
algorithms

Article

Adaptive Refinement in Advection–Diffusion Problems by
Anomaly Detection: A Numerical Study

Antonella Falini 1,* and Maria Lucia Sampoli 2

����������
�������

Citation: Falini, A.; Sampoli, M.L.

Adaptive Refinement in

Advection–Diffusion Problems by

Anomaly Detection: A Numerical

Study. Algorithms 2021, 14, 328.

https://doi.org/10.3390/a14110328

Academic Editor: Sergey Korotov

Received: 15 October 2021

Accepted: 5 November 2021

Published: 7 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, University of Bari, 70125 Bari, Italy
2 Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy;

marialucia.sampoli@unisi.it
* Correspondence: antonella.falini@uniba.it

Abstract: We consider advection–diffusion–reaction problems, where the advective or the reactive
term is dominating with respect to the diffusive term. The solutions of these problems are character-
ized by the so-called layers, which represent localized regions where the gradients of the solutions
are rather large or are subjected to abrupt changes. In order to improve the accuracy of the computed
solution, it is fundamental to locally increase the number of degrees of freedom by limiting the com-
putational costs. Thus, adaptive refinement, by a posteriori error estimators, is employed. The error
estimators are then processed by an anomaly detection algorithm in order to identify those regions of
the computational domain that should be marked and, hence, refined. The anomaly detection task is
performed in an unsupervised fashion and the proposed strategy is tested on typical benchmarks.
The present work shows a numerical study that highlights promising results obtained by bridging
together standard techniques, i.e., the error estimators, and approaches typical of machine learning
and artificial intelligence, such as the anomaly detection task.

Keywords: advection–diffusion problems; adaptive refinement; a posteriori error estimates; marking
strategy; anomaly detection

1. Introduction

Advection–diffusion problems occur in many applications, such as the simulation of
temperature or concentration transport. The numerical solution of this kind of problem has
attracted great attention, especially in the case when advection is dominant. Indeed, in this
case, standard finite element methods may lead to numerical solutions with nonphysical
oscillations, due to a lack of stability. One way to circumvent these difficulties is by
adding some artificial diffusion to the discretization. Different stabilization methods have
been proposed in the literature; among them, the streamline-upwind Petrov–Galerkin
(SUPG) method and streamline-diffusion method (SDM) [1] are probably the most popular
ones. In addition, in the numerical solution of stationary linear advection-dominated
advection–diffusion problems, two main issues have to be considered. On the one hand,
discontinuities in the form of shock-like fronts can occur. Hence, we need a discretization
able to approximate these layers on the boundary or in the interior of the domain properly.
On the other hand, in order to identify regions where the solution is less regular, it is
necessary to have reliable estimates of the accuracy of the computed numerical solution. A
priori estimates are often insufficient, since they only yield information on the asymptotic
behavior of the error and require regularity assumptions about the solution that are not
satisfied in the presence of singularities arising from interior or boundary layers. Thus,
a posteriori error estimators should be considered. A posteriori error estimators are
computable quantities that provide information about the numerical error, so that they
may be used for making judicious mesh modifications. Their computation should be less
expensive than the computation of the numerical solution. Moreover, the error estimator

Algorithms 2021, 14, 328. https://doi.org/10.3390/a14110328 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6226-8967
https://orcid.org/0000-0003-0396-5513
https://doi.org/10.3390/a14110328
https://doi.org/10.3390/a14110328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14110328
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14110328?type=check_update&version=2

Algorithms 2021, 14, 328 2 of 20

should be local and should yield reliable upper and lower bounds for the true error in a user-
specified norm. Local lower bounds are necessary to ensure that the grid is correctly refined
so that one obtains a numerical solution with a prescribed tolerance using a nearly minimal
number of grid points. Indeed, a general approach to approximate the layers properly
and reduce the number of unknowns is by using highly non-equidistant meshes instead of
equidistant (or uniform) meshes. Starting from some uniform mesh, a numerical solution
can be computed; then, by using some information from this, the grid can be adapted with
some a posteriori knowledge, thereby obtaining a grid more suited to the problem at hand.
This technique is referred to as an adaptive method based on a posteriori error estimation.
Adaptive local refinement is therefore an important component for obtaining, in an efficient
way, an accurate solution to advection/reaction-dominated problems and has received a
great deal of attention in the past three decades; see, for instance, [2,3] for unstructured
meshes and [4,5] for structured ones.

A key issue for adaptive refinement is good a posteriori error estimation. For advection–
diffusion–reaction equations, one of the initial studies for the comparison of different
estimators using the streamline upwind Petrov–Galerkin (SUPG) solution of advection–
diffusion–reaction equations was done in [6], and it was shown that none of the estimators
was robust with respect to the diffusion coefficient.

In [7], a robust estimator is proposed in the same norm in which the a priori analysis
is performed for the SUPG method, namely the SUPG norm. Other examples of estimators
obtained using different techniques can be found, for instance, in [8–12].

A final component needed to set up an efficient adaptive scheme is the choice of a
proper marking strategy, which allows the selection of the regions to be refined. In theory,
the marking strategy should ensure a specific error reduction with respect to the number of
refined elements; see [13] and references therein for a review. In practice, most of the time,
there are one or more hyper-parameters that need to be correctly tuned. In the present
work, we rely on an anomaly detection algorithm that is able to cluster the mesh elements
into two sets: the normal and the anomalous ones. In particular, the latter are the elements
that will be refined. Anomaly detection usually refers to the task of identifying those
behaviors that greatly differ from the standard trend; see [14] for a review. Some recent
papers, e.g., [15–17], have exploited artificial intelligence techniques based on supervised
learning to produce adaptive strategies for the solution of PDEs. In the current work,
we adopt an unsupervised technique that does not require any training or any a priori
knowledge of the correct mesh elements that should be marked. The anomaly detection
task is performed in a completely unsupervised fashion by using the error estimators and
the isolation forest algorithm.

The paper is organized as follows: in Section 2, we formulate the problem and we recall
the main features of the adopted error estimators and the anomaly detection algorithms.
In Section 3, we report several examples, which confirm the good performance of the
proposed strategy. Finally, in Section 4, we discuss some possible future work.

