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Ottavio Fornieri

Abstract

In this thesis, we aim at studying some of the open questions regarding the origin of the Cosmic Rays
(CRs), as well as their transport properties.

The exceptional quality of the experimentally measured cosmic-ray observables, especially at the
recently-achieved energies in the range∼ O(100GeV−1TeV), started to question the standard picture,
based on a Supernova Remnant- (SNR)-only origin of the CRs and a diffusive propagation inspired
by theQuasi-Linear Theory (QLT) of pitch-angle interaction against alfvénic turbulence.

First, we reproduce the most relevant cosmic-ray observables to tune the propagation setup, nu-
merically solving the transport equation with the DRAGON code. On top of this, to account for the
rising of the e+ above ∼ 10GeV, we fit a primary population of positrons originating in PulsarWind
Nebulae, in a model-independent setup that considers the uncertainties in the pulsar injections mech-
anism. Since the all-lepton spectrum is still not reproduced above ∼ 50GeV — and in particular the
∼ TeV break — we consider the contribution from a nearby source of e−, and conclude that an old
(tage ∼ 105 yr) SNR, located between ∼ 600 pc and ∼ 1 kpc, is probably missing from the Catalogues.

Within the hypothesis of such old remnant in its radiative phase contributing to the e+ + e−, we
search for its signature in the proton flux as well. To do this, we consider a phenomenological prop-
agation setup that reproduces the hadronic spectral hardening at ∼ 200GeV as a diffusive feature
(D(E) ∝ Eδ(E)), and adopt it consistently for the large-scale background and for the nearby source.
Within this framework, we account for the all-lepton spectrum, the proton spectrum and the cosmic-
ray dipole anisotropy with the same old (tage = 2 · 105 yr), nearby (d = 300 pc) remnant. We highlight
that the progressively hardening diffusion coefficient is a crucial ingredient, since, in a single-power-law
diffusion scenario, the dipole anisotropy data would be overshot by, at least, one order of magnitude.

Finally, we explore the phenomenological implications of a change of paradigm in the standard
cosmic-ray diffusion — based on wave-particle interaction with Alfvén fluctuations — considering a
non-linear extension of theQLT that enhances the efficiency ofCR-scatteringwith the otherMagneto-
Hydro-Dynamic (MHD)modes. Indeed, assuming the anisotropyof the alfvénic cascade, its scattering
rate at all energies below∼ 100TeV is not able to confine charged cosmic rays, and the fastmagnetosonic
modes alone shape the diffusion coefficient that particles experience in the Galaxy. Within such pic-
ture, we implement the resulting D(E) in DRAGON2, where two independent zones differently affect
the evolution of the MHD cascade: the Halo (LHalo ∼ 5 − 6 kpc) and the Warm Ionized Medium
(LWIM ∼ 1 kpc). We find that, with a reasonable choice of selected quantities, representing the physics
of the environments, we can reproduce the hadronic fluxes, as well as the boron-over-carbon ratio,
from ∼ 200GeV above. We assign to the rising of the streaming instabilities the cosmic-ray transport
below this energy.
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Riassunto
In questa tesi, ci proponiamo di studiare alcune delle domande ancora aperte riguardo l’origine dei
Raggi Cosmici (RC) e riguardo le loro proprietà di trasporto.

L’eccezionale qualità delle osservabili sperimentali relative ai RC, specialmente nell’intervallo di
energia intorno a ∼ O(100GeV − 1TeV), raggiunto recentemente, ha fatto sì che si mettesse in discus-
sione lo scenario standard, basato sulla loro origine solo da Resti di Supernova (SNR) e su una fisica
della diffusione ispirata dallaQuasi-Linear Theory (QLT) dello scattering contro turbolenza alfvénica.

Prima di tutto, riproduciamo le osservabili più importanti per regolare il setup di propagazione,
risolvendo numericamente l’equazione del trasporto con il codice DRAGON. Con questo sfondo, per
tenere in considerazione l’innalzamento dei e+ a partire da ∼ 10GeV, fittiamo una popolazione di
positroni primari provenienti da Pulsar Wind Nebulae, in un setup che non dipende dalla scelta di
uno specifico modello, per considerare le incertezze tuttora presenti nei meccanismi di iniezione da
pulsar. Siccome lo spettro dei e+ + e− non è riprodotto sopra i∼ 50GeV—e in particolare nemmeno
il break al∼ TeV—studiamo il contributo proveniente da una sorgente di e− vicina, concludendo che
un vecchio (tage ∼ 105 yr) SNR, situato tra ∼ 600 pc e ∼ 1 kpc, probabilmente manca dai Cataloghi.

Sotto l’ipotesi che questo vecchio remnant in fase radiativa contribuisca ai e+ + e−, cerchiamo una
sua impronta nel flusso di protoni. Per farlo, consideriamo un setup di propagazione fenomenologico
che riproduca l’hardening spettrale a ∼ 200GeV come una caratteristica diffusiva (D(E) ∝ Eδ(E)), e
lo adottiamo consistentemente sia per il background di larga scala, sia per la sorgente vicina. Dentro
questo scenario, riproduciamo lo spettro dei leptoni totali, il flusso dei protoni e l’anisotropia di dipolo
con lo stesso vecchio (tage = 2 · 105 yr) remnant vicino (d = 300 pc). Sottolineiamo che il coefficiente
di diffusione che si appiattisce progressivamente è un ingrediente cruciale, perchè, in uno scenario con
singola legge di potenza, i dati sull’anisotropia vengono oltrepassati di almeno un ordine di grandezza.

Infine, esploriamo le implicazioni fenomenologiche di un cambio di paradigma rispetto alla diffu-
sione standard — basata sull’interazione onda-particella con fluttuazioni di Alfvén — considerando
una estensione non lineare della QLT che aumenti l’efficienza di scattering con altri modi Magneto-
Idro-Dinamici (MHD). Infatti, assumendo un’anisotropia della cascata alfvénica, il suo rate di scat-
tering a tutte le energie sotto i ∼ 100TeV non è in grado di confinare raggi cosmici carichi, e sono i
modi magnetosonici veloci a formare il coefficiente di diffusione che le particelle sentono nella Galas-
sia. All’interno di questo scenario, implementiamo i D(E) risultanti in DRAGON2, in cui due zone in-
dipendenti della Galassia influiscono in modo diverso sulla evoluzione della cascata MHD: l’Alone
LHalo ∼ 5−6 kpc e ilMezzo Ionizzato Caldo (LWIM ∼ 1 kpc). Troviamo che, con una scelta ragionevole
di alcune grandezze selezionate, che rappresentino la fisica di questi ambienti, riproduciamo i flussi
adronici e il rapporto boro-su-carbonio, da ∼ 200GeV in su. Assegniamo all’emergere delle instabilità
di flusso il trasporto dei raggi cosmici al di sotto di tale energia.
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Resumen
En esta tesis, nos proponemos estudiar algunas de las preguntas aún abiertas sobre el origen de los
Rayos Cósmicos (CR) y sobre sus propiedades de transporte.

La excepcional calidad de las observables experimentales relacionadas con los CRs, especialmente
en el rango de energía ∼ O(100GeV − 1TeV), alcanzado recientemente, hizo que se cuestionara el
escenario estándar, basado en su origen desde Remanentes de Supernova (SNR) y en la física de la
difusión inspirada por laQuasi-Linear Theory (QLT) del scattering contra la turbulencia alfvénica.

En primer lugar, reproducimos los observables más importantes para ajustar la configuración de la
propagación, resolviendo la ecuación de transporte numéricamente con el código DRAGON. Para tener
en cuenta el aumento de e+ a partir de ∼ 10GeV, ajustamos una población de positrones primarios de
PulsarWindNebulae, en una configuración que no depende de unmodelo específico, para considerar
las incertidumbres aún presentes en los mecanismos de inyección de púlsar. Como el espectro de e+ +

e− no se reproduce con esta configuración por encima de ∼ 50GeV — y, en particular, ni siquiera el
cambio de pendiente a∼ TeV—estudiamos la contribución de una fuente cercana de e−, concluyendo
que un antiguo (tage ∼ 105 yr) SNR, ubicado entre∼ 600 pc y∼ 1 kpc, no se encuentra en los catálogos.

En la hipótesis de que este SNR contribuye al flujo de e++ e−, buscamos su huella en los protones.
Para hacer esto, consideramos una configuración de la propagación fenomenológica que reproduce el
cambio espectral a ∼ 200GeV como una característica de la difusión, (D(E) ∝ Eδ(E)), y lo adoptamos
tanto para el fondo, a gran escala, como para la fuente cercana. Dentro de este escenario, reproducimos
el espectro total de leptones, el flujo de protones y la anisotropía dipolar con el mismo (tage = 2 · 105 yr)

SNR, a una distancia de d = 300 pc. Enfatizamos que elD(E) que se aplana gradualmente conforme al
cambio de energía es un ingrediente crucial porque, en un escenario de ley de potencia única, los datos
de anisotropía se exceden en, al menos, un orden de magnitud.

Finalmente, exploramos las implicaciones fenomenológicas de un cambio de paradigma con re-
specto a la difusión estándar—basado en la interacción onda-partícula con fluctuaciones de Alfvén—
considerandouna extensiónno lineal delQLTque aumenta la eficiencia de dispersión conotrosmodos
deMagneto-Hydro-Dynamics (MHD). De hecho, asumiendo una anisotropía de la cascada alfvénica,
su tasa de dispersión para todas las energías por debajo de∼ 100TeV no es capaz de confinar los CRs, y
son losmodosmagnetosónico rápido los que forman el coeficiente de difusión que las partículas sienten
en la Galaxia. En este escenario, implementamos elD(E) que resulta en DRAGON2, en el que dos zonas
independientes de la Galaxia afectan la evolución de la cascada MHD de manera diferente: el Halo
LHalo ∼ 5 − 6 kpc y elmedio ionizado caliente (LWIM ∼ 1 kpc). Encontramos que, con una elección ra-
zonable de algunas cantidades seleccionadas, que representan la física de estos entornos, reproducimos
los flujos hadrónicos y la relación deB/C, desde∼ 200GeV en adelante. La aparición de inestabilidades
de flujo puede explicar de forma natural el transporte de CRs por debajo de esta energía.
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0
Introduction

0.1 Introduction &Motivations

More than a century after the discovery of Cosmic Rays (CRs), our understanding of the ensemble
of processes governing their physics is still not satisfactory, due to our incomplete knowledge of both
their acceleration mechanisms and their transport properties across the MilkyWay.

At first order, there is a general consensus on the overall picture: CRs are accelerated at Supernova
Remnants (SNRs) viaDiffusive Shock Acceleration (DSA) and then propagate through the Galaxy ac-
cording to the so-called transport equation, derived within the approximate framework of the so-called
Quasi-Linear Theory (QLT) of pitch-angle scattering againstMagneto-Hydro-Dynamic (MHD) fluc-
tuations — such wave-particle interaction implies that particles diffuse. This equation effectively cap-
tures the relevant physical processes occurring to charged particles in the Galaxy (Ginzburg and Sy-
rovatskii, 1964a). To support this picture, a series of numerical/semi-analytical codes solving the trans-
port equation (e.g. DRAGON, GALPROP or USINE) are able to reproduce most of the observable data
with a limited number of free parameters.

However, the exceptional quality of the observations, achieved in the last decade, highlighted a
set of anomalies that seriously challenge the standard scenario, and questions regarding the origin of
each CR-observable and their propagation properties still remain open. Among the most relevant fea-
tures, we consider the following: (i) an excess of positrons with respect to the standard secondary-only
production (Adriani et al., 2009), (ii) a spectral break in the all-lepton spectrum at ∼ 1TeV (Adri-
ani et al., 2011b), (iii) a hardening in the spectra of primary and secondary hadronic species around
∼ 250GV (Adriani et al., 2011a).

(i) Solving the transport equation for secondary e+ — generated by the spallation of protons and
helium nuclei against targets of the Interstellar Medium (ISM) — and for primary e−, the quantity
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known as the positron fraction is expected to scale as e+/
(
e+ + e−

)
≈ e+/e− ∼ E−Γp

inj−δ/E−Γe−
inj , where

δ > 0 is the slope of the diffusion coefficient parametrized as D(E) ∝ Eδ. Assuming typical injection
slopes Γp

inj = 2.4 and Γe−

inj = 2.4 − 2.7, and δ ≃ 0.3 − 0.5, then we would expect the positron fraction to
declinewith energy. This is in contrastwith the findings of the PAMELACollaboration (Adriani et al.,
2009), later confirmedwith higher accuracy byAMS (Aguilar et al., 2013), that observed a rising in the
positron fraction around E ∼ 10GeV. Furthermore, the measurements of the absolute positron- and
electron-fluxes by AMS-02 (Aguilar et al., 2019a,b) suggested that such excess is originated by a rising
population of primary positrons, rather than from a declining flux of electrons. A plausible origin is
the injection of e± pairs by pulsars, strongly supported by the recent observation of extended (∼ 20 pc)

γ-ray halos around two nearby pulsars (Abeysekara et al., 2017), compatible with the Inverse Compton
scattering of ∼ 100TeV leptons against the CosmicMicrowave Background photons. However, pulsar
injection mechanisms are not well understood yet, and phenomenological fits to the positron flux are
required to bracket their uncertainties within a model-independent picture (Fornieri et al., 2020b).

