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Abstract 

The role of T cells in chemotherapy response and maintenance of remission 

in acute myeloid leukemia (AML) is not fully understood. In solid tumors 

and chronic infections, exhaustion is a multistep process ranging from less 

differentiated progenitor exhausted (Tpex) to intermediate and terminally 

exhausted T cells (Beltra et al. 2020). High frequencies of Tpex correlate 

with response to immune-checkpoint blockade in solid tumors (Miller et al. 

2019). In AML, where the backbone of treatment is chemotherapy, the role 

of dysfunctional T-cell subsets has yet to be elucidated. In our study we used 

different cohorts of AML patients to study the immunologic T-cell 

landscape. Particularly, we performed an exploratory flow cytometry 

analysis on samples collected at baseline and at response assessment from 

patients treated with chemotherapy. Through high dimensional flow-

cytometry analysis we identified a CD8+ CD28+ PD1+ subset increased at 

baseline and after treatment in responder patients vs non-responders. To 

further investigate these results, we applied the same approach to analyze 

samples from a cohort of relapsed/refractory AML patients treated with high 

dose cytarabine (HIDAC) plus pembrolizumab. In these cohort, patients 

with a higher frequency of CD8+CD45RA-CD27+/intCD28+PD1+TCF1+ 

(progenitor-exhausted like) were more likely to respond to therapy. Next, 

we decided to better characterize the identified subset and study the 

relationships with the others CD8+ subpopulations by using 5' VDJ single-

cell RNA sequencing. Studying the different gene signatures in our dataset, 

we identified 5 main CD8+ clusters: Naive, Tpex, Effectors, Terminally 

exhausted 1 (Term_exh1) and Terminally exhausted 2 (Term_exh2). 

Comparing these subsets in responders and non-responders, Tpex were 
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greatly increased in responders compared to non-responders at both 

timepoints (baseline and response assessment). Conversely, Term_exh2 

cells were more abundant in non-responders. Of note, the two most 

upregulated genes in Tpex were GZMK and IL-7R. Next, we measured the 

magnitude of clonal expansion in antigen-experienced CD8+ T cells in 

responders and non responders. The most clonally expanded subsets were 

Tpex and Effectors in responders and Term_exh2 in non-responders 

revealing a strong relationship between abundance and clonal expansion of 

the CD8+ T-cell subsets. Our scRNAseq results were then confirmed at the 

protein level with spectral flow-cytometry and reproduced by manual gating 

of the GZMK+CD127+ subset which was significantly enriched (p < 0.01) 

in responders vs non-responders. Notable, patients with a higher-than-

median frequency of GZMK+CD127+CD8+ T cells experienced significantly 

(p<0.02) prolonged overall survival after therapy. These findings show that 

improving our understanding of the immune microenvironment in AML is 

critical for the rational integration of novel treatment strategies that seek to 

increase the response rate and/or maintain remission. We identified 

GZMK+IL7R+ CD8+ cells as a distinct entity in the early differentiated CD8+ 

memory T cell pool that is clonally expanded and more abundant in 

responders compared to non-responders. This subset has a stem-like 

signature and may be associated with longer in vivo CD8+ T cell persistence 

and long-term AML control.  An in-depth functional characterization with 

in vitro experiments and in vivo mouse models is currently ongoing. 
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1. Introduction and background 

1.1 Acute myeloid leukemia. State of the art. 

Acute myeloid leukemia (AML) is the most common type of acute leukemia 

in adults, accounting for approximately 80% of cases. Despite therapeutic 

advancements over the last several years, the outcomes of AML patients 

remain poor with a 5-year overall survival (OS) of less than 30% (Liersch et 

al., 2014; Walter et al., 2010). Although up to 70% of AML patients achieve 

a complete remission (CR) after induction chemotherapy, the majority will 

ultimately relapse and die of their disease (Burnett et al., 2013). Long-term 

survival depends on several patient- and disease-related factors, including 

age, performance status (fitness for therapy), cytogenetic/molecular 

abnormalities, and the presence of measurable residual disease (MRD) after 

treatment (Grimwade et al., 1998; Döhner et al., 2017; Schuurhuis et al., 

2018). Young patients and those with a favorable cytogenetics are most 

likely to achieve a CR. Still, even for patients who initially respond to 

chemotherapy, the problem of relapse persists. In patients who are treated 

with consolidation chemotherapy alone after achieving remission, the 5-year 

cumulative incidence of relapse ranges from 35% in those with favorable 

risk cytogenetics to 80% in those with unfavorable risk cytogenetics 

(Burnett et al., 2013). Since around two-third of AML patients do not 

experience durable remissions there is the need for different therapeutic 

approaches, especially in the setting of early relapsed/primary refractory 

AMLs. The use of allogeneic stem cell transplantation (alloSCT) 

significantly reduces the rates of AML relapse due to the graft-versus-

leukemia effect provided by the infused alloreactive T cells (Weiden et al., 

1981; Parmar et al., 2011). Owing to refinements in risk stratification 
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coupled with improved assessments of MRD it is now possible to identify 

all the eligible candidates for alloSCT early on. Furthermore, the 

development of novel and safer transplant platforms, and introduction of 

alternative stem cell sources, such as haploidentical donors or umbilical cord 

blood, for patients without a matched sibling or unrelated adult donor, 

resulted in a wider application of alloSCT to all patients in need, as nearly 

all eligible patients now have a potential donor (Kanakry et al., 2015). In 

recent years, the usage of reduced-intensity conditioning regimens 

ameliorated transplant toxicity and extended the survival benefit of alloSCT 

to older patients (Ringdén et al., 2019). The success of alloSCT indicates 

that alloreactive T cells can potentially eradicate chemoresistant clones. 

Despite these advances, a substantial proportion of AML patients does not 

experience long-term survival after alloSCT and is at high risk of disease 

recurrence. For this reason, novel strategies with the potential to reduce 

relapse risk are required. 

 

1.2 Novel immunotherapeutic approaches and their limitations 

In the last few decades, several immunotherapeutic approaches, including 

bispecific T-cell engagers (BiTEs), immune checkpoint blockade (ICB) and 

chimeric antigen receptor (CAR)-T cells have been developed for a plethora 

of malignancies and showed robust clinical responses. Building on these 

successes, the same strategies have been used to treat myeloid malignancies. 

