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a b s t r a c t

Deep Learning architectures can develop feature representations and classification models in an inte-
grated way during training. This joint learning process requires large networks with many parameters,
and it is successful when a large amount of training data is available. Instead of making the learner
develop its entire understanding of the world from scratch from the input examples, the injection
of prior knowledge into the learner seems to be a principled way to reduce the amount of require
training data, as the learner does not need to induce the rules from the data. This paper presents
a general framework to integrate arbitrary prior knowledge into learning. The domain knowledge is
provided as a collection of first-order logic (FOL) clauses, where each task to be learned corresponds
to a predicate in the knowledge base. The logic statements are translated into a set of differentiable
constraints, which can be integrated into the learning process to distill the knowledge into the network,
or used during inference to enforce the consistency of the predictions with the prior knowledge. The
experimental results have been carried out on multiple image datasets and show that the integration
of the prior knowledge boosts the accuracy of several state-of-the-art deep architectures on image
classification tasks.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Deep Learning [1,2] has been a break-through for several
lassification and recognition problems. This success has been
ossible because of the availability of large amounts of training
ata, increased chip processing abilities, and the availability of
ell designed and general software environments. In particular,
onvolutional Neural Networks (CNNs) [3] are very effective in
omplex pattern recognition tasks like image and video classifica-
ion, and image segmentation. Deep neural networks have major
isadvantages like their heavy dependency on a large amount
f labeled data, which is required to develop powerful feature
epresentations. Unsupervised data has been playing a minor role
o far in the development of deep learning frameworks, and it has
een only used to drive a proper initialization of the weights in
pre-training phase [4,5]. Unfortunately, it is difficult and labor

ntensive to manually annotate huge datasets in the era of big

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.
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data. Therefore, to convert the empirical success of deep learning
into a scalable solution, prior knowledge can be incorporated into
the learners along with a smaller amount of labeled examples.
Indeed, injecting prior knowledge in the learning framework can
potentially allow to find better models by restricting the space
where the learner should search its parameters. This mode of
learning is more aligned to how the human brain seems to work,
where high level knowledge and low level sensory inputs play
a joint role in the development of human cognition abilities.
Another limitation of deep architectures is that they mainly act
as black-boxes from a human perspective. This makes their usage
challenging in failure critical applications. The black-box behavior
is both on the output side, which is hard to interpret, and on
the input side which does not allow to encode human inten-
tions [6]. This limitation can also be addressed by integrating logic
rules into deep learners to encode human intentions and domain
knowledge into the models to regulate the learning process.

This paper presents a constraint-based learning framework to
inject prior knowledge into a deep learner. A fully differentiable
generalization of First Order Logic (FOL) is used to express the
prior knowledge about the learning task at hand. The clauses
of the knowledge are converted into a set of differentiable con-

straints, which are enforced during training together with the
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itting of the supervised data. The framework is agnostic with re-
pect to both the learner and injected prior knowledge, allowing
arge flexibility and a wide range of applications.

The experimental focus of this paper is on image classification,
nd shows the importance of the integration of prior knowledge
or the improvement of many deep architectures on large-scale
mage classification datasets. This has been possible thanks to
he definition of a constraint-based framework to integrate logic
nowledge into any deep neural learner using a back-propagation
chema, which can be transparently applied during the train and
est phases, and the definition of an improved optimization pro-
edure that makes learning and inference feasible at the required
cale.
The structure of the paper is the following: Section 2 presents

ome prior work in the literature about learning with constraints
nd image classification, Section 3 presents the framework de-
eloped in this paper to train classifiers respecting the available
rior knowledge, and Section 4 presents the experimental results.
inally, Section 5 draws some conclusions and discusses future
ork in this area.

. Related works

The methodology presented in this paper finds its roots and
nspiration in the work carried out by the Statistical Relational
earning (SRL) community, which has proposed various proba-
ilistic logic frameworks to integrate logic inference and probabil-
ty like Markov Logic Networks (MLN) [7], Hidden Markov Logic
etworks [8], Probabilistic Soft Logic [9] and Problog [10].
However, bridging the gap between symbolic-based proba-

ilistic reasoners, like the ones proposed by the SRL community,
nd sub-symbolic learning methods like neural networks is still
n open research problem. For this reason, the integration of logic
nference and learning has recently attracted a lot of interest. In
he context of neural networks, hybrid approaches integrating
ogic reasoning and learning have been called neuro-symbolic
pproaches [11,12].
Semantic Based Regularization (SBR) [13,14] integrates a per-

eption and a reasoning module in a hybrid learning system,
here FOL clauses express the prior knowledge, relaxed into
continuous fuzzy representation integrated into the training
bjective. SBR was initially proposed for Kernel Machines as
nderlying learners but it can be easily extended to any other
radient-based learner. A preliminary application of SBR to image
lassification using neural networks was presented by Roychowd-
ury et al. [15,16]. This paper significantly extends this previous
ork by defining a more general constraint-based approach to

nject FOL into learning and with a much larger experimental
valuation.
Logic Tensor Networks (LTN) [17] is a neuro-symbolic ap-

roach that employs the same translation of the prior knowledge
sed by SBR to inject prior knowledge into neural networks.
nlike the methodology proposed in this paper, LTNs are limited
o the application of the knowledge at training time. As shown
y the experimental results, it is of fundamental importance to
mploy the knowledge also during inference time, as there is no
uarantee that the networks can distill non-trivial inference paths
n their weights.

All the previously discussed neuro-symbolic approaches rely
n the semantics of fuzzy logic to define the reasoning process.
t is generally assumed to be equivalent to consider fuzzy logic
easoning from a syntactic or semantics point of view [18], as
he syntactic manipulations and semantics of fuzzy logic are con-
istent for all sound and complete fuzzy theories [19]. However,
yntactic approaches would have strong computational limita-
ions, because of the explosion of possible manipulations with a
2

non-zero degree of truth. On the other hand, as shown in this
paper, the semantics of fuzzy logic allow to cast the reason-
ing process into a supervised learning setup, which enables an
efficient and parallel, although implicit, logic reasoning process.

Hu et al. [20] presets an iterative distillation method that
transfers structured information of first-order logic rules into the
weights of the neural networks. The framework is agnostic to
the type of neural architecture that can be used. However, this
distillation method only happens only at training time, with no
generalization guarantees on the test data. The work from Xu
et al. [21] introduces a semantic loss based on circuit compilation
techniques [22] to bridge the gap between neural learning and
logical constraints. Like the previous approach, this framework
does not allow to apply the constraints at inference time and their
experimental evaluation is only restricted to solve multi-class
classification tasks.