(ii) The convoluted spectra from the large-scale, smooth distribution of SNRs plus the positron
discrete sources are not able to reproduce a large portion of the high-energy (aboveE ∼ 50GeV) e++e−

spectrum— consistently with Boudaud et al. (2017) — including the ∼ 1TeV break reported by sev-
eral ground- and space-based detectors (see Fornieri et al. (2020b) and references therein). The con-
tribution to both e+ and e− from the class of sources that inject positrons is guaranteed by assuming
that they are generated in electromagnetic showers as e± pairs, and ignoring the unlikely hypothesis of
sources of anti-matter only. Therefore, we can conclude that a source of e− only— likely a Supernova
Remnant — could be missing from the Catalogues. Invoking the incompleteness of the Catalogues,
however, would still require running large Monte Carlo simulations to quantify up to what extent it
is possible to observe the stochastic nature of the source-distribution at such high energy, considering
the lepton horizon at the ∼ TeV scale to be dleptons ≲ 1 kpc. Interesting works towards this direction
have been carried out in Evoli et al. (2020a); Mertsch (2018), but their results are still dependent on
the injection models and on the geometry of the source distribution. The latter, especially, is an im-
portant point, since a not-accurate implementation of the local (∼ 1 kpc)Galactic structure is able to
discriminate the outcomes.

(iii) Studying this spectral anomaly has potential implications on the microphysics of cosmic-ray
diffusion. As a matter of fact, the AMS-02 Collaboration reports a spectral hardening for secondary
species that is twice as large as that for primaries (Aguilar et al., 2018b). Solving the transport equation
in a diffusive regime, we obtain the distribution function at the disk level to be f0(E) ∼ N(E)/D(E),
where N(E) is the particle injection-spectrum. For primary species, N(E) ∼ E−Γinj , from which we
get fpri0 ∼ E−Γinj−δ, while, for secondaries, the injection spectrum is the propagated spectrum of the
primaries, resulting in f sec0 ∼ E−Γinj−δ/D(E) = E−Γinj−2δ. Therefore, the above measurement is likely
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interpreted as the footprint of a diffusive originof the spectral hardening. An interesting interpretation
of this feature is provided in Tomassetti (2012), where the authors show that it arises naturally by
considering twodifferent diffusion-scalingswith rigidity in theHalo and in theDisk of ourGalaxy, and
that this picture is equivalent to consider a diffusion coefficient that progressively hardens as rigidity
increases, namelyD(E) ∝ Eδ(E).

Several solutions have been proposed for each one of the previous issues, separately. An attempt
to reconcile all of the observational anomalies and obtain a unified picture is made in Fornieri et al.
(2020c), where the hypothesis of a nearby SNR is considered for the e++e− spectrum. We know from
the theory that Supernova Remnants inject both electrons and protons, therefore we expect a signa-
ture in the measured p flux as well. Under the hypothesis of a diffusive origin for the spectral break,
the phenomenological model proposed in Tomassetti (2012) is adopted for the CR propagation of
the large-scale source-distribution and for the propagation of e− and p from the nearby remnant. The
outcome of this work is that the spectral hardening in the hadronic species results from the superpo-
sition of a diffusion feature and an additional source. This is supported by (a) the complex structure
observed in the proton spectrum by DAMPE (An et al., 2019) — in addition to the well-established
hardening, they measure a softening at ∼ 13TeV, interpreted as an intrinsic source-cutoff — and (b)
by the different rigidity at which the spectral hardening occurs, in some of the observed species (Niu,
2020), that is compatible with a superposition of effects. The latter point, however, derives from a
different fitting of the nuclear species with respect to AMS-02 fits and thus requires further analysis
to be confirmed. Interestingly, such solution can also explain the CR dipole-anisotropy amplitude as-
sociated to the nearby source, that would overshoot the data in a single-power-law diffusion scenario.

Nonetheless, a physical motivation for the different diffusive behaviours in the two Galactic re-
gions is still missing. In Blasi et al. (2012), the break is assigned to the transition between a regime
where diffusion is caused by CR scattering against self-generated alfvénic turbulence (streaming in-
stabilities) and a regime where the alfvénic turbulence is externally injected from a larger spatial scale
(e.g. Linj ∼ O(10 − 100) pc for SN explosions). This idea is based on a picture where wave-particle in-
teraction is dominated by the Alfvén modes via gyroresonant interaction, ignoring however the other
MHD modes (magnetosonic fast and slow). While this is partially motivated by the fact that magne-
tosonicmodes undergo severe damping processes such asLandau damping orTransit-TimeDamping
(TTD) (Ginzburg et al., 1962), on the other hand a series of papers (Yan and Lazarian, 2002a, 2004,
2008) show the inefficiency of CR scattering against Alfvén and slowmodes as compared to that with
fast modes.

This tension arises when including an anisotropic treatment of the turbulence: as Alfvén modes
cascade, their turbulent spectrum keep the condition of critical balance k∥ ∼ k

2/3
⊥ between the wave-

vector’s components parallel and perpendicular with respect to the local field (Goldreich and Sridhar,
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1995). Therefore, as the cascade evolves towards large wave vectors, most of the turbulent power is
transferred to the k⊥, whereas the component involved in the wave-particle scattering is k∥ — due to
the form of the resonance function δ(k∥v∥ ± Ω), being Ω the gyrofrequency of the CR. This implies
that very little scattering efficiency is left in the Alfvén modes. As it can be easily understood, at small
wave vectors, the anisotropy of the cascade is not developed yet, and scattering efficiency is in principle
restored. Since k∥ ∼ ℓ−1

∥ , then small k∥’s resonate with particles with large Ω/v∥, hence with high
energy. This is quantified in Fornieri et al. (2020a), where it is shown that the anisotropy of the Alfvén
cascade causes the inefficiency of such modes in confining cosmic rays, at least up to an energy ECR ∼

100TeV. In the same work, therefore, a change of paradigm is proposed, according to which cosmic-
ray confinement is caused by particle interaction with fast magnetosonic modes from high energies
(ECR ∼ 100TeV), down to ∼ 200GeV, where emerging self-generated modes start to dominate the
diffusion process, as first predicted by Farmer and Goldreich (2004). Within such picture, the high-
energy (ECR > 200GeV) hadronic spectra, as well as the boron-over-carbon ratio, are reproduced with
a reasonable choice of the physical parameters connected to the Galactic environments.

0.2 Outline of the Thesis

The thesis is organized in three main parts.

Part I. Cosmic-ray physics.
In Chapter 1, we give an overview of the key experimental results that lead to the overall picture

regarding the origin and transport of cosmic rays. Then, we describe the diffusive shock acceleration
mechanism, as the main responsible for accelerating and injecting CRs in the ISM. Finally, we study
the quasi-linear theory derivation of the transport equation, reviewing the main hypotheses it relies on,
discussing the nature of the turbulent waves that are the scattering centers for charged cosmic rays.

In Chapter 2, we describe the general structure of the numerical code that will be used to solve
the transport equation for the large-scale CR background throughout the thesis, the DRAGON code,
introducing the physical ingredients (e.g. gas distribution, magnetic field, non-adiabatic energy-losses)
implemented in it. Then, we discuss the multi-messenger implications of the charged-particle energy-
losses on other detection channels, namely γ-rays and neutrinos.

Part II. Impact of local sources on the hadronic and leptonic spectra.
In Chapter 3, we reproduce the most relevant cosmic-ray hadronic observables, in order to fix the

free parameters of the code, and set up the propagationmodel. We thenuse thismodel as a background
to fit the positron flux from pulsars in a model-independent picture, and to study the the idea of a
hidden source of electrons.
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In Chapter 4, we build upon the hypothesis of a nearby source of electrons and explore potential
connections with the feature recently observed by DAMPE in the proton spectrum, with a progres-
sively hardening diffusion-coefficient setup that is able to reproduce the hadronic spectral hardening
at∼ 200GeV. Within such framework, we study the distance and age of a plausible nearby source, that
reproduces as well the cosmic-ray dipole anisotropy.

Part III. Impact of the microphysics of theMHDmodes on CR transport.
In Chapter 5, we implement a non-linear extension of the QLT that enhances the efficiency of

wave-particle interaction with fast magnetosonic modes, studying up to what extent an anisotropic
alfvénic cascade is inefficient in confining cosmic rays. With this paradigm,we implement the diffusion
coefficients in DRAGON2 in a two-zone model where the Halo and theWarm IonizedMedium involve
different damping mechanisms for the turbulent spectra. Finally, we explore the parameter space of
selected physical quantities, which represent the two environments, to reproduce the hadronic CR-
observables and the B/C ratio.

0.3 Research Contributions

The work presented in Part II and Part III of the thesis is original and reflects the following research
contributions.

- O. Fornieri, D. Gaggero, D. Grasso. Features in cosmic-ray lepton data unveil the properties of
nearby cosmic accelerators. Journal of Cosmology and Astroparticle Physics - 02 (2020) 009,
https://iopscience.iop.org/article/10.1088/1475-7516/2020/02/009.

- O. Fornieri, D. Gaggero, D. Guberman, L. Brahimi, A.Marcowith. Changes in cosmic-ray trans-
port properties connect the high-energy features in the electron and proton data. Joint submission
Phys. Rev. D/Phys. Rev. Lett., https://arxiv.org/abs/2007.15321.

- O. Fornieri, D. Gaggero, S.S. Cerri, P. Luque, S. Gabici. The theory of cosmic-ray scattering on
pre-existingMHDmodesmeets data. MonthlyNotices of theRoyal Astronomical Society - 502,
5821 – 5838 (2021), https://doi.org/10.1093/mnras/stab355.

In particular, the first paper is based on Chapter 3, the second one on Chapter 4 and the third one on
Chapter 5.
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Part I
Cosmic-ray physics





1
Theoretical foundations of cosmic-ray

acceleration and transport

In this chapter, we present an introductory overview on the physics of Galactic cosmic rays
(CRs), namely the charged particles that are likely originated within the Milky Way. Experimen-
tal evidence, collected in the past hundred years, tells us that charged particles do not follow

ballistic trajectories in the Interstellar Medium (ISM), but rather they diffuse, due to the presence of
turbulent magnetic-field fluctuations. Besides, as large-scale regular magnetic fields are embedded in
our Galaxy, they deviate the CR direction of motion, to the point that is made impossible to identify
their sources. Same evidence—alongwith a strong theoretical support—points towards catastrophic
events (e.g. Supernova Remnants) or peculiar geometrical structures (e.g. pulsars’ magnetosphere) for
accelerating charged particles and injecting them into the ISM. However, a coherent interpretation of
theCRobserved spectra still represents amajor challenge that the astroparticle community has to face,
as it is hampered by our incomplete knowledge about both the accelerationmechanisms at the sources
and the transport properties across the Galaxy. The present chapter is thus structured as follows. First,
we will give an overview of the experimental measurements directly and indirectly related to cosmic
rays, carried out at both space-born and ground-based detectors. Then, we will discuss in detail the
physics behind the origin of cosmic rays, in particular their acceleration mechanisms at the sources.
Finally, we will examine the CR transport across the Galaxy, by introducing a derivation of the Fokker-
Planck equation anddiscussing its generalizations, with particular attention to the typical assumptions
that a phenomenological interpretation of the observations should always take into account.
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1.1 Overview of the experimental status

Figure 1.1: The figure reports the all-particle spectrum of cosmic rays, i.e. the rescaled differential
flux E2 · dN

dE . About ∼ 99% of the flux is composed by protons and helium nuclei, with small con-
tributions from heavier nuclei, while leptons (e+ + e−) are about ∼ 1%. The differential-spectrum
slope is clearly indicated before and above the knee. Figure from Evoli (2018).

The expressionCosmicRays (CR)wasfirst used about ahundredyears agobyRobertMillikan (Mil-
likan and Cameron, 1928), who thought that objects that were capable to ionize the crossed medium
had to be high-energy γ radiation. But the research on CRs dates back to 1912, when Victor Hess de-
scribed his remarkable findings, analyzing data collected during two balloon flights with experimental
purposes (Hess, 1912). In particular, he measured an increasing ionization at higher altitudes. Today,
we know that Hess was measuring the showers connected to the impact of the cosmic rays with the
atmospheric gas and that such ionizing radiation is not electromagnetic radiation, but rather charged
particles.
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In Figure 1.1 we report the all-particle spectrum, namely the differential flux — per energy bin,
rescaled byE2 —of all the particles observed on Earth that are coming fromoutside of the atmosphere.
Aswe see from the figure, CRs aremanly protons and heliumnuclei— together they constitute∼ 99%

of the total flux — and the remaining part is composed by heavier nuclei and leptons, that are about
∼ 102 times less abundant than protons.

At a first look, the proton spectrum is essentially featureless up to the so-called knee (Eknee ≃ 3PeV),
showing the following differential flux:

dN

dE

∣∣∣∣
E ≲ 3PeV

∝ E−2.7.

Above the knee it exhibits a softening
(
dN

dE

∣∣∣∣
3PeV≲E ≲ 5EeV

∝ E−3.1

)
, likely corresponding to the high-

est accelerated energy of the CR’s main sources. Then, at∼ 5EeV, a hardening is probably a signature
of the entrance of a new population of extra-Galactic origin. Finally, at ∼ 1020 eV the spectrum shows
an abrupt cutoff, that corresponds to the excitation energy of a hadronic resonance (the∆+) in the scat-
tering process of a CRproton off the photons of the ubiquitous cosmicmicrowave background (CMB)
radiation. This phenomenonwas already explained in the 60’s and known asGZK cutoff, named after
Greisen, Zatsepin and Kuz’min, who first discovered it (Greisen, 1966; Zatsepin and Kuz’min, 1966).

The identification of the origin of the cosmic-ray particles is complicated by the presence of large-
scale magnetic fields embedded in our Galaxy, as charges moving inside them follow intricate trajec-
tories and make impossible to point directly to the sources. This is, conversely, possible for weakly
interacting particles, namely photons and neutrinos, that therefore potentially represent the smoking
guns of the astrophysical events originating cosmic rays.