Some approaches are still under investigation while others gave only modest 

results. In AML, one of the main biological barrier that limits the application 

of antigen-targeted approaches is the lack of a leukemia-specific antigen that 

is shared or expressed by the majority of AMLs. Generally, the optimal 
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target for T-cell based immunotherapies is an antigen highly expressed by 

tumor cells, while absent or expressed at low levels in healthy tissues (Daver 

et al., 2021). Leukemic blasts express several antigens (eg. CD34, CD117, 

CD33) that are also shared by healthy hematopoietic cells. Thus, the on-

target off-tumor toxicity (or lack of selectivity) impairs the efficacy and 

increases the toxicity of any immune strategies aiming at those antigens 

(Qasim et al., 2019). Another obstacle for cell therapy approaches (CAR-T 

and adoptively transferred T cells) is the limited in-vivo expansion and 

persistence after the product infusion (Chapuis AG et al., 2012). CAR-T 

cells persistence is a key for long-term remissions and definitive cures 

(Maude SL et al., 2014).  The mechanisms determining the difference in 

persistence between the constructs are still poorly understood and several 

efforts have been made to overcome this limitation. The predominant 

hypothesis to explain this phenomenon is the delicate balance between T cell 

activation and exhaustion: chronic antigen stimulation leads to persistent T 

cell activation and ultimately exhaustion (Youngblood et al., 2010; Wherry 

et al., 2015). Variation in the costimulatory domain of CAR-T (4-1BB 

instead of CD28) resulted in a more stem-like memory cell product and 

prolonged in-vivo persistence (Long et al., 2015). Lastly, 

immunosuppressive bone marrow (BM) microenvironment may affect the 

efficacy of the immunotherapeutic strategies aiming to activate T cells, such 

as BiTEs or ICB. Thus, a systematic profiling of different immune cells is 

critical to improve our understanding of the AML BM microenvironment 

and to overcome the obstacles associated with the different 

immunotherapeutic strategies . 
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1.3 Immunologic landscape in cancer 

The impairment of the immunologic microenvironment is a key factor 

for development and maintenance of cancer. T cells play a central role 

in immune surveillance by targeting and eliminating tumor and infected 

cells. Chronic states of persistent antigen exposure force CD8+ T cells 

towards exhaustion and immune tolerance. Often considered the main 

marker of exhaustion, PD-1 is an antigen expressed by various 

hematopoietic cells including T cells, B cells, natural killer (NK) cells and 

NK T (NKT) cells following their activation. PD-1 binds two ligands 

known as programmed cell death 1 ligand-1 (PD-L1) and PD-L2. PD-L1 

is expressed in hematopoietic and non-hematopoietic cells while PD-L2 

expression is restricted to professional antigen presenting cells (APCs) 

and a subset of B cells. In T cells, PD-1 expression is induced by T-cell 

receptor (TCR) signaling and upregulated by cytokines. In tumors, PD-

1 remains at high levels and inhibits T cell function by its interaction 

with PD-L1 and PD-L2 (Sharpe et al, 2017). The advent of PD-1/PD-L1 

pathway blockade therapeutics (ICB) introduced the idea of awakening 

from exhaustion CD8+ T cells to reinvigorate the anti-tumor immune 

response. These developments in immunotherapy changed the 

treatment paradigm for many solid and several hematologic 

malignancies (Robert C et al, 2015; Larkin J et al, 2019; Ansell SM et al, 

2015). However, most of the patients eventually relapse and/or become 

resistant. Further, responses to ICB are sometimes minor and short-

lasting and not fully dependent on PD-1 inhibition. For this reason, 

recent studies have focused on exploring the T cell differentiation 

landscape and on defining the key factors involved in the process of 
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exhaustion. In general, following the initial activation of T cells 

heterogeneous epigenetic commitments may arise and follow different 

lineages of differentiation (Muroyama Y et al 2021) (Figure 1). In 

chronic states, the thymocyte selection-associated high mobility group 

box protein (TOX) is involved in the formation of effector and memory 

cells and is critical in coordinating the early epigenetic imprinting of T-

cell exhaustion (Khan et al., 2019). The downstream process involves 

several other factors whose expression defines different stages of 

exhaustion. Among these factors, T cell factor 1 (TCF-1) marks the early 

stage of the process and confers stem-like features to early exhausted 

CD8+ T cells while preventing their differentiation into terminally 

exhausted cells. Interestingly, PD1-mediated inhibition of TCR signaling 

and T cell over-activation appears to limit the progression towards the 

late stages of exhaustion (Chen Z et al., 2019; McLane LM et al, 2019). 

Hence, the co-expression of TCF1 and PD1 characterizes a group of 

tumor infiltrating lymphocytes (TILs) with stem-like features that are 

potentially responsible for the persistence of tumor specific T cells 

(Siddiqui I et al, 2019). Due to their phenotypic and functional 

characteristics, TCF1+PD1+CD8+ cells are termed Tpex. ICB unlocks 

Tpex population to differentiate into intermediate-exhausted 

proliferating cells with cytotoxic potential. This mechanism behind ICB 

activity is supported by studies showing that high percentages of 

TCF1+PD1+ TILs correlate with clinical responses to ICB. After their 

activation proliferating cells further differentiate into non proliferating 

terminally exhausted cells. Although intermediate-exhausted cells are 

capable of targeting and potentially clearing tumor cells, they are not 
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fully functional compared to their healthy counterpart. Upon antigen 

removal, Tpex can regain their phenotypical and transcriptional 

features of healthy memory T cells but maintain epigenetic circuits of 

exhaustion. This “epigenetic scar” of exhaustion persists invalidating T 

cells immunologic functions (Abdel-Hakeem MS et al, 2021). Recently 

Galletti et al, 2020, further characterized Tpex as 

CCR7+GZMK+PD1+TIGIT+CD8+ cells in healthy individuals as well as 

cancer patients. This subset represents the first stage of exhaustion. 

Beside T cell exhaustion, T cells in AML patients undergo senescence 

and have different gene signatures in responders versus non-

responders to chemotherapy (Knaus et al, 2018). This T cell subset 

highly expresses killer cell lectin-like receptor subfamily G member 1 

(KLRG1), B3GAT1 (encoding CD57), and other killer cell lectin-like and 

killer cell immunoglobulin-like receptor (KIR) genes. The distinction 

between T cell exhaustion and senescent is still confusing because of 

some overlapping characteristics. However, there are strong evidences 

suggesting that they are two different states regulated by different 

molecular mechanisms (Reiser, J. 2016; Akbar, A. 2011; Liu, X 2018). 