Relational Neural Machines [23] integrate deep learners and
MLN-like logic reasoning into a single graphical model, which co-
trains the parameters of the symbolic and sub-symbolic layers.
The methodology is very general and flexible like required for
image classification tasks. However, RNMs but it could not scale
up to problems of the size considered in this paper, since it would
not be possible to compute the partition function for the fully
grounded FOL knowledge.

The integration of logic programming with artificial neural
networks has been applied to specific applications like breast
cancer detection [24] and short text classification [25]. Semantic
Sensitive Tensor Factorization (SSTF) [26] that incorporates the
semantics expressed by an object vocabulary or taxonomy to
tensor factorization. However, these methodologies build an ah-
hoc integration of the domain knowledge and lack the generality
and flexibility required to deal with generic domain knowledge
in image classification tasks.

DeepProbLog [27] extends the popular ProbLog [10,28] frame-
work with predicates that are approximated via neural networks.
DeepProbLog defines a distribution over logic programs.

Another recent line of research focuses on developing differen-
tiable frameworks for logical reasoning. For example, Rocktäschel
et al. [29][30] presents a theorem prover based on the Prolog
backward chaining algorithm known as Neural Theorem Prover
(NTP). NTP is differentiable with respect to symbol representa-
tions in a knowledge base (KB) and, therefore, can learn any
representations of predicates, constants and also first-order logic
rules of predefined structure using back propagation. An NTP
encodes relations as vectors using a frozen pre-selected func-
tion. This can therefore be ineffective in modeling relations with
complex and multifaceted nature. This line of research employs
neural networks to embed the symbols into a continuous space
where it is possible to establish a more flexible inference process.
However, these methods cannot process low level pattern repre-
sentations like the one representing images. TensorLog [31] refor-
mulates logic reasoning as a tensor-based computation. However,
TensorLog does not allow to jointly optimize the learners while
performing inference and, therefore, it only allows to stack the
learner and the reasoners into static and separate modules.

Finally, the integration of deep learning with Conditional Ran-
dom Fields (CRFs) [32] is also an alternative approach to enforce
some structure on the network output. This methodology has
been proved to be quite successful on sequence labeling for natu-
ral language processing tasks. Deep Structured Models [33,34] use
a graphical model to bridge sensorial and semantic information.
These models extend deep learners to learn complex feature
representations considering the dependencies between the out-
put random variables. The work of Chen et al. [34] proposes to
build a structured model with arbitrary graphs along with deep
features forming the potentials of a Markov Random Field (MRF).



S. Roychowdhury, M. Diligenti and M. Gori Knowledge-Based Systems 222 (2021) 106989

T
w
i
c
w

3

c
e
t
T
E

t
f
s
a
a

c

w
(
i
r

t
p

m

1

hey showed the effectiveness of these models in image tagging,
hereas Lin et al. [33] applies deep structured models to semantic

mage segmentation. Both of these works focuses on imposing
orrelations or dependencies on the output random variables
ithout any focus on logic reasoning like done in this work.

. Learning from constraints and examples

This section presents a framework which can be used to inject
omplex prior knowledge and logical reasoning into deep learn-
rs. Let us consider a multi-task learning problem where each
ask works on an input domain of labeled and unlabeled patterns.
asks can be n-ary relations where the input is a tuple of patterns.
ach input pattern is described by a tensor x ∈ Di, i = 1, 2, . . . ,

where Di is an input domain. The set of patterns in the ith domain
is indicated as xi.

Let f = {f1, . . . , fT } indicate a set of T multi-variate functions
such that fk is the function implementing the kth task. The kth
task is associated to the set of tuples Xk, which is a set of inputs
to the function built as Cartesian product of the input domains
for the task. For example if the task is unary Xk = xd(k), with d(k)
being a function returning the index of the input domain of the
task. For a binary task, Xk is the Cartesian product of the two input
domains Xk = {xd1(k) × xd2(k)}, with d1(k), d2(k) the indexes of the
first and second input domains of the kth task, respectively.

The vector of values obtained by applying the function fk to
he set of patterns Xk is indicated as fk(Xk), while f (X ) = f1(X1)∪
2(X2)∪ . . . collects the groundings for all the functions. From the
et of T functions that must be learned to solve the tasks, some
re known a priori (evidence or given functions) whereas others
re unknown functions (query or learn functions).
The T task functions have to meet a set of H constraints that

an be expressed as Φh(f (X )) = 1, where Φh : f (X ) → [0, 1]
describes the prior knowledge about the learning task. These
functionals can express properties of a single function or can
correlate the subset of functions to be learned. Learning can be
helped by exploiting these correlations, which limit the param-
eter space where good solutions can be found and, potentially,
allows to learn with less examples. Finally, a set of examples
Ek ⊂ Xk is provided as the supervised labeled data for the learning
task at hand. The weights of the tasks are indicated as w =

{w1,w2, . . .} with wk being the set of weights of the kth task.
The learning task is formulated as a constrained optimization

problem where the overall cost function is composed by a term
enforcing the fitting of the supervised data and a regularization
term, under the constraints imposed by the prior knowledge:

min
w

T∑
k=1

βk

∑
x∈Ek

L(fk(x), yk(x)) +
α

2

T∑
k=1

∥wk∥
2

s.t. Φh(f (X )) = 1 ∀h = 1, . . . ,H

here βk is the strength of the fitting of the supervised data
e.g. how much solutions should be penalized for not respecting
t), α is a meta-parameter determining the strength of the weight
egularization, Ek is the set of labeled data available for the kth
function, L(·, ·) is a loss function, yk(x) is the target output value
for the x pattern of task k.