2. Problem Formulation

We consider scalar advection–diffusion–reaction problems that, in general, can be
modeled as:

−div(ε∇u) + b · ∇u + αu = f in Ω
u = uD on ΓD

ε
∂u
∂n

= g on ΓN ,
(1)

where Ω in R2 is a Lipschitz domain with a polygonal boundary Γ. In particular, Γ consists
of two non-overlapping components ΓD e ΓN , such that Γ = Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅. In
Equation (1), the function u is the unknown, while ε is the diffusivity coefficient, b = [b1, b2]
is the advective field with ∇ · b = 0, α ≥ 0 a.e. in Ω is the reaction coefficient, f is the
source and n is the unit outward normal vector. We will also assume the following:

Algorithms 2021, 14, 328 3 of 20

(A1) 0 < ε� 1.
(A2) b ∈W1,∞(Ω)2 , α ∈ L∞(Ω) , f ∈ L2(Ω) and g ∈ L2(ΓN).
(A3) There exist two constants, β ≥ 0 and cb ≥ 0, independent of ε, such that

−1
2

divb + α ≥ β and ‖ α ‖L∞≤ cbβ.

As already mentioned in the Introduction, scalar advection–diffusion equations de-
scribe the transport of scalar quantities, such as temperature or concentration. This transport
term is composed of a diffusive part and an advective part.

From the mathematical proprieties of these two components, it is possible to dis-
tinguish regular or exponential layers, parabolic layers and internal or boundary layers.
The accurate computation of these singularity regions is crucial to obtain a reliable ap-
proximation of the numerical solution of advection–diffusion problems. Standard finite
element methods may lead to numerical solutions with nonphysical oscillations, due to
the lack of stability of the considered method. (Here, stability is not meant in the sense of
the continuous dependence of the solution on the initial data, but rather in the sense of
reducing the oscillations occurring in the numerical solution).

Setting

V := H1
D(Ω) = {ϕ ∈ H1(Ω) : ϕ = 0 on ΓD}, (2)

the weak formulation of problem (1) is:

Find u ∈ V : a(u, v) = `(v) ∀v ∈ V, (3)

where we introduced the bilinear form a : V ×V → R

a(u, v) =
∫

Ω
ε∇u · ∇v dΩ +

∫
Ω

vb · ∇u dΩ +
∫

Ω
αuv dΩ (4)

and the functional ` : V → R:

`(v) =
∫

Ω
f v dΩ +

∫
ΓN

g v dγ. (5)

Let {Th}h be a family of conforming triangulations of Ω̄ into triangles T with diameter
hT ≤ h, with h = max

T∈Th
hT . Let Pm be the space of polynomials of degree at most m, and we

set

Vh :=
{

φ ∈ C(Ω̄) | φ|T ∈ Pm ∀T ∈ Th, φ = 0 on ΓD
}

.

By projecting in the space Vh ⊂ V of continuous piecewise linear finite elements and
stabilizing with the SUPG method [1], we can write the generalized formulation:

Find uh ∈ Vh : ah(uh, vh) = `h(vh) ∀vh ∈ Vh, (6)

where

ah(uh, vh) = a(uh, vh) + bh(uh, vh) and `h(vh) = `(vh) + mh(vh).

The terms bh(uh, vh) and mh(vh) are the stabilizing terms and they are necessary to
reduce the possible numerical oscillations due to the classical Galerkin formulation.

2.1. Mesh Adaptation

We are interested in those applications where the diffusive term −div(ε∇u) is domi-
nated either by the convective term b · ∇u or by the reaction term αu. In such cases, the
solution may exhibit some boundary layers that arise from strong gradient variations. Since
the presence of abrupt changes in the behavior of the solution is usually localized to certain
regions, it is meaningful to adopt adaptive strategies in order to increase the number of
degrees of freedom in those local regions only. This allows us to have more control and

Algorithms 2021, 14, 328 4 of 20

hence better final accuracy is reached in the approximation of the solution. In practice,
the adaptivity of the mesh is obtained by adopting a posteriori error estimators. In the
present work, we decided to compare the performance of three error estimators considered
in their basic formulation; see [18]. In fact, according to the type of problem at hand, more
advanced and specific versions of each of the considered error estimator can be developed.
In our case, we decided to design a strategy that would make equivalent the different
behaviors that are usually observed when different marking strategies are adopted, or
when different problem settings are considered. For the sake of clarity, we recall the main
features of the adopted error estimators.

2.1.1. Residual Error Estimator

The first error estimator considered is the residual type ηR, defined as:

ηR,T :=

{
h2

T‖ResT‖2
L2(T) + ∑

E⊂∂T
hE‖ResE‖2

L2(E)

}1/2

, (7)

where we denote by ResT and ResE the residual computed on each triangle T and on each
edge E, respectively. Meanwhile, hT and hE refer to the diameter of the triangle T and
to the length of the edge E in the triangle T. The usual definitions for ResT and ResE are
adopted:

ResT(uh) = f + ε∆uh − b · ∇uh − αuh,

ResE(uh) =

[nE · ε∇uh]E if E in Ω

(g− nE · ε∇uh) if E on ΓN
0 if E on ΓD,

where nE denotes the unit normal vector to the edge E and the symbol [·]E denotes the
jump of a function across the interface E.

2.1.2. A Zienkiewicz–Zhu Type Error Estimator

This type of error estimator is based on reconstructing the gradient of the original
solution by a simple averaging technique. In particular, it is defined as:

ηZ,T := ‖G(uh)−∇uh‖L2(T). (8)

In our case, the function G(uh) is constructed by evaluating the function ∇uh on
the barycenter of each triangle and then by averaging across those triangles that share a
common vertex.

2.1.3. Error Estimator Based on the Solution of Auxiliary Local Problems

As the last error estimator, we consider an error estimator constructed by solving
auxiliary local Neumann problems:

ηN,T := ‖|vT |‖T , (9)

where the symbol ‖| · |‖ denotes the energy norm and vT is a function belonging to the set
VT ,

VT := span
{

bT , bE : E ∈ E(T)\Eh,D
}

, (10)

which approximates the solution of the following auxiliary problem:
−ε∆uT + b · ∇uT + αuT = ResT(uh) in T

ε
∂uT
∂nT

= ResE(uh) on ∂K\ΓD

uT = 0 on ∂T ∩ ΓD.