Consistently, recent reports suggest that senescence and exhaustion 

follow a different epigenetic commitment and that senescence cells may 

derive from short-lived effector cells (SLECs)(Figure 1) (Muroyama, Y. 

2021). 

Exhaustion and senescence are two disfunctional states in T cells 

responsible for immune escape and therapy resistance. Understanding 
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the mechanisms that generate and further develop these two subsets is 

critical for the development of effective therapeutic strategies in AML.  

 

Figure 1: Lineages of CD8 T-cell differentiation upon activation (Muroyama Y et al. 
2021) 
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1.4 Rationale for the study 

In AML, T cells fail to eradicate leukemic blasts and become dysfunctional. 

Several mechanisms involving regulatory T cells (Tregs), M2 polarized 

macrophages, inhibitory T cell receptors, reactive oxygen species 

production and altered cytokine profiles may prevent proper T-cell 

activation and proliferation (Figure 2) (Vago et al, 2020; Szczepanski et al, 

2009; Buggins et al, 2001; Al-Matary et al, 2016).  

 

These complex cross-talks create an immune-tolerant niche that enables 

blast persistence. Yet, the potentially curative graft-versus-leukemia effect 

in patient treated with alloSCT marks the importance of engaging 

immunotherapeutic modalities in the treatment of AML. However, their 

applicability in AML is currently limited because of the major deficiencies 

in understanding the relevance of T cell states, including senescence and 

Figure 2: Immunotolerant microenvironment in acute 
myeloid leukemia 
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exhaustion, in reactivating anti-leukemia immunity. A better understanding 

of the dynamics of T-cell differentiation in the AML BM microenvironment 

will not only inform the development of immunotherapeutic approaches to 

achieve long-term AML control but may also refine patient selection to 

those who are most likely to respond to different modalities, thus limiting 

unnecessary toxicities. 

Thus, our goal was to elucidate the multistep differentiation process of T 

cells in AML at diagnosis and after treatment. To accomplish this goal, we 

performed flow-cytometry and single cell RNA sequencing (scRNA-seq) on 

BM samples collected from AML patients before and after chemotherapy, 

including healthy individuals as a biological control. 
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2. Materials and methods 

2.1 Human subjects and specimens 

BM mononuclear cells (BMMCs) were collected from AML patients and 

healthy volunteers, processed with Ficoll/Lymphoprep density 

centrifugation and cryopreserved. Treatment response was assessed using 

standard criteria (Döhner et al., 2017). The sample size was based on the 

number of available paired specimens from the same patients before and 

after induction chemotherapy. All the subjects signed the IRB approved 

consent form. Patient characteristics for the three cohorts used are described 

in table 1, 2, 3.  

  

2.2 Flow cytometry (first chemotherapy cohort) 

Antibodies were titrated to the optimal concentration as previously 

described. Surface staining was performed for 20 minutes at 37°C, while 

intracellular detection of cytokines was performed following fixation of 

cells with CytoFix/CytoPerm kit (BD Biosciences) according to the 

manufacturer’s instructions and by incubating the cells with specific mAb 

cocktails for 20 minutes at room temperature. Serial BM samples from 33 

newly diagnosed AML patients with well-annotated clinical data (10 

complete responders (Res) and 6 nonresponders (NonRes) to chemotherapy) 

and 12 healthy donors (HDs) were analyzed. Flow cytometry was performed 

on a BD-LSRII (Becton Dickinson) and data were analyzed with BD 

FACSDiva software (Becton Dickinson) version 8.0.1. Antibodies used for 

analysis are listed in Table 4. 



14 
 

2.3 Flow cytometry (HiDAC + pembrolizumab cohort) 

BMMCs were serially collected from AML patients (BM, n = 19) at baseline 

and at the time of response assessment after HiDAC plus pembrolizumab. 

Flow cytometry was performed on a BD-Fortessa (Becton Dickinson) 

provided with BD FACSDiva software (Becton Dickinson) version 8.0.1. 

Antibodies used for analysis are listed in Table 5. 

2.4 Spectral flow cytometry (second chemotherapy cohort) 

BMMCs were collected from AML patients (BM samples = 44) at 

baseline and at the time of response assessment after chemotherapy 

were acquired on a Cytek Northern Lights 3L 16V 14B 8R. Antibodies 

used for analysis are listed in Table 6. 

2.5 High-dimensional flow cytometry analysis 

Flow cytometry and spectral flow cytometry data were biexponentially 

transformed, compensated using single stained controls and preprocessed 

(aggregates and dead cell removal) in FlowJo V10 (TreeStar). Pre-gated 

CD8+ T cells were then exported in R (version 4.0.2) for further analyses 

performed with a customized pipeline based on workflow (Nowicka et al., 

2017). Specifically, CD8+ T cells clusters were obtained using the 

FlowSOM algorithm and then visualized using the implementation of 

Uniform Manifold Approximation and Projection (UMAP) available in 

CATALYST R package. The different frequencies of the T cell 

subpopulations in CR (Res) and non-responders (NR) at the two timepoints 

(baseline and after treatment) were identified using the differential 

abundance analysis provided by the diffcyt R package (Weber et al., 2019). 
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2.6 Single cell RNA sequencing analysis 

A DakoCytomation MoFlo (E1303A) (Beckman Coulter) was used to sort 

CD3+ T cells. Gating strategy is shown in Figure 3. Cells were washed and 

resuspended in PBS + 0.04% BSA. The quantity and quality of the cells 

were assesed by Acridine Orange and Propidium iodide dye on a Cellometer 

Auto 2000 (Nexcelom). 16k cells with a viability higher than 85% were 

loaded on a 10x Chromium Controller based on 5’ Chromium Single Cell 

V(D)J Reagent Kit manual (10x Genomics). After cell partitioning and 

GEM generation, reverse transcription was performed, and cDNA was 

pooled and cleaned up by beads. cDNA was further amplified for 13 cycles 

and cleaned up by SPRI beads (Beckman). The quality of cDNA was 

assessed by High Sensitivity D5000 Tapestation (Agilent Technologies Inc., 

California, USA and quantified by Qubit 2.0 DNA HS assay (ThermoFisher, 

Massachusetts, USA). T cell receptor (TCR) target enrichment, 5’ Gene 

expression library, and TCR library was carried out according to 5’ 

Chromium Single Cell V(D)J Reagent Kit manual (10x Genomics). 