A hard enforcement of the constraints is not often advis-
able because of the limited computational power of the learning
machine, and it would also conflict with the desired weight
regularization. Therefore, a set of slack variables can be added to
allow a soft-enforcement of the constraints:

min
w

T∑
k=1

βk

∑
x∈Ek

L(fk(x), yk(x)) +
α

2

T∑
k=1

∥wk∥
2
+

H∑
h=1

ξh

s.t. 1 − Φ f (X ) = ξ ∀h = 1, . . . ,H
h( ) h

3

Table 1
The operations performed by single units of an expression tree depending on
the inputs x, y and the t-norm used.
op t-norm

Product Lukaseiwicz Weak-Lukaseiwicz

x ∧ y x · y max(0, x + y − 1) min(x, y)
x ∨ y x + y − x · y min(1, x + y) min(1, x + y)
¬x 1 − x 1 − x 1 − x
x ⇒ y min(1, y

x ) min(1, 1 − x + y) min(1, 1 − x + y)

where ξ = {ξ1, . . . , ξH} are the slack variables, such that ξh ≥ 0 as
Φh(f (X )) ≤ 1. The Lagrangian for previous constrained problem
ranslates to the following unconstrained min/max optimization
roblem:

in
w,ξ

max
λ

T∑
k=1

βk

∑
x∈Ek

L(fk(x), yk(x)) +
α

2

T∑
k=1

∥wk∥
2
+

H∑
h=1

ξh+

+

H∑
h=1

λh (1 − Φh(f (X )) − ξh)

where λ = {λ1, . . . , λH} are the Lagrange multipliers for the
constraints.

The solution can be found at the saddle point, such that: ∂L
∂λh

=

− Φh(f (X )) − ξh = 0. Substituting this condition back in the
Lagrangian, we get the following unconstrained problem:

min
w

T∑
k=1

βk

∑
x∈Ek

L(fk(x), yk(x))+
α

2

T∑
k=1

∥wk∥
2
+

H∑
h=1

(1 − Φh(f (X )))

(1)

This constraint-based formulation allows to efficiently get ad-
vantage of the often widely available unsupervised or partially
supervised data as the constraints should be respected on all
patterns. The following section shows how to integrate logic
knowledge into the framework presented in this section.

3.1. Constraints and logic

First-order logic is a general and expressive mean to express
the knowledge for most learning problems. FOL predicates are
either fully known a priori for all possible groundings or are
approximated via the functions that are learned, constants can
be used to address single patterns and quantifiers can be used
to express a behavior that should happen on all or a subset of
patterns. Fuzzy FOL relaxes FOL knowledge into a real valued
constraint by using t-norms [35] to compute the degree of sat-
isfaction of the rule for a given grounding of the variables. The
degree of satisfaction of a FOL formula is obtained by iteratively
grounding the variables in a formula and combining the values
using an aggregation operator, which represents the quantifier.

Grounded Expressions. T-norms [35] can be used to convert
a propositional logic expression into a continuous and differ-
entiable logical constraint. A t-norm fuzzy logic is defined by
its t-norm t(a1, a2) that models the logical AND (∧). A t-norm
expression behaves as classical Boolean logic when the variables
assume crisp values: 0 (false) or 1 (true).

Given a variable ā with continuous generalization a in [0, 1],
its negation ¬ā corresponds 1 − a. The ∨ operator modeling
logical OR is named t-conorm, and its semantic is also defined for
each t-norm. Different t-norm fuzzy logic variants have been pro-
posed in the literature. Table 1 details the operations computed
for the different logic operators for the most common t-norms. In
particular, the Weak Lukasiewicz t-norm [36] has been recently
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Fig. 1. Forward propagation of the values in the expression tree of a FOL formula
∀x [¬A(x)] ∨ [B(x) ∧ C(x)] for the single grounding when using the product t-
orm. The output of the root node returns a value in [0, 1] corresponding to
he evaluation of the rule for the grounding.

roposed for translating logic inference into a differentiable opti-
ization problem, since it defines a large class of clauses which
re translated into convex functions. For this reason this t-norm
as been used in the experimental section of this paper.
A grounded expression is a FOL rule, whose variables are

ssigned to specific constants. An expression tree is built for each
onsidered grounded FOL rule, where the basic logic operations
¬, ∧, ∨) are replaced by a unit computing the logic operation
using a t-norm. The expression tree takes the output values of
the grounded predicates as input, then it recursively computes
the output values of all the nodes in the expression tree. The
resulting value at the root evaluates the expression for the input
grounded predicates. For example, consider the rule ∀x[¬A(x)] ∨

B(x) ∧ C(x)] where A, B, C are three predicates that must be
pproximated (via learning) by the unknown functions fA, fB, fC .
or any given grounding, the expression tree returns the output
alue: tE(f (x)) = 1 − fA(x) + fA(x) · fB(x) · fC (x). Fig. 1 shows

the expression tree and the computation that is performed for
the previous FOL rule grounded with x. As another example, lets
consider the same rule but using the Weak Lukasiewicz t-norm as
reported in Table 1, the expression tree returns the output value:
tE(f (x)) = min(1, 1−fA(x)+min(fB(x), fC (x))) for a given grounding
x.

Quantifiers. FOL typically uses two quantifiers to describe
over which constants a rule holds. The universal quantifier (∀)
and the existential quantifier (∃) express the fact that a clause
should hold true over all or at least one grounding. The degree of
truth of a formula containing an expression E with a universally
quantified variable xi is translated into the average of the t-norm
generalization tE(·), when grounding xi over Xi. For the example
represented in Fig. 1, the conversion of the clause would yield the
following functional:

Φ(f (X )) =
1

|X |

∑
x∈X

tE(f (x)) =
1

|X |

∑
x∈X

1− fA(x)+ fA(x) · fB(x) · fC (x)

where |X | is the size of the sample X . For the existential quanti-
fier, the truth degree is instead defined as the maximum of the
t-norm expression over the domain of the quantified variable.
When multiple universally or existentially quantified variables
are present, the conversion is recursively performed from the
outer to the inner variables as already stated.

3.2. Back-propagation with logic constraints

Eq. (1) representing the cost function of the considered learn-
ing task can be optimized via gradient descent, since the Φh(·) are
ifferentiable with respect of the function values and parameters.
4

Fig. 2. The back propagation of the error over the expression tree for the
grounding x = x̄ of the FOL rule ∀x[¬fA(x)] ∨ [fB(x) ∧ fC (x)] using the product
t-norm. The back propagated error reaches a leaf node and it is passed as error
derivative for a further back propagation pass over the network implementing
the function in the leaf node.

