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NUMERICAL IRREDUCIBILITY CRITERIA FOR HANDLEBODY

LINKS

GIOVANNI BELLETTINI, MAURIZIO PAOLINI, AND YI-SHENG WANG

Abstract. In this paper we define a set of numerical criteria for a handlebody
link to be irreducible. It provides an effective, easy-to-implement method to

determine the irreducibility of handlebody links; particularly, it recognizes the

irreducibility of all handlebody knots in the Ishii-Kishimoto-Moriuchi-Suzuki
knot table and most handlebody links in the Bellettini-Paolini-Paolini-Wang

link table.

1. Introduction

A handlebody link HL is a union of finitely many handlebodies of positive genus
embedded in the 3-sphere S3; two handlebody links are equivalent if they are ambi-
ent isotopic [12], [3]. Throughout the paper handlebody links are non-split unless
otherwise specified.

A handlebody link HL is reducible if there exists a cutting 2-sphere S in S3 such
that S and HL intersect transversally at an incompressible disk D in HL (Fig. 1.1);
otherwise it is irreducible. Note that a cutting sphere S of a reducible handlebody
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Figure 1.1. A reducible handlebody link and its factors

link HL factorizes it into two handlebody links HL1,HL2, where HLi := HL∩Bi,
and Bi, i = 1, 2, are the closures of components of the complement S3 \S (Fig.
1.1); the factorization is denoted by

HL = (HL1, h1)--(HL2, h2), (1.1)

and we call HLi, i = 1, 2, a factor of the factorization, where h1, h2 are components
of HL1,HL2 containing D, respectively.

Handlebody links are often studied and visualized via diagrams of their spines
[3]; it is, however, not an easy task to detect the irreducibility of a handlebody link
from its diagram. The complexity lies in the IH-move [3]. In fact, it is not known
whether we have an affirmative answer to Conjecture 1.1 or Conjecture 1.21.

Conjecture 1.1. Every reducible handlebody link admits a minimal diagram whose
underlying plane graph is 1-edge-connected.

2010 Mathematics Subject Classification. 57M25, 57M27.

Key words and phrases. reducibility, handlebody links, knot sum.
1Conj. 1.1 implies Conj. 1.2 in some special cases [14, Theorem 2] and [1, Theorem 6.1].
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Conjecture 1.2. The crossing number of a reducible handlebody link is the sum
of crossing numbers of its factors:

c
(
(HL1, h1)--(HL2, h2)

)
= c(HL1) + c(HL2). (1.2)

If either conjecture is true, it implies the reducible handlebody link table [1,
Table 5] is complete, and thus, the irreducibility of all handlebody links in [1,
Table 1] but 69 can be proved by simply comparing their ksG-invariants [6]. The
invariant ksG(HL) is the number of conjugacy classes of homomorphisms from the
knot group GHL, the fundamental group of HL’s complement, to a finite group
G—two homomorphisms are in the same conjugacy class if they are conjugate.

We do not purse these conjectures here but instead introduce some numerical
criteria for a handlebody link to be irreducibile. Other irreducibility tests using
quandle invariants have been developed by Ishii and Kishmoto [4], and are used in
the classification of irreducible handlebody knots of genus 2 [5].
Main Results & Structure. A handlebody link HL is said to be of type
[n1, n2, ...nm] if it consists of ni handlebodies of genus i, i = 1, . . . ,m, and a han-
dlebody link is r-generator if its knot group is of rank r. Note that r is necessarily
larger than or equal to the genus g(HL) of HL, which is the sum

∑m
i=1 i·ni of genera

of components of HL. Let A4, A5 be alternating groups of degree 4, 5, respectively.

Theorem 1.3 (Necessary conditions for reducibility–A4). Let HL be a re-
ducible handlebody link of genus g. If the trivial knot is a factor of some factoriza-
tion of HL, then

12 | ksA4
(HL) + 6 · 3g−1 + 2 · 4g−1; (1.3)

if a 2-generator knot is a factor of some factorization of HL, then

12 + 24k | ksA4
(HL) + (6 + 16k) · 3g−1 + (2 + 6k) · 4g−1, k = 0 or 1; (1.4)

if a 2-generator link is a factor of some factorization of HL, then

48 + 24k | ksA4(HL) + (26 + 16k) · 3g−1 + (8 + 6k) · 4g−1, k = 0, 1, 2, 3 or 4. (1.5)

Theorem 1.4 (Necessary conditions for reducibility–A5). Let HL be a re-
ducible handlebody link of genus g. If the trivial knot is a factor of some factoriza-
tion of HL, then

60 | ksA5(HL) + 14 · 4g−1 + 19 · 3g−1 + 22 · 5g−1. (1.6)

From these necessary conditions we derive the irreducibility test for handlebody
knots of genus up to 3 and handlebody links of various types.