Equimolar pooling of libraries was performed based on QC values and 

sequenced on an Illumina® NovaSeq (Illumina, California, USA) with a 

read length configuration of 150 PE for 600 M PE reads per sample (300M 

in each direction). The 10x genomics software Cell Ranger (version 4.0) was 

used to process the raw data FASTQ files with default parameters. The 

EmptyDrops method (Lun et al., 2019) was used to identify cells with low 

RNA contents. The “count” function was used to perform alignment, 

filtering, barcode counting, and UMI counting. This function uses the 

Chromium cellular barcodes to generate feature-barcode matrices, 
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determine clusters, and perform gene expression analysis. The “vdj” 

function was used to perform sequence assembly and paired clonotype 

calling for each cell. This function uses the Chromium cellular barcodes and 

UMIs to assemble V(D)J transcripts per cell. GRCh38 and GRCh38.p12 gtf 

were used as reference genome and annotation gtf file. Cellranger VDJ 

calling generates an output named as “filtered_contig_annotations.csv” for 

each sample. In this file, the CDR3 amino acid and nucleotide sequences for 

single cells were listed by cell barcodes.  

The filtered feature matrices generated by the CellRanger pipeline were used 

for downstream quality control (QC) and analyses. Doublet cells filtering 

was performed on each sample using the scds package (Bais & Kostka, 

2020). scater R package was used for QC and filtering (McCarthy et al., 

2017). Genes undetected across all the cells were removed. Cells with 

feature counts, percentage of mitochondrial genes and number of expressed 

features beyond 2.5 median absolute deviations of the median were filtered 

out. Finally, we retained features with a count greater than 1 in at least 20 

cells for downstream analysis. Next, Seurat (Stuart et al., 2019) (Butler et 

al., 2018) v4.0 was used for integration, clustering and dimension reduction. 

Integration and clustering were performed using the 2000 most highly 

variable genes for integration and clustering. Clustering and dimension 

reduction were computed using the first 20 principal components. 

Differential gene expression was performed using the FindMarkers function 

from Seurat. Cell trajectory inference was computed using Silingshot R 

package (v1.99.15) and using the TradeSeq R package (v1.7.02) for the 

differential gene expression along the trajectories. The function earlyDETest 

from TradeSeq was used to test differential gene expression at specific 
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pseudotime values. TCR analysis was performed using the scRepertoire R 

package (v0.99.3) (Borcherding et al., 2020). Weapplied the function 

clonalOverlay using default settings to generate an overlay of the position 

of most clonally expanded cells projected onto UMAP. 

2.7 Overall survival estimate in TCGA 

Kaplan-Meier estimate of OS in TCGA AML cases stratified by CD52 

expression (median split). The Gene Expression Profiling Interactive 

Analysis portal (http://gepia2.cancer-pku.cn/#survival) was used to access 

and analyze the data. 

 

 

 

Figure 3: Sorting strategy used to sort CD3+ T cells 

http://gepia2.cancer-pku.cn/#survival
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3. Results 

3.1 A subset of PD1+CD28+ CD8+ T cells correlate with complete 

response in AML patients undergoing chemotherapy 

To study the complex immunologic landscape of AML, we applied high-

dimensional analysis to flow data presented in Knaus HA et al, obtained 

through a 12-color panel. The heterogeneity of T cell states hampers the 

identification of cell subsets of interest via visual inspection of scatter plots 

displaying individual cells’ fluorescence intensities. To avoid user bias and 

reduce the complexity of the data, we performed unsupervised clustering for 

cell subpopulations and uniform manifold approximation and projection 

(UMAP) for dimensionality reduction. This approach integrates markers at 

a single-cell level and provides insight into the true complexity of their high 

dimensional relationships. We analyzed BM CD8+ T cells from AML 

patients (n = 16, 10 Res and 6 NonRes) at baseline and post-chemotherapy 

to define their state of differentiation, activation, and co-inhibitory molecule 

expression. The unsupervised clustering revealed 4 different CD8+ cell 

states including naive (CCR7+CD45RA+CD27+CD28+), activated effectors 

(KLRG1+CD160+CD56+), terminally differentiated/senescent (Temra/Sen) 

(CD45RA+CD57+KLRG1+) and PD1+CD28+ cells (Fig. 4A). Visualization 

via UMAP revealed a different distribution of CD8+ differentiation 

landscape in Res compared to NonRes (Fig. 4B). Specifically, NonRes 

patients had less naive and PD1+CD28+CD8+ cells at both timepoints 

compared to the other subgroup. Similarly, Jansen CS et al., 2019 recently 

identified an intra-tumoral TIM3-PD1+CD28+ CD8+ subset with stem-like 

features that can give rise to more terminally differentiated cells. A similar 
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subpopulation expressing PD1 and other “stem_like” markers has been 

described and referred as Tpex (Siddiqui et al., 2019; Miller et al., 2019). 

High percentages of Tpex pre-treatment, among exhausted CD8+ tumor 

infiltrating lymphocytes, correlate with response to PD-1/PD-L1 pathway 

blockade in melanoma (Miller et al., 2019).  

 

Figure 4:CD8+ PD1+CD28+ and 
activated effectors cells are 
increased at baseline in patients 
who are more likely to respond to 
chemotherapy(A) Heatmap showing 
the 0-1 scaled MFI values of 9 
markers over the four CD8+ BM 
subsets from all the samples (6 
NonRes, 10 Res). The median marker 
expression identifies the markers 
that drive each cell subset. Each CD8+ 
subpopulation is colored according to 
the cluster identified using the 
FlowSOM algorithm. (B) UMAP 
visualization overlaid with contour 
plots (kernel density estimation) of 
the four CD8+ BM subpopulations in 
all the AML patients (NonRes, n = 6, 
Res, n = 10), at baseline and after 
therapy. Each CD8+ subpopulation is 
colored according to the cluster 
identified using the FlowSOM 
algorithm. 