In fact, as it will be explained in detail in Section 2.2.2, the interaction of both hadronic and lep-
tonic CRs generates photons, via several channels. In particular:

(i) leptons massively loose energy due to their light mass and consequently emit electromagnetic
radiation in characteristic energy bands. This is sketched in Figure 1.2a, where we observe the
leptonic spectral energy distribution (SED), characterized by the typical two peaks at energies
clearly separated. The peak in the Radio band (lower energy) comes from synchrotron losses,
while that in the γ-ray band (higher energy) comes from Inverse Compton scattering off different
components of the ISRF. Bremsstrahlung emission is absent from the picture, overlapping the
γ-ray IC emission.

(ii) Protons, on the other hand, scatter off the Interstellar-Medium (ISM) gas and the Interstellar-
Radiation-Field (ISRF) photons creating, among others, neutral pions, which eventually decay
as π0 → γγ, showing the typical pion bump at an energy corresponding, in log10-scale, to half
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3. GAMMA-RAY PRODUCTION

3.1. Leptonic Emission

To derive γ -ray spectra, one typically starts with an accelerated power-law spectrum of the charged
particles (potentially with a high-energy cutoff at Emax, as discussed in Section 2.1) and subsequently
calculates the losses into photons from the different processes. Each of the different processes has
certain characteristics that can be used to identify the underlying production mechanism once the
γ -rays are observed.

The shape of the synchrotron spectrum is strongly peaked, with a tail to higher energies. For
an isotropic distribution of pitch angles, a population of monoenergetic electrons with energy Ee

emits synchrotron photons at energy Esync (45):

Esync = 0.2
B

10 µG

(
Ee

1 TeV

)2

eV. 1.

The synchrotron radiation spectrum of TeV electrons in a typical 10-µG magnetic field thus peaks
at approximately 0.2 eV (i.e., in the visible range of the electromagnetic spectrum). A more realistic
case is one where the electron population has a distribution of energies that follows a power law
with index αe (46). The differential synchrotron spectrum in this case follows a power law with in-
dex #sync = (αe +1)/2. Energy losses in the IC Thomson regime and for synchrotron emission are
proportional to E−1

e . These losses therefore modify the initial power-law distribution of electrons
so that the steady-state energy spectrum of the electrons has a break from αinjected to αinjected + 1
(Figure 2). The break is at an energy where the cooling timescales become comparable to
the age of the source, tage (45), and can be approximated as Ee,br = 1.2 × 104(B/10 µG)−2
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Figure 2
Spectral energy distribution of electrons at injection (light gray with αinjected = 2.0) and the steady state
including cooling (dashed dark gray) for a source with age tage = 1,000 years and B = 100 µG, for a scenario
in the inner 100 pc of our Galaxy. The cooling break in the electron spectrum at ∼1.2 TeV is apparent in the
steady-state electron distribution (dashed dark gray), in the synchrotron spectrum, and in the inverse
Compton (IC) spectrum. Also apparent is the turnover in the spectra at even higher energies, due to
Klein–Nishina (KN) cooling, that incur catastrophic losses on the electrons. The case for a much lower B
field of 3 µG is also shown in light gray. The shaded gray region shows the sensitive range of current γ -ray
detectors (Fermi-LAT, imaging atmospheric Cherenkov telescopes). Abbreviations: CMB, cosmic
microwave background; FIR, far IR; NIR, near IR.
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Figure 6
Typical γ -ray energy spectra for several of the most prominent supernova remnants (SNRs). Young SNRs
(<1,000 years) are shown in green. These typically show smaller γ -ray fluxes but rather hard spectra in the
GeV and TeV bands. The older (but still referred to as young) shell-type SNRs RX J1713.7-3946 and RX
J0852.0-4622 (Vela Junior) of ages ∼2,000 years are shown in shades of red. These show very hard spectra in
the GeV band (" = 1.5) and a peak in the TeV band with an exponential cutoff beyond 10 TeV. The
middle-aged SNRs (∼20,000 years) interacting with molecular clouds (W44, W51C, and IC443) are shown
in blue. Also shown are hadronic fits to the data (solid lines).

Indeed, beyond pulsars and PWN (which are generally assumed to be dominated by CR elec-
trons), the largest number of detected γ -ray sources in the Galaxy are SNRs. The Fermi-LAT
team is about to release its catalog of SNRs in which the data have been analyzed for each of the
known SNRs (62) in our Galaxy, resulting in approximately 40 detections. These detections can be
divided into two classes (see, e.g., Figure 6). The largest class of GeV-detected SNRs consists of
those known to interact with molecular clouds, such as IC443, W44, and W51C (Figure 7). The
second class comprises young SNRs that are typically less luminous at GeV energies, have harder
spectra, and are often also detected at TeV energies. At TeV energies, 11 shell-type SNRs have
been detected, including such objects as Tycho’s SNR, Cas A, SN 1006, and RX J0852.0–4622
(Vela Junior), as well as RX J1713.7–3946 (Figure 8). The results seem to indicate that the CR
efficiency εCR (the efficiency of converting the SN explosion energy into CRs) is broadly consistent
with a value of 10%, albeit with rather large errors for individual SNRs due to uncertainties about
distance, explosion energy, and target density surrounding the remnants (63). A study at TeV en-
ergies with H.E.S.S., based on the Galactic plane survey (58, 59), came to similar conclusions (64).

5.1.1. Supernova remnants interacting with interstellar material. SNRs interacting with
interstellar material represent the largest class of GeV-detected objects, and the SNRs IC443,
W44, and W51C are the brightest objects of this class on the GeV sky (Figure 6). The brightness
stems from the rather large density of target material, which arises from the interaction between
the shock wave and the surrounding molecular clouds (up to n = 1,000 cm3). For these objects, a
correlation between GeV γ -rays and the radio flux seems to emerge (69), indicating nonthermal
emission from relativistic particles. For IC443 and W44, the characteristic low-energy cutoff
in the energy spectrum (the pion bump) has been detected (Figure 6) (70). This observation
clearly demonstrates that the γ -ray emission in the GeV band is dominated by π0 decay and
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(b)

Figure 1.2: The figure shows the characteristic spectral energy distribution (SED) of the leptonic
andhadronic emission fromSNRs. (a)Acharacteristic double-peaked (synchrotron and IC) leptonic
SED, from a reference electron injection slope Γe−

inj = 2. The principal scenario (orange solid line)
reproduces the inner 100 pc of the Milky Way, with B = 100µG. The IC peak is drawn as resulting
from different contributions to the ISRF, in dashed grey lines. Same peaks are shown for a much
lower magnetic field B = 3µG (light grey solid line). (b)Real case-studies of seven SNRs’ hadronic
emission. The different color-scheme refers to the object age: green corresponds to the youngest
sources (tage < 103 yr), red to tage ∼ 2 · 103 yr, blue to tage ∼ 2 · 104 yr. Both figures are taken from
Funk (2015).

of the rest mass of the pion, mπ0/2 ≃ 70MeV. Note that, in the usual rescaled units multiplied
by E2, this bump appears shifted in energy, at ∼ 200MeV. The resulting SED is shown in Fig-
ure 1.2b for seven Supernova Remnants (SNR), classified in terms of their ages with the color
code described in the caption. All of the sources but two (red solid lines) are consistent with a
hadronic emission model. Those two represents however particular cases that still require dedi-
cated studies (see e.g. Section 5.1.1 from Funk (2015)).

With regard to the choice of the model, we mention that, although, in the GeV − TeV range,
Bremsstrahlung, IC and π0-decay overlap, observations of the surrounding medium typically disen-
tangle the problem, by means of energetics considerations (see e.g. Ackermann et al. (2013)). In con-
clusion, the unambiguous interpretation of the photon SEDs of leptonic and hadronic origin leads
to identify Supernova Remnants as the most promising sources of cosmic rays (see e.g. Aharonian
(2013)), even though many details on this picture are still under debate (see e.g. Gabici et al. (2016)
and references therein). Such hypothesis is further supported by the theoretical studies of the CR-
acceleration mechanisms at SN shocks, as it will be discussed in Section 1.2.

Another important piece of information comes from the observation of the large-scale photon
emission of hadronic origin, derived by Galactic surveys, e.g. as done by the Fermi Collaboration*.

*https://fermi.gsfc.nasa.gov/
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As we will see in Section 2.3, the γ-ray emission observed in the Galactic plane closely matches the
morphology of the interstellar gas, indicating a longer residence time of the cosmic rays around those
regions, as compared to a hypothetical ballistic motion. As a consequence, it follows that charged
cosmic rays do not follow ballistic trajectories, but rather they diffuse. Supporting this picture, the
two following classes of evidence have to be considered.

• The observation of the small-scale anisotropy amplitude in the cosmic-ray flux: the high degree
of directional isotropy, whose dipole amplitude is up to ∼ 10−3 (see Ahlers and Mertsch (2017)
and references therein), can be derivedwithin a theory of cosmic-ray scattering against randomly
distributed turbulent waves. This point will be discussed in more detail in Section 1.3.3.

• The measurement of the abundance and lifetime of unstable elements: based on these observa-
tions, the average residence time of cosmic-ray particles in the Milky Way is estimated in τesc ≃

1.5 · 107 yr for particles of energy∼ GeV (Yanasak et al., 2001). On the other hand, for a Galactic-
halo size of approximately LHalo ∼ 5 − 10 kpc, if CRs were streaming freely, their escape time
would be as small as τ freeesc ∼ LHalo/vCR ≃ 1.5 ·104 yr, for a typical CR velocity vCR ≈ c, being c the
speed of light. This anomalously short residence time is not enough to account for the observed
B/C ratio, as well as for other secondary-over-primary ratios.

As a final key-point, we want to mention the recent observation of a γ-ray halo around two nearby
pulsars — Geminga and Monogem — by the HAWC Collaboration (Abeysekara et al., 2017). The
measurement, shown in Figure 1.3a, reports an extended region (∼ 20 − 25 pc) around each pulsar,
where photons in the ∼ TeV range are present. Such an extension is much larger than the pulsars’
magnetospheres.

This shell-structure, later confirmed in a lower energy range (Eγ > 8GeV) by the Fermi Collab-
oration (Di Mauro et al., 2019), is commonly referred to as TeV-halo and it is observed in the region
between the Pulsar Wind Nebula and the surrounding SNR-shell, as sketched in Figure 1.3b. Its
energy seems compatible with IC-scattering against the photons from the CMB of confined lepton
populations of energy Ee± ∼ 100TeV — in the HAWC range — and 350GeV ≲ Ee± ≲ 1.5TeV —
in the Fermi band. As a consequence, this measurement potentially represents the first evidence of
pulsars as accelerating sites for lepton pairs.

In this section, we have reported a key observational evidence that leads us to conclude that (i)
cosmic rays follow a diffusive motion, (ii) they come mainly from Supernova Remnants, and (iii) tha
there is increasing indication of a lepton population of primary e± pairs originating around pulsars.
From this point ahead, we will work under these hypotheses and introduce the physics of cosmic-ray
acceleration and transport in the Galaxy.
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pulsar and up-scattering the cosmic microwave
background (CMB) photons. Geminga was pre-
viously detected at tera–electron volt energies by
theMilagro observatory, with a flux and angular
extent consistentwith theHAWCobservation but
with lower statistical significance (13). Here we
show that the HAWC observation of the spectral
and spatial properties of these sources can be used
to constrain their contribution to the positron flux
at Earth (Fig. 1B).
A diffusion model of the spatial and spectral

morphology (12) is fit to the gamma-ray fluxN as

a function of angle q from the source and gamma-
ray energy E as

d2N
dEdW

¼ N0
E

20TeV

! ""a

# 1:22
p3=2qdðEÞ½qþ 0:06qdðEÞ(

e½"q2=qdðEÞ2 ( ð1Þ

using amaximum likelihood technique.N0 is the
flux normalization at 20 TeV, and W denotes a
solid angle. The diffusion angle qd is proportional
to the square root of the diffusion coefficient D,

and both varywith energy. Themodel values from
the fit are given in Table 1. The spectral indices a
and observed fluxes are similar to those of other
tera–electron volt PWNe (14), but the luminos-
ities are lower, primarily because of their nearby
distance and larger apparent size. The energy
range is estimated by increasing (decreasing) the
minimum (maximum) energy of an abrupt cutoff
in the power law spectrum until the significance
of the fit decreases by 1s.
Assuming that all theobservedgamma-ray emis-

sion at tera–electron volt energies is produced

Abeysekara et al., Science 358, 911–914 (2017) 17 November 2017 2 of 4

Table 1. Pulsar parameters, values of parameters from the model fitting to the observed extended gamma-ray emission, and assumed parameters
of our model. Pulsar parameters are from (15).

