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Abstract

Tandem repeats are repeated sequences that occur adjacent to
each other in the human genome. Due to their prevalence and
their association with a number of genetic diseases, there is a
rising interest in developing tools for tandem repeat profiling.
Genome-wide discovery approaches are needed to fully understand
their roles in health and disease but resolving tandem repeat vari-
ation accurately remains a very challenging task. Indeed, while
traditional mapping-based and assembly-based approaches using
short-read data have severe limitations in the size and type of tan-
dem repeats they can resolve, recent third-generation sequencing
technologies provide the long reads required to broaden the scope
of detectable tandem repeats but exhibit substantially higher se-
quencing error rates that complicates repeat resolution.
In order to overcome limitations of prior methods, we developed
TRiCoLOR, a freely-available tool for tandem repeat profiling
using error-prone long reads from third-generation sequencing
technologies.
The method can identify repetitive regions in long-read sequenc-
ing data de novo and resolve their motif and multiplicity in a
haplotype-specific manner. The tool further includes methods
to interactively visualize the identified repeats and to trace their
Mendelian consistency in pedigrees.
Tested on synthetic data harboring tandem repeat contractions
and expansions, TRiCoLOR demonstrates excellent performances
and improved precision and recall compared to alternative tools.
For real human whole-genome sequencing data, TRiCoLOR achieves
high validation rates, suggesting its suitability to identify tandem
repeat variation in personal genomes.
Compared to assembly-based approaches for structural variant
detection, TRiCoLOR demonstrates capable to resolve tandem
repeats in difficult to assemble regions that are prone to misas-
semblies or incorrect repeat assignments.
TRiCoLOR is open-source and implemented in python 3, with sup-
porting C++ code and bash scripts. The tool is released through
GitHub (https://github.com/davidebolo1993/TRiCoLOR) and as a
docker image (https://hub.docker.com/r/davidebolo1993/tricolor),
with accompanying documentation.

https://github.com/davidebolo1993/TRiCoLOR
https://hub.docker.com/r/davidebolo1993/tricolor
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Introduction 1

DNA sequencing evolves quickly. Barely 40 years have passed
since the initial sequencing method has been developed in 1977
by Frederick Sanger and colleagues (Sanger et al., 1977). This
revolutionary study triggered the improvement of new methods
that have provided great opportunities for fast, low-cost and high-
throughput DNA sequencing. Indeed, strikingly after the Human
Genome Project1, the time interval between emerging sequencing
technologies has been substantially reduced while the amount of
sequenced data has grown exponentially (Ari and Arikan, 2016).
Considering Sanger sequencing as the first generation, new gener-
ations of DNA sequencing have been introduced subsequently and
are collectively known as Next Generation Sequencing (NGS).
Some of the biggest technical challenges that are associated with
NGS are caused by repetitive DNA (Alkan et al., 2011), i.e. DNA
sequences that are similar or identical to others elsewhere in the
genome. From a computational perspective, repeats create ambi-
guities in alignment and in genome assembly which, in turn, can
produce errors when interpreting results.
The sections below describe the main aspects of the different se-
quencing generations as well as the challenges that are posed by

1https://www.genome.gov/human-genome-project.
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1. Introduction

repeats for genome resequencing projects and de novo genome
assembly.

1.1 Sanger Sequencing: The First Generation

In 1977, Sanger and colleagues announced a new method for deter-
mining the nucleotide sequence in DNA, which is nowadays known
as Sanger method. The technique was first applied to the DNA
of bacteriophage �X174 and significantly improved over the plus
and minus method from the same authors (Sanger and Coulson,
1975).
The Sanger method takes inspiration from a previous work that
demonstrated the inhibitory activity of Dideoxythymidine Triphos-
phates (ddTTPs) on DNA polymerase I. Indeed, ddTTPs lack the
30 hydroxyl group needed to form the phosphodiester bond be-
tween one nucleotide and the next during DNA strand elongation
and hence cause a chain termination reaction when incorporated
into the nascent fragment by the DNA polymerase (Atkinson
et al., 1969).
If an oligonucleotide primer and single-stranded target DNA
are incubated in the presence of a mixture of Deoxythymidine
Triphosphates (dTTPs) and ddTTPs, as well as the other three
Deoxyribonucleotide Triphosphates (dNTPs), one of which 32P-
radiolabeled, a mixture of fragments having all the same 50 and
with a ddTTP residue at the 30 ends is obtained. When this
mixture is fractioned by electophoresis on acrylamide gel, the
pattern of bands shows the distribution of dTTPs in the newly
synthetized DNA. By using analogous terminators for the other
nucleotides in separate incubations and running the samples in
parallel on acrylamide gel (i.e. one lane for each type of dNTP),
a pattern of bands is obtained, from which the entire sequence of
the newly synthetized DNA can be deducted (Metzker, 2005).
Significant improvements to the Sanger method have been intro-
duced over the years, including: (1) the development of fluorescent
terminator dyes to eliminate the risk caused by the radioisotopes
used for labelling; (2) the introduction of thermal-cycle sequencing
to reduce the quantity of required input DNA and thermostable
polymerases to efficiently and accurately incorporate the termi-
nator dyes into the growing DNA strands; (3) the replacement
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of acrylamide gel electophoresis with multichannel capillary elec-
trophoresis powered by automated, refillable and reusable capil-
laries, and the introduction of electrokinetic sample loading.
Since 1987, the leader in automated Sanger sequencing is Applied
Biosystems (nowadays part of Thermo Fisher Scientific). Their
sequencers all utilize fluorescent dyes and capillary electrophoresis
(from 4 to 48–96 capillaries) and generate 600–1000 bases of accu-
rate sequence (Slatko et al., 2018). Automated Sanger sequencing
platforms from Applied Biosystems were successfully utilized in
the sequencing of the first human genome (Lander et al., 2001),
taking into account 13 years of efforts of the Human Genome
Project consortium and with an estimated cost of $2.7 billion.
Although relatively slow and not as cost-effective for high num-
bers of targets when compared to current NGS standards, the
Sanger method remains the most appropriate sequencing strat-
egy for applications where high throughput is not required (e.g.
verify plasmid constructs or Polymerase Chain Reaction (PCR)
products). Moreover, Sanger sequencing is currently used to com-
plement NGS in regions that are notorously difficult-to-sequence
(e.g. GC-rich and low-complexity regions), and to confirm NGS
results (Behdad et al., 2015; Mu et al., 2016).

1.2 Second Generation Sequencing

In the 2000s, the concept of DNA sequencing underwent drastic
changes. Particularly, the shotgun sequencing strategy2, which
was introduced during the Human Genome Project, laid the foun-
dation for massively parallel sequencing. At the time, the release
of the first truly high-throughput sequencing platform by Lynx
Therapeutics (later purchased by Illumina) heralded a 50000-fold
drop in the cost of human genome sequencing since the Human

2
In shotgun sequencing, the starting DNA is broken up randomly into

many small pieces, sort of in a shotgun fashion, with each of those pieces

then sequenced individually. The resulting sequence reads generated from the

different pieces are then analyzed by means of dedicated softwares, looking

for stretches of sequence from different reads that are identical with one

another. When identical regions are identified, they are overlapped with one

another, allowing the two sequence reads to be stitched together. This process

is repeated over and over and over again, eventually yielding the complete

sequence of the starting piece of DNA.
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Genome Project and marked the beginning of Second Generation
Sequencing (SGS)
The major advance offered by SGS is the ability to produce an
enormous volume of data, in several cases in excess of one billion
short reads per instrument run, as well as to deliver fast and
cost-effective genomic informations if compared to sequencing
strategies based on the Sanger method (Barba et al., 2013). SGS
approaches can be broadly classified into Sequencing By Liga-
tion (SBL) and Sequencing By Synthesis (SBS) approaches.
On the one hand, in SBL approaches a probe sequence that is
bound to a fluorophore hybridizes to a template3 and is ligated to
an adjacent oligonucleotide for imaging. The emission spectrum of
the fluorophore indicates the identity of the bases complementary
to specific positions within the probe. On the other, in SBS ap-
proaches, a polymerase is used and a signal, such as a fluorophore
or a change in ionic concentration, identifies the incorporation of
a nucleotide into the elongating strand.
Both in SBL and SBS approaches the template is first clonally
amplified, usually on a solid surface. Indeed, having many thou-
sands of identical copies of a DNA fragment in a defined area
ensures that the signal can be distinguished from background
noise. Moreover,the creation of millions of individual SBL/SBS
reaction centres (each having its own clonal template), guarantees
massive parallelization (Goodwin et al., 2016). Available strategies
for clonal amplification of a template are summarized in Figure 1.
The first step of template generation is fragmentation4 of the
sample DNA followed by ligation to a common adaptor set for
clonal amplification and sequencing.
In bead-based preparations (Figure 1, panel A), the template
is hybridized to bead-bound primers. By means of Emulsion
PCR (emPCR) the template is amplified so that, at the end, thou-
sands of clonal DNA fragments are immobilized on a single bead.
Beads can in turn be distributed onto a glass surface (Jae et al.,
2007) or arrayed on a PicoTiterPlate (Leamon et al., 2003).
In solid-state strategies (Figure 1, panel B and C), amplification
is achieved directly on a slide. Forward and reverse primers are

3
DNA fragment that has to be sequenced.

4
Fragmentation of a large DNA fragment into smaller fragments can be

achieved mechanically (e.g. by passing the DNA through a narrow passage),

by sonication or enzymatically.

4



1.2. Second Generation Sequencing

covalently bound to the slide surface, either randomly or on a
patterned slide (i.e. a flow cell), and provide complementary ends
to which template can bind.
The only approach that achieves template enrichment in solution is
currently the Complete Genomics technology used by the Beijing
Genomics Institute (Figure 1, panel D). Here, DNA undergoes an
iterative ligation, circularization and cleavage process to create a
circular template, also known as rolling circle amplification, which
generates up to 20 billion discrete DNA nanoballs that are in turn
distributed onto a patterned slide surface containing features that
allow a single nanoball to associate with each location (Drmanac
et al., 2010).

1.2.1 Sequencing By Ligation

SBL approaches involve the hybridization and ligation of anchor
fragments and labelled probes to the template.
In particular, an anchor fragment encodes a known sequence that
is complementary to an adaptor sequence on the template and
provides a site to initiate ligation. A probe can have either one
(i.e. one-base-encoded probes) or two (i.e. two-base-encoded
probes) known bases followed by a series of degenerate bases that
drive complementarity between probe and template. After liga-
tion, the template is imaged and the known base or bases in the
probe are identified. A new cycle begins after complete removal
of the anchor-probe complex or through cleavage to remove the
fluorophore and to regenerate the ligation site. Figure 2 illustrates
these details.
SBL sequencing platfroms from SOLiD utilize two-base-encoded
probes (Figure 2, panel A). Therefore each fluorometric signal rep-
resents a dinucleotide. Because there are 16 possible dinucleotide
combinations and these cannot be identified with spectrally-
resolvable fluorophores, four signals, each representing a subset of
four dinucleotide combinations, are used that are further deconvo-
luted during data analysis (Valouev et al., 2008).
Complete Genomics performs DNA sequencing using Combinatorial
Probe–Anchor Ligation (cPAL) or Combinatorial Probe–Anchor
Synthesis (cPAS), which is a modification of cPAL but very few
details about this method are available (Fehlmann et al., 2016).
In both approaches, hybridizing probes are from a pool of one-
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base-encoded probes (Figure 2, panel B).

1.2.2 Sequencing By Synthesis

SBS is a term used to describe numerous DNA-polymerase-dependent
methods. Following the indications from Goodwin and collegues,
SBS methods can be further classified into Cyclic Reversible Termi-
nation (CRT) and Single-Nucleotide Addition (SNA) approaches.

1.2.2.1 Cyclic Reversible Termination

In CRT approaches, terminator molecules that are similar to
those used in Sanger sequencing are used, in which the 30 hydroxyl
group is blocked (Guo et al., 2008). To start the process, the
template DNA is primed by a sequence that is complementary to
an adaptor region, which initiates polymerase binding. In each
cycle, a mixture of all four dNTPs, which are individually labelled
and 30-blocked, are added. After the incorporation of a single
dNTP in each reaction center, unbound dNTPs are washed out
and the surface is imaged in order to identify which dNTP was
incorporated at each cluster. Fluorophore and blocking group are
then removed and a new cycle begins.
Illumina CRT sequencers are currently the globally leading se-
quencing platforms in the next-generation sequencing market
(Jeon et al., 2019). In Illumina platforms, dNTP identification is
achieved through total internal reflection fluorescence microscopy
using either two or four laser channels. In most Illumina platforms
(e.g. the HiSeq series), each dNTP is bound to a single fluorophore
that is specific to that base type, requiring four different imaging
channels, whereas few (i.e. NextSeq and MiniSeq) implement a
two-fluorophore system.
Qiagen GeneReader uses approximately the same approach used
by Illumina sequencers. However, unlike Illumina platforms,
GeneReader is intended to be an all-in-one SGS platform, from
sample preparation to variant discovery, as it integrates both
the QIAcube sample preparation system and the Qiagen Clinical
Insight platform for variant analysis.
Figure 3 illustrates Illumina (Figure 3, panel A) and Qiagen
(Figure 3, panel B) CRT approaches more in detail.
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1.2.2.2 Single-Nucleotide Addition

In SNA approaches, a single signal mark the incorporation of
a dNTP into the elongating strand. Thus, each of the four nu-
cleotides must be added iteratively to the sequencing reaction
to ensure only one dNTP is responsible for the generated signal.
This does not require the dNTPs to be blocked, as the absence of
the next nucleotide in the sequencing reaction prevents elongation.
However, in homopolymer regions identical dNTPs are added
all together and sequence identification relies on a proportional
increase in the incorporation signal. Figure 4 summarizes SNA
approaches.
The first SNA platform was a 454 pyrosequencing device, dis-
tributed by Roche (Figure 4, panel A). This system distributes
template-bound beads into a PicoTiterPlate along with beads con-
taining an enzyme cocktail. When a dNTP is incorporeted into a
strand, an enzymatic reaction lead to a bioluminescence signal,
which is in turn detected by a charge-coupled device camera and
traslated into the incorporation of one or more identical dNTPs
at a particular bead (Nyrén, 2015).
The Ion Torrent platforms, distributed by Thermo Fisher Scientific
(Figure 4, panel B), detect the H+ ions that are released as each
dNTP is incorporated. The resulting change in pH is detected by
an integrated complementary metal-oxide-semiconductor and an
ion-sensitive field-effect transistor, with pH changes being, theo-
retically, proportional to the number of nucleotides detected.

