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GROWTH AND AGGLOMERATION IN THE
HETEROGENEOUS SPACE: A GENERALIZED AK

APPROACH

Abstract. We provide an optimal growth spatio-temporal set-

ting with capital accumulation and diffusion across space in order

to study the link between economic growth triggered by capital

spatio-temporal dynamics and agglomeration across space. The

technology is AK, K being broad capital. The social welfare

function is Benthamite. In sharp contrast to the related litera-

ture, which considers homogeneous space, we derive optimal loca-

tion outcomes for any given space distributions for technology and

population. Both the transitional spatio-temporal dynamics and

the asymptotic spatial distributions are computed in closed form.

Concerning the latter, we find, among other results, that: (i) due

to inequality aversion, the consumption per capital distribution is

much flatter than the distribution of capital per capita; (ii) en-

dogenous spillovers inherent in capital spatio-temporal dynamics

occur as capital distribution is much less concentrated than the

(pre-specified) technological distribution; (iii) the distance to the

center (or to the core) is an essential determinant of the shapes of

the asymptotic distributions, that is relative location matters.
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space, capital mobility, infinite dimensional optimal control prob-

lems
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1. Introduction

Economic growth models with a spatial dimension have been already

formulated in the context of the New Economic Geography stream, but,

as observed by Desmet et Rossi-Hansberg (2010) in an illuminating

survey (see also Nijkamp and Poot, 1998), they use to disregard in-

tertemporal optimization, individual behaviors, and even capital accu-

mulation. A paradigmatic example of such a growth modeling strategy

can be seen in Fujita and Thisse (2002), Chapter 11. In this chap-

ter, endogenous growth is driven by the manufacturing sector through

horizontal differentiation à la Grossman-Helpman while skilled labor is

the unique mobile factor.1 Consumers do not save nor do they decide

about schooling (no human capital accumulation). Indeed, with some

notable exceptions (see for example the infrastructure location model

developed by Martin and Rogers, 1995), the New Economic Geography

has roughly left in the dark not only capital accumulation (over time)

but also capital mobility through space.

This paper is concerned with the relationship between agglomera-

tion and economic growth. As outlined by Fujita and Thisse (2002),

“...in a world of globalization, agglomeration may well be the territo-

rial counterpart of economic growth much in the same way as growth

seems to foster inequality among individuals.” (page 19). We shall pro-

vide a spatio-temporal setting with capital accumulation and diffusion

across space showing the link between economic growth triggered by

capital spatio-temporal dynamics and agglomeration across space.2 In

1A more elaborate modeling of labor mobility and migrations can be found in
Mossay (2003).
2The spatio-temporal setting is analogous to Brito’s (2004) framework, which is
itself an optimal control reformulation of the work of Isard and Liossatos (1979).
In the latter, production uses a neoclassical production function at any location,
output is used for in situ consumption and investment, while the net trade flow de-
pends on the differentials of the spatially distributed capital stock, consistently with
recent empirical results by Comin et al. (2012). Only a limited characterization of
optimal solutions is possible in this case, see also Boucekkine et al. (2009).
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line with Boucekkine et al. (2013), we choose the simplest production

function generating growth endogenously, the AK technology. This is

essential to get the analytical results gathered in this framework. It

is worth pointing out here that, consistently with the growth litera-

ture (see for example, Barro and Sala-i-Martin, 1995, Chapter 4), the

AK production function only makes sense if we have a broad view of

capital: capital is not only physical, it also embodies human capital

and knowledge. Capital diffusion across space makes therefore per-

fect sense. More importantly, our setting is a sharp generalization of

Boucekkine et al. (2013): while in the latter space is homogeneous

(same production function and one individual per location), we derive

here optimal location outcomes for any given space distributions

for technology and population. Technology space heterogeneity

amounts to discrepancy on parameter A of the AK technology across

locations, that is, roughly speaking, spatial differences in productiv-

ity, which can be itself due to a wide variety of pure technological or

institutional factors.

In such a framework, we shall prove that capital accumulation and

diffusion, and subsequent growth in the spatially heterogeneous econ-

omy, do come with agglomeration along the optimal spatio-temporal

paths. Notice that here agglomeration occurs for different reasons than

those usually invoked in the New Economic Geography. First, and triv-

ially, capital accumulation and mobility is the dynamic engine of ag-

glomeration in our story, and it is little doubtful that in real economies

capital is more mobile than labor (see Aslund and Dabrowski, 2008,

for a series of studies on this issue, especially in the European case).

Of course, demand mobility, which is the main focus of the New Eco-

nomic Geography literature, is of utmost relevance in regional dynam-

ics, but it is also unquestionable that capital mobility is being a mas-

sive phenomenon, in particular in Europe. As such, the development
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of spatio-temporal models deriving the agglomeration implications of

the latter sounds as a legitimate and necessary task. Second, we do

not have increasing returns in our setting (the production function is

linear) nor do we impose monopolistic competition (optimal growth

setting). Third, using Krugman’s terminology (1993), we do look for

first nature causes for agglomeration as the technology and demo-

graphic distributions are exogenously given, and not for the second

nature causes typically invoked in the New Economic Geography

(like economies of scale or knowledge spillovers).

More precisely, we consider a planner problem whose objective is to

maximize an intertemporal utilitarian social welfare function by iden-

tifying the optimal capital spatio-temporal paths for any given techno-

logical and demographic spatial (time-independent) distributions. The

planner chooses the optimal path for consumption per location (and

therefore also the investment path per location), and consequently

drives the optimal capital flows through space at any time. There

is a single consumption good and all the individuals (consumers) have

the same (strictly concave) utility function whatever their location.

The social welfare function is Benthamite (see discussion below), the

most common specification in growth theory (see Barro and Sala-i-

Martin, 1995, Chapter 2). Taking into account the two latter specifi-

cations, the social welfare function may be also interpreted in terms of

an inequality-averse social planner with risk-neutral consumers. The

main contribution of this paper is to characterize the optimal short-

term spatio-temporal dynamics and the resulting optimal asymptotic

distributions for the relevant variables together with the identification

of the main economic mechanisms, resulting from technological and de-

mographic spatial heterogeneity, at work. Incidentally, we address the

research questions opened by Isard and Liossatos (1979) at the highest

level of generality so far.
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On the technical side, generalizing Boucekkine et al. (2013) ap-

proach to heterogeneous space is a daunting task. We have been able

however to find a way to undertake it. More precisely, we are able to

explicitly identify the maximal welfare (value function) and the optimal

consumption profile in terms of technology and population spatial dis-

tributions and the initial spatial distribution of capital (Theorem 3.2).

We also single out the partial differential equation which delivers the

optimal spatio-temporal capital dynamics and study the asymptotic

convergence properties associated. Ultimately, we are able to describe

the long-run profile of the capital distribution in an explicit way by

a suitable series of spatial functions (Theorem 3.4).3 As a particular

case, considering uniform distributions for both technology and popu-

lation leads exactly to Boucekkine et al.’s uniform convergence results.

We can therefore study the robustness of the asymptotic convergence

to uniform spatial distributions to population and technology space

dependence.

Indeed, we shall explore the properties of optimal spatio-temporal

dynamics along many more dimensions. We proceed as follows. Mim-

icking the so-called Alonso-Mills-Muth monocentric city model (see

Thisse and Fujita, 2002, Chapter 3), we consider three different types

of pre-specified centers.4 In the first case, we study the implications of

a given technological center, i.e productivity showing a single-peaked

spatial shape, while population distribution is uniform. In the second

case, the demographic center configuration is analyzed, i.e population

3The results are obtained employing dynamic programming methods in infinite
dimensions and the main methodological novelty of the present work with respect
to the existing literature in spatial growth models: the use of the spectrum and
the eigenfunctions of an appropriate Sturm-Liouville operator L, the one associated
to the (linear) zero consumption problem. A precise description of the techniques
together with a complete proof of all the analytical results is given in Appendix A.
4Beside the obvious differences between the monocentric city models and ours (for
example no land in our model and no capital in the former), it is worth pointing
that the center corresponds to a point in the Alonso-Mills-Muth model, whereas it
is a non-zero measure arc of circle in our setting.
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density showing a single-peaked spatial shape, while productivity is

identical across locations. Last but not least, we examine the case

where productivity is related to population density, a larger popula-

tion density being a driver of technological development. In particu-

lar, we use the specification of Allen and Arkolakis (2014).5 For each

predetermined center, we uncover the optimal spatio-temporal capital,

consumption and output dynamics, and the corresponding asymptotic

spatial distributions.

