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Preface  

 

My thesis is focused on sequencing-based methods for lung diseases monitoring. 

Modern sequencing techniques allow us to comprehensively characterize nucleic acids 

obtained from patient-derived biological material, with potential applications in both 

basic research and clinical practice. 

The thesis is divided in two sections:  

In Section 1: “Evidence for host-dependent RNA editing in the transcriptome of SARS-

CoV-2” I describe the presence of RNA editing events in SARS-CoV-2, by analysing 

publicly available second generation RNA sequencing data from infected patients.  

In Section 2: “Analysis of copy number variations from cell-free DNA of lung cancer 

patients via Nanopore sequencing” I have developed a customized workflow to exploit 

Nanopore sequence for the analysis of plasmatic cell-free DNA. The technique has been 

tested on plasma samples obtained from lung cancer patients, with the aim of detecting 

tumor-specific copy number variations. The approach has been subsequently validated 

by comparing it with the current standard technique (second generation sequencing: 

Illumina).
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https://en.wikipedia.org/wiki/Angiotensin-converting_enzyme_2
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Section 1: Evidence for host-dependent 
RNA editing in the transcriptome of 

SARS-CoV-2 
 

Introduction 

Origin and characteristics of SARS-CoV-2 

Emerging viral infections represent a threat to global health, and the recent outbreak of 

novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) exemplifies the risks (1, 2). 

Coronaviruses are enveloped viruses, members of the subfamily Coronavirinae in the 

family Coronaviridae and the order Nidovirales; they have a positive nonsegmented 

single-stranded RNA (ssRNA) genome with a length ranging from 26 to 32 kb (3), which 

is structurally similar to eukaryotic messenger RNAs (mRNAs) in having 5'caps and 3′ 

poly-adenine tails (4). The coronavirus genome codes for membrane (M), spike (S), 

envelope (E) and hemagglutinin esterase (HE, not always present) structural proteins. 

These are responsible for cell infection/entry mechanisms and virion assembly, and are 

exposed on the surface of the virion giving it its distinctive “spiked” shape (Figure 1) (4). 

The structural nucleocapsid phosphoprotein (N) is on the other hand located inside the 

inner membrane of the virion, and it is associated with viral genomic RNA forming a 
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ribonucleoprotein with a helical structure (5, 6). 

 

Figure 1: Stylized representation of coronavirus virion. Viral envelope is constituted by 
structural proteins M, S, H, E and HE, inserted in a lipid bilayer. Viral RNA genome is 
protected inside the envelope and associated with N structural proteins forming the 
helical ribonucleoprotein. Figure taken from (4) . 

The 5’-most end of the genome is occupied by open reading frame (ORF) 1a and ORF1b, 

which constitute almost two-thirds of the entire region and code for 16 nonstructural 

proteins (NSPs) responsible of viral genes transcription and genome replication. Finally, 

coronaviruses possess a variety of accessory proteins whose number depends on the 

strain (Figure 2). Despite being dispensable, accessory proteins may confer biological 

advantages for the coronaviruses in the infected host cells (4). 
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Figure 2: Schematic representation of human-infecting coronavirus genomes. Numbers 
and letters indicate structural, nonstructural and accessory proteins, Figure taken from 
(4) . 

Despite being enveloped viruses, coronaviruses are far from being fragile or quickly 

inactivated; they are more robust than, for example, Human Immunodeficiency Virus (HIV)-1 

and their infectivity can persist after 1-4 days on the relatively harsh environment of hard 

surfaces (4). 
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The genera Alphacoronavirus and Betacoronavirus are of particular interest due to their 

ability to infect mammals, usually causing respiratory illness in humans and gastroenteritis in 

animals (3). In particular, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 

and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) are responsible 

respectively of the china outbreak in 2002–2003 and the Middle East outbreak in 2012 (7). 

The emergence and re-emergence of coronaviruses is thought to be facilitated by increased 

contact of humans with wildlife (in particular in developing regions), accompanied often by 

lack of strict regulamentations, or local uses and costumes which encourage close contacts 

with natural reservoirs of novel viruses (4).  

During the 2002 outbreak, the majority of early SARS-CoV cases were people attending 

chinese wildlife markets, in close contact with wild animals such as palm civets. 

Subsequently, many coronaviruses phylogenetically related to SARS-CoV were discovered in 

bats from different chinese provinces; hence bats have been identified as the natural reservoir 

for SARS-CoV, with palm civet as the intermediate host. Spillover to humans was likely 

caused by multiple mutations acquired by the virus during infection in palm civets. Similarly, 

for MERS-CoV, bats are considered to be the natural reservoir and dromedary camels are the 

intermediate host (3, 8). Interestingly, most of the SARS-related viruses able to infect humans 

are found in China; it is therefore generally believed that bat-derived coronaviruses could re-

emerge in future, causing outbreaks, with China being a likely hotspot (9).  

SARS-CoV-2 is the last discovered member of the genus Betacoronavirus known to infect 

humans. Many theories have been proposed but, to date, the exact origin of SARS-CoV-2 

is still a matter of debate (3, 7). Phylogenetic comparison of coronavirus sequences from the 

patients of different geographical regions, and climatic conditions supports the natural origin 

of SARS-CoV-2 (10-14). 
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Life-cycle and infection mechanisms of SARS-CoV-2 

The first step of SARS-CoV-2 infection is the binding of viral extracellular S protein to 

Angiotensin-converting enzyme 2 (ACE-2) receptors on host cellular membrane, that 

provokes the fusion of viral and host cells’ membranes (4, 15). Human coronaviruses often 

differ for Receptor Binding Domains (RBDs) of S protein, which binds to different human 

receptors; notably both SARS-CoV and SARS-CoV-2 bind to ACE-2, and their RBDs are 

nearly identical, furtherly supporting a close evolutionary relationship between the two 

viruses (16). 

Another pivotal step for viral entrance, is the cleavage of S protein by Transmembrane Serine 

Protease 2: after the binding of ACE-2 with S protein, the latter exposes the fusion peptide 

that is close to the cleavage site, to finally achieve the fusion of the viral membrane with the 

cellular membrane (17, 18). Protein fragments resulting from the cleavage of S protein, are 

released in the extracellular space and serve as decoys for the inhibition of antibody-mediated 

neutralization, enhancing the chance of a successful infection (19). 

After entry, the viral genome is released into the cellular cytoplasm and becomes available for 

transcription/translation, in a process termed “uncoating” (4, 15). 

Subsequently, coronavirus takes advantage of host translational machinery to translate the 

polycistronic gene ORF1, directly from the positive sense viral genomic RNA. 

The translation of ORF1, which is composed by ORF1a and ORF1b can generate two 

polyproteins: pp1a resulting from the canonical translation of ORF1a, and pp1ab resulting 

from a minus 1 (-1) ribosomal frameshift which bypasses ORF1a stop codon, leading to a 

fusion protein including both ORF1a and ORF1b (20). 

The cleavage of pp1a/pp1ab generates 16 NSPs; among them, the proteases NSP3 and NSP5 

are responsible for the autoprocessing of pp1a/pp1ab itself (21, 22). 

https://en.wikipedia.org/wiki/Angiotensin-converting_enzyme_2
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Most of the NSPs assemble into the replicase-transcriptase complex (RTC) which creates a 

favorable environment for viral RNA synthesis. For this purpose, NSP3, NSP4 and NSP6 

exploit endoplasmic reticulum (ER) membranes to produce vesicles, to which RTC is bound 

via their transmembrane domains (23). Viral genome and RNA synthesis factors (including 

RTC and hundreds of hijacked host proteins) are concentrated in these organelle-like vesicles, 

which protect the virus from host defence mechanisms and exonucleases (24, 25). NSP1 is 

not included in such vesicles due to its ability to hamper translation by interacting with 40S 

ribosomal subunit and causing premature mRNA degradation. Indeed, coronavirus exploit 

NSP1 to hamper the translation of host mRNAs while redirecting the translation machinery 

towards the production of viral proteins (26). 

NSP12 contains the RdRp domain, responsible for viral RNA transcription producing both 

genomic and (smaller) subgenomic RNAs. The transcription involves the production negative 

strand intermediates which are used as a template for the transcription of positive strand 

RNAs, and represent only the 1% of the total viral RNA. Genomic RNAs are exact copies of 

the viral genome which will constitute the viral progeny; while subgenomic RNAs are 

portions of the viral genome, sharing the 3’ end, used as mRNA for the translation of 

structural and accessory proteins. After the translation, structural proteins S, E and M are 

inserted into RE membrane and, subsequently, reach the endoplasmic-reticulum-Golgi 

intermediate compartment (ERGIC). Finally, viral genome is encapsidated by N protein and 

included into ERGIC membranes, forming mature virions which are transported to the cell 

surface and released by exocytosis (4, 27). 

 

Evolution of SARS-CoV-2 

The accumulation of mutations and homologous/nonhomologous recombination events 

(occurring in intermediate hosts and natural resevoirs) are decisive factors linked to the ability 



 12 

of viruses to cross the species barrier and, in this context, to affect humans (27-30). The 

nature of viral genetic material is an important factor with regard to propensity for emergence. 

Roughly 85% of emerging viruses posses ssRNA genomes, and this may be related to their 

mechanism of replication which is highly error-prone. Indeed, the error rate of RNA genome 

replication is generally about 10-4, and order of magnitude higher than DNA viruses (~10-5). 

Such high error rate is due to RNA polymerase, responsible of viral replication, which lacks 

the proofreading and post-replication mismatch repair features, fuelling ssRNA viruses’ 

predisposition to mutate and evolve (4, 31, 32). Due to its strand switching ability, viral RNA 

polymerase is responsible also of homologous and nonhomologous recombination events 

(27). Notably, in Coronaviruses, Nsp14 mediates a form of error correction which helps 

reducing the overall mutational rate (33).  

SARS-CoV-2 shares ~75–80% of its viral genome with SARS-CoV; and its genome 96% 

identical to the bat SARS-like coronavirus strain BatCov RaTG13 genome. This suggests 

that, once again bats, are likely to be reservoir hosts for this strain (8). Currently, the most 

likely intermediate host is the Malytan pangolin: an illegally trafficked species which is very 

popular in China for traditional medicine. Pangolin-derived coronavirus samples show a 85.5-

92,4% homology with SARS-CoV-2 (34-36). 

With regards to single viral proteins: SARS-CoV-2 and SARS-CoV S proteins show ~77% 

identity in the aminoacidic sequence (37-39).   

Furthermore, the S protein RBD of SARS-CoV-2 and pangolin coronavirus are extremely 

close in terms of sequence similarity (99%) (36, 40). Such evidences suggest that SARS-

CoV-2 may be the result of the recombination of two viruses, without any trace of human-

mediated genetic manipulation.  

SARS-CoV-2 genomes isolated from different patients show more than 99.9% sequence 

identity, suggesting a very recent host shift of this virus to humans (12, 14, 41). 
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According to a phylogenetic network analysis of 160 complete human SARS-CoV-2 

genomes, it is already possible to define three main variants (A, B and C, with A being the 

ancestral type according to the bat outgroup coronavirus. Such variants have been defined ) 

on the basis of aminoacidic changes. The A and C types belonged to the Europeans and 

Americans while the B type is the most common type in East Asia (42). 