Several short-read sequencing platforms exist, each having its own
strengths and weaknesses.
SBL approaches by SOLiD and Complete Genomics generate
highly accurate data (estimated accuracy is ⇠ 99.99%), as each
base is probed multiple times (Liu et al., 2012). However, there
are evidence that all under-estimate AT-rich regions (Rieber et al.,
2013), with SOLiD devices displaying some substitution errors
and some GC-rich under-representation (Harismendy et al., 2009).
Moreover, while Complete Genomics’ latest platform5 extends
the length of the reads generated up to 150 bases for paired-end

5https://en.mgitech.cn/products/instruments_info/5/.
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sequencing6, the maximum read length for SOLiD platforms is
just 75 bases, strongly limiting their use for genome assembly and
structural variant detection applications.
As mentioned above, SBS platforms from Illumina dominate the
short-read sequencing industry, mainly thanks to the large variety
of available devices that guarantee a wide range of applications
including genomics, transcriptomics and epigenomics (Park, 2009;
Wang et al., 2009; Buenrostro et al., 2013; Carless, 2015). The suite
of Illumina platforms ranges from the low-throughput MiniSeq
to the ultra-high-throughput HiSeq X, with a set of 10 HiSeq X
devices being capable to deliver over 18000 human genomes to 30X
coverage7 per year, reducing the cost for a single genome down
to $10008. Although the overall accuracy of Illumina platforms is
high (estimated accuracy is ⇠ 99.50%), they do share with SBL
approaches some under-representation in AT-rich and GC-rich
regions (Nakamura et al., 2011), as well as a tendency towards
substitution errors (Minoche et al., 2011). Among SBS platforms,
the Qiagen GeneReader is a clinical device with an explicit focus
on cancer gene panels (Darwanto et al., 2017). Although this
severely limits its possible applications, it is well optimized within
its niche.
SNA approaches offer superior read lengths compared to other
short-read sequencers, with reads up to an average of 700 bases for
the 454 pyrosequencing devices and 400 bases for the Ion Torrent
platforms. Despite the overall error rate is comparable to the other
SGS platforms in non-homopolymer regions, homopolymers have
proven problematic for these platforms, especially those larger
than 6–8 bases (Loman et al., 2012). While 454 pyrosequenc-
ing platforms have been unable to compete with the others SGS
devices and have been discontinued since 2016, the Ion Torrent

6
Compared to single-read sequencing, which involves sequencing DNA

from only one end, paired-end sequencing allows users to sequence both ends

of a fragment. Standard paired-end sequencing provides a pair of reads, 150

bases in length each, that flank a DNA fragment of about 50 bases in length,

which is not sequenced.
7
Per-base coverage is the average number of times a base of a genome is

sequenced. The coverage depth of a genome is calculated as the number of

bases of all short reads that match a genome divided by the length of this

genome.
8 https://www.illumina.com/systems/sequencing-platforms/

hiseq-x.html?langsel=/us/.
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platforms, thanks to their short runtimes, are currently used for
gene-panel sequencing and for point-of-care clinical applications,
including transcriptome profiling and splice site identification (Li
et al., 2014; Malapelle et al., 2015).
Overall, SGS technologies have become a standard for many ap-
plications in basic as well as clinical biology. However, the short
length of the reads generated pose several limitations. Indeed,
while small variants such as Single-Nucleotide Variants (SNVs)
and short indels can be accurately detected using SGS platforms,
large Structural Variants (SVs) are challenging to detect and
characterize with such technologies, which is an important issue
given the high number of diseases related to SVs (Weischenfeldt
et al., 2013). In addition, short reads have a limited capacity to
link independent variations on the same nucleic acid molecule,
thus not being well suited to discriminate and phase alleles to
their respective parental homolog, which is important for many
aspects of human genetics (Tewhey et al., 2011). Moreover, it has
been shown that, despite the use of sophisticated bioinformatic
algorithms, it is often impossible to accurately map, or even as-
semble, short reads originating from regions harboring repetitive
sequences, extreme guanine-cytosine content or sequences with
multiple homologous elements within the genome (Mantere et al.,
2019).

1.3 Third Generation Sequencing

In the 2010s TGS technologies emerged, which provide reads
in excess of several kilobases and allow to overcome limitations
of SGS (van Dijk et al., 2018). Among TGS technologies, the
Single Molecule Sequencing (SMS) and the synthetic approaches
can be distinguished. The SMS approaches differ from short-
read approaches in that they do not rely on the amplification
of DNA fragments nor do they require chemical cycling for each
dNTP added. Alternatively, the synthetic approaches do not
generate real long-reads; rather, they represent an approach to
library preparation that leverages barcodes to allow computa-
tional assembly of larger fragments. The SMS approaches are
further classified into Single-Molecule Real-Time (SMRT)-based
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and nanopore-based strategies.

1.3.1 Single-Molecule Real-Time Sequencing

In early 2011 Pacific Biosciences (PacBio) released the PacBio RS
sequencer, based on the SMRT sequencing technology (Eid et al.,
2009). This technology uses a closed, circular, single-stranded
DNA template, called SMRTbell, which is created by ligating
hairpin adaptors to both ends of a double-stranded target DNA
molecule (Voskoboynik et al., 2013). A primer and a polymerase
are annealed to one of the adaptors, followed by library loading
onto a specialized flow cell containing up to 8000000 picolitre wells9
called Zero Mode Waveguides (ZMWs). In each ZMW, a modified
DNA polymerase is immobilized at the bottom, where it replicates
the target DNA. During the replication process, the incorporation
of fluorescently labeled nucleotides produces fluorescence signals
upon excitation by a laser and a camera system records the color
and duration of the emitted light in real time. An overview of the
SMRT sequencing approach is given in panel Aa of Figure 5.
The time between nucleotide incorporations is also recorded, which
is delayed when a nucleotide epigenetically modified (e.g. 6-
methyladenosine) is incorporated, allowing the detection of base
modifications. The approach is shown in panels A, B and C of
Figure 6.
While initially the average read length was relatively short (⇠1500
bases) and the average error rate high (⇠13%) (Quail et al.,
2012), over recent years the average read length has increased
more than tenfold and the introduction of the Circular Consensus
Sequence (CCS) technology for molecules up to 2 kilobases have
strongly improved their overall accuracy (⇠ 99.8%) (Wenger et al.,
2019). The CCS technology is based on the idea that, as the
SMRTbell forms a closed circle, after the polymerase replicates
one strand of the target DNA, it can continue using the adaptor
and then the other strand as a template. If the lifetime of the
polymerase is long enough, both strands can be sequenced multiple
times in a single Continuous Long Read (CLR). CLR sequences
originate from multiple passes and can be split into multiple

9https://www.pacb.com/products-and-services/
sequel-system/.

10

https://www.pacb.com/products-and-services/sequel-system/
https://www.pacb.com/products-and-services/sequel-system/


1.3. Third Generation Sequencing

subsequences by simply recognizing and cutting out the adaptor
sequences. A consensus sequence10 of the subsequences can then
be formed (i.e. the CCS).

1.3.2 Nanopore Sequencing

The first attempt at using nanopores in a membrane to sequence
single-stranded DNA molecules was done at the end of the 1980s
(Deamer et al., 2016) but, due to technical limitations, the first
successful sequencing results were reported only in 2012 (Man-
rao et al., 2012). In 2014 Oxford Nanopore Technologies (ONT)
released the MinION, a pocket-sized sequencing device using
nanopores as biosensors (Ip et al., 2015), which lowered the cost
of a sequencing run down to 1000$11.
Nanopore sequencing occurs in a flow cell in which two ionic
solution-filled compartments are separated by a membrane with
up to 1200012 individual nanopores incorporated. A costant volt-
age bias is applied, which generates an ionic currentli through each
nanopore and, upon translocation of a DNA molecule, changes
in the ionic current can be observed and characterized (Bolognini
et al., 2019). The first results demonstrating the feasibility
of nanopore sequencing were obtained using ↵-hemolysin pores
(Jetha et al., 2009) but the first real nanopore sequencing results
were obtained using the MspA pores (Laszlo et al., 2016) and
currently CsgG pores are used (Carter and Hussain, 2017).
After library preparation, where each DNA fragment is end-
repaired and ligated to a proper adaptor13, double-stranded DNA
is unwound at the pore, after which one strand passes in and
is translated into an actual sequence of bases. An overview of
the nanopore-based sequencing strategy is given in panel Ab of
Figure 5.
The observed shifts in voltage depend on which part (i.e. k-

10
A DNA consensus sequence is a theoretical representative nucleotide

sequence in which each nucleotide is the one which occurs most frequently at

that site in the different sequences which occur in nature.
11https://nanoporetech.com/products/minion
12https://nanoporetech.com/products/promethion.
13

DNA–protein complex with a tightly bound helicase enzyme that ensures

stepwise movement of the DNA through the pore.
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mer14) of the DNA molecule flows through the pore at a certain
time. Rather than having four possible signals (i.e. one for each
nucleotide), the sequencing device has thousands (i.e. one for
each possible k-mer), as it also takes into account signals from
epigenetically-modified bases, as shown in panels D, E and F of
Figure 6.
In contrast to SMRT sequencing, read length in nanopore sequenc-
ing is not limited by the technology itself but rather by the length
of the DNA molecules to be sequenced. Thus, by using dedicated
protocols, ultra-long reads can been obtained. A major drawback
of nanopore sequencing is that the high error rate (⇠13%) of the
sequenced reads can’t be reduced by sequencing the same strand
multiple times, as with SMRT sequencing. In order to increase
the accuracy, ONT developed a method to sequence both strands
of a double-stranded DNA molecule. In this method, called 1D2

as opposed to the 1D system described above, an adaptor with
a specialized sequence promotes the entry of the second strand
into the pore after the first strand has passed through. How-
ever, a small boost in terms of accuracy15 comes at the cost of a
lower throughput, as both strands of each molecule are sequenced,
doubling the consumption of the pore. More interestingly, an
approach to mimic CCS from PacBio has been reported, which
uses the �29 polymerase to produce a tandem array of copies of
the original DNA molecule (Li et al., 2016).

1.3.3 Synthetic Long Reads

Unlike true sequencing platforms, Synthetic Long Reads (SLR)
technologies rely on a system of barcoding to associate fragments
that are sequenced on existing short-read sequencers. Currently,
the Illumina SLR sequencing platform and the 10X Genomics
emulsion-based system exist, which show similarities with the
the earlier BAC-by-BAC sequencing, where a set of overlapping
Bacteria Artificial Chromosome (BAC) clones is ordered along the
chromosomes of a target genome followed by shotgun sequencing

14
k-mers are subsequences of length k contained within a biological se-

quence. 5-mers signals are currently registered by ONT sequencers (Lu et al.,

2016).
15https://nanoporetech.com/about-us/news/

1d-squared-kit-available-store-boost-accuracy-simple-prep.
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of each clone individually (Venter et al., 1996).
With the Illumina SLR system, genomic DNA is sheared into
fragments up to 10 kilobases long and ligated to adaptors that are
used to denote the extremities of contigs16 during downstream
short-read assembly. These large fragments are then partitioned
into a microtiter plate (⇠3000 fragments per well) and undergo
further shearing and barcodes addition through a tagmentation
process17, with each weel containing a single barcode. The DNA
is then pooled and subjected to classical Illumina sequencing fol-
lowed by local assembly to reconstruct the original long fragments.
The Illumina SLR sequencing approach is illustrated in panel Ba
of Figure 5. Although still supported, the Illumina kit for SLR
sequencing has been recently discontinued18.
In the 10X Genomics emulsion-based sequencing, DNA fragments
of up to ⇠100 kilobases are formed and mixed into micelles called
Gel Bead-In EMulsions (GEMs). Within each GEM, a gel bead
dissolves and smaller fragments of DNA are amplified from the
original large fragments, each with a barcode identifying the source
GEM. Barcoded fragments are then pooled, followed by classical
Illumina library preparation and sequencing. The obtained reads
are assembled to form a series of anchored fragments that can
span up to ⇠80 kilobases19. Unlike the Illumina system, this ap-
proach does not attempt gapless, end-to-end coverage of a single
DNA fragment but relies on linked-reads, with dispersed, small
fragments that are derived from a single long molecule sharing
a communal barcode. Although these fragments leave segments
of the original large molecule without any coverage, the gaps are
overcome by ensuring that there are many long fragments from
the same genomic region in the initial preparation, thus generating
a read cloud wherein linked-reads from each long fragment can be
stacked, combining their individual coverage into an overall map.
An overview of the SLR sequencing strategy using linked-reads is

16
A contig is a series of overlapping DNA sequences used to make a physical

map that reconstructs the original DNA sequence of a chromosome or a region

of a chromosome.
17

Transposon cleaving and tagging of the double-stranded DNA with a

universal overhang.
18https://emea.illumina.com/science/technology/

next-generation-sequencing/long-read-sequencing.html.
19https://www.10xgenomics.com/linked-reads/.

13

https://emea.illumina.com/science/technology/next-generation-sequencing/long-read-sequencing.html
https://emea.illumina.com/science/technology/next-generation-sequencing/long-read-sequencing.html
https://www.10xgenomics.com/linked-reads/


1. Introduction

given in panel Bb of Figure 5.

Long-read sequencing methods are frequently used to complement
previous short-read strategies in assemblies. A major example is
the human genome. Indeed, despite it is considered to be one of
the most complete mammalian reference assemblies, more than
160 euchromatic gaps remained after the 1000 Genomes Project
(Nothnagel et al., 2011), often enriched for repeated sequences and
high GC content (Schmidt and Pearson, 2016). Thanks to SMRT
sequencing, most of these were either closed or extended, more
than 1 megabase of sequence was added and tens of thousands of
structural variants were resolved (Chaisson et al., 2015). SMRT is
a great strategy to overcome the low accuracy of SGS in extremely
repetitive and GC-rich regions, which is also confirmed by the
fact that kilobases-long repeated stretches of CGG implicated in
the Fragile-X Syndrome (FXS) have been resolved and further
characterized using SMRT sequencing (Loomis et al., 2013; Ardui
et al., 2017).
Concerning ONT devices, the low throughput of MinION ini-
tially limited its use to the sequencing and assembly of small
bacterial genomes (Loman et al., 2015). More recently, with the
introduction of higher throughput platforms (i.e. GridION and
PromethION), assemblies of larger genomes have been reported,
including human (Jain et al., 2018a). In this study, reads up to
882 kilobases long were obtained. Comparative studies suggest
that SMRT and nanopore sequencing perform similarly well for de
novo genome assembly (Giordano et al., 2017), with the ultra-long
nanopore reads enabling the measurement of telomere repeats,
which is not possible with the shorter SMRT reads.
Thus, a particular strength of nanopore ultra-long reads is the
resolution of extremely long repeated regions that can be resolved
with no other technology. In 2004, Rudd and collegues demon-
strated that even the most complete human assembly exhibited a
lack of centromeric sequences that comprise hundreds or thousands
of repeats of ↵-satellite monomers (Rudd and Willard, 2004). Re-
cently, Jain and collegues succeeded in producing nanopore reads
long enough to cover the hundreds of kilobase-long centromeric
sequences of the human Y chromosome (Jain et al., 2018b).
Overall, SLR can resolve certain types of repetitive elements (Mc-
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Coy et al., 2014) while have difficulties in resolving more tandemly
arranged repetitive sequences, as this system relies on the local as-
sembly of short reads. Although less suitable for sequencing highly
repetitive regions, SLR approaches are well suited for genome phas-
ing, where the high level of accuracy is clearly an advantage in
phasing Single-Nucleotide Polimorphisms (SNPs).