(11)

Algorithms 2021, 14, 328 5 of 20

Note that, in definition (10), we use the bubble functions related to the triangle T and
to the edge E; see [19] for additional details.

The mesh refinement and the computation of the finite element approximate solution
were performed by using the software FreeFem ++, version 3.5 [20]. In particular, the
software makes available an automatic mesh generator, based on the Delaunay–Voronoi
algorithm [21], and a metric-based anisotropic mesh adaptation function [22].

2.2. Anomaly Detection

The term anomaly detection is used in the context of time-series or Big Data whenever
there are outliers or anomalous points to be identified. In particular, points that follow
a standard trend or can be observed to have expected behavior are labeled as normal;
otherwise, they become anomalous. In the present work, we use the Isolation Forest (IF)
algorithm [23,24], which refers to an unsupervised technique developed to detect anomalies
in the considered dataset. In order to isolate the points that deviate from the expected trend,
the IF constructs a forest of binary trees by randomly selecting a feature and then randomly
selecting a split value. The resulting number of required splittings is equivalent to the
path length from the root node to the terminating node. Anomalies usually produce rather
shorter paths compared to normal points. IF has a linear time complexity and it does not
need any labeled data; hence, it works in a completely unsupervised fashion. In the present
work, we use the implementation provided by the Python library scikit-learn [25]. In
order to control the randomness, and hence to make the experiments reproducible, we
set the parameter random_state = 0. All the other parameters are used with the default
settings. The algorithm that we propose employs any error estimator described in the
previous subsection in order to acquire an estimate of the error function, localized at every
triangle. Then, the IF takes as input an array of values containing the error estimator for
each triangle. The anomalies are those values where the estimated error is rather large.
Therefore, the anomalous values correspond to those triangles that should be refined.
In order to improve the performance of the adopted error estimator, we also ran some
benchmarks by setting the contamination parameter c = 0.3. The contamination acts
as a cutoff on the returned values. In particular, c = 0.3 means that only the top 30%
negative scores are labeled as anomalies. The set-up for c was experimentally derived
and was in line with the fact that the boundary layers are usually confined to specific
regions; hence, usually, there is no need to refine large areas of the computational domain.
In certain cases, the use of c = 0.3 helped to achieve a final refinement even more localized
to the problematic areas and, thus, the performance of the three error estimators became
equivalent in terms of the reached accuracy per number of refinements. An outline of the
proposed algorithm is presented in Algorithm 1.

Algorithms 2021, 14, 328 6 of 20

Algorithm 1: Pseudo-code for the proposed algorithm.
Data: Given ε, b, α, f , Ω
Result: Adapted Triangulation
begin

Create a triangulation T of Ω;
Solve with Galerkin SUPG;
for T ∈ T do

Compute ηT ;
Store ηT into η;

end
begin

Isolation-Forest←− η;
A←− Isolation-Forest;
A: vector containing 1 for normal ηT and −1 for anomalous ηT ;

end
end
begin

Construction of anisotropic mesh adaptation function h;
for T ∈ T do

Compute the diameter hT ;
if (A(ηT) == −1) then

hT ←− hT/4;
else continue;

end
end

end

3. Numerical Results

In this section, we show the numerical results on four different benchmarks. Since the
exact solution is always unknown, we estimated the L2 norm and the H1 seminorm of the
error e := uex − uh, by computing uex with a very fine triangular mesh. In this case, the
initial mesh is globally and uniformly refined for several levels. Global uniform refinement
prevents an accurate representation of the solution from being reached; hence, we stopped
the adaptive refinement procedure when the error values became stagnant or oscillating
around a certain threshold. In order to increase the stability of the computation of the
solution uex, we improved the used quadrature formula in the evaluation of the integrals
for the Galerkin method by setting the parameter qft = qf7pT or by using qft = qf9pT,
which are Gaussian quadrature rules of order 8 and 10, respectively; see, e.g., [26], available
with the FreeFem integration routines. In general, when the order increases, the Gaussian
rule may become unstable; moreover, due to the triangular domains, suitable rules should
be constructed; see, e.g., [27–29] and references therein. In our tests, we could obtain more
stable results for the computation of the L2 norm but, for the H1 seminorm, we could still
observe some divergent cases. For every example, we compared the achieved results with
the global uniform refinement strategy, in terms of accuracy and in terms of the order
of convergence. In order to obtain the appropriate error reduction, the produced mesh
should satisfy certain optimality requirements; see, for example, [13,30]. Since this aim
goes beyond the scope of the current paper, we only conducted the following experiments
by using the anisotropic mesh adaptation function provided by the FreeFem library.

3.1. Example 1: A Reaction–Diffusion Problem

The first example is a reaction–diffusion problem ([31]), where the velocity field b
is zero. In this case, the computational domain is the unit square, Ω = [0, 1]× [0, 1], the
source f = 0, ε = 10−3 e α = 1. The boundary conditions are shown in Figure 1, while an
approximation of the solution is shown in Figure 2.

Algorithms 2021, 14, 328 7 of 20

Figure 1. Boundary conditions of example 1.

Figure 2. Computed solution for example 1, displayed on the mesh adapted with ηZ and c = 0.3.

Since homogeneous boundary conditions are assigned, besides at the four corners, we
expect the solution to be zero almost everywhere except at the corners where it spikes to one.
In Figure 3, on the left, we report the adapted mesh by using the residual error estimator.
The four corners are highly refined, but we can also observe a rather dense grid in the
middle of Ω, which seems unnecessary for this example. Therefore, we applied a threshold
to the percentage of values that should be considered anomalous. By trying several different
values, we experimentally derived that a good setting for the contamination parameter
in the IF algorithm was 0.3. In these terms, only the points with the top 30% negative
values will be considered anomalous. With this strategy, we can localize even more by
neglecting a certain percentage of triangles that would otherwise be marked as anomalous.
The obtained result with this setting can be seen in Figure 3, right. In Table 1, we report the
estimated error in the L2 norm and in H1 seminorm, together with the number of elements
(NT) per level of refinement (n), in both cases, i.e., c = auto and c = 0.3. The improvement
with the second strategy is evident especially at the final stage: with the same order of
magnitude of employed elements, one order of accuracy is gained in the L2 norm. Finally,
in Figure 4, we show the comparison with global refinement.

