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Abstract: Long Range Wide Area Network (LoRaWAN) has rapidly become one of the key enabling
technologies for the development of Internet of Things (IoT) architectures. A wide range of different
solutions relying on this communication technology can be found in the literature: nevertheless, the
most part of these architectures focus on single task systems. Conversely, the aim of this paper is to
present the architecture of a LoRaWAN infrastructure gathering under the same network different
typologies of services within one of the most significant sub-systems of the Smart City ecosystem
(i.e., the Smart Waste Management). The proposed architecture exploits the whole range of different
LoRaWAN classes, integrating nodes of growing complexity according to the different functions. The
lowest level of this architecture is occupied by smart bins that simply collect data about their status.
Moving on to upper levels, smart drop-off containers allow the interaction with users as well as the
implementation of asynchronous downlink queries. At the top level, Video Surveillance Units (VSUs)
are provided with machine learning capabilities for the detection of the presence of fire nearby bins or
drop-off containers, thus fully implementing the Edge Computing paradigm. The proposed network
infrastructure and its subsystems have been tested in a laboratory and in the field. This study has
enhanced the readiness level of the proposed technology to Technology Readiness Level (TRL) 3.

Keywords: smart waste management; smart city; LoRaWAN; fire detection; smart bin; smart drop-off
container; IoT; edge computing

1. Introduction

Waste production has gradually increased with the development of both urban centres
and consumer society. To render waste management systems efficient, it is important for the
collection to keep the same pace as the generation. This enables municipalities to minimize
the waste management costs and simultaneously facilitate recycling with separate collection
schemes, which effectively reduce the environmental burden of waste (global warming,
littering and so on). To this end, ad-hoc monitoring infrastructures may be set up for
example to control filling level of public waste bins. However, such facilities could only
give limited support if they would be employed per se since they lack of additional effective
features (e.g., connectivity, video surveillance and distributed computing) so as to be able to
collect a multitudinous amount of data on which Artificial Intelligence (AI) algorithms and
models may be applied. In so doing, simple data (e.g., filling level of public waste bins) may
acquire a much more valuable meaning whenever they are combined with assorted and
considerably structured data (e.g., information retrieved by cameras). In so doing, precise
estimates, forecasts and control may be ensured thus enabling preventing maintenance,
prompt decision making, optimization of bins depletion procedures and management and
widespread enforcing so as to fight and forestall acts of vandalism and service misuses.

For the purpose of solving the aforesaid problems, this paper illustrates an innovative
and heterogeneous system so as to establish a smart waste management framework bearing
in mind smart cities contexts. Indeed, it is based on a Low Power Wide Area Network
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(LPWAN) enabled by the Long Range (LoRa) Wide Area Network (LoRaWAN) protocol
whose nodes are of a threefold species so as to satisfy as much tasks: the simpler ones are
installed within public waste bins and they are in charge to diffusely monitor the relative
filling level along with the inner temperature and whether the bins were overturned or not.
The second ones are designed to be installed on drop-off containers: these nodes are more
complex since they must manage a larger number of tasks, including the interaction with
drop-off container users. The latter ones are embedded in Video Surveillance Units (VSUs)
that are especially designed so as to guard public waste bins and drop-off containers. So as
not to violate users privacy, VSUs do not perform neither images streaming nor images
storing. Actually, captured images are locally processed, thanks to the computational
capability VSUs are equipped with (and hence establishing an edge computing paradigm),
and then only non-sensitive data are broadcast via LoRaWAN. Such information may be
miscellaneous (e.g., number of people passing in front of the public waste bins, number
of individuals that use the wrong bin hampering recycling, number of people who litter
and so on): nevertheless, in the architecture proposed in this paper, image processing is
employed to detect the presence of fires only and to generate alarms accordingly. Once
that data coming from public waste bins, drop-off containers and VSUs are combined
at the LoRaWAN network server layer, all this information can be fused to generate
newer knowledge, extracting useful contents in order to achieve better predictions and
management. In so doing, a modular, heterogeneous, widespread Internet of Things (IoT)
system is set up. Summarizing, the objective is to design the architecture of a Smart Waste
Management infrastructure which is grounded on a LoRaWAN network. As it was just
introduced, this system goes beyond what similar works within the literature propose as
the bulk of them deals with the problem just by tackling it from a single perspective only.
In addition, this paper innovates the literature due to the concurrent achievement of the
following objectives by the developed prototype:
• Measurement of the filling level of either public waste bins and drop-off containers;
• Detection of vandalism to both public waste bin and drop-off containers;
• Localization of drop-off containers;
• Users authentication;
• Video surveillance without harming people privacy;
• Establishment of an edge computing paradigm;
• Accomplishment of a higher level of data abstraction starting from simple information

acquired by public waste bins, drop-off containers and VSUs;
• Arrangement of a LoRaWAN network including all the device classes the protocol

addresses;
• Creation of an infrastructure serving as a potential backbone for all those facilities

not relying on high bit-rates but needing of a pervasive monitoring network topology
within the broad context of Smart Cities.
Moreover, while the architecture of the sensor nodes to be installed inside bins was

partially described (exploiting only LoRa technology without implementing the LoRaWAN
protocol though) in previous works [1,2], the architecture, as well as the operational
principle exploiting customized LoRaWAN networking, of the other two types of nodes is
at our knowledge novel in literature, together with the overall multi-purpose LoRaWAN
architecture.

The rest of the paper is composed as follows. Section 2 reports related works within
the literature, while Section 3 gives the detailed system overview. In Section 4 tests method-
ology and set up are introduced and the relative results are presented , and discussed in
Section 5. Eventually, Section 6 highlights conclusions and final remarks.

2. Related Works

The most simple method to make waste collection more efficient is remote monitoring
of the state of public waste bins. With real-time accurate data on the filling levels of
public waste bins the most efficient collection vehicle route can be executed, avoiding
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superfluous emptying of bins that are insufficiently filled and also too late emptying of
bins that are over-filled. The literature is plenty of related works trying to solve this issue
in such a way and even the authors put forth their contribution in previous works [1,2]:
the former introduced a prototype of low power smart public waste bin that was able
to measure and remotely send, by means of a LoRa network, its filling level exploiting
an off-the-shelf ultrasonic sensor; the latter improved the prototype that was previously
shown by substituting the ultrasonic sensor with a waterproof one which was enclosed
within a custom designed cap so as to refine its radiation lobe. Moreover, the literature
pointed out the potential benefits of a smart waste management system either in smart
cities contexts [3] and in professional and commercial environments [4].

Several studies suggested to monitor filling level by employing the same off-the-shelf
ultrasonic sensor of [1]. In addition, some of these studies monitored the level of garbage
by coupling the bins filling level and weight, as it is presented in [5], even though the
measure of weight is not always reliable since different kind of wastes have different
specific weight. Along with filling level, also inner temperature and ratio of carbon dioxide
to oxygen may be sampled and remotely forwarded by means of cellular modules, with
the aim of optimizing waste collection by resorting to the ant colony algorithm and, at the
same time, to forecast garbage level by leveraging on data mining approaches [6]. Carbon
dioxide is not the only gas which may exhale form public waste bins. Indeed, garbage
tends to produce smelly gases as long as it remains within bins. To this end, Misra et al. [7]
developed a system to monitor such a phenomenon together with bins status. Moreover,
biodegradable wastes are prone to produce methane [8] which is a hazardous gas. Hence,
in [9] an IoT system based on smart bins that are capable of sensing such a phenomenon
along with other quantities (e.g., the filling level) was realized. Cellular technologies, in
particular Global System of Mobile Communications (GSM) and General Packet Radio
Service (GPRS), were also exploited in [10,11]: in the former smart public waste bins send
Short Message Service (SMS) notices containing their filling level, while in the latter bins
complete status is transmitted by exploiting the aforesaid cellular technologies. In the same
vein, also [12,13] took advantage of SMSs to notify bin filling. However, communication
over GSM/GPRS entails pretty high running costs though and hence it is far preferable to
move towards other technologies. Enabling smart bins with WiFi, as it is shown in [14–16],
could be a remedy but, as a drawback, coverage needs to be widely ensured.