Corollary 1.5. Given a r-generator handlebody knot HL of genus g, if r = g + 1
and HL fails to satisfy either (1.3) or (1.6), then HL is irreducible; if r = g + 2
and HL fails to satisfy both (1.3) and (1.4), then HL is irreducible.

The situation with multi-component handlebody links is slightly more compli-
cated as there are more possible combinations; thus we summarize it in a tabular
format in Table 1, which is also a corollary of Theorems 1.3 and 1.4. The left two
columns in Table 1 list criteria which if a handlebody link fails, it is irreducible. Be
aware “& (i.e. and)” and “or” in those two columns.

The set of irreducibility criteria is put to test in Section 4; it detects the irre-
ducibility of all handlebody knots, which are of type [0, 1], in the Ishii-Kishimoto-
Moruichi-Suzuki knot table [5] and the irreducibility of all handlebody links, which
are of type [1, 1], [2, 1] or [3, 1], but two (69, 612), in the Bellettini-Paolini-Paolini-
Wang link table [1], showing that it is highly sensitive to the irreducibility of a
handlebody link.

The major constraint of the irreducibility test is that the rank of the knot group
GHL cannot be too large and the difference between the rank and the genus g(HL)
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Table 1. Tests for irreducibility of handlebody links (more than
one component)

no. of components type
r = g r = g + 1

HL is irreducible if it fails criterion/criteria

2

[1, 1] (1.3) or (1.6) (1.3) & (1.4)
[0, 2] (1.3) or (1.6) (1.3) & (1.4)

[1, 0, 1] (1.3) or (1.6) (1.3), (1.4) & (1.5)
[0, 1, 1] (1.3) or (1.6) not applicable

3
[2, 1] (1.3) & (1.5) (1.3), (1.4) & (1.5)
[1, 2] (1.3) & (1.5)

not applicable
[2, 0, 1] (1.3) & (1.5)

4 [3, 1] (1.3) & (1.5) not applicable

needs to be small; on the other hand, the criteria are easy to implement and can
be computed by a code.

The paper is organized as follows: Section 2 recalls basic properties of handle-
body links and knot groups. The necessary conditions for reducibility (Theorems
1.3 and 1.4) are proved in Section 3. Section 4 records results of the irreducibility
test applying to various families of handlebody links. Lastly, the existence of ir-
reducible handlebody links of any given type is proved by a concrete construction
making use of a generalized knot sum for handlebody links.

2. Preliminaries

Throughout the paper we work in the piecewise linear category. We use HL to
refer to general handlebody links (including handlebody knots), and use HK,K or
L when referring specifically for handlebody knots, knots or links, respectively. G•
denotes the knot group of • = HL,HK,K or L; ' stands for an isomorphism of
groups. To begin with, we review some basic properties of reducible handlebody
links and the free product of groups.

Definition 2.1. The rank rk(G) of a finitely generated group G is the smallest
cardinality of a generating set of G.

Definition 2.2. A handlebody link is r-generator if its knot group is of rank r.

The rank respects the free product of groups [2].

Lemma 2.1 (Grushko theorem). If G = G1 ∗G2, then

rk(G) = rk(G1) + rk(G2).

Lemma 2.2. A g-generator handlebody knot HK of genus g is trivial.

Proof. By the exact sequence of group homology [10], the deficiency d of the knot
group of HK is at most g; on the other hand, the Wirtinger presentation induces
a presentation with deficiency g, so we have d = g. By [7, Satz 1], [11], the knot
group is free, and therefore HK is trivial. �

The following are corollaries of Lemmas 2.1 and 2.2 and the fact that HL =
(HL1, h1)--(HL2, h2) implies then g(HL) = g(HL1) + g(HL2). The corollaries, to-
gether with Theorems 1.3 and 1.4, give Corollary 1.5 and Table 1.

Corollary 2.3. A (g + 1)-generator handlebody knot HK of genus g = 2, 3 is
reducible if and only if the trivial knot is a factor of some factorization of HK.

Corollary 2.4. A 2-component, g-generator handlebody link HL of genus g ≤ 5 is
reducible if and only if the trivial knot is a factor of some factorization of HL.
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Corollary 2.5. A genus g, (g + 1)-generator handlebody link HL of type [1, 1] or
[0, 2] is reducible if and only if the trivial knot or a 2-generator knot is a factor of
some factorization of HL.