Figure 3. Adapted meshes for example 1 by using the residual-based error estimator. (Left) The
last performed step, where the mesh is mostly refined at the four corners. (Right) The final mesh
obtained with c = 0.3; the corners are highly refined with respect to the rest of the domain.

Algorithms 2021, 14, 328 8 of 20

Table 1. L2 norm and H1 seminorm of the error for example 1. The residual-based error estimator
was employed.

c = auto c = 0.3

n NT L2 H1 NT L2 H1

0 112 1.3 × 10−2 2.0 × 10−2 - - -
1 439 1.0 × 10−2 4.3 × 10−2 382 1.1 × 10−2 5.1 × 10−3

2 1388 6.2 × 10−3 1.6 × 10−3 1598 4.8 × 10−3 2.3 × 10−3

3 3882 2.3 × 10−3 1.8 × 10−3 5860 1.2 × 10−3 6.9 × 10−4

4 8860 1.2 × 10−3 2.2 × 10−4 8995 7.5 × 10−4 2.0 × 10−4

Figure 4. Error behavior for example 1 when ηR is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm of the error is shown.

In Figure 5, we show the results obtained by using the gradient recovery-based error
estimator ηZ. Moreover, in this case, we performed two tests: one with c = auto and one
with c = 0.3. Table 2 collects the L2 norm error and H1 seminorm error. In this case, the
benefit of introducing the cutoff percentile is less evident than in the previous example,
but we notice that by reducing the number of elements at the first level, more elements
were marked at the successive levels compared with the standard case (i.e., c = auto). This
behavior did not lead to a significant gain in accuracy, but the resulting mesh appears more
suitable to handle this example since the refinement is more localized at the four corners. In
Figure 6, we show the comparison with global refinement. Finally, in Figure 7, the results
obtained with ηN and with c = auto (on the left) and c = 0.3 (on the right) are shown. In
Table 3, we report the results for the L2 norm and H1 seminorm estimates. The resulting
mesh, adapted with c = 0.3, does not improve the reached accuracy compared to the case
c = auto. In fact, the refinement, besides appearing not to be symmetric, appears to be
less localized. This can happen as the contamination parameter is only useful to select the
top 30% of anomalous triangles, which are not necessarily the ones that exhibit the largest
error among the anomalies. In Figure 8, we show the comparison with global refinement.
In all three cases, the adaptive refinement achieved better accuracy and a better order of
convergence compared to global refinement per used degrees of freedom.

Table 2. L2 and H1 error for example 1 by using the gradient recovery error estimator.

c = auto c = 0.3

n NT L2 H1 NT L2 H1

0 112 1.3 × 10−2 2.0 × 10−2 - - -
1 523 1.0 × 10−2 4.5 × 10−2 402 1.1 × 10−2 6.3 × 10−3

2 1727 5.1 × 10−3 3.1 × 10−3 1729 5.2 × 10−3 7.8 × 10−4

3 3567 1.0 × 10−3 1.3 × 10−3 6631 1.3 × 10−3 5.2 × 10−4

4 8065 7.8 × 10−4 3.8 × 10−4 10,053 8.1 × 10−4 1.2 × 10−4

Algorithms 2021, 14, 328 9 of 20

Figure 5. Adapted meshes for example 1 with the gradient recovery-based error estimator. (Left)
The adapted mesh at the very last step and parameter c = auto. (Right) The mesh obtained at the last
step with the estimator ηZ and c = 0.3.

Figure 6. Error behavior for example 1 when ηZ is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

Figure 7. Resulting meshes for example 1 and ηN error estimator. (Left) The final mesh obtained by
setting c = auto. (Right) The final mesh obtained by setting c = 0.3.

Table 3. L2 and H1 error for example 1 by using the ηN error estimator.

c = auto c = 0.3

n NT L2 H1 NT L2 H1

0 112 1.3 × 10−2 2.0 × 10−2 - - -
1 421 1.1 × 10−2 6.0 × 10−3 421 1.1 × 10−2 6.0 × 10−3

2 2171 4.8 × 10−3 6.3 × 10−3 1566 5.1 × 10−3 4.7 × 10−3

3 7170 1.5 × 10−3 4.8 × 10−4 5754 2.9 × 10−3 1.3 × 10−3

4 12,106 8.9 × 10−4 4.0 × 10−4 8574 1.9 × 10−3 1.4 × 10−3

Algorithms 2021, 14, 328 10 of 20

Figure 8. Error behavior for example 1 when ηN is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

3.2. Example 2: The Channel Test

We report the second benchmark presented in [32], “the channel test”, which is an
advection-dominant problem. The domain Ω is chosen to be L-shaped: Ω = [0, 4]2\[0, 2]2.
The data of the problem are ε = 10−3, f = 0, α = 0, b = [y,−x], while the boundary
conditions are shown in Figure 9.

Figure 9. Boundary conditions for example 2.

In Figure 10, on the left, we show the final stage of the adapted mesh according to the
residual-based error estimator, while, on the right, we show a 3D plot of the computed
solution on the final mesh. The error estimates for the L2 norm and H1 seminorm are
reported in Table 4.

Figure 10. Adapted meshes for example 2 and residual-based error estimator. (Left) The mesh at the
final stage. (Right) A 3D plot of the computed solution with the final mesh.