1.4 Repetitive DNA

Pioneering work by Britten and Kohne revealed that, in addi-
tion to unique sequences, the eukaryotic genomes contain large
quantities of repetitive DNA, which was initially classified into
moderately or highly repetitive sequences according to their degree
of repetitiveness (Britten and Kohne, 1968). Later, the repetitive
DNA sequences were grouped according to other criteria such as
their organization (tandemly arrayed20 or dispersed21) or their
functional role. Although repetitive DNA sequences include sev-
eral types of protein-coding sequences, most of the repetitive part
of the genome was earlier considered junk DNA with no known
function (López-Flores and Garrido-Ramos, 2012). Today, with
many genomes completely sequenced and the background research
of more than 40 years, we have ample information on the sig-
nificance of the repetitive DNA within eukaryotic genomes and
concepts are changing.
As shown in Figure 7, approximately 50% of the human genome
is comprised of repeats. Among Tandem Repeats (TRs) there are
both moderately repetitive DNA, such as ribosomal DNA (rDNA),
and highly repetitive microsatellite, minisatellite and satellite
DNA.
rDNA genes are among the best-known examples of multigene
families, i.e. groups of paralogous genes22, and encodes the major

20
DNA repeats that are adjacent to each other and can involve as few as

two copies or many thousands of copies.
21

Identical or nearly identical DNA sequences that are separated by hun-

dreds, thousands or even millions of nucleotides in the source genome.
22

Class of homologous genes (i.e. genes that appear in multiple creatures,

because they derive from a common evolutionary ancestor), resulting from one

or more duplication events. After duplication, the paralogous genes can keep

the same function (e.g. the rDNA genes) but can also diverge and develop

different functions.
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ribosomal RNAs (rRNAs).
Microsatellites are TRs in which the repeat unit contains from 1 to
6 bases, thus being also known as Short Tandem Repeats (STRs).
Approximately 1 million STR loci have been found in both protein-
coding and non-coding regions, including regulatory sequences
(Liu et al., 2019). Dinucleotides are the foremost type of microsatel-
lite repeats for many species, with the most common dinucleotide
repeat type in the human genome being (CA)n/(GT)n. Microsatel-
lites have a characteristic mutational behavior and their mutation
rates are 10 to 100000 times higher than average mutation rates in
other parts of the genome (Gemayel et al., 2010). Mutations are
mainly due to contractions or expansions in the number of repeat
units, caused either by strand-slippage during DNA replication
or unequal crossing over. Moreover, mutation rates vary between
different microsatellites depending on: (1) the number of repeat
units. In particular, the more repeat units, the more unstable
the microsatellite, as longer loci are more likely to mispair during
DNA replication (Lai and Sun, 2003). (2) the repeat purity. Inter-
rupted microsatellite repeats have lower mutation rates than pure
repeats, which might be due to a lower rate of mispairing between
non-identical repeat units (Shah et al., 2010). (3) the length of the
repeat unit. Microsatellite arrays containing longer repeat units
evolve faster than those containing shorter units (Chakraborty
et al., 1997), probably due to relatively inefficient repair of larger
mismatched segments by cell-repair processes. Thanks to these
characteristics, microsatellites provide a tool for the estimation of
genetic variability within populations and a valuable approach to
analysis of parentage. Indeed, their high mutation rates lead to a
large number of alleles existing in a single locus, so that unrelated
individuals are unlikely to share alleles, and they are codomi-
nant, which allows for exact genotyping and more precise genetic
comparisons between individuals, because heterozygotes can be
distinguished from homozygotes (Webster and Reichart, 2005).
In contrast to their historical definition as nonfunctional DNA,
microsatellites are currently known to to play a central role both
in physiology and pathology. On the one hand, microsatellites are
involved in a range of functions such as chromatin organization,
regulation of gene activity, recombination, DNA replication, cell
cycle, mismatch repair system (Li et al., 2002). On the other, an
expansion of the number of repeats located in coding as well as
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in untranslated or regulatory regions of specific genes has been
identified as the main cause of several neurological diseases, which
are further described in Table 1. Moreover, Microsatellite Insta-
bility (MSI)23 has been reported in the sporadic colon, gastric,
sporadic endometrial and the majority of other cancers, with
prognostic and therapeutic implications (Nojadeh et al., 2018).
Minisatellites are defined as TRs with a repeat unit longer than 6
bases (Näslund et al., 2005). Minisatellites can be either monomor-
phic or polymorphic, with the latter also known as Variable Num-
ber of Tandem Repeats (VNTRs). Although VNTRs were the
first highly polymorphic markers described for the genetic anal-
ysis of human traits (Nakamura et al., 1987), they have been
soon replaced by microsatellite markers mainly beacuse, while
microsatellites are widespread in the genome and easier to clone
and characterize, VNTRs are concentrated mostly in the telomeric
regions of chromosomes (Vergnaud et al., 1993). More recently,
there has been renewed interest in VNTRs, with the realization
that they might have important functional roles. For example,
it has been shown that VNTRs regulates the expression of spe-
cific genes (Michelhaugh et al., 2001) and influence tranlsation
efficiency (Nakamura et al., 1998).
Lastly, satellite DNA (satDNA) has commonly repeated unit
lengths of about 150–180 bases or 300–360 bases and is the main
component of the heterochromatin, which is found specifically at
pericentromeric and subtelomeric locations of the chromosomes
(Garrido-Ramos, 2017). As for microsatellites and minisatellites,
in the last few decades results from different studies point to a
functional significance of satDNA. These functions include a role in
the establishment and maintenance of chromatin states by promot-
ing heterochromatin assembly, influencing gene expression, and
contributing to epigenetic regulatory processes, as satellite repeats
transcribe and are a source of short interfering RNA molecules
(Ugarkovic, 2005).
Among dispersed repeats, Transposable Elements (TEs) stand
out.
Transposable elements are DNA sequences that are able to move

23
A unique molecular alteration and hyper-mutable phenotype, which is

the result of a defective DNA mismatch repair system, and can be defined

as the presence of alternate sized repetitive DNA sequences which are not

present in the corresponding germ line DNA.
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from one chromosomal position to another within the same genome
and are divided into retrotransposons, which are transposed
through an RNA intermediate24, and DNA transposons, which can
move without any RNA intermediate. Accordingly to Wicker and
collegues, retrotransposons can be further classified into: (1) Long
Terminal Repeat (LTR) retrotransposons; (2) Dictyostelium Inter-
mediate Repeat Sequence (DIRS) retrotransposons; (3) non-LTR
retrotransposons or Long Interspersed Nuclear Elements (LINEs);
(4) Penelope-Like Element (PLE) retrotransposons; (5) Short In-
terspersed Nuclear Elements (SINEs) (Wicker et al., 2007). The
most obvious effect of the mobility of TEs is the induction of inser-
tional mutations which are a major source of genetic innovation
and evolution but have also been found involved in several genetic
diseases (Cordaux and Batzer, 2009) and cancer as well (Konkel
and Batzer, 2010). In addition, the ectopic recombination be-
tween non-allelic homologous elements can generate various types
of rearrangements and lead to inversions, deletions, translocations
or duplications.
As mentioned above, repeats pose several challenges for both
genome resequencing and de novo assembly projects using SGS
technologies. A more detailed discussion of these challenges as
well as of the computational strategies for solving repeat-induced
analysis problems with SGS is given as follows, together with an
overview of the most recent TR callers for SGS.

1.4.1 Genome Resequencing

Genome resequencing allows researchers to study genetic variation
by mapping reads from a sequenced individual to a high-quality
reference genome of the same species. Several aligners for short
reads are available, some of which are listed in Table 2. A major
problem for short-read aligners is trying to decide what to do
with reads that map to multiple locations (i.e. the multi-reads),
such as reads coming from repeated regions. The percentage of
short reads that map to a unique location on the human genome
is typically reported to be ⇠80%, although this number varies
depending on the read length, the sequencing protocol (e.g. the

24
The RNA is transcribed from the element, then reverse transcribed into

a complementary DNA,which is integrated into a new location in the genome.
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availability of paired-end reads) and and the sensitivity of the
aligner used (Treangen and Salzberg, 2012). However, the repeat
content in the human genome is ⇠50%. This discrepancy mainly
depends on that most repeats are inexact, which implies that they
will have a unique best match even if the same sequence occur
with slight variations in other locations, as shown in panel A of
Figure 8. Assigning reads to the location of their best alignment,
is the simplest way to resolve repeats, although it is not always
correct. For example, assume that the same read map to two
locations, A and B, where the read aligns with one mismatch at
A and with one deletion at B. If the aligner considers mismatches
more likely to happen than deletions, then it will put the read
in location A. However, if the source DNA has a true deletion,
then the read would perfectly match position B. This true-to-life
problem, that is inherent in the process of aligning reads to a
reference genome, is also illustrated in panel B of Figure 8. Indeed,
widely-used mappers are mostly based on the Needleman–Wunsch
and Smith–Waterman algorithms (Nalbantoğlu, 2014) and each
attributes different scores to mismatches, gap opening and gap
extending, resulting in different alignments for the same sequences.
Another problem comes out when a genome sample is sequenced,
but only analysis of the variants that are present in a certain
chromosome is required. The most straightforward approach
would be to use a short-read aligner to map reads directly to that
chromosome, which lead to a large pile up of reads from repetitive
regions, because all reads from those repeats would have to go
to the same chromosome. In order to avoid this bias, the reads
must me mapped against the entire genome and a strategy of
random placement of multi-reads to scatter them uniformly across
all repeat copies must be applied.
Essentially, aligners have three choices for dealing with multi-reads:
(1) ignore multi-reads, meaning that all multi-reads are discarded.
This strategy is usually achieved by applying specific filters during
the alignment step (e.g. by setting the ambiguous parameter
to toss on BBMap (Bushnell, 2014)) or by post-processing the
aligned Sequence Alignment/Map (SAM)/Binary Alignment Map
(BAM)25 file (e.g. by filtering on the mapping quality for a
SAM/BAM generated with Bowtie2 (Langmead and Salzberg,

25https://samtools.github.io/hts-specs/SAMv1.pdf.
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2012) or by retaining only reads with the XT:A:U tag from a
SAM/BAM generated with BWA (Li and Durbin, 2009)). This
strategy limits analysis to unique regions in the genome, discarding
many multigene families as well as all repeats, which might result
in biologically important variants being missed. (2) retain the
the alignment with the fewest mismatches, i.e. the best match.
If there are multiple, equally good matches, then an aligner will
either choose one at random or report all of them. By default,
most aligners use a pseudo-random number generator to choose
which read to retain in a set of equally-good choices but filters
can be applied to report all reads in the set (e.g. by using the
-a parameter in Bowtie2). This approach is the only one that
can provide a reasonable estimate of coverage. (3) report all
alignments up to a maximum number, regardless of the total
number of alignments found (e.g. by setting an upper limit to
the -k parameter in Bowtie2). Allowing multi-reads to map to
all possible positions avoids making a possibly erroneous choice
about read placement.
Overall, choosing what alignment strategy to use is of fundamental
importance, as it influences downstream tools for variant discovery.

1.4.2 De Novo Genome Assembly

Genome assembly algorithms attempt to reconstruct a genome as
completely as possible exploiting starting from a set of sequenced
reads. As explained in the previos sections, short reads from SGS
make assembly extremely difficult in repetitive regions. Indeed,
repeats that are longer than the read length create gaps in the
assembly and, as a result, genome assemblies based on SGS are
much more fragmented than assemblies based on Sanger sequenc-
ing (Schatz et al., 2010). In addition to creating gaps, repeats can
be erroneously collapsed on top of one another, causing complex
misassemblies26. However, assemblers that use short reads are
available, which are based either on string-overlap graphs (e.g.
SAGE (Ilie et al., 2014)) or De Bruijn graph (e.g. ABySS (Jack-
man et al., 2017)). Assemblers from both groups create graphs

26
Assembled regions that contain significantly large variations that are

the result of wrong decisions made by the assembly program. These errors

can be easily misconstrued as true genetic variation, misleading a range of

genomic analyses (Muggli et al., 2015).
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from the reads and then traverse these graphs in order to recon-
struct the original genome. From a technical perspective, repeats
cause branches in these graphs, and assemblers must then make a
guess as to which branch to follow, with incorrect guesses creating
false joins and erroneous copy numbers. Conservative assemblers
break the assembly at branch points, leading to more accurate
but fragmented contigs. Some problems assemblers can run into
are summarized in Figure 9. A common error is the creation of a
rearrangement by joining two chromosomal regions that do not
belong near one another (Figure 9, panel A). Even if all the reads
align well to the misassembled genome, mate-pair constraints
are violated (i.e. wrong expected distance and orientation of
the paired-end reads). Other common issues are the creation of
collapsed repeats, where read alignments remain consistent but
mate-pair distances are compressed (Figure 9, panel B), and the
creation of collapsed interspersed repeats (Figure 9, panel C). In
addition to using mate-pair information from reads that were
sequenced in pairs, assemblers exploits statistics on the depth
of coverage, which is useful to identify the repeats themselves.
Assuming that a genome is uniformly covered, repetitive regions
have substantially deeper coverage, which allows the assemblers
to identify and process them differently. In particular, repeats
are usually assembled after unique regions, and assemblers may
require multiple paired-end reads to link a repetitive contig to a
unique one.