Geminga PSR B0656+14

Pulsar parameters
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

(Right ascension, declination) (J2000 source location) (degrees) (98.48, 17.77) (104.95, 14.24)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

tc (characteristic age) (years) 342,000 110,000
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

T (spin period) (seconds) 0.237 0.385
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

d (distance) (parsecs) 250þ120
"62 288þ33

"27.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

dE/dt (energy loss rate due to pulsar’s spin slowing) (×1034 ergs per second) 3.26 3.8
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Model values
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

q0 (qd for 20-TeV gamma ray) (degrees) 5.5 ± 0.7 4.8 ± 0.6
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

N0 (×10−15 photons per tera–electron volt
per square centimeter per second)

13:6þ2:0
"1:7 5:6þ2:5

"1:7
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

a 2.34 ± 0.07 2.14 ± 0.23
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

D100 (diffusion coefficient of 100-TeV electrons from joint fit of two PWNe) (×1027 square centimeters per second) 4.5 ± 1.2 4.5 ± 1.2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

D100 (diffusion coefficient of 100-TeV electrons from individual fit of PWN) (×1027 square centimeters per second) 3:2þ1:4
"1:0 15þ49

"9.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Energy range (tera–electron volt) 8 to 40 8 to 40
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Luminosity in gamma rays over this energy range (×1031 ergs per second) 11 × (d/250 pc)2 4.5 × (d/288 pc)2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Assumed parameters
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

L0 (initial spin-down power) (×1036 ergs per second) 27.8 4.0
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

We (total energy released since pulsar’s birth) (×1048 ergs) 11.0 1.5
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Earth

PSR B0656+14

Geminga

A B

Fig. 1. Spatial morphology of Geminga and PSR B0656+14. (A) HAWC
significance map (between 1 and 50 TeV) for the region around Geminga
and PSR B0656+14, convolved with the HAWC point spread function and
with contours of 5s, 7s, and 10s for a fit to the diffusion model. R.A., right
ascension; dec., declination. (B) Schematic illustration of the observed

region and Earth, shown projected onto the Galactic plane. The colored
circles correspond to the diffusion distance of leptons with three different
energies from Geminga; for clarity, only the highest energy (blue) is shown
for PSR B0656+14. The balance between diffusion rate and cooling effects
means that tera–electron volt particles diffuse the farthest (fig. S1).
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Milagro and the High Altitude Water Cherenkov (HAWC) observatory have detected extended TeV
gamma-ray emission around nearby pulsar wind nebulae. Building on these discoveries, T. Linden et al.,
Phys. Rev. D 96, 103016 (2017). identified a new source class—TeV halos—powered by the interactions of
high-energy electrons and positrons that have escaped from the PWN, but which remain trapped in a larger
region where diffusion is inhibited compared to the interstellar medium. Many theoretical properties of TeV
halos remain mysterious, but empirical arguments suggest that they are ubiquitous. The key to progress is
finding more halos. We outline prospects for new discoveries and calculate their expectations and
uncertainties. We predict, using models normalized to current data, that future HAWC and Cherenkov
Telescope Array observations will detect in total ∼50–240 TeV halos, though we note that multiple
systematic uncertainties still exist. Further, the existing High Energy Stereoscopic System source catalog
could contain ∼10–50 TeV halos that are presently classified as unidentified sources or PWN candidates. We
quantify the importance of these detections for new probes of the evolution of TeV halos, pulsar properties,
and the sources of high-energy gamma rays and cosmic rays.

DOI: 10.1103/PhysRevD.100.043016

I. INTRODUCTION

Milagro observations revealed extended TeV γ-ray
emission surrounding the nearby Geminga pulsar, now
confirmed by the High Altitude Water Cherenkov (HAWC)
observatory [1–3]. Additionally, HAWC has detected
similar emission surrounding another nearby pulsar, PSR
B0656+14, commonly associated with the Monogem ring
[4], and which we refer to as the “Monogem pulsar.” These
sources are bright (∼1032 erg s−1), have hard spectra
(∼E−2.2), and are spatially extended (∼25 pc). In addition,
the High Energy Stereoscopic System (HESS) has detected a
number of TeV γ-ray sources coincident with pulsars or
pulsar wind nebulae (PWNe) [5,6]. Though they refer to
these as “TeV PWN,” they find that many are significantly
larger than expected from PWN theory [7–9]. The sources
noted above appear morphologically and dynamically dis-
tinct from PWNe detected in x-ray and radio observations.
Linden et al. [7] identified these sources as a new γ-ray

source class (“TeV halos”) and interpreted their emission as
the result of electrons and positrons interacting with the
ambient interstellar radiation field outside the PWN. The
possibility of significantly extended leptonic emission was

first predicted in Ref. [10], and its importance was further
discussed in Refs. [11–14]. Moreover, Linden et al. [7]
showed that a large fraction of 2HWC catalog sources are
coincident with pulsars, and predicted that TeV halos are a
generic feature of pulsar emission.

FIG. 1. Schematic illustration of a TeV halo in relation to the
more familiar PWN and supernova remnant (SNR). A TeV halo
may not form early, and the SNR may be fading when the halo
appears.
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(b)

Figure 1.3: The new structures known as TeV-halos are shown. (a) The figure reports the observa-
tion of γ-ray extended halos in the ∼ TeV range around two nearby (d ∼ 250 pc) pulsars, Geminga
andMonogem. Figure fromAbeysekara et al. (2017). (b)This is a sketchof the halo structurewithin
the whole pulsar region. Figure from Sudoh et al. (2019).

1.2 Cosmic-ray acceleration at the sources

The first step in discussing the physics of cosmic rays is the study of the acceleration stage. Whenmany
collisions occur among particles in a system, an equilibrium is reached and the system is thermalized,
which implies that particles follow aMaxwell-Boltzmann distribution for their velocities. In the pres-
ence of perturbations or catastrophic events though, these equilibrium conditions are disturbed and
particles gain velocity, i.e. they get accelerated and injected in the surrounding interstellar medium.
As we know from basic physics courses, charged particles can be accelerated by applying an electric
field: however, as will see in more detail in Section 1.3.2, typical ISM conditions do not allow the pres-
ence of large-scale electric field

(
⟨E⟩ = 0

)
, unless specific topological structure are involved. Another

possibility is based on stochastic processes — namely for which
〈
E2
〉
̸= 0— that allow the particles to

gain energy after a certain number of cycles. They represent ∼ 99% of the accelerating mechanisms in
nature and are the focus of the present section.

1.2.1 Second-order Fermi acceleration

This process is based on the relative motion of a charged particle with respect to a movingmagnetized
plasma cloud (Fermi, 1949, 1954). In the moving-cloud reference frame, a particle with energy and
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momentum (E′, |p′z|) scatters off the cloud elastically, reversing the direction of its momentum, |p′z| →
−|p′z|. However, if we observe this event in the Earth frame, we will measure a net gain (or net loss) in
the particle momentum corresponding to their relative speed (either positive or negative in direction).

β, γ

S′ S

(E′ , − p′ z)
(E, − pz)

̂z

̂z′ 

CR

Figure 1.4: The figure shows the relative motion of two reference frames. S is the Earth frame
and is moving along the positive ẑ-axis of S′, the cloud frame, with Lorentz factors (β, γ). The CR-
particle, shown in blue, is moving in the opposite direction with energy and momentum (E′,−p′z),
as measured in the cloud, or (E,−pz), as measured from the Earth.

As we see from Figure 1.4, in the case where the particle and the cloud move towards each other,
the energy and momentum of the particle, in the cloud reference frame, are written, with respect to
the same quantities measured on Earth, according to the Lorentz transformations (Barone, 2004):


E′ = γ

(
E − βc(−pz)

)
= γE + βcγpµ

p′z = γ

(
pz +

β

c
E

)
= γpµ+ γ

β

c
E,

where µ ≡ cos θ is the component projected on the ẑ ∥ ẑ′ axis, β = v/c and γ = 1/
√
1− β2 are the

Lorentz factors, and the particle energy and momentum are (E,−pz), as observed in S.

After the impact, the particle reverses itsmomentum, so that in the Earth frame its energy becomes:

Eafter = γ
(
E′ + βcp′z

)
,

as it is nowmoving along the positive ẑ axis.

Thenet energy variation in a single impact— in this case a gain—canbe found taking into account
the two previous expressions:

∆E

E
=
Eafter − E

E
=
γ2E + 2γ2βcpµ+ γ2β2E

E
− 1 = γ2 + 2γ2βcµ

p

E
+ γ2β2 − 1 (1.1)

Since, as we will see in Section 1.3.2, the collective motion of a magnetized plasma-cloud is of the
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order of vcloud ≃ vA ∼ 1 − 100 km · s−1, then γ ≃ 1. This implies that we can Taylor-expand γ2 =(
1− β2

)−1 ≃ 1 + β2, so that Equation (1.1) becomes:

〈
∆E

E

〉
≈ 2

vcloudvCR

c2
µ+ 2β2, (1.2)

which is valid up to order O(v2cloud/c
2).

Over time, the particle encounters many clouds that are randomly oriented, therefore, to average
over the angles, we integrate over µ ∈ [−1,+1] the quantity in Equation (1.2) times the probability to
have the impact at that angle. Such probability is proportional to relative velocity of the cloud with
respect to the particle velocity and therefore, according to the relativistic velocity composition (Barone,
2004), depends on µ:

P (µ) ∝ vrel ⇒ P (µ) = A
vcloudµ+ vCR

1 + vCRvcloud
c2 µ

= A
βµc+ vCR

1 + vCR

c βµ
. (1.3)

At first order in β = vcloud/c — as mentioned, this probability will be multiplied by a quantity
that brings its own powers of β to the equation — and considering vCR ≈ c, we have P (µ) ≃ A(vCR +

vcloudµ) ≈ Ac(1 + βµ), from which, normalizing the probability to 1, we get:

∫ +1

−1

dµP (µ)
!
= 1 ⇒ A =

1

2c
.

As a final step, we average the net gain in Equation (1.2) and obtain:

∫ +1

−1

dµP (µ)

〈
∆E

E

〉
≈
∫ +1

−1

dµ (1 + βµ)

(
β2 + β

vCR

c
µ

)
≈

v
CR

≈c

8

3
β2. (1.4)

The net gain just obtained from the calculation is physically motivated by the higher probability
to have head-on collisions, with respect to all the other pitch-angles, since P (µ) depends on the relative
speed. However, this process gives only a second-order contribution to the energy gain of cosmic rays,
hence might be not the dominant one.

To support the last statement, we can search for an order-of-magnitude estimate of the acceler-
ation time scale, considering a simplified model where particles travel at the speed of light in a non-
magnetized plasma and are accelerated by elastically bouncing off moving clouds, whose typical dis-
tance is Lcloud ∼ 1 pc, not spending time inside each cloud. The acceleration time is defined in terms
of the acceleration rate, dE

/
dt, as follows:

τacc,Fermi2(E) =

∫ E

Emin

(
1

dE
/
dt

)
dE ≃

(
E

dE
/
dt

)
, (1.5)
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where the approximation is possible if we consider a small energy bin in the interval [E,E + dE].
Within such picture, the acceleration rate can be estimated as dE

/
dt ≃ ∆E

/
⟨tcoll⟩, where ⟨tcoll⟩ ∼

Lcloud

/
c is the average time between one collision and the next one. Therefore, based on the net energy

gain calculated in (1.4), we have:

τacc,Fermi2 ≃ E

∆E
/
⟨tcoll⟩

≃ 3 ⟨tcoll⟩
8β2

cloud

≃ 3Lcloud

8 c β2
cloud

, (1.6)

where βcloud ∼ 10−4 is the Lorentz factor of the moving clouds, typical for standard ISM conditions.
If we now assume an exponentially growing rate for the energy gain, we can compute the time scale

needed for a particle to double its energy:

E(t) = E0 · et/τacc,Fermi2 =⇒
E(t)=2E0

t =
3

8
· Lcloud

c β2
cloud

· log 2 ≈ 108 yr, (1.7)

which is in large tension with the estimation of the residence time of CRs in our Galaxy, τesc ≃ 1.5 ·

107 yr, discussed in Section 1.1.

1.2.2 First-order Fermi acceleration

We have seen that the acceleration process described above leads to an anomalously long acceleration
time for cosmic-ray particles. Nonetheless, we notice that if only head-on collisions (θ = π)were occur-
ring, second-order Fermi acceleration would lead to a way larger energy enhancement. In fact, from
Equation (1.2), we easily see that, imposing µ = −1, the net energy gain would be proportional to
β rather than β2, providing an orders-or-magnitude more efficient acceleration mechanism. Indeed,
second-order Fermi mechanism became the seed of the modern understanding of the acceleration
processes, as soon as it was discovered that it could be promoted to a first-order mechanism around
shocks (Axford et al., 1977; Bell, 1978; Blandford and Ostriker, 1978; Krymskii, 1977).

Physically speaking, a shock forms when something propagates faster than the information of its
propagation. In the dense media that characterize our astrophysical environments, this information is
carried by the molecules, that communicate the passage of the shock front by hitting with each other,
i.e. via pressure waves propagating at the sound speed cs. As a consequence, the two regions separated
by such shock front have relevant thermodynamical quantities — density ρ, pressure P and tempera-
ture T — that have different values. In other words, a discontinuity is formed at the shock front.

A sketch of the physical situation is reported in Figure 1.5, where we watch the scene in the ref-
erence frame of the shock front. In this reference, we identity the two regions separated by the dis-
continuity as upstream, the pre-shock region moving towards the shock frame with velocity uU , and
downstream, the post-shock region, streaming away from the discontinuity with velocity uD. We eas-
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Shock front

̂zDownstream 
(post-shock region)

Upstream  
(pre-shock region)

ISM

(ρU, PU, TU)
uU

(ρD, PD, TD)
uD

0

Figure 1.5: In the reference frame of the infinitesimal shock front, two regions are identified with
different thermodynamical quantities: the upstream pre-shock region, that is moving towards the
shock front with velocity uU , and the downstream region, which is already shocked and flow away
from the shock at velocity uD.

ily convince that, in the region that has already been shocked, pressure waves, that are slower than the
shock, “pile up” and compress the shocked medium. As a consequence, downstream the medium is
denser than upstream:

ρD > ρU ⇒ ρD
ρU

> 1.

Since the mass flux has to be conserved at the (infintesimal) shock front, then we have:

d

dz
(ρu) = 0 ⇒ ρDuD = ρUuU ⇒ ρD

ρU
=
uU
uD

,

where uD,U identify the collective velocities in the two regions.

Hence, we see that, even though the pressure in the downstream region is enhanced, the collective
velocity of its particles is lower than before the passage of the shock. This implies that the pressure
enhancement must contribute to the thermal agitation of the single particles of the cloud, namely the
temperature of the downstream region increases. To summarize, we have the following conditions:

ρD > ρU

uD < uU

PD > PU

TD > TU ,

(1.8)
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according to which we identify the upstream region with fast and cold undisturbed gas, and the down-
stream region, where the shocked gas is slow and warm.