 

A 

B 
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3.2 Progenitor exhausted CD8+ T cells are increased in AML 

patients who are more likely to respond to chemotherapy plus 

checkpoint inhibitors 

We hypothesized that treatment with immune checkpoint inhibitors (ICB) 

likely influences T-cell exhaustion dynamics in AML. To understand 

whether CD28+PD1+ CD8+ progenitor-exhausted-like T cells are associated 

with a better outcome in AMLs treated with ICB, we interrogated changes 

in T-cell states in patients enrolled in an open-label, single-arm, phase II 

study of high dose cytarabine (HiDAC) followed by pembrolizumab in 

relapsed/refractory (R/R) AML conducted at two institutions, the University 

of North Carolina, Lineberger Comprehensive Cancer and the Johns 

Hopkins Hospital, Sidney Kimmel Comprehensive Cancer Center 

(clinicaltrials.gov identifier NCT02768792). We performed flow-cytometry 

analyses on patient-derived BM samples (n = 19, 8 Res and 11 NonRes) 

aiming at the identification of biomarkers that were predictive of response 

to HiDAC/pembrolizumab. We detected 8 different clusters (Fig. 5A, B) 

with a significantly higher frequency of senescent T cells at baseline in 

NonRes (Fig. 5C). Interestingly, Res had significant increased frequency of 

CD8+ T cells expressing CD27, CD28, PD-1, TIGIT, and lacking expression 

of Tim-3 and CD57 at baseline. This Tpex-like phenotype was consistent 

with our previous flow-cytometry findings in patients treated with 

conventional chemotherapy. Additional analysis using manual gating 

strategy involving the intracellular marker TCF-1 confirmed that there was 

a statistically significant increase in pre-treatment CD8+CD45RA-

CD27+/intCD28+PD1+TCF1+ T cells in patients who achieved Res compared 

to NonRes (Fig. 6). Taken together, these data identify a subset of progenitor 
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exhausted T cells within the AML microenvironment that may differentiate 

into effector-like CD8+ T cells and target tumor cells upon treatment with 

ICB (Beltra et al., 2020). 

 

C 

A 

B 
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Figure 5: Immune biomarkers associated with response in patients treated with HiDAC + 
Pembrolizumab: Tpex are increased in patients who are more likely to respond 

(A) UMAP visualization overlaid with contour plots (kernel density estimation) of the eight CD8+ 
BM subpopulations in non-responders (NonRes, n = 11) and complete responders (Res, n = 8), at 
baseline (Res_bas, NonRes_bas) or after therapy (Res_post, NonRes_post). Each CD8+ subpopulation 
is colored according to the cluster identified using the FlowSOM algorithm. (B) Heatmap showing 
the 0-1 scaled MFI values of 12 markers over the eight CD8+ BM subsets from all the samples 
(NonRes = 11, Res = 8, both timepoints). The median marker expression identifies the markers that 
drive each cell subset. Each CD8+ subpopulation is colored according to the cluster identified using 
the FlowSOM algorithm. (C)  Boxplots showing the relative abundance of BM CD8+ subpopulations 
in NonRes and Res patients at baseline and post-treatment. Horizontal bars indicate median values. 
Asterisks indicate adjusted p-values (*padj< 0.05).  

 

 

C 
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Figure 6: Frequency of BM CD8+CD45RA-CD27+/intCD28+PD1+TCF1+ T cells in 
patients who achieved CR compared to NRs at baseline and at response assessment 
(*p< 0.05). 

3.3 Single cell RNA sequencing identifies a subpopulation of CD8+ 

GZMK+IL7R+ progenitor exhausted cells that correlates with 

response in AML patients undergoing chemotherapy-only 

treatment 

Although the results obtained in patients treated with ICB are promising, the 

backbone of treatment in AML remains chemotherapy. However, little is 

known about the T-cell differentiation landscape in AML patients 
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undergoing chemotherapy. Therefore, to validate our results and better 

characterize the T-cell landscape in AML we performed single-cell RNA 

sequencing (5’ VDJ scRNA-seq; 10x Genomics Platform) on BM samples 

obtained from AML patients (n = 5; 3 Res, 2 NonRes) at baseline (base) and 

after chemotherapy (post) and 2 HDs. Preliminary results on whole BM and 

in silico analyses performed on published data (Dufva et al, 2020) revealed 

that the number of T cells was not sufficient to distinguish the different T 

cell subsets of interest. This technical issue is related to the relative 

predominance of the myeloid subpopulations in AML. Then we developed 

a sorting strategy to positively enrich BM CD3+ T cells while eliminating 

myeloid cells, B cells and stroma (Fig. 3). This was accomplished by using 

a dumping channel (CD33, CD34, CD117, CD19) and sorting highly 

enriched but “untouched” CD45+ fraction of 95% pure T cells sufficient for 

subsequent downstream scRNAseq analysis. With this strategy we obtained 

an average four-fold increase of T cells per sample (Fig. 7).  
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N = 8 samples 
N = 2486 CD8+ T cells 

N = 12 samples 
N = 15095 CD8+ T cells 

Figure 7: Comparison of CD8+ T-cell scRNAseq data obtained 
from whole bone marrow (Dufva et al. Cancer Cell 2020) and 
CD3+ sorted cells 
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For Res and NonRes samples, matched scTCR-seq information was also 

collected. After preprocessing and computational sub-setting of the CD8+ T-

cell subtypes, we collected data on 15095 CD8+ T cells. We used already 

published (Szabo PA et al, 2019; Pace L et al. 2018; Miller BC et al, 2019) 

and customized gene signatures mapped in two dimensions via UMAP (Fig. 

8) to define the identities of the clusters annotated as naive, Tpex, Effectors, 

Term_exh1 and Term_exh2 (Fig. 9). Of note, the two most differentially 

expressed genes in Tpex compared to all the other clusters were GZMK and 

interleukin (IL)-7 receptor (IL-7R), also known as CD127 (data not shown). 
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Figure 8: Projection of selected gene signatures and gene markers (GZMK, IL7R) 
identifying the different T cell states 
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Next, we sought to understand if there was a difference in terms of clusters’ 

abundancies across the three conditions (Res, NonRes, HD). Overall, the 

distribution of the CD8+ states was similar in Res and HDs (Fig. 10A). 

Interestingly, Res samples had an increased frequency of Tpex and Effectors 

compared to NonRes (Fig. 10A-B). Conversely, NonRes presented with a 

notable increase of Term_exh2 compared to Res and HDs (Fig. 10A-B). 

These differences in clusters’ frequencies were present at both baseline and 

post-chemotherapy (Fig. 11).  