Algorithms 2021, 14, 328 11 of 20

Table 4. Error in L2 norm and H1 seminorm for example 2 obtained with the residual-based error
estimator.

n NT L2 H1

0 1282 2.7 × 10−1 7.8 × 10−1

1 1319 1.7 × 10−1 4.7 × 10−1

2 1531 1.1 × 10−1 1.6 × 10−1

3 1908 8.4 × 10−2 7.1 × 10−2

4 2227 7.8 × 10−2 9.0 × 10−2

5 2597 6.0 × 10−2 4.7 × 10−2

6 3303 4.9 × 10−2 3.8 × 10−2

7 4246 4.6 × 10−2 3.2 × 10−2

8 5111 4.4 × 10−2 2.7 × 10−2

9 6584 4.1 × 10−2 1.3 × 10−2

10 7737 4.1 × 10−2 1.2 × 10−2

11 8844 4.1 × 10−2 1.2 × 10−2

The ηR and the anomaly detection strategy in this case led to the refinement of very
few elements at each step. At the end, the two circular layers and the boundary layer near
the non-convex angle were correctly identified and refined. The error e in both L2 norm
and H1 seminorm steadily decreased. In this case, using c = 0.3 appeared meaningless as
few elements were refined at each level. In Figure 11, we show the comparison between
the adaptive refinement obtained by using ηR and the global refinement strategy. The
adaptive refinement at certain levels decreases with a superlinear order of convergence
in the L2 norm. Meanwhile, on the H1 seminorm, the behavior is not monotonic but we
can still observe convergence, with better final accuracy compared to the global refinement
approach.

Figure 11. Error behavior for example 2 when ηR is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

The resulting mesh obtained by using the gradient recovery error estimator and the ηN
error estimator are shown in Figure 12, and in Tables 5 and 6, we report the error estimates.

Table 5. Error in L2 norm and H1 seminorm for example 2 obtained with the gradient recovery error
estimator.

n NT L2 H1

0 1282 2.7 × 10−1 7.8 × 10−1

1 2296 1.1 × 10−1 1.7 × 10−1

2 5538 6.1 × 10−2 8.2 × 10−2

3 8243 4.9 × 10−2 4.0 × 10−2

4 11,957 4.5 × 10−2 3.0 × 10−2

5 16,894 4.4 × 10−2 2.2 × 10−2

Algorithms 2021, 14, 328 12 of 20

Figure 12. Adapted meshes. (Left) The mesh obtained at the last level by using the ηN error estimator.
(Right) The final stage of the adapted mesh by using the gradient-based error estimator.

Table 6. Error in L2 norm and H1 seminorm for example 2 obtained with the “Neumann auxiliary”
error estimator.

n NT L2 H1

0 1282 2.7 × 10−1 7.8 × 10−1

1 2348 1.1 × 10−1 2.0 × 10−1

2 6488 4.8 × 10−2 5.2 × 10−2

3 16,533 4.3 × 10−2 1.1 × 10−2

4 16,726 4.2 × 10−2 9.3 × 10−3

We note that, for this example, the adaptive refinement was interrupted when the error
became stagnant and, hence, by looking at the reached accuracy, the three error estimators
seem rather equivalent. Looking at the resulting adapted meshes, the one obtained with
ηZ is the less refined at the larger circular inner layer. Regarding the boundary layer on the
short edge of the L-domain and the smaller circular layer, ηR, ηZ and ηN provided good
error estimation for the IF algorithm to correctly label the anomalous triangles. Finally, in
Figures 13 and 14, we show the comparisons with the global refinement. Moreover, in this
case, the adapted meshes were better than the uniform globally refined mesh, as we could
observe a greater decrease in the error and hence better final accuracy per used degrees of
freedom.

Figure 13. Error behavior for example 2 when ηZ is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

Algorithms 2021, 14, 328 13 of 20

Figure 14. Error behavior for example 2 when ηN is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

3.3. Example 3: The Pinched Domain

In this example, we consider a disk with a hole. The boundary of the domain consists
of two disconnected components: Γ1 := {x = cos(t); y = sin(t) ; t ∈ [0 , 2π]} is the outer
boundary, while Γ2 := {x = 0.3 + 0.3 cos(t); y = 0.3 sin(t) ; t ∈ [0 , 2π]} is the boundary
of the inner hole. The input data are: ε = 10−10, f = 0, α = 1, b = [2, 1]. We apply
discontinuous Dirichlet boundary conditions: u = 0 on Γ1 and u = 1 on Γ2. Therefore, we
expect the rise of the two inner layers. The results for the adapted meshes with the three
error estimators are shown in Figures 15–17. In Tables 7–9, we report the error estimates in
the L2 norm and H1 seminorm.

Figure 15. Results for example 3 with ηR. (Left) The final adapted mesh. (Right) The final adapted
mesh with the projected isolines of the computed solution.

Figure 16. Results for example 3 with ηZ error estimator. (Left) The last obtained mesh by using
c = auto. (Right) The refined mesh at the last performed step with c = 0.3.

Algorithms 2021, 14, 328 14 of 20

Table 7. Error in L2 norm and H1 seminorm for example 3 obtained with the residual-based error
estimator.

n NT L2 H1

0 672 1.1 × 10−1 6.8 × 10−3

1 1603 1.0 × 10−1 3.5 × 10−3

2 2042 9.2 × 10−2 3.0 × 10−3

3 3396 7.6 × 10−2 2.7 × 10−3

4 6004 4.5 × 10−3 2.2 × 10−3

5 8006 3.9 × 10−3 1.5 × 10−3

Table 8. Error in L2 norm and H1 seminorm for example 3 obtained with the gradient recovery error
estimator.

c = auto c = 0.3

n NT L2 H1 NT L2 H1

0 672 1.1 × 10−1 6.8 × 10−3 - - -
1 1356 8.7 × 10−2 3.0 × 10−3 865 1.1 × 10−1 1.3 × 10−3

2 3888 5.6 × 10−2 1.6 × 10−3 2897 5.9 × 10−2 2.0 × 10−3

3 9569 1.1 × 10−2 1.5 × 10−3 4418 2.9 × 10−2 1.9 × 10−3

4 17,663 2.0 × 10−2 1.1 × 10−3 6507 1.9 × 10−2 1.8 × 10−3

5 9442 1.7 × 10−2 1.2 × 10−3

Figure 17. Results for example 3 with ηN . (Left) The resulting adapted mesh. (Right) The resulting
adapted mesh with the isolines projection of the computed solution.