Our analysis produces several interesting results both for the short

and long-run. As to the role of initial conditions, that is the initial

distribution of capital, we show analytically that the asymptotic distri-

bution is independent of the initial one, though the latter does matter

in the short run spatio-temporal capital dynamics.6 In contrast, the

asymptotic distributions are closely related to the spatial distributions

of population and technology. Though we analytically single out this

link, it is shown to be remarkably complex. Numerical exercises using

the three pre-specified spatial centers cases listed above are therefore

needed to dig deeper into this relationship. These exercises allow to

identify on an adequately calibrated version of the model two main

effects at work when space distributions of technology and population

are heterogeneous.

On the one hand, we have a technological spatial discrepancy effect or

a productivity effect: the planner has the incentive to favor the con-

centration of the capital in the areas where it is more productive so that

she will tend to promote (relatively more) investment in areas where

5Such a specification is not specific to economic geography, it is also common in
unified growth theory, see Galor and Weil (2000). Boucekkine et al. (2007) provide
with micro-foundations: larger population densities foster school creations, which in
turn speeds up human capital accumulation, and therefore technological progress.
6While this property is consistent with the non-spatial AK model where the long-
run capital level is proportional to its the initial one, it’s not at all granted in our
spatio-temporal model where capital flows across locations.
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technology is better and to (relatively) privilege consumption in tech-

nologically lagged regions. On the other hand, we have a demographic

spatial discrepancy effect or a population effect: the Benthamite

form of the functional considered, entailing inequality-aversion, induces

the planner to guarantee an adequate level of per capita consumption

across space, so that areas with higher population get also a higher

aggregate consumption and therefore a lower investment. Consump-

tion and capital asymptotic distributions are characterized in several

essential ways. At first, because of aversion to inequality, it is shown

that the former is much flatter. Second, we identify a kind of endoge-

nous spillover inherent in capital spatio-temporal dynamics: this shows

up for instance in the fact that capital distribution is much less con-

centrated than the (pre-specified) technological distribution. Spatial

spillovers do arise as the combination of capital (exogenous) diffusiv-

ity and the endogenous investment and consumption decisions taken

by the planner. Third, we observe that the distance to the center

(or to the core) is an essential determinant of the shapes of the as-

ymptotic distribution, that is relative location matters.7 Last but not

least, the exogenous technological distribution does affect the shape of

the asymptotic distribution of the per-capita consumption, while the

demographic distribution only affects its level.

Incidentally, the two effects disentangled give a clear idea of why and

how the “unequal treatment of equals” works in our spatio-temporal so-

cial optimum framework. Because the asymptotic spatial distributions

do not depend on initial capital distributions, the two effects described

above also apply to rigorously equal individuals, namely with same

preferences and same initial capital endowment, as in the original re-

lated urban economics works due to Mills and McKinnon (1973) and

Levhari et al. (1978). They are also equal from the intertemporal point

7This feature is shared with the Alonso-Mills-Muth model.
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of view: they are infinitely-lived and population per location is constant

over time, so for example, time discounting applies in the same way to

all individuals at any time and place. While the resulting “unequal

treatment of equals” outcome may be due to the Benthamite form of

the social welfare function as in the static urban economics literature

(see Mirrlees, 1972, and more recently, Wildasin, 1986),8 we aim here

at characterizing the optimal short-term and asymptotic spatial dis-

tributions due to capital to spatio-temporal dynamics in the standard

social optimum set-up in growth theory, which is already a daunting

analytical task. Within this set-up, we show how the population and

technological effects work separately and then how they interact, in

particular under the (nonlinear) specification previously implemented

by Allen and Arkolakis (2014). Sensitivity exercises with respect to

inequality parameters are also provided.

The paper proceeds as follows. Section 2 is devoted to description

of the model. Section 3 presents the main analytical results. Section

4 concerns numerical simulations and associated remarks. Section 5

concludes. Appendix A provides the proofs of the analytical results.

2. The model

We study a spatial economy developing on the unit circle S1 in the

plane9:

S1 := {(sin θ, cos θ) ∈ R2 : θ ∈ [0, 2π)}.

8Boucekkine et al (2014) prove in a non spatial setting that when age structure
matters, typically when lifetime is finite, and when the social planner chooses the
optimal population size, the Benthamite social welfare function does ensure egali-
tarianism in consumption per capita across generations!
9The functions over S1 can be clearly identified with 2π-periodic functions over R.
We shall then identify these functions, as well as the point θ ∈ [0, 2π) with the
corresponding point (sin θ, cos θ) ∈ S1. Hence, given a function f : S1 → R, the
derivatives with respect to θ ∈ S1 will be intended through the identification of
functions defined on S1 with 2π-periodic functions defined on R.
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We suppose that, for all time t ≥ 0 and any point in the space θ ∈

[0, 2π), the production is a linear function of the employed capital:

Y (t, θ) = A(θ)K(t, θ),

where K(t, θ) and Y (t, θ) represent, respectively, the aggregate capital

and output at the location θ at time t, while A(θ) is the exogenous

location-dependent technological level. In the model there is no state

intervention and then, at any time, the local production is split into

investment in local capital and local consumption, so that, once we

include a location-dependent depreciation rate δ(θ) and the net trade

balance τ(t, θ), we get the following accumulation law of capital:

∂K

∂t
(t, θ) = I(t, θ)− δ(θ)K(t, θ)− τ(t, θ)

= Y (t, θ)− C(t, θ)− δ(θ)K(t, θ)− τ(t, θ)

= (A(θ)− δ(θ))K(t, θ)− C(t, θ)− τ(t, θ).

We can always include the depreciation rate δ(θ) in the coefficient A(θ)

so the previous equation simply becomes

∂K

∂t
(t, θ) = A(θ)K(t, θ)− C(t, θ)− τ(t, θ).

Now we model the term τ(t, θ) in the above equation. Following

the idea of Brito (2004) and then used in all the papers of the related

stream of literature (see, for instance: Brock and Xepapadeas, 2008,

Boucekkine et al., 2013, Fabbri, 2016, and the references therein), we

assume that the left-to-right flow rate of capital across a point equals

the opposite of the derivative of the capital level at such point. Impos-

ing that the net trade balance of the region (θ1, θ2) ⊂ [0, 2π) equals the

outflow of capital at the boundaries θ1 and θ2 yields∫ θ2

θ1

τ(t, θ)dθ =
∂K

∂θ
(t, θ1)−

∂K

∂θ
(t, θ2).
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Since
∂K

∂θ
(t, θ1)−

∂K

∂θ
(t, θ2) = −

∫ θ2

θ1

∂2K

∂θ2
(t, θ)dθ,

we get ∫ θ2

θ1

[
τ(t, θ) +

∂2K

∂θ2
(t, θ)

]
dθ = 0,

hence, by arbitrariness of (θ1, θ2),

(1) τ(t, θ) = −∂
2K

∂θ2
(t, θ).

The capital evolution law reads then as

∂K

∂t
(t, θ) =

∂2K

∂θ2
(t, θ) + A(θ)K(t, θ)− C(t, θ).

Then, if for each (t, θ) we express the total consumption C(t, θ)

as the product of the per-capita consumption10 c(t, θ) and the time-

independent exogenous (density of) population N(θ), we get the state

equation11

(2)


∂K
∂t

(t, θ)= ∂2K
∂θ2

(t, θ)+A(θ)K(t, θ)−c(t, θ)N(θ), t > 0, θ ∈ S1,

K(0, θ) = K0(θ), θ ∈ S1,

where K0 : S1 → [0,∞) is the function denoting the initial distribution

of capital over the space S1. Throughout the rest of the paper, we

assume that

(3) K0 is square integrable, i.e.

∫ 2π

0

|K0(θ)|2dθ <∞.

10We suppose resources and consumption are equally distributed among the popu-
lation of a certain location.
11Clearly the above derivation is only informal and the assumptions on the involved
functions are at the moment not specified. The formal treatment of the capital
evolution equation can be found in Appendix A.
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We suppose that the policy maker operates to maximize the following

intertemporal constant relative risk aversion functional:

(4)

∫ ∞
0

e−ρt
(∫ 2π

0

c(t, θ)1−σ

1− σ
N(θ)dθ

)
dt,

where ρ > 0 and σ ∈ (0, 1) ∪ (1,∞) are given constants and the con-

straints

(5) c(t, θ) ≥ 0, and K(t, θ) ≥ 0

are imposed12. We note that, as the integrands keeps the sign, Tonelli’s

Theorem applies to get∫ ∞
0

e−ρt
(∫ 2π

0

c(t, θ)1−σ

1− σ
N(θ)dθ

)
dt

=

∫ 2π

0

N(θ)

(∫ ∞
0

e−ρt
c(t, θ)1−σ

1− σ
dt

)
dθ.

The latter is indeed a Benthamite functional in the following sense:

at any time t, the planner linearly weights the per-capita utility at

any location using the population density. In other terms, the con-

sumption/utility of all the people in the economy matters in the same

way in the target. This fact will have a certain importance in the

following. It is also very important to notice that our functional can

be interpreted as the social welfare function of an inequality-averse so-

cial planner with risk-neutral consumers. More generally, parameter

σ could be interpreted as a mix of individual risk-aversion and soci-

etal inequality-aversion. Inequality aversion is indeed a fundamental

ingredient of the problem, as we will see along the way.

