size are randomized to
receive T vs. placebo. Such study could introduce the concept that a
simple genetic test measuring the AR polyQ repeat can be used in
male patients to screen for those who are more likely to benefit from
T therapy.

Variants of another X-linked gene, TLR7, have been associated
with severe COVID-19 outcomes in young men |6]. In the 2 reported
families, the rare TLR7 mutations segregated as a highly penetrant
monogenic X-linked recessive trait. While variants in TLR7 gene are
expected to account for a small number of severely affected cases,
our findings involve a much larger number of subjects, as long polyQ
alleles are relatively common (27%) [40]. Overall, X-linked genetic
variants keep coming up as important for defining severe COVID-19
cases in males.

In conclusion, we present a method that can predict if subjects
infected by SARS-CoV-2 are at risk for life-threatening complications.
This approach has 77% accuracy, 81% precision, 77% sensitivity, and
78% specificity. Furthermore, we present evidence suggesting that a
more active AR has the potential to confer protection against COVID-
19 severity. If confirmed, these observations should be followed by
properly conducted clinical trials exploring if T replacement may
decrease morbidity and mortality in patients affected by the most
severe forms of the disease. Finally, as shown by regression analysis,
ORs ranges between 1.26 and 1.45, therefore the risk of carrying a
longer AR is much smaller than other already known strong predic-
tors such as age and sex, but still is highly significant, relatively com-
mon, and among the very few known genetic predictors of COVID-19
outcome.
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6. Association of Toll-like receptor 7 variants with life-
threatening COVID-19 disease in males: findings from a

nested case-control study

Recently, loss-of-function variants in TLR7 were identified in males with
severe COVID-19 with a mean age of 26 years. As age and male sex are two major
risk factors for developing life-threatening COVID-19 after infection, we
investigated whether the two reported families represent the tip of the iceberg of a

subset of young COVID-19 male patients.

In the previous chapter LASSO logistic regression model was used to identify
a gene's common variants that is predictive for the severe or the mild COVID-19
phenotype. Here we report the analyses carried out by applying LASSO logistic
regression method to the rare and ultra-rare genetic variants on the X chromosome
(R_X and UR_X Boolean features described in chapter 2, section 2.5.1). This study,
along with other published studies, shows that COVID-19 segregates like an X-linked
recessive disorder environmentally conditioned by SARS-CoV-2. This type of
inheritance contributes to disease susceptibility in up to 2% of severe COVID-19
[60].
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Abstract

Background: Recently, loss-of-function variants in TLR7 were identified in two families in which
COVID-19 segregates like an X-linked recessive disorder environmentally conditioned by SARS-
CoV-2. We investigated whether the two families represent the tip of the iceberg of a subset of
COVID-19 male patients.

Methods: This is a nested case-control study in which we compared male participants with extreme
phenotype selected from the Italian GEN-COVID cohort of SARS-CoV-2-infected participants (<60
y. 79 severe cases versus 77 control cases). We applied the LASSO Logistic Regression analysis,
considering only rare variants on young male subsets with extreme phenotype, picking up TLR7 as
the most important susceptibility gene.
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Results: Overall, we found TLR7 deleterious variants in 2.1% of severely affected males and in none
of the asymptomatic participants. The functional gene expression profile analysis demonstrated a
reduction in TLR7-related gene expression in patients compared with controls demonstrating an
impairment in type | and Il IFN responses.

Conclusions: Young males with TLR7 loss-of-function variants and severe COVID-19 represent a
subset of male patients contributing to disease susceptibility in up to 2% of severe COVID-19.
Funding: Funded by private donors for the Host Genetics Research Project, the Intesa San Paolo
for 2020 charity fund, and the Host Genetics Initiative.

Clinical trial number: NCT04549831.

Introduction

Coronavirus disease 2019 (COVID-19), a potentially severe systemic disease caused by coronavirus
SARS-CoV-2, is characterized by a highly heterogeneous phenotypic presentation, with the large
majority of infected individuals experiencing only mild or no symptoms. However, severe cases can
rapidly evolve toward a critical respiratory distress syndrome and multiple organ failure (Wu and
McGoogan, 2020). COVID-19 still represents an enormous challenge for the world’s healthcare sys-
tems almost 1 year after the first appearance in December 2019 in Wuhan, Huanan, Hubei Province
of China. Although older age and the presence of cardiovascular or metabolic comorbidities have
been identified as risk factors predisposing to severe di (Hagg et al., 2020), these factors
alone do not fully explain differences in severity (Stokes et al., 2020). Stokes EK et al. reported that
male patients show more severe clinical manifestations than females with a statistically significant
(p<0.00001) higher prevalence of hospitalizations (16% versus 12%), ICU admissions (3% versus 2%),
and deaths (6% versus 5%) (Stokes et al., 2020). These results are in line with other reports indicat-
ing that gender may influence disease outcome (Garg et al., 2020; Goodman et al., 2020).

These findings suggest a role of host predisposing genetic factors in the pathogenesis of the dis-
ease, which may be responsible for different clinical outcomes as a result of different antiviral
defense mechanisms as well as specific receptor permissiveness to virus and immunogenicity.

Recent evidence suggests a fundamental role of interferon genes in modulating immunity to
SARS-CoV-2; in particular, rare variants have recently been identified in the interferon type | pathway
that are responsible for inborn errors of immunity in a small proportion of patients and auto-antibod-
ies against type | interferon genes in up to 10% of severe COVID-19 cases (Zhang et al., 2020;
Bastard et al., 2020).

Toll-like receptors (TLRs) are crucial components in the initiation of innate immune responses to a
variety of pathogens, causing the production of pro-inflammatory cytokines (TNF-a, IL-1, and IL-6)
and type | and Il Interferons (IFNs), that are responsible for innate antiviral responses. In particular,
the innate immunity is very sensitive in detecting potential pathogens, activating downstream signal-
ing to induce transcription factors in the nucleus, promoting synthesis and release of type | and type
Il IFNs in addition to a number of other proinflammatory cytokines, and leading to a severe cytokine
release syndrome which may be associated with a fatal outcome. Interestingly, among the different
TLRs, TLR7 recognizes several single-stranded RNA viruses including SARS-CoV-2 (Poulas et al.,
2020). We previously showed that another RNA virus, hepatitis C virus (HCV), is able to inhibit CD4
T cell function via Toll-like receptor 7 (TLR7) (Mele et al., 2017). Recently, van der Made et al.,
2020 have reported two independent families in which COVID-19 segregates like an X-linked reces-
sive monogenic disorder conditioned by SARS-CoV-2 as an environmental factor.

Here, we performed a nested case-control study within our prospectively recruited GEN-COVID
cohort with the aim to determine whether the two families described by van der Made et al. repre-
sent an ultra-rare situation or the tip of the iceberg of a larger subset of young male patients.

