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Abstract We introduce a new family of integer-valued distributions by con-
sidering a tempered version of the Discrete Linnik law. The proposal is actually
a generalization of the well-known Poisson-Tweedie law. The suggested family
is extremely flexible since it contains a wide spectrum of distributions rang-
ing from light-tailed laws (such as the Binomial) to heavy-tailed laws (such
as the Discrete Linnik). The main theoretical features of the Tempered Dis-
crete Linnik distribution are explored by providing a series of identities in
law, which describe its genesis in terms of mixture Poisson distribution and
compound Negative Binomial distribution - as well as in terms of mixture
Poisson-Tweedie distribution. Moreover, we give a manageable expression and
a suitable recursive relationship for the corresponding probability function.
Finally, an application to scientometric data - which deals with the scientific
output of the researchers of the University of Siena - is considered.

Keywords Lévy-Khintchine representation · Positive Stable distribution ·
Linnik distribution · Discrete Stable distribution · Discrete Linnik distribu-
tion · Mixture Poisson distribution · Hirsh index.

1 Introduction

In recent years, heavy-tailed models - in primis, stable distributions - have
been used in a variety of fields, such as statistical physics, mathematical fi-
nance and financial econometrics (see e.g.. Rachev et al., 2011, and references
therein). However, these models may be partially appropriate to provide a
good fit to data, since their tails are too “fat” to describe empirical distri-
butions, as remarked by Klebanov and Slámová (2015). In order to overcome
this drawback, the so-called “tempered” versions of heavy-tailed distributions
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have been successfully introduced (see e.g.. Rośınski, 2007). Indeed, temper-
ing allows for models that are similar to original distributions in some central
region, even if possess lighter - i.e. tempered - tails. Klebanov and Slámová
(2015) have suitably discussed these issues and have suggested various tem-
pering techniques.

In the framework of integer-valued distributions, the Discrete Stable is
a well-known heavy-tailed law originally suggested by Steutel and van Harn
(1979). Its tempered counterpart is the so-called Poisson-Tweedie law indepen-
dently introduced by Gerber (1991) and Hougaard et al. (1997). The Poisson-
Tweedie distribution encompasses classical families - such as the Poisson - as
well as large families - such as the Generalized Poisson Inverse Gaussian and
the Poisson-Pascal. Indeed, this law has been adopted for modelling integer-
valued data arising in a plethora of frameworks - for example, clinical experi-
ments (Hougaard et al., 1997), environmental studies (El-Shaarawi et al., 2011)
and scientometric analysis (Baccini et al., 2016, Zhu and Joe, 2009). Hence,
tempering yields a versatile statistical model which is extensively utilized -
in contrast to the Discrete Stable distribution which is scarcely considered in
practical applications.

Christoph and Schreiber (1998) emphasize that the Discrete Stable law
may be seen as the special case - for the limiting value of a parameter - of the
so-called Discrete Linnik law introduced by Devroye (1993) and Pakes (1995).
Hence, owing to the extra parameter, the Discrete Linnik is a heavy-tailed
distribution family which is more flexible than the Discrete Stable. Therefore,
it is worth proposing a tempered version of the Discrete Linnik law in order
to generalize the Poisson-Tweedie family. However, Klebanov and Slámová
(2015) have remarked that tempering is not univocally characterized. Hence,
with the aim of obtaining a suitably-defined Tempered Discrete Linnik law,
we consider the suggestion - outlined by Barabesi and Pratelli (2014a) - for
obtaining integer-valued families of mixture Poisson distributions. A succinct
description of the pattern adopted for introducing the new law is as follows.
First, we remark that the Discrete Stable may be seen as a mixture Pois-
son distribution with a mixturing Positive Stable distribution, as well as the
Poisson-Tweedie may be expressed as a mixture Poisson distribution with a
mixturing Tempered Positive Stable distribution. Subsequently, by general-
izing these results and by noticing that the Discrete Linnik may be seen as
a “scale” mixture of Discrete Stable distributions with a mixturing Gamma
distribution, we similarly introduce the Tempered Discrete Linnik as a “scale”
mixture of Poisson-Tweedie distributions. The achieved law is actually a tem-
pered distribution with a tempering of geometric nature - analogously to the
Poisson-Tweedie law.

The Tempered Discrete Linnik distribution has an intrinsic interest, since
it encompasses - or provides valuable generalization - of many well-known laws.
As a matter of fact, different parameter choices give rise to classical distribu-
tions such as the Binomial or the Negative Binomial laws, or provide extended
versions of Generalized Poisson Inverse Gaussian and the Poisson-Pascal laws.
In any case, owing to its flexibility, the Tempered Discrete Linnik law is also
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potentially appealing for practical applications as a statistical model, since
it displays several advantages with respect to the Poisson-Tweedie law. In-
deed, we show that the Tempered Discrete Linnik law may cover an extended
range of dispersion and kurtosis. Moreover, the Tempered Discrete Linnik dis-
tribution may fit rather involved integer-valued data, which show challenging
features such an excess of zeroes and a long tail at the same time - in contrast
to the Poisson-Tweedie law. As an example, these features may be interesting
for modelling scientometric and bibliometric data, which frequently display
zero inflation and long tails owing to the nature of the scientific production
process. The authors have been precisely motivated to introduce the Tempered
Discrete Linnik distribution in order to model such a kind of data - for which
the Poisson-Tweedie distribution produces an unsatisfactory fitting in several
cases.

The paper is organized as follows. In Section 2 we revise the issues sug-
gested by Barabesi and Pratelli (2014a) for introducing families of integer-
valued distributions and we survey the main features of the Discete Stable,
the Poisson-Tweedie and the Discrete Linnik distributions. Section 3 contains
our proposal for the Tempered Discrete Linnik distribution, while in Section
4 we consider its main properties. An example with real data dealing with a
scientometric application is considered in Section 5. Finally, some conclusions
are drawn in Section 6.

2 Some families of mixture Poisson distributions

As to a repeatedly-adopted notation in the present paper, ifX represents a ran-
dom variable (r.v.), the corresponding Laplace transform is given by LX(s) =
E[exp(−sX)]. In addition, if X is an integer-valued r.v., the corresponding
probability generating function (p.g.f.) is given by gX(s) = E[sX ]. We also
describe the suggestion by Barabesi and Pratelli (2014a) for devising integer-
valued distribution families as mixtures Poisson laws in the next Sections. Let
ν be a measure on R+ = ]0,∞[ in such a way that

∫
R+ min(1, x)ν(dx) < ∞.