Even though off-the-shelf ultrasonic sensors may perform quite well, especially for
prototypical stages, they are characterized by two major downsides: most of the times they
are not waterproof and they have too wide radiation lobes to be employed in any situation.
This was the main reason why the authors investigated the solution proposed in [2]. In the
same way, also [17,18] adopted the same ultrasonic sensor: the former in order to perform a
smart waste bin, while the latter so as to realize a water level monitoring system. However,
there exists other kind of finer ultrasonic sensors which may be compared with the one
of [2]. An instance is the one reported in [19] where one of those is utilized to transform
a public waste bin in a smart one so as to accomplish a smart waste management system
which also accounts for algorithms for the depletion procedure planning.

Albeit ultrasonic sensors are the most suitable and robust ones whenever the operating
scenario is dusty and subject to debris, residues and filth (e.g., within public waste bins),
even infrared sensors were taken into account in spite of the fact that their performances
could be hindered by operating circumstances. For instance, such sensors were exploited
in [20,21]: unfortunately, though, since they were placed at the bin upper rim, they could
only detect the moment in which the bin gets full rather than its filling level.

One of the targets a smart waste management system should aim at is the incentiviza-
tion of recycling. Such a task becomes even tougher to achieve in massively crowded place.
Possible solutions are mechanical recovery of the collected waste or in-line sorting within
the bin. Such a system was described in [22] where Makkah and holy sites were considered
as case study. Another feature that smart waste management could offer, could be to assess
the fees for that service based on its use. This could be accomplished by embedding a
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Radio Frequency Identification (RFID) reader in public waste bins, along with all those
components that make them smart, while users should be given with RFID tags. In so
doing, wastes could be only thrown provided that users identified themselves beforehand.
This idea was developed in the study published in [23].

Waste management may also include the control of wastewater tanks and basins.
To this end, Ref. [24] devised a virtual sensor networks whose nodes are drones which are
in charge to sample water coming from those basins by means of an especially developed
probe. Waste management quality of service may be also enriched by taking advantage of
VSUs along with the deployment of smart public waste bins. Indeed, data coming from
cameras and data coming from bins may be collected and jointly analyzed so as to notify
whenever garbage fills up bins [25]. Sadly, though, whenever cameras are employed within
smart cities, privacy issues may easily arise [26]. Hence, images should be processed in
advance aiming at extracting meaning features so not to violate inhabitants privacy: that
was the basic idea standing behind the way VSUs work in this paper. Thus, on the one hand
people privacy remains unharmed and, on the other hand, an edge computing paradigm is
implicitly set up thanks to computational capability of VSUs.

Nowadays, edge and fog computing are increasingly gaining momentum with respect
to cloud computing. Indeed, while some time ago huge amounts of data were centrally
processed at a cloud level thus increasing network traffic and latency, in recent years such
a computational burden has been decentralized thus taking place at terminal nodes of
the network (i.e., edge computing) or at a distributed widespread level of the network
(i.e., fog computing), thus leaving the cloud for data storage and just few light computing
operations. In so doing, only valuable data, or at least compact formats of the original,
will flow through the network and, as a direct consequence, both traffic and latency
would be reduced. Some surveys shed light on the characteristics (e.g., delays, costs
and capabilities) of fog computing in comparison with cloud computing [27], while other
works thoroughly reviewed the paradigm concepts, standards, emerging trends, open
issues, future challenges and application scenarios thus underlying the computing scheme
ductility [28]: from big data analytic to computational offloading, from farm applications
to distributed content delivery and caching up to smart cities applications. For what
concerns the latter ones, two very well written and comprehensive surveys gave valuable
insights [29,30], while [31] lingers over the application of fog computing within all those
smart fields that are enclosed within the framework of smart cities (e.g., smart healthcare,
smart parking and smart waste management). Fog computing may be also exploited in
smart waste management systems in order to minimize the path during bins depletion by
constructing time variant graphs whose nodes only account for full bins and then, at a fog
layer, the shortest path problem could be solved [32].

The potentialities of adopting edge computing paradigms in a broad sense were
pointed out [33], while the benefits in the ambit of smart cities frameworks were widely
discussed in the survey [34]. Applying edge computing in LPWAN (e.g., LoRa based ones)
whose nodes have limited computational capabilities is challenging but there exist studies
which proved the feasibility and indicated the benefits [35]. Edge computing applied to
smart bins and cameras may also aid in encouraging users in accomplishing recycling
thus avoiding fines. Such an idea was implemented in [36] where an edge computing
architecture which is able of detecting waste disposal violation in real time was developed
by establishing a system very similar with the one that will be presented later on in
Section 3. Apart from waste management, edge computing could generally find a much
broader employment within smart cities where multiple facilities (e.g., public lighting,
parking structures, energy consumption in buildings, waste management, carpooling,
tourism and taxi cabs) may be created, run, maintained and enhanced. This was the
scope that motivated [37,38]: the former dealt with the problem by leveraging on Single
Board Computers (SBCs), while the latter performed the aforesaid tasks by setting up a
comprehensive infrastructure which was developed and tested in the city of Messina, Italy.
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A strategy in order to make smart waste management systems even more smarter
could be to rig them with AI algorithms and machine learning models. For instance, bins
filling level may be forecast, by means of AI, on the basis of historical data [39]. In addition,
AI may be useful in order to produce real time waste related information by means of both
descriptive and predictive data analysis approaches [40]: the former provides information
associated, for example, to waste amounts by distinguishing either on locations and seasons
by elaborating dataset of feature; the latter yields predictions by relying on time series.
Earlier on it was stated that performing recycling at a later stage (i.e., once that users have
already thrown garbage) could be pretty effective. To this end, AI could definitely help
out by resorting to computer vision algorithms in order to automatically sort trash within
bins [41]. Computer vision is not the only way in which AI may be applied within smart
waste management systems: Convolutional Neural Networks (CNNs) [42–44], decision
forest regression models [45] or random forest classifiers [46] are some other examples.
Filling level of public waste bins may be also estimated by making use of logistic regression
models set up over machine learning techniques [47] or combined with graph theory [48]:
these are other methods so as to optimize routes during depletion procedures. In addition,
such an optimization problem may be also worked out by adopting deep neuroevolutionary
techniques so as to build up recurrent neural networks predicting the waste generation in
a robust fashion (i.e., by taking into account uncertainty) [49] or even by employing data
analytics platforms [50].

There exist also other solutions which may be compared with the one of this paper.
For instance, the context of exploiting heterogeneous data for a smart waste management
system was put forth in [4], where filling levels of smart drop-off containers spread out
across Luxembourg were combined with GPS information from tracking devices installed
on collection trucks. However, drop-off containers were provided with connectivity by
resorting to Sigfox technology, and no VSUs were implemented. Similarly, Ref. [51] resem-
bles smart public waste bins that will be introduced later on since it is able to sense bin
filling level and to transmit such information via a wireless mesh network. In addition,
similar duty-cycling policies are worked out in order to save power. However, connectivity
performances cannot be compared to the ones of this paper since the mesh network [51]
relies on is built over a technology comparable to WiFi. Similarly, Ref. [52] developed
a system like [51] relying on a GSM connectivity for each of the bins. However, such a
strategy entails massive running costs, while LoRaWAN links allow similar connectivity
without this burden. In the same fashion, Ref. [53] proposes a smart bin monitoring system
notifying alerts on its full state via SMS thus implying the same associated shortcomings.
In contrast, Ref. [54] proposed a waste management system to be deployed in rural environ-
ments whose nodes were enabled by LoRaWAN capabilities. Such nodes can be compared
to the smart drop-off containers of this paper (that will be described later on) albeit the
former ones also sample their weight along with their temperature and their filling level. In
so doing, waste collection routes may be dynamically optimized thus decreasing associated
costs. Concerning users authentication, Ref. [23] developed a similar device performing
authentication via RFID readers on bins and providing users with RFID cards. The litera-
ture also proposes systems for smart waste management running on renewable sources
of energy like the smart drop-off containers of this paper. For instance, Ref. [55] exploits
solar energy for powering a smart bin. Regarding connectivity and network infrastructure
architecture, the work of this paper can be compared with [56] where similar sensors, even
a GPS, are embedded in smart bins enabled with LoRa connectivity: the latter ones send
data to a gateway that forwards the information towards a remote server via Message
Queuing Telemetry Transport (MQTT).