Materials and methods

Patients and samples

A subset of 156 young (<60 years) male COVID-19 patients was selected from the Italian GEN-COVID
cohort of 1,178 SARS-CoV-2-infected participants (https://sites.google.com/dbm.unisi.it/gen-covid)
(Daga et al., 2021). The study (GEN-COVID) was consistent with Institutional guidelines and approved

Fallerini, Daga, Mantovani, et al. eLife 2021;10:e67569. DOI: https://doi.org/10.7554/eLife.67569 20f 15

74



E. Benetti - Identifying host genetic risk factors for COVID-19 from Exome Sequencing

ELife Short report

Genetics and Genomics | Medicine

by the University Hospital (Azienda Ospedaliero-Universitaria Senese) Ethical Review Board, Siena,
Italy (Prot n. 16929, dated March 16, 2020). We performed a nested case-control study (STREGA
reporting guideline was used to support reporting of this study). Cases were selected according to the
following inclusion criteria: i. male gender; ii. young age (<60 years); iii endotracheal intubation or
CPAP/biPAP ventilation (79 participants). As controls, 77 participants were selected using the sole cri-
terion of being oligo-asymptomatic not requiring hospitalization. Cases and controls represented the
extreme phenotypic presentations of the GEN-COVID cohort. Exclusion criteria for both cases and
controls were: i. SARS-CoV-2 infection not confirmed by PCR; ii. non-white ethnicity. Materials and
methods details are listed in the Online Repository. A similar cohort from the second wave, composed
of 83 young male COVID-19 patients, was used to expand the cohort.

Statistical methods

We adopted the LASSO logistic regression, one of the most common Machine Learning algorithms
for classification, that provides a feature selection method within the classification task able to
enforce both the sparsity and the interpretability of the results (Tibshirani, 1996). In fact, the coeffi-
cients of the logistic regression model are directly related to the importance of the corresponding
features, and LASSO regularization shrinks close to zero the coefficients of features that are not rele-
vant in predicting the response, reducing overfitting and giving immediate interpretability of the
model predictions in terms of few feature importance.

The principal components analysis (PCA) was applied prior to the LASSO logistic regression in
order to remove samples that were clear outliers with respect to the first three principal components
from the following analyses (deviating more than five standard deviations from the average).

A 10-fold cross-validation method was applied in order to test the performances. It provides the
partition of the dataset into 10 batches, then nine batches are exploited for the training of the
LASSO logistic regression and the remaining batch as a test, by repeating this procedure 10 times.
The performance metrics are averaged on the 10 testing sets in order to avoid overfitting. The con-
fusion matrix is built by summing up the predictions of the 10 testing folds. During the fitting proce-
dure, the class unbalancing is tackled by penalizing the misclassification of the minority class with a
multiplicative factor inversely proportional to the class frequencies.

In order to evaluate the significance of the association between TLR7 variants and COVID sever-
ity, the Fisher’s Exact Test was used.

For the quantitative PCR assay, the fold changes in mRNA expression level per gene were com-
pared between the individual patients and controls using an unpaired t test on the log-transformed
fold changes. p Values < 0.05 were considered statistically significant.

In vitro peripheral blood mononuclear cell (PBMC) experiments

Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll-Hypaque (GE Healthcare Bio-Sci-
ences AB) density gradient centrifugation as previously described (Mantovani et al., 2019). 5 x 10°
PBMC from COVID-19 patients 6 months after recovery and six unaffected male and female controls
were stimulated for 4 hr with the TLR7 agonist imiquimod at 5 pg/mL or cell culture medium. Total
RNA extraction was performed with RNeasy Plus Mini kit and gDNA eliminator mini spin columns
(QIAGEN, Hilden, Germany), following the manufacturer’s instructions. First-strand cDNA was syn-
thesized from total RNA using High-Capacity cDNA Reverse Transcription Kit following the manufac-
turer’s instructions (Thermo Fisher Scientific, Waltham, Massachusetts, United States). The Advanced
Universal SYBR Green Supermix (BioRad, Redmond, WA, United States) was used. All reactions were
performed in triplicates using the CFX96 Real-Time machine detection system (BioRad, Redmond,
WA, United States) and each sample was amplified in duplicate. The following primers were used:

TLR7 Fw Primer 5-CATCAAGAGGCTGCAGATTAAA-3'
Rv Primer 5-GAAAAGATGTTGTTGGCCTCA-3'

IFN-y Fw Primer 5-TGACCAGAGCATCCAAAAGA-3'
Rv Primer 5-CTCTTCGACCTCGAAACAGC-3

Continued on next page
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IRF7 Fw Primer 5-CCATCTTCGACTTCAGAGTCTTC-3"
Rv Primer 5'-TCTAGGTGCACTCGGCACAG-3'
ISG15 Fw Primer 5'-GACAAATGCGACGAACCTCT-3
Rv Primer 5-GAACAGGTCGTCCTGCACAC-3'
IFN-a Fw Primer 5-GACTCCATCTTGGCTGTGA-3
Rv Primer 5-TGATTTCTGCTCTGACAACCT-3
HRPT1 Fw Primer 5" TGACACTGGCAAAACAATGCA-3'
Rv Primer 5-GGTCCTTTTCACCAGCAAGCT-3'

A total of 2.5 x 10° PBMC from COVID-19 patients and healthy controls were maintained in
RPMI-1640 supplemented with 10% of FCS, 1% antibiotic antimycotic solution, 1% L-glutamine and
1% Sodium Pyruvate (Sigma-Aldrich, St. Louis, MO, USA) and stimulated in vitro for 4 hr with Lipo-
polysaccharide (LPS) at 1 pg/ml or cell culture medium and the Protein Transport Inhibitor GolgiStop
(BD Biosciences, San Diego, CA, USA). After washing, PBMC were stained for surface cell marker
using mouse anti-CD14PerCP-Cy5.5 (BD Biosciences) and anti-CD3BV605 (BD Biosciences) monoclo-
nal antibody (mAb). Cells were fixed with BD Cytofix/Cytoperm and permeabilized with the BD
Perm/Wash buffer (BD Biosciences) according to the manufacturer’s instructions, in the presence of
anti-IL6BV421 (BD Biosciences) mAb. Ex-vivo TLR7 intracellular expression was evaluated in PBMC
from patients and controls by flow cytometry. 2,5 x 10° PBMC were stained for surface markers
using anti-CD19BV605, anti-CD14PerCP-Cy5.5 and anti-CD3BV421 (BD Biosciences) mAbs. Cells
were fixed and permeabilized in the presence of anti-TLR7 Alexa Fluor 488 (R and D System, Minne-
apolis, MN, USA) mAb or isotype control as described above. After staining cells were washed,
immediately fixed in CellFix solution (BD Biosciences) and analysed. Cell acquisition was performed
on a 12-color FACSCelesta (BD Biosciences, San Diego, CA, USA) instrument. Data analysis was per-
formed with the Kaluza 2.1 software (Beckman Coulter).