From the Lévy-Khintchine representation (see e.g. Sato 1999, p.197) there
exists a positive r.v. Y with Laplace transform given by

LY (t) = exp(−ηψ(t)), Re(t) > 0,

where η ∈ R+ and

ψ(t) =

∫
R+

(1− exp(−tx))ν(dx).

Moreover, let XP := XP (λ) represent a Poisson r.v. with parameter λ, i.e. the
p.g.f. of XP (λ) is given by gXP

(s) = exp(−λ(1− s)) with s ∈ [0, 1]. Hence, if
the r.v.’s XP and Y are independent, the Mixture Poisson r.v.

XMP
L
= XP (Y )
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displays the p.g.f. given by

gXMP
(s) = E[exp(−Y (1−s))] = LY (1−s) = exp(−ηψ(1−s)), s ∈ [0, 1]. (1)

Hence, by suitably selecting the measure ν - and consequently the r.v. Y - a
family of mixture Poisson distributions may be obtained from (1).

2.1 The Discrete Stable law and related distributions

First, we introduce the absolutely-continuous Positive Stable r.v., say XPS ,
with Laplace transform given by

LXPS
(t) = exp(−λtγ), Re(t) > 0, (2)

where (γ, λ) ∈ ]0, 1]× R+ (see e.g. Zolotarev 1986, p.114). For a discussion of
the laws connected to the Positive Stable law, see Devroye and James (2014),
Favaro and Nipoti (2014), Lijoi and Prunster (2014). In order to emphasize the
dependence on γ and λ, we eventually adopt the notation XPS := XPS(γ, λ).

The integer-valued counterpart of the Positive Stable r.v. is the Discrete
Stable r.v. XDS proposed by Steutel and van Harn (1979) with p.g.f. given by

gXDS
(s) = exp(−λ(1− s)γ), s ∈ [0, 1], (3)

where in turn (γ, λ) ∈ ]0, 1]×R+. For a survey of the properties of this distri-
bution, see e.g. Marcheselli et al. (2008) and Christoph and Schreiber (2001).
Similarly to the Positive Stable r.v., we also write XDS := XDS(γ, λ).

The p.g.f. (3) of the Discrete Stable r.v. XDS(γ, λ) is obtained from expres-

sion (1) when a stable subordinator is considered, i.e. ν(dx)
dx ∝ x−γ−11R+(x).

Moreover, since from (1) it also holds

gXDS
(s) = E[exp(−XPS(1− s))] = LXPS

(1− s),

it also follows Y
L
= XPS(γ, λ) and

XDS(γ, λ)
L
= XP (XPS(γ, λ)), (4)

which is actually equivalent to the identity in distribution emphasized by De-
vroye (1993, Theorem in Section 1). Identity (4) is very suitable for random
variate generation. Indeed, many generators for Poisson variates are available
in statistical literature, while Positive Stable variates are readily obtained by
means of the well-known Kanter’s representation (Kanter, 1975).

On the basis of expression (4), a general “scale” mixture of Discrete Sta-
ble r.v.’s, say XMDS , with a mixturing absolutely-continuous positive r.v. V
having Laplace transform LV , may be achieved by considering the identity in
distribution

XMDS
L
= XDS(γ, V )

L
= XP (XPS(γ, V )). (5)
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Obviously, (4) is achieved from (5) by assuming a degenerate distribution for
V , i.e. P (V = λ) = 1. Moreover, from (5), it is apparent that the p.g.f. of the
r.v. XMDS turns out to be

gXMDS
(s) = E[exp(−V (1− s)γ)] = LV ((1− s)γ), s ∈ [0, 1]. (6)

Hence, families of mixture of Discrete Stable r.v.’s can be generated by means
of (5) and (6) by suitably selecting the r.v. V .

We conclude with a final remark on the p.g.f. (6). Let XS be a Sibuya r.v.
(as named by Devroye 1993, since it is a special case of the Negative Binomial
Beta r.v. proposed by Sibuya, 1979) with p.g.f.

gXS
(s) = 1− (1− s)γ , s ∈ [0, 1],

where γ ∈ ]0, 1] (for a survey of this law, see Huillet 2016). In the following,
the Sibuya r.v. is also denoted by XS := XS(γ). Therefore, expression (6) may
be also interestingly reformulated as

gXMDS
(s) = LV (1− gXS

(s)), s ∈ [0, 1]. (7)

Thus, if LV displays a suitable structure, expression (7) eventually gives rise
to a representation of the r.v. XMDS in terms of a compound r.v. with a
compounding Sibuya r.v. As a quite easy example, the r.v. XDS may be also
expressed as a compound Poisson r.v. as

gXDS
(s) = exp(−λ(1− gXS

(s))), s ∈ [0, 1],

and hence

XDS(γ, λ)
L
=

Z∑
i=1

Wi,

where Z
L
= XP (λ) and the Wi’s are i.i.d. r.v.’s such that Wi

L
= XS(γ) - which

are in turn independent of Z.

2.2 The Poisson-Tweedie law and related distributions

We preliminarly provide some issues on the so-called Tweedie distribution
(Hougaard, 1986) which is actually a Tempered Positive Stable distribution.
For this reason, we denote the Tweedie r.v. as XTPS . With a slight change in
the parameterization proposed by Hougaard (1986), the Laplace transform of
the r.v. XTPS is given by

LXTPS
(t) = exp(sgn(γ)λ(θγ − (θ + t)γ)), Re(t) > 0, (8)

where (γ, λ, θ) ∈ { ] − ∞, 1] × R+ × R+} ∪ { ]0, 1] × R+ × {0}}. In this case
θ represents the tempering parameter and the Positive Stable distribution is
obtained for θ = 0. It should be remarked that the tempering extends the range
of values for the parameter γ with respect to the Positive Stable distribution.
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Indeed, as shown by Aalen (1992), for γ ∈ R− where R− = ] − ∞, 0[, it is
immediate to reformulate the r.v. XTPS as a compound Poisson of Gamma
r.v.’s. More precisely, let the r.v. XG := XG(λ, δ) be distributed according to
a Gamma law with corresponding Laplace transform given by

LXG
(t) = (1 + λt)−δ, Re(t) > 0,

where (λ, δ) ∈ R+ × R+. Hence, on the basis of (8), the following identity in
distribution holds for γ ∈ R−

XTPS(γ, λ, θ)
L
= XG(1/θ,−γXP (λθ

γ)). (9)