The derivative of the cost function with respect to the jth weight
of the ith function wij is computed as:

βi

∑
x∈Ei

∂L(fi(x), yi(x))
∂ fi

·
∂ fi
∂wij

+ αwij −
∑
h

∂Φh

∂ fi
·

∂ fi
∂wij

assuming that fi(·) is implemented by a neural network, ∂ fi
∂wij

is
omputed via back propagation over the network.
On the other hand, ∂Φh

∂ fi
can be computed via back propagation

ver the expression tree. In particular, the forward propagation
ver the network is performed for each single grounding of the
ariables, then the satisfaction error E of the rule is computed

based on the value at the root of the expression tree. The com-
putation of the gradient with respect to the model weights is
performed by using the chain rule backward over the expression
tree: ∂E

∂on
=

∂E
∂op(n)

·
∂op(n)
∂on

where on is the output of the node n in
he expression tree, p(n) indicates the parent of node n in the tree.
he root node is assumed to be the node 0 for which o0 = tE (f (x))

and the derivative error at the root node is: ∂E
∂o0

= −
∂Lc
∂Φk

.
This establishes an efficient gradient computation schema over

the expression tree, where the error of the considered constraint
is back-propagated from the root to the leaves. Fig. 2 shows the
back propagation of the error for the example used across this
paper ∀x[¬fA(x)] ∨ [fB(x)∧ fC (x)]. At the bottom of the expression
tree, the error reaches a leaf node, and it triggers a further back-
propagation pass over the network implementing the function
stored in that node.

3.3. Collective classification

Collective classification (CC) [37] is one of the basic Statistical
Relational Learning (SRL) tasks. CC performs inference over a set
of instances that are not independent, but correlated via a set
of relationships. In this context, collective classification is used
to refine the function output to be consistent with the available
FOL knowledge. When the prior knowledge is employed during
training time, the learning process encodes the knowledge into
the parameters of the networks. However, there is no guarantee
that the prior knowledge will be respected by the outputs on
the test patterns, either because poor generalization or lack of
predictive power of the selected architecture. Hence, the role of
collective classification is to enforce the constraints also on the
test data.

In particular, we indicate as fk(X ′

k) the vector of values ob-
tained by evaluating the function fk over the input tuples of the
test set X ′

k. The overall set of outputs can be collected into a single
tensor: f (X ′) = f1(X ′

1) ∪ · · · ∪ fT (X ′

T ). The framework also admits
the case where no training has been performed for a generic
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s

unction fk. In this case, fk(X ′

k) is assumed to be just filled with
efault initial values equal to 0.5.
Collective classification can be formulated as a minimization

roblem that searches for the values f̄ (X ′

k) = f̄1(X ′

1)∪· · ·∪ ¯fT (X ′

T )
especting the FOL formulas on the test data, while being close to
he prior values established by the neural networks. This can be
xpressed as:

min
f̄ (X ′)

T∑
k=1

βk

∑
x∈X ′

k

L(fk(x), f̄k(x))

s.t. Φh(f̄ (X ′)) = 1, ∀h = 1, . . . ,H

Adding the slack variables and imposing the conditions on the
addle point, the following unconstrained problem is obtained:

min
f̄ (X ′)

T∑
k=1

βk

∑
x∈X ′

k

L(fk(x), f̄k(x)) +

H∑
h=1

(
1 − Φh(f̄ (X ′))

)
(2)

The learning task defined by Eq. (2) closely resembles the one
defined by Eq. (1) with the difference that during collective clas-
sification, the weights of the trained neural network are fixed, and
no back propagation down to the network weights is performed.
Furthermore, the network outputs provide a prior to collective
classification that acts the same role of the supervised examples
during training. It is worth noticing that, since the train and test
data are expected to be drawn from the same distribution, the
inference step performed via collective classification can soundly
reuse the same βk values used during training. Therefore, collec-
tive classification has no effect on the overall complexity of the
tuning process, as the number of meta-parameters remains the
same.

3.4. Optimization

The cost functions defined by Eqs. (1) and (2) pose two issues.
On one side, direct optimization is not easy because the Φh(·) can
e non-convex and with a large number of local minima [14].
urthermore, the equations introduce many meta-parameters
k, k = 1, . . . , T , whose values must also be carefully selected.
nfortunately, the number of functions can be very high in some
pplications like the ones presented in this paper. Therefore, an
xhaustive grid search is not feasible. This section discusses some
ptimization heuristics used to alleviate these issues and to make
raining effective even in complex and large learning tasks.

Convexity and training phases. There is a large class of
ogic statements that have been shown to translate into con-
ex constraints [38]. If restricting to a knowledge base with
ules in this convex fragment, the resulting optimization prob-
em is not harder than training the networks to fit the super-
ised data. For example, all universally quantified clauses us-
ng definite clauses correspond to convex constraints. Therefore,
he following optimization strategy has been employed in the
xperiments:

1. solve the optimization problem stated by Eq. (1) (or Eq. (2)
during CC) using only the convex constraints. This allows
to efficiently find a good initial approximation of the best
solution;

2. add the non-convex constraints and continue the optimiza-
tion until convergence.

Meta-parameter validation. Collective classification corrects
he output of the networks to be consistent with the prior knowl-
dge. The first term of Eq. (2) determines how much to penalize
olutions deviating from the priors provided by the output of the
eural networks. This cost may not be constant for all predicates,
ut it can depend on how reliable the output of a predicate is. In
5

articular, by relying on the accuracy measured over a validation
et, it is possible to scale the penalty of the kth predicate as:

k = β · Acc(fk(X v
k )) ,

here Acc(fk(X v
k )) is the accuracy of the kth task on the input

uples X v
k for in the validation set, and β is a single meta-

arameter to scale the overall cost. Therefore, the collective clas-
ification task is reformulated as the following problem which
as a single meta-parameter, which can be easily optimized by
ross-validation:

min
¯(X ′)

β

T∑
k=1

Acc(fk(X v
k ))

∑
x∈X ′

k

L(fk(x), f̄k(x)) + +

H∑
h=1

(
1 − Φh(f̄ (X ′))

)
(3)

sing this heuristic, it is possible to make the information primar-
ly flow from the predicates which are mostly correct to the less
eliable one. This selection of the parameters helps the inference,
llowing a simple and efficient meta-parameter tuning process.

.5. Training and inference modes

The constraint-based framework defined in this paper is very
lexible and can be used in different ways to improve the accuracy
f a generic classifier:

• Knowledge Distillation (KD): the FOL knowledge base is
used to force the underlying model to respect the rules. The
training task expressed by Eq. (1) is used to inject the knowl-
edge into the network weights. This distillation process is
particularly useful in transductive [39], partially labeled or
semi-supervised settings, where unsupervised data is avail-
able during training. Indeed, the networks should respect
the knowledge also on the unsupervised data. Therefore,
enforcing the knowledge is a powerful and principled way
to get advantage of the unsupervised data, which often plays
a minor role in deep learning. For the image classification
datasets considered in this paper, knowledge distillation
can be performed by forcing the networks to respect the
knowledge on all patterns (train, validation and test) by
assuming a transductive context during training.