Protein stability prediction

The protein structure of Human Toll Like Receptor, UniProtKB ID QINYK1 [https://www.uniprot.ora/
uniprot/Q9NYK1], was obtained by homology modeling using Swiss Model tool (Waterhouse et al.,
2018). The selected template protein with 97% of sequence identity was the Crystal structure of
monkey TLR7 with PDB ID 5GMF [https://www.rcsb.org/structure/SGMF]. The two Val to Asp mis-
sense mutations were analysed by using different protein stability predictors like Polyphen-2
(Adzhubei et al., 2010), SIFT (Ng and Henikoff, 2003), and DynaMut (Rodrigues et al., 2018).

Transfection experiments of TLR7 variants

PCR based site-directed mutagenesis was performed in pUNO-hTLR7 plasmid (Invivogen), kindly pro-
vided by Ugo D'Oro (GSK Vaccines, Siena, Italy) (lavarone et al., 2011), to generate specific plasmids
for each TLR7 variant, including those considered neutral (mutagenic primers available on request).

All point mutations except for p.Arg920Lys were confirmed by Sanger sequencing. HEK293 cells
were maintained in DMEM supplemented with 10% FBS, 1% L-Glutamine and 1% penicillin/streptomy-
cin at 37°C with 5% CO,. Transient transfections were performed using Lipofectamine 2000 (Invitrogen)
according to manufacturer’s instructions: 3 x 10° cell/well were seeded the day before, and then trans-
fected with 2 ug of DNA. After 24 hr, the cells were stimulated with Imiquimod at 1 pug/ml for 4 hr and
then total RNA was extracted with RNeasy Mini Kit (QIAGEN, Hilden, Germany). For each sample,
cDNA was synthesized from 1 g of total RNA using QantiTect Reverse Transcription kit (QIAGEN, Hil-
den, Germany) according to manufacturer’s instructions. The expression of IFN-a in stimulated and
unstimulated cells was evaluated by qRT-PCR using the same procedure as described for PBMCs.

Results and discussion

We applied LASSO logistic regression analysis, after correcting for Principal Components, to a syn-
thetic boolean representation of the entire set of genes of the X chromosome on the extreme phe-
notypic ends of the male subset of the Italian GEN-COVID cohort (https:/sites. google.com/dbm
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Figure 1. Rare TLR7 variants and association with COVID-19. LASSO logistic regression on boolean representation of rare variants of all genes of the X
chromosome is presented. TLR7 is picked up by LASSO logistic regression as one of the most important genes on the X chr (Panel A). The LASSO
logistic regression model provides an embedded feature selection method within the binary dassification tasks (male patients with life-threatening
COVID-19 vs infected asymptomatic male participants). The upward hi (positive weights) reflect a susceptible behavior of the features to the
target COVID-19, whereas the downward histograms (negative weights) a protective action. Panel B represents the cross-validation accuracy score for
the grid of LASSO regularization parameters; the error bar is given by the standard deviation of the score within the 10 folds; the red circle (1.26)
corresponds to the parameter chosen for the fitting procedure. Performances are evaluated through the confusion matrix of the aggregated
predictions in the 10 folds of the cross-validation (Panel C) and with the boxplot (Panel D) of accuracy (60% average value), precision (59%), sensitivity
(75%), specificity (43%), and ROC-AUC score (68%). The box extends from the Q1 to Q3 quartile, with a line at the median (Q2) and a triangle for the
average.

Table 1. Fisher exact test of the overall combined cohorts in young males (<60 years).

Clinical category N. wild-type variants (97.84%) N. pathological variants (2.15%) Total

Severely affected males 129 6 135
Asymptomatic males 104 0 104

Total 233 6 239 (Grand Total)
p-value=0.0037
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Table 2. TLR7 variants in severely affected Italian males -all ages- (cases).

Nucleotide change Amino acid change dbSNP CADD E;AEC Function’ N. of patients Clinical categoryt Age Cohort Patient ID
c901T>C Ser301Pro 264 N/A LOF 1 3 46 Italian  P3
c.2759G>A Arg920Lys rs189681811 1652 0.0002 LOFf 1 4 49 ltalian P&
c.3094G>A Ala1032Thr 5147244662 223 00006 LOF 2 3 65/66 Italian  P7/P8
C.655G>A Val219lle 15149314023 12.28 00003 HYPO 1 4 32 ltalian  P1
c.863C>T Ala288Val rs200146658 1537 0000012 Neutral 1 3 57 ltalian P2
c.1343C>T Alad48val rs5743781 1308 0.00465 Neutral 2 3 53/58 Italian  P4/P5

omorphic; LOF, loss-of-f

Combined Annotation Dependent Depletion; EXAC, Exome Aggregation Consortium; NFE, Non-Finnish European;

with conven

unisi.it/gen-covid) (Daga et al, 2021). The GEN-COVID study was consistent with Institutional
guidelines and approved by the University Hospital (Azienda Ospedaliero-Universitaria Senese) Ethi-
cal Review Board, Siena, Italy (Prot n. 16929, dated March 16, 2020). Only rare variants (<1% in
European Non-Finnish population) were considered in the boolean representation: the gene was set
to one if it incduded at least a missense, splicing, or loss-of-function rare variant, and 0 otherwise.
Fisher Exact test was then used for the specific data validation.

Toll-like receptor 7 (TLR7) was picked up as one of the most important susceptibility genes by
LASSO Logistic Regression analysis (Figure 7). We then queried the COVID-19 section of the Net-
work of Italian Genome (NIG) database (http://www.nig.cineca.it/, specifically, http://nigdb.cineca.it)
that houses the entire GEN-COVID cohort represented by more than 1000 WES data of COVID-19
patients and SARS-CoV-2 infected asymptomatic participants (Bastard et al., 2020). By selecting for
young (<60 year-old) males, we obtained rare (MAF < 1%) TLR7 missense variants predicted to
impact on protein function (CADD > 12.28) in 5 out of 79 male patients (6.3%) with life-threatening
COVID-19 (hospitalized intubated and hospitalized CPAP/BiPAP) and in none of the 77 SARS-CoV2
infected oligo-asymptomatic male participants.

We then investigated a similar cohort coming from the Italian second wave composed of male
patients under 60 years of age without comorbidities (56 cases and 27 controls) was used to expand
the cohort. All participants were white European. We found a TLR7 variant in one of 56 cases (1.7%)
and in none of 27 controls. Overall, the association between the presence of TLR7 rare variants and
severe COVID-19 was significant (p=0.037 by Fisher Exact test, Table 1).

We then investigated the presence of TLR7 rare variants in the entire male cohort of 561 COVID-
19 patients (261 cases and 300 controls) regardless of age. We found TLR7 rare missense variants in
three additional patients over 60 years of age, including two cases (who shared the p.Ala1032Thr
variant) and one control (C1), bearing the p.Val222Asp variant, predicted to have a low impact on
protein function (CADD of 5.36) (Table 2).