 

Pathogenesis and host response 

The pathogenesis of SARS-CoV-2 is currently under the spotlight of a large section of the 

scientific community. However, SARS-CoV-2 specific studies are needed since most of our 

knowledge still derives from previous studies regarding similar viruese such as SARS-CoV 

and MERS-CoV. SARS-CoV-2 typically infects epithelial cells of the upper respiratory tract 

(i.e. oral an nasal cavities) which represent the first site of viral replication; during the disease 

progression it eventually reaches the conducting airways, where it infects primary ciliated 

cells. Most of the patients (~80%) have a mild course limited to upper and conducting 

airways. Alternatively, similarly to SARS-CoV, the virus can proceed infecting alveolar type 

II pneumocyte cells which comprise 10-15% of total lung cells and are responsible for the 

maintenance of surface tension in alveolar walls by producing surfactant. 

Those cells are also important players in the maintenance of the lung epithelium after injury 

through epithelial regeneration. SARS-CoV-2 infection cause apoptosis of alveolar type II 

pneumocyte leading to serious injury of the lungs, impairing gas exchange which is 

hypothesized to lead to Acute Respiratory Distress Syndrome (ARDS) (7, 43, 44). 

Intestinal enterocytes are another possible target of SARS-CoV-2 infection, which, in a subset 

of patients, can cause gastrointestinal symptoms (45). Notably, ACE-2 receptor is highly 

expressed in both enterocytes and pneumocytes, making these cellular types the preferred 

targets of infection (45). ACE-2 is a strong discriminant to determine the infectability of 
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human cells; indeed, Jia et al. reported the ability of SARS-CoV-2 to infect also adipose cells 

(which express ACE-2) (46). Also, ACE-2 expression is often reduced infected lung cells; its 

downregulation is associated with acute lung injury probably contributing to the development 

of ARDS (45, 47, 48). 

During the infection, the activation of the body's humoral and cellular immunities is mediated 

by virus-specific B and T cells. In particular, studies on SARS-CoV show that cytotoxic T 

lymphocytes recognize viral antigens presented mainly via class I Major Histocompatibility 

Complexes (MHC) on Antigen-Presenting Cells (APCs). Different Human Leukocyte 

Antigen (HLA) genotypes are possibly linked to differences in susceptibility to the virus. 

HLA-B*46:01 allele has been associated with more severe manifestations of SARS-CoV 

infection; however, this relationship it has not been assessed yet with regard to SARS-CoV-2 

(7, 49, 50).  

On the other hand, innate immune system against coronaviruses is activated thanks to the 

recognition of viral genome fragments by toll like receptors 3 and 7, cytosolic RNA sensor, 

and RIG1/MDA5. Dendritic cells are widespread in the respiratory mucosa and are among the 

main contributors to innate response by producing type I IFNs and IL-6; also, they can serve 

as APCs to trigger adaptive immunity (45). 

Immune system activation is characterized by a massive production of pro-inflammatory 

cytokines such as TGFβ, TNF-α, IFN-γ, IFN-α, IL-1β, IL-6, IL-8, IL-12, IL-18, and IL-33. 

The aim of cytokine production is the restrain of viral infection; however, the excessive and 

uncontrolled production of cytokines, termed “cytokine storm”, has deleterious effect on the 

patient (45). Indeed, the high levels of type I IFN, IL-2, IL-6, IL-7, IL-8, IL-10, MIP-1A, IP-

10, G-CSF, MCP-1, and TNF-α has been associated to the to the progression of mild 

inflammation to severe inflammation in critical patients (51-53). The cytokine storm causes 

lung-tissue damage by activating the immune inflammatory cells to attack the alveoli and 
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produce fibrotic tissue in the lung. Also, it can lead to multiple-organ failure, which 

aggravates the health status of the patients, involving dysfunction of the kidneys, liver, heart, 

and other end organs (54). 

 

 

RNA editing 

RNA editing is a cellular mechanism involving post-transcriptional RNA modifications that 

cause single nucleotide variations (SNVs) in the mature transcript.  

With regards to mRNAs, RNA editing can have a recoding function creating novel start/stop 

codons (55-57) or open reading frames (58); while editing of transfer RNAs can affect their 

function and structure (59-61).  

RNA editing typically involves endogenous RNAs but, if targeting viral RNA, it is potentially 

deleterious for virus’ viability itself, by generating premature stop codons and missense 

mutations in the viral genome. On the other hand, RNA editing on positive strand genomic 

RNAs, could fuel virus evolution by increasing the basal mutational rate. With regards to 

negative strand intermediate RNA: it is possible that the presence of edited bases leads to base 

mis-incorporations by the RdRp, which result in mutations in the progenie. However, to my 

knowledge, there are still no evidences that edited bases affect base incorporation specificity 

of RdRps (as they do with canonical DNA polymerases). 

Two deaminase enzymes are responsible of RNA editing in higher eukaryotes: 

- Apolipoprotein B messenger RNA Editing Enzyme Catalytic Subunit 1 (APOBEC1) 

(62): APOBEC1 catalyses the deamination of Cytidine to Uridine (C-to-U) on single 

stranded RNA (ssRNA), with cytosine 6666 of Apolipoprotein B (ApoB) mRNA as 

the main canonical target. Editing on ApoB happens only in the small intestine, 

causing the formation of a premature stop codon and leading to the correct maturation 
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of ApoB’s mRNA (55, 56). For years, ApoB has been considered the only target of 

APOBEC1; more recently, additional targets have been identified: Neurofibromatosis 

type 1 in human peripheral nerve-sheath tumors (63), N-Acetyl-Transferase 1 in 

mouse and rabbit livers (64), and hundreds of transcripts in murine immune cells 

where APOBEC1 is strongly expressed (65-68). 

Besides recoding functions, the effect of RNA editing on transcripts is not completely 

understood; it has been reported that it can affect mRNA fate by modifying micro-

RNAs (miRNAs) binding sites (68). 

APOBEC1 belongs to a larger family of deaminases (comprising AID, APOBEC1, 

APOBEC2, and APOBEC3 subgroups) (69). 

APOBEC3A and APOBEC3G are the only other members of the APOBECs family 

able to edit RNA; most of their targets have been identified in white blood cells, and 

are involved in viral restriction pathways (70-72). Notably, the APOBEC3 sub-family 

is closely related to viral restriction; they have been proved effective against many 

viral species in experimental conditions, yet, until now, their mutational activity in 

clinical settings has been shown only in a handful of viral infections (73-80) through 

DNA editing. To date, the only evidence of RNA editing in viruses regards rubella 

virus (81). 

 

- Adenosine Deaminases acting on RNA (ADAR) (82): The ADAR proteins catalyse 

the deamination of Adenine to Inosine (A-to-I) in double stranded RNAs (dsRNAs) 

via a hydrolytic mechanism (82-85). The catalytically active proteins ADAR1 and 

ADAR2 are ubiquitously expressed in all vertebrate tissues (86), with higher levels in 

the brain (87), where ADAR-mediated editing regulates neural signaling via recoding 
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of neurotransmitter receptors’ and ion channels’ mRNA (88). Only the 1% of human 

A-to-I editing sites affect coding regions (89); indeed, most of the targets include: 

A) Non coding repetitive elements (90-92), with a possible role in transposable 

elements restriction. 

B) miRNAs: affecting their specificity and the efficiency of their processing (93-

96). 

C) Introns and untranslated regions: affecting transcript stability (97-101). 

  

ADARs’ relationship with viral infections is quite contradictory: on one hand ADAR-

related editing has been found in RNA viruses such HIV, Epstein-Barr and herpes 

virus (102, 103), potentially hampering viral integrity; on the other hand, they seem to 

have an inhibitory effect on immune system activation against exogenous dsRNA 

(104-106). 

 

Considering the relationship between deaminases and immunity, and their ability to target 

viral genomes, it would not be surprising if they also play a role in coronavirus restriction via 

RNA editing. Indeed, expression of APOBEC3s is induced by mediators of 

inflammation, possibly reflecting their role as a first line of defense against invading viruses. 

In particular type I IFNs have been reported to enhance the expression of APOBEC3A, and 

APOBEC3G in monocyte, macrophages and plasmacytoid dendritic cells. Such IFN-mediated 

induction is mainly related to TLR activation. The massive production of cytokines, including 

type I IFNs, during coronaviruses infection may lead to APOBECs activation, along with 

their RNA editing activity. Also ADAR1 expression can be triggered by type I; in 

particular possesses an IFN-inducible variant (p150), which is induced following detection of 

viral infection (107). It has been reported that A-to-I RNA editing can facilitate TLR7/8 
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sensing of phagocytosed viral RNA (108). On the other hand, ADAR1 plays a role in 

avoiding overproduction of IFN by competing with RIG1 for the binding of exogenous RNA, 

and consequently preventing its activation (109, 110). These evidences suggest an active role 

of host deaminases during coronavirus infection, but it still has to be demonstrated if, in this 

context, their activation is associated with RNA editing activity on SARS-CoV-2 

 

Sequencing-based detection of RNA editing 

Second Generation Sequencing (SGS) is the technology of choice for the study of RNA 

editing, with Illumina being the leading company in the field. 

Thanks to its high throughput and low error rate (~0.24%) (111), SGS allows de-novo 

detection of rare mutational events without prior knowledge of their genomic position, which 

make it particularly indicated for the study of noncanonical editing sites and off targets. 

Illumina sequencers are based on the sequencing by synthesis (SBS) technology: a library of 

DNA fragments (genomic DNA or cDNA) is bound to a physical support (flow-cell); a 

sequencing cycle is composed by 4 steps, in each step a different fluorescently labeled 

deoxynucleoside triphosphate (dNTP) is added to the flow cell and incorporated in the 

growing filament. These dNTP are reversible terminators hence, for each template, only a 

single dNTP is added at the end of a sequencing cycle, and the base-specific fluorescence is 

detected photographically. 

Before the start of a new sequencing cycle, terminator dNTPs are cleaved to allow 

incorporation of the next base (111). 

It is possible to sequence one or both ends of a single DNA fragment (termed, respectively, 

single-end and paired-end sequencing) and a typical Illumina run is composed of 150 cycles 

for each fragment end (resulting in 150 bp long reads). 
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As a result, each read (or each couple of paired-end reads) represents part of the sequence of 

an input DNA fragment. 

In a process called alignment (or mapping), the reads are compared with a reference sequence 

to identify the reference position they belong to, based on the degree of similarity between a 

candidate portion and the read itself: the higher the similarity (the lower the mismatches) the 

higher the probability the read is assigned to the correct position (112). 

Once determined the most likely reference position, any eventual mismatch between the 

reference and the read represents a SNV (a mutation or, in this particular context, a RNA 

editing event). This concept is at the base of the so called “callers”: tools for the detection of 

SNVs from Illumina reads, which mostly differ in filtering approaches for the removal of 

false positive calls (typically sequencing errors). The filtering strategy is usually based on the 

application they have been designed for: germline single nucleotide polymorphisms (SNPs), 

somatic mutations, editing events etc… (113-117) 

The reliability of SNV calling strictly depends on sequencing coverage: coverage is the count 

of reads that include a specific reference position; in other words, it’s the number of times a 

position has been sequenced and, hence, observed. It is then intuitive that, the higher the 

coverage the higher the accuracy. 

The concept of coverage is closely related to the concept of “allelic fraction” (AF) which is 

calculated as following: 

 

 

Where ALT is the number of reads carrying the mismatch (i.e. the alternative allele) and COV 

is the coverage in that specific position. 

As sequenced reads are a proxy of input DNA fragments, the percentage of reads carrying the 

alternative allele represents the abundance of DNA carrying the SNV, allowing a quantitative 
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analysis (115, 118). With regards to RNA editing, AF calculation is of great importance as it 

can be interpreted as the frequency of an editing event and, as a rule of thumb, allows to 

discriminate an acquired SNV (typically low AF) from a germline SNV (typically AF ~ 50-

100%). 