• Collective Classification (CC): the trained CNN model is
considered as frozen with respect to the available knowl-
edge. The knowledge is instead enforced during the infer-
ence phase using the optimization problem defined by Eq. (2)
or (3).

• Knowledge Distillation and Collective Classification: the
logical knowledge is enforced both during train and test by
solving the optimization problem defined by Eqs. (1) and
then using the output function values to instantiate a CC
step using Eq. (2) or (3). As shown by the experimental
results, enforcing the knowledge also at inference time is
effective, even if the knowledge was already distilled in
the network weights. Indeed, there is still no guarantee
that the network output will respect the logic knowledge,
either because of a lack of generalization, or the non-infinite
approximation capabilities of the networks.

. Experimental results

The experimental results have been performed on the CIFAR-
0, CIFAR-100 and ImageNet image-classification benchmarks,
tudying the impact of the different training procedures on the
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able 2
est set error rate (%) for the 10 final classes on CIFAR-10 and with collective
lassification over the network outputs for different deep architectures. CNN:
aw network output, CC: collective classification over the network output,
C+O: collective classification using predicate specific meta-parameters KD+CC
ollective classification over the KD-enhanced networks, KD+CC+O collective
lassification over the KD-enhanced networks using predicate specific meta-
arameters. Bold values mark a relative reduction of the error rate of 5% or
ore e.g. error < cnn_error × 0.95.
Model CNN CC CC+O KD KD+CC KD+CC+O

NIN-50 8.81 8.71 8.66 8.20 8.12 8.07
Res-32 7.51 7.09 6.88 6.85 6.60 6.50
Res-110 6.61 5.96 5.54 5.52 5.13 4.91
Res-164 5.93 5.76 5.53 5.20 4.92 4.70
Res-1202 7.93 5.17 5.07 4.91 4.74 4.50
PRes-110 6.37 6.15 6.10 5.88 5.82 5.72
PRes-164 5.46 5.20 5.15 5.02 4.98 4.90
PRes-1202 6.85 6.05 6.01 5.80 5.72 5.60
APN-110, α = 48 4.62 4.60 4.43 4.01 3.84 3.72
APN-164, α = 84 3.96 3.95 3.66 3.10 2.81 2.70
APN-236, α = 220 3.40 3.40 3.31 2.80 2.75 2.60
APN-272, α = 200 3.31 3.30 3.22 2.70 2.61 2.50

final classification performances.1 Furthermore, several ablation
tudies have been performed to show how the prior knowledge
an help in conditions where the training data is scarce. In all
he reported experiments, we label the results using the following
onvention:

• CNN: results obtained using a deep CNN network without
any application of the prior knowledge. These entries re-
fer to the results obtained by applying the networks as
proposed in the corresponding original work.

• CC: collective classification is performed over the CNN net-
work outputs to enforce the consistency with respect to the
prior knowledge. The collective classification step provides
the actual considered output.

• CC+O: like CC but the predicate-specific meta-parameters
have been adjusted using the procedure defined in Eq. (3).

• KD: results obtained by retraining the networks in a trans-
ductive context, where the knowledge is distilled into the
network weights by enforcing its respect on all the avail-
able data during training. The final classification is directly
obtained from the network outputs.

• KD+CC: starting from the network outputs obtained in the
KD step, a collective classification step is triggered to fur-
ther enforce the knowledge consistency on the predictions.
The results are computed over the output of the collective
classification step.

• KD+CC+O: like KD+CC but the predicate-specific meta-
parameters have been adjusted using the procedure defined
in Eq. (3).

The Weak Lukaseiwicz t-norm has been used across all the
eported experiments, because the initial tests showed that it was
roviding the most stable training and a final accuracy that was
lways comparable with the best obtained by the other t-norms.
his confirms the theoretical results presented in [38].

.1. CIFAR-10

The CIFAR-10 dataset [40]2 is a popular image classification
enchmark, composed of 50,000 training and 10,000 test images.

1 Code and instructions on how to replicate the experiments can
e downloaded from https://sites.google.com/view/regularizingdeepnetworks/
ome.
2 https://www.cs.toronto.edu/~kriz/cifar.html
6

Table 3
Test set error rate (%) on CIFAR-10 for Resnet-32 with when varying the amount
of training data. %Patterns refers to the percentage of data used in training. CNN,
CC and CC+O refer to the baseline CNN with collective classification applied on
the output of the networks with constant and variable regularizers, respectively.
KD, KD+CC, KD+CC+O refer to the results obtained using the previous training
setups but also applying knowledge distillation during training. Bold values mark
a relative reduction of the error rate of 5% or more e.g. error < cnn_error ×0.95
Model %Patterns CNN CC CC+O KD KD+CC KD+CC+O

Res-32 10 26.62 25.51 25.10 25.04 24.65 24.13
Res-32 20 18.61 17.89 17.70 17.52 17.17 16.84
Res-32 50 12.14 11.99 11.90 11.83 11.46 11.09

Table 4
Sample of the prior knowledge used for the experiments on CIFAR-10.
∀x ANIMAL(x) ∨ TRANSPORT(x)
∀x TRANSPORT(x) ⇒ AIRPLANE(x) ∨ SHIP(x) ∨ ONROAD(x)
∀x ONROAD(x) ⇒ AUTOMOBILE(x) ∨ TRUCK(x)
∀x SHIP(x) ⇒ TRANSPORT(x)
∀x AUTOMOBILE(x) ⇒ ONROAD(x)
∀x ANIMAL(x) ⇒ BIRD(x) ∨ FROG(x) ∨ MAMMAL(x)
∀x BIRD(x) ⇒ ANIMAL(x)
∀x AIRPLANE(x) ⇒ TRANSPORT(x)
∀x MAMMAL(x) ⇒ CAT(x) ∨ DEER(x) ∨ DOG(x) ∨ HORSE(x)
∀x FLY(x) ⇒ BIRD(x) ∨ AIRPLANE(x)
∀x ¬ FLY(x) ⇒ CAT(x) ∨ DOG(x) ∨ HORSE(x) ∨ DEER(x) ∨ . . .