Table 9. Error in L2 norm and H1 seminorm for example 3 obtained with ηN error estimator.

c = auto c = 0.3

n NT L2 H1 NT L2 H1

0 672 1.1 × 10−1 6.8 × 10−3 - - -
1 2000 9.2 × 10−2 2.7 × 10−3 1964 8.9 × 10−2 2.2 × 10−3

2 2802 7.2 × 10−2 3.8 × 10−3 2959 6.6 × 10−2 1.6 × 10−3

3 4866 5.4 × 10−2 3.9 × 10−3 4027 5.6 × 10−2 6.1 × 10−4

4 11,156 1.8 × 10−2 1.9 × 10−3 5910 4.5 × 10−2 3.0 × 10−4

5 17,658 1.7 × 10−3 1.4 × 10−3 8570 3.0 × 10−2 3.0 × 10−4

6 12,302 1.4 × 10−2 3.0 × 10−4

For this example, the poorest performance is obtained by the ηZ error estimator.
Indeed, the final mesh displayed in Figure 16, on the left, shows an over-refinement spread
along two narrow stripes across the whole domain Ω. This seems unnecessary as the main
change should happen around the boundary Γ2; hence, we produced another mesh—see

Algorithms 2021, 14, 328 15 of 20

Figure 16 on the right—to limit the number of triangles that would be refined. The use of
c = 0.3 did not produce any significant change when ηR was employed, while, when ηN
was adopted, we could appreciate a drastic reduction in the refined number of elements at
every level, which did not affect the reached accuracy.

In Figures 18–20, we report the comparison with the global refinement strategy. Re-
garding the use of ηR and the contamination parameter c = 0.3, the performance becomes
worse, as it becomes comparable to global refinement. Concerning the ηZ error estimator,
although the error reduction is still better than global refinement in the L2 norm, we can
observe a rather uniform behavior when it comes to the H1 seminorm. Regarding the ηN ,
the achieved results are better than global refinement for the L2 norm, while, in the H1

seminorm, the use of the contamination parameter yields a relevant reduction in the error
per used degrees of freedom.

Figure 18. Error behavior for example 3 when ηR is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

Figure 19. Error behavior for example 3 when ηZ is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

Figure 20. Error behavior for example 3 when ηN is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

Algorithms 2021, 14, 328 16 of 20

3.4. Example 4: Parabolic and Exponential Boundary Layers

As the last example, we consider the problem reported in [6]. The computational
domain Ω is the unit square. The input data are ε = 10−6, b = [1; 0], α = 0, f = 1, Γ = ΓD
and uD = 0. The solution exhibits two parabolic layers for y = 0 and y = 1, and one
boundary layer on the right edge of Ω. In Figure 21, we show a 3D plot of the computed
solution on the final adapted mesh obtained with ηR.

The results of the refined meshes are shown in Figures 22 and 23 for the residual-based,
gradient-based and ηN error estimators, respectively.

Figure 21. A 3D plot of the computed solution for example 4.

Figure 22. Example 4: results with the residual-based error estimator. (Left) The final mesh obtained
by using c = auto is shown. (Right) The final mesh with c = 0.3.

Figure 23. Example 4. (Left) The final mesh obtained with the gradient-based error estimator. (Right)
The final mesh obtained with the Neumann auxiliary error estimator.

Algorithms 2021, 14, 328 17 of 20

In Table 10, we report the results obtained by using c =auto and c = 0.3 when ηR is
employed. By setting a contamination value that differs from the default setting, we can
better refine the regions with the interested layers.

Table 10. Error in L2 norm and H1 seminorm for example 4 obtained with the residual-based error
estimator.

c = auto c = 0.3

n NT L2 H1 NT L2 H1

0 200 5.2 × 10−2 6.4 × 10−1 - - -
1 375 5.3 × 10−2 3.4 × 10−1 232 4.7 × 10−2 1.9 × 10−1

2 1125 2.9 × 10−2 1.9 × 10−2 970 5.2 × 10−2 1.4 × 10−1

3 2912 3.3 × 10−2 1.9 × 10−2 1436 2.7 × 10−2 1.2 × 10−2

4 8798 3.9 × 10−2 1.5 × 10−2 5246 3.7 × 10−2 1.0 × 10−2

5 15,276 4.1 × 10−2 2.6 × 10−3 16,689 3.9 × 10−2 3.9 × 10−4

Finally, in Tables 11 and 12, we report the error estimates computed with ηZ and ηN ,
respectively, and c = auto. This final benchmark is the only one where the use of ηN failed
to capture the boundary layers. In fact, the values of ηN,T are very small almost for every
triangle T, at every level; thus, at the end, the adaptive refinement almost appeared as a
uniform global refinement. In this case, even the use of a contamination parameter could
not help to significantly improve the final result. The test was also repeated with smaller
values of contamination, but the final mesh was still not satisfactory. In Figure 23, on the
right, the final mesh obtained at level n = 5 with c = 0.1 is shown. We cannot appreciate
a significant difference with the error obtained with ηR or ηZ but simply because we are
comparing with a solution obtained exactly by uniformly and globally refining the initial
mesh. Only the mesh obtained with ηR and ηZ is correctly refined at the boundary layer
location.

Table 11. Error in L2 norm and H1 seminorm for example 4 obtained with ηZ.

n NT L2 H1

0 200 5.2 × 10−2 6.4 × 10−1

1 557 3.5 × 10−2 1.9 × 10−1

2 2304 3.4 × 10−2 3.1 × 10−2

3 8813 2.2 × 10−2 2.3 × 10−3

4 15,731 2.6 × 10−2 1.9 × 10−3

Table 12. Error in L2 norm and H1 seminorm for example 4 obtained with ηN .

n NT L2 H1

0 200 5.2 × 10−2 6.4 × 10−1

1 264 6.1 × 10−2 3.1 × 10−1

2 459 6.6 × 10−2 2.3 × 10−1

3 803 5.1 × 10−2 3.3 × 10−2

4 1298 5.0 × 10−2 4.3 × 10−2

5 4428 4.4 × 10−2 4.5 × 10−2

6 11,323 3.6 × 10−2 1.8 × 10−2

In Figure 24, we show the comparison of ηR against the global refinement strategy. In
this example, the L2 norm of the global refinement is more accurate than the adaptive mesh
obtained either with c = auto or with c = 0.3. The H1 seminorm of the global refinement is
very unstable, instead.