Rationale 

The aim of the study is to investigate ADAR and APOBEC-induced RNA editing on the 

coronavirus genome during infection in humans. From public repositories, we downloaded 

transcriptomic Illumina data obtained via RNA-sequencing of bronchoalveolar lavage fluid 

(BALF) samples from coronavirus infected patients. BALF is a diagnostic method of the 

lower respiratory system in which a bronchoscope is inserted in the lungs, with a measured 

amount of fluid introduced and then collected for examination (119). The fluid recovered is 

used to perform transcriptome analysis and has higher sensitivity compared to oropharyngeal 

and nasopharyngeal swabs (usually used for diagnostic purposes), for the detection of SARS-

CoV-2 RNA (7, 120). It is hence the ideal technique to investigate viral genome sequences. 

We indeed detected putative RNA editing events from Illumina reads using two different 

softwares. Subsequently, we employed public genomic sequences of SARS, MERS and 

SARS-CoV-2 to assess the frequency of RNA editing events in the coronaviruses populations 

and the effect of both transcriptomic and genomic RNA editing events on protein traduction 

has been investigated. 

A paper, including the following content, entitled “Evidence for host-dependent RNA editing 

in the transcriptome of SARS-CoV-2”, DOI: 10.1126/sciadv.abb5813, is available at 

https://advances.sciencemag.org/.  
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Methods 

Sequencing data 

RNA sequencing data available from projects PRJNA601736, PRJNA603194, and 

PRJNA605907 were downloaded from the National Center for Biotechnology Information 

(NCBI; https://www.ncbi.nlm.nih.gov/sra/) using the FASTQ-dump utilities from the SRA-

toolkit with the following command line: 

prefetch -v SRR* && fastq-dump --outdir /path_dir/ | --split-files 

/path_dir/SRR*.sra 

 

Table 1: Samples characteristics. * These samples were not considered because either the sequening depth 
was too low  or the error rate was too high. 

 

All the data has been produced by RNA-sequencing of BALF samples from SARS-CoV-2 

infected patients. More details about the case series are available through the NCBI 

repository. Because most of the reads of samples from PRJNA605907 were missing their 

Run BioProject 
Library 

Selection 
Instrument 

Total 
reads 

Mapped 
reads (%) 

Mean 
coverage 

Median 
coverage 

Error 
rate 

SNVs 
count 

SRR10903401 PRJNA601736 RANDOM 
Illumina 
MiSeq 

953264 3.09 136.65 120 0.17% 25 

SRR10903402 PRJNA601736 RANDOM 
Illumina 
MiSeq 

1353388 8.32 535.28 455 0.16% 163 

*SRR10971381 PRJNA603194 RANDOM 
Illumina 
MiniSeq 

56565928 0.36 602.64 412 0.78% NA 

SRR11059940 PRJNA605907 RT-PCR 
Illumina 

HiSeq 2500 
79687 99.42 245.75 177 0.22% 24 

*SRR11059941 PRJNA605907 RT-PCR 
Illumina 

HiSeq 2500 
13710 92.85 22.53 15 0.31% NA 

SRR11059942 PRJNA605907 RT-PCR 
Illumina 

HiSeq 2500 
2043855 99.85 6,991.56 2384 0.34% 208 

*SRR11059943 PRJNA605907 RT-PCR 
Illumina 

HiSeq 2500 
190094 98.60 1,114.19 192 0.49% NA 

SRR11059944 PRJNA605907 RT-PCR 
Illumina 

HiSeq 2500 
1462225 99.11 4,345.56 2642 0.32% 111 

SRR11059945 PRJNA605907 RT-PCR 
Illumina 

HiSeq 2500 
262312 98.21 578.24 53 0.41% 82 

SRR11059946 PRJNA605907 RT-PCR 
Illumina 

HiSeq 2500 
7829225 99.59 22,582.02 12935 0.35% 238 

SRR11059947 PRJNA605907 RT-PCR 
Illumina 

HiSeq 2500 
95405300 99.94 287,341.54 178543 0.29% 59 

https://www.ncbi.nlm.nih.gov/sra/
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mate, forward-reads and reverse-reads from these samples have been merged in a single 

FASTQ, which is treated as a single-end experiment. Details of the sequencing runs are 

summarized in Table 1. 

Data preprocessing 

SRR11059940, SRR11059941, SRR11059942, and SRR11059945 showed a reduced quality 

of the sequencing in the terminal part of the reads. We used TRIMMOMATIC (121) to trim 

the reads of those samples to 100 base bp, with the following command line: 

rimmomatic SE SRR*.fastq SRR*.trimmed.fastq CROP:100 

We aligned the FASTQ files using Burrows-Wheeler Aligner (112) using the official 

sequence of SARS-CoV-2 (NC_045512. 2) as reference genome. After the alignments, BAM 

files were sorted using SAMtools (113). 

The command line used for paired-end samples is as follows: 

bwa mem NC_045512.2.fa SRR*_1.fastq SRR*_2.fastq | samtools sort –O BAM -o 

SRR*_.bam 

The command line used for single-end samples is as follows: 

bwa mem NC_045512.2.fa SRR*.fastq | samtools sort –O BAM -o SRR*_.bam 

The aligned bams have been analyzed with QUALIMAP (122). Because of a high error rate 

reported by QUALIMAP, samples SRR11059943 and SRR10971381 have been removed 

from the analysis. 

SNV calling 

A diagram of the entire pipeline is shown in Figure 3. We used REDItools 2 (116, 123) and 

JACUSA (117) to call the SNVs using the following command line: 

https://www.ncbi.nlm.nih.gov/nuccore/NC_045512
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python2.7 reditools.py -f SRR*.bam -o SRR10903401_stat_table_allPos.txt -S 

-s 0 -os 4 -m /homol_site/SRR*_homopol.txt -c SRR*_homopol.txt -r 

/Reference/NC_045512.2.fa -a SRR*_stat_table_allPos.txt -q 25 -bq 35 -mbp 

15 -Mbp 15 

jacusa call-1 -p 20 -r SRR*.vcf -a B,I,Y -s -f V -q 35 -m 25 SRR*.srt.bam 
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Figure 3: Schematic representation of the worflow for the detection of RNA editing events. (A) Mutation 
calling and filtering approaches via REDItools 2 and JACUSA. (B) Venn diagram of the SNVs identified by 
REDItools 2 and JACUSA. 
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With regard to REDItools 2, we removed all SNVs within 15 nucleotides from the beginning 

or the end of the reads to avoid artifacts due to misalignments. 

To avoid potential artifacts due to strand bias, we used the AS_StrandOddsRatio parameter, 

calculated following GATK guidelines (https://gatk.broadinstitute.org/hc/en-

us/articles/360040507111-AS-StrandOddsRatio), and any mutation with an 

AS_StrandOddsRatio > 4 has been removed from the dataset. 

Bcftools (113) has been used to calculate total allelic depths on the forward and reverse strand 

(ADF and ADR) for AS_StrandOddsRatio calculation, with the following command line: 

mpileup -a FORMAT/AD,FORMAT/ADF,FORMAT/ADR,FORMAT/DP,FORMAT/SP -O v -A -C -

I -d 1000000 -q 25 -Q 35 -f NC_045512.2.fa -o SRR*.vcf SRR*.srt.bam 

Mutations common to the datasets generated by REDItools 2 and JACUSA were considered 

(n = 910; Figure 3). The percentage of concordant mutations doesn’t depend on samples’ 

Figure 4: Relationship between samples’ coverage and calling software concordance. Each sample is a dot, 
the percentage of concordance is calculated as follows: common SNVs/(Total Reditools2 SNVs + Total Jacusa 
SNVs). 

https://gatk.broadinstitute.org/hc/en-us/articles/360040507111-AS-StrandOddsRatio
https://gatk.broadinstitute.org/hc/en-us/articles/360040507111-AS-StrandOddsRatio
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coverage (Figure 4). The threshold we used to filter the SNVs is based on minimum coverage 

(20 reads), number of supporting reads (at least four mutated reads), allelic fraction (0.5%), 

quality of the mapped reads (>25), and base quality (>35).  In the dataset, there were only six 

SNVs with allelic fractions in the range of 30 to 85% (C>T, 1; T>C, 3; G>T, 2). Because 

there were no SNVs with higher allelic fractions, we presume that all samples originated from 

the same viral strain. Recurring SNVs have been defined as the SNVs present in at least two 

samples. To overcome the problem of samples with lower sequencing depth, we used the 

positions of the SNVs common to both REDItools 2 and JACUSA to call again the SNVs 

irrespectively of the number of supporting reads.   

Data manipulation 

R packages (Biostrings, rsamtools, ggseqlogo ggplot2, and splitstackshape) and custom Perl 

scripts were used to handle the data. 

Sequence context analysis 

Logo alignments were calculated using ggseqlogo, using either the pooled dataset or the 

dataset of recurring SNVs. Logo alignments of the human edited sites were performed using 

ADAR sites from REDIportal (98) that were shared by at least four samples. SARS-CoV-2, 

SARS, and MERS genomic data were prepared for the Logi alignment using the 

GenomicRanges R package (124). 

Normalized logo enrichment plots were generated with “two sample logos” 

(http://www.twosamplelogo.org/). Sequence contexts around Cs and As from reference 

genome were used as a control set when analysing respectively C-to-U and A-to-I editing 

sites.  

 

http://www.twosamplelogo.org/
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SNV calling in genomic data from SARS-CoV-2, SARS, and MERS 

The viral genomic sequences of MERS (taxid:1335626) and SARS (taxid:694009) were 

selected on NCBI Virus (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/) using the following 

query: Host : Homo Sapiens (human), taxid:9606; -Nucleotide Sequence Type: Complete. 

They were aligned using the “Align” utility. Consensus sequences of SARS and MERS 

genomes were built using the “cons” tool from the EMBOSS suite 

(http://bioinfo.nhri.org.tw/gui/) with default settings. SARS-CoV-2 genomic sequences were 

downloaded from GISAID (https://www.gisaid.org/) and aligned with MUSCLE (125). 

SNVs have been called with a custom R script, by comparing viral genome sequences to the 

respective consensus sequence or, for SARS-CoV-2, to the NC_045512.2 reference sequence.  

SNV annotation 

SNVs (from both genomic and somatic SNV sets) occurring on coding sequences have been 

annotated with custom R scripts to determine the outcome of the nucleotide change 

(nonsense/missense/synonymous mutation). A summary is reported in Table 2. 

Statistical analysis 

fisher.test() function from the R base package has been used for all the statistical tests. To test 

the significance of C-to-U bias on the positive strand, we compared C>T/G>A SNV counts to 

the count of C/G bases on the reference genome. For P values of “RNA vs Reference,” “DNA 

vs Reference,” and “genome vs RNA,” 2 × 2 contingency tables have been generated as 

shown in Table 2. 

  

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
http://bioinfo.nhri.org.tw/gui/
https://www.gisaid.org/
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2
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Results 

To assess whether RNA editing could be involved in human host responses to SARS-CoV-2 

infections, we started from publicly available RNA sequencing datasets from BALF obtained 

from patients diagnosed with COVID-19. While transcriptomic data for all samples could be 

aligned to the SARS-CoV-2 reference genome, the quality of the sequencing varied and only 

eight samples had coverage and error rates suitable for the identification of potentially edited 

sites (Table 1). We called SNVs on these eight samples (126, 127) using REDItools 2 (116, 

123, 128) and JACUSA (117) using the following thresholds: reads supporting the SNV ≥4, 

allelic fraction ≥0.5%, coverage ≥20, quality of the reads >25, base quality >35 (Figure 3 A). 