1.4.3 Short-Read Tandem Repeat Callers

Standard variant-calling pipelines for genome resequencing (e.g.
Pindel (Ye et al., 2009)) and de novo assembly projects (e.g. Fer-
miKit (Li, 2012)) classify alterations in repeated regions either as
indels or SVs, depending on their size. However, specialized tools
that can profile TRs (i.e. identify their motif and multiplicity),
have been developed over years, mainly for STRs.
Most STR callers require a previous knowledge of the STR loci
to look for. Defined STR loci are available for each release of
the human genome27 and are based on calls from Tandem Re-

27http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
hg19.trf.bed.gz, for the GRCh37 release
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peats Finder (TRF) (Benson, 1999). TRF is a robust tool that
can detect repeats with pattern size in the range from 1 to 2000
bases from FASTA28 inputs. The program first uses a set of
statistically based criteria to find candidate TRs, then attempts
to produce an alignment for each candidate and, if successful,
gathers a number of statistics about the alignment (e.g. matching
probability and indel probability) and the nucleotide sequence
(e.g. base composition and sequence entropy). TRF is based on
Bernoulli distribution. In particular, the tool models alignment
of two tandem copies of a pattern of length n by a sequence of
n independent Bernoulli trials (i.e. coin tosses). Each head in
the Bernoulli sequence is interpreted as a match between aligned
nucleotides and each tail is a mismatch, an insertion or a deletion.
The matching probability represents the average percent identity
between the copies, while the indel probability specifies the aver-
age percentage of insertions and deletions.
One of the first successful STR profiler for SGS was LobSTR
(Gymrek et al., 2012). The algorithm of LobSTR has three steps:
(1) scan genomic libraries, flag informative reads that fully en-
compass known STR loci, and characterize their sequence. This
procedure relies on a signal processing approach that uses rapid
entropy measurements to find informative STR-containing reads,
followed by a Fast Fourier Transform to characterize the repeat
sequence. In practice, each sequenced read is break into over-
lapping windows of a fixed length and a fixed nucleotide overlap
between consecutive windows. When a read displays a series of
windows with entropy below a predefined treshold, then that read
is considered informative and further processed through a Fast
Fourier Transform to identify the repeat unit size, k. The algo-
rithm further determines the actual STR sequence by means of a
rolling hash function that records all possible k-mers in the STR
region: the most frequently occurring k-mer is set to be the repeat
unit of the STR. (2) alignment. The aim of the alignment step is
to reveal the identity and the repeat length of a STR-containing
read. To this purpose, LobSTR employs a divide-and-conquer
approach. It separately anchors the upstream and downstream
flanking regions of STR-containing sequence reads, without map-

28https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_
TYPE=BlastDocs&DOC_TYPE=BlastHelp
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ping the STR region itself. This procedure identifies the genomic
location of the STR and reveals the repeat length by measuring
the distance between the flanking regions. (3) allelotyping. The
most likely alleles at each STR locus are identified by integrating
informations from all aligned reads and the expected stutter noise,
calculated through a generative approach based on the repeat unit
size.
A major drawback of the first TR profilers for SGS is that they are
constrained to STR alleles with repeat lengths smaller than the
read length employed in the sequencing (i.e. ⇠150 bases). More re-
cently, TR callers for SGS have emerged which have demonstrated
the ability to detect repeat expansions where the expanded allele
size is greater than the length of standard short-read sequencing
reads and even the read pair fragment length. These tools include
ExpansionHunter (Dolzhenko et al., 2019), STRetch (Dashnow
et al., 2018), exSTRa (Tankard et al., 2018), TREDPARSE (Tang
et al., 2017) and GangSTR (Mousavi et al., 2019). All require
paired-end alignments and a catalog of known STRs.
ExpansionHunter extracts STR-containing reads from a given
alignment file and realigns them using a graph-based model rep-
resenting the STR structure at each STR locus. In particular,
the STR structure is specified using a restricted subset of the
regular expression syntax. For example, the HTT repeat region
linked to Huntington Disease (Table 1) can be defined through
the expression (CAG)*CAACAG(CCG)*, which means that it
harbors variable numbers of the CAG and CCG repeats sepa-
rated by a CAACAG interruption. Similarly, the FXN repeat
region linked to the FRDA corresponds to expression (A)*(GAA)*
and the ATXN8 repeat region linked to SCA8 corresponds to
(CTA)*(CTG)*. The regular expressions are allowed to contain
degenerate base symbols, making it possible to represent certain
classes of imperfect DNA repeats where different bases may occur
at the same position. Then, ExpansionHunter translates each
regular expression into a sequence graph, with nodes that cor-
respond to sequences and directed edges that define how these
sequences can be connected together to assemble different alleles.
Genotyping of the sequenced individual is performed by analyzing
the alignment paths associated with the presence or absence of
each constituent allele.
The idea behind STRetch is to construct a modified reference
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genome containing STR decoy chromosomes that can be used for
mapping. STR decoys are sequences that consist of 2000 bases
of pure STRs that can be added to any reference genome as ad-
ditional chromosomes. By mapping the sequenced reads to this
modified genome, STRetch identifies all the reads that originate
from large STR expansions. As explained above, most aligners
have difficulties in accurately mapping reads containing long STRs,
which sometimes map to other STR loci with the same repeat
unit or completely fail to map. While reads with STR lengths
similar to the allele length in the reference genome will map to
their original STR, reads containing large STR expansions will
preferentially align to the STR decoy chromosomes. The reads
that map to the STR decoys are then assigned to genomic STR
positions. To this purpose, STRetch uses the mapping position of
the read at the other end of the DNA fragment to infer from which
known STR each read originates. For a given read, if the mate
maps within 500 bases of a known STR with the same repeat unit,
then the read is assigned to that STR, or to the closest matching
if multiple STRs are present. However, some reads may be unas-
signed in the end, which happens if their mates also map to the
STR decoys, are unmapped, or do not map in close proximity to a
known STR. Lastly, STRetch compares the number of STR decoy
reads assigned to each STRfor a test sample with STR reads from
a set of control samples, which provide a median and variance of
counts for each locus. The z-score is used to test if the number
of reads in the test sample is an outlier compared to control. By
working on the assumption that, for a given STR, the number
of reads containing the STR is proportional to the length of the
repeat in the genome being sequenced, STRetch estimates the size
of any detected expansion using the read counts allocated to that
STR.
exSTRa is a two-step analysis method: (1) identifies all the reads
that map to each STR locus. To this purpose, anchor reads, i.e.
reads that map on or within 800 bases of the STR and have the
same STR orientation, are retained. For each anchor read, the
anchor mate is then checked and, if it is mapped near the STR or
is overlapping the STR, then the pair is taken forward, otherwise
is discarded. Remaining anchor-mates have their sequence content
matched for the presence of the repeat unit in the correct direction,
allowing for the repeat to start at any base of the repeat unit (e.g.
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if the repeat unit is CAG, the method can also match AGC and
GCA). The number of bases found to be part of the repeat unit is
counted to derive a repeat-score for that read, with reads where
the score is lower than expected in random nucleotide sequences
being filtered out. (2) applies an empirical quantile imputation
procedure to detect if the number of repeat units identified is an
outlier compared to a background set of samples, as outliers are
likely to be repeat expansions.
The TREDPARSE workflow involves a number of key steps: (1)
determine STRs ploidy. Autosomal STRs are modeled as diploid
loci, allowing two alleles to be inferred per STR. For STRs on
the X chromosome, TREDPARSE infers the gender for the given
sample by computing the median read depth on selected unique
regions on the Y chromosome. If the median depth on the Y chro-
mosome is less than 1, X chromosome ploidy is 2, 1 otherwise. (2)
realignment of reads near STRs. In particulare, TREDPARSE re-
aligns reads that are mapped within a read length from the repeat
location and reads that are unmapped but have a mate mapped
within a distance of 1000 bases from the repeat location. The goal
of the realignment step is to obtain an accurate count of the occur-
rences of the repeat motifs. Most read mapping methods, when
aligning reads to a reference, have a high penalty for long indels,
which often results in misalignments. To accommodate long indels,
TREDPARSE uses a Single Instruction Multiple Data (SIMD)
Smith-Waterman algorithm to align STR-containing reads to a
series of STR-containing reference sequences that are embedded
with a variable number of repeat units. This procedure yields a
series of alignments with different scores that are compared to
determine the repeat size that corresponds to the highest score.
During the alignment, each read is also classified as a prefix read
(i.e. a read with a flanking sequence of length �9 to the left of
the repeats) or a suffix read (i.e. a read with a flanking sequence
of length �9 to the right of the repeats). (3) classification of the
reads. On the basis of the alignment informations, reads with
both prefix and suffix are classified as spanning reads, and reads
with either prefix or suffix but not both are classified as partial
reads. Reads that only consist of repeats are repeat-only reads.
Distances of paired-end reads are also taken into account for the
development of a full-probabilistic model to infer STR size. (4)
deployment of a full probabilistic framework. To fully model the
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uncertainties of observing a set of reads that are generated by a
certain repeat size, a probabilistic model is built which uses the
read types mentioned above. In particular: (a) for spanning reads,
as they show both left and right flanking sequences, inferring
the number of repeat units is straightforward as the counted size
matches or is close to the true repeat size. A model for the stutter
noise based on GC content and on the repeat unit size, similar to
that described for LobSTR, is included. (b) partial reads, which
do not align all the way across the repeat region and contain only
one flanking sequence, have a probability mass function of discrete
uniform distribution between a single repeat unit and the true
repeat length. Therefore, they only show a lower bound for the
number of repeat units of the underlying allele. The inference task
is here modeled as the German tank problem29 with replacement.
(c) repeat-only reads are possible only when repeat length is the
same or longer than a read length. Assuming each read is equally
likely to start anywhere in the genome, the expected number of
repeat-only reads that fall in a certain region follows a Poisson
distribution. (d) the observed distance between the two mate
reads gathers additional informations. After inferring the distribu-
tion of the distances between all the paired-end reads across the
genome, expanded repeats, when mapped to the reference, show a
compression of paired-end distances while shortened repeats show
an expansion of paired-end distances.
Similarly to TREADPARSE, GangSTR defines four classes of
paired-end reads at STR loci : (1) enclosing read pairs, which
consist of at least one read that contains the entire repeat plus
non-repetitive flanking region on either end; (2) spanning read
pairs, which originate from a fragment that completely spans the
repeat, such that each read in the pair maps on either end of the
repeat; (3) flanking read pairs, which contain a read that partially
extends into the repetitive sequence of a read; (4) fully repetitive
read pairs, which contain at least one read consisting entirely
of the repeat motif. Each class provides informations about the
length of the repeat in the region, which are integrated into a
single joint likelihood framework to find the maximum likelihood
diploid genotype and confidence interval on the repeat length.

29
The problem consists of estimating the maximum of a discrete uniform

distribution from sampling without replacement.
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Despite the use of complex strategies, short reads from SGS
technologies are still largely insufficient for profiling long repetitive
DNA segments (Tørresen et al., 2019). TGS offer reads that often
encompass the entire TRs and have already proven invaluable for
the detection of large structural variants (Mahmoud et al., 2019).
However, accurately deciphering TRs from long reads remains a
considerable challenge due to their high error rates, especially in
low complexity regions.
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In this dissertation we aim to introduce a novel computational
framework capable to profile TRs in long-read alignments with-
out a prior knowledge of their motifs or locations (i.e. de novo),
namely Tandem Repeats Caller for LOng Reads (TRiCoLOR)
(Bolognini et al., 2020a).
Indeed, methods for TR profiling can be broadly classified as
reference-based or de novo approaches. The former rely on
databases of known TRs and look at reads spanning these TRs
to call TR alleles. Several strategies used by reference-based TR
callers for SGS are described in detail in the Introduction chapter.
The latter can identify TRs regardless of whether their repeat
motif is annotated or not in the reference and are of high interest
for annotating newly sequenced genomes (Girgis, 2015). So far,
few TR detection methods for long-read sequencing data have
been developed, all falling in the reference-based group of tools.
Examples include PacmonSTR (Ummat and Bashir, 2014), Noise
Cancelling Repeats Finder (NCRF) (Harris et al., 2019), Tide-
Hunter (Gao et al., 2019) and NanoSatellite (De Roeck et al.,
2019).
PacmonSTR is specifically optimized for raw SMRT sequencing
data. The tool: (1) selects uniquely mapped reads spanning known
TR intervals from an alignment file generated using the BLASR
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aligner (Chaisson and Tesler, 2012). In the scenario that disparate
alignments are found spanning a TR interval, which may occur if a
TR allele is highly divergent from the reference allele at that locus,
multiple unique alignments are merged to provide the initial query
seed interval for downstream processing. (2) applies a modified
Needleman–Wunsch algorithm to better identify TR boundaries
and give initial TR multiplicity estimates; (3) processes the identi-
fied TR interval through a pair Hidden Markov Model (HMM) to
give a more rigorous estimate of the TR multiplicity. Briefly, this
approach computes the probability for the sum of all alignment
paths between the query and a putative repetitive TR sequence.
In this paradigm, the number of TR elements is a random variable
and the pair HMM is used to calculate the expected value of this
random variable based on an estimated discrete probability mass
function. The model structure of the pair HMM takes as input the
predicted TR interval and the consensus TR element sequence and
models the error modes using matches, deletions and insertions as
hidden states. Transition and emission probabilities are generated
by BLASR alignments in non-TR regions. (4) groups reads by
locus and creates clusters of reads based on their estimated TR
multiplicities to determine zygosity.
Rather than working on alignment files, NCRF takes as inputs
a set of reads in FASTA format, and a motif to look for. Then,
the aligner at the core of NCRF, which is based on the Smith-
Waterman algorithm with affine gap penalties, finds alignments
of the motif to the given DNA sequences. The alignment core
utilizes different penalties for insertions and deletions depending
on the sequencing technology reads are generated from (i.e. ONT
or PacBio): therefore, technology-specific scoring parameters are
tuned to observed sequencing error profiles, with the dynamic pro-
gramming recurrence being modified to support a high prevalence
of short indels. As a last step, NCRF retains only the high-quality
alignments by applying a consensus and an alignment filter. In-
deed, in some cases an organism might contain the sought repeat
motifs interleaved with other repeat motifs. These additional
motifs, are discarded using the consensus filter. Moreover, when
two or more similar motifs are searched for, some intervals of a
read may align to more than one repeat and the alignment filter
groups alignments by those unique to each motif.
Simlarly to NCRF, TideHunter works on sequences in FASTA for-
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mat but uses a seed-and-chain algorithm to recognize the sought
repeat pattern. Briefly, TideHunter collects seeds of long reads,
which consist of hash values1 and locations of the k-mers of these
reads. The collected seeds are then sorted by both the hash value
and the location, then stored in a hash table. A hit in the table
for a tandem repeat is identified for each pair of seeds that have
identical hash values and are adjacent to each other in the sorted
table, with the distance between the hits (i.e. the location distance
of two seeds having a tandem repeat hit) being usually close to
the true repeat pattern size or its multiples. TideHunter considers
all such hits as anchors and attempts to find an optimal chain of
colinear anchors using dynamic programming. The optimal chain
is expected to consist of anchors that have a hit distance close
to the repeat pattern size. Therefore, TideHunter partitions the
original long-read into multiple segments based on the optimal
chain. A SIMD Partial Order Alignment (POA) of these segments
is then applied to generate an accurate consensus sequence.
Lastly, NanoSatellite has been designed to call TRs directly on raw
ONT squiggle data to circumvent errors introduced by base calling
and further downstream alignment processing and is based on a
Dynamic Time Warping (DTW) algorithm. As the name suggests,
DTW is a dynamic programming algorithm, but does not work
with actual strings like the Needleman-Wunsch, Smith-Waterman
or POA. Rather, DTW attempts to find the optimal alignment
between two time series (e.g. is frequently used in several pattern
recognition applications, such as speech recognition). Thus, DTW
can be used to compare the raw current signal generated by a
ONT device with a known squiggle for a TR of interest, which
can be derived by translating DNA nucleotide sequences to their
estimated squiggle patterns.
All these tools have limitations, either because they are technology-
specific (PacmonSTR and NanoSatellite) or because they are
not intended to be used genome-wide (NCRF, TideHunter and
NanoSatellite). Some tools also lack the capability to genotype