In order to functionally link the presence of the identified TLR7 missense variants and the effect
on the downstream type | IFN-signaling, we performed a gene expression profile analysis in periph-
eral blood mononuclear cells (PBMCs) isolated from patients following recovery, after stimulation
with the TLR7 agonist imiquimod, as reported by van der Made et al., 2020. To explore all TLR7
variants identified, we examined PBMCs from the control and all cases except P4 and P6 because
them were not available. However, P4 and P5 shared the same variant. This analysis showed a statis-
tically significant decrease of all TLR7-related genes for two variants (Ser301Pro and Ala1032Thr)
identified in cases P3, P7, and P8 compared with healthy controls (Ctl) demonstrating a complete
impairment of TLR7 signaling pathways in response to TLR7 stimulation (Figure 2, panel A and
Table 2). The variant Val219lle (P1) showed a hypomorphic effect determining a statistically
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Figure 2. Gene expression profile analysis in peripheral blood mononuclear cells (PBMCs) and in HEK293 cells transfected with the functional variants
after stimulation with a TLR7 agonist for 4 hr. (A) 5 x 10° PBMCs from COVID-19 patients and six unaffected male and female controls were stimulated
for 4 hr with the TLR7 agonist imiquimod at 5 pg/mL or cell culture medium. Quantitative PCR assay was performed and the 2**“* calculated using
HPRT1 as housekeeping gene. Fold change in mRNA expression of TLR7 and type 1 IFN-related genes ISG15, IRF7, IFN-a and IFN-y induced by TLR7

Figure 2 continued on next page
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Figure 2 continued

agonist imiquimod was compared with cell culture medium. Ctl indicates healthy controls (white bar); C,, the asymptomatic mutated control (diagonal
lines bar); P2, P5, cases with neutral variants (vertical lines bar); P1, P3, P8, P7 cases with functional variants (gray bar) (as in Table 2). (B) Histograms of
intracellularly expressed TLR7 protein in HEK293 cells transfected with the different TLR7 plasmids. (C) Gene expression profile analysis of IFN-a in
transfected cells after stimulation with the TLR7 agonist imiquimod. WT indicates cells transfected with WT TLR7 plasmid. Quantitative PCR assay was
performed and the 2*“* calculated using HPRT1 as housekeeping gene. Fold change in mRNA expression induced by imiquimod was compared with
cell culture medium. Error bars show standard deviation. p values were calculated for the reduction using an unpaired t test: *p<0.05; **p<0.01;
***p<0.001; ****p<0.0001

significant decrease in mRNA levels only for IRF7 (directly activated by TLR7) and IFN-y (Figure 2,
panel A). Two Ala to Val variants identified in severely affected patients, Ala288Val and Ala448Val,
were functionally neutral, that is not predicted to impair the TLR7 signaling pathways. This was con-
firmed by biochemical and structural analysis on the crystal structure of TLR7 protein (https://www
uniprot.org/uniprot/Q9NYK1). The prediction performed with different computational approaches
showed both variants as benign with no effects on structural stabilization. Interestingly, the p.
Val222Asp variant (C1) proved to be functionally neutral, in keeping with it being identified in the
control and not in cases (Figure 2, panel A).

TLR7 expression was evaluated in monocytes and B cells from patients and healthy controls by
flow cytometry. Patients and controls expressed the TLR7 protein at the intracellular level. The func-
tional capacity of PBMCs was evaluated after stimulation with the TLR4 agonist lipopolysaccharide
(LPS). Of note, LPS-induced production of IL6 by monocytes was similar in patients and controls
(data not shown).

In order to validate the functional effect of TLR7 variants, we have performed transfection experi-
ments in HEK293 cells, cloning a dedicated TLR7 plasmid for each of them. Transfection experiments
were performed in HEK293 cells that do not express endogenous TLR7 (Chehadeh and Alkhabbaz,
2013) and expression of TLR7 protein was examined by flow cytometry 24 hr after transfection,
showing expression of TLR7 protein at the intracellular level in all cases (Figure 2, panel B). We then
evaluated the expression of IFN-a in imiquimod stimulated and unstimulated cells by gqRT-PCR
employing the same assay described for PBMCs, confirming the results obtained in PBMCs for the
screened variants (Figure 2, panel C).

Segregation analysis was available for two cases, P3 and P8 (Figure 3). In the two pedigrees, the
disease nicely segregated as an X-linked disorder conditioned by environmental factors, that is
SARS-CoV-2 (Figure 3, panel B). This was also supported by functional analysis on all TLR7-related
genes (Figure 3, panel A). For example, expression profile analysis for IRF7 gene in male mutated
patient P8 confirmed a statistically significant reduction compared to the wild-type brother (Figure 3,
panel A). Of note, only the infected mutated male had severe COVID-19, whereas the infected not
mutated brother (II-2 of P8) was asymptomatic (Figure 3, panel C).

Our results showed that the two families reported by van der Made et al., 2020. with loss-of-
function variants in males with severe COVID-19 with a mean age of 26 years represent a subset of
COVID-19 male patients. Specifically, missense deleterious variants in the X-linked recessive TLR7
gene may represent the cause of disease susceptibility to COVID-19 in up to 2% of severely affected
young male cases (3/135, 2.2%). The same result was obtained for the entire male cohort, irrespec-
tive of age, with TLR7 deleterious variants in 5/261 cases (1.9%). Since not all identified variants
were functionally effective, the true percentage could be slightly lower in young males. Overall,
males with rare missense variants shown here developed COVID-19 at a mean age of 56.5 years,
considerably later than 26 years, in agreement with a predicted smaller impact on the protein than
the loss of function deleterious variants reported by van der Made et al., 2020. Similarly, the identi-
fied rare missense TLR7 variants impaired the mRNA expression of TLR7 as well as the downstream
pathway. The observation reported here may lead to consider TLR7 screening in severely affected
male patients in order to start personalized interferon treatment for those with this specific genetic
disorder.
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Figure 3. Segregation analysis. Fold change in mRNA expression following Imiquimod stimulation of TLR7 itself
and its main effectors, IRF7, ISG15, IFN-alpha, and IFN-gamma is shown in Panel A. Gray columns represent
individuals harboring the TLR7 variant and black columns are severely affected SARS-CoV-2 cases. Pedigree (Panel
B) and respective segregation of TLR7 variant and COVID-19 status (Panel C) are also shown. Squares represent
male family members; circles, females. Individuals infected by SARS-CoV-2 are indicated by a virus cartoon close

to the individual symbol ( ~.).
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7. SELP Asp603Asn and severe thrombosis in COVID-19

males

While thromboembolism is a frequent cause of severity and mortality in
COVID-19, the etiology of this phenomenon is not well understood. Zang et
colleagues showed that the SARS-CoV-2 virus directly activates platelets and
enhances their prothrombotic function and inflammatory response via binding of
Spike to ACE2 [61]. However, why the excess of thromboembolic events happens in

some individuals and not in others is still unexplored.