The quantitative treatment, corresponding to the relations (1.8) between the physical quantities
at the two sides of the shock, must take into account the strength of the shock and the environment
where it originates. The calculations can be carried out imposing the conservation of the flux (in di-
mensional units [quantity]

T ·L2 ) of mass, momentum and energy at the approximately-infinitesimal shock
front (Longair, 2011):

d

dz
(ρu) = 0

d

dz

(
ρu2 + P

)
= 0

d

dz

(
1

2
ρu3 +

γ

γ − 1
uP

)
= 0,

where in the last equationweconsidered the energyflux through a surfaceΣ ⊥ u asΦenergy = ρu
(
1
2u

2 + h
)
,

being h = γa

γa−1
P
ρ the enthalpy per unit mass in a perfect gas, with γa coefficient of adiabatic expansion,

that, for an ideal gas, assumes the value γa = 5/3. Wenotice that the infinitesimal-shock approximation
works as long as we are dealing with non-thermal particles, whose Larmor radius is much larger than
that of the thermal ones.

The jump conditions, known as Rankine-Hugoniot equations (Hugoniot, 1885; Rankine, 1870),
then become: 

ρUuU = ρDuD

ρUu
2
U + PU = ρDu

2
D + PD

1

2
ρUu

2
U +

γa
γa − 1

PU =
1

2
ρDu

2
D +

γa
γa − 1

PD.

(1.9)

The system above admits a non-trivial solution, i.e. such that uU ̸= uD, PU ̸= PD, ρU ̸= ρD, only
in the case MU > 1, where MU ≡ uU

cs,U
is the Mach number in the upstream region, namely the ratio

between the collective velocity of the cloud and the sound velocity in this environment, cs,U = γa
PU

ρU
.

This is physically expected, as it is the formal definition of what described at the beginning of this
section: “a shock forms when something propagates faster than the information of its propagation”. The
corresponding solution reads:

R ≡ ρD
ρU

=
uU
uD

=
(γa + 1)M2

U

(γa − 1)M2
U + 2

PD

PU
=

2γaM
2
U

γa + 1
− γa − 1

γa + 1

TD
TU

=

[
2γaM

2
U − γa (γa − 1)

] [
(γa − 1)M2

U + 2
]

(γa + 1)
2
M2

U

,

(1.10)

whereR is commonly known as compression factor. We notice that, for strong shocks — namely such
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Figure 1.6: The diffusive path of a particle trapped in the acceleration process is sketched, in the
reference frame of the shock front. The particle traverses the shock from upstream to downstream
with pitch-angle θ and returns to the upstream region, with a pitch-angle θ′, with a net velocity gain.

thatMU ≫ 1, which is the case for typical ISM conditions, where vshock ∼ 103 km · s−1 (Blasi, 2013)—
we haveR → (5/3+1)

(5/3−1)
= 4 in an ideal-gas environment.

The acceleration process will be here formalized taking into account the discontinuities implied
by the solution above. However, we can give a physical introduction for it. In the reference frame
of the shock front, flowing away from the explosion, particles of the undisturbed gas upstream travel
towards our direction at velocity uU , eventually crossing the shock front. On the other side of the front,
downstream of the shock, the impact a cloud that has collective velocity uD < uU . This is equivalent as
impacting a wall at rest with velocity |uU −uD| > 0 and being scattering in the other direction with the
same velocity, in the wall’s reference frame. However, in the frame of an observer on Earth, the particle
gained the above relative velocity, and nowmoves at speed uU + |uU − uD| > uU . Now the same event
will repeat, as the particle is traveling faster than the collective velocity of the upstream region. This
bouncing process repeats many times, until the energy reaches a value allowing the accelerated particle
to escape from the shock and be injected in the ISM as a cosmic ray.

In the realistic case, of course we do not often see the head-on collisions that would imply the
velocity variations just mentioned, but rather the picture sketched in Figure 1.6. As we can see from
the figure, once a particle traverses the shock front, it keeps diffusing because of the scattering centers
in the plasma clouds—wewill see in detail in the next section that these scattering centers aremagnetic
turbulence-waves — and the velocity gain depends on the pitch-angle, with respect to the normal to
the shock-front surface, that the particle has every time it crosses the shock— in the picture θ ≡ θU→D

and θ′ ≡ θD→U . Particles can escape from the shock for mainly two reasons, connected to the particle

24



mean free path, λm.f.p., and Larmor radius, rL:

1. when λm.f.p. is large enough to prevent the particle from returning to the shock, namely the
particle has reached a region where the scattering centers are less dense,

2. when rL is such that the time scale needed for a particle to return to the shock is longer that the
dissipation time of the shock itself.

The problem of the escape is highly non-linear in the particle-wave interaction and requires sophis-
ticated simulations to be treated. We remind to Berezhko and Krymskii (1988); Drury (1983) for clas-
sical reviews on the topic, and to Marcowith et al. (2016) for a more recent one and with a wider
perspective.

Themathematical treatment of the accelerationmechanism is somewhat similar to what described
for the second-order Fermi process. We assume a particle with energy and momentum (E, p) crosses
the shock from upstream to the downstream region. In the downstream reference frame, we see the up-
stream cloudmoving at β = uU −uD. Therefore, the particle energy is transformed as follows (Barone,
2004):

ED = γ (E + βcpz) ≃ γE (1 + βµ) ,

where µ ≡ cos θ ∈ [0, 1] and we approximated pc ≈ E, as we are in the ultra-relativistic case.
Weassumenowtheparticle is able to return to theupstream region,where theLorentz-transformed

energy reads:
EU = γ

(
ED − βcpD,z

)
≃ γED

(
1− βµ′) ,

where now µ′ ≡ cos θ′ ∈ [−1, 0].
Hence, the particle energy-gain in oneU-D-U cycle is:

∆E

E
=
EU − E

E
= γ2 (1 + βµ)

(
1− βµ′)− 1 ≡ f(µ, µ′).

To average over the two pitch-angles (µ, µ′), we have to define the probability to have a flux in
the µ (or µ′) direction, as a ratio over the total flux Φtot

U→D =
∫

N
4πdΩ vCRµ (or, alternatively, Φtot

D→U =∫
N
4πdΩ(−vCRµ

′)) in the same direction, assuming that diffusion in the two regions tends to isotropize
the particle distribution and denoting withN the total number of particles. Therefore, we can write:

P (µ) ∝ NvCRµ

Φtot
U→D

⇒ P (µ) = A
NvCRµ

NvCR

4π

∫ 2π

0
dϕ
∫ 1

0
dµµ

= 4Aµ,

as µ is non-zero in [0, 1] only. Equivalently, P (µ′) = −4A′µ′, since µ′ ∈ [−1, 0].
We compute the coefficientsA,A′ by normalizing the probabilities

∫ +1

−1
dµP (µ′)

!
= 1, with the same

equation for µ′, and we easily get A = A′ = 1
2 . Therefore, averaging the energy gain for a single cycle,
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we obtain:
〈
∆E

E

〉
µ, µ′

=

∫ 1

0

dµ (2µ)

∫ 0

−1

(
−2µ′) [γ2 (1 + βµ)

(
1− βµ′)− 1

]
≃ 4

3
β, (1.11)

in the approximation where γ → 1 neglectingO(β2).

Hence, we notice from Equation (1.11) that the energy gain is now of first order in β. Besides, β is
here the shock speed, which we have seen to be of the order ∼ 103 km · s−1, namely at least one order
of magnitude larger than the velocity of the moving clouds involved in the second-order mechanism.

As a last step, we want to compute the spectrum of the injected particles, since, as understood
from above, not all the accelerated particles are able to cross the shocks repeatedly to be trapped in
the acceleration process. A rigorous derivation would allow to consider the relativistic as well as non-
relativistic case for the accelerated particles, but this is beyond the illustrative purpose of this chapter.
Rather, we present the simpler relativistic case for the injected particles and remind to Blasi (2013) for
the full calculation.

To find the injection spectrum, we compute the probability PD→U for a particle to cross the shock
from downstream to upstream, dividing the flux of outgoing particles (i.e. fromD to U) by the flux of
ingoing particle (i.e. from U toD). These fluxes are written as follows:

ΦU→D =

∫ 1

−uD/c

dµn (uD + µc) ΦD→U =

∫ −uD/c

−1

dµ′ n
(
uD + µ′c

)
, (1.12)

where n is the number density of the particles and we computed the relative velocity — a relativistic
particle (vCR ≈ c) with pitch-angle µ moves downstream towards the shock front, that is moving op-
positely at velocity uD —at zero-th order in O(uD/c).

Carryingout the integrals inEquation (1.12),we getΦU→D = c
2

(
1 + uD

c

)2 andΦD→U = − c
2

(
1− uD

c

)2,
so that the probability we are looking for is the following:

PD→U ≡ |ΦD→U |
ΦU→D

=

(
1− uD

c

)2(
1 + uD

c

)2 ≃
(
1− 2

uD
c

)(
1− 2

uD
c

)
≈ 1− 4

uD
c

(1.13)

neglecting terms from order O
(
u2D/c

2
)
.

On the other hand, every particle in the undisturbed-gas region upstream is run over by the shock
initially, so that we can write PD→U = 1.

With the results in Equations (1.11) and (1.13), we can nowwrite the number of particlesNk that
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survived the first k cycles (U −D − U) and their energy as follows:


E1 = E0

(
1 +

4

3

uU − uD
c

)
N1 = N0

(
1− 4uD

c

) ⇒


Ek = E0

(
1 +

4

3

uU − uD
c

)k

Nk = N0

(
1− 4uD

c

)k (1.14)

where (E0, N0) are the initial energy and number, respectively.

By solving both equations of the system with respect to k, we are left with:

log

(
Nk

N0

)
= log

(Ek

E0

) log(1−4uD/c)
log(1+4(uU−uD)/(3c))

 (1.15)

where the exponent can be Taylor-expanded at first order as follows:

log
(
1− 4uD

c

)
log
(
1 + 4

3
uU−uD

c

) ≃
− 4uD

c
4
3
uU−uD

c

= −3
uD

uU − uD
= − 3

R− 1
,

where the last step comes from the definition of the compression factor in Equation (1.10).

From the procedure above, wenote thatNk is the integral spectrum, namely the number of particles
that have at least an energy Ek. To obtain the differential spectrum that — i.e. the number of parti-
cles per energy bin, to compare it with the experimental observations—we differentiate the equation
above, to obtain:

dN(E)

dE
∝
(
E

E0

)−( 3
R−1+1)

(1.16)

fromwhich we derive Γinj ≡ 3
R−1 +1 = 2, for the case of strong shock (MU ≫ 1), which impliesR = 4.

We see that the cosmic-ray injection spectra required to account for the observed phenomenology
are significantly steeper than what predicted in Equation (1.16), since they are as large as ∝ E−2.4 —
we will see that this is the injection spectrum we use in our DRAGON runs for the large-scale compo-
nent described in Part II. Again, we remark that what presented above is a physics introduction in the
test-particle regime, namely it neglects every feedback effect that particles have on the shock (Caprioli,
2012).

We can qualitatively estimate the time scale required to accelerate particles up to a given energyE as
τacc ≃ τcycle

∆E/E , where τcycle is the time needed to complete aU-D-U cycle. Considering a cylindrical flux
tube—with base-area Σ—around the shock front and equating the number of particles crossing the
shock from U toD with the particles inside the volume of the cylinder corresponding to one diffusion
length LU (E) = DU (E)/uU , being DU (E) the diffusion coefficient, we obtain the diffusion time scale
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in the upstream region as:

(
NvCR

4π

∫ 2π

0

dϕ

∫ 1

0

dµµ

)
· 1

V

(
Στdiff,U

) !
= nΣ

DU (E)

uU
⇒ τdiff,U ≈ 4DU

cuU

beingN = nV the total number of particles for a number density n in a volume V and, as usual, vCR ≈ c.
Similarly, we obtain that, in the downstream region, particles spend on average the time τdiff,D ≈

4DD

cuD
. Therefore, τcycle = τdiff,U + τdiff,D and, using Equation (1.11), we get:

τacc(E) ≃ 3

uU − uD

(
DU (E)

uU
+
DD(E)

uD

)
, (1.17)

which is qualitatively similar to the full calculation first reported inDrury (1983); Lagage andCesarsky
(1983).

The problem described in this section is known as diffusive shock acceleration (DSA). Even though,
asmentioned above, thenon-linear treatment of themechanism is heremissing,DSA is thebasis for the
modern cosmic-ray acceleration studies. Its enormous success supports today the common agreement
of the astroparticle community on the Supernova origin of cosmic rays (see for instance Bykov et al.
(2018); Gabici (2011)). For this reason, we will rely on this for the phenomenological study presented
in Part II, as far as the Supernova shocks are concerned.

On the other hand, asmentioned at the beginning of this section, there are specific astrophysical en-
vironmentswhere a large-scale electric field is admitted, and direct particle acceleration can occur. One
of them is the pulsar magnetosphere, namely the region surrounding the rotating star where the mag-
netic field originates from the pulsar itself. In this region, the peculiar configuration of the magnetic-
field lines allows a recombination with the magnetized wind— a propagating wave emitted from the
rotating object at the rotation frequency. This alternating component is thought to accelerate parti-
cles, thus powering the surrounding shell of the star that is called Pulsar Wind Nebula (PWN). The
particle spectrum resulting from such mechanism is steeper than that derived for DSA, with a typi-
cal injection slope Γmag rec

inj ∈ [1, 2]. For detailed reviews on the topic, we remind to Kirk et al. (2009);
Lyubarsky and Kirk (2001).

1.3 Cosmic-ray diffusion through the Galaxy

Now that we have introduced the principal acceleration mechanisms, we can deal with the indepen-
dent physical problems connected with the propagation of the injected particles from the sources to
the Earth. The transport properties of cosmic rays can be studied by means of a stochastic method
commonly known as the Fokker-Planck equation (Chandrasekhar, 1943; Vietri, 2008).
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To derive it, we consider the CR distribution function f , defined as the number of particles per
unit volume dV in the cell of momentum dp — namely a phase-space density — with the following
units:

[f(x,p, t)] =
#

[L]3 · [p]
(1.18)

and look for its change — in the same momentum cell — when the particles move from the position
x to the position x + ∆x = x + v∆t, where v is the cosmic-ray velocity. In other words, we want to
evaluate the expression f(x+ v∆t,p, t+∆t).