1
A hash value is a string value generated by means of a hash function.

A hash function, like the one at https://gist.githubusercontent.
com/MohamedTaha98/ccdf734f13299efb73ff0b12f7ce429f/raw/
ab9593d5195a1643388cfc99d03a4fd96a094a5c/djb2%2520hash%
2520function.c, is any function that can be used to map data of
arbitrary size to fixed-size values (McKenzie et al., 1990)
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the TRs identified (NCRF and TideHunter), a crucial feature
in clinical TR profiling applications, and, as mentioned above,
none is capable to profile TRs in regions that have previously not
been annotated as harboring a TR. TRiCoLOR addresses these
shortcomings of existing tools by allowing users to rapidly identify
and genotype any TRs from haplotype-resolved long-read align-
ments, whether from PacBio or ONT. Once low-entropy repetitive
regions have been identified in sequenced long reads, TRiCoLOR
exploits POA to compute haplotype-specific low-error consensus
sequences that are further processed by means of a fast Regular
Expression (RegEx)-based approximate string matching algorithm
to resolve repeat motif and multiplicity of the discovered TRs.
TRiCoLOR’s modules and methods are described in detail in the
Methods chapter. In the Results chapter we illustrate the results
we got by benchmarking TRiCoLOR on synthetic and real data.
Further discussion of TRiCoLOR’s features and limitations is
given in the Discussion chapter.
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TRiCoLOR is an open-source framework implemented in Python
3 with supporting C++ code and bash scripts, publicly available
at https://github.com/davidebolo1993/TRiCoLOR. An overview of
its workflow is outlined as follows while detailed informations about its
modules are given in the sections below.
The de novo identification of repetitive regions from haplotype-resolved
long-read alignments in BAM format is achieved using the Shannon
ENtropy ScanneR (SENSoR) module. This module scans the given
haplotypes by chromosome and detects regions having low Shannon
entropy DNA content, where repetitive stretches cause low entropy
scores. Repetitive regions for which a sufficiently low score has been
detected are included in a BED file1 that is subsequently profiled by
TRiCoLOR’s REpeats FindER (REFER) module. For each haplo-
type, the REFER module fetches sequencing reads spanning regions
in the BED file, building low-error consensus sequences via a SIMD
version of the robust POA framework for error-prone long reads. These
consensus sequences are then screened by a RegEx-based string match-
ing algorithm: first, the algorithm detects perfectly repeated motifs;
then, it looks for nearby, approximate occurrences of the identified
motifs; last, it solves nested TRs by means of a N-gram model. The cor-
responding reference segment is screened using a similar approach and
TRs varying between the haplotypes or the reference are genotyped and

1https://m.ensembl.org/info/website/upload/bed.html
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stored in standard VCF/BCF format2. The identified TRs can be inter-
actively visualized by the Alignment Plotter (ApP) module and for
trio sequencing studies, the TRiCoLOR SAmple GEnotyper (SAGE)
module checks whether parental and child genotypes follow Mendelian
segregation laws. This module can also be used to assign the most likely
parental genotypes of the TRs identified in the child if parents have
been sequenced at low depth, preventing the de novo identification of
TRs.

3.1 Pre-processing: Phasing

The ability of TRiCoLOR to genotype TRs in diploid samples strictly
relies on the a priori knowledge of the hapolotype that aligned reads
belong to, i.e. their phase. Genotyping is the process of determining
which genetic variants are present in an individual’s genome: a geno-
type at a given site describes whether both chromosomal copies carry
a variant allele, whether only one of them carries it, or whether the
variant allele is not present at all. Phasing refers to assigning individ-
ual’s haplotypes by identifying short variants (single-nucleotide variants
and indels) that lie near each other on the same chromosome and are
inherited together (Ebler et al., 2019). Short variants can be reliably
detected using whole-genome short-read sequencing (Nielsen et al.,
2011) but resolving haplotypes with such a technology has limitations
because two adjacent heterozygous variants are usually not spanned by
a single sequenced fragment to allow a so-called read-backed phasing
procedure. Read-backed phasing assembles haplotypes using overlaps
between reads that span multiple heterozygous variants but since the
heterozygosity ratio of human genomes is comparatively low (Bryc
et al., 2013) the average nucleotide distance of heterozgous markers
exceeds the short read length. The result is that millions of bases of the
reference human genome are not currently reliably genotyped by short
reads, primarily in large gaps near the centromeres and short arms of
chromosomes. While short reads are unable to uniquely map to these
regions, long reads can span into or even across them and have already
proven useful for reconstructing haplotypes (Pirola et al., 2016).
Some strategies that exploit long reads to resolve individual’s hap-
lotypes, either in combination with other sequencing technologies or
alone, have been described in the recent years.
Chaisson and collegues, as part of the Human Genome Structural
Variation Consortium (HGSVC), were able to phase 3 individuals
by applying WhatsHap (Patterson et al., 2015) on Illumina paired-end

2https://samtools.github.io/hts-specs/VCFv4.3.pdf
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reads, Illumina SLR and PacBio reads, StrandPhaseR (Porubský et al.,
2016) on Strand-seq data and 10X linked-reads and by integrating
these results with traditional trio-based and population-based phasing
methods (Loh et al., 2016). By combining a dense, yet local, technology
(e.g. PacBio or 10X linked-reads) with a chromosome-scale, yet sparse,
technology (e.g. Illumina paired-end or Strand-seq), they were able to
obtain dense and global haplotype blocks (Chaisson et al., 2019).
Guo and collegues described a method for long-read SNV calling and
haplotype reconstruction which identifies an exemplar read at each
SNV site that best matches nearby reads overlapping the site. Then,
the method partitions reads around the site based on similarity to
the exemplar at adjacent SNV sites. However, this method is not
guaranteed to discover an optimal partitioning of the reads between
haplotypes, with authors reporting high false-positive and false-negative
discovery rates (Guo et al., 2018). Luo and collegues and Poplin and
collegues described methods which uses convolutional neural networks
to call variants from long-read data, which they report to achieve high
precision and recall scores on PacBio data (Poplin et al., 2018; Luo
et al., 2019). Excellent performances on PacBio data were also reported
with Longshot, a tool that harnesses SMRT reads to jointly perform
SNV detection and haplotyping. To this purpose, Longshot uses the
phasing method HapCUT2 (Edge et al., 2017) and, in order to overcome
the high error rate of PacBio reads, it utilizes a pair HMM to average
over the uncertainty in the local alignments and estimate accurate base
quality values that can be used for calculating genotype likelihoods
(Edge and Bansal, 2019).
As a proof of concept, we evaluated the performances of different frame-
works for generating haplotype-resolved alignments prior to TRiCoLOR.
First, we exploited VISOR (Bolognini et al., 2020b), to insert phased
single-nucleotide variants from the 1000 Genomes Project (HG00732
sample) on chr20 of the GRCh38 human reference genome and to
simulate a final BAM file (⇠40X coverage) mirroring ONT data, as
further described in the Results chapter. Then, we applied WhatsHap
and LongShot to directly identify candidate single nucleotide variants
from the synthetic BAM file, and phase them. We run WhatsHap’s
find_snv_candidates module with the –nanopore parameter enabled,
the genotype module, the phase module and the haplotag module se-
quentially, using the default parameter settings. We run LongShot with
the default parameter settings as well. WhatsHap and LongShot could
assign respectively ⇠ 68% and ⇠ 71% of the synthetic ONT reads to
one of the 2 haplotypes and ⇠ 89% of all sequenced bases because most
unassigned reads are relatively short (as expected). We measured the
amount of phasing inconsistencies between the phased single-nucleotide
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variants from the 1000 Genomes Project and those from WhatsHap
and Longshot by calculating their switch error rates (Choi et al., 2018)
using vcftools (Danecek et al., 2011). The calculated switch error rate
of WhatsHap was ⇠ 1.2%, while the switch error rate of LongShot was
⇠ 0.9%
We also evaluated the capability of HapCUT2 and WhatsHap to phase
the synthetic ONT BAM file using complementary single-nucleotide
variant calls generated by bcftools (Li, 2011) from a short-read align-
ment (⇠40X coverage) simulated with VISOR for the same sample
(these calls from bcftools should represent a set of variant calls one can
be reasonably confident in). We run the extractHAIRS and hapcut2
commands from the HapCUT2 package and the phase and the hap-
lotag modules from WhatsHap, using the default parameter settings.
Because HapCUT2 does not provide utilities to either tag or split reads
by haplotype, we subsequently resolved the 2 haplotypes of the ground
truth BAM file using Alfred (Rausch et al., 2019), giving the phased
single-nucleotide variants from HapCUT2 as input. WhatsHap and
Alfred could assign ⇠ 71% of the synthetic ONT reads to one of the
2 haplotypes (⇠ 92% of sequenced bases). Using this experimental
setting, the calculated switch error rate of WhatsHap was ⇠ 0.7%
while the switch error rate of HapCut2 was ⇠ 0.6%, reflecting the
higher-quality of input single-nucleotide variants.
Overall the local phase accuracy of long-read phasing algorithms is high.
However, long-read technologies alone are sub-optimal for chromosomal-
level phasing, for which they have to be used in combination with a
chromosome-scale technology such as Strand-seq or Hi-C, as for the
HGSVC data that we exploited in this work. TRiCoLOR can thus
be applied to read-backed phased data as well as chromosome-length
haplotypes because, as clarified below, it evaluates each tandem repeat
locally in a surrounding window, where results are only expected to
deteriorate if a rare switch error occurred within a given tandem repeat
window.

3.2 TRiCoLOR

TRiCoLOR requires haplotype-resolved long-read alignments as input.
It then runs a series of modules to identify and genotype TRs. These
modules are described in detail below. An on-line manual containing
an in-depth explanation of how to run TRiCoLOR’s various modules is
also available at https://davidebolo1993.github.io/tricolordoc/,
together with use case examples.
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3.2.1 TRiCoLOR SENSoR

TRiCoLOR can spot repetitive regions in haplotype-resolved BAM
files de novo through the SENSoR module, which exploits an approach
based on the calculation of Shannon entropy (which we refer to as H),
similar to the one descibred by Gymrek and collegues for their LobSTR
tool.
H was originally devised by Claude Shannon as a measure for order
or disorder in strings (Shannon, 1948). Intuitively, a string S with
symbols Si (i = 0...�) from a given alphabet is considered as ordered
when it is periodical or when some symbols or substrings occur repeat-
edly. In constrast, it is considered disordered, when all of its symbols
and combinations of symbols occur at equal frequencies. H has been
formalized as

H = �
X

i

pi log pi

where i extends over all symbols of the alphabet, and pi is the probability
that symbol si occurs at any position. H is maximal when all symbols
occur at equal probability pi = 1/�. The minimum H (i.e. H = 0)
is taken on if one symbol occurs at probability 1, with the others
being absent (Schmitt and Herzel, 1997). In the SENSoR module H is
calculated as

H = �
X

x2X

px log2 px

where x is any DNA base from a DNA sequence X and px is the prob-
ability that x 2 X occurs, (i.e. the frequency of the DNA base in the
DNA sequence). Given this formula, a fully random string results in the
maximal H whereas a repetitive string "overuses" certain nucleotides
which causes a low H, with perfect homopolymer runs having H = 0.
In order to identify the optimal H treshold (which we refer to as
Ho) that makes possible to discriminate between repetitive and non
repetitive regions in error-prone sequences, we first exploited our read
simulator VISOR to generate 1000 synthetic long-read BAM files, with
half of the BAM files modelling current sequencing error rates from
ONT and the other half from PacBio. The average sequencing error
rates and the substitution:insertion:deletion ratios used to generate
synthetic ONT and PacBio reads were derived from publicly available
datasets that are described in the subsections below.
In particular, we simulated ⇠8000 bases-long reads at ⇠10X coverage
in small regions (⇠20000 bases) around known, randomly chosen, TRs
from the TR catalog of the GRCh38 human reference genome. We
then computed H for all the aligned reads in non-overlapping, sliding
windows of 20 bases. Given that the mean length of the TRs from
the TR catalog used is ⇠40 bases, we chose a window size of 20 bases
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as this allows to have at least one window encompassed by the TRs
picked during the simulations. We empirically set the Ho to be the 2nd

percentile of the H distribution.
Figure 10 shows the negatively-skewed H distributions for the sim-
ulated ONT (Figure 10, panel A) and PacBio (Figure 10, panel B)
BAM files. For both the technologies, we identified Ho ⇠ 1.23, which
allowed to exclude ⇠ 98% of the entire alignment information screened,
in accordance with the results presented by Gymrek and collegues for
their LobSTR tool. Figure 10 also illustrates the read-specific H in
non-overlapping, sliding windows of 20 bases for a simulated ONT
(Figure 10, panel C) and PacBio (Figure 10, panel D) BAM file in-
cluding the TR ranging from 48941985 and 48942028 on chr19 of the
GRCh38 human reference genome. All the simulated reads have at
least one window where H is below the Ho in the region containing
the TR, which is highlighted in green, while H is confirmed above the
Ho threshold for the other regions.
The entropy-based scanning of aligned reads is provided with TRi-
CoLOR’s SENSoR module. For a given haplotype-resolved long-read
alignment, this module scans in parallel the 2 haplotype-specific BAM
files and computes, for each sequencing read, its H in non-overlapping,
sliding windows of 20 bases, which is the size trained in our simulations.
Genomic coordinates of windows in which multiple reads (i.e. � 5,
by default) support an H drop (i.e., H  1.23) are stored and those
nearby are merged (i.e. those falling within 100 bases intervals, by
default). Repetitive regions identified with this approach are eventually
outputted in BED format. Since just a few simple calculations are
required to retain the informative (i.e. repetitive) regions even from
massive, whole-genome sequencing data, this module is fairly fast, as
further described in the Result chapter, and drastically reduces the
computational time required by the REFER module, which is described
in the subsection below.