 

Figure 9: Unsupervised clustering of scRNAseq identified four main clusters: Tnaive, Tpex, 
Effectors, Term_exh1, Term_exh2 
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Figure 10: Tpex and effectors are increased in Res vs NonRes; Term_exh2 are 
increased in NonRes vs Res 
(A) UMAP split by response to chemotherapy showing in 2 dimensions the distribution of 
the five identified BM CD8+ subsets across the three conditions (Res, NonRes, HD). (B) 
Summary dot plot showing relative frequency of BM CD8+ T cell populations in Res vs 
NonRes  

 

A 
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Figure 41: Res and NonRes have different cluster frequencies at both timepoints 
(baseline and post-treatment) 
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3.3 Tpex and Effectors are the most clonally expanded in Res whilst 

Term-exh2 are the most clonally expanded in NonRes 

Based on these results, we hypothesized that Tpex and Effectors cells are 

putative functional subsets and may be predictive of response. To test this 

possibility, we measured the magnitude of clonal expansion in antigen 

experienced CD8+ T cells in Res and NonRes by generating an overlay of 

the position of the most clonally expanded cells projected onto the 2D 

UMAP (Fig. 12A, B). The most clonally expanded subsets were Tpex and 

Effectors in Res and Term_exh2 in NonRes (Fig. 12A-C) revealing a strong 

relationship between frequencies and clonal expansion of the CD8+ T-cell 

subsets. 

A 

B 

C 

C 

A B 
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Collectively, these data identified GZMK+IL7R+ cells as a distinct entity in 

the early differentiated CD8+ memory T cell pool and further showed that 

this subset is increased and clonally expanded in Res compared to NonRes. 

 

3.4 CD8+ GZMK+CD127+ progenitor exhausted cells correlate with 

response and overall survival 

Building on the scRNAseq findings, we designed a 26-color spectral flow 

cytometry panel to explore T cell phenotypes at the protein level and 

analyzed 22 AML patients (12 Res and 10 NonRes) at baseline and post-

chemotherapy. The single-marker evaluation revealed an increase of GZMK 

and CD127 at baseline in Res VS NonRes. TCF1, TIGIT and PD1 were also 

increased at baseline in Res. Hierarchical metaclustering of FlowSOM 

clusters identified CD8+ GZMK+CD127+ T cells as a distinct memory CD8+ 

subpopulation. This cluster, consistently with scRNAseq findings, was 

increased at baseline in Res VS NonRes (Fig 13 A-C). Remarkably, this 

cluster was characterized by the expression of TIGIT, PD1 and TCF-1. Of 

note, the only other cluster with a higher expression of TCF-1 was CD8+ 

naive cells which are known to express high levels of this transcription factor 

(Zhao X et al, 2021).  

Figure 12: Tpex and effectors are the most clonally expanded in Res vs NonRes while 
Term_exh2 are most clonally expanded in NonRes vs Res 
(A-B) Lineage relationships between T cell phenotypes and clones detected by scRNAseq and 
scTCRseq analysis. The contour plots show that Tpex and effectors in Res(A) and Term_exh2 in 
NonRes(B) are the most clonally expanded. (C) Stackplot showing the count of cells by cluster 
assigned into specific frequency ranges of clonotype 
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The results obtained with the FlowSOM algorithm were subsequently 

reproduced by standard flow cytometry gatings. Accordingly, manually 

gated GZMK+CD127+ CD8+ T cells were significantly (**, p < 0.01) 

enriched in Res vs NonRes (Fig. 14 A, B). Furthermore, patients with a 

higher-than-median frequency of GZMK+IL7R+CD8+ T cells experienced 

significantly (*, p < 0.05) longer overall survival after therapy (Fig. 14 C). 

Therefore, an increased abundancy of progenitor exhausted CD8+ T cells in 

Figure 13: scRNAseq guided spectral flow-cytometry analysis confirms that BM 
GZMK+IL7R+ CD8+ T cells are increased in patients who are more likely to respond 
to chemotherapy 
(A)Heatmap showing the 0-1 scaled MFI values of 21 markers over eleven CD8+ BM 
subsets from 22 AML patients (12 Res and 10 NonRes) at baseline and post-treatment. 
The median marker expression identifies the markers that drive each cell subset. Each 
CD8+ subpopulation is colored according to the cluster identified using the FlowSOM 
algorithm. GZMK+IL7R+CD8+ cluster highlighted. (B) UMAP visualization overlaid with 
contour plots (kernel density estimation) of the eleven CD8+ BM subpopulations in all the 
AML patients (Res, n = 12, NonRes, n = 10), at baseline and after therapy. Each CD8+ 
subpopulation is colored according to the cluster identified using the FlowSOM algorithm. 
(C) Boxplots showing the relative abundance of BM CD8+ subpopulations in NonRes and 
Res patients at baseline and post-treatment.  
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the BM microenvironment is associated with chemotherapy efficacy and 

prolonged survival in patients with AML. 
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Figure 14: Manual gating confirms the enrichment of BM GZMK+IL7R+ CD8+ T cells 
and the advantage in OS in patients with high frequencies  
(A) Gating strategy for GZMK+IL7R+ CD8+ T cells. (B) Boxplot showing the different 
frequency of GZMK+IL7R+ CD8+ T cells in Res and NonRes. Horizontal bars indicate median 
values. Asterisks indicate adjusted p-values (*padj< 0.05). (C) Kaplan-Meier estimate of OS: 
patients with a higher-than-median frequency of GZMK+IL7R+ CD8+ T cells experience 
significantly (*p< 0.05) prolonged OS after chemotherapy. 
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3.5 Exhaustion is a multistep process that broadly affects T cell 

differentiation during chronic antigen stimulation 

Due to its nature, unsupervised clustering does not capture the phenotypic 

transition between the different transcriptional cell subsets. To achieve this, 

we used trajectory-inference methods and ordered the cells along the 

pseudotime (Slingshot) (Street et al., 2018) on our scRNAseq dataset. This 

analysis identified T-cell differentiation dynamics revealing that Tpex 

population splits into two branches representing two distinct developmental 

states where Term_exh1 (Lineage 1) and Term_exh2 (Lineage 2) are the 

terminal stages (Fig 15 A). Thus, Slingshot analysis suggests that upon 

antigen recognition in the BM, Tpex cells differentiate either into 

Term_exh1, present in all the subgroups (Res, NonRes, HDs) or into 

Term_exh2 which is almost exclusively present in NonRes. 

To identify the drivers of the dichotomic differentiation trajectories, we 

studied the genes differentially expressed between the two lineages at the 

point of trajectory divergence. CD52 was among the most significant 

differentially expressed genes between the two lineages (Fig. 15 B). This 

gene was indeed highly expressed in Term_exh2, but not in Term_exh1 (Fig. 