Corollary 2.6. A 3- or 4-component, g-generator handlebody link HL of genus
g ≤ 5 is reducible if and only if the trivial knot or a 2-generator link is a factor of
some factorization of HL.

Corollary 2.7. A 5-generator handlebody link HL of type [1, 0, 1] or [2, 1] is re-
ducible if and only if the trivial knot, 2-generator knot, or 2-generator link is a
factor of some factorization of HL.

3. Irreducibility tests

3.1. Homomorphisms to a finite group.

Definition 3.1. Given a handlebody link HL and a finite group G, ksG(HL) is
the number of conjugacy classes of homomorphissm from GHL to G, ksGH(HL) is
the number of conjugacy classes of homomorphisms from GHL to a subgroup of G
isomorphic to H, and kswG(HL) is the number of homomorphisms from GHL to G.

Lemma 3.1. Suppose any subgroup of G either has trivial centralizer or is abelian,
and any two maximal abelian subgroups of G have trivial intersection. Let Hi,
i = 1, . . . , n, be isomorphism types of maximal abelian subgroups of G, and li be the
number of maximum abelian subgroups isomorphic to Hi. Then for any handlebody
link HL, ksG(HL) can be expressed in terms of kswG(HL) and ksGHi

(HL)

ksG(HL) = ksGH1
(HL) + · · ·+ ksGHn

(HL)− n+ 1

+
kswG(HL)− l1(kswH1

(HL)− 1)− · · · − ln(kswHn
(HL)− 1)− 1

|G|
. (3.1)

Proof. The difference

ksG(HL)−
(
ksGH1

(HL) + · · ·+ ksGHn
(HL)− n+ 1

)
(3.2)

is the number of conjugacy classes of homomorphisms GHL → G whose images have
trivial centralizers. On the other hand, for such a homomorphism φ, we have

φ 6= g · φ · g−1,

for any non-trivial element g ∈ G, and hence the conjugacy class of φ contains |G|
members. Now, since the intersection of any two maximal abelian subgroups is
trivial, the difference

kswG(HL)− l1(kswH1
(HL)− 1)− · · · − ln(kswHn

(HL)− 1)− 1 (3.3)

is the number of homomorphisms GHL → G whose images have trivial centralizers.
Therefore dividing (3.3) by |G| gives us (3.2), that is,

kswG(HL)− l1(kswH1
(HL)− 1)− · · · − ln(kswHn

(HL)− 1)− 1

|G|
= ksG(HL)−

(
ksGH1

(HL) + · · ·+ ksGHn
(HL)− n+ 1

)
,

and this proves the formula (3.1). �

It is not difficult to check that A4, A5 satisfy conditions in Lemma 3.1, whence
we derive the following formulas.
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Corollary 3.2. Let Zn be the cyclic group of order n, and V4 ' Z2 ⊕ Z2. Then

ksA4(HL) = ksA4

V4
(HL) + ksA4

Z3
(HL)− 1 +

kswA4
(HL)− 4(kswZ3

(HL)− 1)− kswV4
(HL)

12
(3.4)

ksA5(HL) = ksA5

V4
(HL) + ksA5

Z3
(HL) + ksA5

Z5
(HL)− 2 (3.5)

+
kswA5

(HL)− 10(kswZ3
(HL)− 1)− 5(kswV4

(HL)− 1)− 6(kswZ5
(HL)− 1)− 1

60
.

Given an injective homomorphism H
ι−→ G, then the number nH of conjugacy

classes of elements in G representable by elements in ι(H) is independent of ι if
any two subgroups of G isomorphic to H are conjugate. If furthermore ι(H) is a
maximal abelian subgroup with ι(H) being the centralizer of every element in ι(H),
then kswH(HL), ksGH(HL) can be computed explicitly.

Lemma 3.3. Under the assumptions preceding the lemma, if g(HL) = g, then

kswH(HL) = |H|g and ksGH(HL) = (nH − 1) · |H|
g − |H|
|H| − 1

+ nH .

Proof. Firstly, since H is abelian, any homomorphism from GHL to H factors
through the abelianization of GHL, which is the free abelian group Zg of rank g.
Especially, kswH(HL) (resp. ksGH(HL)) is equal to the numbers (resp. of conjugacy
classes) of homomorphisms from Zg to H. This implies the first identity.