The described model is a strict generalization of that considered by

Boucekkine et al. (2013), because we consider here a technological level

A(θ) and a population density N(θ) depending on the location θ. In

12More precisely, the planner chooses the function c : [0,+∞)×S1 → [0,+∞) with
the goal of maximizing (4); see Appendix A for the rigorous formulation of the
problem.
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other words, here A and N are functions A,N : S1 → R instead of just

two space-independent constants.

3. Main analytical results

The model presented in the previous section is, mathematically

speaking, an optimal control problem with state equation (2), objective

functional (4) and pointwise constraints (5). In this section we present

the two main analytical results of this paper. The first characterizes

the optimal strategies of the optimal control problem (2)-(4)-(5), while

the second studies the long run behavior of the optimal capital path.

As our results will be expressed in terms of the eigenvalues and the

eigenfunctions of a suitable Sturm-Liouville problem, we begin our ex-

position by recalling the definitions of these concepts and some related

results. In what follows we will avoid all mathematical difficulties which

are unnecessary at this stage, hence many concepts will be expressed

in an informal way: the reader interested in the complete mathemat-

ical setting can find precise definitions, statements and proofs in the

technical Appendix A.

We will work under the following standing assumption on the (func-

tional) parameters A,N :

(6)

A,N : S1 → [0,∞) are measurable, bounded, not identically zero.

We consider the differential operator associated to the zero-

consumption diffusion dynamics of (2), namely

(7) Lu(θ) :=
∂2

∂θ2
u(θ) + A(θ)u(θ).
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The operator L is well defined on regular enough functions φ : S1 → R.

A non identically zero regular function φ : S1 → R is called eigen-

function of L if there exists a real number (eigenvalue) λ such that

Lφ = λφ.

The following claims are consequence of an application to our context

of (regular) Sturm-Liouville theory with periodic boundary conditions13

(see Chapter 7 and Chapter 8, Section 3, in Coddington and Levinson,

1955). There is a countable discrete set of eigenvalues {λn}n≥0, which

can be ordered in decreasing way; λn → −∞ as n→∞; the algebraic

and geometric multiplicities of each eigenvalue coincide and are either 1

or 2; the highest eigenvalue, λ0, is simple, i.e. its (algebraic/geometric)

multiplicity is 1. Moreover, considering that eigenfunctions are clearly

defined up to a multiplicative factor, we consider a normalized sequence

of eigenfunctions {en}n≥0, associated to the sequence of eigenvalues14

{λn}n≥0, such that
∫ 2π

0
e2
n(θ)dθ = 1; this sequence of eigenfunctions

is an orthonormal basis of L2(S1) (see (17) for the definition of this

space); the eigenfunction e0 in this sequence is the only one without

zeros and, without loss of generality, we assume that e0(θ) > 0 for each

θ ∈ S1.

We note that clearly {λn}n≥0 and {en}n≥0 only depend on the disti-

bution A(·). The eigenvalues are increasing in A(·) (see Theorem 2.9.1.

of Brown et al.) in the following sense: if Ã(·) is another technologi-

cal distribution and {λ̃n}n≥0 is the associated sequence of eigenvalues,

then

Ã(θ) ≥ A(θ) ∀θ ∈ S1 =⇒ λ̃n ≥ λn ∀n ≥ 0.

It is easily seen that the strict inequality λ̃0 > λ0 holds above if and only

if the set of S1 where Ã(·) > A(·) has positive measure. Concerning

13Indeed, the periodic boundary conditions u(0) = u(2π) and u′(0) = u′(2π) as-
sociated to the differential operator L acting on functions u : [0, 2π] → R clearly
correspond to considering, as we do here, the operator L on functions u : S1 → R.
14In the sequence {λn}n≥0 we consider that a certain value appears once, respec-
tively twice, if its multiplicity is 1, respectively 2.
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to this, it is worth noticing here that our model “does not see single

points” in the sense that a change of the functional parameters A(·) and

N(·) over isolated points (or even over a null measure set of points) does

not affect the results: in order to have a change in the outputs which

follow it is needed to change the functional parameters on “thick” sets,

i.e. on sets of positive measure. A particular explicit comparison can

be performed by increasing A(·) by a constant δ > 0, i.e. by considering

Ã(·) = A(·) + δ. In this case it is easily seen that λ̃n = λn + δ for each

n ≥ 0, whereas ẽn = en for each n ≥ 0, where ẽn is the eigenvector

associated to λ̃n for the distribution Ã(·).

We have now collected the elements we need to describe the solution

of the model and we can proceed by presenting it. We will work under

the following spatial counterpart of the usual assumption needed in

the standard one-dimensional AK model to ensure the finiteness of the

intertemporal utility15.

Hypothesis 3.1. The discount rate ρ satisfies

(8) ρ > λ0(1− σ).

We can now state the first important result on optimal spatio-

temporal capital dynamics together with the optimal consumption

strategy across time and space.

Theorem 3.2. Denote by α0 the value16

(9) α0 :=

(
σ

ρ− λ0(1− σ)

∫ 2π

0

e0(θ)
− 1−σ

σ N(θ)dθ

) σ
1−σ

,

15The assumption that we will make on A will imply that λ0 is positive (see Remark
A.8). Hence, the condition (8) is obviously verified when σ > 1 (that is the case
for reasonable calibrations of the model, see Section 4).
16This number is well defined and strictly positive thanks to (8).
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and by β the function α0e0. Let K∗ be the unique solution to the linear

integro-PDE

(10)


∂K
∂t

(t, θ)=LK(t, θ)−
(∫ 2π

0
β(η)K(η)dη

)
β(θ)−

1
σN(θ),

K(0, θ) = K0(θ), θ ∈ S1.

and assume that it is nonnegative. Then K∗(t, ·) is the optimal cap-

ital distribution at time t ≥ 0. Moreover, the optimal consumption

strategy c∗ is given, as a feedback function of the current optimal state

trajectory, as:

(11) c∗(t, θ) =

(∫ 2π

0

β(η)K∗(t, η)dη

)
(β(θ))−1/σ , t ≥ 0, θ ∈ S1.

Finally c∗(t, θ) can also be expressed explicitly in terms of the initial

capital density K0(θ) as

(12) c∗(t, θ) =

(∫ 2π

0

β(η)K0(η)dη

)
egt (β(θ))−1/σ ,

where g is the optimal growth rate of the economy, given by

(13) g :=
λ0 − ρ
σ

.

Proof. See Appendix A and, in particular, Corollary A.5. �

Note that, on the one hand, as a consequence of the monotonicity of

λ0 with respect to A(·), in the sense described before Hypothesis 3.1,

the growth rate g defined by (13) increases when the technological level

increases over a set of positive measure of points of space, as expected.

On the other hand, the population distribution does not play any role

in the value of g (exactly as in the standard one-dimensional AK model

the size of the population does not count for growth rate).
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Once we compare the optimal consumption profile described in

the previous theorem with the counterpart under space homogene-

ity (Boucekkine et al., 2013), we can immediately figure out the cru-

cial role of a location-dependent technology (via coefficient A). In-

deed under homogeneous space, the (per-capita and aggregate) op-

timal consumption level is always equal across locations, while here

the expression of the optimal consumption is given by the space-

independent term
(∫ 2π

0
β(η)K0(η)dη

)
egt and by the space-dependent

term (β(θ))−1/σ = (α0e0(θ))
−1/σ. The latter depends on A(·) both via

α0 and e0 and on N(·) via α0. This fact is interesting from a theoretical

point of view, since a priori one might guess that the egalitarian nature

of the Benthamite functional could be enough to guarantee equalization

of individual utility across space. As mentioned in the introduction,

the “unequal treatment of equals” with a Benthamite social planner is

not an odd result in urban economics, we simply show that it also hold

in our spatio-temporal model with exogenous technology and demogra-

phy. In our setting, the structural conditions of the economy can lead

the planner to diversify per-capita consumption across locations (first

nature causes).17 As we will see in Section 4 the differentiation does

not always go in the expected way.