The two pipelines gave comparable results with ~50% of the SNV positions called by both 

(Figure 3 B, Figure 5 and Figure 6). We identified 910 SNVs common to REDItools 2 and 

JACUSA, ranging from 24 to 238 SNVs per sample (Figure 7). Given the thresholds used to 

call the SNV, samples with lower sequencing depths displayed lower numbers of SNVs. 

While the weight of each SNV type varies across samples (Figure 7), a bias toward 

transitions is always present, which is even more evident when all mutational data are pooled 

(Figure 8 A and B). This pattern holds true even when only SNVs recurring in more samples 

are considered (Figure 8 C). 

The SNV allelic fraction (also referred to as frequency) and number of transversions are 

compatible with the mutation rates observed in coronaviruses [10–6/−7; (129)] and commonly 

associated to the RdRp. RdRps are error prone and are considered the main source of 

mutations in RNA viruses. However, the coronavirus NSP14-ExoN gene provides a form of 

error correction (33), which is probably the reason mutation rates in coronaviruses are lower 

than those observed in RNA viruses with smaller genomes. The mutational spectrum in SARS 

quasispecies presents a very weak bias toward U-to-G.  
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Figure 5: SNVs identified in SARS-CoV-2 transcriptomes by REDItools 2. The bar charts show the number of SNVs for each 2019-nCoV transcriptome (e.g. A>C, AC). 
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Figure 6: SNVs identified in SARS-CoV-2 transcriptomes by JACUSA. The bar charts show the number of SNVs for each 2019-nCoV transcriptome (e.g. A>C, AC). 
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Figure 7: SNVs identified in SARS-CoV-2 transcriptomes after the intersection of Reditools 2 and JACUSA results. The bar charts show the number of SNVs identified in 
each SARS-CoV-2 transcriptome for each SNV type (e.g., A>C, AC). The sequencing depth for each sample is indicated. 
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Inactivation of NSP14-ExoN error correction reveals the mutational spectrum of the RdRp, 

which is quite different from the pattern we observe (i.e., main changes are C-to-A, followed 

by U-to-C, G-to-U, A-to-C, and U-to-G) (130). Hence, we would consider that SNVs deriving 

from RdRp errors represent a marginal fraction of the SNVs in the SARS-CoV-2 samples. 

The bias toward transitions—mainly A>G/T>C changes—resembles the pattern of SNVs 

observed in human transcriptomes (97) or in viruses (131-133), where A>G changes derive 

from deamination of A-to-I mediated by the ADARs. It is thus likely that the A>G/T>C 

changes seen in SARS-CoV-2 are also due to the action of ADARs. 

C>T and G>A SNVs are the second main group of changes and could derive from APOBEC-

mediated C-to-U deamination. Unlike A-to-I editing, C-to-U editing is a relatively rare 

phenomenon in the human transcriptome (97), and with regard to viruses, it has been 

associated only with positive-sense ssRNA rubella virus (81), where C>T changes represent 

the predominant SNV type. The observation that only A-to-I editing is present in RNA 

viruses that infect nonvertebrate animals, where RNA-targeting APOBECs are not present 

(131, 132), supports the hypothesis that APOBECs are involved in the RNA editing of this 

human-targeting virus. 

A third group of SNVs, A>T/T>A transversions, is also present in these samples. While this 

type of SNV has been reported in other genomic studies (134), its origin is still unknown. 

A>G and T>C changes are evenly represented with respect to SNV frequency (Figure 8 A), 

the number of unique SNVs (Figure 8 B and C), and their distribution across the viral 

genome (Figure 8 D). As ADARs target dsRNA, this suggests that dsRNA encompasses the 

entire genome. While dsRNA in human transcripts is often driven by inverted repeats, the 

most likely source of dsRNA in the viral transcripts is replication, where both positive and 

negative strands are present and can result in wide regions of dsRNA. 
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Figure 8: Total SNV identified in SARS-CoV-2 transcriptomes. (A) Allelic fraction and (B) number of SNVs for each nucleotide 
change in the entire dataset and (C) for SNVs recurring in at least two samples. (D) Distribution of SNVs across the SARS-CoV-2 
genome. A-to-G (blue) and C-to-U (red) SNVs are grouped in 400-nucleotide (nt) bins and plotted above (AG and CT) or below the 
line (TC and GA) based on the edited strand. Dots (white/black) indicate recurring SNVs. Genetic organization of SARS-CoV-2 
(top). The dark/white shading indicates the viral coding sequences; coverage distribution of all analyzed samples (bottom). 
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Unlike A-to-I changes, C-to-U changes are biased toward the positive-sense strand (Figure 8 

B to D; P < 0.0001). Because ADARs and APOBECs selectively target dsRNA and ssRNA, 

this distribution could arise from the presence at all times of RNA in a dynamic equilibrium 

between double-strandedness—when negative-sense RNA is being transcribed—and single-

strandedness—when nascent RNA is released. Although some areas seem to bear fewer 

SNVs, these reduced SNV frequencies might be related to lower sequencing depth in those 

regions.

 

Figure 9: Logi alignment for SARS-CoV-2 RNA edited sites. (A) Local sequence context for A-to-I and C-to-U 
edited sites in the viral transcriptome and (B) for recurring sites. 



 35 

As APOBEC deaminases preferentially target cytosines within specific sequence contexts, we 

analyzed the nucleotide context of A-to-I and C-to-U SNVs in the viral genome (Figure 9 A 

and B, Figure 10 A, B, C, D). A slight depletion of G bases in position −1 is present at A-to-I 

edited positions. This depletion is not as strong as the signal previously reported in human 

transcripts (91, 135-137).  The low editing frequencies we observe resembles the editing 

present on human transcripts containing Alu sequences, which were found in a limited 

number in those early datasets. After the logi alignment, there is no evidence of a sequence 

context preference if we use a larger dataset such as REDIportal (98), which includes >1.5 M 

sites in Alu repeats (Figure 9). When normalising sequence contexts around A-to-I editing 

sites on sequence contexts around As in reference genome, a GC[A]S motif has been 

identified; however such motif is different than the ones reported in literature (91, 135, 

137, 138). 

With regards to the APOBECs, C-to-U changes preferentially occur downstream from 

uridines and adenosines, within a sequence context that resembles the one observed for 

APOBEC1-mediated deamination ([AU]C[AU]) (66, 139). However, no nucleotide 

enrichment was detected after sequence context normalization (Figure 10 F); raising the 

question of wether such sites could derive from random events rather than motif-

specific mutations. 
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Figure 10. Additional logi alignments: logi aligments showing the information content of the position (bits) 
for (A) A-to-I edited sites, (B) reference genome sequence context around As, (C) C-to-U edited sites, (B) 
reference genome sequence context around Cs. Enrichment and depletion plot of sequence context of edited 
sites normalized against reference genome sequence contexts around candidate base for (E) A-to-I editing 
and (F)  C-to-U editing. 

A B 

D C 

E 

F 

-2           -1           +1          +2 -2           -1           +1          +2 

-2           -1           +1          +2 -2           -1           +1          +2 

-2                        -1                                                   +1                       +2 

-2                        -1                                                   +1                       +2 
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We then aligned available genomes from SARS-CoV-2, Middle-East respiratory syndrome–

related coronavirus (MERS-CoV), and SARS-CoV to test whether RNA editing could be 

responsible for some of the mutations acquired through evolution. The genomic alignments 

reveal that a substantial fraction of the mutations in all strains could derive from enzymatic 

deaminations (Figure 11 A to C), with a prevalence of C-to-U mutations, and a sequence 

context compatible with APOBEC-mediated editing also exists in the genomic C-to-U SNVs 

(Figure 11 D to F). 

 

Discussion 

Our data source—metagenomic sequencing—raises the question whether the low-level 

editing we observe (~1%) reflects the actual levels of editing of viral transcripts within human 

cells. Aside from a small fraction of cellular transcripts edited at high frequency, most 

ADAR-edited sites in the human transcriptome (typically inside Alu sequences) present 

editing levels of ~1% (97, 140, 141). It has been shown that a fraction of the cellular 

transcripts are hyperedited by ADARs (142-144).
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Figure 11: Nucleotide changes across Coronaviridae strains. (A to C) Number of SNVs for each nucleotide 
change and (D to F) local sequence context for C-to-U edited sites in genome alignments from SARS-CoV-2 
(A and D), human-hosted MERS-CoV (B and E), and human-hosted SARS-CoV (C and F). 
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While we were unable to observe hyperedited reads in the metagenomic samples, it is 

possible that hyperedited transcripts fail to be packaged into the virus. 

With regard to APOBEC-mediated RNA editing, its detection in the viral transcriptomes is 

already indicative, as this type of editing is almost undetectable in human tissues (97). This 

enrichment points either toward an induction of APOBECs triggered by coronavirus infection 

or to specific targeting of the APOBECs to the viral transcripts. APOBECs have been proved 

effective against many viral species in experimental conditions, yet, until now, their 

mutational activity in clinical settings has been shown only in a handful of viral infections 

(73-80) through DNA editing and, in rubella virus, on RNA (81).  

Kim et al. (145) observed 41 recurrent base-modification sites in SARS-CoV-2 RNAs; it is 

possible that base modifications may lead to nucleotide misincorporation during PCR 

amplification, acting as a confounding factor and introducing biases in our analysis. 

However, most of the base-modification sites fall approximately at 29000kb of viral genomic 

RNA (within N protein coding region), and we don’t observe an enrichment of APOBEC and 

ADAR-related mutations in that region (Figure 8 D). 

As in rubella virus, we observe a bias in APOBEC editing toward the positive-sense strand. 

This bias and the low editing frequencies might be indicative of the dynamics of the virus, 

from transcription to selection of viable genomes. It is reasonable to assume that sites edited 

on the negative-sense strand will result in a mid-level editing frequency, as not all negative-

sense transcripts will be edited (Figure 12 A). On the other hand, editing of the positive-sense 

strand can occur upon entry of the viral genome, thus yielding high-frequency editing (Figure 

12 B), or after viral genome replication, resulting in low-frequency editing (Figure 12 C). 

The lack of a sizable fraction of highly edited C>T SNVs suggests that APOBEC editing 

occurs late in the viral life cycle (Figure 12 C). Yet, because they occur earlier, G>A SNVs 

should be closer in number to C>T SNVs and with higher levels of editing, which is not what 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299625/figure/F5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299625/figure/F5/
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we observe (Figure 8 A to C). The overrepresentation of C>T SNVs could be due to an 

imbalance toward positive-sense transcripts, as these are continuously generated from the 

negative-sense ones (and double-stranded hybrid RNAs are lost). However, the editing 

frequencies of G>A SNVs should be much higher, as G>A SNVs are generated upstream to 

the C>T ones. A more fitting explanation is that editing of the negative-sense transcripts 

results somehow in a loss of the edited transcript (Figure 12 D), lowering the chances of the 

edited site to be transmitted. Despite the fact, according to our data, that APOBEC-related 

mutations seem to be more deleterious than ADAR-related ones, it is possible that ADAR 

mediates hyper-editing (144), introducing a large amount of mutations on the same transcript. 

Such a load of mutations it is more likely to affect gene functionality rather than a single 

mutation, and it might be undetectable because of the loss of the edited (and not functional) 

transcript. 