On the other hand, there exist also commercial solutions that can be compared with
the one of this paper. Bigbelly [57] is a solar-powered rubbish-compacting bin that can be
installed in the most diverse spots within the city (e.g., public spaces, university campuses,
parks and so on) thus implementing a de-facto smart waste management system through
an ad-hoc IoT network spread in over 50 countries. Similarly, Contelligent [58] provides
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customers with both smart bins and a live web platform reporting the status of the deployed
bins so as to have a punctual knowledge of their status. Bine [59] fuses IoT and big data
contexts with the view of improving the management of public wastes. Indeed, Bine bins
are able to recognize, sort and compact wastes while monitoring the bin filling level by
wirelessly sending such information to a remote processing system. Ecobins [60] devised
smart bins capable of monitoring and forwarding their filling level along with allowing
user authentication like the system proposed in this paper. In addition, all of the gathered
information is made available via a mobile web application. Similarly, Ecomobile [61]
designed smart bins capable of compacting trash. Commercial solutions may also be able
to provide a full facility for waste management like Nordsense [62] that by means of smart
drop-off containers performs garbage trucks fleet management by evaluating an intelligent
routing scheme so as to optimize depletion procedures.

In conclusion, to the best of our knowledge, neither commercial solutions nor state-
of-the-art proposals solve this issue by employing a heterogeneous, multi-layer smart
waste management system including smart bins, smart drop-off containers and VSUs
that are part of a city-scaled LoRaWAN network thus adopting and implementing edge
computing paradigms.

3. System Overview

The block diagram of the aforesaid smart waste management system is depicted in
Figure 1. It makes use of a multi-layer LoRaWAN network whose nodes are of three
different typologies, namely smart bins, smart drop-off containers and VSUs. All of them
wirelessly transmit data to any LoRaWAN gateway in their closeness by exploiting LoRa
links by establishing a frequency diversity scheme via a frequency hopping technique amid
8 different channels belonging to the 863 ÷ 870 MHz Industrial, Scientific and Medical
(ISM) band and abiding by the regional regulation concerning the time occupancy of ISM
bands [63] (i.e., in Europe and for the aforesaid ISM band, the spectrum can be occupied
for no longer than the 1% of the time by each of the transmitters).

Figure 1. Smart waste management system overview.
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The three types of nodes host a firmware implementing a different typology LoRaWAN
device, according to the various functions the nodes are devoted to. According to the
LoRaWAN specification, three typologies of devices are envisaged:
• Class A devices (where A stands for all) are characterized by the lowest power

consumption since downlinks are allowed only in two short receive windows after
any uplink. This class is expected to be employed for end nodes in charge of simple
data collection;

• Class B devices (where B stands for beacon) have scheduled extra receive slots in
addition to the Class A random ones. So, the purpose of Class B is to have end-devices
available for reception at a predictable time, in addition to the reception windows
that follows the random uplink transmission from the end-devices of Class A. This
entails for a possible remote control of some activities, at the price however of a higher
power consumption;

• Class C devices (where C stands for continuous) includes end-devices, also known as
Gateways, with maximal (i.e., nearly continuously open) receive slots within which
they are capable to simultaneously handle packets incoming onto multiple frequencies.
Such devices are obviously characterized by a large power consumption and thus are
usually mains powered.
Such a multi-layer structure is reflected in the proposed system architecture which is

composed of different types of end nodes of growing complexity, thus implementing all
these three classes:
• Smart bins are the simplest devices in the network. They are in charge of syn-

chronously transmitting a set of data collected by sensors deployed inside public
waste bins. Since no downlinks are required, these are LoRaWAN Class A devices,
battery-powered and provided with duty-cycling routines to reduce at minimum the
power consumption. Architecture of smart bins is presented in detail in Section 3.1;

• Smart drop-off containers are characterized by a larger computational load. Besides
implementing the same data acquisition functions of smart bins, they are also in charge
of identifying drop-off container users, allowing waste delivery by unlocking the drop-
off container cover. Since the functioning of these devices is more power consuming,
they are powered by an energy harvesting system based on Photo-Voltaic (PV) panels.
Such a larger power availability fosters the implementation of a LoRaWAN Class
B device which allows to set up asynchronous downlink requests. The structure of
smart drop-off containers is described in Section 3.2;

• VSUs are obviously the more power hungry devices in the network since they have
to provide the largest computational load and they must include a camera whose
power consumption is by far larger than the one of any other component of the system.
According to the different operation mode, VSUs can implement either a LoRaWAN
Class A or Class B device. The two different operation modes, as well as the selected
class for each mode, will be described in Section 3.3.
All these devices communicate with the LoRaWAN server through a set of Gateways

which implement LoRaWAN Class C devices. In particular, all the end-nodes encrypt the
packet payload twice by making use of either the Network Session Key (NwkSKey) and the
Application Session Key (AppSKey) by means of an Advanced Encryption Standard (AES)
(i.e., AES-128). Moreover, all the classes of nodes transmit employing a power output of
14 dBm (i.e., the maximum allowed one by the regulations [63]), a Spreading Factor (SF)
of 7 since it ensures the needed coverage requiring the minimum amount of energy to
broadcast, a bandwidth of 125 kHz and a Coding Rate (CR) of 4/5. Even though lower CRs
augment the probability of successful communications, the minimum CR was selected so
as to minimize the power consumption during transmissions. The Gateways forward such
information to the cloud by exploiting the Message Queuing Telemetry Transport (MQTT)
protocol. The cloud hosts a LoRaWAN network server and a LoRaWAN application server.
Every component of the system will be thoroughly shown in the following subsections.
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The system presented in this paper covers the layers composing smart waste manage-
ment solutions identified according to the literature [64,65]: perception layer, network layer,
middleware layer, application layer and business layer. Perception layer includes both
smart bins, smart drop-off containers and VSUs since they are in charge of perceiving all the
phenomena which are of interest for the smart waste management system beforehand intro-
duced (i.e., filling level of either bins and drop-off containers, identification of vandalisms,
users authentication, drop-off containers position and fire recognition). The network layer
is represented by the whole LoRaWAN infrastructure. In particular, the fact that all of the
device classes foreseen by the protocol are included in the network represents a valuable
novelty, since the bulk of works within the literature showing LoRaWAN networks only
account for Class A and Class C devices. Moreover, the long link connectivity provided by
LoRaWAN [66–68] allows for a considerable constraint relaxing related to the position of
the entities falling within the perception layer. The middleware and the application layers
are respectively identified in the LoRaWAN network server as well as in the LoRaWAN
application server: both of them play a key role since they assure data management, storing
and showing. Finally, the business layer is completely borne by the municipal companies
availing the smart waste management system.

3.1. Smart Bins

The block diagram of a smart bin is reported in Figure 2: it is conceived so as to allow
for a modular structure in order to only turn on the single components whenever they
are needed and then to immediately turn them off achieving a limited consumption thus
extending the battery lifetime.

Figure 2. Smart bin block diagram.

3.1.1. Components Description
As it has been just said, smart bins were designed so as to minimize power con-

sumption. Indeed, they are battery powered without resorting to any energy harvesting
technique. Such a choice could seem to be a naive solution at a first glance. However,
since they are supposed to be deployed in an ample number across the environment which
could be strongly heterogeneous (i.e., in some locations there could be sources of renewable
energy while in some other spots it could not be so), avoiding the employment of energy
harvesting modules in favour of an energy efficient management was preferred. In so
doing, also production costs may be reduced due to the fact that a series assembly of smart
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bins may be commissioned. Hence, a 3.7 V 18650 Li-ion rechargeable battery providing
3500 mAh was chosen to power the bins. Since the components of the circuit need to
operate at 3.3 V, a voltage regulator was required: hence, the MCP1770 low quiescent
current low dropout voltage regulator [69], produced by Microchip, was adopted. As its
datasheet suggests, two 1µF capacitors were respectively introduced at the input and at
the output so as to filter out noise and stabilize output voltage.