As shown by (12), the “shape” of c∗(t, ·) (i.e. the relative size of the

consumption at different locations) only depends on the distribution of

A(·), while the distribution of N(·) only impact its level (via the value

of α0). In particular, if we imagine to move some population from a

low per-capita-consumption (i.e. e0 is high) location to a high (i.e. e0

low) per-capita-consumption location, nothing happens at the level of

the shape of the per-capita distribution, but we have a level effect. Its

17Wildasin (1986) proposes to switch to Rawlsian planners to get rid of “unequal
treatment of equals” (see also Fujita and Thisse, 2002, Chapter 3). However, as
shown by Boucekkine et al. (2014) in a non-spatial dynamic model, the Benthamite
planner can be egalitarian if she is allowed to choose population size.
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sign depends on the value of σ: if σ ∈ (0, 1) it is negative, if σ > 1

it is positive. Observe that, nevertheless, the whole distribution of N

takes action directly in the optimal evolution of the capital described

by (10) via a dilution effect, so that, the higher the population in a

certain region, the lower the long run capital. The direct effect of N

on the capital distribution will be even clearer in Theorem 3.4, where

the coefficients βn of the series and then the shape of the long-run

(detrended) distribution of the capital will explicitly depend on the

shape of N(·).

Notice for now that, by the expression of the optimal consumption,

we get the following expression for optimal social welfare:

(14) V (K0(·)) =
α1−σ
0

(∫ 2π

0
K0(θ)e0(θ)dθ

)1−σ
1− σ

.

Differently from the homogeneous space case, where maximal welfare

only depends on aggregate capital, here the stock of capital in different

locations enter the optimal welfare expression with different weights.

Roughly speaking (see Section 4 for numerical examples), the spatial

function e0 tends to be larger in the regions where A is bigger. So,

for a given amount of initial aggregate capital, welfare will be higher if

capital is more accumulated in the more productive locations. Finally,

observe that this property holds true irrespectively of the population

distribution, as one can realize by rewriting the expression of V (K0)

above and disentangling the contributions of population and capital

initial densities:

(
σ

ρ− λ0(1− σ)

∫ 2π

0

e0(θ)
− 1−σ

σ N(θ)dθ

)σ (∫ 2π

0
K0(θ)e0(θ)dθ

)1−σ
1− σ

.

Heterogeneous technology and population distributions are also es-

sential in our second result describing the long-run profile of the de-

trended optimal capital: while in case of space-constant A and N the
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space-distribution of the wealth always converges (under the hypothe-

ses of Theorem 3.4) to a uniform profile, here an articulated expression,

depending on the whole technological and human population distribu-

tions, arises. We need the following.

Hypothesis 3.3. The optimal growth rate g defined in (13) satisfies

(15) g > λ1,

where λ1 is the second eigenvalue of the problem Lφ = λφ.

Theorem 3.4. Let the hypotheses of Theorem 3.2 hold and let Hy-

pothesis 3.3 hold too. Define the detrended optimal path K∗g (t, θ) :=

e−gtK∗(t, θ), for t ≥ 0. Then

K∗g (t, θ)
t→∞−→ K

K0

g (θ) uniformly in θ ∈ S1,

where

K
K0

g (θ) :=

∫ 2π

0

K0(η)β(η)dη

(
e0(θ)

α0

+
∑
n≥1

βn
λn − g

en(θ)

)
∀θ ∈ S1,

where

βn :=

∫ 2π

0

(β(η))−1/σN(η)en(η)dη, ∀n ≥ 1.

Proof. See Appendix A and, in particular, Proposition A.7. �

A natural question which arises here is the effect of the initial distri-

bution K0(θ) on the long-run optimal detrended distribution K
K0

g , i.e.,

roughly speaking, the ergodicity of the process of economic growth aris-

ing in the above Theorem 3.4. Indeed, the convergence result contained

in Theorem 3.4 can be already seen as an ergodicity-type result. To

show that, we first observe that, as the optimal capital path K∗(t, θ) is

the unique solution to (10), the optimal detrended capital path K∗g (t, θ)
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must be the unique solution to

(16)


∂K
∂t

(t, θ)=(L − g)K(t, θ)−
(∫ 2π

0
β(η)K(η)dη

)
β(θ)−

1
σN(θ),

K(0, θ) = K0(θ), θ ∈ S1.

This integro-PDE can be seen, as done in Appendix A, as a linear

dynamical system in a Hilbert space H therein defined. In such a

framework, well known results on ergodicity are the so called Mean

Ergodic Theorem (see, e.g., for the discrete time case, Theorem 1.2,

Chapter 2, in Petersen, 1983) and the stronger Pointwise Ergodic The-

orem (see, e.g., again for the discrete time case, Theorem 2.3, Chapter

2, in Petersen, 1983): they concern the mean and pointwise, respec-

tively, convergence of the time average of the solution to an equilibrium

point. Stronger results in this area are on the so-called “strongly mix-

ing” (see, e.g., for the discrete time case, Section 2.5 in Petersen, 1983),

concerning the convergence of the solution to an equilibrium distribu-

tion. This is exactly what Theorem 3.4 says, as it states the uniform

(in θ ∈ S1) convergence of Kg(t, ·) to K
K0

g .

Concerning the effect of the initial distribution K0 on the long-run

distribution K
K0

g , here we can then say that, as it happens for all AK

type models:

• the set of all long run distributions is a one-dimensional linear

subspace of H;18

• the shape of the long-run distribution K
K0

g does not depend on

K0, as the influence of K0 is only in the multiplicative constant∫ 2π

0
K0(η)β(η)dη.

We conclude with some comments about the dependence of the out-

puts with respect to the model parameters.

18This fact has a straightforward proof based on the basic theory of ODEs and we
omit it for brevity.
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• The first term of the series defining the limit distribution of the

detrended optimal capital K
K0

g is(∫ 2π

0

K0(η)e0(η)dη

)
e0;

the latter expression only depends on A.

• The optimal consumption path c∗ and the optimal social welfare

V depend on both the technological and population distribu-

tions A and N via α0. The shape of c∗ only depend on A.

• The following monotonicity of the optimal growth rate g with

respect to A holds as a consequence of the monotonicity of λ0

with respect to A (in the sense discussed and precised before

Hypothesis 3.1): if A(θ) increases for every θ ∈ S1, then g

increases.19

• The following monotonicity with respect to N holds depending

on σ: if N(θ) increases for every θ ∈ S1 then

– α0 and, consequently, V , increase if σ ∈ (0, 1) and decrease

if σ > 1;

– c∗ decreases if σ ∈ (0, 1) and increases if σ > 1.

Remark 3.5. We outline that the method and the results presented

here are based on the fact that an explicit solution of the HJB equa-

tion is available. This nice feature strongly relies on the structure of

the problem, i.e. on the linearity of the production function and the

homogeneity of the utility function. Without such a structure explicit

solutions are in general not available. However, some results can be

still be proved and a qualitative analysis of the optimal paths is in prin-

ciple possible. A first attempt in this direction for the same family of

models has been done in Brito (2004), but to get stronger, and more

19The monotonicity of the optimal social welfare V with respect to A is difficult to
see from (14). However, such monotonicity can be proved using the fact that V is
the supremum of the functional (4).
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interesting, results one should make a deeper use of infinite dimen-

sional control techniques like the ones described in the books Li and

Yong (1995), Fabbri, Gozzi and Swiech (2017), and Fattorini (1999).

4. Numerical exercises

The explicit representation of the long-run configuration of the econ-

omy given in Theorem 3.4 can be used to undertake a numerical anal-

ysis of the system in some specific cases of interest.20

First we calibrate the model. In all the simulations we choose the

discounting parameter ρ equal to 3% (consistent e.g. with the data of

Lopez, 2008) and, except in Subsection 4.1.4, the parameter σ equal to

5 (its value is coherent with those found e.g. by Barsky et al., 1997). In

the simulations we use uniform and non-uniform technological spatial

distributions of A(·) whose values are in a range of values (0.2÷ 0.25)

compatible with the values of the ratio output-over-capital Y/K found

by Piketty and Zucman (2014).

In the various situations, computing the first eigenvalue of the oper-

ator L defined in (7) and using (13), we get the reasonable values of

the global growth rate equal closed to 3%. As a further check, we also

observe that the (spatial-heterogeneous) saving rates we obtain are in

line, for instance, with the World Bank data (see e.g. World Bank

Group, 2016).

Hereafter, we start with the analysis of the asymptotic spatial dis-

tributions of the relevant variables in three different pre-specified tech-

nological and demographic spatial settings. Then, we briefly present

some examples of transitional spatio-temporal dynamics for uniform

versus non-uniform initial distributions of capital.

20To numerically compute the eigenfunctions en we use the package Chebfun written
for MATLAB. See Birkisson and Driscoll (2011) and Driscoll and Hale (2016) for
details on the implementation of the routines on linear differential operators and in
particular on eigenfunctions of Sturm-Liouville operators in Chebfun.
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4.1. Numerical exploration of the asymptotic spatial distribu-

tions. Partly imitating the monocentric city model à la Alonso-Mills-

Muth (see Thisse and Fujita, 2002, Chapter 3), we investigate, in the

following, the long-run spatial distributions of capital, consumption

and output in the case of three different types of pre-specified centers.