Taking in account our observation, with low editing frequency of both C>T and G>A 

mutations and with a higher number of unique C>T SNVs, the most likely compatible model 

is the one explained in Figure 12 D.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299625/figure/F5/
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Figure 12: Model of APOBEC RNA editing on SARS-CoV-2 transcriptome. The four panels model the editing 
frequencies and the C>U/G/A ratios expected from four different scenarios: (A) C-to-U editing on the 
negative-sense transcripts, (B) “early” editing on the viral genomes before viral replication, (C) “late” editing 
after viral replication, and (D) “late” editing after viral replication with loss of negative-sense transcripts. Red 
dots indicate editing on the positive-sense transcript; orange dots indicate editing on the positive-sense 
transcript. Green and blue segments indicate positive- and negative-sense viral transcripts, respectively.
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Because most of the APOBECs are unable to target RNA, the only well-characterized 

cytidine-targeting deaminases are APOBEC1, mainly expressed in the gastrointestinal tract, 

and APOBEC3A (70), whose physiological role is not clear. As with A-to-I editing, it will be 

important to assess the true extent of APOBEC RNA editing in infected cells. 

The functional meaning of RNA editing in SARS-CoV-2 is yet to be understood: In other 

contexts, editing of the viral genome determines its demise or fuels its evolution. For DNA 

viruses, the selection is indirect, as genomes evolve to reduce potentially harmful editable 

sites [e.g., (131)], but for RNA viruses, this pressure is even stronger, as RNA editing directly 

affects the genetic information and efficiently edited sites disappear. 

A comparison of the SNV datasets from the transcriptomic and genomic analyses reveals a 

different weight of A-to-I and C-to-U changes (Figure 8 B and Figure 11 A), with an 

underrepresentation of A-to-I in the viral genomes. As our analysis underestimates the 

amount of editing due to the strict parameters used, the underrepresentation of A-to-I changes 

could be explained by the possibility that A-to-I editing is more effective in restricting viral 

propagation, thus reducing the number of viral progeny showing evidence of these changes. 

In contrast, the remnants of less effective C-to-U editing are retained in viral progeny and get 

fixed during viral adaptation. 

An analysis of mutation outcomes is difficult due to the low numbers of events collected so 

far, but there are some possibly suggestive trends (Table 2). C-to-U changes leading to stop 

codons are overrepresented in the transcriptomic data but—as expected—disappear in the 

genomic dataset. This might point—again—to an antiviral role for these editing enzymes. 

There is also an underrepresentation of C>T missense mutations, but its meaning is difficult 

to interpret. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299625/figure/F4/
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Table 2: Missense/Nonsense/Synonymous mutations in SARS-CoV-2 transcriptomic and genomic data. 
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Last, this analysis is a first step in understanding the involvement of RNA editing in viral 

replication, and it could lead to clinically relevant outcomes: (i) If these enzymes are relevant 

in the host response to coronavirus infection, a deletion polymorphism quite common in the 

Chinese population, encompassing the end of APOBEC3A and most of APOBEC3B (146, 

147), could play a role in the spread of the infection. (ii) Because RNA editing and selection 

act orthogonally in the evolution of the viruses, comparing genomic sites that are edited with 

those that are mutated could lead to the selection of viral regions potentially exploitable for 

therapeutic uses. 
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Section 2: Analysis of copy number 
variations from cell-free DNA of lung 

cancer patients via Nanopore sequencing 
 

Introduction 

Copy number variations and their impact on human diseases 

Copy number variations (CNVs) are structural variants involving genomic segments of 

more than 1kb in length, which are represented in a variable number of copies 

compared to the normal ploidy of the organism (148). 

For years, the weight of CNVs on human genome has been underestimated, also due to a 

lack of an adequate technology for their study. With the advent of large population 

studies, supported by more accessible and refined experimental approaches, CNVs have 

been recognised as a big contributor to inter-individual variation in the genomes of 

healthy individuals, along with single nucleotide polymorphisms (148, 149). 

However, the presence of CNVs can influence the phenotype of the cells by altering the 

expression of the genes affected by the CNV or located nearby its boundaries (probably 

via alteration of adjacent regulatory sequences (148, 150, 151), and by generating to 

fusion-genes and, consequently, production of aberrant proteins (152). 

It is hence not surprising that CNVs have been associated with a variety of diseases 

classified as 'genomic disorders'. Unlike mutation-driven pathologies which usually depend 

on variations on single genes, CNVs often involve large genomic regions affecting a set of 

genes as, for example, in Prader-Willi syndrome (15q11-q13 deletion) and Williams-Beuren 

syndrome (7q11.23 deletion) (153, 154). 
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However, this is not always the case: Smith-Magenis syndrome is caused by a deletion in 

chromosome 17p11.2; despite its size (on average 3.7 Mb) is variable among patients, a 

common 1.5 Mb portion has been identified. This “critical” portion includes the retinoic 

acid induced 1 gene, which is considered the main responsible of the pathologic phenotype 

(149, 155). 

Germline inherited and de-novo CNVs have been associated with a wide spectrum of 

human diseases including:  

- Infectious and autoimmune diseases: asthma, Chron’s disease, HIV infections, 

systemic lupus erythematosus and anti-neutrophil cytoplasmic antibody-

associated vasculitis (148, 156-168). 

- Nervous system diseases: autism, schizophrenia, epilepsy, Parkinson’s disease, 

amyotrophic lateral sclerosis and autosomal dominant Alzheimer’s disease (169-

177). 

- Metabolic and cardiovascular diseases: familial hypercholesterolemia, 

atherosclerosis and coronary artery disease (178-180). 

- Cancer (181-189). 

 

This project is focused in particular in the detection of cancer related CNVs. 

Cancer development is a multistep process characterized by the accumulation of genetic 

alterations eventually leading to the acquirement of the malignant phenotype (190). In 

contrast to most of the aforementioned pathologies, such alterations (including CNVs) 

can be both germline, representing a predisposing factor for the development of cancer, 

and somatic, contributing to the load of alterations necessary for the transformation 

(148, 191). 
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The relationship between CNVs and cancer development can be explained in part by the 

Kudson’s “two hit” hypothesis (192): a homozygous deletion can lead to the loss of a 

tumor-suppressor gene, while a heterozygous one can be deleterious when the other 

allele is altered by an inactivating mutation or an additional deletion. On the other hand, 

amplifications can lead to overexpression of oncogenes. Notably, germline CNVs are 

typically more abundant in individuals from cancer-prone families, in particular among 

TP53 mutant carriers, suggesting that CNVs are not always a contributing cause to 

cancer, but rather a consequence of genomic instability (149, 193, 194). 

Specific CNVs have been associated with cancer types and outcome: for example, in 

prostate cancer, loss of 8p23.2 is associated advanced stage disease, and gain at 11q13.1 

is predictive predictive of post-operative recurrence; while heritable CNV at 

chromosome 1q21.1 is associated with neuroblastoma (189). 

The recurrence of CNVs is not limited to single genes, but also to entire pathways such 

as the ERBB2, EGFR and PI3K pathways, which have been reported to be enriched in 

CNVs and SNVs in both breast and colorectal cancer (188). 

 

Importance of cancer monitoring 

During cancer development, malignant cells gain specific genotypic, phenotypic and 

epigenetic features, making cancer one the most heterogeneous human diseases. 

Even within the same cancer type, it is possible to identify an large number of molecular 

subtypes defined by gene/protein expression patterns and alterations of the genome. 

Such molecular heterogeneity often results in different aggressivity, invasivity, response 

to treatment and, consequently, overall outcome (195-197). 
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For example, triple negative breast cancer patients have typically worse outcomes 

compared to HER2, progesterone and estrogen receptor expressing ones (198); EGFR 

mutations confer resistance to Tyrosine Kinase Inhibitor therapies in lung cancer 

patients (199); AR amplifications are linked to the development of castration resistance 

prostate cancers (200); and MGMT promoter methylation is an important prognostic 

biomarker, influencing the response to radio therapy in glioblastoma patients (201). 

The goal of the so-called “precision oncology” is to define personalized treatment 

strategies based on cancer molecular features, aiming at maximizing the efficacy against 

a specific subtype. In this context, it is pivotal to accurately detect biomarkers for a 

proper (correct) subtype identification and patient stratification (195, 196). 

Typically, bioptic samples or surgical resections are necessary for biomarker 

investigation. Tissue sections are typically used for techniques which are based on eye 

inspection such as: immunohistochemistry for protein expression, in-situ hybridization 

or RNA-scope for gene expression and fluorescent in-situ hybridization for structural 

variations (SV) detection. In addition, DNA and RNA can be extracted from tissue 

samples for gene expression, DNA methylation, mutation and copy number variation 

analyses (199, 202-210).  

However, a significant limitation of tissue sampling is that it fails to comprehensively 

capture intra-tumoral heterogeneity. Indeed, cancer heterogeneity is not limited to 

inter-patient molecular diversity and a tumoral mass is often composed by subclones 

carrying different features. Hence, the portion of mass which is sampled may not fully 

represent the entire tumoral bulk (sometimes not even the major clone), with an high 

risk of missing clinically relevant alterations. Moreover, collection of tissue samples is 

usually invasive, requires trained medical staff and can be harmful for the patient. (210, 

211). 
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Notably, cancer is an extremely dynamic disease: malignant cells are constantly under 

selective pressure, competing for nutrients against other cells or escaping human 

defense mechanisms, be them physiological (immune system) or artificial (drugs and 

treatments) (212). Consequently, the evolutionary path of each tumor can take different 

directions due to such pressure. It is hence important to monitor cancer development at 

multiple timepoints to closely follow its evolution, aiming at driving clinical decisions 

during the entire patient’s history (195, 196). Unfortunately, the risks and invasiveness 

of conventional biopsy make it unsuitable for repeated sampling (213). 

 

Liquid biopsy 

A valid and non-invasive alternative to tissue sampling is represented by liquid biopsy. 

The principle behind liquid biopsy is that tumour masses shed cellular material into the 

bloodstream, urine or stool. It is therefore possible to analyse the blood to investigate 

tumor-related analytes to obtain information about the characteristics of the tumor 

(214). This concept is definitely not new as many protein-based serum biomarkers have 

proven useful for cancer diagnosis (215, 216). The most emblematic example is prostate 

specific antigen which is currently the first-line screening biomarker for prostate cancer 

early detection (216).  

The recent emergence of cutting edge techniques with increased sensitivity and 

reliability allowed to extend blood-based analyses beyond proteic biomarkers.  

It is currently possible to analyze tumor-derived nucleic acids (e.g. non coding RNAs, 

DNA) (213), vesicles (e.g. exosomes) (217) and circulating tumor cells (218) from blood 

samples. 
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In particular, I’m focused on the study of circulating cell-free DNA (cfDNA) which is 

extracellular DNA released into the bloodstream during cell death. CfDNA is extracted 

from plasma (less frequently from serum) obtained via blood centrifugation. Since we 

are interested in extracellular DNA, the goal of centrifugation is to remove intact blood 

cells whose DNA is non-informative and would reduce the sensitivity of the approach 

(219). 

In healthy individuals, cfDNA belongs mainly from myeloid and lymphoid apoptotic cells 

due to the physiological turnover of hematopoietic cells (with minimal contributions 

from other tissues) (220, 221) while, in cancer patients, a fraction of the total cfDNA, 

termed circulating tumor DNA (ctDNA), comes from neoplastic lesions (222). CtDNA is 

very informative for the study of oncological pathologies as it harbours tumor-specific 

genetic alteration that reflects the genomic status of the malignant cell of origin (223-

227). 

However, several technical aspects make the study of cfDNA extremely challenging: 
 
CfDNA concentration is very low and typically higher in advanced cancer patients rather 

than healthy subjects and low grade patients; this is one of the aspects that complicate 

cfDNA analysis, in particular for early-stage applications (214). 

Moreover, the percentage of ctDNA among the totality of cfDNA can be very low (0.01-

60%) [15–18] and depends on different tumor features such as tumor volume, stage, 

vascularization, proliferation rate, and cell death rate (223, 228-231). 