By extending the issues of Section 2.1, if a tempered stable subordinator

is adopted in (1), i.e. ν(dx)
dx ∝ exp(−θx)x−γ−11R+(x), the Poisson-Tweedie

distribution - which is actually a Tempered Discrete Stable distribution - is
achieved. For more details about the Poisson-Tweedie law, see Baccini et al.
(2016) and El-Shaarawi et al. (2011). Indeed, if XTDS denotes the Poisson-
Tweedie r.v., XTDS has the following p.g.f.

gXTDS
(s) = exp(sgn(γ)λ(θγ − (θ + 1− s)γ)), s ∈ [0, 1],

where in turn (γ, λ, θ) ∈ { ]−∞, 1]× R+ × R+} ∪ { ]0, 1]× R+ × {0}}. Hence
- as expected from (1) - it holds gXTDS

(s) = LXTPS
(1 − s). In order to be

consistent with the existing literature and for practical convenience, we prefer
to reparameterize the previous p.g.f. by assuming that γ = a, λ = bca and
θ = 1/c− 1, in such a way that

gXTDS
(s) = exp(sgn(a)b((1− c)a − (1− cs)a)), s ∈ [0, 1], (10)

where (a, b, c) ∈ { ] − ∞, 0] × R+ × [0, 1[ } ∪ { ]0, 1] × R+ × [0, 1]}. The p.g.f.
(10) is provided as a slight modification of the formulation suggested by El-
Shaarawi et al. (2011). Obviously, the p.g.f of the Discrete Stable r.v.XDS(a, b)
is obtained for c = 1. Moreover, it is worth noting that c actually represents
the “tempering” parameter. Indeed, for a ∈ ]0, 1] and by considering the r.v.
XDS(a, b), the following identity

gXTDS (t) =
gXDS (cs)

gXDS
(c)

emphasizes the geometric “nature” of the tempering. Similarly to the Tweedie
distribution, tempering extends the range of parameter values (with respect
to the Discrete Stable distribution) for the parameter a - which may assume
negative values, even if cmust be strictly less than unity in such a case. Finally,

from (1) with Y
L
= XTPS(a, bc

a, 1/c− 1), it also holds

XTDS(a, b, c)
L
= XP (XTPS(a, bc

a, 1/c− 1)), (11)

which constitutes the identity in distribution remarked by Hougaard et al.
(1997) and which generalizes expression (4).
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On the basis of expression (11), it is at once apparent that a “scale” mixture
of Tempered Discrete Stable r.v.’s, say XMTDS , with a mixturing absolutely-
continuous positive r.v. V having Laplace transform LV , may be achieved by
considering the following identity in distribution which generalizes (5)

XMTDS
L
= XTDS(a, V, c)

L
= XP (XTPS(a, c

aV, 1/c− 1)). (12)

Obviously, (11) is achieved from (12) by assuming a degenerate distribution
for V , i.e. P (V = b) = 1. Moreover, the corresponding p.g.f. turns out to be

gXMTDS
(s) = E[exp(sgn(a)V ((1− cs)a − (1− c)a))]

= LV (sgn(a)((1− cs)a − (1− c)a)), s ∈ [0, 1].

(13)

Hence, families of mixture of Tempered Discrete Stable r.v.’s can be generated
by means of (12) by suitably selecting the r.v. V .

In order to reformulate (13) similarly to (7) when a ∈ ]0, 1], let XGDS :=
XGDS(γ, τ) be the Geometric Down-weighted Sibuya r.v. introduced by Zhu
and Joe (2009) with the p.g.f.

gXGDS
(s) = 1− gXS

(τ) + gXS
(τs) = 1 + (1− τ)γ − (1− τs)γ ,

where (γ, τ) ∈ ]0, 1]× ]0, 1]. Hence, by considering the r.v. XGDS(a, c), for
a ∈ ]0, 1] expression (13) may be also rewritten as

gXMTDS
(s) = LV (1− gXGDS

(s)), s ∈ [0, 1]. (14)

Moreover, let XNB := XNB(π, δ) be a Negative Binomial r.v. with p.g.f. given
by

gXNB
(s) =

(
1− π

1− πs

)δ

, s ∈ [0, 1],

where (π, δ) ∈ ]0, 1[×R+. Thus, when a ∈ R− and by considering the Negative
Binomial r.v. XNB(c,−a), expression (13) may be also rewritten as

gXMTDS (s) = LV ((1− c)a(1− gXNB (s))), s ∈ [0, 1]. (15)

Therefore, if LV displays a suitable structure, expression (14) and (15) eventu-
ally gives rise to a representation of the r.v. XMDS in terms of a compound r.v.
with compounding Sibuya or Negative Binomial r.v.’s, respectively, according
to a ∈ ]0, 1[ or a ∈ R−.

2.3 The Discrete Linnik law and related distributions

By following the formulation adopted by Christoph and Schreiber (1998), the
p.g.f. of the r.v. XDL distributed according to the Discrete Linnik law is given
by

gXDL
(s) = (1 + λ(1− s)γ/δ)−δ, s ∈ [0, 1], (16)
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where (γ, λ, δ) ∈ ]0, 1]×R+×R+. For a detailed description of the main features
of the law, see Christoph and Schreiber (1998, 2001). It is apparent that the
p.g.f. of the Discrete Stable r.v. XDS is achieved as δ → ∞. In addition, it
should be remarked that the Discrete Linnik law is defined for some negative
δ in such a way that λ ≤ |δ|(1 − γ) and, in this case, the distribution is also
named Generalized Sibuya (Huillet 2016). However, the results of this Section
are mainly given for positive δ. It is apparent that the Discrete Linnik law is
very flexible and may encompass a large variety of distribution families ranging
from light-tailed laws (e.g. the Binomial law for suitable λ and negative integer
δ when γ = 1) to heavy-tailed laws (e.g. the Discrete Mittag-Leffler law for
δ = 1). In order to emphasize the dependence on the parameters, we also
adopt the notation XDL := XDL(γ, λ, δ).