3.2.2 TRiCoLOR REFER

TRiCoLOR can profile TRs in haplotype-resolved BAM files through
the REFER module, once regions to investigate are provided in proper
BED format. This BED file can be generated through the SENSoR
module described in the subsection above or can be provided by uses
based on prior knowledge of clinically relevant TRs, for instance. For
each region in the BED file, TRiCoLOR REFER applies the following
strategy.
First, the module fetches from the haplotype-specific BAM files the
sequencing reads spanning the selected region and trims them, so that
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the length of each read is approximately the size of the region. Let
R = [S,E] be a region from the BED file, ranging from a start co-
ordinate S to an end coordinate E for a given chromosome. Each
sequencing read entirely spanning R is fetched and trimmed so that the
actual sequence REFER temporarily stores in FASTA format is that
included between S and E, which significantly improves the runtime of
the subsequent POA algorithm to generate a consensus sequence. Once
the sequencing reads of interests have been fetched and trimmed, TRi-
CoLOR exploits SPOA, a SIMD version of the robust POA framework,
to generate highly-accurate consensus sequences from error-prone long
reads (Vaser et al., 2017). Over the past years, several error correction
methods have been developed to reduce the sequencing error of long
reads. These approaches can be roughly classified into hybrid (i.e.
involving the use of short reads) (Goodwin et al., 2015) and self, or
non-hybrid (i.e. using only long reads) (Salmela et al., 2017). Although
these methods provide a better per-base accuracy than the raw data,
hybrid approaches can bring systematic errors from short reads in
long-read data sets and non-hybrid approaches heavily relies on the
available coverage. As an alternative approach, one can reconstruct
a high-quality template from uncorrected reads in silico, by means
of a Multiple Sequence Alignment (MSA). To this puprose, POA,
which is described in detail in two papers from Lee and collegues (Lee
et al., 2002; Lee, 2003), performs MSA through a Directed Acyclic
Graph (DAG), where nodes are individual bases of input sequences,
and weighted, directed edges represent whether two bases are neighbor-
ing in any of the sequences.
MSA is one of the most important tools in bioinformatics and can
be helpful in many circumstances like detecting relations between se-
quences: in many cases, sequences that undergo MSA are assumed to
have an evolutionary relationship, by which they share a linkage and
are descended from a common ancestor. MSA is also used to compute
a consensus profile for sequences that originate from the same region.
A variety of heuristic MSA algorithms exist based on progressive appli-
cation of pairwise sequence alignment to build up alignments of larger
numbers of sequences. For pairwise sequence alignment, a globally
optimal solution can be found in O(L2) time by dynamic programming,
where L is the length of the two sequences being aligned. This algorithm
can be extended to align N sequences optimally, but requires O(LN)
time, with the exponential time required for aligning larger numbers
of sequences by dynamic programming being impractical. Therefore,
excellent MSA algorithms like Clustal (Thompson et al., 1994), first
align all of the sequences pairwise, which results in N(N � 1)/2 align-
ments. Then, the scores of these alignments are then used to construct
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a binary tree of their relationships. Finally, the algorithm builds a
MSA in the order dictated by the evolutionary tree: the least diverged
sequences are aligned first, resulting in N/2 alignment profiles; the N/2
alignment profiles are aligned to each other resulting in N/4 alignment
profiles; and so forth, until all of the sequences have been aligned.
Finding the scores and constructing the binary evolutionary tree is
O(NL2) while using the binary tree to build the MSA is O(L2logN)
and can be run in a reasonable amount of time. MSA strategies based
on progressive pairwise alignments, however, suffer some major issues:
(1) they may find a local minimum either because the guide tree is
not correct or because alignment errors that happen early on in the
process of building the MSA get locked in; (2) the choice of appropriate
alignment parameters, which can cause problems in handling of gaps
and insertions; (3) progressive MSA requires aligning pairs of MSAs,
to build up larger MSAs. In practice pairwise dynamic programming is
not applied directly to align the pairs of MSAs. Instead, progressive
alignment relies on reducing each MSA to a 1D-sequence which can
be used in pairwise dynamic programming sequence alignment. This
reduction of an MSA to a consensus profile inevitably involves loss of
information as, while the MSA contains all the information to produce
the profile, the profile does not contain all the information needed to
reconstruct the original MSA. Artifacts from progressive MSA can be
solved by representing the alignment between sequences as a partially
ordered graph in which individual sequence letters are represented by
nodes, and directed edges are drawn between consecutive letters in each
sequence. In POA, a single sequence is simply a linear series of nodes
each connected by a single incoming edge and a single outgoing edge:
the letters that are aligned and identical are fused as a single node, while
the letters that are aligned but not identical are represented as separate
nodes that are recorded as being aligned to each other. When letters are
fused as one node, the resulting node stores information about all of the
individual sequence letters from which it was derived, and their index,
making it possible to trace the path of each individual sequence through
the alignment. Standard dynamic programming sequence alignment
can be extended to work with partial orders, as shown in Figure 11.
Standard dynamic programming alignment of two linear sequences can
be represented as a 2D matrix, whose two axes correspond to the two
sequences. A given point (n,m) in the matrix corresponds to a pair of
sequence positions. For a given pair, three basic moves are possible: a
diagonal ‘alignment’ move indicating that n and m are aligned; and
horizontal and vertical moves indicating, respectively, n as an insertion
relative to m, or m as an insertion relative to n. The set of all possible
paths across the 2D matrix constructed from these moves represents
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all possible alignments of the two sequences allowing the matches or
mismatches (i.e. diagonal moves) and insertions or deletions (i.e. hori-
zontal or vertical moves) (Figure 11, panel A). In POA, one of the linear
sequences is replaced by a partial order containing branching, with the
2D matrix bifurcating (i.e. generating a new surface) each time a single
sequence DAG can align to either sequence stored in the POA. On a
given surface, the POA behaves the same as the standard 2D alignment,
and the same set of three moves (i.e. diagonal, horizontal, vertical)
are allowed. At junctions where multiple surfaces fuse, the horizontal
and diagonal moves are extended to allow them to go onto any of the
incoming surfaces that meet at the junction. Thus for the simplest case
where two branches join, the allowed moves are: two diagonal moves
(i.e. one from each incoming surface), two horizontal moves (i.e. one
from each incoming surface), only one vertical move, and a start move
(Figure 11, panel B). Consensus sequences are obtained from a built
POA graph by performing a topological sort and processing the nodes
from left to right. Overall, POA has linear time complexity in the
number of sequences but most implementations are prohibitively slow
for larger data sets. Thus, we integrated into TRiCoLOR SPOA, a
SIMD-accelerated POA algorithm, which is inspired by the Rognes and
Seeberg Smith-Waterman intra-set parallelization approach (Rognes
and Seeberg, 2000) and drastically increases the speed of calculation
over non-SIMD versions.
We evaluated the capability of SPOA to reduce the error rate of long-
read alignments from Chaisson and collegues. In particular, we applied
Alfred to haplotype-resolved BAM files and calculated the error rate
of the HG00733, HG00514 and NA19240 individuals, sequenced using
platforms from ONT as well as from PacBio. We then applied SPOA
to generate consensus sequences from a region on chr20 ranging from
18000000 to 20000000 of the HG00733 individual, using windows of
2000 bases (i.e. 1000 windows in total); the consensus sequences formed
were aligned to the GRCh38 human reference genome using the long-
read aligner minimap2 (Li, 2018) and we derived their error rate as
for the original BAM file. For the consensus generation, we exploited
the global mode of SPOA with default penalties (i.e. matches: +5;
mismatches: -4; gap opening: -8; gap extending: -6), which resulted
in the lowest consensus error rates. Figure 12 shows the error profiles
of the ONT Figure 12, panel A) and PacBio (Figure 12, panel B)
alignments for the HG00733, HG00514 and NA19240 individuals, which
are also haplotype-resolved (e.g. HG00733 is haplotype-resolved in
HG00733.h1 and HG00733.h2). For ONT alignments, the mean error
rate is ⇠11% and the substitution:insertion:deletion ratio is ⇠45:25:30;
for the PacBio alignments, the mean error rate is ⇠13% and the substi-
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tution:insertion:deletion ratio is ⇠15:50:35. Figure 12 also illustrates
how much of the initial error rate of the ONT (Figure 12, panel C)
and PacBio (Figure 12, panel D) alignments SPOA can correct. For
the regions investigated, the mean error rate of the ONT (⇠2.5%,
substitution:insertion:deletion ratio ⇠31:37:32) and PacBio (⇠1.5%,
substitution:insertion:deletion ratio ⇠17:70:13) consensus sequences is
drastically lower compared to the inital error rates derived from the
BAM files, i.e. ⇠11% and ⇠13% respectively.
Having the haplotype-specific consensus sequences formed, these are
aligned to the reference genome to retrieve their coordinates using the
minimap2 aligner, which we found to compare favorably to another
widely-used aligner, namely NGMLR (Sedlazeck et al., 2018).
Indeed, in order to identify the best aligner for long sequences, we
evaluated the performances of minimap2 and NGMLR on syntethic
data. We run minimap2 using the presets -x map-ont for the ONT
simulations and -x map-pb for the PacBio simulations; we run NGMLR
using the presets -x ont for the ONT simulations and -x pb for the
PacBio simulations. First, we evaluated the speed of the chosen aligners
when aligning an increasing number of long sequences (coverage ⇠1X,
⇠5x, ⇠10X, ⇠15X, ⇠20x, ⇠25X, ⇠30X; substitution:insertion:deletion
ratio ⇠10:60:30; average length of reads ⇠8000 bases; accuracy of reads
⇠0.90), simulated from a region on chr20 (32000000-62000000) of the
GRCh38 human reference genome using PBSIM (Ono et al., 2013). For
each simulation (one for each coverage level), we repeated the alignment
step 5 times using 6 Intel®Xeon®processors X5460 on an Ubuntu
16.04.6 LTS desktop. As illustrated in Figure 13, minimap2 proved
to be ⇠6 times faster than NGMLR. Results are shown as mean ±
standard deviation (Figure 13, panel A). We further evaluated the accu-
racy of the chosen aligners when mapping long sequences of increasing
length (⇠500 bases, ⇠1000 bases, ⇠5000 bases, ⇠10000 bases) and
increasing accuracy (⇠0.85, ⇠0.90, ⇠0.95), simulated from the same
region on chr20 (32000000-62000000) of the GRCh38 human reference
genome with PBSIM. Figure 13 also shows these findings for simulated
ONT (substitution:insertion:deletion ratio ⇠45:25:30) (Figure 13, panel
B) and PacBio (substitution:insertion:deletion ratio ⇠15:50:35) (Fig-
ure 13, panel C) alignments respectively. We used the ratio between
the number of reads mapped in the region chosen for simulating and
the total number of reads mapped as a measure of accuracy. The
accuracy of both minimap2 and NGMLR increases as the length of the
simulated reads increases, approaching ⇠1.0 when the length of these
reads is � 5000. For shorter reads, minimap2 demonstrates an accuracy
higher than NGMLR on the ONT simulations and slightly lower on
the PacBio simulations. These results led us to choose minimap2 as

41



3. Methods

the default aligner for TRiCoLOR, as it outperformed NGMLR in
terms of speed without loosing the comparison in terms of mapping
accuracy. We furthermore investigated which preset of the minimap2
aligner performed best for mapping the consensus sequences generated
through SPOA (see also Note S3) to the reference genome. Using the
simulation schema described above, we generated synthtetic ONT and
PacBio alignments from a region on chr1 (100000000-110000000) of the
GRCh38 human reference genome, and we exploited SPOA to generate
consensus sequences using windows of 1000 bps (10000 windows in
total). We aligned the consensus sequences formed back to the chr1
reference sequence using the presets for noisy reads (i.e. -x map-ont for
the ONT alignments and -x map-pb for the PacBio alignments) as well
as the presets for the assembly-to-reference alignment (i.e. -x asm5,
-x asm10, -x asm20 ). For all the presets used, minimap2 was able to
properly map all the generated consensus sequences to their original
location (e.g. a consensus sequence generated from the 11th window
was properly mapped to the original region chr1:100010000-100011000).
Given that the presets evaluated did not influence the mapping accuracy
of minimap2, we decided to call the aligner from within TRiCoLOR
using the presets for noisy reads.
The reference-aligned low-error consensus sequences are then screened
by a RegEx-based approximate string matching algorithm to identify
TRs.
A RegEx is a pattern in which the rules for matching text are written
in form of metacharacters, quantifiers or plain text. For instance, the
well-known RegEx metacharacter called Kleene Star (* ), that derives
its name from the American mathematician Stephen Cole Kleene who
invented the RegEx strategy, means to “match the preceding character
zero to many times”. RegEx expressions are an efficient and hence
popular way to search for repeats of a certain size and a large number
of patterns (Merkel and Gemmell, 2008) and a variety of TR callers
that implements a RegEx-based search engine have been released in
the past, including MsatFinder3, SSRIT (Temnykh et al., 2001) and
MISA (Thiel et al., 2003).
The RegEx-based string matching algorithm of TRiCoLOR has three
processing steps: (1) identifying motifs (motifs of length  6 bases,
by default) that are perfectly repeated a minimum number of times
(5, by default). A simplified version of the Python function used by
TRiCoLOR to find perfect repeated motifs in consensus strings is shown
below.

3http://web.archive.org/web/20071026090642/http://www.
genomics.ceh.ac.uk/msatfinder/
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import re

def regexfinder(consensus,motif=6,size=5,overlapping=False):

seen=set()

if not overlapping:

regex=r'(.+?)\1{'+str(size-1)+r',}'

else:

regex=r'(?=(.+?)\1{'+str(size-1)+r',})'

r=re.compile(regex)

for match in r.finditer(consensus):

m=match.group(1)

if len(m) <= motif:

seen.add(m)

return seen

Specifically, the first part ((.+?)), which is also known as capturing
group, matches any character, except for line terminators, between
one and unlimited times, as few times as possible, expanding only
when needed. This expression, which has a lazy behaviour, allows
to identify the shortest repeated motif, whatever its length is. The
second part (\1{5,}) matches the same text as most recently matched
by the previous capturing group between 5 (the default value) and
unlimited times, as many times as possible, giving back as needed.
This expression, which has a greedy behaviour, allows to identify the
longest repeated stretch of the motif chosen by the capturing group.
By default, the algorithm does not look for overlapping repetitions
(i.e. it keeps only one between a repeated AT and a repeated TA) but
this behaviour can be changed by enabling the –overlapping parameter,
which expands the previous RegEx by using the positive lookahead
structure (?=...). Lookahead and lookbehind structures, collectively
known as lookaraound structures, are zero-length assertions, that match
characters but then give up the match, returning only the result (i.e.
match or no match), without consuming characters. In the original
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TRiCoLOR function, when looking for a known repeated motif, the
RegEx built can be further adjusted to identify only motifs of a pre-
defined length. (2) looking for approximate repetitions of the motifs
identified. Consensus sequences are quite accurate but still contain
sparse errors interrupting TRs: therefore, the algorithm allows up to a
certain number of insertions, deletions or mismatches (i.e., a certain
edit distance) between repeated motifs (maximum edit distance 1, by
default). (3) where appropriate, resolving overlapping approximate
repetitions by way of a N-gram model.
The N-grams are strings containing N words: for instance, a bigram is
a two-word sequence of words and a trigram is a three-word sequence
of words. N-gram models estimate the probability of a word given
some history, i.e. knowing all the words preceding. However, instead
of computing the probability of a word given its entire history, one
can approximate the history by just the last few words. The bigram
model, in particular, approximates the probability of a word given all
the previous words by using only the conditional probability of the word
preceding. The assumption that the probability of a word depends only
on the previous word is called a Markov assumption. Markov models
are the class of probabilistic models that assume we can predict the
probability of some future unit without looking too far into the past.
This concept is implemented in TRiCoLOR REFER, which estimates
how many times in the consensus string the repetitive motifs that are
found to overlap are preceded by theirselves. In practice, when multiple
approximately repeated motifs are found to overlap, the N-gram model
we use favors the motif (i.e. the N-gram) that more frequently is found
to repeat itself perfectly.
Together with the haplotype-specific consensus sequences, the corre-
sponding reference is screened in a similar manner, with few differences
being noteworthies: (1) the algorithm assumes the reference does not
contain errors and does not look for approximate repetitions of the
motifs identified; (2) among overlapping repetitions, the longest repeat
is taken and no N-gram model is required.
TRs (those � 50 bases, by default) varying between the haplotypes
or the reference are eventually stored in BCF-compliant format. TRi-
CoLOR REFER also stores in the output folder several BED files
describing the TRs identified (both for the reference and each haplo-
type) and haplotype-specific BAM files containing the aligned consensus
sequences. These additional files can be given to the dedicated module
for interactive visualization of the identified TRs, which is described
below.
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3.2.3 TRiCoLOR ApP