For these reasons, cfDNA study requires highly sensitive techniques compatible with 

very low input DNA. 
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Figure 13: Typical fragmentation patterns in cfDNA. (A) Monophasic pattern showing only the ~160-167 bp 
peak. (B) Biphasic pattern showing ~160-167, ~320 and ~480 bp peaks. (C) Example of contamination by 
HMW DNA, likely due to blood cells lysis. Figure taken from (232). 

CfDNA is also highly degraded with an enrichment in low molecular weight (LMW) DNA 

fragments: the typical cfDNA fragmentation profile is composed by a major peak at 

~160-167 bp and two smaller peaks at ~320 and ~480 bp (not always detectable) 

(Figure 13) (221, 232). This particular pattern is due to nucleosome protection from 

degradation: due to cell death, DNA is degraded by DNAses, which cleave the filament 

mostly in linker regions between nucleosomes, generating mainly ~167 bp fragments 

corresponding to chromatosomes length (nucleosome + linker histone). Less frequent 
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scenarios, in which 2-3 chromatosomes are still intact, result in the weak peaks of longer 

DNA fragments (e.g. 320/480 bp) mentioned previously (221, 232). 

The presence of high molecular weight (HMW) DNA is indicative of blood cell lysis, 

which can happen during sample transportation, blood withdrawal and centrifugation, 

or of an incorrect plasma collection, in which blood cells are accidentally resuspended 

by pipetting. HMW DNA is a dangerous contaminant for cfDNA, as it belongs to healthy 

blood cells and is hence uninformative (219). 

Despite these technical challenges, liquid biopsy has some important advantages over 

conventional biopsy (211, 233), it is: 

- Noninvasive: The entire procedure is completely unharmful and painless, 

without any complication that may arise with conventional biopsies. 

- Simple: It is based on a simple blood withdrawal and it can be performed without 

particular training or instrumentation. This has also a positive impact on per-

sample costs.    

- Repeatable: This aspect is closely related to the aforementioned simplicity and 

non-invasivity that make liquid biopsy highly repeatable (even on a month-

basis), just like any other routinary blood-based test.  

- Versatile: The feasibility of tissue sampling depends on tumor characteristics   

- Versatile and comprehensive: The feasibility of tissue sampling depends on 

tumor characteristics and location, meaning that not all tumors may be 

succesfully sampled. Virtually any cancer cell releases DNA into the circulation 

(as soon as it is vascularized), minimizing the risk of sampling biases. In addition, 

liquid biopsy provides a comprehensive profile of tumor, which include 

alterations from all the subclones and even from different tumor/metastasis 

sites.  
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These aspects make liquid biopsy preferable rather than tissue sampling in many 

contexts; however, the latter cannot be easily replaced since it is indispensable for 

histological analyses and most of the well-established biomarkers employed in clinical 

practice are based on conventional biopsy, while cfDNA field is still in an embryonic 

stage. Hence, further studies should be performed to fully exploit the potential of liquid 

biopsy, which should be seen more as a complementary tool rather than a complete 

replacement of tissue sampling.  

 

Molecular-based methods for the study of CNVs 

As for almost any other molecular investigation, the methods for the study of CNVs can 

be divided in targeted approaches, which investigate alterations in a locus-specific 

manner, or “omic” approaches, which provide a genome wide picture of the mutational 

landscape. 

 

Targeted techniques: 

- Quantitative real-time PCR (qPCR): is the oldest and the simplest PCR-based 

technique for the study of CNVs. It is based on the use of fluorescence signals for 

a real-time quantification of the amplicons. Fluorescence levels are proportional 

to the amount of amplified target DNA and are detected during the reaction. 

Fluorescence is obtained via dsDNA intercalants (typically Sybr green), or target 

complementary probes whose fluorescence is activated by the amplification of 

the target (Taqman chemistry). A fluorescence threshold is defined by the user, 

and the number of amplification cycles (CTs) necessary to cross the chosen 
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threshold are used as a proxy of amplicon abundance: the lower the CT the 

higher the abundance. The abundance of the target is compared to the abundance 

of a calibrator: a reference gene, which is supposed to be present in a known 

number of copies, depending on the expected ploidy. The ratio between target 

and reference abundances is used to calculate the number of copies of the target.  

However, the need of a calibrator represents a possible source of bias, since it is 

possible that also the expected copy number of the reference gene is altered by a 

CNV, leading to false positives/negative results (234-237). 

- Digital PCR: It is the successor of qPCR, the main difference is the presence of 

thousands of micro reaction environments:  some of them would contain the 

target molecule (positive) while others do not (negative). After the amplification, 

the positive reactions are detected by fluorescence detected, and counted 

providing a binary result (yes/no) rather than a continuous value (as in 

traditional qPCR). The counts of positive and negative droplets are related to the 

target’s concentration by a Poisson function, used to infer the target abundance. With 

this principle is possible to make an absolute quantification of the target without 

the use of a standard curve. However, for CNV the use of a reference gene as 

calibrator is still suggested. The nature of the reaction environment depends on 

the manufacturer, the most used versions involve micro reaction wells on a chip 

(Thermofisher) or droplets produced by emulsion (Biorad, digital droplet PCR, 

ddPCR). The main advantage over classical qPCR is the high reliability of the 

approach, even at very low concentrations, which make it ideal for liquid biopsy 

studies (236, 237).  

- Multi Ligation-dependent Probe Amplification (MLPA): It is a multiplex PCR-

based method involving target-specific sets of probes. Each set of probes is made 
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of a 5’ and a 3’ half-probes which hybridize to the target sequence. After the 

hybridization, the inner ends of each probe are adjacent and can be connected by 

a ligation reaction. Each probe contains a primer binding site for subsequent PCR 

amplification of the ligation product. The 3’ probes contain also a stuffer 

sequence of variable length with the aim of creating PCR amplicons of different 

length. The primers complementary to the 5’ probe binding sites are 

fluorescently labeled. The products of amplification are then analyzed with 

capillary electrophoresis which detects fluorescence intensity (as a proxy of 

amplicon abundance) and each set of probes is discriminated by migration time 

(as a proxy of amplicon length). Abundances are then normalized with the results 

obtained from a control sample to infer the number of copies of the targets (238). 

MLPA is a cost effective approach when analyzing small sets of targets (~40), 

while other PCR-based approaches are usually preferable when studying single 

targets; however, it typically requires higher amounts of high quality input DNA. 

Hence, the high fragmentation of cfDNA can be a big obstacle for the use of this 

technique. Despite these limitations, MLPA has been successfully exploited for 

CNV detection in a liquid biopsy context (239). 

 

“Omic” techniques: 

- Comparative Genomic Hybridization (CGH) arrays: A large number of spots 

containing target-specific probes are immobilized onto the glass surface of a chip. 

A library of fluorescently labelled DNA is prepared and deposited on the chip for 

probe hybridization. The library is composed of DNA coming from the sample of 

interest and a reference DNA (usually a pool of DNA from healthy individuals) 

marked with two different fluorophores. After the hybridization, the chip is 
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washed, and the fluorescence in every spot, proportional to the amount of bound 

DNA, is detected. CNVs are determined by detecting differences in the spots 

fluorescence levels between the sample of interest and the reference DNA. The 

main advantage of CGH arrays lies in their genome-wide nature, which allows the 

discovery of CNVs without any prior knowledge about their genomic position. On 

the other hand, the resolution of the array is usually lower than PCR-based 

methods and depends on the number of probes, allowing the detection of CNVs as 

small as 5-10kb. Once again, CGH arrays are not the ideal method for liquid 

biopsy-based analyses since an high fraction of tumor derived DNA (>50% or, 

ideally, 80–90% or higher) is required, which is definitely not the case for cfDNA 

(148, 240).  

- Single-Nucleotide Polymorphism (SNP) Arrays: They employ the same array-

based principle of CGH arrays. In this case, the information about the copy 

number status is a byproduct, since they are designed for the detection of SNPs. 

For each target a set of probes specific for different alleles is used, and the 

genotype is determined by measuring the allele-specific fluorescence. CNVs are 

determined based on the total measured intensities: large CNVs spanning 

multiple SNPs have intensity ratios patterns distinct from normal disomic  

regions. SNP arrays share the same limitations of CGH arrays; in addition, certain 

genomic loci are particularly difficult to analyze for SNP detection and are 

therefore often removed from the array, with a consequent lack of data for CNV 

detection in that area (148, 240). 

- Deep sequencing: It represents the most advanced approach for genome-wide 

CNV detection and, since it is the focus of this section of the thesis, it will be 

thoroughly addressed in the next paragraph. 
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Sequencing-based CNV analysis from cfDNA 

Sequencing-based CNV analysis takes advantage of DNA Whole Genome Sequencing 

(WGS) data, typically produced with SGS experiments. Most of the software for  

bioinformatic analysis is based on read count (RC), which is a proxy of genomic 

abundance: compared to diploid regions, the relative amount of reads produced during 

the sequencing would be higher for amplified regions and lower for deleted regions. The 

genome is hence divided in windows (or “bins”) of fixed length (typically 100kb - 2Mb), 

and the RC is obtained by counting the number of reads mapping to each bin. The RC is 

then normalized taking in account for mappability and GC content, which are two of the 

main sources of noise for this kind of analysis. Subsequently the RC for each bin is 

expressed as log2ratio values under the following assumption: 

 

Where EXP is the expected RC for diploid regions calculated as following: 

 

Where N is the total number of generated reads, L the length of the region of interest 

(for example a bin) and G is the length of the genome.  

Lastly, segmentation algorithms are applied to noisy log2ratio to define the boundaries 

of CNVs. The noise of log2ratio is inversely proportional to the sequencing depth which 

can be tuned by the experimentator, depending on the resolution needed (241-243). 
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Notably, the total number of reads needed for this approach is relatively limited, with 

accurate detection of CNVs even with a very low coverage (<1X) sequencing experiment, 

usually termed “low-pass sequencing”, or “Shallow Whole Genome Sequencing” (SWGS). 

The advantage of SWGS over high-coverage WGS is the small throughput requirement 

that allows the use of entry-level sequencers and reduce the per-sample costs (244, 

245). On the other hand, with high-coverage WGS is possible to precisely detect 

breakpoint location employing discordant pairs of reads and split reads, and to reduce 

the bin size in order to detect smaller CNVs (241). 

During the years, a multitude of tools for CNV analysis from SGS reads has been 

released; they often differ for the segmentation algorithm and normalization 

approaches, but the main principle is roughly the same (241). 

Currently, low-input WGS protocols are available that make this approach compatible 

with low cfDNA fragmentation; also, the required tumoral DNA fraction is substantially 

lower (~10%) than array-based assays (245, 246).  

SWGS is indeed a powerful technique for liquid biopsy applications, but the need for 

expensive SGS instruments (typically Illumina sequencers) is often an obstacle for 

smaller laboratories. Also, Illumina cfDNA and low-input protocols usually involve 

several PCR steps during library preparation, which can introduce bias and reduce the 

performance of CNV analysis (247).  

 

Third generation sequencing 

Oxford Nanopore Technologies (ONT) has recently released MinION: a fast and 

extremely inexpensive third generation sequencer. Nanopore technology is based on an 

array of nano-scale proteic holes fixed on an dielectric polymer membrane. The passage 
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of a single nucleic acid filament through a pore produces an electric signal which 

depends on its sequence (248). This electrical current signal (a.k.a. the ‘squiggle’ due to 

its appearance when plotted) is the raw data gathered by an ONT sequencer. Basecalling 

for ONT devices is the process of translating this raw signal into a DNA sequence. It is 

not a trivial task as the electrical signals come from single molecules, making for noisy 

and stochastic data. Furthermore, the electrical resistance of a pore is determined by the 

bases present within multiple nucleotides that reside in the pore’s narrowest point (~5 

nucleotides for the R9.4 pore), yielding a large number of possible states: 25  =  1024 for 

a standard four-base model (249). 