For the second identity, we let

ksGH(HL) = lg

and id, h2, . . . , hnH
∈ ι(H) < G be selected representatives of the nH conjugacy

classes of elements in G. Note that if g = 1, we have l1 = nH .
For g > 1, up to conjugation, we may assume the g-th copy of Zg is sent to

h ∈ {id, h2 . . . , hnH
}. There are lg−1 homomorphisms when h = id, and |H|g−1

homomorphisms when h = hi, i = 2, . . . , nH , because the centralizer of hi is ι(H).
As a result, we obtain the recursive formula

lg = lg−1 + (nH − 1) · |H|g−1,

and hence

lg − l1 =

g∑
k=2

(lk − lk−1) =

g∑
k=2

(nH − 1) · |H|k−1 = (nH − 1) · |H|
g − |H|
|H| − 1

. (3.6)

This implies the second equality after we substitute l1 = nH into (3.6). �

Maximal abelian subgroups of A4, A5 satisfy conditions assumed in Lemma 3.3,
and hence we have the formulas:

kswZ3
(HL) = 3g; kswV4

(HL) = 4g; kswZ5
(HL) = 5g, (3.7)

ksA4

Z3
(HL) = 3g; ksA4

V4
(HL) =

4g − 4

3
+ 2, (3.8)

ksA5

Z3
(HL) =

3g − 3

2
+ 2; ksA5

V4
(HL) =

4g − 4

3
+ 2, ksA5

Z5
(HL) =

5g − 5

2
+ 3,

(3.9)

Plugging (3.7), (3.8) into (3.4), and (3.7), (3.9) into (3.5) gives the following:

Corollary 3.4. For a genus g handlebody link HL, we have

kswA4
(HL) = 12ksA4

(HL)− 8 · 3g − 3 · 4g

kswA5
(HL) = 60ksA5(HL)− 20 · 3g − 15 · 4g − 24 · 5g.
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For the sake of convenience, we let ksG(G′) denote the set of conjugacy classes
of homomorphisms from G′ to G; especially, we have ksG(HL) = |ksG(GHL)|.

Lemma 3.5. For a 2-generator knot K, ksA4
(K) = 4 or 6. In each case, ksA4

(GK)
contains four conjugacy classes represented by homomorphisms whose images are
abelian. If ksA4(K) = 6, the two additional conjugacy classes are represented by
surjective homomorphisms.

Proof. Since any non-surjective homomorphism φ : GK → A4 factors throught the
abelianization of GK , Im(φ) is either trivial or isomorphic to Z2 or Z3. By (3.8),
the number of conjugacy classes of non-surjective homomorphisms are

ksA4

V4
(K) + ksA4

Z3
(K)− 1 = 3 + 2− 1 = 4,

and hence ksA4
(K) ≥ 4.

Now, consider a two-generator presentation of GK

< a, b | w(a, b) = 1 > (3.10)

and its abelianization:

GK
π−→ GK/[GK , GK ] ' Z =< g >; (3.11)

let g3n+l, g3n
′+l′ be the image of a, b under (3.11), respectively. Suppose both l and

l′ are non-zero, then either 3 | l′ − l or 3 | l′ − 2l. If 3 | l′ − l, we replace b with b′

by b′ = a−1b; this implies a new presentation of GK :

GK =< a, b′ | w′(a, b′) = 1 >,

where w′(a, b′) = w(a, ab′), and b′ vanishes under the composition

GK
π−→ GK/[GK , GK ] ' Z ±−→ Z3 ' A4/[A4, A4].

Similarly, if 3 | 2l− l′, we replace b with b′′ by b′′ = a−2b to get a new presentation

GK =< a, b′′ | w′′(a, b′′) = 1 >,

where w′′(a, b′′) = w(a, a2b′′), and b′′ vanishes under the composition

GK
π−→ GK/[GK , GK ] ' Z ±−→ Z3 ' A4/[A4, A4].

Therefore, given a surjective homomorphism φ, we may assume φ(b) in (3.10) is
in the commutator of A4 and of order 2 and φ(a) is of order 3. Up to conjugation,
there are only two such homomorphisms: one corresponds to φ(a) = (123), the
other φ(a) = (132); note that every two elements of order 2 in A4 are conjugate
with respect to (123) or (132). This shows there are at most two surjective homo-
morphisms from GK to A4, and they always appear in pairs because there exists
an automorphism of A4 sending (123) to (132), namely

Φ(23) : A4 → A4

x 7→ (23)x(23), (3.12)

�

Lemma 3.6. If L is a 2-generator link, then ksA4(L) is 14, 16, 18, 20 or 22. In
each case, ksA4

(GL) contains 14 elements represented by homomorphisms whose
images are abelian. If ksA4

(L) > 14, then any additional conjugacy class is repre-
sented by surjective homomorphisms.