Let Ψ(p,∆p) be the probability density of a particle of momentum p to change it as p → p + ∆p,
such that the integral over all the possible changes Σ(∆p) is normalized to 1:

∫
Σ(∆p)

d(∆p)Ψ(p,∆p) = 1.

The distribution function we are looking for is then written:

f(x+ v∆t,p, t+∆t) =

∫
d(∆p) f(x,p−∆p, t)Ψ(p−∆p,p), (1.19)

wherewe notice that the change in the distribution function only depends on the previous step, which
makes this process a Markov process. For sake of simplicity we dropped the explicit integral space
Σ(∆p).

If the changes∆p are small during the time∆t compared to the particle’s momentum, thenwe can
Taylor-expand Equation (1.19) — we expand the left-hand side up to O(∆t) and the right-hand side
up to O(∆p2):

f(x+ v∆t,p, t+∆t) ≃ f(x,p, t) +
∂f

∂t
∆t+

(
v · ∂

∂x

)
∆t

f(x,p−∆p, t) ≃ f(x,p, t)− ∂f

∂p
·∆p+

1

2

∂2f

∂p2
(∆p)2

Ψ(p−∆p,∆p) ≃ Ψ(p,∆p)− ∂Ψ

∂p
·∆p+

1

2

∂2Ψ

∂p2
(∆p)2.

If we insert the above expressions in (1.19), we obtain:

f +

(
∂

∂t
+ v · ∂

∂x

)
f∆t ≃

∫
d(∆p)

[
f − ∂f

∂p
·∆p+

1

2

∂2f

∂p2
(∆p)2

]
·

[
Ψ− ∂Ψ

∂p
·∆p+

1

2

∂2Ψ

∂p2
(∆p)2

]

≃
∫
d(∆p)

fΨ−
(
f
∂Ψ

∂p
+Ψ

∂f

∂p

)
·∆p+

1

2

[
f
∂2Ψ

∂p2
+ 2

∂f

∂p

∂Ψ

∂p
+Ψ

∂2f

∂p2

]
(∆p)2

 ,
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where we neglected the terms from order O(∆p)3 on.

Considering
∫
d(∆p) f(x,p, t)Ψ(p,∆p) = f(x,p, t)

∫
d(∆p)Ψ(p,∆p) = f , we can rearrange the

right-hand side and obtain:

(
∂

∂t
+ v · ∂

∂x

)
f∆t = − ∂

∂p

∫
d(∆p) fΨ∆p+

1

2

∂2

∂p2

∫
d(∆p) fΨ(∆p)2. (1.20)

Furthermore, we can define the Fokker-Planck coefficients as follows:

〈
∆p

∆t

〉
≡ Ap :=

1

∆t

∫
d(∆p)∆pΨ

〈
∆p∆p

∆t

〉
≡ Dpp :=

1

2∆t

∫
d(∆p)(∆p)2 Ψ

(1.21)

and rewrite Equation (1.20):

∂f

∂t
+ v · ∂f

∂x
= − ∂

∂p

[
f

〈
∆p

∆t

〉]
+

∂2

∂p2

[
f

〈
∆p∆p

∆t

〉]
. (1.22)

In order to rewrite both the coefficients in terms of the second-order one only, we assume that the
probability density of a particle withmomentum p to loose a quantity∆p is the same as the probability
density of a particle with momentum p−∆p to gain ∆p, a property known as detailed balance. This
leads to:

Ψ(p,−∆p)
det.bal.
= Ψ(p−∆p,∆p) ≃ Ψ(p,∆p)− ∂Ψ

∂p
·∆p+

1

2

∂2Ψ

∂p2
(∆p)2 (1.23)

which can be divided by∆t and integrated, to give:

�
��1

∆t
=
�
��1

∆t
− ∂

∂p

〈
∆p

∆t

〉
+

∂2

∂p2

〈
∆p∆p

∆t

〉

⇒ ∂

∂p

[〈
∆p

∆t

〉
− ∂

∂p

〈
∆p∆p

∆t

〉]
= 0

This shows that the quantity inside the square brackets does not depend on p. Also, for p → 0

both the Fokker-Planck coefficients tend to be 0, so that:
〈
∆p

∆t

〉
=

∂

∂p

〈
∆p∆p

∆t

〉
. (1.24)

If we now plug this expression in Equation (1.22), we get:
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∂f

∂t
+ v · ∂f

∂x
= − ∂

∂p

[
f
∂Dpp

∂p

]
+

∂2

∂p2

(
fDpp

)
=

{
��������
− ∂

∂p

(
f
∂Dpp

∂p

)
+

∂

∂p

(
∂f

∂p
Dpp

)
��������
+
∂

∂p

(
f
∂Dpp

∂p

)}

from which we finally get:
∂f

∂t
+ v · ∂f

∂x
=

∂

∂p

(
∂f

∂p
Dpp

)
. (1.25)

This equation tells us that the variation of the distribution function depends on the squared mo-
mentum change of the cosmic rays, ∆p∆p. This has been done, however, without specifying what
physical processes caused such variation, whichmakes it impossible to derive an expression of practical
use for the Fokker-Planck coefficients. Moreover, in order to have information on theCRpropagation,
we will need to derive a corresponding equation in the physical space.

1.3.1 The equations of the idealMHD

The ISMmagnetized plasmas in equilibrium can be easily perturbed, and small-amplitude oscillating
fluctuations can be excited. In order to characterize the propagation properties of such fluctuations,
we need to solve a closed set of equations, that can be derived coupling the Maxwell’s equations —
for the electric- and magnetic-field part — to the equations describing the dynamics of fluids. The
resulting field of research is calledmagneto-hydro-dynamics (MHD).

Since the interstellar medium is a highly-ionized gas (i.e. a plasma), then no electric field can be
felt by charges at distances larger than theDebye length*, which corresponds to state that the ISM has
nearly-infinite conductivity (or, equivalently, no resistivity). This condition is commonly referred to as
ideal magneto-hydro-dynamics.

*The Debye length λD is the reference distance that appears in the solution of the Poisson’s equation for the
scalar potential generated by an isolated positive charge in an ionized medium. If ni ≈ n0 exp

(
− eϕ

kBT

)
, ne ≈

n0 exp
(

eϕ
kBT

)
are respectively the densities of ions and electrons, kB is the Boltzmann constant and T the tem-

perature of the gas, then −∇2ϕ = 4πe
[
(ni − ne) + δ(r)

]
, then the spherically symmetric scalar potential results

ϕ(r) ∝ 1
r
exp

(
−

√
2 r

λD

)
, where as expected λD =

√
kBT

4πn0e2
depends on the environment conditions. The units are

as follows: [n0] = L−3, [kBT ] = E, [e2/r] = E.
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The corresponding set of equations can be written as follows (Boyd and Sanderson, 2003):


∂ρ

∂t
+ ρ∇ · u = 0

ρ
∂u

∂t
+ ρ (u ·∇)u+∇P − (∇ ∧B) ∧B

µ0
= 0

−∂B
∂t

+∇ ∧ (u ∧B) = 0(
∂

∂t
+ u ·∇

)
Pρ−γa = 0,

(1.26)

where [ρ] =M ·L−3 is the mass density of the medium, u the velocity of the plasma particles, P the gas
pressure, µ0 the magnetic permeability, γa the adiabatic coefficient, and B is the local total magnetic
field.

We want to solve the above system for the physical quantities that are assumed to receive a small
perturbation. Note that this condition is essential to find a propagating function, since the original
equations are non-linear. Under this assumption, we can now linearize the equations, considering
the plasma to be homogeneous and stationary at 0-th order, which further implies an overall pressure
equilibrium and no magnetic stress:

u0 = 0, ∇
(
P0 +

B2
0

2µ0

)
= 0, (B0 ·∇)B0 = 0.

The perturbed quantities then become:

u = δu

ρ = ρ0 + δρ

B = B0 + δB

P = P0 + δP
(1.27)

and, plugged into the System (1.26) give a system of linear equations that can be solved searching for
wave-like solutions of the type δu(r, t) =∑k,ω δu(k, ω)e

i(k·r−ωt), i.e. Fourier-transforming the physical
quantities:



∂δρ

∂t
+ ρ0∇ · δu = 0

ρ0
∂δu

∂t
+∇δP − (∇ ∧ δB) ∧B0

µ0
= 0

−∂δB
∂t

+∇ ∧ (δu ∧B0) = 0

∂

∂t

(
δP

P0
− γaδρ

ρ0

)
= 0

F
=⇒



−ωδρ+ ρ0k · δu = 0

−ωρ0δu+ kδP − (k ∧ δB) ∧B0

µ0
= 0

ωδB + k ∧ (δu ∧B0) = 0

−ω
(
δP

P0
− γaδρ

ρ0

)
= 0,

(1.28)
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where we remark that (k, ω) are, respectively, the wave vector and frequency of the perturbation.
Solving the equations 1-3-4with respect to δρ, δP, δB, respectively, andplugging the solutions into

the second equation gives:

[
ω2 − (k ·B0)

2

µ0ρ0

]
δu =


[
γaP0

ρ0
+

B2
0

µ0ρ0

]
k − k ·B0

µ0ρ0
B0

 (k · δu)− (k ·B0) (δu ·B0)

µ0ρ0
k. (1.29)

Looking at the three terms, we notice that we do not loose any solution — namely we are able to
excite all the available normal modes— of the above equation if we take the perturbation wave vector
to have components on the axis parallel to B0 and on, at least, one of the perpendicular axes. Hence,
considering Cartesian coordinates (x̂, ŷ, ẑ) and placing the regular field along ẑ, we chooseB0 = B0ẑ

and k = k⊥x̂+ k∥ẑ. Thus, Equation (1.29) becomes the following matrix equation:


ω2 − k2v2A − k2⊥c

2
s 0 −k⊥k∥c2s

0 ω2 − k2∥v
2
A 0

−k⊥k∥c2s 0 ω2 − k2∥c
2
s



δux

δuy

δuz

 = 0, (1.30)

where cs is the sound speed and vA is called Alfvén velocity, and they are defined as follows:

c2s =
δP

δρ
= γa

P0

ρ0
, vA =

B2
0√

µ0ρ0
.

The eigenvalues of the matrix (1.30) can be found nullifying its determinant:

(
ω2 − k2∥v

2
A

)[
ω4 − k2

(
v2A + c2s

)
ω2 + k2k2∥v

2
Ac

2
s

]
= 0

⇒



ω2
A = k2∥v

2
A

(
0, δuy, 0

)
ω2
+ = k2

1

2

v2A + c2s +

√(
v2A + c2s

)2 − 4v2Ac
2
s

k2∥

k2

 (δux, 0, δuz)

ω2
− = k2

1

2

v2A + c2s −

√(
v2A + c2s

)2 − 4v2Ac
2
s

k2∥

k2

 (δux, 0, δuz)

(1.31)

They represent three different relations between the wave vector and the frequency of the pertur-
bation, i.e. they allow to find the three phase velocities of the propagating (and counter-propagating)
normalmodes. The corresponding eigenvectors are therefore the direction of the plasmadisplacement,
i.e. the direction of oscillation. In particular:

• the first solutionpropagates parallel toB0 (it contains only k∥) at theAlfvén speed vA and itswave
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Fig. 4.31. Shear Alfvén wave.

speed. The condition for a non-trivial solution (ξ != 0) is that the determinant of
the coefficients should be zero and this gives the dispersion relation

∣

∣

∣

∣

∣

∣

(ω2 − k2
‖v

2
A) 0 0

0 (ω2 − k2
⊥c2

s − k2v2
A) −k⊥k‖c2

s
0 −k⊥k‖c2

s (ω2 − k2
‖c2

s )

∣

∣

∣

∣

∣

∣

= 0

i.e.

(ω2 − k2
‖v

2
A)(ω4 − k2(c2

s + v2
A)ω2 + k2k2

‖c2
s v

2
A) = 0 (4.121)

with solutions

ω2 = k2
‖v

2
A (4.122)

ω2 = 1
2

k2(c2
s + v2

A)[1 ± (1 − δ)1/2] (4.123)

where

δ = 4
k2

‖

k2

c2
s v

2
A

(c2
s + v2

A)2
(4.124)

Since 0 ≤ δ ≤ 1, all three solutions are real and the waves propagate without
growth or decay. There is neither dissipation to cause decay nor free energy (cur-
rents) to drive instabilities.

Taking each mode in turn, (4.122) is the dispersion relation for the shear Alfvén
wave. As is clear from (4.118)–(4.120), this mode is decoupled from the other two
and its displacement vector ξx x̂ is perpendicular to both B0 and k, i.e. the wave,
illustrated in Fig. 4.31(a), is transverse. Note that, from (4.62) and (4.64), B1 and
u = u1 are in the same direction as ξ. Since k · ξ = 0, we see that ρ1 and P1 are
both zero, i.e. the wave is incompressible. It propagates, as shown in Fig. 4.31(b),

B = B0 + δB

k
δu

(a)

Properties of slow and fast magnetosonic waves

I Magnetosonic waves are analogous to sound waves modified
by the presence of a magnetic field

I Magnetosonic waves are longitudinal and compressible

I The restoring force includes contributions from magnetic
pressure and plasma pressure

I These are also known as ‘magnetoacoustic waves’ and
‘slow/fast mode waves’

B

k
δu

(b)

Figure 1.7: The direction of the displacement δu and of the propagation k of the magnetosonic
modes are shown, for the case k ⊥ B0, where the slow modes does not propagate. The total field
B = B0 + δB is also indicated. (a) The shear Alfvénmode propagates along the magnetic field as a
transverse wave. (b) The fast mode propagates orthogonal to the regular, as well as total, magnetic
field, while the plasma displacement is such that the field lines are squeezed.

vector is characterized by k · δu = 0 and δu ·B0 = 0, which means that it oscillates transversely
with respect to the direction of propagation and alsowith respect to themagnetic-field axis. This
mode is referred to as shear Alfvén wave and it is a transverse wavewhere no pressure nor density
change are involved— it is an incompressiblemode;

• the other two solutions have k · δu ̸= 0 and δu · B ̸= 0, namely the plasma displacement, in
general, has non-zero components along the propagation direction and the magnetic-field axis.
These modes are called fast and slow magnetosonic modes and they are longitudinal waves that
can squeeze the field lines — they are compressiblemodes.