More precisely: (i) we study in Subsection 4.1.1 the situation where

productivity is peaked in some core region, while population density

is constant in space; (ii) we analyze in Subsection 4.1.2 the reverse

circumstance of single-peaked spatial population and uniform produc-

tivity; (iii) we devote Subsection 4.1.3 to the case where, as widely rec-

ognized by empirical studies (see for instance Ciccone et Hall, 1996),

the regions with higher population density are also the more produc-

tive ones; following the findings of Allen and Arkolakis (2014), we will

suppose that they are linked by a power law.

4.1.1. The case of the technological center. The effect of a peaked spa-

tial productivity distribution, whenever the population density is con-

stant (with density everywhere equal to 1), is represented in Figure

1. We use the technological distribution A(·) on [0, 2π] having a peak

at the point π and attaining lower values in the further locations rep-

resented in the first picture of Figure 1. The long-run spatial distri-

butions of detrended capital, output, consumption and investment are

represented. In gray (and dotted) we visualize the benchmark, where

homogeneous technological and demographic distributions are consid-

ered21. It is indeed the case of Boucekkine at al. (2013). We can

promptly see the effect of the spatial polarization of the capital mar-

ginal (and average) productivity on capital accumulation in the first

picture of the second line of Figure 1. In fact, the capital tends to

21The spatially constant value of A in the benchmark is a mean of the values of the
single-peaked case and ensures the same asymptotic growth rate of the economy
(equal to 3.17%).
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Figure 1. The productivity effect at work: long run
distributions of the main variables for a homogeneous
population distribution and a peaked total factor pro-
ductivity profile

accumulate in the more productive areas, while those with lower pro-

ductivity remain behind: the higher productivity of capital pushes the

planner to increase investments and thus savings relatively more in the

more productive regions, as shown in the second picture of the third

line of Figure 1. As a byproduct the planner privileges consumption in

peripheral regions, but this is a second-order effect of small magnitude,

as one can see in the first picture of the third line of Figure 1. These are

the outcomes of the productivity effect announced in the introduction.

Looking at the (spatial) relative magnitudes in the distributions of

A compared to those of the long-run detrended K, we can easily re-

alize that the capital distribution is much less concentrated than the
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technological level22. We can also observe that points with the same

level of total factor productivity have, in the long run, different level

of (detrended) capital (it is the case of the points in the line segment

with extremes 4 and 6 for instance) due to the different distance with

respect to the core. We have indeed an endogenous spatial spillover

effect that is the combined result of both the capital exogenous diffu-

sivity and the endogenous investment and consumption decisions by

the planner.

The difference with respect to the results of Boucekkine at al. (2013)

is crystal clear: once we introduce the spatial heterogeneity in capital

productivity, the optimal detrended capital does not converge anymore

to a spatial-homogeneous distribution. Indeed, the homogeneous space

case, where all the detrended variables (capital, output, consumption,

investment) converge to the spatial-homogeneous configuration, arises

as a special case, only if A is constant over the locations.

Using the same parametrization, we can see, in Figure 2(a), a more

substantial difference with respect to the results of Boucekkine et al.

(2013). While in their case the long-run detrended net trade balance is

zero everywhere, here the long-run value of τ is a non-trivial function

of space (in black in the picture), having value equal to zero when

integrated all along the circle. In particular the simulation reproduces

a long-run flow of capital from the center (where we have a positive

net-trade balance) to the periphery (where we have a negative net-

trade balance) of the economy. The distribution of A(·) is the same

as in Figure 1, it is in gray in the picture (the values of A are in the

22Conversely the concentration of the long-run detrended output is a little more
peaked than A because the output has the form Y = AK.
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Figure 2. The detrended net trade balance at the long-
run equilibrium

right side gray scale). The opposite dynamics arise in the case of a pre-

specified demographic center (see next subsection) as shown in Figure

2(b).23

4.1.2. The case of the demographic center. Figure 3 is a first look at the

population effects in the model. There we consider the same technolog-

ical distribution as in Figure 1 and we vary uniformly the population

23The population distribution N(·), that is the same we will use in Figure 4, is gray
and its values are represented in the right side gray scale.
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density, more precisely we double the previous constant population den-

sity (in the picture the previous benchmark situation is in gray, with

dotted line, while the new profile is in black, continuous line). The

effect, in terms of aggregate optimal behavior is zero while per-capita

variables are mechanically halved. This effect could be predicted di-

rectly from expression (11) taking into account the effect of population

distribution on α0 given by (9). Observe that this behavior is not due

to the homogeneous distribution of the population we use: whatever

the initial population distribution, a uniform increase of the popula-

tion of n% in the whole space induces a spatial uniform proportional

reduction (by a factor 1
1+n/100

) of per capita variables.

Figure 3. The population effect: long run distributions
of the main variables for two homogeneous population
distributions and a peaked total factor productivity pro-
file

In Figure 4 we consider the case specular to the one considered in

Figure 1. We consider here the case of a homogeneously distributed pro-

ductivity and of a single-peaked population density distribution (and

in gray, dotted line, the benchmark with homogeneous population and
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technological distribution, i.e. the case of Boucekkine et al., 2013). To-

tal and per-capita capital, production and investments are, in the long

run, lower in the more populated areas. The explanation of this pop-

ulation effect goes through the inequality-aversion of the Benthamite

planner (see Subsection 4.1.4 for more on this point): to guarantee

a reasonable level of consumption to everybody, the planner needs to

maintain an higher level of aggregate consumption in more densely

populated areas and therefore to lower investment at the same loca-

tions. This effect is completely transparent in the situation described

in Figure 4 because, in absence of spatial productivity heterogeneities,

the per capita consumption chosen by the planner is constant in space:

all people leaving in the economy are entitled, at a fixed time, to the

same consumption (see Theorem 3.2 and the subsequent discussion).

Figure 4. The population effect at work: long run dis-
tributions of the main variables for a peaked population
distribution and a constant total factor productivity pro-
file

4.1.3. The case of productivity increasing in population density. In Fig-

ure 5 we consider a concentration of capital productivity and popula-

tion density in the same areas (a quite frequent configuration) showing
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how the productivity and population effects combine and can partially

offset each other. In the first simulation we consider (in black and con-

tinuous line in the pictures) the same technology distribution of Figure

1 and the same population distributions of Figure 4 and we see how

the productivity and the population effects combine. Observe that the

choice we made was not arbitrary and indeed the (peaked) population

of Figure 4 is proportional to the (peaked) technological distribution

of Figure 1 so that, in the case of Figure 5, A(θ) = A0N(θ) for all

θ ∈ [0, 2π] for some positive real constant A0. We also represent a

benchmark (gray and dotted line in the picture) given by the homo-

geneous population and single-peaked technology situation of Figure

1.

In the new situation two distinct motivations drive the planner: on

the one hand, she will tend to invest more in the more productive

areas (productivity effect), but on the other, she wants to assign a

reasonable per capita level of consumption in each region, increasing

the consumption in the more populated areas (population effect). The

total effect is depicted in the various pictures of Figure 5: the aggre-

gate investment in more productive areas for the second population

profile remains relatively higher24 but the effect is mitigated because

aggregate consumption is higher in these areas as well. This effects

can be quantified with respect to the benchmark: the standard devia-

tion of the capital distribution is 5 times greater in the case of uniform

population than when the distribution of the population is more con-

centrated. Conversely, how we already observed, in the model the dis-

tribution of the population does not change the shape of the per-capita

consumption distribution, so a higher population at a certain location

corresponds, mechanically, to a higher aggregate consumption at the

same location. For this reason, given the rather flat distribution of the

24This outcome depends on the chosen distribution of the population, a bigger
concentration of the population would of course accentuate the population effect.
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per-capita consumption, the higher concentration of the population of

our second population distribution translates into a more concentrated

aggregate consumption (the standard deviation increases by a factor

42 with respect to the benchmark). Since the distribution of long-run

detrended capital is more uniform in the single-peaked population case,

the per-capita capital accumulates more in less productive areas. For

this reason the change in the population distribution translates into a

(small) case of efficiency loss in the economic system and, even if al-

most no appreciable in the picture, per-capita consumption in the new

configuration is always smaller that in the original one at any location.

Figure 5. Balance between productivity and popula-
tion effects: the case of proportional (single-peaked)
technological and population profiles

In Figure 6 we consider a second situation where productivity and

population density are higher in the same area. Here we use the spec-

ification of Allen and Arkolakis (2014), so that

A(θ) = A0N(θ)γ
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for some positive constants A0 and γ. A0 is here mostly a scal-

ing parameter (one can see this fact by rewriting the relation as

N = (A0)
1/γA1/γ and recalling what happens in Figure 3) and it is

calibrated in order to have normalized population25 and the same pro-

ductivity of Figures 1 and 5 in the peripheral areas (this allows in

particular to calibrate the model with a reasonable growth rate). Con-

versely, γ influences the ratio between population and productivity

which is spatial dependent (apart from homogeneous distributions) as

soon as γ 6= 1. Following the parametrization of Allen and Arkolakis

(2014) we choose γ = 0.1. As in Figure 5 the two effects (productivity

and population) are at work but a different equilibrium arises and the

(aggregate and per capita) long run capital distribution is here more

concentrated in less populated regions.