For δ ∈ R+ and on the basis of the remarks provided in Section 2.1, it is
promptly proven that the Discrete Linnik r.v. is a “scale” mixture of Discrete

Stable r.v.’s obtained by selecting V
L
= XG(λ/δ, δ) in (5). In this case, the

p.g.f. (16) is obtained by means of (6), while from (5) it also holds

XDL(γ, λ, δ)
L
= XDS(γ,XG(λ/δ, δ))

L
= XP (XPS(γ,XG(λ/δ, δ))), (17)

which is actually similar to the identity in distribution obtained by Devroye
(1993, Section 2). A further remark is in order, since expression (17) may
be also rephrased in terms of the absolutely-continuous Positive Linnik r.v.
XPL := XPL(γ, λ, δ) with Laplace transform given by

LXPL
(t) = (1 + λtγ/δ)−δ, Re(t) > 0,

where (γ, λ, δ) ∈ ]0, 1] × R+ × R+ - according to the formulation provided by
Christoph and Schreiber (2001). The absolutely-continuous Positive Linnik has
been introduced by Pakes (1995) by extending the former proposal by Linnik
(1962, p.67). Obviously, the Laplace transform (1) of the Positive Stable r.v.
XPS(γ, λ) is achieved as δ → ∞. For more details on the Positive Linnik
distribution, see e.g. Jose et al. (2010) and Barabesi et al. (2016a). Since it
easily proven that

XPL(γ, λ, δ)
L
= XPS(γ,XG(λ/δ, δ)),

by means of expression (17) it promptly follows that

XDL(γ, λ, δ)
L
= XP (XPL(γ, λ, δ)), (18)

which actually generalizes (4). Indeed, expression (4) is recovered from expres-
sion (18) as δ → ∞. Finally, we remark that the identity in distribution (17)
is very suitable for random variate generation similarly to identity (4).

For δ ∈ R+, the r.v. XDL may be also expressed as a compound Negative
Binomial r.v. with a compounding Sibuya r.v. indeed, from expression (7) with

V
L
= XG(λ/δ, δ), it follows that

gXDL
(s) = (1 + λ(1− gXS

(s))/δ)−δ, s ∈ [0, 1],
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and hence

XDL(γ, λ, δ)
L
=

Z∑
i=1

Wi,

where Z
L
= XNB(λ/(δ + λ), δ) and the Wi’s are i.i.d. r.v.’s such that Wi

L
=

XS(γ) - which are in turn independent of Z.

3 The Tempered Discrete Linnik distribution

On the basis of the issues discussed in Section 2, we are ready to introduce
a tempered version of the Discrete Linnik distribution. Indeed, in a complete
parallelism with Section 2.3, where the Discrete Linnik r.v. is given as a “scale”
mixture of the Discrete Stable r.v., the Tempered Discrete Linnik r.v. may
be introduced as a “scale” mixture of the Poisson-Tweedie r.v. by selecting

V
L
= XG(bd, 1/d) in (12). In this case, if the Tempered Discrete Linnik r.v. is

denoted by XTDL, from expression (13) the corresponding p.g.f. turns out to
be

gXTDL
(s) = (1 + sgn(a)bd((1− cs)a − (1− c)a))−1/d, s ∈ [0, 1], (19)

with (a, b, c, d) ∈ { ]−∞, 0]× R+ × [0, 1[×R+} ∪ { ]0, 1]× R+ × [0, 1]× R+}.
Several comments on the parameterization are in order. First, similarly

to the Discrete Linnik law, the Tempered Discrete Linnik law is also defined
for some negative d - a distribution that could be named Tempered Gener-
alized Sibuya by extending the definition by Huillet (2016). As an example,
the Binomial law is obtained for a = 1, b ∈ ]0, 1] and 1/d ∈ Z−. Secondly,
the adopted formulation allows to achieve the Poisson-Tweedie distribution
as d approaches zero - and this could be preferable with respect to a limit at
infinity. Hence, the special cases encompassed by the Poisson-Tweedie law are
obtained in the limit. As an example, as d → 0, the Poisson law is obtained
for a = 1, the Generalized Poisson Inverse Gaussian law for a ∈ ]0, 1[ and the
Poisson-Pascal law for a ∈ R−. Moreover, for a = 0 the r.v. XTDL degenerates
at 0.

According to the previous remarks, the p.g.f. (19) seems a natural gen-
eralization of the p.g.f. (10). As usual, we also adopt the notation XTDL :=

XTDL(a, b, c, d). Obviously, it promptly holdsXDL(a, b, 1/d)
L
= XTDL(a, b, 1, d)

for a ∈ ]0, 1], i.e the Discrete Linnik law is a special case of the Tempered
Linnik law. Moreover, similarly to the Poisson-Tweedie law, c represents the
“tempering” parameter. Indeed, for a ∈ ]0, 1] and by considering the r.v.
XDL(a, b0, 1/d), if b = b0/(1 + b0d(1 − c)a), for the r.v. XTDL(a, b, c, d) the
following identity holds

gXTDL
(t) =

gXDL
(cs)

gXDL(c)
.

From the previous expression, the geometric “nature” of the tempering is in
turn apparent. Analogously to the Poisson-Tweedie distribution, it is worth
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noting that tempering extends the range of parameter values for the parameter
a with respect to the Discrete Linnik distribution. In the following, we focus
on the case d ∈ R+.

For d ∈ R+, similarly to (11) and by means of (12), the following identity
in distribution holds

XTDL(a, b, c, d)
L
= XTDS(a,XG(bd, 1/d), c))

L
= XP (XTPS(a,XG(bdc

a, 1/d), 1/c− 1)

(20)

which actually generalizes (17). If a ∈ R−, it should be remarked that on the
basis of (9) identity (20) may be rewritten as

XTDL(a, b, c, d)
L
= XP (XG(c/(1− c),−aXP (XG(bd(1− c)a, 1/d)))). (21)

A further interesting mixture representation for the Tempered Discrete
Linnik r.v. can be obtained. Indeed, the absolutely-continuous Tempered Pos-
itive Linnik r.v. XTPL := XTPL(γ, λ, θ, δ) is defined by means of the Laplace
transform

LXTPL(t) = (1 + sgn(γ)λ((θ + t)γ − θγ)/δ)−δ, Re(t) > 0,

where (γ, λ, θ, δ) ∈ {]−∞, 1]×R+×R+×R+}∪{]0, 1]×R+×{0}×R+}. For
more details on this law, see Barabesi et al. (2016a). The Laplace transform (8)
of the Tempered Positive Stable r.v. XTPS(γ, λ) is achieved from the previous
expression as δ → ∞. Since it holds that

XTPL(γ, λ, θ, δ)
L
= XTPS(γ,XG(λ/δ, δ), θ),

from expression (20) it promptly follows that

XTDL(a, b, c, d)
L
= XP (XTPL(a, b, c, 1/d)),

which actually generalizes (18).
For d ∈ R+, on the basis of (14) and (15), the r.v. XTDL may be also

expressed as a compound distribution. Indeed, when a ∈ ]0, 1] from (14) it
holds

gXTDL
(s) = (1 + bd(1− gXGDS

(s)))−1/d, s ∈ [0, 1],

and hence

XTDL(a, b, c, d)
L
=

Z∑
i=1

Wi, (22)

where Z
L
= XNB(bd/(1+ bd), 1/d) and the Wi’s are i.i.d. r.v.’s such that Wi

L
=

XGDS(a, c) - which are in turn independent of Z. Moreover, when a ∈ R−

expression (15) may be rewritten as

gXTDL
(s) = (1 + bd(1− c)a(1− gXNB

(s)))−1/d, s ∈ [0, 1],
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and hence (22) holds with Z
L
= XNB(bd(1− c)a/(1+ bd(1− c)a), 1/d) and the

Wi’s are i.i.d. r.v.’s such that Wi
L
= XNB(c,−a) - which are in turn indepen-

dent of Z. Owing to the reproductive property of the Negative Binomial law,
expression (22) also provides

XTDL(a, b, c, d)
L
= XNB(c,−aXNB(bd(1− c)a/(1 + bd(1− c)a), 1/d)). (23)

It is worth remarking that identities (21) and (23) are straightforwardly equiv-

alent since XNB(π, δ)
L
= XP (XG(π/(1− π), δ)).