The core component of the smart bin is its high performance low power 8-bit micro-
controller: the ATtiny84 produced by Atmel [70]. The reasons why this microcontroller
was employed mainly are its ease of use, its limited power consumption and its low cost.
Its firmware implements an energy saving policy which achieves an overall restrained
energy consumption for the entire sensor node. Both the things (i.e., the policy and the
battery lifetime estimation) will be described later on.

Smart bin sensors can be divided into two categories according to the way they are
sampled by the microcontroller: synchronous (i.e., the ultrasonic and the temperature
sensors) and asynchronous (i.e., the tilt sensor). The former ones are read by the micro-
controller at every cycle of its firmware (i.e., on a time basis), while the latter generates
triggers that the microcontroller deals as interrupts. With the aim at diminishing energy
requirements, synchronous sensors are respectively enabled by the microcontroller only
when their measurements are needed and only for the minimum required time. This task
is performed by employing two N-type MOSFETs, which are driven by the microcontroller,
that switch on and off each of the synchronous sensors. The ultrasonic sensor is a water-
proof one, so as to withstand bin cleaning procedures, and it is exploited to measure the
filling level of the bin. It is the JSN-SR04T [71], that is produced by Jahan Kit Electronic,
which is the same employed in [2]: this sensor operates at a frequency of 40 kHz, featuring
a distance detection range of 20÷ 600 cm. Its functioning is extremely simple: once that it is
triggered by the microcontroller, the sensor emits ultrasound waves that are reflected back
whenever they meet obstacles (e.g., garbage in the public waste bins) and at the moment
in which they come back to the sensor, it notices such event to the microcontroller via the
echo signal. The microcontroller is in charge of measuring the Time of Flight (ToF) (i.e., the
elapsed time between the trigger and the echo) so as to evaluate the distance d according
to the following equation:

d =
vs · tToF

2
(1)

where vs is the speed of sound and tToF is the ToF. As it was shown in [2], the sensor is
housed within a custom designed cap so as to refine its radiation lobe. The temperature
sensor is the TMP36 [72] produced by Analog Devices. It is an analog sensor, therefore the
microcontroller samples it via its embedded Analog to Digital Converter (ADC), it has a
scale factor of 10 mV/°C and a linear behavior in the range �40 °C ÷ 125 °C providing
750 mV at 25 °C. In other words, the measured temperature T can be evaluated resorting to
the equation

T =
Vout � 750

10
+ 25 (2)

where Vout is the sensor output voltage expressed in mV. The tilt sensor is exploited to
sense whenever the bin is overturned. Most of the times it is due to vandalism and such
events need to be monitored and notified as soon as possible so that an operator could act.
To this end, the 100-2006-EV tilt sensor [73], produced by Mountain Switch, was selected
since it is a passive sensor behaving as a switch closing whenever the bin is overturned
of at least 30°. In such a case, the sensor generates an interrupt which is managed by the
microcontroller that signals the overturning event. This implies that the sensor has no
consumption at all when it is not activated and a negligible one when it acts as a short
circuit due to the 100 kW series resistor.

Connectivity is ensured by the RFM95W [74], produced by HopeRF, LoRaWAN
module which embeds an SX1276 [75] LoRa chip produced by Semtech. It is driven by the
microcontroller via the Serial Peripheral Interface (SPI) protocol. The module is enabled
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by following the same fashion of the one of the sensors: the microcontroller switches the
module on via an N-type MOSFET just before the transmission and then it shuts it as soon
as the communication is over. A rough estimation of the overall cost of the device can be
made taking into account the prices of the single components, assuming that with mass
production such a cost may notably decrease. However, the prototype presented in this
section has an overall cost of ⇠42 e. This value is notably lower than the one of the single
bin, that is in the order of some hundreds of euros: since bins may be subject to vandalisms
and deterioration due to their intense usage, the low cost of the electronics is a mandatory
requirement in order to foster the adoption of such a technology.

3.1.2. Energy Saving Policy and Battery Lifetime Estimation
The energy saving policy smart bins act is implicitly accomplished by the routines

that are coded in the firmware running on the microcontroller. The target of the policy is to
solely perform the strictly needed operations by activating the components of the node
for the minimum required time and deactivating them as soon as their relative tasks are
over. The firmware performs sensor measurements and data sending every half an hour
(i.e., tc = 1800 s). Such a sampling frequency is enough to monitor data whose variation is
extremely slow. Hereinafter, the policy implemented by the microcontroller is described
step by step:
1. It enables the temperature sensor (by means of the dedicated MOSFET) and it acquires

and stores 10 samples. Then it disables the sensor (still exploiting the same MOSFET)
and it averages the samples. Finally, it stores the mean temperature;

2. It switches on the ultrasonic sensor (via the dedicated MOSFET) and, similarly as it
was done with the temperature sensor, it performs and saves 10 measurements. After
that, it switches off the sensor (by making use of the same MOSFET) and averages the
measurements. Eventually, it saves the mean distance which represents the mean bin
filling level;

3. It sorts out all the data coming from the sensors in a payload, whose structure is
described below, so that it can be transmitted via LoRaWAN;

4. It turns on the LoRaWAN module (by controlling the dedicated MOSFET) and it
arranges the transmission by means of the SPI bus. As soon as the broadcasting is
over, the microcontroller turns off the communication module (by acting on the same
MOSFET);

5. Finally, it enters in a sleep mode so as to save energy. It remains in such a state
until the next samples are required (i.e., when half an hour has been passed since the
current firmware cycle was started). The microcontroller awakes from the sleep mode
thanks to the overflowing of the internal Watchdog Timer (WDT).
Earlier on, it was said that the tilt sensor behaves in an asynchronous way. Indeed, it is

not involved within the routine explained above. Actually, it is managed by the microcon-
troller as an additional interrupt source along with the overflowing of the WDT: whenever
the bin is overturned, it acts as a short circuit firing an interrupt to the microcontroller. The
latter may handle such a signal in a twofold manner: if it is in sleep mode, it immediately
awakes keeping track of the instance of the event (i.e., bin overturning) and by starting the
routing from point 1; if it is already operating (i.e., from point 1 to point 4 of the routine),
it handles the interrupt by recording the occurrence of the same event.

The LoRaWAN payload contains the mean temperature and the mean filling level as
well as the overturning state of the bin. Each of those quantities are coded in a byte: hence,
smart bins transmit 3 B length LoRaWAN packets. In so doing, each of the packet has a
Time on Air (ToA), which can be evaluated by resorting to the formulas reported either in
RFM95W datasheet [74] and in the one of SX1276 [75], of tToA = 51.46 ms.

Besides ToA and in order to perform an estimate of the node lifetime, also the func-
tioning period of all of the sensor node components along with their current consumption
are needed. For what concerns the periods, they will be considered by referring to a single
firmware cycle. Regarding current draws, they were measured by exploiting a Fluke 179



Sensors 2021, 21, 2600 11 of 27

true RMS digital multimeter [76]. Either the functioning periods and the current draws
that will be listed below were assessed on an average basis. The only components which
are constantly activated are the voltage regulator and the microcontroller. The former has a
functioning period equal to tc during which it draws 1.6µA. The temperature sensor takes
20 ms to set up and to acquire 10 samples during which it requires 50µA. The ultrasonic
sensor employs 3 s to set up and to perform 10 distance measurements needing 8 mA. The
LoRaWAN module is the energy hungriest component since it necessitates of 90 mA to set
up and to transmit by taking 70 ms (it is worth noticing that such time is greater than ToA
since the module requires to set itself up before transmitting). Finally, the microcontroller
operates at the frequency of 1 MHz by relying on its internal oscillator so as to minimize
its power consumption. Moreover, albeit it continually runs, it switches its functioning
mode amid the active one and the sleep one thus entailing different consumption. During
active mode it draws 490µA for a period of 5 s. Such a time is necessary to accomplish
the steps from point 1 to point 4 of the aforementioned routine. On the other hand, the
microcontroller requires 4.6µA while it is in sleep mode for keeping on incrementing the
WDT. Such a functioning state lasts for a period of time of 1795 s provided that no interrupts
from the tilt sensor are experienced. For summarizing purposes, all the functioning periods
and the current draws are reported in Table 1 for each of the smart bin components.