Proof. Suppose φ : GL → A4 is non-surjective, then it factors through the abelian-
ization of GL, so by (3.8), the number of conjugacy classes of non-surjective homo-
morphism can be computed by

ksA4

V4
(K) + ksA4

Z3
(K)− 1 = 9 + 6− 1 = 14,
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and particularly, ksA4
(L) ≥ 14.

Suppose φ : GL → A4 is onto, and

< a, b | w(a, b) = 1 >

is a presentation of GL. Then either both φ(a) and φ(b) are of order 3 or one of
them is of order 3 and the other order 2. In the former case, up to conjugation,
there are four possibilities:

I : φ(a) = (123), φ(b) = (124);

II : φ(a) = (123), φ(b) = (142);

III : φ(a) = (132), φ(b) = (124);

IV : φ(a) = (132), φ(b) = (142).

By (3.12) w(φ(a), 124) = 1 if and only if w(Φ(23)

(
φ(a)

)
, (142)) = 1 since

w(Φ(23)(φ(a)), (124)) = Φ(23)

(
w(φ(a), (134))

)
= Φ(23)

(
(123)w

(
φ(a), (142)

)
(132)

)
.

Therefore, I and IV appear in pair; so do II and IV, for a similar reason. Now, if
one of φ(a) and φ(b) is of order 2, we also have four possibilities:

I′ : φ(a) = (123), φ(b) = (12)(34);

II′ : φ(a) = (132), φ(b) = (12)(34);

III′ : φ(a) = (12)(34), φ(b) = (123);

IV′ : φ(a) = (12)(34), φ(b) = (132).

They appear in pairs as in the previous case. Thus, ksA4(L) is an even integer
between 14 and 22. �

3.2. Necessary conditions for reducibility. We divide the proof of Theorems
1.3 and 1.4 into three lemmas.

Lemma 3.7. Given a reducible handlebody link HL of genus g, if the trivial knot
is a factor of some factorization of HL, then

12 | ksA4(HL)+6·3g−1+2·4g−1 and 60 | ksA5(HL)+14·4g−1+19·3g−1+22·5g−1.

Proof. By the assumption, the knot group GHL is isomorphic to the free product
Z ∗GHL′ , where HL′ is a handlebody link of genus g − 1.

Recall that ksA4(Z) contains four elements by (3.8); let φ1, φ2, φ
1
3, φ

2
3 be ho-

momorphism representing these four conjugacy classes with Im(φ1) trivial, Im(φ2)
isomorphic to Z2, and Im(φi3), i = 1, 2 isomorphic to Z3. Then observe that, given
a homomorphism φ : GHL → A4; by conjugating with some elements in A4, we may
assume its restriction φ|Z is one of

{φ1, φ2, φ13, φ23}.

Case 1: φ|Z = φ1. Let φ, ψ : GHL → A4 be two homomorphisms with

φ|Z = ψ|Z = φ1.

Then they are in the same conjugacy class if and only if their restrictions φ|GHL′ , ψ|GHL′

are conjugate, so there are ksA4(HL′) conjugacy classes in Case 1.
Case 2: φ|Z2

= φ2. Let φ, ψ : GHL → A4 be two homomorphisms with

φ|Z = ψ|Z = φ2.

Then they are in the same conjugacy class if and only if

φ|GHL′ = g · ψ|GHL′ · g−1, for some g ∈ V4.
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Hence in case 2, the number of conjugacy classes is

kswA4
(HL′)− kswV4

(HL′)

4
+ kswV4

(HL′).

Case 3: φ|Z = φi3, i = 1 or 2. Let φ, ψ : GHL → A4 be two homomorphisms with

φ|Z = ψ|Z = φi3, i = 1(resp. 2).

Then they are in the same conjugacy class if and only if

φ|GHL′ = g · ψ|GHL′ · g−1, for some g ∈ Im(φi3), i = 1(resp. 2),

and therefore for each i, there are

kswA4
(HL′)− kswZ3

(HL′)

3
+ kswZ3

(HL′)

conjugacy classes.
Summing the three cases up gives the formula of ksA4

(HL) in terms of the ks-
invariants of HL′:

ksA4
(HL) = ksA4

(HL′) +
kswA4

(HL′)− kswV4
(HL′)

4
+ kswV4

(HL′)

+ 2 ·

(
kswA4

(HL′)− kswZ3
(HL′)

3
+ kswZ3

(HL′)

)
. (3.13)

Combining (3.13) with (3.7) and Corollary 3.4, we get the equation

ksA4(HL) = 12 · ksA4(HL′)− 6 · 3g−1 − 2 · 4g−1,
which implies the first assertion.
ksA5