Figure 6. Productivity and population effects at work
under the Allen and Arkolakis (2014)’ specification:
A(θ) = A0N(θ)0.1

25All the population distributions in all the simulations have total mass equal to
2π.
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Standard deviation ratio σc/σk σc/σy
Technological center 0, 028 0, 017
Demographic center 1.2 · 10−10 6.0 · 10−10

Proportional Demography and Technology 4.2 · 10−3 0, 68
Arkolakis and Allen (2014)’ case 3.7 · 10−4 2.0 · 10−3

Table 1. Ratio of standard deviation of long run dis-
tribution of per-capita consumption (σc) and standard
deviation of long run distribution of per-capita capital
(σk) and output (σy) in various scenarios.

Standard deviation ratio σc/σk σc/σy
σ = 3 5.3 · 10−4 2.9 · 10−3

σ = 5 3.7 · 10−4 2.0 · 10−3

σ = 7 2.7 · 10−4 1.5 · 10−3

Table 2. σ as inequality aversion parameter: shift of
standard deviation ratios varying the value of σ (Arko-
lakis and Allen (2014)’ specification)

.

4.1.4. Aversion to inequality. As already pointed out, the choice of a

Bentahmite functional with per-capita concave utilities brings auto-

matically some degree of the planner’s inequality aversion and this fact

is essential in driving the population effect as we described in the pre-

vious subsections. Indeed, since the planner’s utility depends on the

per-capita consumption (rather than per-capita distributions of other

variables) we should expect that the dispersion of other relevant (per

capita) variables is bigger than the the one of consumption. This is ex-

actly what we have in all the cases we considered so far - Technological

center, Demographic center, Proportional Demography and Technol-

ogy, Arkolakis and Allen (2014)’ case (corresponding to Figures 1, 4, 5

and 6). In Table 1 we show how, in each of them, the ratio between the

standard deviation of the per-capita consumption σc and the standard

deviation of the per-capita capital and production (respectively σk and

σy) is always much smaller than 1.
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Indeed, as already observed in Section 2, the parameter σ appearing

in (4) can be interpreted as a mix of individual preferences parameter

and a planner’s inequality aversion parameter. Consistently with this

latter interpretation we can see in Table 2 how the consumption dis-

tribution is more and more equal26 when σ increases. The simulation

is done using the Arkolakis and Allen (2014)’ specification (Figure 6)

and varying σ, similar results arise for other specifications of Table 1.

4.2. Transitional spatio-temporal dynamics. The analytical re-

sults we get, and in particular the expansion of the optimal spatio-

temporal dynamics in terms of a (temporarily weighted) series of eigen-

functions (45) allow us to simulate the evolution of the spatial distri-

bution of various variables in the economy. In Figure 7 we show what

happens to the spatial capital distribution starting from two different

initial configurations. We choose the parametrization of Figure 1 (tech-

nological center); the situation, mutatis mutandis, is similar in other

cases. In Figure 7(a) the initial capital profile is homogeneous (namely

K0(θ) = 1 for any θ ∈ S1); despite this, we see that progressively the

agglomeration process we described takes place and the system con-

verges toward the core-periphery configuration we have in Figure 1. In

Figure 7(b) we show the dynamics when the initial capital distribution

is peaked in some point (different from the central core point): the

initial concentration of the capital smoothens and a new core emerges.

In the two cases we get, in the long-run, the same detrended capital

distribution. Observe that, to better show the two images, they are

rotated in different ways, but in each of them the variable going from

0 to 1 is the time, while the one in the interval [−π, π] is the space

coordinate.

26In the table we show the dispersion of the per-capita consumption in terms of
dispersion of other per-capita variables, but the same result arises if we only consider
the concentration of the per-capita consumption itself.
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Figure 7. Detrended capital time evolution starting
from two different initial capital distributions in space
(technological center case)

Figure 8 represents the evolution of the instantaneous growth rate
∂K∗

g (t,θ)

∂t
of the detrended capital distribution at each point θ ∈ S1. As

clearly reflected in the two pictures, short-run adjustments are nec-

essary in the growth rate spatial dynamics to originate, in the long

run, the core-periphery distribution of capital (and, in Figure 8(b), to

overcome the initial peak of the capital distribution in the “wrong ”

position). Of course, in the long run, since detrended capital converges
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towards a (spatially heterogeneous) limit distribution, the growth rate

converges, in each spatial point, to zero.

Figure 8. Evolution of the growth rate of the detrended
capital starting from two different initial capital distri-
butions in space (technological center case)

5. Conclusions

In this paper we introduce and study a general spatial model of

economic growth. With respect to previous related contributions, our
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model is more general both for the possibility of studying heteroge-

neous spatial distributions of technology and for allowing for non-

homogeneous spatially distributed population. We are able to solve

it analytically by employing dynamic programming methods in infinite

dimensions. This is made possible thanks to the use of the eigenfunc-

tions of the linear Sturm-Liouville problem related to the consumption-

free dynamics of the model. The numerical exercises allow to identify

two opposing effects: productivity effect versus population effect. We

show that the shape of agglomeration triggered by growth depends

pretty much on the relative strengths of the two latter effects. Our set-

ting delivers an agglomeration theory entirely based on optimal spatio-

temporal capital dynamics for any given technology and population

space distributions (first nature causes), which sharply departs from

the agglomeration theories put forward in the New Economic Geog-

raphy literature, which mostly disregards capital accumulation and

focuses on second nature causes. We identify a form of endogenous

spillover inherent in capital spatio-temporal dynamics and we observe

how the distance to the core is an essential determinant of the shapes of

the asymptotic distribution. The effect of the aversion to inequality on

spatial distributions of the relevant variables is characterized as well.
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Systems. Birkhäuser, Boston.

Lopez, H. (2008). The social discount rate : estimates for nine Latin American

countries. The World Bank Policy Research Working Paper Series 4639.

Martin, P., and Rogers, C.A. (1995). Industrial location and public infrastruc-

ture. Journal of International Economics, 39(3), 335-351.

Mills, E., and MacKinnon (1973). Notes on the new urban economics. Bell Jour-

nal of Economics and Management Science, 4, 593-601.



38 ECONOMIC GROWTH AND SPATIAL HETEROGENEITIES

Mirrlees, J. (1972). The optimum town. Swedish Journal of Economics, 74, 115-

135.

Mossay, P. (2003). Increasing returns and heterogeneity in a spatial economy.

Regional Science and Urban Economics, 33(4), 419-444.

Nijkamp, P., and Poot, J. (1998). Spatial perspectives on new theories of eco-

nomic growth. The annals of regional science, 32(1), 7-37.

Petersen K. (1983). Ergodic Theory. Cambridge University Press.

Piketty, T., and Zucman, G. (2014). Capital is back: wealth-income ratios in rich

countries 1700-2010. The Quarterly Journal of Economics, 129(3), 1255-1310.

Wildasin, D. (1986). Spatial variation of marginal utility of income and unequal

treatment of equals. Journal of Urban Economics, 19, 125-129.

World Bank Group (2016). World Development Indicators 2016. World Bank

Publications.

Appendix A. Proofs of the analytical results

In order to use the infinite dimensional dynamic programming to prove Theorems
3.2 and 3.4 we first need to recall some preliminary concepts and results.

A.1. The infinite dimensional setting. We can represent (2) as an abstract
dynamical system in infinite-dimension. Some steps are needed to describe this
construction. Consider the space27

(17) H := L2(S1) :=

{
f : S1 → R measurable

∣∣ ∫ 2π

0

|f(θ)|2dθ <∞
}
.

This is a Hilbert space when endowed with the inner product 〈f, g〉 :=∫ 2π

0
f(θ)g(θ)dθ, inducing the norm ‖f‖ =

∫ 2π

0
|f(θ)|2dθ. We will also use the fol-

lowing spaces of real functions defined on S1:

L∞(S1) := {f ∈ H | |f | ≤ C for some C > 0},
H1(S1) := {f ∈ H | ∃ f ′ in weak sense and belongs to H},

H2(S1) := {f ∈ H | ∃ f ′ in weak sense and belong to H1(S1)}.
The differential operator

Lu :=
∂2u

∂θ2
+A(·)u, u ∈ H2(S1)

is well defined and H-valued. It is also self-adjoint, i.e.