It should be remarked that random variate generation for the Tempered
Discrete Linnik distribution may be achieved on the basis of the identities in
distribution introduced in the present Section. More precisely, we consider two
approaches which depend on expressions (20) and (22), respectively.

The first approach deals with the Poisson mixture representation (20).
When a ∈ R−, since in such a case identity (20) reduces to identity (21), the
generation of a Tempered Discrete Linnik variate actually requires two Poisson
variates and two Gamma variates. Since fast Poisson and Gamma variate
generators are commonly available in statistical packages, ad hoc algorithms
are not necessary in this setting. When a ∈ R+, on the basis of identity
(20), a Tempered Discrete Linnik variate may be obtained by generating: i)
a Tempered Discrete Stable variate and a Gamma variate, or ii) a Poisson
variate, a Tempered Positive Stable variate and a Gamma variate. If strategy i)
is adopted, the generation of a Tempered Discrete Stable variate is considered
by Baccini et al. (2016), where some suitable algorithms are discussed - in
particular, Algorithms 2 and 4 of their paper seem to conjugate computational
simplicity and efficiency. If strategy ii) is considered, the focus boils down to the
generation of a Tempered Positive Stable variate. To this aim, an algorithm has
been recently introduced by Barabesi et al. (2016a). Their proposal is simpler
and more efficient than the algorithm previously suggested by Devroye (2009)
- for more details, see Barabesi et al. (2016). In any case, an easy-to-implement
and quite efficient algorithm - which may be alternatively adopted - has been
proposed by Hofert (2011a) (see also Hofert, 2011b).

The second approach is related to the compound Negative Binomial rep-
resentation (22). When a ∈ R−, since identity (22) reduces to identity (23),
the generation of a Tempered Discrete Linnik variate requires two Negative
Binomial variates - which in turn are commonly available in statistical pack-
ages. Hence, in this parameter range, expression (23) could be preferable to the
equivalent expression (21) in order to obtain Tempered Discrete Linnik vari-
ates, since two Negative Binomial variates are solely needed. When a ∈ R+, on
the basis of identity (22), a Tempered Discrete Linnik variate may be obtained
as a Negative-Binomial stopped sum of Geometric Down-weighted Sibuya vari-
ates. Since Geometric Down-weighted Sibuya variates are readily obtained (see
e.g. Baccini et al., 2016), the algorithm is easy-to-implement - even if it could
be relatively efficient for some parameter choices.
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Therefore, in both the approaches, the generation of a Tempered Discrete
Linnik variate may be carried out by means of generators which are well-
established in literature and no new techniques are demanded.

4 Further properties of the Tempered Discrete Linnik distribution

A closed form for the probability function (p.f.) of the Tempered Discrete
Linnik r.v. is achieved by means of Result 1 provided in the Appendix. Indeed,
by suitably adapting Result 1 to the Tempered Discrete Linnik distribution,
it is easily shown that the p.f. pXTDL

of the r.v. XTDL may be expressed as
the following finite sum

pXTDL(k) = pXTDL(0)
(−c)k

k!

k∑
m=0

(−1/d)mKmC(k,m, a) (24)

for k ∈ N, where

pXTDL(0) = (1 + sgn(a)bd(1− (1− c)a))−1/d,

while

K =
sgn(a)bd

1 + sgn(a)bd(1− (1− c)a)
.

In addition,

C(k,m, a) =
1

m!

m∑
j=0

(−1)m−j

(
m

j

)
(aj)k

is the generalized factorial coefficient (for more details on this combinatorial
quantity, see Charalambides and Singh, 1988, and Charalambides, 2005, p.96),
while (t)k = t(t−1) . . . (t−k+1) with t ∈ R, k ∈ N+ and (t)0 = 1 represents the
falling factorial. We would recognize that a referee has suggested reformulating
expression (24) by adopting the generalized factorial coefficients. The referee
has also remarked that the evaluation of the generalized factorial coefficient
may be suitably (and efficiently) implemented by means of the triangular
recursion

C(k,m, a) = (am− k + 1)C(k − 1,m, a) + aC(k − 1,m− 1, a)

with the initial conditions C(0, 0, a) = 1, C(k, 0, a) = 0 for k ∈ N+ and
C(0,m, a) = 0 for m ∈ N+ (see Charalambides and Singh, 1988).

Obviously, on the basis of expression (24) and for c = 1, the p.f. of the
Discrete Linnik r.v. XDL(a, b, 1/d) is promptly obtained. In addition, in turn,
on the basis of Result 1 in the Appendix, the p.f. pXTDS

of the Poisson-Tweedie
r.v. XTDS may be expressed as

pXTDS
(k) = pXTDS

(0)
(−c)k

k!

k∑
m=0

(−sgn(a)b)mC(k,m, a) (25)
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for k ∈ N, where

pXTDS
(0) = exp(−sgn(a)b(1− (1− c)a)).