The TRs profiled using TRiCoLOR REFER can be interactively vi-
sualized through the ApP module. This module takes as inputs the
BED and the BAM files generated by TRiCoLOR REFER together
with an additional BED file describing one ore more regions to plot.
For each region, TRiCoLOR ApP produces a static HTML page based
on the plotly graphing library4, illustrating the alignment between the
reference and the individual’s haplotypes at single base resolution and
highlighting the TRs found.
As a proof of concept, in Figures 14A to 14C we showed how to browse
the HTML file generated by TRiCoLOR ApP for a TR (dinucleotide
TG repeated 15 times) on chromosome 17 (64240234-64240263) of
the human GRCh38 reference genome for which we simulated a small
expansion (dinucleotide TG repeated 22 times) on haplotype 1 using
VISOR.
Figure 14A shows the home screen of the HTML. Top left buttons
allow users to highlight repetitions found in the reference and in the
individuals’ haplotypes. In addition to the TR of interest, we found
in the browsed region a stretch of 28 As (64239876-64239903), which
is also highlighted in the screenshot. To further resolve a TR, users
can zoom into a certain area (e.g., the area we selected with the red
rectangle).
Figure 14B shows the sequences of the reference and the individual’s
haplotypes at higher magnification. Each dot corresponds to a single
nucleotide and users can check the base composition of each molecule
by simply scrolling across the alignment. Deletions of one or more
bases in the haplotypes can be seen as gaps in their sequences while
insertions are represented by multiple dots sharing the same coordinate
(thus, closer than expected). We highlighted with a red rectangle the
insertion of TG bases found on haplotype 1.
Figure 14C shows a further magnification of the extended TG repetition
(TG repeated 7 times more, the area we selected with the red rectangle)
that we simulated on haplotype 1. The inserted TGs share the same
coordinate and are missing in the reference sequence.

3.2.4 TRiCoLOR SAGE

Detection of genotyping errors is a necessary step to minimize false
results in genetic analysis, and is particularly important when the rate
of genotyping errors is high, as has been reported for high-throughput
sequence data (Zhi et al., 2012). In pedigrees, assigned genotypes can

4https://plotly.com
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be either Mendelian consistent or Mendelian inconsistent. A Mendelian
inconsistent genotyping error is an error that is detected because the
observed genotypes are not consistent with the transmission pattern
as specified by the Mendel’s First Law (Cheung et al., 2014). When
a marker is flagged as Mendelian inconsistent this marker most likely
has either a genotyping error or a de novo mutation.
TRiCoLOR allows users to check for genotype consistency in the TRs
profiled from a child when haplotype-resolved long-read alignments for
both parents are also available but, for instance, have been sequenced
at low depth, which prevents the de novo identification of TRs. This is
achieved through the SAGE module.
Using the same approach described for TRiCoLOR REFER, for each
parent TRiCoLOR SAGE forms haplotype-specific consensus align-
ments around the TRs listed in the BCF file produced for the child.
Then, the module checks whether the parental TRs are more similar
(i.e., have a lower edit distance) to the reference or to the TR identi-
fied in the child and assigns them the most likely genotype. Knowing
the genotype of both parents, the module eventually flags each TR
as Mendelian consistent or inconsistent with the –mendel parameter
enabled.
For instance, assuming that the module is tracing the Mendelian in-
heritance of a heterozygous TR expansion (i.e., its genotype is 0|1)
in the child, if both haplotypes of the first parent do not contain the
expansion (i.e., the TR genotype is 0|0) and one haplotype of the
second parent does contain the expansion (i.e., the TR genotype is 0|1),
then the child TR is considered Mendelian consistent. On the contrary,
if both haplotypes of the first parent do not contain the expansion (i.e.,
the TR genotype is 0|0) and neither do the haplotypes of the second
parent (i.e., the TR genotype is 0|0), then the child TR is considered
Mendelian inconsistent.
TRiCoLOR SAGE stores results in a multi-sample BCF file that con-
tains the genotypes for the index child and his or her parents.
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Results 4

We benchmarked TRiCoLOR using both synthetic data generated with
VISOR and real, publicly available data from the HGSVC. A detailed
explanation of our benchmarking procedure is available in the sections
below. Briefly, we applied VISOR to generate synthetic BAM files
containing contractions and expansions of known TRs and we evaluated
the capability of TRiCoLOR to correctly predict the simulated repeat
motif and multiplicity. TRiCoLOR shows excellent performances in all
the simulations we have run and consistently outperformed NCFR. For
real data, we applied TRiCoLOR to discover and genotype TRs de novo
on three individuals from the HGSVC, namely HG00733, HG00514 and
NA192401. We verified the generated calls using compressed data struc-
tures, built on high-quality Illumina sequences, achieving on average
⇠84% validation rates. We also estimated a ⇠80% Mendelian consis-
tency rate of TR genotypes for the HGSVC trio HG00731, HG00732
and HG0733. Among the Mendelian consistent calls generated by TRi-
CoLOR for the HG00733 individual, we identified 32 long TRs that
were missing in the corresponding HGSVC callset. For these TRs, we
manually inspected the assembly to identify the cause of these appar-
ent discrepancies. Most TRs were properly assembled but not called.
However, ⇠25% of the inspected alleles were not correctly resolved by
the HGSVC, which suggests that mapping-based and assembly-based
approaches can be complementary for TR detection using long reads.

1https://www.internationalgenome.org/data-portal/
data-collection/structural-variation
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4. Results

4.1 TRiCoLOR on synthetic data

We used our read simulator VISOR to generate synthetic ONT and
PacBio alignments exhibiting contractions and expansions of TRs.
First, we simulated haplotype-resolved ONT and PacBio BAM files
(the average length of simulated reads was set to 8000 bases based
on statistics derived from recent ONT sequencing runs; the substi-
tution:insertion:deletion ratio was set to ⇠45:25:30 for the synthetic
ONT reads and to ⇠15:50:35 for the synthetic PacBio reads, in ac-
cordance with findings in the Methods chapter) exhibiting variable
error rates (accuracy of reads ⇠0.85, ⇠0.90 and ⇠0.95) and depth of
coverage (haplotype-specific depth of coverage 5X-10X and 10X-20X),
with each BAM file harboring a heterozygous contraction or expansion
of a known, randomly chosen, TR from the TR catalog of the GRCh38
human reference genome. At this stage, we simulated small TR con-
tractions/expansions (i.e. 7 motifs on average), in order to evaluate
the capability of our method to spot even minor changes in the TR
multiplicity of the 2 haplotypes. For each group, we simulated 200
haplotype-resolved BAM files. Then, we evaluated the performances of
TRiCoLOR in terms of Precision (P), Recall (R) and F1 score (F1).
In the classification task, P is the proportion of positive identifications
that is actually correct, R is the proportion of actual positives that is
identified correctly and F1 is the harmonic mean of the P and R. P, R
and F1 are defined as:

P =
TP

TP + FP

R =
TP

TP + FN

F1 = 2 ⇤ P ⇤R
P +R

A True Positive (TP) is a call for which the number of repetitions
identified by TRiCoLOR matches the number of repetitions in the
haplotype containing the TR contraction/expansion.
A False Positive (FP) is a call for which the number of repetitions
identified by TRiCoLOR does not match the number of repetitions in
the unaltered haplotype.
A False Negative (FN) is a call for which the number of repetitions
identified by TRiCoLOR does not match the number of repetitions in
the haplotype containing the TR contraction/expansion.
In particular, P, R and F1 values were calculated allowing no discrepan-
cies, 1 discrepancy or 2 discrepancies between the number of repeated
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motifs in the ground truth and the number of repeated motifs predicted
by TRiCoLOR. Figure 15 shows these findings for synthetic TR con-
tractions (Figure 15, panel A) and expansions (Figure 15, panel B).
TRiCoLOR demonstrated high P and R in all the simulated groups: our
method always achieved an F1 close to 1 when allowing a single-motif
discrepancy between simulated and predicted TRs and hit P ⇠1 and R
⇠1 when allowing up to 2 motif discrepancies. For both contractions
and expansions the F1 depends on the coverage and input read accu-
racy as expected. In all the simulated TR contractions and expansions,
TRiCoLOR was also able to properly identify the correct repeated
motif, few times shifted (e.g., a repeated TG instead of a repeated GT).
Figure 16 illustrates these findings for the same simulated groups of
Figure 15, averaged over the different accuracy levels.
Furthermore, as a proof of concept, we compared TRiCoLOR to a TR
caller for long reads recently published, namely NCRF. Using the same
approach described above, we simulated 100 ONT and 100 PacBio
BAM files (accuracy of reads ⇠0.90, depth of coverage for each hap-
lotype 5X-10X) harboring small TR contractions/expansions and we
run both TRiCoLOR and NCRF on these data. As NCRF cannot deal
with BAM input, we slightly modified TRiCoLOR to store in FASTA
format the sequences used for the consensus computation step, which
could be processed through NCRF. Specifically, we run TRiCoLOR
REFER with the -m parameter set to the length of the repeated motif
(e.g., -m 2 for a GT repetition), the –precisemotif parameter enabled
and the –readstype parameter set to ONT for ONT simulations and
to PB for the PacBio simulations. We run NCRF using the authors’
README suggestions2, with –scoring parameter set to nanopore for
ONT simulations and to pacbio for PacBio simulations; we adjusted the
–minlength parameter accordingly to the length of the TRs simulated
and we averaged the number of repetitions found by NCRF in each
FASTA. Figure 17 shows the correlation results between the number
of TRs in the ground truth and the number of TRs predicted by TRi-
CoLOR and NCRF for the simulated TR contractions (Figure 17, panel
A) and expansions (Figure 17, panel B). For both TR contractions and
expansions, TRiCoLOR got excellent Pearson Correlation Coeffi-
cient (Pearson’s R) scores (R = 0.97 for contractions and R = 0.86
for expansions), outperforming NCRF (R = 0.87 for contractions and
R = 0.74 for expansions). We next evaluated exceptionally long TR
expansions because these have been implicated in several neurological
disorders. For instance, the common Fragile-X Syndrome is related to
a CGG-repeat usually consisting of 55 repeated motifs that expands

2https://github.com/makovalab-psu/
NoiseCancellingRepeatFinder/tree/master/tutorial
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to � 200 repeated motifs. Following the simulation schema described
above, we generated 100 ONT and 100 PacBio synthetic BAM files
harboring TRs expanded by 200 motifs and we run both TRiCoLOR
and NCRF on these data. Figure 18 shows the correlation results
between the number of TRs in the ground truth and the number of
TRs predicted by TRiCoLOR and NCRF for the simulated long TR
expansions. As above, TRiCoLOR achieved the best R score (R =
0.73), outperforming NCRF (R = 0.53).

4.2 TRiCoLOR on real data

We applied TRiCoLOR to call TRs de novo on publicly available
ONT and PacBio human whole-genome sequencing data from the
HGSVC project, which have applied several genomics assays to three
trios of individuals from the 1000 Genomes Project: the Yoruban trio
(i.e. NA19238, NA19239 and NA19240); the Puerto Rican trio (i.e.
HG00731, HG00732 and HG00733) and the Southern Han Chinese
trio (i.e. HG00512, HG00513, HG00514). In particular, we used the
ONT sequencing data for the HG00514 (Han Chinese, son), HG00733
(Puerto Rican, son) and NA19240 (Yoruban Nigerian, son) and the
PacBio sequencing data for HG00731 (Puerto Rican, father), HG00732
(Puerto Rican, mother) and HG00733.
We aligned the ONT FASTQ files of the three sons3 to the human
GRCh38 reference genome using minimap2 and we merged the chromosome-
specific PacBio alignments4 of the Puerto Rican trio using samtools
(Li et al., 2009). We then split the ONT and PacBio alignments by
haplotype with Alfred, using phased single-nucleotide variants from the
HGSVC project5. We calculated the coverage of the initial and the
haplotype-resolved BAM files using mosdepth (Pedersen and Quinlan,
2018). For all the ONT samples, we identified an initial ⇠20X coverage
(HG00733 ⇠21X, HG00514 ⇠23X and NA19240 ⇠24X), slightly reduced
after splitting by haplotype due to some unassigned reads (HG00733
⇠8X, HG00514 ⇠9X and NA19240 ⇠10X for each haplotype), which are
likely to originate from autozygous regions and low mappability regions
such as segmentally duplicated and heterochromatic regions (Porubsky
et al., 2019). For the PacBio samples, we identified a ⇠42X coverage

3http://ftp.ebi.ac.uk/1000g/ftp/data_collections/hgsv_
sv_discovery/working/20181210_ONT_rebasecalled

4http://ftp.ebi.ac.uk/1000g/ftp/data_collections/hgsv_
sv_discovery/working/20180102_pacbio_blasr_reheader

5http://ftp.ebi.ac.uk/1000g/ftp/data_collections/hgsv_
sv_discovery/working/20170323_Strand-seq_phased_FB%2BGATK_
VCFs
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for HG00733 and ⇠21X coverage for HG00731 and HG00732, reduced
after splitting the data by haplotype (HG00733 ⇠14X, HG00731 and
HG00732 ⇠8X for each haplotype).
We then run TRiCoLOR SENSoR using the default parameter settings
on the HG00733 (ONT and PacBio), HG00514 and NA19240 individuals.
Using an Ubuntu 16.04.6 LTS desktop with Intel®Xeon®processors
X5460, the module took ⇠4 hours to scan the ONT samples and ⇠8
hours to scan the PacBio sample, which reflects the higher coverage
available for PacBio. For the HG00733, HG00514 and NA19240 ONT
individuals the module identified ⇠160000, ⇠190000 and ⇠260000 low-
entropy regions, which were reduced to ⇠70000, ⇠100000 and ⇠160000
respectively after filtering for regions with average coverage > 8. For the
HG00733 PacBio individual the module identified ⇠380000 low-entropy
regions, which were reduced to ⇠150000, after filtering for regions with
average coverage > 10. For HG00733, ⇠97% of the low-entropy regions
originally identified in the ONT individual overlapped those in the
PacBio one; due to the different coverage distributions, this percentage
was reduced to ⇠31% after filtering.
We run TRiCoLOR REFER on the samples processed by TRiCoLOR
SENSoR using the default parameter settings. With 7 processors on our
Ubuntu desktop, the module took ⇠10-12 hours to profile TRs on the
ONT individuals and ⇠14 hours to profile TRs on the PacBio individ-
ual. We calculated the number of TRs properly called by TRiCoLOR
using an alignment-free validation approach, as this does not require
a pre-existent ground truth generated by either a mapping-based or
an assembly-based TR caller. Indeed, available TR callsets are mostly
based on short reads and for the reasons explained in the Introduction
chapter, these are often inaccurate. Based on the idea from Dolle and
colleagues (Dolle et al., 2017), we built searchable Full-text indexes in
Minute space (FM-indexes)(Ferragina and Manzini, 2000) both for
the GRCh38 human reference genome FASTA file and the high-quality
Illumina FASTQ files of the HG00733, HG00514 and NA19240 individ-
uals6.
Given a pattern P and a text T , FM-indexes support the counting (i.e.
the number of occurrences of P in T ) and locating (i.e. the occurrence
positions of P in T ) operations. FM-indexes were first proposed to
emulate classical Suffix Arrays (SA). However, while providing simi-
lar searching functionalities, FM-indexes require less space than SA,
as they are based on the Burrows Wheeler Transform data structure
(Burrows and Wheeler, 1994). A major benefit of FM-indexes, when
compared to other reference-free approaches (e.g. those based on de