Table 1. Functioning periods and currents draws for each firmware cycle for each of the smart
bin components.

Component Component Functioning Current

Name Role Period [s] Draw [mA]

MCP1700 Voltage Regulator t1 = 1800 c1 = 0.0016
ATtiny84 Microcontroller (Active Mode) t2 = 5 c2 = 0.490
ATtiny84 Microcontroller (Sleep Mode) t3 = 1795 c3 = 0.0046
RFM95W LoRaWAN Module t4 = 0.070 c4 = 90

JSN-SR04T Ultrasonic Sensor t5 = 3 c5 = 8
TMP36 Temperature Sensor t6 = 0.020 c6 = 0.050

At this stage, an estimate of the battery lifetime can be assessed. Passive components
as well as capacitors and MOSFETs could be considered having a negligible contribution to
this estimate. Moreover, the role of the tilt sensor is neglected as well since it may fire the
routine restarting at random thus it cannot be estimated in a rigorous way. The estimation
method relies on the data in Table 1. The overall node current absorption for each cycle of
the firmware (cc) can be evaluated as:

cc =
1
tc

6

Â
i=1

citi ' 0.0244 mA. (3)

In order to ease the procedure, the node hourly absorption (ch) can be evaluated:

ch =
3600cc

tc

= 0.0488 mA. (4)

Therefore, since the Li-ion battery powering the node has a capacity of 3500 mAh,
the estimate of the node lifetime l̂ can be computed as:

l̂ =
3500

ch

' 71, 721 h (5)

which approximately corresponds to 2988 days. Despite this is only a rough estimate of the
node lifetime, it confirms the effectiveness of the energy saving policy and the optimal low
power capabilities of the smart bin building blocks.
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3.2. Smart Drop-Off Containers

Smart drop-off containers share some of the features of smart bins, even if additional
capability were added: these include an RFID reader for user authentication and a GPS
module for the drop-off containers localization, since they often get moved in different
spots. Similarly, smart drop-off containers are provided with an energy harvesting solution
based on the use of PV panels. A block diagram of a smart drop-off container is shown in
Figure 3.

Figure 3. Smart drop-off container block diagram.

3.2.1. Components Description
Similarly as for smart bins, the architecture of smart drop-off containers aims at

reducing the overall power consumption adopting low power off-the-shelf components.
Nevertheless, some of the components included in this device require either to be always
on (i.e., RFID reader) or are characterized by inherently high power consumption (i.e., GPS
module): this means that the whole system is not able to rely only on batteries for long
periods. Smart drop-off containers are then provided with an energy harvesting solution
that will be described in detail later on.

The core of the smart drop-off container is represented by an ATtiny1604 microcon-
troller by Atmel: this component was chosen in place of the ATtiny84, used for smart bins,
since it presents a key feature that is required for the realization of the hardware structure
of the system. Indeed, it is provided with a 16 kB flash memory which is necessary since
some of the components require cumbersome libraries for their functioning. At the same
time, the ATtiny1604 microcontroller presents the same number of pins as the ATtiny84 (i.e.,
14 pins) and a limited and comparable power consumption. All of the relevant features of
the ATtiny1604 microcontroller are listed in Table 2.

Table 2. ATtiny1604 microcontroller technical features.

Characteristic Value

Maximum Clock Frequency 20 MHz
Flash 16 kB

SRAM 1024 B
EEPROM 256 B
Interfaces USART, I2C, SPI
GPIO pins 12
ADC pins 10
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The system features then, similarly to the smart bin, the JSN-SR04T ultrasonic sensors
for trash level detection: the characteristics of this sensor were described in Section 3.1.1.
Concerning temperature, a different sensor is employed: indeed, the component integrated
in the smart drop-off container is a TLRS-9700 thermal cutoff device behaving as a switch
when the temperature overcomes a certain threshold. In the proposed context, this devices
is employed as a switch, activating the electronics and triggering then an alarm when high
temperatures, thus entailing for possible fires, are detected.

Unlike smart bins, other components are embedded in the smart drop-off container
architecture: an RFID reader and a GPS module. The RFID reader is a 125 kHz RFID card
reader by Parallax, whose purpose is to detect and read the ID of users smart cards allowing
the opening of the drop-off container whenever authorized users authenticate. The RFID
reader is then always kept on: when an RFID card is positioned close the reader the ID code
stored inside is detected and sent via LoRaWAN to the server. The identity of the user is
checked and then, if authorized, the drop-off container opening information is transmitted
back through the downlink channel. While this operation could be performed in one of the
two downlink windows foreseen of transmissions made by Class A devices, the operation
of the smart drop-off container as a Class B device assures additional downlink slots in
case of user authentication delays on the server side.

The second additional component is an Ultimate GPS Breakout Board by Adafruit.
This device allows to retrieve the GPS position of the drop-off container every time this is
required. Indeed, the GPS board is only turned on when required by means of a MOSFET
acting as switch: this function is mandatory since drop-off container position is expected to
be required asynchronously, exploiting the Class B downlink slots, only when the drop-off
container location could be changed. Indeed, GPS modules are characterized by relatively
high power consumption, thus preventing from keeping them always on.

Concerning data transmission, the same LoRaWAN module employed for the smart
bin (i.e., RFM95W by HopeRF) was integrated in smart drop-off containers, adopting
the same activation technique based on the use of a MOSFET as a trigger to limit the
overall energy withdrawal only when actually required. Moreover, the same transmission
parameters of the nodes implemented within smart bins were exploited.

Similarly as for smart bins, a rough estimation of the overall cost of a smart drop-off
container can be estimated analysing the costs of the single components. In this case,
since the device is notably more complex than the smart bin, a higher value is accounted:
however, plain drop-off containers too are more expensive in comparison with bins, and
the ratio among their cost and the cost of the electronics is comparable. In particular, the
cost of the electronics for the smart drop-off container is estimated in ⇠87 e: despite such
higher value, drop-off containers are less subject to vandalisms rather than bins, and the
overall lifetime of these devices is expected to be notably longer.

3.2.2. System Powering
Smart drop-off containers structure features a large number of components character-

ized by relatively high power consumption. In particular, both GPS board and RFID reader
feature high current absorption levels (in the order of tens of mA). At the same time, Class
B LoRaWAN devices are inherently more power hungry if compared with Class A ones.
For this reason, a system based on the use of PV panels for energy harvesting was set up.
Indeed, such a structure can be easily placed on the top of the drop-off containers where a
large surface is present. While the required amount of power is lower if compared to the
one of VSUs (that will be presented in Section 3.3), the proposed architecture is based on
a 10 W PV panel charging 2 series 3.7 V 18650 Li-Ion batteries like the ones employed in
smart bins: battery charge is managed by a Battery Management System (BMS), whose
purpose is to protect batteries from possible damages during the charge-discharge process.

Since the various components of the system feature different supply voltages
(i.e., 3.3 V and 5 V), the system also integrates 2 MCP 1700 voltage regulators in charge of
level the voltage to the required values.
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3.3. Video Surveillance Units

VSUs are employed to detect anomalous activities near bins or drop-off containers:
these may include waste abandonment, incorrect uses, vandalism or presence of fire. As a
proof of concept, VSUs integrated in the proposed system architecture are conceived
to perform this last task. In order to detect the presence of fire, VSUs are based on a
hardware architecture that is able to sustain a notably heavy computational load: indeed,
fire detection is performed exploiting a set of software tools based on machine learning
algorithms for image recognition. Due to these technical features, VSUs are not intrinsically
low power: nevertheless, two architectures were envisaged to manage the units supply.

3.3.1. Hardware Setup
The architecture of a VSU, whose block diagram is shown in Figure 4, can be divided in

two subsystems: one is in charge of image capture and processing and the other is devoted
to data transmission. The image processing subsystem is composed of an HikVison Mini
PTZ Camera, that allows to capture single images that are retrieved by means of IP calls to
the internal server of the camera, and of a processing unit. In order to reduce the complexity
of the system, a Khadas VIM3 board was chosen: this device features an ARM64 Amlogic
A311D processor, and it is also provided with an on-board 5.0 TOPS Neural Processing
Unit (NPU) for the implementation of neural network operations. Image transmission from
the camera to the VIM3 board is performed by means of a wired TCP/IP connection.