(HL) can be computed in a similar manner. First note that ksG(Z) contains
five elements by (3.9), and they are represented by homomorphisms

φ1, φ2, φ3, φ
1
5, φ

2
5, (3.14)

with Im(φ1) trivial, Im(φ2) isomorphic to Z2, Im(φ3) isomorphic to Z3, and Im(φi5), i =
1, 2, isomorphic to Z5. As with the case of A4, given a homomorphism φ : GHL →
A5, by conjugating with some element in A5, we may assume its restriction on
Z is one of the representing homomorphisms in (3.14). The number of conjugacy
classes of homomorphisms that restrict to φ1 is ksA5

(L) and the number of conju-
gacy classes of homomorphisms that restrict to φ2, φ3, or φi5, i = 1, 2, is

kswA5
(HL′)− kswV4

(HL′)

4
+ kswV4

(HL′),

kswA5
(HL′)− kswZ3

(HL′)

3
+ kswZ3

(HL′),

or
kswA5

(HL′)− kswZ5
(HL′)

5
+ kswZ5

(HL′),

respectively, and summing them up givues the formula of ksA5
(HL):

ksA5
(HL) = ksA5

(HL′) +
kswA5

(HL′)− kswV4
(HL′)

4
+ kswV4

(HL′)

+
kswA5

(HL′)− kswZ3
(HL′)

3
+ kswZ3

(HL′)

+ 2 ·

(
kswA5

(HL′)− kswZ5
(HL′)

5
+ kswZ5

(HL′)

)
. (3.15)

The formula (3.15), together with (3.7) and Corollary 3.4, implies the identity:

ksA5
(HL) = 60 · ksA5

(HL′)− 19 · 3g−1 − 14 · 4g−1 − 22 · 5g−1,
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and thus the second assertion. �

Lemma 3.8. Given a reducible handlebody link HL of genus g, if a 2-generator
knot K is a factor of some factorization of HL, then

12 + 24k | ksA4
(HL) + (6 + 16k) · 3g−1 + (2 + 6k) · 4g−1,

where k = 0 or 1.

Proof. By the assumption the knot group GHL is isomorphic to the free product
GK∗GHL′ , where HL′ is a handlebody link of genus g−1. By Lemma 3.5, ksA4

(GK)
might have two more elements than ksA4(Z). Let φ1s, φ

2
s be representing surjective

homomorphisms of these two conjugacy classes. Then, since two homomorphisms

φ, ψ : GHL → A4 with φ|GK
= ψ|GK

= φis, i = 1 or 2 (3.16)

are conjugate if and only if

φ|G′
HL

= ψ|GHL′ .

there are kswA4
(HL′) conjugacy classes of homomorphisms with the property (3.16).

Adding this to (3.13), we obtain

ksA4
(HL) = ksA4

(HL′) +
kswA4

(L)− kswV4
(HL′)

4
+ kswV4

(HL′)

+ 2 ·

(
kswA4

(HL′)− kswZ3
(HL′)

3
+ kswZ3

(HL′)

)
+ 2k · kswA4

(HL′), (3.17)

where k = 0 or 1. Plugging (3.7) and Corollary 3.4 into (3.17) implies the identity:

ksA4(HL) = (12 + 24k) · ksA4(HL′)− (6 + 16k) · 3g−1 − (2 + 6k) · 4g−1, k = 0 or 1,

and therefore the assertion. �

Lemma 3.9. Given a reducible handlebody link HL of genus g, if a 2-generator
link L is a factor of some factorization of HL, then

48 + 24k | ksA4
(HL) + (26 + 16k) · 3g−2 + (8 + 6k) · 4g−2,

where k = 0, 1, 2, 3, or 4.

Proof. By the assumption, the knot group GHL is isomorphic to the free product
GL∗GHL′ , where HL′ is a handlebody link of genus g−2. By Lemma 3.6, ksA4(GL)
contains 14 + 2k elements, k = 0, 1, 2, 3, or 4, where one conjugacy class for the
trivial homomorphism, five for non-trivial homomorphisms whose images are in V4,
eight for homomorphisms whose images isomorphic to Z3, and 2k for surjective
homomorphisms. The same argument as in the proof of Lemmas 3.7 and 3.8 gives

ksA4
(HL) = ksA4

(HL′) + 5 ·

(
kswA4

(HL′)− kswV4
(HL′)

4
+ kswV4

(HL′)

)

+ 8 ·

(
kswA4

(HL′)− kswZ3
(HL′)

3
+ kswZ3

(HL′)