(18) L∗ = L.
The operator L is the sum of the Laplacian operator on S1 with the bounded
operator A : H → H, u 7→ A(·)u. The Laplacian operator is closed on the domain

27To be precise, the definition of L2(S1), as well as the definitions of the other
spaces we introduce here, should involve a quotient with respect to the relation of
equality almost everywhere. We omit these technical issues and refer to standard
monographies on Lebesgue and Sobolev spaces, e.g. Brezis (2011).
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H2(S1) and generates a C0-semigroup on the space H. Hence, as A is bounded,
we deduce that also L is closed on the domain

D(L) := H2(S1)

and generates a C0-semigroup on the space H. From now on, in order to avoid
confusion, we will denote the elements of H by bold letters. With this convention,
we can formally rewrite (2) as an abstract dynamical system in the space H:

(19)

{
K′(t) = LK(t)− c(t)N, t ∈ R+,

K(0) = K0 ∈ H,

with the formal equalities K(t)(θ) = K(t, θ), [c(t)N](θ) = c(t, θ)N(θ) and we will
read the original system as (19).28

By general theory of semigroups (see Proposition 3.1 and 3.2, Section II-1, of
Bensoussan et al., 2007, also considering (18)), given c ∈ L1

loc(R+;H), there exists
a unique (weak) solution KK0,c ∈ L1

loc(R+;H) to (19) in the following sense: for
each ϕ ∈ D(L) the function t 7→ 〈KK0,c(t),ϕ〉 is locally absolutely continuous and

(20)

{
d
dt 〈K

K0,c(t),ϕ〉 = 〈KK0,c(t),Lϕ〉 − 〈c(t)N,ϕ〉, a.e. t ∈ R+,

KK0,c(0) = K0 ∈ H.
Consider the positive cone in H, i.e. the set

H+ := {K ∈ H | K(·) ≥ 0} ,
the positive cone in H without the zero function, i.e. the set

H+
0 := {K ∈ H | K(·) ≥ 0 and K(·) 6≡ 0} ,

and define the set of admissible strategies as29

A(K0) := {c ∈ L1
loc(R+;H+) | KK0,c(t) ∈ H+

0 ∀t ≥ 0}.
Then we can rewrite the original optimization problem as the one of maximizing

the objective functional

(21) J(K0; c) :=

∫ ∞
0

e−ρtU(c(t))dt,

over all c ∈ A(K0) where

U : H+ → R+, U(c) :=

∫ 2π

0

c(θ)1−σ

1− σ
N(θ)dθ.

In the following we call (P) this problem and we define the associated value function
as

(22) V (K0) := sup
c∈A(K0)

J(K0; c).

28The correspondence between the concept of solution to the abstract dynamical
system in H that we introduce below (weak solution) and the solution of (2) can
be argued as in Proposition 3.2, page 131, of Bensoussan et al. (2007).
29In this formulation we require the slightly sharper state constraint KK0,c(t) ∈ H+

0

in place of the wider (original) one KK0,c(t)(·) ≥ 0 almost everywhere. This is
without loss of generality: indeed, if KK0,c(t) ≡ 0 at some t ≥ 0, the unique
admissible (hence the optimal) control from t on is the trivial one c(·) ≡ 0, so we
know how to solve the problem once we fall into this state and there is no need to
define the Hamilton-Jacobi-Bellman equation at this point. The reason to exclude
the zero function from the set H+ and considering the set H+

0 is that in this set our
value function is well defined and solves the Hamilton-Jacobi-Bellman equation,
while this does not happen in H+.
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A.2. HJB equation. Through the dynamic programming approach we associate
to the problem (P) the following Hamilton-Jacobi-Bellman (HJB) equation in H
(which “should be” satisfied by the value function):

(23) ρv(K) = 〈K,L∇v(K)〉+ sup
c∈H+

{U(c)− 〈cN,∇v(K)〉}.

An explicit solution of this equation can be given in a suitable half-space of H as
shown by the following proposition.

Proposition A.1. Let (8) hold. The function

(24) v(K) =
〈K, α0e0〉1−σ

1− σ
, K ∈ H+

e0
,

where

(25) H+
e0

:= {K ∈ H | 〈K, e0〉 > 0}.
and

(26) α0 :=

(
σ

ρ− λ0(1− σ)

∫ 2π

0

e0(θ)−
1−σ
σ N(θ)dθ

) σ
1−σ

,

is a classical solution30 of (23) over H+
e0

.

Proof. Let R++ := (0,∞) and define the strictly positive cone of H, i.e.

H++ :=

{
f : S1 → R++

∣∣ ∫ 2π

0

|f(θ)|2dθ <∞
}
,

Setting
U∗(α) := sup

c∈H+

{U(c)− 〈cN,α〉}, α ∈ H++,

we have

U∗(α) := sup
c∈H+

∫ 2π

0

(
c(θ)1−σ

1− σ
N(θ)− c(θ)N(θ)α(θ)

)
dθ =

∫ 2π

0

u∗(N(θ),α(θ))dθ,

where

u∗(N, q) := sup
c≥0

{
c1−σ

1− σ
N − qcN

}
=

σ

1− σ
Nq−

1−σ
σ , q > 0, N ≥ 0,

with optimizer

(27) c∗(q) = q−
1
σ , q > 0.

Plugging (24) into (23), and using that

(28) ∇v(K) = 〈K, α0e0〉−σα0e0, K ∈ H+
e0
,

we need to check the equality

(29)
ρ

1− σ
〈K, α0e0〉1−σ = 〈K, α0Le0〉〈K, α0e0〉−σ

+
σ

1− σ
α
− 1−σ

σ
0

(∫ 2π

0

e0(θ)−
1−σ
σ N(θ)dθ

)
〈K, α0e0〉1−σ.

By definition of λ0 and e0, we have Le0 = λ0e0. So (29) holds by (26). �

For notational reasons we set

β := α0e0,

30By a classical solution of (23) in an open subset H1 of H we mean a function
ψ : H1 → R which is C1 in its domain and which verifies (23) at every point
K ∈ H1.
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so we can rewrite (24) as

(30) v(K) =
〈K,β〉1−σ

1− σ
, K ∈ H+

e0
.

Moreover, by definition of β and by (26), we get the following identity that will be
useful in the next subsection

(31)

(∫ 2π

0

β(θ)−
1−σ
σ N(θ)dθ

)
=
ρ− λ0(1− σ)

σ
.

A.3. Solution of the optimal control problem via dynamic programming
in infinite dimensions. Proposition A.1 suggests to consider a different set of
admissible controls, i.e.

A+
e0

(K0) := {c ∈ L1
loc(R+;H+) | KK0,c(t) ∈ H+

e0
∀t ≥ 0}.

Since H+
0 ⊆ H+

e0
, we have also A(K0) ⊆ A+

e0
(K0). We define an auxiliary problem

associated to this new relaxed constraint, i.e.

(32) (P̃) Maximize J(K0; c) over c ∈ A+
e0

(K0)

The value function of the problem (P̃) is

(33) Ṽ (K0) := sup
c∈A+

e0
(K0)

J(K0; c).

Clearly we have the inequality

(34) Ṽ ≥ V over H+
0 .

The reason to consider the relaxed state constraint KK0,c(·) ∈ H+
e0

, in place of the

stricter original one KK0,c(·) ∈ H+
0 , is that the former is somehow the “natural”

one from the mathematical point of view and admits an explicit solution. On the
other hand, the true constraint is still KK0,c(·) ∈ H+, so we need to establish a

relationship between the solutions of the two problems (P) and (P̃). Our approach
relies on the following obvious result.

Lemma A.2. If c∗ is an optimal control for (P̃) and KK0,c(·) ∈ H+
0 (i.e. the

solution of the optimization problem with relaxed state constraint actually satisfies
the stricter one), then c∗ is optimal also for (P).

We focus on the solution to ˜(P). Considering (27), the feedback map associated
to the function v defined in (30) results in

(35) H+
e0
→ H+

0 , K 7→ 〈β,K〉β−
1
σ ,

where β−
1
σ (θ) := (β(θ))−

1
σ . By using the same results invoked for equation (19)

above we find that the associated closed loop equation

(36)

{
K′(t) = LK(t)− 〈β,K(t)〉β−

1
σN,

K(0) = K0 ∈ H+
0 ,

admits a unique weak solution, in the sense that there exists a unique function
KK0,∗∈ L1

loc(R+;H) such that the function t 7→ 〈KK0,∗(t),ϕ〉 is absolutely contin-
uous for every ϕ ∈ D(L) and
(37){

d
dt 〈K

K0,∗(t),ϕ〉 = 〈KK0,∗(t),Lϕ〉 − 〈β,KK0,∗(t)〉〈ϕ,β−
1
σN〉, a.e. t ∈ R+,

KK0,∗(0) = K0 ∈ H+
0 .