In the present chapter, by applying the LASSO logistic regression model on
the Boolean representation of common variants (Recessive model) of autosomal
genes (C_AR Boolean described in chapter 2, section 2.5.1) we identified SELP as
the genetic factor predisposing males to thromboembolism and severe COVID-19
[62]. We also showed that the predisposition increases if the protective effect of
testosterone is lost either by age or because of additional genetic factors such as

polyQ>23 in the androgen receptor (AR) gene (presented in Chapter 5).

88



E. Benetti - Identifying host genetic risk factors for COVID-19 from Exome Sequencing

Fallerini et al. ] Hematol Oncol ~ (2021) 14:123

https://doi.org/10.1186/513045-021-01136-9 Journal of

Hematology & Oncology

LETTERTO THE EDITO Open Access

SELP Asp603Asn and severe thrombosis
in COVID-19 males

Chiara Fallerini'?, Sergio Daga'?, Elisa Benetti?, Nicola Picchiotti*#, Kristina Zguro?, Francesca Catapano'?,
Virginia Baroni'?, Simone Lanini®, Alessandro Bucalossi®, Giuseppe Marotta®, Francesca Colombo’,
Margherita Baldassarri'?, Francesca Fava'*®, Giada Beligni', Laura Di Sarno'? Diana Alaverdian'?,

Maria Palmieri', Susanna Croci'2, Andrea M. Isidori®, Simone Furini?, Elisa Frullanti2 on behalf of GEN-COVID
Multicenter Study, Alessandra Renieri'?#'® and Francesca Mari'*®

Check for
updates

Abstract

Thromboembolism is a frequent cause of severity and mortality in COVID-19. However, the etiology of this phenom-
enon is not well understood. A cohort of 1186 subjects, from the GEN-COVID consortium, infected by SARS-CoV-2
with different severity was stratified by sex and adjusted by age. Then, common coding variants from whole exome
sequencing were mined by LASSO logistic regression. The homozygosity of the cell adhesion molecule P-selectin
gene (SELP) 16127 (c.1807G > A; pAsp603Asn) which has been already associated with thrombotic risk is found to be
associated with severity in the male subcohort of 513 subjects (odds ratio =2.27, 95% Confidence Interval 1.54-3.36).
As the SELP gene is downregulated by testosterone, the odd ratio is increased in males older than 50 (OR 2.42, 95%
Cl11.53-3.82). Asn/Asn homozygotes have increased D-dimers values especially when associated with poly Q> 23 in
the androgen receptor (OR 3.26, 95% Cl 1.41-7.52). These results provide a rationale for the repurposing of antibod-
ies against P-selectin as adjuvant therapy in rs6127 male homozygotes especially if older than 50 or with an impaired
androgen receptor.

Keywords: COVID-19, Thromboembolism, Thrombus, Venous thromboembolism, P-selectin, Anti-selectin P
monoclonal antibodies

To the Editor

It is now widely recognized that COVID-19 is a sys-
temic disease, characterized by dysregulation of the
immune system and by a hypercoagulable state [1]. The
bases of this prothrombotic susceptibility remain until
now elusive, even if it is evident that host genetic factors
largely contribute to COVID-19 phenotypic variability.
Rare variants of genes involved in adaptive immunity
have been identified in Mendelian forms of COVID-19,
where the presence of one rare mutation leads to a severe

*Correspondence: alessandra.renieri@unisi it

! Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale
Bracdi, 2, 53100 Siena, Italy

Full list of author information is available at the end of the article

B BMC

COVID-19 phenotype segregating in the family following
a classic Mendelian inheritance pattern [2]. Among com-
mon genetic factors, the protective role of the 0 blood
group has been identified, at least in part possibly due
to von Willebrand factor (vWF) destabilization protect-
ing from thrombosis [3]. We have also shown that longer
polyQ repeats (>23) in the androgen receptor (AR) pre-
dispose to severe COVID-19 outcome due to reduced
testosterone anti-inflammatory and anti-thrombotic
effect [4].

The P-selectin (SELP) gene encodes a cell adhesion
molecule mediating the interaction of activated platelets
on endothelium with leukocytes and playing a key role in
thrombosis [5, 6]. Furthermore, significantly increased
P-selectin and other prothrombotic biomarkers

©The Author(s) 2021. OpenAccess Thisarticle s licensed under a Creative Commons Attribution 40 Intemational License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a linkto the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included In the article’s Creative Commons licence, unless indicated otherwise Ina credit line
t0 the material, If material is not included in the article’s Creative Commons licence and yourintended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit httpy//creativecommons.ora/licenses/by/4 0/. The Creative Commons Public Domain Dedication waiver (http//creativeco
mmons.org/publicdomain/zera/1.0/) applies to the data made available in this article, unless othenwise stated in a redit line to the data

89



Chapter 7 - SELP Asp603Asn and severe thrombosis in COVID-19 males

Fallerini et al. JHematol Oncol  (2021) 14:123 Page 2 of 4

Ot

F -
|
s B E
!" $ D el .