)
+ 2k · kswA4

(HL′), (3.18)

where k = 0, 1, 2, 3, or 4. Plugging (3.7) and Corollary 3.4 into (3.18), we obtain

ksA4(HL) = (48 + 24k) · ksA4(HL′)− (26 + 16k) · 3g−2 − (8 + 6k) · 4g−2

and hence the lemma. �
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4. Examples

4.1. Applications to handlebody knot/link tables. Irreducibility of handle-
body knots in [5] and handlebody links in [1] are examined here with the irre-
ducibility criteria (Corollary 1.5 and Table 1). The ksA4

-and ksA5
-invariants of

handlebody links are computed by the Appcontour [9]; the same software is also
used to find an upper bound of the rank of each knot group. In many cases, the
upper bound is identical to the rank.

Table 2. Irreducibility of Ishii, Kishimoto, Moriuchi and Suzuki’s
handlebody knots

handlebody knot rank ksA4
A4-criterion (1.3) ksA5

A5-criterion (1.6)
HK 41 3 30 X 156 X
HK 51 3 22 ? 111 X
HK 52 3 30 X 156 X
HK 53 3 30 X 105 X
HK 54 3 22 ? 365 X
HK 61 3 30 X 143 X
HK 62 3 30 X 105 X
HK 63 3 22 ? 83 X
HK 64 3 22 ? 111 X
HK 65 3 22 ? 97 X
HK 66 3 22 ? 97 X
HK 67 3 30 X 157 X
HK 68 3 22 ? 105 X
HK 69 3 30 X 146 X
HK 610 3 22 ? 195 X
HK 611 3 22 ? 73 X
HK 612 3 30 X 135 X
HK 613 3 30 X 156 X
HK 614 3 46 ? 353 X
HK 615 3 46 ? 353 X
HK 616 3 22 ? 267 X

The results of the irreducibility test are recorded in Tables 2 and 3, where the
check mark X stands for the corresponding condition(s) not satisfied, and hence
the handlebody link is irreducibile, and the question mark means the opposite, so
its irreducibility is inconclusive. To avoid confusion, HK is added to the name of
each handlebody knot in [5]; so is HL to the name of each handlebody link in [1].

Since all handlebody knots in [5] are 3-generator, by Corollary 1.5, if either 12
does not divide ksA4

(HK) + 26, or 60 does not divide ksA5
(HK) + 223, HK is

irreducible. On the contrary, in Table 3 different criteria are required to test each
case, depending on the rank and the number of component (the column “comp.”)
based on Table 1. For instance, for a 3-generator handlbody link of type [1, 1], such
as HL 41, if it fails either of (1.3) and (1.6), it is irreducible. But, for HL 51, which
is possibly 4-generator, we need to have both (1.3) and (1.4) failed in order to draw
a conclusion; also, the A5 criterion is not applicable in this case.

4.2. Irreducible handlebody links of a given type. Here we present a con-
struction of irreducible handlebody link of any given type. First we introduce the
notion of D-irreducibility for handlebody-link-disk pairs.
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Table 3. Irreducibility of handlebody links in [1]

comp. handlebody link rank ksA4 A4-criterion ksA5 A5-criterion

2

HL 41 3 114 X 600 X
HL 51 ≤ 4 98 X 660 not applicable
HL 61 3 90 X 600 X
HL 62 3 106 ? 689 X
HL 63 3 90 X 469 X
HL 64 3 106 ? 689 X
HL 65 ≤ 4 210 X 4020 not applicable
HL 66 3 130 ? 1380 X
HL 67 ≤ 4 98 X 597 not applicable
HL 68 3 114 X 1401 X

3

HL 69 4 310 ? 1841 not applicable
HL 610 4 326 X 2636 not applicable
HL 611 4 486 X 5876 not applicable
HL 612 4 502 ? 5883 not applicable
HL 613 4 822 X 19308 not applicable
HL 614 4 486 X 5876 not applicable

4 HL 615 5 1242 X 12072 not applicable

Definition 4.1 (D-irreducibility). A handlebody link HL is D-irreducible if ei-

ther its complement S3 \HL admits no incompressible disks or it is a trivial knot.
A handlebody-link-disk pair (HL, D) is a handlebody link HL together with an in-
compressible disk D ⊂ HL. The pair (HL, D) is D-irreducible if there exists no

incompressible disk D′ in the complement S3 \HL with D′ ∩ D = ∅. An unknot
with a meridian disk is the trivial D-irreducible handlebody-link-disk pair.