∀x CAT(x) ⇒ ¬ FLY(x)
∀x DEER(x) ⇒ ¬ FLY(x)
∀x TRUCK(x) ⇒ ¬ FLY(x)
∀x AUTOMOBILE(x) ⇒ ¬ FLY(x)
∀x BIRD(x) ⇒ FLY(x)
∀x AIRPLANE(x) ⇒ FLY(x)

Each pattern in the dataset is a 32 × 32 RGB natural image
belonging to one of the 10 classes: AIRPLANE, AUTOMOBILE, BIRD,
CAT, DEER, DOG, FROG, HORSE, SHIP, and TRUCK. Using WordNet3
and additional common knowledge, the 10 leaf classes have been
recursively mapped into their hypernomy (a more general con-
cept) obtaining a hierarchical taxonomical structure composed
by 15 total classes. The taxonomy can be expressed via FOL by
expressing that any pattern belonging to a leaf class belongs
also to its parent class, for example with the rule ∀x CAT(x) ⇒

AMMAL(x). On the other hand, any pattern belonging to a high-
evel general class must also belong to one of the child classes in
he hierarchy, for example a rule in this class is the following: ∀x
RANSPORT(x) ⇒ AIRPLANE(x) ∨ SHIP(x) ∨ ONROAD(x). Finally,

any pattern belonging to one leaf class cannot belong to a class
corresponding to a different hypernomy like for the rule: ∀x
DEER(x) ⇒ ¬ FLY(x). Table 4 shows a sample of the 33 rules that
have been used for this task.

The knowledge base correlates the 10 output predicates with
new intermediate ones derived from the hierarchical information
of WordNet. These tasks are learned by the neural networks via
additional output layers. During the distillation phase, the prior
knowledge enforces the semantic consistency among the outputs
of the trained classifiers. In the collective classification phase,
this knowledge can be further enforced on the outputs when the
network did not correctly generalize and failed to respect the
rules.

Multiple state-of-the-art neural network architectures have
been tested on this benchmark. In particular, Network in Network
Models (NIN) [41], Residual Networks (Res) [42], Pre-activated
(PRes) [43] and Pyramidal Residual Networks APN) [44] have been
employed selecting the same setup reported in the corresponding
original papers. Additionally, the same architectures have been
trained with KD, and CC has been applied on their outputs.

3 https://wordnet.princeton.edu

https://sites.google.com/view/regularizingdeepnetworks/home
https://sites.google.com/view/regularizingdeepnetworks/home
https://www.cs.toronto.edu/~kriz/cifar.html
https://wordnet.princeton.edu
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able 5
IFAR-100 test set error rate (%) for the 100 fine classes for different archi-
ectures. CNN: baseline network output, CC: collective classification over the
etwork output, CC+O: collective classification using predicate specific meta-
arameters, KD+CC: collective classification over the KD-enhanced networks,
D+CC+O: collective classification over the KD-enhanced networks using predi-
ate specific meta-parameters. Bold values mark a relative reduction of the error
ate of 10% e.g. error < cnn_error × 0.9.
Model CNN CC CC+O KD KD+CC KD+CC+O

Res-32 29.5 27.4 27.0 25.8 25.2 24.8
Res-110 25.2 22.8 22.6 22.7 22.0 21.2
Res-164 25.2 22.8 22.6 22.3 21.9 20.5
PRes-164 24.3 22.6 21.2 21.5 21.0 19.8
APN-110, α = 84 20.2 19.1 19.0 18.9 18.6 17.1
APN-110, α = 270 18.3 17.2 17.1 16.5 16.1 15.4
APN-164, α = 84 18.3 17.3 17.2 16.0 15.6 14.8
APN-164, α = 270 17.0 16.0 15.9 15.8 15.4 14.2
APN-236, α = 220 16.4 15.4 15.2 14.9 14.7 12.6
APN-272, α = 200 16.4 15.3 15.0 14.4 14.1 12.0
MPN-110, α = 27 18.8 17.7 17.3 16.7 16.2 14.4
WRes-16, γ = 8 22.1 21.0 20.9 20.8 20.3 20.3
WRes-28, γ = 10 20.5 19.7 19.2 19.0 18.8 17.1
WRes-40, γ = 4 22.9 20.7 20.5 20.4 20.1 19.1
WRes-D-28, γ = 10 20.0 19.1 19.0 18.6 18.1 18.2
WRes-D-RE-28, γ = 10 17.7 15.6 15.5 15.0 14.9 14.8
WRes-D-C-28, γ = 10 15.2 14.1 14.0 13.5 13.0 12.0

Table 6
Test set error rate (%) for the 10 final classes on CIFAR-100 for Resnet-32 when
varying the amount of training data. CNN: baseline network output, CC: col-
lective classification over the network output, KD+CC+O collective classification
using predicate specific meta-parameters. KD, KD+CC, KD+CC+O refer to the
results obtained using the previous training setups but also applying knowledge
distillation during training. Bold values mark a relative reduction of the error
rate of 10% e.g. error < cnn_error × 0.9.
Model %Patterns CNN CC CC+O KD KD+CC KD+CC+O

Res-32 10 43.44 41.57 40.10 39.85 39.10 38.76
Res-32 20 39.27 38.18 37.40 36.90 36.40 36.01
Res-32 50 34.56 33.91 31.04 30.89 30.75 30.64

Table 7
Sample from the 200 rules used for CIFAR-100 experiments.
∀x REPTILES(x) ⇒ CROCODILE(x) ∨ DINOSAUR(x) ∨ . . .

∀x SMALL_MAMMALS(x) ⇒ HAMSTER(x) ∨ MOUSE(x) ∨ . . .

∀x TREES(x) ⇒ MAPLE_TREE(x) ∨ OAK_TREE(x) ∨ . . .