: i ¥

e i i
TN |
= i E pony o
i = Rl :
. L %E\Q&, i

Fig.1 Homozygous genotype Asn/Asn at the polymorphic locus Asp603Asn (rs6127) is related to severity and to D-dimer pick. a Selection of
SELPgene as relevant for severity. LASSO logistic regression on Boolean representation of homozygous common bi-allelic polymorphism of
autosomal genes in males is presented (see paper Picchiotti et al. 2021 for complete representations)®®. The LASSO logistic regression model
provides an embedded feature selection method within the binary dassification tasks (severe vs mild). The upward histogram means positive
weights, l.e, the specific variant at the specific locus (feature) contributes to severity of COMD-19. SELP_1_homo= homozygous genotype Asn/
Asn at the polymorphic locus Asp603Asn (1s6127). The downward histograms mean negative welights, contributing to mildness of COVID-19.
C0G3_1_homo =homozygous genotype Ser/Ser at the polymorphic locus Leus25Ser (rs3014902). COG3 gene encodes for a vesidle docking
protein involved in viral trafficking. TMEM221_2_homo = homozygous genotype Ala/Ala at the polymorphic locus Thré6Ala (rs4808641). TMEM221
gene encodes for a transmembrane proteln, b-e Longitudinal laboratory data related to thrombosis and severity. Linear graphs of four laboratory
values: D-dimer ug/L (b), platelets 10°/mmc (¢), lymphocytes 10*/mmc (d), LDH UIAL (n.v. 135-225 UI/L) (). As expected, the Asr/Asn homozygous
genotype was over-represented (36.53%). Values are reported on the Y-axis. In each graph, the time point "0" (X-axis) represents the day of onset of
COMVID-19 symptoms. Each line represents each severe hospitalized patient (see methods). Each point represents the different time point (day) in
which the different values have been measured. Patients aged > 55 years are indicated In blue, while patients aged < 55 years are In red. From left
to right patients having Asp/Asp homozygous; Asp/Asn heterozygous; and Asn/Asn homazygous genotype. Older patients only (blue) and Asp/
Asn-Asn/Asn genotype only show the D-dimer pick. Accordingly, older patients of these two genotypes have more platelet consumption and
higher LDH values. A total of 51 patients have been included in €. Among these, 23 patients have a platelet count value below 150 x 10%mmc: 9
with the Asn/Asn genotype, 13 with Asn/Asp and 1 with Asp/Asp. A total of 48 patients have been Included In panel D. Among these, 27 patlents
have lymphocyte count below 0.9 10A3/mmc: 4 Asn/Asn, 19 Asn/Asp and 4 Asp/Asp. A total of 50 patients have been incdluded in panel E. Among
these, 44 have LDH values above 225 UV/L: 16 Asn/Asn, 23 Asn/Asp and 5 Asp/Asp. f The D-dimer pickis earlier in the Asn/Asn (median=75 days)
than the Asp/Asn genotype (p=3 x 107 by Mann-Whitney test). Box plots of patients with D-dimer values above 2000 pg/l were represented, Only
Asp/Asn (light blue) and Asn/Asn (pink) genotypes are represented because patlents with the Asp/Asp genotype do not have the pick and do not
show values above 2.000. A total of 47 patients have been indluded in panel B. Among these, 20 patients show D-Dimer values above 2000 ug/L:
7 Asn/Asn, 12 Asn/Asp and 1 Asp/Asp. g, hThe nonzero group associates with higher D-dimer (g) and LDH values (h). Severe hospitalized patients
with 0 blood group=light blue; non-0 blood group =pink in box plots

concentration in plasma samples of severe COVID-19
patients compared to healthy controls has been recently
reported [7, 8].

Among SELP variants, the Asp603Asn functional pol-
ymorphism (rs6127; c¢.1807G > A-previously reported
as Asp562Asn or Asp541Asn) has been associated
with thrombotic risk in various conditions [9, 10]. The
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polymorphism, together with other coding polymor-
phisms, has indeed been shown to affect the binding of
P-selectin to its ligand on leukocytes, possibly making
the protein more efficient at recruiting leukocytes to the
endothelium [10].

Within the Italian GEN-COVID cohort, we applied an
ordered logistic regression to the clinical WHO gradings,
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Table 1 Chi-square test in male cohort calculated for all ages (a);

D-dimer value (c)

Page 3 of4

for age >50 years (b); and combination of AR poly-Q> 23 and

a Severe (%) Mild (%) Marginal row totals
Chi-square testin male cohort (all ages)

Asn/Asn genotype 90 (38.14) 59(2130) 149

Asp/Asp and Asp/Asn genotype 146 (61.86) 218(78.70) 364

Marginal column totals 236 (100) 277 (100) 513(grand total)

b Severe (%) Mild (%) Marginal row totals
Chi-square testin males= 50 years

Asn/Asn genotype 73 (39.25) 40(21.05) 113

Asp/Asp and Asp/Asn genotype 113 (60.75) 150 (78.95) 263

Marginal column totals 186 (100) 190 (100) 376 (grand total)

c D-dimer>5000 D-dimer <5000 Marginal row totals
Chi-square test of combination of AR poly Q> 23 and D-dimervalue

Asn/Asnand AR polyQ =23 10 19 29

Asp/Asp and Asp/Asn and AR poliQ< 23 40 248 288

Marginal Column totals 50 267 317(grand total)

p value (severe vs mild)= 2.8 x 10~° (OR 2.27, 95%Cl 1.54-3.36)
p value (severe vs mild) = 1.19 x 10 (OR2.42, 95% C1 1.53-3.82)
p value (D-dimer >5000 vs D-dimer <5000)=3.73 x 10* (OR 3.26, 95% Cl 1.41-7.52)

stratified by sex and adjusted by age in order to define
severe and mild patients (see Additional file 1: Supple-
mentary file). We then tested by LASSO logistic regres-
sion different combinations of coding polymorphisms in
homozygous state and found that the SELP rs6127 poly-
morphism correlates with severity only in the subcohort of
males (Fig. 1a; Table 1a; Supplementary file; data on females
not shown). The genotypic frequencies of the polymor-
phism in severe and mild patients were confirmed to be in
Hardy—Weinberg equilibrium; the minor allele frequency
in our cohort was similar to that reported in the European
(non-Finnish) population in the gnomAD database (56.2%
vs 55.8%) (https://gnomad.broadinstitute.org/).

The hyper-inflammatory and hyper-thrombotic state,
due to viral injury of the vascular endothelium, leads to the
release of P-selectin by activated platelets, driving throm-
bosis and vascular inflammation probably more efficiently
in those individuals with enhanced P-selectin activities due
a double copy of Asparagine 603 [10]. These results are in
line with the demonstration that SARS-CoV-2 induces
thrombosis by binding to ACE2 on platelets and subse-
quent integrin «lIbB3 activation and P-selectin expression
[11], and that P-selectin soluble isoform is increased in
thrombosis [6] and severe COVID-19 7, 8].

Since SELP transcription is inhibited by androgens
[12], the strength of the association should increase with
age. Interestingly, the OR (2.42) in males aged > 50 years
with respect to the whole cohort (OR=2.27) is increased
(Table 1).
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In a subset of 52 severely affected hospitalised males,
four main laboratory parameters related to a proinflam-
matory state (lymphocyte count, D-dimer and LDH) and
a higher risk for thrombosis (D-dimer, platelet count
and LDH) were longitudinally followed (Fig. 1b-e). We
observed that the maximum pick (over 10 times of the
normal upper value) was exclusive of Asp/Asn and Asn/
Asn genotypes and older patients (Fig. 1b—e). The pick
timing was earlier in Asn/Asn (median 7.5 days from
infection) than Asp/Asn (median 13.5 days from infec-
tion), (p value=3 x 1072, Fig. 1f). As the vWF is a down-
stream effector for clotting, the non-0 blood groups,
associating with more stable vWF, also correlate with
higher D-dimer and LDH values (Fig. 1g, h), in agree-
ment with previous reports [3].

Given the stronger association of the SELP poly-
morphism in older males, the AR poly-Q status would
impact on the SELP genotype [4]: the combination of
poly-Q=> 23 with homozygous SELP polymorphism ver-
sus D-dimer value reached an OR of 3.26 (Table 1c). This
result indicates that the two polymorphisms enhance
each other, being two pieces of the same puzzle contrib-
uting to thrombosis in COVID-19 males.