15 C). Given Term_exh2 being the end-stage of lineage 1 and given its 

increased frequency in NonRes, we hypothesized that these are the 

dysfunctional senescent cells already described to be increased at baseline 

and post-therapy in AML patients (Knaus HA et al, 2018). 
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To support this hypothesis, we interrogated the TCGA-LAML cohort and 

found that patients with higher-than-median expression of CD52 had a 

significantly reduced OS (Fig. 16). A limitation of this analysis is that being 

based on bulk-RNAseq data is not possible to understand which BM 

subpopulations contribute the most in CD52 expression and consequently 

A 

B C 
CD52 along trajectories 

Figure 15: Trajectories showing a CD52 driven dichothomic differentiation of BM 
CD8+ T cells 
(A) scRNAseq UMAP overlaid with slingshot-based cell trajectories starting at Tnaive 
and proceeding into Term_exh1 or Term_exh2. (B) Differential gene-expression 
between the two identified trajectories at the bifurcation identified CD52 as one of the 
drivers of the lineages’ split. (C) CD52 is upregulated in Term_exh2, downregulated in 
Term_exh1 
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survival. The anti-CD52 monoclonal antibody (Alemtuzumab) is commonly 

used in chronic lymphocytic leukemia and multiple sclerosis (MS). 

However, there is limited experience in the treatment of AML with anti-

CD52 (Saito Y et al, 2011). Since CD52 is notoriously expressed in 

differentiated CD8+ T cells and Tregs, our data lay the bases for further in-

depth analyses of the role of CD52 expression on T cells in AML. If 

confirmed anti-CD52 may inhibit Temra and Tregs favoring the persistence 

of potentially functional effectors.  

 
Figure 16: Higher-than-median CD52 expression is associated 

with survival advantage 
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4. Discussion 

 

Tpex is a CD8+ subpopulation present in tumor microenvironment that is 

polifunctional, has high proliferative potential and can differentiate in 

terminally exhausted CD8+ T cells.  

In this study, we identified BM T-cell subsets that correlate with response 

to chemotherapy in patients with AML. Others previously described these 

subpopulations but mainly in murine models and in solid tumors and chronic 

infections (Siddiqui et al., 2019; Miller et al., 2019; Beltra JC et al., 2020) 

To the best of our knowledge, this is the first in-depth analysis of T cell 

dysfunction performed on human samples from AML patients.  

Our data have several implications for understanding immune exhaustion in 

AML and its clinical relevance. First, we identified a T-cell subset that 

correlates with response to chemotherapy and to chemotherapy plus ICB. 

Second, we identified and characterized a subpopulation of Tpex which is 

clonally and transcriptionally distinct as well as differentially abundant in 

Res vs NonRes to chemotherapy. Remarkably, the frequency of this 

subpopulation at baseline predicts overall survival. Further in vitro and in 

vivo analyses may help clarify the proliferation potential, antigen specificity 

and functionality of this subset in AML. Third, we identified a subset of 

terminally exhausted/senescent CD8+ T cells (Term_exh2) to be increased 

and clonally expanded in NonRes vs Res already at diagnosis. As expected, 

this subpopulation expresses markers of cytotoxicity and is located at the 

end of the developmental trajectory. These findings suggest that both Tpex  

and senescent CD8+ cells could potentially be used as biomarkers to identify 

patients that are at increased risk of early relapse after chemotherapy. The 

identification of the defining markers of these subsets is critical to design 
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broadly applicable diagnostic panels to better stratify AML risk and, 

therefore, guide treatment decisions.  

Furthermore, our unbiased approach confirmed that Tpex in AML have a 

stem-like transcriptional signature. Therefore, the in-depth characterization 

of this subset will likely play a role in overcoming some of the obstacles of 

T-cell therapies in AML. Finally, our data indicate CD52 as a new potential 

marker of CD8+ senescent cells in AML. Consistent with this, CD52 level 

of expression predicts survival in a TCGA cohort. If confirmed, these 

preliminary data would have a potential impact on the use of targeted 

treatments to reduce senescence and maintain functional antitumor CD8+ T 

cells.  
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5 Tables 

Table 1 Patients characteristics (Chemotherapy cohort – exploratory flow-cytometry) 

Patients characteristics N = 16 

Age, median (range) 57.5 (26 - 76) 

Male 9 (56%) 

Female 7 (44%) 

BM blast % prior to treatment, median (range) 72 (6-95) 

NPM1 mutated 5 (31%) 

FLT3 ITD 5 (31%) 

IDH1 2 (13%) 

c-KIT 2 (13%) 

  

Healthy donors N = 12 

Age, median (range) 40 (27 - 50) 

 

Table 2 Patients characteristics (HIDAC/Pembrolizumab cohort) 

Patients characteristics N = 19 

Age, median (range) 54 (24 - 66) 

Male 10 (52%) 

Female 9 (48%) 

BM blast % prior to treatment, median (range) 25 (6-89) 

Relapsed AML 10 (52%) 

Refractory AML 9 (48%) 

NPM1 mutated 5 (26%) 

FLT3 ITD 4 (21%) 

DNMT3A mutated 3 (16%) 

NRAS mutated 3 (16%) 

ASXL1 mutated 2 (11%) 

TP53 mutated 2 (11%) 

RUNX1 mutated 2 (11%) 
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Table 3 Patients characteristics (Chemotherapy cohort – spectral flow-cytometry) 

Patients characteristics N = 22 

Age, median (range) 56(26 – 74) 

Male 13 (59%) 

Female 9 (41%) 

BM blast % prior to treatment, median (range) 68.5 (12-95) 

NPM1 mutated 6 (27%) 

FLT3 ITD 6 (27%) 

NRAS mutated 3 (14%) 

ASXL1 mutated 3 (14%) 

DNMT3A mutated 2 (9%) 

RUNX1 mutated 2 (9%) 
 
  

Table 4 Flow-cytometry panel (Chemotherapy cohort – exploratory flow-cytometry) 

Ma rker F lu oroc h rom e C lon e C om p a n y C a t #
C D 3 B V5 1 0 O KT 3 B ioL eg en d 3 1 7 3 3 2
C D 8 B UV8 0 5 S K 3 B D  5 6 4 9 1 0
C D 4 B UV8 0 5 S K 1 B D  5 6 4 9 1 2

C D 5 6 B V7 8 6 5 .1 H 1 1 B ioL eg en d 3 6 2 5 5 0
C D 4 5 R A B UV3 9 5 H I1 0 0 B D  7 4 0 2 9 8