Expression (25) is actually equivalent to the formula provided by Baccini et
al. (2016) for pXTDL

.
It is worth noting that pXTDL may be also evaluated by means of a recursive

relationship which generalizes the expression proposed by El-Shaarawi et al.
(2011) for the Poisson-Tweedie law. Indeed, it holds that

pXTDL
(k+1) =

1

k + 1

Kc(a
d
+k
)
pXTDL

(k)+(1−K)
k∑

j=1

jrk−j+1pXTDL
(j)

 ,

(26)
where r1 = (1− a)c, while

rk+1 =
k − 1 + a

k + 1
crk

for k = 1, 2, . . . (for the proof, see Result 2 in the Appendix).
In order to emphasize the flexibility of the Tempered Discrete Linnik dis-

tribution, we show the plots of the p.f. (24) in the Figures 1 and 2 for some
parameter choices. More precisely, Figures 1 and 2 display the plots of pXTDL

for selected positive and negative values of a, respectively. In each plot, the pa-
rameters a, b, and c are fixed and several values of d are considered - hence, the
distributions have the same mean, see the expression of E[XTDL] given below.
From the analysis of these plots, it is apparent that pXTDL may exhibit very
different morphologies with varying d. As an example, by examining the plot
at the right-bottom of Figure 1, pXTDL may be decreasing with a quite large
probability at zero - as well as unimodal with a small probability at zero - as
d changes. This behaviour is more evident for negative values of a. Indeed, by
considering some plots of Figure 2, pXTDL

may be even bimodal with a mode at
zero and a quite heavy tail. Hence, the Tempered Discrete Linnik distribution
is also a suitable candidate for modelling zero-inflated count data - even in the
presence of a long right tail. These issues suggest that the Tempered Discrete
Linnik distribution can fit a substantially larger data range with respect to
the Poisson-Tweedie distribution thanks to the extra parameter d.

Some comments on the special cases of the Tempered Discrete Linnik dis-
tribution for d ∈ R+ are worthwhile. To this aim, Table I reports the main
laws encompassed by the proposed distribution. First, for a = 1 the Tem-
pered Discrete Linnik distribution includes the Negative Binomial distribu-
tion and the Poisson distribution (as a limiting case). Indeed, when a = 1,

it holds that XTDL(1, b, c, d)
L
= XNB(bcd/(1 + bcd), 1/d) and hence the r.v.

XP (bc) is obtained as d → 0. It should be noticed that the Negative Bino-
mial is also achieved when a ∈ ]0, 1] and bd(1 − c)a = 1. Moreover, as d → 0,
the proposed law covers the Generalized Poisson-Inverse Gaussian and the
Poisson-Pascal distributions - which are the usually-adopted appellations of
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for some negative a and some choices of b, c and d.

the Poisson-Tweedie distribution when a ∈ ]0, 1] and a ∈ R−, respectively
(see El-Shaarawi et al., 2011). Hence, for a general d ∈ R+, the broader ver-
sions of these two distributions are named in Table I as Generalized Neg-
ative Binomial-Inverse Gaussian and Generalized Poisson-Pascal. Obviously,
the usual Discrete Linnik distribution is obtained for c = 1, which encompasses
the Mittag-Leffler distribution when d = 1 (see Huillet, 2016). For a = 1/2,
the Tempered Discrete Linnik law is actually a generalization of the Poisson
Inverse Gaussian law (for a discussion of this law, see e.g. Johnson et al., 2005,
p.484), which is obtained as d → 0. Thus, this new distribution is named in
Table 1 as Negative Binomial Inverse Gaussian. It is worth noting that in this
special case expression (24) remarkably reduce to a single sum, since

C(k,m, 1/2) = (−1)k−m2−2k+m (k − 1)!

(m− 1)!

(
2k −m− 1

k − 1

)
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Table 1 Synopsis of the main laws encompassed by the Tempered Discrete Linnik dis-
tribution for the different parameter choices (zero values for the parameter d should be
interpreted in the limit).

law a b c d
Poisson 1 R+ ]0, 1] 0
Negative Binomial 1 R+ ]0, 1] R+

Discrete Stable ]0, 1] R+ 1 0
Poisson-Tweedie (Generalized Poisson-Inverse Gaussian) ]0, 1] R+ [0, 1] 0
Generalized Negative Binomial-Inverse Gaussian ]0, 1] R+ [0, 1] R+

Poisson-Tweedie (Poisson-Pascal) ]−∞, 0] R+ ]0, 1[ 0
Generalized Poisson-Pascal ]−∞, 0] R+ ]0, 1[ R+

Discrete Linnik ]0, 1] R+ 1 R+

Discrete Mittag-Leffler ]0, 1] R+ 1 1
Generalized Discrete Mittag-Leffler ]0, 1] R+ ]0, 1] 1
Poisson Inverse Gaussian 1/2 R+ ]0, 1] 0
Negative Binomial-Inverse Gaussian 1/2 R+ ]0, 1] R+

Polyá-Aeppli −1 R+ ]0, 1[ 0
Generalized Polyá-Aeppli −1 R+ ]0, 1[ R+

for k ∈ N+, while C(0,m, 1/2) = 1. The simplification of C(k,m, 1/2) is a
known result for the generalized factorial coefficients (see e.g. Lijoi et al., 2007).
As emphasized by a referee, analogous simplifications hold for a rational a ∈
]0, 1[. When a = −1, the Tempered Discrete Linnik is in turn a generalization
of the Polyá-Aeppli law (for more about this distribution, see e.g. Johnson et
al., 2005, p.410), which is obtained as d→ 0. In this case also, expression (24)
remarkably reduce to a single sum, since

C(k,m,−1) = (−1)k
k!

m!

(
k − 1

m− 1

)
for k ∈ N+, while C(0,m,−1) = 1. It should be remarked that in this special
case the generalized factorial coefficients actually reduce to the Lah numbers,
i.e. L(k,m) = C(k,m,−1) (see e.g. Charalambides, 2005, p.97).

As to the main descriptive indexes, on the basis of (19) and after tedious
algebra, it follows that the expectation and the variance of the r.v. XTDL are
respectively given by

µ = E[XTDL] = |a|bc(1− c)a−1

and

σ2 = Var[XTDL] = dµ2 +
(1− ac)µ

1− c
.

It is worth noting that µ does not depend on the parameter d - i.e., the
Tempered Discrete Linnik r.v. and the Poisson-Tweedie r.v. actually display
the same expectation. However, since the dispersion index is given by

D =
σ2

µ
= dµ+

1− ac

1− c
,
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Fig. 3 Three-dimensional plot of κ4 as a function of (c, d) for a = 0.25, 0.50, 0.75 (from left
to right) and b = 10.

the Poisson-Tweedie distribution may solely display over-dispersion (since
D ≥ 1 when d = 0), while the Tempered Discrete Linnik distribution may
accommodate for under-dispersion (for some admissible values d < 0), as well
as for over-dispersion (when d > 0). Hence, the Tempered Discrete Linnik
law substantially extend the range of the dispersion index with respect to the
Poisson-Tweedie law.