Algorithms 2021, 14, 328 18 of 20

In Figure 25, the mesh adapted with ηZ is able to produce a smaller error in the H1

seminorm than the global refinement, while the final reached accuracy is comparable in
the case of the L2 norm.

In Figure 26, we can observe how the behavior of ηN is very similar to the global
refinement strategy, at least for this last example. Therefore, in this case, both strategies
give comparable results in terms of accuracy and in terms of the order of convergence.

Figure 24. Error behavior for example 4 when ηR is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

Figure 25. Error behavior for example 4 when ηZ is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

Figure 26. Error behavior for example 4 when ηN is adopted. (Left) The estimated L2 norm of the
error is displayed. (Right) The estimated H1 seminorm is shown.

4. Discussion

The numerical results obtained with the proposed strategy are interesting and rather
promising. The introduction of an anomaly detection technique, with default parameters,
in place of deciding for a marking strategy, improves the robustness of the performance
of the three error estimators in terms of the reached accuracy per level of refinement.
Further research should be devoted to designing suitable algorithms to choose different
contamination settings, either for the IF or for other unsupervised techniques. At the

Algorithms 2021, 14, 328 19 of 20

current stage, we do not exploit the contamination parameter c at its best as only the top
percentage c anomalies are the triangles that will be refined. To improve the robustness of
the choice of which triangle should be neglected, an extra module should be added to the
algorithm in order to interact with the connectivity matrix for the produced triangulation
inside the FEM procedure. Moreover, other tools of unsupervised learning approaches
could be added; see, e.g., the recent work [33]. Thus far, by only using a fully automatic
setting, the residual-based error estimator ηR was the only one to correctly detect all
the boundary layers analyzed. A deeper statistical analysis could also be conducted by
taking into account more examples belonging to the same category, e.g., reaction-dominant
problems or convective-dominant problems, or only problems with circular layers or
parabolic layers, etc. Hence, the creation of a rich database would allow us to test and
to objectively validate the obtained results. Having robust strategies that allow for better
control and thus a smaller number of degrees of freedom is of fundamental importance,
not only from the computational point of view but also for better accuracy in reproducing
the observed physical phenomenon.

Author Contributions: Conceptualization, A.F. and M.L.S.; Data curation, A.F.; Investigation, A.F.
and M.L.S.; Methodology, A.F.; Software, A.F.; Validation, A.F.; Writing—original draft, A.F.; Writing—
review & editing, M.L.S. All authors have read and agreed to the published version of the manuscript.

Funding: The research of Antonella Falini was funded by PON Project AIM 1852414 CUP H95G180001-
20006 ATT1.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are members of the INdAM Research group GNCS.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brooks, A.N.; Hughes, T.J.R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular

emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 1982, 32, 199–259. [CrossRef]
2. Araya, R.; Aguayo, J.; Muñoz, S. An adaptive stabilized method for advection–diffusion–reaction equation. J. Comput. Appl. Math.

2020, 376, 112858. [CrossRef]
3. Speleers, H.; Manni, C.; Pelosi, F.; Sampoli, M.L. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction

problems. Comput. Methods Appl. Mech. Eng. 2012, 221, 132–148. [CrossRef]
4. Manni, C.; Pelosi, F.; Sampoli, M.L. Isogeometric analysis in advection–diffusion problems: Tension splines approximation. J.

Comput. Appl. Math. 2011, 236, 511–528. [CrossRef]
5. Zhang, Q.; Johansen, H.; Colella, P. A fourth-order accurate finite-volume method with structured adaptive mesh refinement for

solving the advection-diffusion equation. SIAM J. Sci. Comput. 2012, 34, B179–B201. [CrossRef]
6. John, V. A numerical study of a posteriori error estimators for convection-diffusion equations. Comput. Methods Appl. Mech. Eng.

2000, 190, 757–781. [CrossRef]
7. John, V.; Novo, J. A robust SUPG norm a posteriori error estimator for stationary convection-diffusion equations. Comput. Methods

Appl. Mech. Eng. 2013, 255, 289–305. [CrossRef]
8. Araya, R.; Poza, A.H.; Stephan, E.P. A hierarchical a posteriori error estimate for an advection-diffusion-reaction problem. Math.

Models Methods Appl. Sci. 2005, 15, 1119–1139. [CrossRef]
9. Gonzalez, M.; Strugaru, M. Stabilization and a posteriori error analysis of a mixed FEM for convection–Diffusion problems with

mixed boundary conditions. J. Comput. Appl. Math. 2021, 381, 113015. [CrossRef]
10. Jha, A. A residual based a posteriori error estimators for AFC schemes for convection-diffusion equations. Comput. Math. Appl.

2021, 97, 86–99. [CrossRef]
11. Tobiska, L.; Verfürth, R. Robust a posteriori error estimates for stabilized finite element methods. IMA J. Numer. Anal. 2015, 35,

1652–1671. [CrossRef]
12. Verfürth, R. A posteriori error estimators for convection-diffusion equations. Numer. Math. 1998, 80, 641–663. [CrossRef]
13. Morin, P.; Nochetto, R.H.; Siebert, K.G. Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 2000, 38, 466–488.