A visual sketch of these considerations is given in Figure 1.7, where the case k ⊥ B0 is considered,
for which slow modes cannot propagate ω− = 0.

As mentioned before, all the three modes can in principle act as scattering centers for the cosmic-
ray particles. Throughout the thesis, we will see that the choice of whether or not they all have to be
considered has important physical implications.

1.3.2 The Fokker-Planck coefficients within the QLT

In this paragraph, we present in detail the calculation of the Fokker-Planck coefficients contributing to
the CR propagation equation. First, a rigorous derivation of this equation is reviewed, with particular
attention to the necessary physical assumptions. Then, an alternative approach to calculate the pitch-
angle Fokker-Planck coefficient Dµµ is discussed, that starts from an intuitive physical picture. In the
latter part, we focus our attention on the effect of particle scattering off Alfvén waves exclusively —
namely the modes propagating in the direction longitudinal to the background magnetic field B0 =

B0ẑ, oscillating transversely. This choice is motivated by two reasons: (i) as it will be clear later, in
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the case of purely alfvénic turbulence, the Quasi-Linear Theory (QLT) that we here present is exact,
(ii) magnetosonic modes are severely damped during their propagating motion, while Alfvén modes
are nearly free of damping (Ginzburg et al., 1962; Kulsrud and Pearce, 1969). Regarding (i), during
the treatment we will discuss the implications of our assumptions— in particular about the geometry
of the turbulence involved— on the physics of CR transport. For what concerns (ii), in Chapter 5 we
will see that this picture is actually not entirely true, and can lead to significant modifications in the
expression of the diffusion coefficient.

We start by evaluating the change in momentum of a particle in the reference frame of the Alfvén
wave, where no force is exerted in the direction of the particle motion, and thus no exchange of energy
occurs between the particle and the wave. Writing ∆p = mγ∆v∥ = mγ∆(vµ), where γ = 1√

1−v2/c2

is the Lorentz factor and µ ≡ cos θ is the cosine of the angle between the particle and B0, in the wave
referencewehave∆p = mγ v∆µ. Besides, we are consideringwaves propagating in an orderedmagnetic
field oriented along ẑ, which implies that at first approximation we can neglect the spatial derivatives
of the distribution function with respect to the orthogonal variables x̂ and ŷ. Within this 1D picture,
the corresponding Fokker-Planck equation becomes:

∂f

∂t
+ vµ

∂f

∂z
=

∂

∂µ

(
Dµµ

∂f

∂µ

)
, (1.32)

where Dµµ is called pitch-angle diffusion coefficient — the reason why we invoke a diffusive behaviour
will be clear in a moment.

From the equation above, we can derive that— for large times∆t and in the reference frame of the
turbulent wave — f ̸= f(µ). In other words, the CR distribution function does not depend on the
arrival direction of the waves, which means that scattering must cause simple diffusion in pitch-angle.
This can be seen by applying the Liouville’s theorem* (Jokipii, 1966a; Lemaitre and Vallarta, 1933;
Swann, 1933).

Fokker-Planck coefficients from the Vlasov equation. In order to derive an expression for Dµµ,
it is convenient to recall that the Fokker-Planck equation (1.32) can be formally obtained from the
relativisticVlasov equations (Vlasov, 1968):

∂f

∂t
+ v · ∂f

∂x
+ ṗ · ∂f

∂p
= S(x,p, t), (1.33)

whereS(x,p, t)denotes sources and sinks of particles and ṗ is givenby the equations ofmotion (EOMs)
specific for the system. Equation (1.33) is written in the six-dimensional phase space (x, y, z, px, py, pz).

From Equation (1.33), the transport equation is then derived in the so-called diffusion approxima-

*From Jokipii (1966a): “If scattering did not tend toward isotropy, a spatially uniform, isotropic distribution
[of magnetic fluctuations δB] would relax toward anisotropy, in violation of Liouville’s theorem.”
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tion. This procedure is originally due to Hall and Sturrock (1967); Kennel and Engelmann (1966);
Kulsrud and Pearce (1969); Lerche (1968); Voelk (1975) and it is extensively revised in Schlickeiser
(2002). We present the derivation following the path described in the last reference, in order to under-
stand the physical assumptions connected to the use of (1.32).

Towrite the equations ofmotion, we consider a charged particle moving inside total magnetic and
electric fields (Btot, Etot). For what concerns the magnetic field, this results from the background reg-
ular fieldB0 = B0ẑ plus a small perturbation (Jokipii, 1966a). On the other hand, we have seen in the
previous section that no large-scale electric field is to be considered within our ideal MHD conditions.
Thus we can write:

Btot = B0 + δB

Etot = δE
such that

|δB| ≪ |B0|

⟨Btot⟩ ≈ ⟨B0⟩

⟨Etot⟩ ≈ 0,

(1.34)

where the ⟨⟩ operator denotes the ensemble average over all the possible realizations of the system that
have the same macroscopic boundary conditions. For what follows, it is useful to rearrange the com-
ponents of the vector perturbations δB = (δBx, δBy, δBz) and δE = (δEx, δEy, δEz) as

δBR,L ≡ 1√
2

(
δBx ± iδBy

)
δB∥ = δBz

δER,L ≡ 1√
2

(
δEx ± iδEy

)
δE∥ = δEz,

whereR, L denote the right-handed and left-handed polarizations of the fields, which simply indicates
that the direction of oscillation of the field is counter-clockwise or clockwise in the x̂y-plane, respec-
tively.

A charge moving at velocity v feels the Lorentz force:

ṗ = q

[
Etot +

v ∧Btot

c

]
,

so that, if there was no perturbing field, then the resulting motion would be a helical motion com-
posed by circles on the x̂y-plane and a uniform drift along ẑ (Jackson, 1975), as sketched in Figure
1.8a (we will see later a derivation of this result). Therefore, based on this helicoidal structure, it is very
instructive to adopt the coordinates of the so-called guiding center:

(X,Y, Z) = (x, y, z) +
v ∧ ẑ

Ω

that are composed by the usual cartesian coordinates plus the position of the particle in the circle of
radius defined by the angular frequency of rotation. This radius is called Larmor radius rL = v⊥/Ω

and the angular frequency is known as gyrofrequency or, equivalently, Larmor frequency Ω = qB
mγc .

36



Similarly, spherical coordinates are useful, and can be found with the following transformations:


px = p
√
1− µ2 cosϕ

py = p
√
1− µ2 sinϕ

pz = pµ

with polar and azimuthal angle (θ, ϕ), respectively, and sin θ =
√
1− cos2 θ ≡

√
1− µ2.

Therefore, we can apply the following change of coordinates:

(
x, y, z, px, py, pz

)
−→ (X,Y, Z, p, µ, ϕ)



X = x+
p/(mγ)

√
1− µ2 sinϕ

Ω

Y = y − p/(mγ)
√

1− µ2 cosϕ

Ω

Z = z



p =
√
p2x + p2y + p2z

µ =
pz
p

ϕ = arctan

(
py
px

)
.

(1.35)

In the new system of coordinates, theVlasov equation becomes:

∂f

∂t
+ v · ∂f

∂X
− Ω

∂f

∂ϕ
+

1

p2
∂

∂xσ

(
p2gxσ

f
)
= S(X, p, µ, ϕ, t), (1.36)

where the Einstein summation convention is used, xσ = (X,Y, Z, p, µ, ϕ) and the functions gxσ ≡ ẋσ,
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that contain all the physical information, are written as follows:

Ẋ = −p/(mγ)
√
1− µ2 cosϕ

δB∥

B0
+

ic√
2B0

[
δER − δEL − iµp/(mγ)

c
(δBL + δBR)

]
(1.37a)

Ẏ = −p/(mγ)
√
1− µ2 sinϕ

δB∥

B0
− c√

2B0

[
δER + δEL +

iµp/(mγ)

c
(δBL − δBR)

]
(1.37b)

Ż = 0 (1.37c)

ṗ =
Ωmγc

B0

[
µδE∥ +

√
1− µ2

2

(
δELe

−iϕ + δERe
iϕ
)]

(1.37d)

µ̇ =
Ω
√
1− µ2

B0

 c

p/(mγ)

√
1− µ2δE∥ +

i√
2

[
eiϕ
(
δBR + iµ

c

p/(mγ)
δER

)

−e−iϕ

(
δBL − iµ

c

p/(mγ)
δEL

)]
(1.37e)

ϕ̇ = −Ω
δB∥

B0
+

Ω√
2(1− µ2)B0

[
eiϕ
(
µδBR +

ic

p/(mγ)
δER

)
+ e−iϕ

(
µδBL − ic

p/(mγ)
δEL

)]
. (1.37f)

It can be easily understood that solutions of the Vlasov equations with gxσ = 0 do not receive
any contribution from the turbulent fields and describe the usual helicoidal motion, so that are called
unperturbed orbits.

Note that, since magnetic irregularities are likely a consequence of turbulence, i.e. randomly vary-
ing in phase and amplitude, the statistical treatment obtained ensemble-averaging the fields is necessary.
As a consequence, also the phase-space distribution function gets affected in a random way. Thus, we
can decompose it as follows:

f(x,p, t) = F (x,p, t) + δf(x,p, t)

⟨f(x,p, t)⟩ ≈ F (x,p, t),

(1.38)

so that an expectation value for f must be found in terms of the statistical properties of the functions
gxσ . The macroscopic condition for each member of the ensemble is here that they all have the same
value at a time t = t0, before the perturbations start modifying them. Then, the ensemble-averaged
Vlasov equation reads:

∂F

∂t
+ v · ∂F

∂X
− Ω

∂F

∂ϕ
= S(X, p, µ, ϕ, t)− 1

p2
∂

∂xσ

(〈
p2gxσ

δf
〉)

. (1.39)

The equation above contains the fluctuations and we now need an equation for them. To obtain
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it, according to (1.38), we subtract (1.39) from (1.36):

∂δf

∂t
+ v · ∂δf

∂X
− Ω

∂δf

∂ϕ
= − 1

p2
∂

∂xσ

(
p2gxσf

)
+

1

p2
∂

∂xσ

(
⟨p2gxσδf⟩

)
(1.40)

where rearrangements can be done on the right-hand side:

− 1

p2
∂

∂xσ

(
p2gxσf

)
+

1

p2
∂

∂xσ

(
⟨p2gxσδf⟩

)
=

1

p2

〈
p2gxσ

∂δf

∂xσ

〉
+

1

p2

〈
δf
∂(p2gxσ

)

∂xσ

〉
− 1

p2
p2gxσ

∂f

∂xσ
− 1

p2
f
∂(p2gxσ

)

∂xσ

=

〈
gxσ

∂δf

∂xσ

〉
+

1

p2

〈
δf
∂(p2gxσ )

∂xσ

〉
− gxσ

∂f

∂xσ
− f

1

p2
∂(p2gxσ )

∂xσ

=

〈
gxσ

∂δf

∂xσ

〉
+

1

p2

〈
δf
∂(p2gxσ

)

∂xσ

〉
− gxσ

(
∂F

∂xσ
+
∂δf

∂xσ

)
− f

1

p2
∂(p2gxσ

)

∂xσ

Since we are only considering the Lorentz force acting on the CR’s distribution function, we as-
sume it tobedivergence free, so that in spherical coordinateswehave 1

p2
∂

∂xσ
(p2gxσ

) = 0, 1
p2

〈
∂

∂xσ
(p2gxσ

)
〉
=

0 (Hall and Sturrock, 1967). Hence, Equation (1.40) becomes:

∂δf

∂t
+ v · ∂δf

∂X
− Ω

∂δf

∂ϕ
= −gxσ

∂F

∂xσ
− gxσ

∂δf

∂xσ
+

〈
gxσ

∂δf

∂xσ

〉
. (1.41)

Now the assumption of small fluctuations is used: in particular, we assume that the time scale T
whenwe are evaluating the resulting phase-space distribution function F is much smaller that the time
required for F to vary significantly— of the quantity δf ̸≈ 0—due to those fluctuations:

T ≪ tF ≈ F

/∣∣∣∣gxσ

∂F

∂xσ

∣∣∣∣ ,
thanks to which we can write Equation (1.41) as follows:

∂δf

∂t
+ v · ∂δf

∂X
− Ω

∂δf

∂ϕ
≃ −gxσ

∂F

∂xσ
. (1.42)

The equation above can be solved along its characteristics, namely we derive one ordinary differ-
ential equation (ODE) for each variable of the partial differential equation (PDE), assumed to be a
function of a certain s. In practice, Equation (1.42) is formally written as:

d

ds

{
δf
(
t(s), X(s), Y (s), Z(s), p(s), µ(s), ϕ(s),

)}
= G

(
δf, t(s), X(s), Y (s), Z(s), p(s), µ(s), ϕ(s)

)
⇒ ∂δf

∂t

dt

ds
+
∂δf

∂X

dX

ds
+
∂δf

∂Y

dY

ds
+
∂δf

∂Z

dZ

ds
+
∂δf

∂p

dp

ds
+
∂δf

∂µ

dµ

ds
+
∂δf

∂ϕ

dϕ

ds
= G
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and becomes the following system of equations:

d(δf)

ds
= −gxσ

∂F

∂xσ
such that



dt

ds
= 1

dX

ds
= p/(mγ)

√
1− µ2 cosϕ(s)

dY

ds
= p/(mγ)

√
1− µ2 sinϕ(s)

dY

ds
= p/(mγ)µ

dp

ds
= 0

dµ

ds
= 0

dϕ

ds
= −Ω.