After further tedious algebra, it also follows

m3 = E[(XTDL − µ)3] =
σ4

µ
+ dµσ2 +

c(1− a)µ

(1− c)2

and

m4 = E[(XTDL−µ)4] = 3(2d+1)σ4+
(4c(1− a) + (1− ac)2)σ2

(1− c)2
+
c2(1− a2)µ

(1− c)3
,

from which the skewness and kurtosis indexes may be promptly expressed as

κ3 =
m3

σ3
=
D

σ
+
dσ

D
+

c(1− a)

(1− c)2σD

and

κ4 =
m4

σ4
= 3(2d+ 1) +

4c(1− a) + (1− ac)2

(1− c)2σ2
+

c2(1− a2)

(1− c)3σ2D
.

On the basis of these expressions, we provide a further confirmation of the
flexibility of the Tempered Discrete Linnik distribution in Figures 3-4. Indeed,
these Figures display the three-dimensional plots of κ4 as a function of c and
d for some positive and negative a, respectively, and when b = 10. It is at
once apparent that the Tempered Discrete Linnik distribution substantially
extends the range of the kurtosis index κ4 with respect to the Poisson-Tweedie
distribution. Indeed, for any given c, the kurtosis index increases as d increases
for each selected values of a, either positive or negative. In addition, since the
probability at zero increases as d increases, a distribution with a bold mass at
zero and heavy tails can be even achieved, as previously remarked.
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Fig. 4 Three-dimensional plot of κ4 as a function of (c, d) for a = −0.5,−1.0,−5.0 (from
left to right) and b = 10.

5 An application to scientometric data

In order to highlight the versatility of the proposed law, we consider the data
collected by Baccini et al. (2014). This dataset deals with the scientific produc-
tivity of 942 permanent researchers of the University of Siena (Italy) during
the period 2008-2010. Three different bibliometric indicators were considered
for each scholar, i.e. the number of publications in the institutional research
repository of the University of Siena (RI), the number of publications in Sco-
pus (SI) and the h-index score (H). More precisely, as to RI, it actually
represents the number of authored or co-authored scientific outputs, recorded
in the repository during the period 2008-2010 and classified as articles, books,
chapters in books and conference proceedings. As to SI, it consists of the num-
ber of authored or co-authored publications registered in the Scopus database
during the period 2008-2010. Finally, as to H, it represents the value of the
index proposed by Hirsh (2005) extracted from the Scopus database on De-
cember 31, 2010 (for more details on the inference for the h-index, see Pratelli
et al., 2012). Obviously, the three indexes are integer-valued.

Scientometricians have often suggested mixture Poisson laws for modelling
the distribution of bibliometric indicators (see e.g. Burrell, 2014, and Burrell
and Fenton, 1993). Indeed, it is widely accepted by scientometricians that a
scientific production process may be seen as a population of sources which
randomly produces items over time. A reasonable model for this framework
could be based on the assumption that the individual sources produce items
according to a counting process (typically, a Poisson process), in such a way
that the production rates vary over the single sources (i.e. a mixing distribution
is assumed). Hence, on the basis of results obtained in Section 3, these issues
suggest that the Tempered Discrete Linnik distribution could be a natural
candidate for modelling the scientific production output.

From Figure 5, the empirical distribution of RI seems to show a mild zero
excess. In contrast, as it can be assessed from Figures 6 and 7, the empirical
distributions of SI and H display a marked zero inflation. A moderately-heavy
right-tail is quite apparent in the empirical distributions of RI and H, since
the empirical kurtoses are given by κ̄4 = 15.46 for RI and κ̄4 = 7.69 for H,
respectively. In the case of SI, the excess of kurtosis is more evident since the
empirical kurtosis is given by κ̄4 = 57.74. In turn, on the basis of the findings
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Table 2 Maximum likelihood estimates for the Tempered Discrete Linnik and Poisson-
Tweedie distributions and corresponding model performance indexes for the three biblio-
metric indicators.

Indicator Model â b̂ ĉ d̂ max ℓ AIC χ2

Repository TDL −2.40 24.43 0.10 0.89 −2979.62 5967.35 56.12
TDS 0.10 11.60 0.90 − −2981.82 5969.63 59.56

Scopus TDL 0.10 26.25 0.73 2.50 −2418.64 4845.28 81.08
TDS −0.38 0.55 0.92 − −2419.82 4845.63 89.26

H-index TDL −0.97 0.50 0.76 0.70 −2525.16 5054.75 64.67
TDS −0.57 0.50 0.87 − −2535.03 5076.29 82.15

given in Section 4, these issues validate the Tempered Discrete Linnik law as a
suitable model for the considered data. Indeed, the Tempered Discrete Linnik
distribution may be effectively able to capture both the quite long tail and the
considerable mass at zero of the empirical distributions.

In order to achieve the maximum likelihood estimation of the parameters
of the Tempered Discrete Linnik distribution, we have performed computa-
tions through an algorithm implemented as a compiled FORTRAN routine.
The method of moments were adopted in order to achieve the initial estimates
for the numerical maximization of the likelihood function. However, since the
Tempered Discrete Linnik r.v. has a p.g.f. with a simple structure, more ad-
vanced method based on the empirical p.g.f. - which do not require extensive
computation - could be adopted to obtaining the parameter starting values
(see e.g. Dowling and Nakamura, 1997). The maximum likelihood estimation
was implemented by using the recursive relationship (26) in order to compute
the p.f. Indeed, expression (24) seems to suffer of a loss of precision for large
argument values when implemented as a FORTRAN routine - even if the tri-
angular recursion was adopted for achieving the evaluation of the generalized
factorial coefficient - while the recursive expression (26) is more stable.

The maximum likelihood estimates of the parameters of the Tempered
Discrete Linnik and the Poisson-Tweedie distributions are reported in Table 2.
In the same table, the maximum value of the log-likelihood function (max ℓ),
the Akaike Information Criterion (AIC) and the chi-square index (χ2) are
reported. Moreover, the empirical distributions, as well as the fitted Tempered
Discrete Linnik and Poisson-Tweedie distributions are plotted in Figures 5, 6
and 7 for the three indicators, respectively. From these figures it is even visually
apparent that the Tempered Discrete Linnik law provides the best fit. As a
matter of fact, the Tempered Discrete Linnik law is preferable to the Poisson-
Tweedie law according to the model performance indexes considered in Table
2.

A further argument leads to argue similar conclusions. Indeed, the esti-
mated values of the parameter d are not about zero, i.e. Poisson-Tweedie law -
considered a sub-model of the Tempered Discrete Linnik law - is not sufficient
for capturing the joint presence of zero excess and long tails. On the basis of
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Fig. 5 Empirical distribution of RI with the fitted Tempered Discrete Linnik distribution
(left plot) and the fitted Poisson-Tweedie distribution (right plot).