Consider (31) and set

(38) g := λ0 −
∫ 2π

0

N(θ)β(θ)−
1−σ
σ dθ = −ρ− λ0

σ
.
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Taking ϕ = β in (37), we get

(39) 〈KK0,∗(t),β〉 = 〈β,K0〉egt, t ≥ 0,

Hence
K0 ∈ H+

e0
⇒ KK0,∗(t) ∈ H+

e0
.

So the control

(40) c∗(t) := 〈β,K(t)〉β−
1
σ = 〈β,K0〉β−

1
σ egt, t ≥ 0,

belongs to A+
e0

(K0).

Lemma A.3. For each c ∈ A+
e0

(K0) we have

〈KK0,c(t),β〉 ≤ 〈β,K0〉eλ0t, ∀t ≥ 0.

Proof. Denote by 0 the null control, i.e. the control c(t)(θ) = 0 for each (t, θ) ∈
R+ × S1. Then (20) yields 〈KK0,0(t),β〉 = 〈β,K0〉eλ0t for every t ≥ 0. On the
other hand, as β(θ) > 0 for each θ ∈ S1, standard comparison applied to the ODE
(20) yields

(41) 〈KK0,c(·),β〉 ≤ 〈KK0,0(·),β〉,
and the claim follows. �

Theorem A.4. Let (8) hold. Let K0 ∈ H+
e0

and let v : H+
e0
→ R be the function

defined in (30). Then v(K0) = Ṽ (K0) and the control c∗ defined in (40) is optimal

for (P̃) starting from the initial state K0; i.e. J(K0; c∗) = Ṽ (K0).

Proof. The fact that c∗ ∈ A+
e0

(K0) has been already observed in the discussion
preceding Lemma A.3. We prove now the optimality. By the usual arguments
employed to prove Verification Theorems within the Dynamic Programming ap-
proach, using the fact that v is a solution to (23) on A+

e0
(K0) one gets, for every

c ∈ A+
e0

(K0),

(42) e−ρtv(KK0,c(t))− v(K0) = −
∫ t

0

e−ρsU(c(s))ds

+

∫ t

0

e−ρs{U(c(s))− 〈c(s)N,∇v(KK0,c(s))〉 − U∗(∇v(KK0,c(s))}ds

We pass (42) to the limit for t→∞.

- We use (8) and Lemma A.3 in the left hand side;
- we use monotone convergence in the right hand side, as, by definition of
U∗, the integrand is nonpositive.

Hence, we get the so called fundamental identity, valid for each c ∈ A+
e0

(K0):

(43) v(K0) = J(K0; c)

+

∫ ∞
0

e−ρs
{
U∗(∇v(KK0,c(s))−

(
U(c(s))− 〈c(s)N,∇v(KK0,c(s))〉

)}
ds.

From (43), by definition of U∗ we first get v(K0) ≥ Ṽ (K0). Then, observing that
the integrand in (43) vanishes when c = c∗, we obtain v(K0) = J(K0; c∗). The
claim follows. �

From Theorem A.4 and Lemma A.2, we get our first main result corresponding
to Theorem 3.2.

Corollary A.5. Let (8) hold. Let K0 ∈ H+
0 , let c∗ be the control defined in (40)

and assume that c∗ ∈ A(K0). Then v(K0) = V (K0) and c∗ is optimal for (P).
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Lemma A.6. Let Ā := supθ∈S1 |A(θ)| (the latter is finite due to (6)). There exists
C0 > 0 such that

|en|∞ := sup
θ∈S1

|en(θ)| ≤ C0(1 + λ2n) ∀n ≥ 1.

Proof. Fix n ≥ 1. Since en solves Len = λnen, we have

|e′′n(θ)|2 ≤ 2(Ā2 + λ2n|en(θ)|2) ∀θ ∈ S1.

Integrating over S1 and taking into account that ‖en‖ = 1, we get the estimate∫ 2π

0

|e′′n(θ)|2dθ ≤ 4πĀ2 + 2λ2n,

form which we get, taking into account that |x| ≤ x2 + 1 for each x ∈ R,∫ 2π

0

|e′′n(θ)|dθ ≤ 4πĀ2 + 2λ2n + 2π.

Weierestrass’ and Fermat’s Theorems (en is continuous and differentiable) ensure
the existence of θ0 ∈ S1 such that e′n(θ0) = 0. Hence we get the estimate for |e′n(θ)|

|e′n(θ)| ≤

∣∣∣∣∣
∫
[θ0,θ)

e′′n(θ)dθ

∣∣∣∣∣ ≤
∫ 2π

0

|e′′n(θ)|dθ ≤ 4πĀ2 + 2λ2n + 2π ∀θ ∈ S1.

Considering that en(θ1) = 0 for some θ1 ∈ S1 (eigenfunctions for n ≥ 1 have zeros),
the latter provides

|en(θ)| ≤

∣∣∣∣∣
∫
[θ0,θ)

e′n(θ)dθ

∣∣∣∣∣ ≤
∫ 2π

0

|e′n(θ)|dθ ≤ 8π2Ā2 + 4πλ2n + 4π2 ∀θ ∈ S1.

By arbitrariness of n ≥ 1, we get the claim. �

The study of the convergence of the transitional dynamics to a stationary state
gives the following claim corresponding to Theorem 3.4.

Proposition A.7. Let (8) and (15) hold. Let c∗ be the control defined in (40) and
assume that c∗ ∈ A(K0). Define the detrended optimal path

KK0,c
∗

g (t) := e−gtKK0,c
∗
(t) ∀t ≥ 0,

and set βn := 〈en,β−
1
σN〉 for each n ≥ 1. Then

KK0,c
∗

g (t)(θ)
t→∞−→ 〈K0,β〉

α−10 e0(θ) +
∑
n≥1

βn
λn − g

en(θ)

 uniformly in θ ∈ S1.

Proof. As KK0,c
∗
(·) is a weak solution of (36), KK0,c

∗

g (·) is a weak solution of{
K′(t) = LK(t)− gK(t)− 〈β,K(t)〉β−

1
σN

K(0) = K0 ∈ H+
0 ,

i.e., for every ϕ ∈ D(L),

(44)

{
d
dt 〈K

K0,c
∗

g (t),ϕ〉 = 〈KK0,c
∗

g (t), (L − g)ϕ〉 − 〈β,KK0,c
∗

g (t)〉〈ϕ,β−
1
σN〉

KK0,c
∗

g (0) = K0 ∈ H+
0 .

As already recalled in Section 3, the sequence of eigenfunctions {en}n≥0 is an
orthonormal basis of L2(S1), so we have the Fourier series expansion

(45) KK0,c
∗

g (t) =
∑
n≥0

Kg,n(t)en,

where
Kg,n(t) := 〈KK0,c

∗

g (t), en〉 ∀n ≥ 0.
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We compute now the Fourier coefficients Kg,n(t).

- When n = 0, we already know from (39)

Kg,0(·) ≡ 〈K0, e0〉 = α−10 〈K0,β〉.
- When n ≥ 1, we have, taking ϕ = en in (44) and considering (39),

K ′g,n(t) = (λn − g)Kg,n(t)− 〈K0,β〉βn.
Hence we can explicitly express the Fourier coefficients for n ≥ 1 as:

Kg,n(t) = 〈K0, en〉e(λn−g)t + 〈K0,β〉
βn

λn − g
(1− e(λn−g)t).

We write, taking into account that ‖en‖ = 1 for each n ≥ 0 and Lemma A.6,

sup
θ∈S1

∣∣∣∣∣∣KK0,c
∗

g (t)(θ)− 〈K0,β〉

α−10 e0(θ) +
∑
n≥1

βn
λn − g

en(θ)

∣∣∣∣∣∣
≤ sup
θ∈S1

∑
n≥1

(
|〈K0, en〉| e(λn−g)t + |〈K0,β〉|

βn
|λn − g|

e(λn−g)t
)
|en(θ)|

≤C0‖K0‖
∑
n≥1

e(λn−g)t(1 + λ2n) + C0〈K0,β〉‖β−
1
σN‖

∑
n≥1

1 + λ2n
|λn − g|

e(λn−g)t.

Note that, by (15), we have λn ≤ λ1 < g for every n ≥ 1. Then, the coefficients
of the series converge in decreasing way to 0 as t→∞. Then one can conclude by
dominated convergence of series, as the coefficients of the series above are nonneg-
ative and decreasing in t, and the series above taken with t = 1 are convergent. �

Remark A.8. The following estimates on λ0 can be obtained from its representa-
tion provided in Section 2.10 of Brown et al. (2013):

(46)
1

2π

∫ 2π

0

A(θ)dθ ≤ λ0 ≤ sup
S1

|A|.

The lower bound in particular assures, given the positivity of A(·), the positivity of
λ0. The upper bound is useful to check (8),

Theorem 2.9.3 of Brown et al. (2013) also gives the following estimates for the
second eigenvalue:

λ1 ≤ sup
S1

A− 1,

useful to check (15).