D-irreducibility is equivalent to irreducibility for genus g ≤ 2 handlebody knots
[15] but stronger in general [13, Examples 5.5-6], [1, Remark 3.3]. Any D-irreducible
handlebody link with an incompressible disk is a D-irreducible pair. On the other
hand, the underlying handlebody link of a D-irreducible handlebody-link-disk pair
could be trivial (left handlebody-knot-disk pair in Fig. 4.2a).

Definition 4.2 (Knot sum). The knot sum of two handlebody-link-disk pairs
(HL1, D1), (HL2, D2) is a handlebody link (HL1, D1)#(HL2, D2) obtained by gluing

HL1,HL2 together as follows: first remove a 3-ball B1 (resp. B2) with B̊1 ∩ HL1

(resp. B̊2∩HL2) a tubular neighborhood N(D1) of D1 (resp. N(D2) of D2) from S3,

where N(D1) (resp. N(D2)) can be identified with the oriented 3-manifold D1×[0, 1]
(resp. D2× [0, 1]) using the given orientation on D1 (resp. D2). Then the knot sum

is given by gluing resultant 3-manifolds S3 \B1,S3 \B2 via an orientation-reversing
homeomorphism f : ∂B1 → ∂B2 with f(D1 × {i}) = D2 × {j}, i− j ≡ 1 mod 2.

B1

D1 × {1}

B2

D1 × {0} D2 × {1}

D2 × {0}

Figure 4.1. Knot sum of HK 41 and HK 51 with meridian disks

The knot sum resembles the order-2 connected sum of spatial graphs [8].
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Theorem 4.1. The knot sum of two non-trivial D-irreducible handlebody-link-disk
pairs (HL1, D1), (HL2, D2) is D-irreducible.

Proof. We prove by contradiction. Suppose the knot sum

HL ' (HL1, D1)#(HL2, D2)

is not D-irreducible, and D is an incompressible disk in S3 \HL.

Let B be the 3-ball such that B∩S3 \HL is the complement of HL2, and denote

the intersection annulus S3 \HL ∩ ∂B by A. Isotopy D such that the number of
components of A ∩D is minimized.
Claim: A ∩D = ∅. Suppose the intersection is non-empty, then we can choose a
component α of A ∩D that is innermost in D. α must be an arc, for otherwise it
would contradict either the D-irreducibility of (HLi, Di) or the minimality. α cuts
D into two disks, one of which, say D′, has no intersection with A. Without loss
of generality, we may assume D′ is in S3 \B.

If α is essential in A, then HL1 is equivalent to the union of a tubular neighbor-
hood of α in B and S3 \B ∩ HL in S3. Since D′ ∩ ∂D is an arc connecting two
sides of D1 in HL1, D1 is not separating and therefore a meridian disk of HL1. In
addition, D′ and ∂D1 intersect at only one point, so (HL1, D1) is either trivial or
not D-irreducible, contradicting the assumption.

If α is inessential in A, let D′′ be the disk cut off from A by α. Then D′ ∪D′′ is
a compressing disk in HL1. If ∂(D′ ∪D′′) is inessential in ∂HL1, the intersection
α can be removed—with other intersection arcs intact—by isotopying A. On the
other hand, the D-irreducibility of (HL1, D1) forces ∂(D′ ∪D′′) to be inessential in
∂HL1. Thus, we have proved the claim, from which the theorem follows readily. �

L#

incompressible disk

L

(a) Knot sum with a link L

K1
K2

K3

chain of rings

(b) Irreducibile handlebody link of type [2, 1, 1]

Figure 4.2

In Fig. 4.2, K1,K2,K3, L are knots or links; if L in Fig. 4.2a is the composition
of two Hopf links, the resulting knot sum is HL 612. Hence its irreducibility, which
cannot be seen by our irreducibility test, follows from Theorem 4.1. The following
corollary generalizes Suzuki’s example [13, Theorem 5.2].

Corollary 4.2. Given m non-negative integers n1, n2, . . . , nm with n :=
∑
ni > 0,

there is an irreducible handlebody link of type [n1, n2, . . . , nm].

Proof. Consider a chain of rings with n-component—a knot sum of n−1 Hopf links
(Fig. 4.2b). Label each ring with a number in {1, 2, . . . , n}, and for the ring with
label k,

l−1∑
i=1

ni < k ≤
l∑
i=1

ni,

we consider its knot sum with an irreducible handlebody knot of genus l, which can
be obtained by performing the knot sum operation iteratively on handlebody knots
in [5] with meridian disks (Fig. 4.1). The resultant handlebody link is necessarily
irreducible by Theorem 4.1 and of the prescribed type. �
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