Fig. 6 Empirical distribution of SI with the fitted Tempered Discrete Linnik distribution
(left plot) and the fitted Poisson-Tweedie distribution (right plot).

Fig. 7 Empirical distribution of H with the fitted Tempered Discrete Linnik distribution
(left plot) and the fitted Poisson-Tweedie distribution (right plot).
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Table 1, similar considerations exclude further sub-models such as the Poisson
and Negative Binomial laws (the estimated values of the parameter a are not
about one), as well as the heavy-tailed Discrete Stable and the Discrete Linnik
laws (the estimated values of the parameter c are not about one).

6 Conclusions and future directions

We have proposed a tempered version of the Discrete Linnik law, which actu-
ally generalizes the celebrated Poisson-Tweedie law. Indeed, the Tempered Dis-
crete Linnik distribution can be expressed as a mixture of a Poisson-Tweedie
distribution with respect to a mixturing Gamma distribution. In addition, the
law may be also seen as a mixture of a Poisson distribution with respect to a
mixturing Tempered Positive Linnik distribution and it also has a compound
Negative Binomial representation. Hence, the Tempered Discrete Linnik dis-
tribution is well established from a probabilistic viewpoint.

On the basis of the properties obtained in the Sections 3 and 4, the Tem-
pered Discrete Linnik distribution also gives rise to a versatile statistical model
for dealing with count data. Indeed, as a first issue, the Tempered Discrete Lin-
nik law may fit empirical distributions displaying whether light or long tails.
Moreover, tempering allows to obtain distributions which are similar to the
Discrete Linnik or the Discrete Stable distributions, but not so heavy-tailed -
a desirable feature for modelling real-world data. As a second issue, the Tem-
pered Discrete Linnik distribution can manage an extended range of kurtosis
with respect to the Poisson-Tweedie distribution, as emphasized in Section 4.
In addition, it is noteworthy that the Tempered Discrete Linnik distribution
may actually model zero-inflated long-tailed empirical distributions - which
may be even bimodal. This property has been illustrated in Section 5 by con-
sidering some datasets dealing with the scientific production of researchers,
which commonly displays these rather complex features.

As to the forthcoming research, a possible target is the full analysis of
the properties of the Tempered Discrete Linnik distribution when the param-
eter d is negative. This issue is interesting, since in such a case the Tem-
pered Discrete Linnik distribution displays under-dispersion, in contrast to
the Poisson-Tweedie distribution which may solely show over-dispersion - see
the dispersion index provided in Section 4. However, the structure of the pa-
rameter space seems to be rather complex for negative d. As an easy example
for a = 1, the Tempered Discrete Linnik law obviously reduces to a Bino-
mial law if 1/d ∈ Z−, but expression (19) is not a proper p.g.f. for a negative
1/d ∈ Q. A further goal consists in developing the Tempered Discrete Lin-
nik distribution as a basis for a generalized linear model for count data when
some explanatory variables are available. Since the distribution automatically
adapts to zero-inflated and - eventually - long-tailed count data, this gener-
alized linear model could be extremely flexible without the need to introduce
zero-inflated or hurdle components. In addition, this class of models would
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contain the commonly-adopted generalized linear models for count data - such
as the Poisson and Negative Binomial - as special cases.
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Appendix

Result 1. We provide a result on the p.f. of a family of r.v.’s displaying a
very general type of p.g.f., which encompasses (13) - and hence (3), (10), (16)
and (19) - as special cases. Let us consider an integer-valued r.v. X with p.g.f.
given by

gX(s) = φ(α+ β(1− ϕs)γ), s ∈ [0, 1],

where α, β, γ, ϕ ∈ R are parameters in such a way that ϕ ∈ [0, 1], while φ : R 7→
[0, 1] is a suitable function. As an example, the p.g.f. (19) of the r.v. XTDL is
obtained by setting α = 1− sgn(a)bd(1− c)a, β = sgn(a)bd, ϕ = c and γ = a
and by assuming that φ(x) = x−1/d. As a further example, the p.g.f. (10) of the
r.v. XTDS is achieved by setting α = sgn(a)b(1−c)a, β = −sgn(a)b, ϕ = c and
γ = a, while φ(x) = exp(x). If the function φ is analytic in a neighbourhood
of (α+ β), for k ∈ N the p.f. pX of the r.v. X may be expressed as

pX(k) =
1

k!

dkgX(s)

dsk

∣∣∣∣
s=0

=
1

k!

dkφ(α+ β + β((1− ϕs)γ − 1)

dsk

∣∣∣∣
s=0

=
1

k!

k∑
m=0

βm

m!

dmφ(s)

dsm

∣∣∣∣
s=α+β

dk((1− ϕs)γ − 1)m

dsk

∣∣∣∣
s=0

and, by means of the Binomial Theorem, it follows that

pX(k) =
1

k!

k∑
m=0

βm

m!

dmφ(s)

dsm

∣∣∣∣
s=α+β

m∑
j=0

(−1)m−j

(
m

j

)
dk(1− ϕs)γj

dsk

∣∣∣∣
s=0

=
(−ϕ)k

k!

k∑
m=0

βm dmφ(s)

dsm

∣∣∣∣
s=α+β

1

m!

m∑
j=0

(−1)m−j

(
m

j

)
(γj)k

=
(−ϕ)k

k!

k∑
m=0

βm dmφ(s)

dsm

∣∣∣∣
s=α+β

C(k,m, γ),

where the generalized factorial coefficient and the falling factorial are defined
in Section 4.

Result 2. On the basis of expression (19), it turns out that

g′XTDL
(s) = (1 + sgn(a)bd((1− cs)a − (1− c)a))−1|a|bc(1− cs)a−1gXTDL(s),

from which

(K(1− cs) + (1−K)(1− cs)1−a)g′XTDL
(s) =

Kac

d
gXTDL(s), (27)
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where K is defined in Section 4. It is worth noting that

(1− cs)1−a = 1−
∞∑
k=1

rks
k,

where in turn the rk’s are defined in Section 4. Hence, from (27) it follows that(
1−Kcs−(1−K)

∞∑
k=1

rks
k

) ∞∑
k=1

kpXTDL(k)s
k−1 =

Kac

d

∞∑
k=0

pXTDL(k)s
k.

(28)
Since (

1−Kcs−(1−K)
∞∑
k=1

rks
k

) ∞∑
k=1

kpXTDL
(k)sk−1 =

∞∑
k=0

(k+1)pXTDL(k + 1)−KckpXTDL(k)−(1−K)

k∑
j=1

jrk−j+1pXTDL(j)

sk
equating the coefficients of the powers of s in expression (28) the recursive
relation (26) is obtained.
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