∀x BABY(x) ⇒ PEOPLE(x)
∀x BOY(x) ⇒ PEOPLE(x)
∀x GIRL(x) ⇒ PEOPLE(x)
∀x SNAKE(x) ⇒ REPTILES(x)
∀x TURTLE(x) ⇒ REPTILES(x)
∀x WILLOW_TREE(x) ⇒ TREE(x)
∀x LARGE_MAN-MADE_OUTDOOR_THINGS (x) ⇒ OUTDOOR(x)
∀x LARGE_NATURAL_OUTDOOR_SCENES(x) ⇒ OUTDOOR(x)
∀x MOTORCYCLE(x) ⇒ HAS_WHEELS(x)
∀x PICKUP_TRUCK(x) ⇒ HAS_WHEELS(x)
∀x TRAIN(x) ⇒ HAS_WHEELS(x)

The CC problems have been solved as reported by Eq. (2) with
constant regularizers βk = β, k = 1, . . . , T with β estimated
n a validation set composed of 5000 images held out from the
rain data. Then, the CC tasks have been solved using the per-
redicate meta-parameters as reported by Eq. (3) according to the
rocedure described in Section 3.4. Collective classification has
een performed for 300 iterations using a learning rate of 0.01.
Table 2 shows the classification error rates obtained on the

est set for the considered NN models trained on CIFAR-10. The
rror is measured on the final 10 classes as standard for this
enchmark.
Knowledge Distillation consistently provides an improvement

n the generalization capabilities of all the considered architec-
ures. Collective Classification is also very effective for all tested
7

models and, in particular, when combined with knowledge distil-
lation further reduces the error rates. Finally, the meta-parameter
validation schema proposed in Section 3.4 is also effective in
finding better solutions. When these neural networks are trained
from scratch, the training time is typically in the order of several
hours depending on the size and the complexity of the networks.
However, collective classification for 300 iterations takes only a
few minutes to perform inference over the test patterns, which
is a negligible overhead given the improvement in the classifi-
cation metrics. Improvements are especially large for very deep
networks like the 1202-layer Resnet and PreResnet which showed
significant performance degradation in the original works due
to over-fitting. Gains are smaller for the best state-of-the-art
architectures but they are still remarkably present.

An ablation study was performed by reducing the data exam-
ples during training by using only 10%, 20% and 50% of the train-
ing data. Table 3 shows the classification error rates for a Resnet-
32 layered (Res-32) deep neural network model. It emerges that
the reduction of the error rate is larger when the training data is
scarce. For example: when only 10% of the supervised examples
are used, the error rate is reduced by 2.49% by applying collective
classification to enforce the prior knowledge. On the other hand,
the error rate is reduced 1.01% from its counterpart without using
logical rules when using all the available supervised data.

4.2. CIFAR-100

The CIFAR-100 dataset is composed of 100 classes containing
600 images for each class [40].4 The images are split into a
train and test set, such that there are 500 train and 100 test
images per class, respectively. The 100 classes in this dataset are
grouped into 20 super-classes determined using the WordNet5
hierarchy. Therefore, each image comes with a fine and coarse
label, corresponding to class and super-class to which the pattern
belongs, respectively. The prior knowledge used for this task is
divided into two groups: the first group consists of 150 logic
rules that correlates the fine classes with the coarse/super classes
consisting of 100 fine predicates and 20 coarse predicates of the
taxonomy. For example, the rule ∀x BABY(x) ⇒ PEOPLE(x) belongs
to this portion of knowledge expressing taxonomical information
from WordNet. Five additional classes MAMMALS, HOUSEHOLD,
OUTDOOR, TRANSPORT, HAS_WHEELS. have been added to de-
fine a second group of knowledge rules to express additional
handcrafted semantic information like whether an object occurs
indoor or outdoor, whether it should have wheels, etc. For exam-
ple, the rule ∀x TRAIN(x) ⇒ HAS_WHEELS(x) belongs to this third
class. The resulting knowledge base is composed by 200 rules, and
a small sample of them is reported in Table 7.

Classification performances have been tested for different
deep architectures: 32, 110, 164 layered Resnets (Res) [42], 164
layered Preactivated Resnets (Pres) [43], 110, 164, 200, 236 and
272 layered Pyramidal Resnets (APN) [44], 110-layer Multiplica-
tive Pyramidal Resnets (MPN) [44], 16, 28 and 40 layered Wide
Residual Networks (WRes) [45] with the widening factor of 4, 8
and 10. Regularization technique like random erasing and cut-
out [46,47] have been applied as reported on the original paper
for 28 layered Wide Residual Networks (WRed-D) [48] (widening
factor of 10). All the deep CNN models are initialized from the
same weight initialization and trained for 150 to 300 epochs (de-
pending on the network size) with the additional classifier layers
similar to the CIFAR-10 experiments. All the hyper-parameters
and other data augmentation techniques have been employed as
reported in the original works.

4 https://www.cs.toronto.edu/~kriz/cifar.html
5 https://wordnet.princeton.edu

https://www.cs.toronto.edu/~kriz/cifar.html
https://wordnet.princeton.edu
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Table 8
Subset of the knowledge base used for the ImageNet experiments.
∀x PERSON(x) ∨ FOOD(x) ∨ ARTEFACT(x) ∨ ANIMAL(x) ∨ · · ·

∀x ANIMAL(x) ⇒ AMPHIBIAN(x) ∨ REPTILE(x) ∨ FISH(x) . . .
∀x AMPHIBIAN(x) ⇒ ANIMAL(x)
∀x REPTILE(x) ⇒ ANIMAL(x)
∀x AMPHIBIAN(x) ⇒ BULLFROG(x) ∨ TREE_FROG(x) ∨ · · ·

∀x BULLFROG(x) ⇒ AMPHIBIAN(x)
∀x TREE_FROG(x) ⇒ AMPHIBIAN(x)
∀x TAILED_FROG(x) ⇒AMPHIBIAN(x)
∀x REPTILE(x) ⇒ SNAKE(x) ∨ CROCODILIAN(x) ∨ · · ·

∀x SNAKE(x) ⇒ REPTILE(x)
∀x CROCODILIAN(x) ⇒ REPTILE(x)
∀x DINOSAUR(x) ⇒ REPTILE(x)
∀x SNAKE(x) ⇒ VIPER(x) ∨ SEASNAKE(x) ∨ ELAPID(x) . . .
∀x RATTLE_SNAKE(x) ⇒ VIPER(x)
∀x RELATIVE(x) ⇒ PERSON(x)

The classification accuracy on the test set for the final 100
lasses is shown in Table 5. An ablation study is also performed on
esnet-32 using a variable percentage of supervised data points.
able 6 shows the effect of logical constraints when 10%, 20% and
0% of supervised examples are used for training the networks
nd then applying collective classification on the outputs. It is
bserved that the reduction of the error rate is more signifi-
ant when the training data is scarce both when using fixed or
redicate-specific meta-parameters.