Anti-P-Selectin monoclonal antibodies have been devel-
oped for human use: the phase-3 Inclacumab and the
FDA&EMA approved Crizanlizumab, the latter as a preven-
tion of vaso-occlusive crises in patients with sickle cell dis-
ease [13]. A general clinical trial to test the efficacy and safety
of Crizanlizumab in not selected hospitalized COVID-19
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patients is ongoing (https://clinicaltrials.gov/ct2/show/
study/NCT04435184). Clinical trials in COVID-19 hospital-
ised males with SELP rs6127 should now be encouraged.

Abbreviations
AR: Androgen receptor; SELP: P-selectin gene; vWF: Von Willebrand factor.
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8. Computational prediction of CNVs from WES of
COVID-19 infected patients

In the previous chapters, we showed that both polymorphisms and rare
variants are involved in COVID-19 severity. However, SNVs are not the only type of
variation that can be detected with WES experiments, as we introduced in chapter 1.
Therefore, we started evaluating the potential impact of a different type of variation,
e.g., copy number variations, in predisposing to COVID-19 disease. Many challenges
arise when dealing with computationally predicted CNVs from WES data, as
described in chapter 1 section 1.4.4. These shortcomings associated with CNVs
detection from WES adds to the complexity of the modelling task, i.e., predicting
COVID-19 severity from genetic data. The results presented in this chapter represents
a first, preliminary, attempt to study the potential association of CNVs with COVID-
19 severity.

8.1 Results of the computational algorithms show striking
variation in the length and number of CNVs predicted by the

different programs

Results of the computational prediction demonstrated a wide range in both
CNV counts and size when using different bioinformatic tools (Figure 7). CoNIFER
tends to be more specific and thus detected fewer events of interest (median 11, range
1-1303) while ExomeDepth errs on the side of sensitivity and returned more CNVs
per sample (median 392, range 18-695). Also, the size of the predicted CNVs differed
between the tools, being 49.94 kbp (median length) for CONIFER (range 454 bp to
23.089 Mbp) and 1.49 kbp (median length) for ExomeDepth (range 60 bp to 45.4
Mbp).
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Figure 7. Count and length distributions of CNVs predicted by ExomeDepth (red)
and CoNIFER (light blue). In yellow the distributions of overlapped CNVs between
the two tools.

8.2  Results of CNVs detected by both CoNIFER and ExomeDepth

As it is essential to filter out results that are unlikely to be true/relevant from
our analysis, we selected only the most reliable CNVs, i.e., those predicted by both
tools. Since CoNIFER detected fewer and longer events, it was considered as the
limiting factor in the contrast. A total of 24850 CNVs were in common between the
two tools when the CNV detected by CoNIFER overlapped at least 50% the CNVs
predicted by ExomeDepth (-F option). The percentage of overlap was on average
equal to 68%. By looking at the reverse contrast, i.e., when imposing that at least 50%
of CNV predicted by CoNIFER overlapped with ExomeDepth CNV (-f option), a
total of 16130 were found in common (Figure 8). The union of these two sets of
overlapped calls was considered for further analyses. 38.3% of events were found in
both contrasts as reported in Figure 8. The vast majority of overlapped CNVs derived

from the -F contrast as expected. Finally, taking together the results of the two
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comparisons, the percentage of overlap among the two tools increases from 68% to
81% (29631 overlapped CNVs out of 36492 detected initially by CoNIFER).

bedtools -F 0.5 bedtools -f 0.5

13501 11349 4781

(45.6%) | (38.3%) [ (16.1%)

Figure 8. Overlapped CNVs between CoNIFER and ExomeDepth. We imposed 50%
of non-reciprocal overlap between the CNVs detected by the two tools. In light blue
are reported the overlapped CNVs obtained from the first contrast (-F) and in yellow
the ones deriving from the first contrast (-F) and in yellow the ones deriving from the

second contrast (-f). 38.3% of intersections were found in both contrasts.

8.3  Results of the LASSO logistic regression: CNVs and COVID-
19 severity

The LASSO logistic regression model was fitted on the cohort using as input
features the Boolean representation of CNVs described in Chapter 2. In the chosen
Boolean representation, the gene was set to 1 if it presented any copy number
alteration, and 0 otherwise. Cases were defined as deceased or patients needing

endotracheal intubation or CPAP/biPAP ventilation or oxygen support only (category
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5/4/3/2). As controls, participants were selected if being hospitalized without oxygen
support or oligo/asymptomatic not requiring hospitalization (category 1 and 0). After
the fitting of the model, the performances were evaluated by looking at the Receiver
Operating Characteristic (ROC) curve (Figure 9, Panel C) which provides an Area
Under the Curve (AUC) score of 52%, which is not significantly different than
random guess. Results were examined with a Chi Square Test. The first 20 features
for importance and the relative p-values are reported in Table 4. No significant

association was found after correction for multiple testing.

Figure 9. Results of the LASSO logistic regression for the Boolean of CNV. Panel
A. The histogram of LASSO logistic regression weights represents the importance of
each feature for the classification task. Panel B. Cross validation ROC-AUC score
for the grid of LASSO regularization parameters; the optimal regularization
parameter is chosen by selecting the one with highest cross-validation score (red

point). Panel C. ROC curve for the 10 folds of the cross-validation.
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Table 4. First 20 features for importance with the respective p-value in the LASSO
logistic regression of the Boolean of CNV. The total number of features tested was
7153.

Feature P-value

GH2 0.000743
DEFB4A 0.001752
CSH2 0.002236
CSH1 0.002654
ZNF705B 0.00267

OR4M2 0.003571
LOC642846 0.004747
DEFB103A 0.005532
DEFB103B 0.005532
LINCO0115 0.006255
FAMS87B 0.006255
CROCC 0.006313
FAMG66E 0.006696
LOC102725021 0.01201

NBPF12 0.012093
ARHGAP11B 0.013714
MIR3690 0.016334
FRMPD2B 0.016861
LOC102724159 0.017127
PWP2 0.017127

Subsequently, we repeated the same analysis but selecting only those genes
subjected to dosage sensitivity. The list of genes was downloaded from
https://dosage.clinicalgenome.org/. Results of the LASSO logistic regression are
reported in Figure 10. The performance of the model remained low, as the ROC curve
for the 10 folds of the cross-validation provided an Area Under the Curve (AUC)
score of 51% (Figure 10, Panel C).
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Figure 10. Results of the LASSO logistic regression for the Boolean of CNV
filtered by Dosage-sensitive genes. Panel A. The histogram of LASSO logistic
regression weights represents the importance of each feature for the classification
task. Panel B. Cross validation ROC-AUC score for the grid of LASSO
regularization parameters; the optimal regularization parameter is chosen by
selecting the one with highest cross-validation score (red point). Panel C. ROC
curve for the 10 folds of the cross-validation.