C C R 7 F ITC 1 5 0 5 0 3 B D  5 6 1 2 7 1
C D 2 7 AF 7 0 0 O 3 2 3 B ioL eg en d 3 0 2 8 1 4
C D 2 8 B V6 5 0 C D 2 8 .2  B ioL eg en d 3 0 2 9 4 6

D NAM1 B V7 1 1 1 1 A8 B ioL eg en d 3 3 8 3 3 4
C D 5 7 Pa c if ic  B lu e Q A1 7 A0 4 B ioL eg en d 3 9 3 3 2 6

K L R G 1 APC 2 F 1 /K L R G 1 B ioL eg en d 1 3 8 4 1 2
PD 1 PE E H 1 2 .1 B D  5 6 0 7 9 5

T im  3 PE -T R F 3 8 -2 E 2 B ioL eg en d 3 4 5 0 3 4
C D 6 9 B UV3 9 5 4 B 4 -1 B D  7 4 5 7 3 7  
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Table 5 Flow-cytometry panel (HIDAC/Pembrolizumab cohort) 

Ma rke r F lu oroc h rom e C lon e C om p a n y C a t #
C D 3 B V6 0 5 O KT 3 B iolrg e n d 3 1 7 3 2 2
C D 8 Pe rC PC y 5 .5 R PA-T 8 e -B ios c ie n c e 4 5 -0 0 8 8 -4 2

C C R 7 B V6 5 0 G 0 4 3 H 7 B iole g e n d 3 5 3 2 3 4
C D 4 5 R A APC C y 7 H I1 0 0 B ioL e g e n d 3 0 4 1 2 8

C D 5 6 PE C F 5 9 4 B 1 5 9 B D 5 6 2 2 8 9
C D 2 8 PE C y 7 C D 2 8 .2 e -B ios c ie n c e 2 5 -0 2 8 9 -4 2
C D 5 7 V 4 5 0 H C D 5 7 B ioL e g e n d 3 2 2 3 1 6
C D 2 7 AF 7 0 0 M-T 2 7 1 B D 5 6 0 6 1 1
PD 1 PE E H 1 2 .1 B D 5 6 0 7 9 5

K L R G 1 APC S A2 3 1 A2 B ioL e g e n d 3 6 7 7 1 6
C D 1 6 0 AF 4 8 8 BY 5 5 e B ios c ie n c e 5 3 -1 6 0 9 -4 2

B T L A AF 6 4 7 MIH 2 6 B ioL e g e n d 3 4 4 5 1 0
2 B 4 F ITC C 1 .7 B ioL e g e n d 3 2 9 5 0 6

T im 3 PE FAB 2 3 6 5 P R  &  D 3 4 4 8 2 3
C D 9 5 e f4 5 0 /p a c b lu e D X 2 B iole g e n d 3 0 5 6 1 9

 

Table 6 Flow-cytometry panel (Chemotherapy cohors – spectral flow-cytometry) 

Ma rke r F lu oroc h rom e C lon e C om p a n y C a t#

C D 2 8 B B 5 1 5 C D 2 8 .2 B D  B ios c ie n c e s 5 6 4 4 9 2

C C R 7 PB G 0 4 3 H 7 B ioL e g e n d 3 5 3 2 1 0

C D 3 APC -Fire 7 5 0 UC H T 1 B ioL e g e n d 3 0 0 4 7 0

C D 3 8 APC /Fire 8 1 0 H IT 2 B ioL e g e n d 3 0 3 5 5 0

C D 4 S p a rk  NIR 6 8 5 S K 3 B ioL e g e n d 3 4 4 6 5 8

C D 5 7 B V5 1 0 Q A1 7 A0 4 B ioL e g e n d 3 9 3 3 1 4

C D 9 5 B V6 5 0 D X 2 9 B ioL e g e n d 3 0 5 6 4 2

D NAM1 B V7 8 5 1 1 A8 B ioL e g e n d 3 3 8 3 2 2

PD 1 PE /D a z z le 5 9 4 E H 1 2 .2 H 7 B ioL e g e n d 3 2 9 9 4 0

T b e t K B 5 2 0 4 B 1 0 B ioL e g e n d 6 4 4 8 3 8

T IG IT B V4 2 1 A1 5 1 5 3 G B ioL e g e n d 3 7 2 7 1 0

V ia b ility Z om b ie  NIR n /a B ioL e g e n d 4 2 3 1 0 6

C D 4 5 R A B V5 7 0 H I1 0 0 B ioL e g e n d 3 0 4 1 3 2

C D 2 7 B V6 0 5 O 3 2 3 B ioL e g e n d 3 0 2 8 3 0

C D 8 Ale x a F lu or 5 3 2 R PA-T 8 e B ios c ie n c e s 5 8 -0 0 8 8 -4 2

E om e s PE -C y 7 W D 1 9 2 8 e B ios c ie n c e s 2 5 -4 8 7 7 -4 2

K L R G 1 Pe rC P-e F lu or 7 1 0 1 3 F 1 2 F 2 e B ios c ie n c e s 4 6 -9 4 8 8 -4 2

C X 3 C R 1 B V7 5 0 2 A9 -1 B D B ios c ie n c e s 7 4 7 3 7 6

C D 1 6 1 B B 7 0 0 D X 1 2 B D B ios c ie n c e s 7 4 5 7 9 1

K i6 7 B V4 8 0 B 5 6 B D B ios c ie n c e s 5 6 6 1 0 9

C D 1 2 7 B V7 1 1 A0 1 9 D 5 B ioL e g e n d 3 5 1 3 2 8

TC F 1 PE C 6 3 D 9 C e llS ig n a lin g Te c h n olog y 1 4 4 5 6 S

C D 6 9 PE -C y 5 F N5 0 B ioL e g e n d 3 1 0 9 0 8

G Z MK Ale x a F lu or 6 4 7 G M6 C 3 S a n ta C ru z

G Z MB Ale x a F lu or 7 0 0 G B 1 1 B D B ios c ie n c e s 5 6 0 2 1 3

C D 3 3 S B 4 3 6 P6 7 .6 e B ios c ie n c e s 6 2 -0 3 3 7 -4 2

C D 1 1 7 S B 4 3 6 1 0 4 D 2 e B ios c ie n c e s 6 2 -1 1 7 8 -4 2

s c -5 6 1 2 5  
AF 6 4 7
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