[CrossRef]
14. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [CrossRef]
15. Anitescu, C.; Atroshchenko, E.; Alajlan, N.; Rabczuk, T. Artificial neural network methods for the solution of second order

boundary value problems. Comput. Mater. Contin. 2019, 59, 345–359. [CrossRef]
16. Paszyński, M.; Grzeszczuk, R.; Pardo, D.; Demkowicz, L. Deep learning driven self-adaptive hp finite element method. In

International Conference on Computational Science; Springer: Cham, Switzerland, 2021; pp. 114–121.

http://doi.org/10.1016/0045-7825(82)90071-8
http://dx.doi.org/10.1016/j.cam.2020.112858
http://dx.doi.org/10.1016/j.cma.2012.02.009
http://dx.doi.org/10.1016/j.cam.2011.05.029
http://dx.doi.org/10.1137/110820105
http://dx.doi.org/10.1016/S0045-7825(99)00440-5
http://dx.doi.org/10.1016/j.cma.2012.11.019
http://dx.doi.org/10.1142/S0218202505000674
http://dx.doi.org/10.1016/j.cam.2020.113015
http://dx.doi.org/10.1016/j.camwa.2021.05.031
http://dx.doi.org/10.1093/imanum/dru060
http://dx.doi.org/10.1007/s002110050381
http://dx.doi.org/10.1137/S0036142999360044
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.32604/cmc.2019.06641

Algorithms 2021, 14, 328 20 of 20

17. Zhang, Z.; Wang, Y.; Jimack, P.K.; Wang, H. MeshingNet: A new mesh generation method based on deep learning. In International
Conference on Computational Science; Springer: Cham, Switzerland, 2020; pp. 186–198.

18. Papastavrou, A.; Verfürth, R. A posteriori error estimators for stationary convection-diffusion problems: A computational
comparison. Comput. Methods Appl. Mech. Eng. 2000, 189, 449–462. [CrossRef]

19. Verfürth, R. A Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. J. Comput. Appl. Math. 1994, 50, 67–83.
[CrossRef]

20. Hecht, F. New development in Freefem++. J. Numer. Math. 2012, 20, 251–265. [CrossRef]
21. George, P.L. Automatic mesh generation and finite element computation. Handb. Numer. Anal. 1996, 4, 69–190.
22. Hecht, F. BAMG: Bidimensional Anisotropic Mesh Generator. User Guide. INRIA Report. 1998. Available online: https://ww

w.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiPwYzcoYX0AhWFZd4KHQXmChEQFno
ECAYQAQ&url=http%3A%2F%2Fftp.tw.freebsd.org%2Fdistfiles%2Fbamg.pdf&usg=AOvVaw3ImBK9-1HO6KN5FtzyC7iu
(accessed on 4 November 2021).

23. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining,
Pisa, Italy, 15–19 December 2008; pp. 413–422.

24. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 2012, 6, 1–39.
[CrossRef]

25. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

26. Taylor, M.A.; Wingate, B.A.; Bos, L.P. Several New Quadrature Formulas for Polynomial Integration in the Triangle. Report No:
SAND2005-0034J. Available online: http://xyz.lanl.gov/format/math.NA/0501496 (accessed on 8 February 2007).

27. Falini, F.; Kanduč, T. A study on spline quasi-interpolation based quadrature rules for the isogeometric Galerkin BEM. In Advanced
Methods for Geometric Modeling and Numerical Simulation; Springer: Cham, Switzerland, 2019; pp. 99–125.

28. Hussain, F.; Karim, M.S.; Ahamad, R. Appropriate Gaussian quadrature formulae for triangles. Int. J. Appl. Math. Comput. 2012, 4,
24–38.

29. Huybrechs, D. Stable high-order quadrature rules with equidistant points. J. Comput. Appl. Math. 2009, 231, 933–947. [CrossRef]
30. McCorquodale, P.; Colella, P. A high-order finite-volume method for conservation laws on locally refined grids. Commun. Appl.

Math. Com. Sci. J. 2011, 6, 1–25. [CrossRef]
31. Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Evans, J.A.; Hughes, T.J.R.; Lipton, S.; Scott, M.A.; Sederberg, T.W. Isogeometric analysis

using T-splines. Comput. Methods Appl. Mech. Eng. 2010, 199, 229–263. [CrossRef]
32. Formaggia, L.; Micheletti, S.; Perotto, S. Anisotropic mesh adaptation in computational fluid dynamics: Application to the

advection-diffusion-reaction and the Stokes problem. Appl. Numer. Math. 2004, 51, 511–533. [CrossRef]
33. Falini, A.; Mazzia, F.; Tamborrino, C. Spline based Hermite quasi-interpolation for univariate time series. Discret. Contin. Dyn.

Syst. submitted.

http://dx.doi.org/10.1016/S0045-7825(99)00301-1
http://dx.doi.org/10.1016/0377-0427(94)90290-9
http://dx.doi.org/10.1515/jnum-2012-0013
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiPwYzcoYX0AhWFZd4KHQXmChEQFnoECAYQAQ&url=http%3A%2F%2Fftp.tw.freebsd.org%2Fdistfiles%2Fbamg.pdf&usg=AOvVaw3ImBK9-1HO6KN5FtzyC7iu
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiPwYzcoYX0AhWFZd4KHQXmChEQFnoECAYQAQ&url=http%3A%2F%2Fftp.tw.freebsd.org%2Fdistfiles%2Fbamg.pdf&usg=AOvVaw3ImBK9-1HO6KN5FtzyC7iu
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiPwYzcoYX0AhWFZd4KHQXmChEQFnoECAYQAQ&url=http%3A%2F%2Fftp.tw.freebsd.org%2Fdistfiles%2Fbamg.pdf&usg=AOvVaw3ImBK9-1HO6KN5FtzyC7iu
http://dx.doi.org/10.1145/2133360.2133363
http://xyz.lanl.gov/format/math.NA/0501496
http://dx.doi.org/10.1016/j.cam.2009.05.018
http://dx.doi.org/10.2140/camcos.2011.6.1
http://dx.doi.org/10.1016/j.cma.2009.02.036
http://dx.doi.org/10.1016/j.apnum.2004.06.007

	Introduction
	Problem Formulation
	Mesh Adaptation
	Residual Error Estimator
	A Zienkiewicz–Zhu Type Error Estimator
	Error Estimator Based on the Solution of Auxiliary Local Problems

	Anomaly Detection

	Numerical Results
	Example 1: A Reaction–Diffusion Problem
	Example 2: The Channel Test
	Example 3: The Pinched Domain
	Example 4: Parabolic and Exponential Boundary Layers

	Discussion
	References