Figure 4. Video Surveillance Unit (VSU) block diagram.

The data transmission sub-system is in charge of transmitting the results acquired by
the image processing algorithms to the LoRaWAN server. This task is fulfilled by means
of an Hope RF RFM95W LoRaWAN module (i.e., the same employed also for smart bins
and smart drop-off containers) whose operation is managed through SPI connection by an
STMicroelectronics Nucleo L073RZ board, which is connected to the Khadas VIM3 board
via the Universal Serial Asynchronous Receiver Transmitter (USART) interface.

Due to the large number of costly components, the VSU is the most expensive of the
three types of end nodes. Indeed, the overall cost of a single VSU can be estimated as
⇠522 e: however, while such value is high compared to the other devices, it must be kept
in mind that a single VSU can be exploited to monitor more devices. Moreover, VSUs
can be placed in elevated places in order to avoid possible vandalisms and damages, thus
ensuring a long lifetime.

Albeit VSUs may run under two different operating principles (i.e., synchronous and
asynchronous), as it will be explained later on, the communication procedure amid the two
boards stays the same and works as follows:

• As soon as the Nucleo L073RZ board activates, it requests data to the Khadas VIM3
via USART;
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• The Khadas VIM3 board takes charge of the request triggering all the image processing
routines devoted to spot fires within the pictures taken from the camera;

• Once that the image is analyzed, the Khadas VIM3 board arranges the response to the
Nucleo L073RZ board request according to a predefined protocol thus sending the
aforesaid response via USART;

• The Nucleo L073RZ board processes the incoming message and it accordingly broad-
cast a LoRaWAN packet (by making use of the same transmission parameters of the
nodes implemented within smart bins) whose payload contains data related to the
presence of fire in the nearby of the bins or drop-off containers.

In order to implement such serial communication as smooth as possible thus limiting
re-transmissions with the aim of speeding up the procedure, the Nucleo L073RZ board
manages USART peripheral according to the Direct Memory Access (DMA) paradigm. That
is also the reason why this board was preferred in favour of simpler hardware solutions
(e.g., an ATtiny84 as the one within smart bins) since the most of the latter ones are devoid
of DMA controllers.

3.3.2. Software Tools and Operating Principle
Since the main purpose of the VSU is to operate according to the edge computing prin-

ciple, and thus performing image processing activities directly on-node, a set of software
tools was selected and developed to perform the detection of specific assets or activi-
ties. In particular, as already anticipated, as a proof of concept, the VSU set up for the
proposed framework was conceived with the purpose of detecting the presence of fire
nearby bins and drop-off containers. The software infrastructure for the VSU exploits the
following tools:
• You Only Look Once (YOLO): a machine learning tool customized for object recogni-

tion in images and video streaming;
• Yolo Fire Custom: a YOLO neural networking tool ad-hoc customized for fire detec-

tion [77];
• Server Manager: a software ad-hoc developed in Python programming language

for the image acquisition from the HikVison Mini PTZ Camera, their processing
and the subsequent transmission of the extracted information by means of the data
transmission sub-system.
The whole architecture aims at performing the following operations: the Khadas VIM3

board is expected to process the images coming from the camera. The analysis will be
carried out by the YOLO software having customized weights for fire detection. Once the
presence of fire is detected in one of the processed images, a string communicating the alert
will be transmitted by means of the LoRaWAN transmission channel. This procedure may
be implemented either synchronously or asynchronously. In the first case, a duty-cycling
procedure will be set up exploiting the Nucleo L073RZ board, which is the less power
consuming component of the overall system. The Nucleo board will then activate according
to the required sampling rate (e.g., once per hour), activating in turn the whole image
processing sub-system: the information from the collected images will be then extracted and
eventually transmitted to the server. This operative mode does not require any downlink
transmission: for this reason, the data transmission sub-system will implement just a Class
A LoRaWAN device.

Concerning the asynchronous functioning, this will be based on the use of the temper-
ature data collected by the smart bins and the smart drop-off containers, that will be used
as a preliminary alert. When the temperature value will exceed a pre-defined threshold, the
server will transmit a downlink request to check for the possible presence of fire exploiting
the VSU. In this case, the data transmission sub-system will implement a Class B LoRaWAN
node and it will then trigger the image processing sub-system only when it will receive a
request from the server.
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3.3.3. Power Management Strategy
Both the operating principles described in the previous section present pros and cons

in terms of power consumption. Indeed, the synchronous modality requires the whole
system to wake up every hour (or even less if required) and perform a full operating cycle.
Similarly, the asynchronous mode requires the implementation of a Class B LoRaWAN
device which requires the LoRa module to periodically wake up to set up the reception
windows. In both cases, the powering of the VSU for prolonged periods relying only on
batteries is technically unfeasible. For this reason, the only viable solution was envisaged
in setting up an energy harvesting solution similar to the one already presented for the
smart drop-off containers.

Nevertheless, energy requirements of VSUs are by far larger than the ones of smart
drop-off containers if taking into account only the camera, according to the datasheet [78],
its power consumption can be up to 8 W: even with a strict duty-cycling policy and with
short operating periods, a set of batteries would last just a few weeks. In order to ensure
self-sufficiency to the device, each VSU is then expected to be powered by an energy
harvesting composed of the following items:
• 2 20 W PV panels;
• one 12 V 25 Ah lead-acid backup battery;
• one CMTD-A2420 solar charge controller, avoiding the battery to be damaged during

the charge-discharge cycles.
This architecture was designed so as to operate according to the most energy consum-

ing operating mode (i.e., the synchronous one).

3.4. LoRaWAN Network Architecture

As it was stated at the start of this section, the smart waste management system of
Figure 1 is grounded on a LoRaWAN network whose nodes have been just introduced.
Hence, within this subsection, the architectures of gateways and server side are introduced.

3.4.1. Gateways
The gateways (i.e., LoRaWAN Class C devices) are in charge of demodulating the

LoRaWAN packets and measuring either the Received Signal Strength Indicator (RSSI) and
the Signal-to-Noise Ratio (SNR) for each of the incoming signals. Finally, they forward data
and metadata of the packets to the cloud hosting the remote network server by exploiting
the MQTT protocol. Concerning the gateway power supply, they are conceived to be mains
powered. The gateway block diagram is shown in Figure 5.

Figure 5. Gateway block diagram.

The concentrator is a board embedding a LoRa modem and two LoRa transceivers.
The RAK831 [79] produced by RAKWireless was chosen as concentrator: it is an 8-channel
(i.e., the same channels on which the nodes transmit data) high performance concentra-
tor which is capable of concurrently receive and demodulate up to 8 LoRa packets that
could have been sent on as much channels even by exploiting different SFs. The RAK831
is composed by two SX1257 (i.e., LoRa transceivers) [80] and one SX1301 (i.e., a LoRa
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modem) [81], both produced by Semtech. Such an architecture allows for a sensitivity
that varies according to the SF and the bandwidth: considering packets broadcast with
a bandwidth of 125 kHz, the gateway sensitivity extends from �137 dBm at SF = 12 to
�126 dBm at SF = 7. The computational burden the gateway is subject to is taken charge
by a Raspberry Pi 3 model B [82] which also drives the concentrator via SPI protocol. More-
over, the Raspberry Pi runs all the needed software implementing the gateway routines
and connects to the network server via the Internet over the MQTT protocol by resorting to
a dedicated MQTT client that is implemented in a Python script. The software comprises
a multi-thread program that demodulates the packets extracting the encrypted payloads
and appending to each of them a series of metadata (e.g., RSSI and SNR). It is joined to
the MQTT client which acts as a publisher connected to the MQTT broker running on
the network server. The client conveys towards the broker all the data produced by the
gateway multi-thread program by posting, on a gateway-specific MQTT topic, MQTT mes-
sages with a quality of service equal to 0 so as to shun message re-posting thus reducing
latency. Similarly, the gateways transmit to the network server sundry functioning statistics
(e.g., the number of received packets) on a periodic basis with a network diagnosis purpose.
In order to enhance network performances by establishing a space diversity scheme, which
is combined with the frequency diversity one that is implicitly introduced by the fact that
nodes broadcast exploiting 8 channels, several gateways are deployed on the monitored
environment.