Most of the current basecallers divide the raw current signal into discrete blocks, which 

are called events. After event-detection, each event is decoded into a most-likely set of 

bases. In the ideal case, each consecutive event should differ by one base. However, in 

practice, this is not the case because of the non-stable speed of the translocation. 

Also, determining the correct length of the homopolymers is challenging. Both of these 

problems make deletions the dominant error of nanopore sequencing (250). 

R9.4 is the most widely used version of the pore, characterized by a relatively high 

throughput but a significant error rate (~5-20%) (248); R10 pore it has recently been 

released with a longer barrel and dual reader head, enabling improved resolution of 

homopolymeric regions and improving the consensus accuracy of nanopore sequencing 

data (https://nanoporetech.com/). 

Unlike SGS technology, there is no need of fragmentation and read length can reach 

several kilobases. For this reason, Nanopore is particularly indicated for non numeric 

structural variations, breakpoint detection, isoform quantification and fusion-transcript 

detection, for which long-read sequencing is the approach of choice (248, 251). 
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After the passage of a filament, the pore becomes available for the sequencing of a new 

molecule, and the electric signal produced is immediately stored and ready for analysis. 

This aspect is crucial as it allows the user to obtain sequencing results and perform real- 

time analyses while the instrument is still running (248, 252).  

No PCR amplification is needed for library preparation, reducing PCR-related biases 

(243, 247) and preserving base modifications . This feature allows the detection of DNA 

methylation without conversion (e.g. bisulfite treatment) via direct sequencing: 

modified bases produce specific shifts in the electric signal that can be used to 

discriminate them (253).  

The main drawback of Nanopore technology is the high error rate which complicates 

accurate SNVs detection, in particular when dealing with somatic variants (248). The 

high error rate is compensated by the length of the read produced: the longer the read 

the easier the alignment, even in presence of a high number of mismatches (254). 

The aim of my project is to exploit Nanopore sequencing for the study of CNVs from 

cfDNA of cancer patients; the use of this technology offers many advantages over 

classical SGS (248, 255): 

- PCR-free workflow: lack of PCR amplification in Nanopore workflow prevents 

SGS-typical biases which would otherwise hamper CNV detection.  

- Real-Time sequencing: the parallel nature of SGS allows the user to analyse the 

results only at the end of the run, which can last several hours. With Nanopore-

seq, it is possible to analyse the results in real-time during the run, allowing the 

user to detect CNV as soon as the necessary amount of reads is produced. 

Nanopore flow cells can be washed and re-used for a new library; hence, after the 

generation of a satisfactory number of reads, it is possible to stop the run and 

exploit any residual sequencing power of the flow cell for other runs.  
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- Scalability: typically, SGS sequencing costs are competitive if multiplexing several 

samples in the same flow cell; on the other hand, the cost-effectiveness decreases 

when reducing the number of pooled samples. Nanopore Flongle flow cells have a 

reduced number of pores compared to regular Nanopore flow cells; their reduced 

cost can drastically increase the cost-effectiveness of small-scale experiments. 

- Minimal instrumentation costs: MinION is the entry level Nanopore sequencer, its 

cost is extremely low (~ 1,000 €) compared to other sequencers whose price is in 

the order of tens of thousands of euros. Reduced instrumentation costs makes 

this technology accessible to most of the laboratories which are otherwise forced 

to resort to sequencing companies, or to access shared sequencers (not always) 

available in their institution, leading often to long queues and delays. 

 

Unfortunately, Nanopore technology is optimized for long read sequencing, hence it is 

not ideal for sequencing of short cfDNA fragments. Indeed, standard Nanopore protocols 

involve several clean-up steps that are designed to preferentially retain long DNA 

fragments with a consequent loss of short fragments. This is probably the reason why, 

previous attempts to sequence cfDNA samples produced a very limited amount of 

throughput (256). 

For this reason, it is necessary to develop customized workflows to adapt Nanopore-seq 

to plasma cfDNA, in order to exploit its potential also for liquid biopsy applications.  
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Rationale 

The aim of the study is to assess the feasibility of Nanopore sequencing of cfDNA by 

modifying standard protocols, and to compare its performance in CNVs detection with 

state of the art approaches, namely Illumina sequencing.  

A pre-print, including the following content, entitled “Nanopore sequencing from liquid 

biopsy: analysis of copy number variations from cell-free DNA of lung cancer patients” 

https://doi.org/10.1101/2020.06.22.165555, is available at www.biorxiv.org.  

 

Methods  

The aim of this project is to set-up a workflow for the identification of whole genome 

CNVs from cfDNA using Nanopore technology. The approach is based on shallow whole 

genome sequencing, which is a read-count based approach that allows detection of 

genome-wide CNVs from reads produced through a low-coverage (< 1x) whole genome 

sequencing experiment (257).  

Since Nanopore library preparation protocols are designed to enrich long DNA 

fragments, we have modified them in order to retain small cfDNA fragments. With our 

custom protocols, we sequenced cfDNA from 6 cancer patients and 5 healthy subjects, in 

both singleplex and multiplex runs (S1, M1 and M2, Table 3). To validate our workflow, 

4 patients were sequenced also with SGS platforms (Illumina) and results were 

compared. 

 

 

 

https://doi.org/10.1101/2020.06.22.165555
http://www.biorxiv.org/
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Table 3: Case series and run statistics. 
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Sample collection and cfDNA isolation 

Blood from 5 unrelated healthy donors and 6 unrelated metastatic Non Small Cell Lung 

Cancer patients was collected in EDTA vacuum tubes. Blood samples were centrifuged at 

1600g x 10’’, and plasma was carefully collected with a pipet without disturbing sedimented 

blood cells. 

cfDNA was extracted from 4ml of plasma using QIAamp Circulating Nucleic Acid Kit 

(QIAGEN, 55114), it was quantified via Qubit Fluorometer (Thermo Fisher Scientific, 

dsDNA HS assay kit, Q32851), and its fragmentation pattern was obtained via Agilent 2100 

Bioanalyzer (Agilent, High Sensitivity DNA kit, 5067-4626). Extracted cfDNA was stored at 

-80° C.  

 

Nanopore library preparation and analysis  

For library preparation, the EXP-NBD104 and SQK-LSK109 protocols were used: the 

bead/sample ratio of AMPure XP beads (Beckman Coulter, A63880) was increased to 1.8x in 

all clean-up steps. 

All the other steps were performed following the manufacturer’s instructions. 

The SQK-LSK109 protocol was used for the run S1. In the case of the multiplex runs M1 and 

M2, 25ul of each barcoded sample were pooled together before adapter ligation. The pool was 

then cleaned-up using 2.5X AMPure XP beads. 

S1, M1 and M2 runs were performed using FLO-MIN106 (R9.4) flow cells on a GridION 

sequencer. FASTQ files were generated using real-time high-accuracy basecalling during the 

run with the MinKNOW software (version 18.12.9); guppy (version 1.8.10) was used for the 

actual basecalling with SQK-LSK109 and FLO-MIN106 settings. Porechop 
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(https://github.com/rrwick/Porechop) was used to de-multiplex FASTQ files of multiplex runs 

(M1, M2), and to trim adapters of all the runs. 

Minimap2 (with -ax map-ont flags) (254) and BWA mem (with -x ont2d flags) (112) were 

used to align raw reads, using the human_g1k_v37_decoy as reference genome. 

The CIGAR field of aligned BAMs was used to determine fragment length of sequenced 

cfDNA (Figure 14). 

 

Figure 14: Fragment size distribution. Fragment size distribution estimated via Bioanalyzer (A), and from 
Nanopore reads (B). 

 

NanoGLADIATOR was used to generate molecular karyotypes of BWA aligned BAMs with 

a bin size of 100kb (243). 
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For “paired” mode analysis, HF1 was used as a control for female patients, and BAMs from 

HM2 and HM3 were merged and used as control (Healthy_Males_Pool, HMP) for male 

patients. 

Additional details on patients features, library preparation and run statistics are summarized in 

Table 3. 

 

Illumina library preparation and analysis  

Illumina libraries for samples 19_924, 19_744, 19_1231 and 18_1130 were prepared from 

15ng of input DNA (from the same cfDNA extraction of the DNA used for Nanopore library 

preparation), using Ovation Ultralow V2 DNA-seq Library Preparation Kit (NUGEN, 

0344NB-A01), sequencing runs (150bp, paired end) were performed on a NovaSeq 6000 

sequencer (Illumina). 

Only R1 reads were used for CNV analysis treating them as the product of a single end 

sequencing experiment, in order to simplify subsequent steps such as subsampling and 

comparison with Nanopore results. This strategy doesn’t introduce any methodological bias, 

since Illumina single-end and paired-end CNV results are highly correlated (Table 4). 

FASTQ files were aligned with BWA mem using human_g1k_v37_decoy as reference 

genome. 

XCAVATOR was used to generate molecular karyotypes of BWA aligned BAMs with a bin 

size of 100kb (242). 
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Table 4: Correlation of Illumina results. Paired-end Vs single-end, and subsampled BAMs (2M reads) Vs full BAMs 
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Segmentation comparison 

Custom R scripts were used to compare segmentation results: 

When comparing two experiments, the “segment mean” value of each of the 100kb bins was 

correlated (corr.test function, R base package, method=”spearman”). 

To determine the percentage of genomic positions with concordant copy number status, we 

considered two bins as “concordant” if their segment mean differs by 0.08. 

Chromosome Y bins were ignored when analysing female patients. 

When comparing Illumina and Nanopore results, even if the bin size used was the same, the 

starting positions of the bins slightly differs among the two pipelines; an XCAVATOR bin is 

considered corresponding to a NanoGLADIATOR bin if its starting position falls between the 

starting and the end position of the NanoGLADIATOR bin. Only NanoGLADIATOR bins for 

which it was possible to identify a corresponding XCAVATOR bin were considered for 

subsequent analysis. 

In total, 26867 were used for segmentation comparison. 

The original number of bins for respectively Nanopore and Illumina was 26927 and 28452 

(0,2% and 5.6% bin loss). 

 

Results  

Sequencing yield and quality control 

With our custom protocols, we obtained 14,338,633, 19,610,131, and 31,582,051 raw reads 

from the S1, M1 and M2 runs, respectively: a remarkably higher throughput than previously 

reported (256) (Table 3). Notably, the per-sample throughput was highly variable, even if the 

amount of input DNA was constant for most of the samples (30ng). Indeed, for sample HF2, 



 69 

the throughput obtained was insufficient. To assess the effects of input DNA on per-sample 

throughput, we performed library preparation of samples HM2, HM1 and HF1 with 

respectively 15, 30 and 60 ng of DNA; however, the amount of reads produced was very 

consistent among the three samples (~3M reads, Table 3), suggesting that input DNA has a 

low impact on the final throughput. 

For the run M2, we quantified eluted DNA after each clean-up step via Qubit Fluorometer: 

Since DNA concentration highly correlates with read yield, differences in per-sample yields 

are likely attributable to a different efficiency of library preparation steps rather than amount 

of input DNA. 

Nanopore protocols suggest pooling equimolar quantities of barcoded samples prior to 

adapter ligation to avoid differences in per-sample throughput. However, in order to avoid 

any waste of DNA and aiming at obtaining the maximum amount of reads from a single flow-

cell, we loaded the entire barcoded sample for each patient, which may explain the observed 

variability. 