Eventually, we tested deletions and duplications separately using as input
features of the model the Boolean representation of deletions and the Boolean
representation of duplications, respectively. Results for deletions are reported in
Figure 8 and for duplications in Figure 11. Also in these analyses we did not obtain

good performance in predicting COVID-19 outcomes.
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Figure 11. Panel A. The histogram of LASSO logistic regression weights represents
the importance of each feature for the classification task. Panel B. Cross validation
ROC-AUC score for the grid of LASSO regularization parameters; the optimal
regularization parameter is chosen by selecting the one with highest cross-validation

score (red point). Panel C. ROC curve for the 10 folds of the cross-validation.
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9. Conclusive remarks and future perspectives

COVID-19 is a condition with a significantly wide range of clinical
presentations: from asymptomatic infected patients to those expressing severe
symptoms leading to death. Assuming a relatively low impact of different virus
variants on the observed interindividual variability, the remaining clinical variability
might likely be associated with age and host genetics, including sex. In line with
recent studies [12], [14], [16], [49], [63], we focused our attention on the

identification of host genetics factors able to explain COVID-19 severity.

This dissertation describes the results obtained with an approach that
combines synthetic representations of genetic data and a machine learning model
starting from Whole Exome Sequencing data to investigate genetic variability in
COVID-19 infected patients. When at the beginning of 2020 we started to collect
COVID-19 positive patients from all over Italy in the context of the GEN-COVID
Multicenter study, we began to face the complex nature of COVID-19 infection. We
soon realised that host genetics could play an important role in COVID-19
pathogenesis. By looking at the coding variants in the ACE2 gene, the SARS-CoV-2
receptor for host cell entry, we found a statistically significant higher allelic
heterogeneity for ACE2 in controls compared to cases, with a higher chance to find
at least one ACE2 variant in the cohort of controls compared to the cohort of cases
[10]. We therefore suggested that the effect of rare variants, likely summing up to the
effect of more frequent ones, could partially account for the inter-individual clinical

variability observed.

This initial hypothesis was further explored in a subsequent pilot study [50]
where common variants in susceptibility genes seemed to represent the favourable
background in which additional host private mutations may determine disease
progression. We realized the need for a new method that could combine common and
rare variants and, at the same time, extract relevant information from the massive

datasets derived from WES experiments. We therefore proposed a new approach to
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identify host risk factors predisposing to the disease. The innovation consisted in
mapping the genetic variability into a set of informative features, e.g., Boolean
representations, to predict the COVID-19 severity using LASSO logistic regression.

The first analysis carried out by exploiting this method on the dataset of
COVID-19 was aimed to understand if the differences observed in the outcomes
between men and women could be explained by the host genome. Epidemiological
studies, in fact, indicate that men and women are similarly infected by SARS-CoV-
2, but COVID-19 outcome is less favourable in men. In this study, reported in chapter
5, we identified the first genetic polymorphism predisposing some men to develop a
more severe disease, irrespectively of age, by comparing the extreme ends of the
cohort (severe vs. oligo-asymptomatic SARS-CoV-2 PCR-positive patients). We
demonstrated that the number of polyQ repeats in the androgen receptor (AR) gene is
a predictor of the COVID-19 outcome as polyQ alleles shorter than 22 repeats in the
receptor conferred protection against severe outcome in COVID-19, independently
of age. Failure of the endocrine feedback to overcome AR signalling defect by
increasing testosterone levels during the infection leads to the fact that polyQ
becomes dominant to testosterone levels for the clinical outcome [59]. This first result
opens potential of using testosterone as adjuvant therapy for patients with severe
COVID-19 having defective androgen signalling, defined in this study as PolyQ >23
repeats, and inappropriately low levels of circulating androgens. This study shows a
successful application of the LASSO logistic regression on the Boolean of poly-

amino acids triplet repeats.

Subsequently, we focused our attention on rare genetic variants. In the study
reported in chapter 6, we analysed rare variants (MAF<1%) on X chromosome by
comparing young males (<60 years) of the extreme phenotypes of the GEN-COVID
cohort. LASSO logistic regression on the XL Boolean feature picked up TLR7 as the
most important susceptibility gene. Loss-of-function variants in the X-linked
recessive TLR7 Mendelian form contributed to disease susceptibility in up to 2% of
severe COVID-19 [60]. These results were validated by functional gene expression

profile demonstrating a reduction in TLR7-related gene expression in cases compared
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to controls, underling an impairment in type | and Il IFN responses. We therefore
confirmed the role of TLR7 in COVID-19 susceptibility in young males, previously
reported by van der Made et colleagues, extending the results in a larger cohort. These
findings were further validated by other research groups [56].

In chapter 7, we identified a common polymorphism, Asp603Asn in SELP,
associated with severity and thromboembolism, leading to life-threatening disease.
This result was obtained using LASSO logistic regression on the Boolean
representation of homozygous common bi-allelic polymorphism of autosomal genes
in males. In this study we showed that predisposition to thromboembolism increases
if the protective effect of testosterone is lost either by age or because of additional
genetic factors such as polyQ >23 in the AR gene [62]. This knowledge provides a
rationale for repurposing anti P-selectin monoclonal antibodies as personalized
adjuvant therapy in men affected by COVID-19.

All these results together show that this novel synthetic approach was
effective to characterize both common and rare variants as potential contributors to

the severe phenotypes, providing knowledge for potential patients' treatment.

To evaluate if other type of variation, e.g., Copy Number Variants, could
account for a part of COVID-19 heritability, we built a Boolean representation of
CNV to be tested with the same strategy. Limitations associated with CNVs detection
from WES increases the complexity of the modelling task, i.e., predicting COVID-
19 severity from genetic data. In these preliminary results presented in chapter 8, we
did not find any association between CNVs, computationally predicted by two
independent tools, and COVID-19 severity. However, further studies are necessary

to assess their potential contribution to COVID-19 outcomes.

In conclusion, the approaches presented in this thesis allowed to identify
several genetic factors responsible for interindividual variability in the response to
SARS-COV?2 infections. The natural evolution of the work presented here is the
development of a comprehensive model, that combines the different representations

of genetic variability into a unified framework. A first attempt in this direction has
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recently been proposed in the context of the GEN-COVID consortium [65] and in
collaboration with international cohorts contributing to the WES/WGS working
group within the HGI (https://www.covid19hg.org/projects/). In the mentioned study,
we propose an Integrated PolyGenic Score (IPGS) that includes information
regarding the variants at different frequencies, from ultra-rare to common. The input
features of the model are the gene-based Boolean features presented in section 2.5.1.
Severity predictions considering IPGS as an input feature were shown to outperform

predictions not considering the genetic information [65].

This novel approach can significantly improve our ability to estimate the
contribution of genetic factors to the risk of suffering a severe form of COVID-19
and can help to understand the potential implications for clinical and public health
responses. Moreover, besides the relevance for the current pandemic, the methods
presented could help us to understand the role of genetics in other complex diseases.
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