6http://ftp.ebi.ac.uk/1000g/ftp/data_collections/hgsv_
sv_discovery/illumina_wgs.sequence.index
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Bruijn graphs), is that the construction process does not constrain the
length of possible queries.
For each individuals’ variant identified by TRiCoLOR REFER, the
FM-index-based validation algorithm: (1) checks if the variant sequence
appears at any position in the reference FM-index: if so, using the con-
sensus BAM files stored by TRiCoLOR REFER, the variant sequence
is extended by 1 base to the left and 1 base to the right and step 1
is repeated; if not, the variant sequence is unique and the algorithm
proceeds to the next step; (2) checks if the unique variant appears at
any position in the corresponding Illumina FM-index: if so, the variant
is considered a valid call; if not, the variant is considered an invalid call.
Taking into account possible errors both in the consensus sequences
generated by TRiCoLOR and in the Illumina sequences, we counted
as valid calls also unique variants that are found in the Illumina FM
indexes with up to 2 bases discrepancies (i.e. their edit distance is  2).
Limited by the length of the available Illumina sequences, using this
approach we could not validate variant TRs longer than 124 bases. As
shown in Figure 19, we got high validation ratios (i.e. ratios between
the valid calls and the number of calls that could be assessed using short
reads): ⇠82% for HG00733 (ONT and PacBio), ⇠85% for HG00514
and ⇠86% for NA19240.
We eventually run TRiCoLOR SAGE on the Puerto Rican PacBio
trio HG00731, HG00732 and HG00733, with the default parameter
settings and the –mendel parameter enabled to check the Mendelian
consistency of the TRs identified in HG00733. With 7 processors on our
Ubuntu desktop, the module took ⇠2 hours to complete the analysis.
Filtering for variants differing from the reference for at least 10 bases
and for multi-allelic variants differing from each other by the same
distance, we identified ⇠80% of Mendelian consistent TRs, which is low
compared to trio-based single-nucleotide variant and indels Mendelian
consistency rates, but above reported genotype agreement rates for SVs
in repetitive regions, such as inversions mediated by inverted repeats
(Giner-Delgado et al., 2019).
Among the Mendelian consistent calls generated by TRiCoLOR on the
HG00733 PacBio individual, we identified 32 long TRs (� 150 bases)
that were absent in the HGSVC ground truth for the same individual7.
In order to identify the cause of these apparent discrepancies, we aligned
the HG00733 phased contigs from HGSVC8 to the GRCh38 human

7http://ftp.ebi.ac.uk/1000g/ftp/data_collections/hgsv_
sv_discovery/working/20180627_PanTechnologyIntegrationSet/
HG00733.merged_nonredundant.vcf

8http://ftp.ebi.ac.uk/1000g/ftp/data_collections/hgsv_
sv_discovery/working/20180227_PhasedSVGenomes
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reference genome with minimap2, using the assembly-to-reference align-
ment mode (-x asm5 ) and the parameters suggested by QUAST-LG
(–mask-level 0.9 –min-occ 200 -g 2500 –score-N 2 ) (Mikheenko et al.,
2018) and we manually inspected the discordant TRs in the aligned
contigs using IGV (Thorvaldsdóttir et al., 2013). As shown in Table 3,
out of 58 non-reference TR alleles identified by TRiCoLOR, we could
visually confirm 42 (⇠75%) of them in the assembly, which means that
both TRiCoLOR and the HGSVC predicted the same variant type
(i.e. deletion or insertion) and the predicted variant size is roughly
similar (i.e. the difference does not exceed 50 bases). However, for
the other 16 variants (⇠25%), the assembly either did not contain
the allele predicted by TRiCoLOR (i.e. the variant type is discordant
or the predicted variant size differs more than 50 bases) or did not
cover the investigated region, which suggests that mapping-based and
assembly-based approaches can be complementary for TR detection
using long reads.
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Discussion 5

In this dissertation, we described TRiCoLOR, a tool capable to resolve
TR motifs and their multiplicity in long read sequencing data sets. Long
reads are in theory ideally suited to investigate TRs, which often cannot
be adequately profiled with short reads if TRs exceed the sequencing
reads in length. However, the high error profiles of ONT and PacBio
reads complicate repeat resolution.
TRiCoLOR is a comprehensive TR caller for long reads that supports
the de novo identification of TRs in whole-genome sequencing data.
TRiCoLOR profiles TRs through an efficient POA algorithm combined
with a RegEx-based string matching search, facilitating a robust and
accurate discovery of the full spectrum of expanded and contracted
TRs in personal genomes.
In comparison to previous tools, TRiCoLOR works with ONT and
PacBio data seamlessly. TRiCoLOR also identifies TRs de novo and
does not require a priori knowledge of annotated TR regions. The
unique combination of features for genome-wide, de novo discovery
and genotyping of TRs in ONT and PacBio data is to the best of our
knowledge unmet by any other TR caller for long-read data. Besides
the detection of TRs, TRiCoLOR visualizes TRs in their haplotype
context and it can infer parental genotypes using low-coverage parental
sequencing data.
TRiCoLOR has been designed for diploid organisms and future work
includes extending its feature set to polyploid species and haploid
chromosomes (e.g.human Y chromosome). As a mapping-based ap-
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proach, TRiCoLOR cannot identify repeats in unassembled regions of
the genome (e.g., human centromeres and telomeres). Furthermore,
the entropy threshold and window size for the de novo identification of
repetitive stretches that we empirically estimated is well-suited for short
repeated motifs (2-3 bps) but may need adjustments for long motifs of
higher nucleotide complexity. Lastly, by default TRiCoLOR profiles
TRs with motif lengths  6 bps (also known as micro-satellites), ex-
cluding those with motif lengths �7 bps (also known as mini-satellites),
which are less abundant in diploid organisms (Richard et al., 2008).
The RegEx algorithm can be also tuned to profile mini-satellites (i.e.,
by extending the –size parameter) but TRiCoLOR has been extensively
applied so far only to micro-satellites.
Given these limitations, future work will focus on extending TRiCoLOR
to other ploidies, broadening the size spectrum of detectable repeat
motif lengths and taking advantage of improved sequencing read accu-
racy (e.g., high-fidelity long reads from PacBio). The latter directly
improves the RegEx-based identification of repeats employed by TRi-
CoLOR and we thus believe TRiCoLOR is well-suited to characterize
the TR landscape in present and future long-read data sets, making
it an instrumental tool to robustly decipher the multiplicity of TRs in
repeat-mediated clinical disorders.

55



Figures 6

56



Figure 1: Template amplification strategies. Different
strategies used to generate clonal DNA template populations:
bead-based generation (a), solid-state generation (b,c), DNA
nanoball generation (d). Figure is taken from Coming of age: ten
years of next-generation sequencing technologies (Goodwin et al.,
2016).
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6. Figures

Figure 2: SBL methods. Summary of the SBL approaches by
SOLiD (a) and Complete Genomics (b). Figure is taken from
Coming of age: ten years of next-generation sequencing technolo-
gies (Goodwin et al., 2016).
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Figure 3: SBS methods: CRT approaches. Summary of the
CRT approaches by Illumina (a) and Qiagen (b). Figure is taken
from Coming of age: ten years of next-generation sequencing
technologies (Goodwin et al., 2016).
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6. Figures

Figure 4: SBS methods: SNA approaches. Summary of the
SNA approaches by Roche (a) and Thermo Fisher Scientific (b).
Figure is taken from Coming of age: ten years of next-generation
sequencing technologies (Goodwin et al., 2016).
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Figure 5: Long-read sequencing approaches. Different
strategies used to generate long reads: SMRT sequencing by
PacBio (Aa), nanopore sequencing by ONT (Ab), Synthetic
long-read sequencing by Illumina (Ba) and 10X Genomics (Bb).
Figure is taken from Coming of age: ten years of next-generation
sequencing technologies (Goodwin et al., 2016).
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6. Figures

Figure 6: Detection of base modifications with SMS. Dif-
ferent strategies used to identify nucleotides epigenetically mofified
using SMS: SMRT sequencing by PacBio (a,b,c) and nanopore se-
quencing by ONT (d,e,f). Figure is taken from Deciphering bacte-
rial epigenomes using modern sequencing technologies (Beaulaurier
et al., 2019).
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Figure 7: Repetitive DNA in the human genome. Named
classes of repeats in the human genome, along with their pat-
tern of occurrence, the percentage of the genome that is covered
by each repeat class and the approximate upper and lower bounds
on their lengths (a). The percentage of each chromosome covered
by each repeat class is also shown (b). Data are based on the
RepeatMasker annotation on release hg19 of the human genome
(http://www.repeatmasker.org). Figure is taken from Repetitive DNA
and next-generation sequencing: computational challenges and solutions
(Treangen and Salzberg, 2012).
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6. Figures

Figure 8: Ambiguities in read mapping. As the difference
between two copies of a repeat increases, the confidence in any
read placement within the repeat increases as well (A). When a
read maps equally well to two different locations, this is assigned
to either the first or the second depending on the score given by
the aligner to mismatches and gaps (B). Figure is taken from
Repetitive DNA and next-generation sequencing: computational
challenges and solutions (Treangen and Salzberg, 2012).
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Figure 9: Assembly errors caused by repeats. Different as-
sembly errors caused by repeats: a rearrangement error (A), a
collapsed repeat (B) and a collapsed interspersed repeat (C). Fig-
ure is taken from Repetitive DNA and next-generation sequencing:
computational challenges and solutions (Treangen and Salzberg,
2012). 65



6. Figures

97.94%
 w

indow
s are excluded

0 1 2 3

0.0
0.5

1.0
1.5

2.0
Shannon entropy

Density

A

97.76%
 w

indow
s are excluded

0 1 2 3

0.0
0.5

1.0
1.5

2.0
Shannon entropy

Density

B

0.0

0.5

1.0

1.5

2.0

48941800

48941900

48942000

48942100

48942200

G
enom

ic position (chr19)

Shannon entropy

C

0.0

0.5

1.0

1.5

2.0

48941800

48941900

48942000

48942100

48942200

G
enom

ic position (chr19)

Shannon entropy

D

F
ig

u
re

10:
Shannon

entropy
of

tandem
repeats.

N
egatively-

skew
ed

distribution
of

Shannon
entropy

in
sim

ulated
O

N
T

(A
)

and
P
acB

io
(B

)
B

A
M

files.
A

Shannon
entropy

value
of

⇠
1.23

allow
s

to
exclude

⇠
98%

of
the

alignm
ent

inform
ations

screened.
R

ead-specific
Shannon

entropy
in

sim
ulated

O
N

T
(C

)
and

PacB
io

(D
)

B
A

M
files.

A
llthe

reads
show

a
Shannon

entropy
drop

below
the

⇠
1.23

threshold
in

the
repeated

region.
F
igure

is
taken

from
T

R
iC

oLO
R

:
tandem

repeat
profiling

using
w
hole-genom

e
long-read

sequencing
data(B

ologniniet
al.,2020a).

66



Figure 11: Dynamic programming matrix for partial
orders. Dynamic programming matrix for Needleman–Wunsch
sequence alignment algorithm (a) and for the POA algorithm (b),
with the optimal alignment paths shown. Figure is taken from
Multiple sequence alignment using partial order graphs (Lee et al.,
2002).
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chromosome start end HGSVC assembly* TRiCoLOR call*

chr1 23703657 23703893 DEL;INS DEL;INS
chr1 223672571 223672681 INS;INS INS;INS
chr10 69539376 69539572 INS;INS INS;INS
chr11 79190887 79191145 REF;REF DEL;INS
chr11 128436913 128437081 INS;INS INS;INS
chr14 84276747 84276903 REF;DEL INS;DEL
chr15 70364402 70364587 INS;NA INS;INS
chr16 3529535 3529854 REF;DEL LC;INS
chr17 27525992 27526118 INS;INS INS;INS
chr18 44544809 44545037 INS;INS INS;INS
chr18 59081301 59081379 INS;INS INS;INS
chr18 71198388 71198450 REF;NA REF;INS
chr2 160426201 160426342 INS;INS INS;INS
chr2 211860947 211861156 DEL;NA DEL;INS
chr21 35063465 35063588 INS;INS INS;INS
chr22 46174187 46174274 REF;INS REF;INS
chr3 13856835 13857013 DEL;INS DEL;INS
chr4 13807826 13807982 REF;REF REF;INS
chr4 18837113 18837320 INS;DEL INS;DEL
chr4 81637241 81637408 DEL;DEL DEL;DEL
chr5 54513584 54513735 REF;INS INS;INS
chr6 25450910 25450975 REF;INS REF;INS
chr6 55543085 55543393 INS;INS INS;INS
chr6 106945844 106946002 DEL;DEL DEL;INS
chr7 38610247 38610412 NA;DEL INS;DEL
chr7 71847696 71847865 INS;INS INS;INS
chr7 109663557 109663744 INS;DEL INS;DEL
chr7 131933466 131933651 INS;INS INS;INS
chr9 82850174 82850347 DEL;DEL DEL;DEL
chr9 91622218 91622365 NA;NA INS;REF
chr9 91634814 91634973 NA;NA DEL;INS
chr9 116632126 116632280 INS;INS INS;INS

* DEL indicates a deletion; INS indicates an insertion; REF
indicates a reference allele; NA indicates that the region is not
covered by the assembly or mis-assembled; LC indicates that
TRiCoLOR could not generate a consensus sequence for the allele
due to the low coverage in the region. The 2 alleles are separated
by a semicolon. Differing alleles are highlighted in bold.

TABLE 3: Comparison of TRiCoLOR and HGSVC calls. Com-
parison between TRiCoLOR’s mapping-based and HGSVC’s
assembly-based approaches for Mendelian consistent long TRs
identified by TRiCoLOR on the HG0733 PacBio individual.
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