Unexpectedly, the relative-throughput (sample reads/total run reads) of cancer patients is 

remarkably higher compared to healthy subjects (Table 3). Since there were no differences in 

input DNA, and per-sample throughput depends mainly on library preparation efficiency, it is 

possible that the presence of ctDNA positively affects library preparation efficiency; however, 

the biological aspects of this behaviour are not clear and should be further investigated. 

A possible explanation is that cancer samples typically show a higher proportion of smaller 

fragments (258), which can be somehow enriched by our modified protocol. 

Alignments were performed with both BWA and Minimap2. The average percentage of 

uniquely mapped reads was 98.5% and 85.6%, respectively (Table 3). Size distribution of the 

sequenced cfDNA fragments perfectly matches the fragmentation profile obtained with 

Agilent Bioanalyzer (Figure 14). Fragment size distributions of healthy and cancer patients 
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are comparable; notably, in cancer patients, a higher degradation in fragments belonging to 

the 332 bp peak is observed (Figure 15). While Minimap2 is usually recommended for 

alignment of long Nanopore reads, according to our results BWA is preferable for cfDNA-

derived data, probably due to the shorter length of cfDNA fragments.  

 

CNV profiling and artefact removal 

Molecular karyotype of 10 out of 11 samples was successfully produced using 

NanoGLADIATOR (“nocontrol” mode), a recently developed tool for the identification of 

CNVs from read counts (reported as log2ratio) across multiple consecutive windows (bins) 

(243). BWA-aligned BAM files were analysed with a bin size of 100kbp, and CNVs were 

detected in all the tumoral samples (Figure 16). 

Figure 15: Read length distribution for healthy (blu scale) and cancer patients (red scale).  Vertical lines 
highlight 166 and 332 bp sizes. 
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Unexpected variations in read-count values were present also in samples from healthy donors 

(Figure 16). Most of the variations observed in healthy donors are shared by at least 2 healthy 

subjects, suggesting that they may be errors introduced by the technique itself rather than 

patient-specific alterations (Figure 17). Even though it is possible these variations represent 

naturally occurring polymorphisms, this is unlikely: polymorphic variations should present a 

discrete number of copies (1,3 or 4 copies), which is not the case, as most of these variations 

have weak log2ratio. 

These technical artefacts can be easily filtered out setting a threshold. On the other hand, 

some of these variations are very similar in terms of length and segment mean (roughly 

0.10) to those we observe in cancer samples and it could be difficult to discriminate real 

CNVs from these ones (Figure 16). Typically, these artefacts are present in regions 

containing a higher number similar sequences, e.g. the sexual chromosomes (Figure 16). 

Alignment of short reads in such genomic regions is typically challenging and presence of 

these artefacts is likely due to mapping issues (259). In order to minimize the number of 

artefacts, we used NanoGLADIATOR in “paired” mode, which generates segmentation 

results comparing test samples with a control sample. We tested this approach on healthy 

male subjects, using each sample as both case and control, in any possible combination. 
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Figure 16. NanoGLADIATOR segmentation plots. Segmentation plots produced with NanoGLADIATOR for 
samples 19_1231 (cancer) and HM3 (healthy) in “nocontrol” mode (A), and “paired” mode (B). In “paired” 
mode, HF1 and HM2 were used as controls for respectively 19_1231 and HM3. The red line indicates the 
segment mean (log2ratio). Each color represents a different chromosome; chromosome Y for sample 19_1231 
has been omitted. 

 



 73 

 

Figure 17. Technical artifacts in healthy samples. Venn diagram reporting recurring genomic bins with 
altered log2ratio in healthy samples. 

 

Using this strategy, we were able to remove 82-100% of false positive bins in healthy males 

samples (segment mean threshold  0.04, or   -0.04) (Table 1, Figure 16). Moreover, when 

HM1 is not used neither as a case nor a control, the number of false positive bins is reduced 

by 100% (Table 5), suggesting that this sample might be enriched in sample-specific 

artefacts. Hence, HM1 was not used as a control in subsequent “paired” analyses to avoid 

introduction of biases. HM2 and HM3 BAM files were merged and the resulting BAM 

(HMP) was used as control for male patients, while HF1 was used as control for female 

patients. 

This approach doesn’t negatively affect the performance of the analysis, as the number of 

copy-number altered bins is reduced by less than 5% in most of the tumoral samples and 

increases by 29% in sample 19_744; sample 19_560 is the only exception, with a reduction of 

roughly ~40% (Table 5). 19_560 shows the lowest number of altered bins  
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Table 5. Performance of NanoGLADIATOR pipeline in “nocontrol” and “paired” mode 

 

and the lowest segment mean standard deviation (calculated on autosomes) (Table 5). A lack 

of clonal CNVs in the tumor, or a lower concentration of ctDNA fragments among the overall 

cfDNA population can explain these observations; it is therefore not surprising to observe an 

“healthy-like” genotype, with false positives representing a large part of the detected CNVs. 

Notably, this sample is also the one wit the lowest number of reads, but it is unlikely that this 

is affecting the results, as low coverage results highly correlate with full-depth results (see 

next paragraph). 

Using NanoGLADIATOR in “paired” mode allows to set a very strict log2ratio threshold 

(0.04) to discriminate technical artefacts from real CNV, drastically increasing the 

performance of the approach in terms of sensitivity/specificity (Figure 16, Table 5). 
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Figure 18: Comparison of segmentation results  of cancer patients with Nanopore and Illumina: Correlation of 
Nanopore and Illumina segment mean values. Each genomic bin is represented as a dot, colours indicate dot 
density. Regression lines are shown in red. Black lines indicate the thresholds for concordant bins. 
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Figure 19: Comparison of segmentation results  of 2 Million reads subsets: Comparison of Nanopore segment 
mean values from the full-depth BAM file and from a 2M reads subsampled dataset. Each genomic bin is 
represented as a dot, colours indicate dot density. Regression lines are shown in red. Black lines indicate the 
thresholds for concordant bins. 
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Illumina and Nanopore result comparison 

We then compared the performance of Nanopore sequencing with a standard SGS approach 

by analysing four of the tumoral samples through Illumina sequencing (17-24M, 150bp single 

end reads, see methods). Illumina and Nanopore results (“nocontrol” mode) were strongly  

correlated (R = 0.93 – 0.99, p << 0.001), with concordant log2ratio values at 95-98% of the 

genomic bins (Figure 18, Table 6 A). To assess the performances of our approach at even 

lower sequencing depth, we subsampled the BAMs to 2M raw reads: the results obtained are 

highly concordant with the full-depth BAMs (R = 0.93 – 0.99, p << 0.001, 94-99% 

concordant bins, Figure 19, Table 6). 

The marginal loss of performance observed is comparable to the one obtained when 

subsampling Illumina data (Table 4). 

 

Detection of lung cancer-related CNVs 

Since the ultimate aim of the analysis is to obtain information on the tumour, we next 

assessed the status of genes commonly altered in lung cancer, selected from 6 papers (Figure 

20) (181-187). Notably, using read-count based methods such as NanoGLADIATOR, it is 

challenging to define the expected read-count for diploidy in presence of a high number of 

CNVs. Due to this, taking in account this limitation, we used a stricter log2ratio threshold (± 

0.10) for the assessment of amplifications/deletions, to avoid false positives. Pathogenetic 

CNVs were readily observed, with EGFR amplification prominently present in all samples, 

and most of other genes altered in at least two samples. Many of these structural alterations 

directly affect progression of the cancer and therapeutic options. For example, RICTOR 

amplification identifies a subgroup of lung cancer and its presence has been linked to the 

response to mTOR inhibitors (185). Similarly, MYC amplification confers resistance to 
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pictilisib in models and PIK3CA amplification is associated with resistance to PI3K inhibition 

(260, 261) in mammary tumors. 
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Table 6: Correlation of segmentation results. (A) Correlation of Illumina and Nanopore results, (B) Correlation of Nanopore results: subsampled BAMs (2M reads) Vs full BAMs (“nocontrol” and 

“paired” mode). 
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Figure 20 Landscape of clinically-relevant copy number variants. Copy number variants of specific genes (rows) are 
shown for the individual patients (columns). The shading indicates levels of amplification (red tones, 0.10-0.30, >0.30 
log2ratio) and deletion (blue tones, 0.10-0.30, >0.30 negative log2ratio). The top and right bar plots show the number 
of CNVs in one patient and the number of patients with CNVs for a given gene, respectively. The expected status for a 
given gene based on the literature is shown in the left side. 
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Discussion 

Our report is the first successful attempt to obtain a CNV profile from plasma cell-free DNA 

of cancer patients using Nanopore technology. Our results show that Nanopore sequencing 

has the same performance of SGS approaches and, in terms of throughput and sequencing 

costs, it is comparable to an Illumina MiSeq (V3 reagents, 22-25M single-end reads). 

MinION is the entry-level sequencer by Nanopore technology and its cost is extremely low 

(~1000 euros) compared to SGS sequencers whose price ranges from tens to hundreds of 

thousands of euros. Reduced overall instrumentation costs makes this approach accessible to 

most of the research groups, which would otherwise be forced to outsource the sequencing, or 

to gain access to shared sequencers, leading often to long queues and delays. Moreover, SGS 

is cost effective only when dealing with a large number of patients. This aspect is crucial with 

regards to clinical analyses, as it leads to a centralization of sequencing-based assays, which 

are mainly performed in big hospitals that collect samples from larger geographic areas. 

On the contrary, Nanopore technology is extremely scalable, and only a modest number of 

patients is required in a multiplexed run, leading to short recruitment times and, consequently, 

faster results. 

As we demonstrate that reliable results can be obtained from as few as 2M reads. Based on 

the throughput obtained in our study, it should be possible to analyse up to 7-15 patients in a 

single run. 

Since reads are stored as soon as they are produced, they can be analysed while the 

experiment is still running by taking advantage of the real-time mode of NanoGLADIATOR. 

This feature might come useful when analysing single samples, especially in those patients 

with lower fraction of ctDNA, for which a higher number or reads and, consequently, a higher 

resolution may be preferable. In such a context, it would be possible to inspect the CNV 
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profile while the run is still ongoing, and stop once the desired resolution is reached, saving 

the sequencing power of the flow cell, which can be washed and reused for other samples. 

According to our sequencing statistics, 2M reads are produced in less than 3 hours. This 

means that the entire workflow -from blood withdrawal to bioinformatic analyses- can be 

performed in less than a working day. This is something unique to Nanopore sequencing, as 

SGS approaches based on sequence-by-synthesis technologies make reads available only at 

the end of the whole run, which can last days. 

We have demonstrated that Nanopore sequencing for CNV analysis of short plasmatic cfDNA 

is feasible. Nanopore features represent advantages over current sequencing technologies, and 

might drive the adoption of molecular karyotyping from liquid biopsies as a tool for cancer 

monitoring in clinical settings. The applications of this approach are not limited to cancer and 

can be technically extended to other liquid biopsy-based fields such as noninvasive prenatal 

diagnosis. One limitation of this study is the lack of a comparison between histological 

samples and cfDNA, to assess if cfDNA is really representative of the tumor. On the other 

hand, this comparison is subject to a variety of biases such as: sampling biases of the tumoral 

tissue (the sampled portion may not completely reflect the entire CNV load of the tumor) and 

related to the fact that the patients may carry undetected metastasis, which contribute to the 

CNV profile observed in plasma samples, but would be ignored by tissue sampling. However, 

assessing the degree of reliability of cfDNA-based analyses is not the goal of the project. 

In future, it will be interesting to assess the precision of the Nanopore approach by comparing 

multiple biological and technical replicates from the same patient. 
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