3.4.2. Server Side
The server side of the LoRaWAN network is reported in Figure 6. It is mainly com-

posed of a network server, an application server and a MySQL database that is assigned to
the storage of all the data coming from end devices and gateways that are in turn processed
by the network server. Both the software forming the network server and the application
server are implemented by exploiting Node-RED [83]: a development environment created
by IBM, which runs on Node.js [84] (i.e., a run-time environment executing JavaScript
snippets outside a browser thus enabling their use for scripting on server side), that is
based on a flow programming language whose building blocks are written in JavaScript.

Figure 6. LoRaWAN server architecture block diagram. Violet arrows symbolize the MQTT connec-
tions while the black ones represent the connections to the database. Gateways and AI algorithms
have been included just for the sake of completeness even though they are not part of the server side
of the network: the former ones are scattered on the environment while the latter ones reside in the
cloud too.

The network server hosts an MQTT broker along with a Node-RED flow which carries
out all the network server routines:

1. Send acknowledgement signals back to the gateways via MQTT, so as to fulfil network
diagnostic, once that the MQTT clients running on the latter ones publish messages
towards the client of the server;

2. Store the gateways functioning statistics in the database;
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3. Filter out duplicated packets that may have been forwarded by some, or all, of the
deployed gateways rejecting those with the worst RSSI;

4. Decrypt the payloads of the packets coming from the end devices by retrieving both
the NwkSKey and the AppSKey which are previously stored in the database;

5. Discard the packets that could be sent by nodes belonging to diverse networks by
performing the Message Integrity Code (MIC) check. This could happen since any
end device that is included in other LoRaWAN networks encrypts payloads with
different NwkSKey and AppSKey with respect to the ones stored in the MySQL
database. Whenever their payload will be decrypted by making use of different AES
keys (i.e., the one of the network of this smart waste management system), an invalid
MIC will be experienced. Therefore, the network server will throw out those packets;

6. Store within the database the decrypted packets payloads, and their associated meta-
data, that passed the MIC check.

The application server is implemented by a Node-RED flow too: it extracts data related
to either gateways and end devices from the database and displays them to users by means
of a graphic interface containing widgets, plots and tables.

4. Test and Results

4.1. Preliminary Tests on Ultrasonic Sensor Accuracy

Since smart drop-off containers and smart bins share the same ultrasonic sensors
to measure their filling level, such sensors underwent preliminary tests having as their
purpose the assessment of their accuracy. Such trials were sorted out exploiting a smart
drop-off container indoor installed within the laboratory (see Figure 7a): several filling
levels (i.e., 0 cm, 20 cm, 40 cm, 60 cm, 80 cm and 100 cm) were reproduced within the drop-
off container, then 200 measurements were performed, sent via LoRaWAN and stored in
order to be analyzed (see Figure 7b). For each of the tested levels a cardboard sheet was
put within the drop-off container at the level at hand, then several garbage bags were laid
on it in order to simulate a real operation scenario. Higher filling levels were not tested
due to the inability of sorting out a reliable garbage bags deployment for levels greater
than 100 cm, because the drop-off container got smaller at that point thus making it barely
impossible to enter within it so as to arrange garbage bags. Tests at 20 cm and 60 cm turned
out to be less precise than the other ones. However, since the precise knowledge of the
filling level was not crucial in contrast with the awareness of the occurrence of the event
associated to the need of depletion caused by the maximum filling level, the ultrasonic
sensor may be deemed to be reliable for understating the happening of the latter event.

(a) (b)

Figure 7. Ultrasonic sensor accuracy tests: (a) smart drop-off container indoor installed; (b) filling
level trend throughout the various tests.
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In particular, in Figure 7b mean values and standard deviations for the six measure-
ment sets can be seen, while Figure 8 shows the absolute and relative errors. In general,
the average absolute error for the six measurements was ⇠7 cm; such a value was by far
compliant with the assumption that the actual information that was expected to be obtained
was empty, half-full or full evaluation rather than the exact filling level. In this sense, an
error lower than 10 cm could be considered satisfying. Moreover, looking at Figure 7b
it is possible to notice that standard deviation featured small values, thus suggesting a
good level of reproducibility. Data shown in Figure 8 feature a peak for the filling level
of 60 cm: in this case, the absolute error grew up to the value of ⇠16 cm: at such a level
however, a lower degree of accuracy was still acceptable since the actual crucial informa-
tion concerned the full or empty status of the bin which was achieved for the 0 cm and
100 cm levels.

Figure 8. Absolute and relative errors of the measured values.

4.2. Smart Bins tests

A smart bin was installed outdoors so as to test it throughout a week during which
people used it as if it was installed in a real operation scenario (see Figure 9a). The objective
of this test was to detect whether the bin was fully filled, rather than measuring the actual
filling level, so as to promptly accomplish its depletion. Figure 9b shows the filling level
trend, in percentage, throughout the test week.

(a) (b)

Figure 9. Smart bin test setup: (a) smart bin outdoor installed; (b) filling level percentage trend
throughout the test week.

At first glance, a high degree of fluctuation can be noticed. This is due to the fact that
users threw heterogeneous rubbish. Indeed, suppose the bin is partially filled only with
paper and then a heavier item is introduced thus causing a rubbish compaction. Despite
such event causes a filling percentage reducing, it does not entail a depletion occurrence.
This phenomenon could be observed several times during the test week, while only a
depletion took place (i.e., almost at the end of the test period). Nevertheless, the important



Sensors 2021, 21, 2600 20 of 27

information for the public administration managing the waste collection operations was
not the exact trash level but rather a rough indication of the bin filling percentage, and in
this sense the system proved its effectiveness. Similarly, the most important information
(i.e., the bin is full) was clearly visible. Likewise, it may be noticed that 0% filling was
nearly never reached, meaning that the bin was never fully emptied. However, this was
not exactly true because the 0% value was calculated at the actual bottom of the bin, while
the the latter housed a garbage bag that increased this value of around 20% or even more
whenever the garbage collector did not properly stretch the bag.

4.3. Smart Drop-Off Containers Tests

These tests were along the same lines of smart bins ones: their aim was to detect
whether the containers were fully filled, rather than precisely measuring their filling levels
so as to trigger depletion procedures. Two smart drop-off containers were installed on
the field in the city of Florence, Italy (see Figure 10a) and their filling level was sampled,
sent via LoRaWAN and stored whenever users opened the relative lid after a successful
authentication procedure via RFID. Such tests were carried out for a 4-week timespan,
while the two smart drop-off containers were respectively devoted to the collection of
multi-material waste (e.g., plastic and aluminium) and residual waste (e.g., whichever
waste that cannot be disposed in other dedicated containers). Tests results are reported
in turn in Figure 10b,c which show the filling level trend, in percentage, of the two smart
drop-off containers.

Multi-material smart drop-off container was subject to 647 waste disposals and, in
particular, at the beginning of the test period no disposals took place for 4 days after which
the container was partially emptied since it was subject to a scheduled maintenance. Apart
from this, the container was emptied five times and all of them happened within the second
half of the testing period: such events can be noticed since the filling level trend shows
five minima reaching values of approximately 2%. On the contrary, three maxima where
the level reached 100% can be noticed: these phenomena occurred due to a momentary
waste heap just below the sensor which was successively flattened after consecutive waste
disposals. Similarly, this occurrence also happened several times during the test period
even though no 100% filling level was recorded. However, these shortcomings did not
hinder system effectiveness since such states were not prolonged meaning that no actual
need of depletion is required.

Residual waste smart drop-off container was subject to 687 waste disposals, and it was
emptied out five times: conversely from multi-material container, depletion procedures
averagely took place every five days. Similarly as before, some maxima corresponding to
100% filling level, as well as slight filling level decreasing, occurred; the reason is the same
as before since transient waste heaps formed that were dismantled with successive waste
disposals. Once again, these weaknesses did not hamper system effectiveness for the same
motivations explained earlier on.