.3. ImageNet

ImageNet is a large and popular image database organized
ccording to the WordNet hierarchy composed of 1000 classes6
nd used by the ILSVRC challenges since 2010. In particular, the
LSVRC 2012 dataset was used for the reported experiments. This
ataset has approximately 1.3 million training images, 50,000
alidation images and 100,000 test images. Each image shows
single object and it is in an RGB and high resolution format.
he images are typically resized and cropped to 224 × 224
ixels before being processed by the CNN architectures to limit
he computational resources needed to process the dataset. Each
bject category also has several levels of hierarchy in the word
ysnets, of which we considered the top-2 levels. For example:
he category DOG corresponds to a path from the specific to
ore general categories as DOG→ MAMMAL → ANIMAL. These
emantic and hierarchical relationships are explored to enforce
he logical constraints and establish semantic consistency among
he outputs. The knowledge base correlates the 1000 output
redicates with the ones that are additionally added through
andcrafted rules or from the taxonomical structure of the sys-
ets. The overall knowledge is formed by 3210 rules, and Table 8
hows a small sample of them.
Resnets [42] with 50, 101 and 152 layers, Pre-activated

esnets [43] with 152 and 200 layers and Additive Pyramid
esnets [44] with 200 layers are used to test the image clas-
ification performance on ImageNet using this framework. The
utput layer with 1000 neurons corresponding to the 1000 leaf
redicates has been paired with two additional output layers with
600 and 5 neurons, corresponding to the intermediate and the
ost general predicates (super-classes) used in the knowledge,

espectively. Since retraining the state-of-the-art networks from
cratch for the ImageNet dataset requires a huge amount of com-
utational power, the networks are retrained for only the output
lassification layers. For this reason, no KD has been performed
or this task, but the reported results are based on CC applied on

6 https://http://image-net.org/challenges/LSVRC/
8

Table 9
Test set top-1 error rate (%) for the 1000 leaf classes on ImageNet for different
deep architectures. CNN refers to the baseline network, while CC, CC+O refer
to the collective classification error rates with constant and predicate-specific
meta-parameters, respectively. Bold values mark a relative reduction of the error
rate of 5% or more e.g. error < cnn_error × 0.95.
Model CNN CC CC+O

Res-50 24.70 24.10 23.80
Res-101 23.60 23.10 22.90
Res-152 23.05 21.20 21.30
PRes-152 22.20 21.05 20.90
PRes-200 21.90 20.90 20.30
APN-200 α=300 20.50 19.20 18.90
APN-200 α=450 20.10 18.96 18.14

Table 10
Collective classification error rates for 1000 final classes of ImageNet using a
portion (%Patterns) of the training data and collective classification to enforce
the semantic consistency of the outputs. CNN refers to the baseline network,
while CC, CC+O refer to the collective classification error rates with constant
and predicate-specific meta-parameters, respectively. Bold values mark a relative
reduction of the error rate of 10% with respect to the baseline e.g. error <

nn_error × 0.9.
Model %Patterns CNN CC CC+O

Res-50
10 36.1 33.9 33.7
20 34.2 32.2 31.8
50 30.1 27.5 26.9

APN-200, α = 300
10 33.1 32.9 32.7
20 29.6 26.9 26.8
50 25.8 23.5 23.2

APN-200, α = 450
10 32.8 29.0 28.2
20 29.2 25.9 25.5
50 25.0 20.9 20.7

the network outputs as this adds a minimal overhead (less then
1%) compared to the network training time.

The error rates on the 1000 leaf classes for the test set are
shown in Table 9 for different CNN architectures. Collective clas-
sification improves on top of the baseline (CNN) by approximately
0.6%–1.2% when using constant regularization parameters (CC)
and by approximately 1%–2.0% with the per-predicate parameters
(CC+O).

Table 10 reports the results on the ImageNet test set when
training the deep networks using a subset of the available su-
pervised data. The results show that it is possible to use only
50% of the available supervisions in combination with the logical
rules, and get a classification accuracy that is almost as high as
using 100% of the supervisions but without employing the logic
rules. This is an important outcome given the large computational
cost in training a deep network on a large dataset like ImageNet.
For example, the Additive Pyramid Resnet-200 with 1.3 million
supervised data examples but no logic rules, has a classification
error rate of 20.1%, whereas with only half of the supervised
examples and using logical constraints, the error rate obtained
by the same model in the CC+O train configuration is 20.7%.

4.4. Discussion

Knowledge distillation injects the prior knowledge into the
model weights, showing that the networks are not always able
to infer and generalize this information from the training data.
Therefore, making the knowledge explicit and distilling it into the
model improves the results in all tested configurations.

A similar effect at test time is due to collective classification,
which employs the scores of the classes at all levels of the
taxonomy to fix some of the classification errors. This also shows
that the neural networks are not able to always generalize the

https://http://image-net.org/challenges/LSVRC/
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igh level domain knowledge from the data, and enforcing it at
nference time is of very important to maximize the final accu-
acy. For this reason, neuro-symbolic methods that are limiting
heir application at training time are at a disadvantage in the
onsidered task.
It is interesting to notice that there is a significant and posi-

ive cumulative effect introduced by employing both knowledge
istillation and collective classification. Whereas KD is powerful,
here are no generalization guarantees for how the knowledge
s used on the test data. Better generalization of the domain
nowledge can be obtained by limiting the network computa-
ional power (e.g. smaller and simpler models), but this makes
arder for the network to learn the knowledge in the first place,
s the computational power is already heavily used to process the
mages. On the other hand, a complex model could learn the rules
ut it is likely to overfit them and not generalize them correctly
o the test data. For this reason, the experiments show that
he co-application of knowledge distillation during training and
ollective classification in test helps generalization and provides a
urther boost of the accuracy metric for most of the tested models.

Finally, fine tuning the parameters over the single predicates
ives extra flexibility in optimizing the trade off between enforc-
ng the logic knowledge and fitting the supervised data.

. Conclusions

This paper presents a framework to integrate general prior
nowledge into a deep learner, allowing to distill the knowl-
dge into the model weights during training and to enforce the
onsistency of the predictions at the test time. Some heuristics
ave been presented to make the underlying inference process
ractable and effective on large scale datasets. The experimental
valuation shows how the integration of semantic knowledge
nto learning improves the accuracy of several state-of-the-art
rchitectures on image classification tasks. Future work will focus
n a more scalable estimation of the rule strengths and the
utomatic learning of the prior knowledge, which should be used
longside to any available human knowledge.
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