(a) (b) (c)

Figure 10. Smart drop-off container field tests: (a) smart drop-off container outdoor installed in the city of Florence, Italy; (b) filling
level trend of multi-material waste smart drop-off container; (c) filling level trend of residual waste smart drop-off container.
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4.4. VSU Tests

The VSU underwent two different set of tests. A first test was devoted to identify the
hardware platform in charge of executing the image recognition software. For this purpose,
and taking into account the containment of power consumption, two different boards were
tested: a Raspberry Pi 4, characterized by lower costs and limited power consumption, and
the Khadas VIM3 board, which was the chosen as the best solution. The first tests were
made installing Tiny-YOLO, a lighter version of the YOLO software, on the Raspberry
PI 4: while it was partially able to recognize objects, this approach was characterized
by relatively long operating times. Indeed, depending on the image size, every image
scanning generally required 5 ÷ 10 s, that is a relatively long time. Tests moved then on
to the Khadas VIM3 board: in this case, the YOLO software was used. In these tests, the
average scanning time was notably lower, below 1 s. Figure 11 shows the final prototype of
the VSU together with the energy harvesting system.

Figure 11. Prototype of VSU.

Once we identified the ideal hardware platform, tests moved on to the second phase
that was centred on the fire detection capability of the system. Due to the obvious inability
of setting fires either in laboratory or within the field (i.e., the city centre of Florence,
Italy), fire detection capability was proved by resorting to two online data-sets, each of
which contains 500 pictures: for what concerns fire images, Ref. [85] was exploited; while
regarding images that do not contain fire, Ref. [86] was selected since it includes pictures
of urban areas so as to resemble to the actual test site. In particular, and with the aim
of showing some of the pictures that were exploited for evaluating VSU performances,
Figure 12a,b are extracted from [86], while Figure 12c,d are retrieved from [85]. Tests
results are reported within the confusion matrix in Figure 13, where label 1 either in the
predicted and true classes stands for the presence of fire, while the label 0 stands for its
absence. Generally, 487 True Negatives (TNs) (e.g., Figure 12a) and 477 True Positives (TPs)
(e.g., Figure 12d) were recognized, while 13 False Positives (FPs) (e.g., Figure 12b) and 23
False Negatives (FNs) (e.g., Figure 12c) were detected. Given this, VSU accuracy (ACC),
False Discovery Rate (FDR) and False Omission Rate (FOR) can be defined as follows

ACC =
TP + TN

TP + FP + TN + FN
100 ' 96.4%, (6)

FDR =
FP

TP + FP
100 ' 2.7%, (7)
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FOR =
FN

TN + FN
100 ' 4.5%. (8)

According to the aforesaid tests, the VSU was potentially well designed so as to be
directly employed in the field. Indeed, its ACC could be deemed as satisfactory and its
FDR and FOR, even if they were limited, were not issues at all due to the fact the overall
smart waste managements system also accounted for data coming from smart bins and
smart drop-off containers. For instance, FP could be discarded since supposing the VSU
recognized a fire, then temperatures measured by the bins or the containers would be low.
On the other hand, FN may be tackled by the fact the bins or the container would sense
elevated temperature. This additionally remarks the high level of data abstraction which
was obtained by combining all of the data coming from the various nodes of the network.

(a) (b)

(c) (d)

Figure 12. Examples of the images exploited for the assessment of VSU performances: (a) comes
from [86] and represents a TN; (b) comes from [86] and represents a FP; (c) comes from [85] and
represents a FN; (d) comes from [85] and represents a TP.

Figure 13. Confusion matrix relative to VSU tests.
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5. Discussion

The results presented in the previous section demonstrate the effectiveness of the
proposed multi-layer approach. Such an integrated approach is at our knowledge novel
within the Smart Waste Management domain, where in general other traditional data
transmission technologies like the cellular ones are employed when the complexity of
the monitoring platforms goes beyond the transmission of data collected from single
sensors. Conversely, the LoRaWAN-based approach proposed in this paper, applied to
any kind of intelligent node in the network, including edge computing devices exploiting
neural networking for image processing, can lead at the same time to a reduction in the
overall infrastructure costs and to a simplification in the whole data management structure.
In addition, the novelty of the system is highlighted by the fact that the entities composing
the system are able to simultaneously accomplish the following tasks: measuring the filling
level and the temperature of both the bins and the drop-off containers, detecting vandalism
to both bins and drop-off containers, localizing drop-off containers position, authenticate
users and performing video surveillance without harming people privacy. Moreover, the
significance and the importance of the proposed network architecture proposed are both
derived from the fact that such a system may be extremely useful for the acquisition of data
coming from several activities, apart from waste management, falling within the context of
Smart Cities (e.g., pollution monitoring). Therefore, this further highlights the architecture
flexibility which is especially due to its multi-layered topology.

Of course, some problems and limitations did emerge during the tests phase. First
of all, a relative level of inaccuracy was noticed for what concerns the filling level mea-
surement systems, in particular for the case of bins. Indeed, in general ultrasonic sensors
feature a limited dependence on temperature, that may be easily compensated via soft-
ware. Nevertheless, this compensation was not carried out since the relative error is in
the order of few cm and was assumed as not relevant for the filling level status. A second
limitation that emerged concerns the usage of the sensors for the bins: indeed, in this case
the measured level is subject to fluctuations that are mainly attributable to the narrowness
of the bin itself, in comparison with the drop-off container (as it can be seen comparing
Figure 9b with Figure 7b). Better performances in this case may be achieved by adopting
a custom designed cap for the ultrasonic sensor [2]. At the same time, in the case of bins,
level fluctuations are also due movements that occur at the disposed waste: for this reason,
the identification of the percentage of filling (for example 0%, 50% and 100%) is more
important than the exact level measurement in the case of bins.

Concerning the VSU, the most significant limitation that emerged during the tests
was the impossibility to use a low-cost, general purpose single-board computer like Rasp-
berry Pi, due to the unsatisfactory accuracy level of the image processing algorithms.
As discussed in this paper, in order to achieve accurate results we were forced to adopt a
platform characterized by an on-board NPU that was in charge of exclusively processing
the AI-based image detection algorithms, with an increase in the cost of the devices and a
larger power consumption.

Nevertheless, regardless of these drawbacks, the proposed approach, fully exploiting
the features of LoRaWAN protocol, can be easily applied also to other application scenarios,
within the Smart Cities paradigm as well as in other contexts. Within Smart Cities, such an
infrastructure may be seen in particular as a backbone for all those services not relying on
high bit-rates but requiring the deployment of a large number of intelligent devices in very
wide areas.

6. Conclusions

The aim of this paper was to present the architecture of a Smart Waste Management
infrastructure based on the LoRaWAN transmission technology, going beyond the single-
purpose operation of a wide range of solutions that are currently found in the literature. For
this purpose, three different platforms were joined together into the same data acquisition
infrastructure, in order to manage all the trash disposal activities, being them carried out
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either at bins or drop-off containers, ensuring at the same time the security of the disposal
sites by means of edge computing powered VSUs. All the growing levels of complexity
of the developed prototypes, required the full exploitation of the different typologies of
devices allowed by the LoRaWAN protocol, leading to a customization of the networking
functions of each device according to its specific purposes. The resulting prototype was
tested within a public area (i.e., a University Department) aiming at mimicking its future
application scenario (i.e., outdoors on the roads). Moreover, the exploitation of each of
the network layer enables to gain a higher level of data abstraction starting from simple
information as the one acquired by smart public waste bins, smart drop-off containers and
VSUs. Indeed, either at the middleware and at the application layer of the system, the
combination of the aforesaid data gives rise to newer knowledge and contents that are
handled at the business layer so as to optimally control all of the procedures entailed by
the framework of waste management and disposal.

In conclusion, this paper tackles the problem of Smart Waste Management tempting
to put forth a novel system. The latter can be exploited by municipalities for optimizing
all the involved processes within waste management and disposal. Albeit for the time
being the system beforehand presented is at its prototypical stage, it is able to monitor
the filling level of both public waste bins and drop-off containers along with their state
and whether they underwent vandalism. In addition, the employment of VSUs allows for
fire recognition within Smart Cities paradigm. Finally, in the near future a redesign of the
system is envisaged so as to proceed to field tests.
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