(1.43)

Their solutions are easily found as:

δf(t) = δf(t0)−
∫ t

t0

ds

[
gxσ (xν , s)

∂F

∂xσ

]′
(1.44)

X̄ = X0 −
p/(mγ)

√
1− µ2 sin ϕ̄

Ω

Ȳ = Y0 +
p/(mγ)

√
1− µ2 cos ϕ̄

Ω

Z̄ = Z0 + p/(mγ)µ(s− t)

p̄ = p0

µ̄ = µ0

ϕ̄ = ϕ0 − Ω(s− t)

where (X0, Y0, Z0, p0, µ0, ϕ0) are the initial conditions and the prime indicates that the quantities are
evaluated along the characteristic curves. Note that the latter identify the unperturbed particle orbits.

Now, with straightforward steps, we can plug the solution above in the second-term of the right-
hand side of the Equation (1.39) for F . This term becomes:

− 1

p2
∂

∂xσ

(〈
p2gxσ

δf(t)
〉)

= +
1

p2
∂

∂xσ

〈p2gxσ

∫ t

t0

ds

[
gxσ

(xν , s)
∂F

∂xσ

]′〉

≃ 1

p2
∂

∂xσ

p2 [∫ t

0

ds
〈
gxσ

gxν
(xν , s)

〉]′ ∂F (xν , t)
∂xν

 ,

where the following assumptions have been made:

• at the initial time t0, the variation of the phase-space density δf(t0) is uncorrelated to the turbu-
lent fields,

〈
δf(t0) gxσ

〉
= 0,
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• we are evaluating our solution at a time T larger that the time interval [t−tc, t]when the turbulent
fields are correlated— ⟨gxσ gxν ⟩— so that the lower bound of the integral is t− tc → 0,

• during the correlation interval the distribution function only changes negligibly with respect to
its value not along the unperturbed orbits.

With these considerations, we finally get to:

∂F

∂t
+ v · ∂F

∂X
− Ω

∂F

∂ϕ
= S(X, p, µ, ϕ, t) +

1

p2
∂

∂xσ

(
p2Dxσxν

∂F

∂xν

)
, (1.45)

whereDxσxν are referred to as the Fokker-Planck coefficients and take the following form:

Dxσxν (x, t) =

∫ t

0

ds ⟨ḡxσ (t) ḡxν (s)⟩ ≈
∫ t

0

ds ⟨gxσ (t) gxν (s)⟩. (1.46)

The Fokker-Planck coefficients above are calculated using the set of equations (1.37) assuming that
their values is approximately equal to the ones computed along the unperturbed orbits. This, the con-
dition

[
∂F
∂xσ

]′
≈ ∂F

∂xσ
and the assumptionof small fluctuations all contribute to give thewhole apparatus

the name ofQuasi-Linear Theory (QLT). The ensemble averages ⟨gxσ gxν ⟩, due to the expressions of the
functions gxσ

in Equation (1.37), are basically a set of two-point correlation tensors for the turbulent
electric and magnetic fields*. The field fluctuations δA(r) are homogeneous random functions of po-
sition, in the sense that for their probability distributions holds E

[
δA(xi)

]
≡ ⟨δA(αxi)⟩ = ⟨δA(xi)⟩,

where α ∈ R and we denoted the expectation value with E (Yaglom and Silverman, 2004). In other
words, the expectation values above — and, consequently, the two-point correlation tensors — are
invariant under translation along any axis. Since from a point x1 we can reach a point x2 by applying
a scalar (x2 = αx1), then the statistical ensemble average ⟨δA(x1) δA(x2)⟩ reduces to a simple average
over space (Jokipii, 1966a).

In order to evaluate which Dxσxν
’s give Equation (1.45) the largest contributions, looking at the

gxσ
functions in Equation (1.37), several considerations can be done:

• gp contains only δE, hence, as no external electric field can be felt, these fluctuations are induced
by the moving magnetic field, according to the Faraday’s induction law δE ≈ − 1

c (vA ∧ δB).
Since we are assuming vA ≪ c then we can neglect electric fluctuations up to order O(vA/c), so
thatDpxσ = Dxσp ≈ 0. As a further consequence, at orderO(vA/c) there is no exchange of energy
between the particle and the wave.

• The correlation tensors scale as†: Dµµ ≃ Dϕϕ ≃ Dµϕ ∼ Ω2
(

δB
B0

)2
[T ], DXX ≃ DY Y ≃ DXY ∼

*It can be shown that the correlation tensor of orderm,
⟨
δA(x1) δA(x2) ... δA(xm)

⟩
, constitutes a complete

specification of a turbulent random field (Yaglom, 1962). Besides, the two-point correlation tensors correspond
to the Gaussian part of the turbulent fields (Mertsch, 2020).

†Note that in eachDxσxν there is an extra dimensional factor [T ], that cannot be seen trivially from (1.37): it
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r2LΩ
2
(

δB
B0

)2
[T ], DµX(Y ) ≃ DϕX(Y ) ∼ rLΩ

2
(

δB
B0

)2
[T ]. From dimensional analysis, we find that

their time scales scale as follows: Tµµ ≃ Tϕϕ ≃ Tµϕ ∼ D−1
µµ , TXX ≃ TY Y ≃ TXY ∼ L⊥ · D−1

XX ∼(
L⊥
rL

)2
D−1

µµ , TµX(Y ) ≃ TϕX(Y ) ∼ L⊥ · D−1
µX ∼ L⊥

rL
D−1

µµ , where L⊥ is a typical length scale for the
variation of the distribution function F in the orthogonal direction with respect toB0. We rea-
sonably assume that a non-negligible perpendicular shift of the guiding center occurs on time
scalesmuch longer than a single Larmor radius of the charge. Therefore, onlyDµµ, Dµϕ, Dϕϕ sur-
vive at order (O)(L⊥/rL), which tells us that pitch-angle and azimuthal scattering are the fastest
processes in these conditions.

• Finally, we will average the equations over the azimuthal angle ϕ. In other words, our equation
will give us the isotropic part of the distribution function, so that we can assume now ∂F

∂ϕ ≈ 0 in
Equation (1.45).

Within the assumptions and time scales discussed above, theVlasov equation reduces to:

∂F

∂t
+ vµ

∂F

∂Z
= S(X, p, µ, ϕ, t) +

∂

∂µ

(
Dµµ

∂F

∂µ

)
, (1.47)

which is the analogous of Equation (1.32), where we will set S(X, p, µ, ϕ, t) = 0 and Z ≡ z, with:

Dµµ(x, t) =

∫ t

0

ds ⟨µ̇(t) µ̇(s)⟩. (1.48)

In conclusion, we have found that the Fokker-Planck equation (1.32) is valid within QLT (Jokipii,
1966a; Kulsrud and Pearce, 1969). Furthermore, we will see in Section 1.3.3 that the condition vA ≪

vCR ≈ c is in particular referred to as diffusion approximation.
A practical expression forDµµ under our conditions is found in Kulsrud and Pearce (1969); Voelk

(1975):

Dµµ = Ω2(1− µ2)

∫
dk

+∞∑
n=−∞

δ(k∥v∥ − ω + nΩ)

[
n2J2

n(w)

w2
IA(k) +

k2∥

k2
J ′2
n (w)IM (k)

]
, (1.49)

where Jn(w), J ′
n(w) are the Bessel functions* of order n and its derivative, respectively, w ≡ k⊥v

√
1−µ2

Ω ,
and IA,M are the Alfvén and magnetosonic (fast and slow) modes of the magnetic turbulent spectra,
normalized to the energy density of the background field, such that:

〈
δB2(x)

〉
B2

0

=

∫
dk
(
IA(k) + IF (k) + IS(k)

)
.

comes from the complete calculation of the two-point correlation functions, as will be explicitly seen later in the
section. The exact expressions for theDxσxν ’s can be found in Schlickeiser (2002) (their Chapter 12).

*The Bessel function are introduced due to the Fourier decomposition of the turbulent field δB =∫ +∞
−∞ dkB(k, t)eik·x(t) and the identity eiw sinϕ =

∑+∞
−∞ Jn(w)einϕ (Tademaru, 1969).
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Dµµ from pure alfvénic perturbation. An alternative approach for finding Dµµ, which is prob-
ably more pedagogical and instructive, makes use of the result found in Equation (1.48) and allows
to directly compute the Fokker-Planck coefficient from approximate solutions of the particle orbits,
based on the physics of the system and the previous knowledge of the turbulent spectra, especially its
geometry. This is originally to be found in Jokipii (1966a), with small later editing (Hasselmann and
Wibberenz, 1970; Jokipii, 1968), while our treatment is based on Blasi (2013).

To do this, we first consider the equations of motion of a cosmic-ray particle traveling inside an
ordered magnetic field directed along the ẑ axis, B0 = B0ẑ. With no large-scale electric field E0, we
can write the EOMs as follows:

dp

dt
=
q

c
(v ∧B0). (1.50)

The Lorentz force acts in the direction perpendicular to the particle motion, so that the modulus
of the velocity is preserved, thus if we split the motion in its components we get:

mγ
dv

dt
=
q

c
(v ∧B0) ⇒



mγ
dvx
dt

=
q

c
vyB0

mγ
dvy
dt

= −q
c
vxB0

mγ
dvz
dt

= 0.

(1.51)

We can combine the first two equations and find a second-order differential equation:

mγ
d

dt

(
mγ

dvx
dt

c

qB0

)
= −q

c
vxB0 ⇒ d2vx

dt2
= −Ω2vx,

where we find again the Larmor frequency Ω ≡ qB0

mγc .
The above equation can be easily solved as a harmonic motion along the x̂ axis, as vx = v0,x cos(Ωt).

With this solution, we can univocally solve the system (1.51) as follows:

vx = v0,⊥ cos(Ωt)

vy = −v0,⊥ sin(Ωt)

vz = v0,∥

=


vx = v0(1− µ2)

1
2 cos(Ωt)

vy = −v0(1− µ2)
1
2 sin(Ωt)

vz = v0µ

(1.52)

where v0,⊥ is the initial velocity of the particle in the x̂y-plane, so that v0,⊥ = v0 sin θ = v0
√
1− cos2 θ.

The solution above is of course well known and, as anticipated before, corresponds to a helicoidal
structure with circular motion on the x̂y-plane and a uniform drift along ẑ. Clearly the pitch-angle µ
does not change in time. A visual representation of this solution is shown in Figure 1.8a.

Now we add a perturbation δB — with general components δB ≡ (δBx, δBy, δBz) — such that
|δB| ≪ |B0| andwrite theEOMs in the reference frameof the perturbation, that ismovingwith respect
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General Introduction to Charged Particle

Transport in Turbulence

The Unperturbed Orbit

x(t) ⇡ v

⌦

p
1� µ2 sin (⌦t)

y(t) ⇡ v

⌦

p
1� µ2 cos (⌦t)

z(t) ⇡ vµt, µ = const.

(a)

General Introduction to Charged Particle

Transport in Turbulence

Parallel Scattering of Cosmic Rays

Physical process: pitch-angle di↵usion

v̇k/v ⇠ µ̇ =
⌦

v

✓
vx

�By
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� vy
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B0

◆
6= 0

(b)

Figure 1.8: (a) Charged particle in a uniform magnetic field: the particle has an initial velocity
component on the ẑ axis, vz,0 = v cos θ ≡ vµ ̸= 0 and the resulting motion is helicoidal. (b) The
perturbation δB in the plane perpendicular toB0 changes the CR pitch-angle µ and thus the size of
the circles, while the guiding center holds.

to the Earth at the Alfvén speed vA. As mentioned at the beginning, we consider a pure alfvénic wave,
so its wavevector k propagates along the background magnetic fieldB0 = B0ẑ and the wave oscillates
as δB ⊥ k. Hence in general:

δB =
(
δBx, δBy, 0

)
=
(
|δBx| · ei(kz−ωt+ϕx), |δBy| · ei(kz−ωt+ϕy), 0

)
=
(
|δBx| · ei(kz−ωt+ϕx), |δBy| · ei(kz−ωt+ϕx+

π
2 −ϕx−π

2 +ϕy), 0
)

=
(
|δBx| · ei(kz−ωt+ϕx), i|δBy| · ei(kz−ωt+ϕx) · ei(∆ϕ−π

2 ), 0
)

whereω is the angular frequencyof thewave, ruledby thedispersion relationω = vA|k|, andwedenoted
with∆ϕ = ϕy − ϕx the phase difference between the two components, that is in general not null.

The absolute phase ϕx is not relevant, while the physics is actually encoded in the difference ∆ϕ.
Besides, in order to simplify the algebra in the next steps, we chose to consider the phase difference
with respect to a π

2 -difference between ϕy and ϕx — we call this ∆ϕ′ ≡ ∆ϕ − π
2 . Notice that this

argument works just as well if we rotate clockwise, i.e. if we consider a phase difference with respect to
a −π

2 -difference. Hence, the perturbation becomes:

δB =
(
|δBx| · ei(kz−ωt),±i|δBy| · ei(kz−ωt+∆ϕ′), 0

)

If we assume the wave components to have the same amplitude (|δBx| = |δBy| ≡ |δB|) — this is
a reasonable assumption in a locally homogeneous environment — the wave is said to be in elliptical
polarization.
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As a final requirement for our analysis, recall that we are implicitly considering the real part of the
fields, so that:

Re[δB] =
(
|δBx| cos (kz − ωt) ,±|δBy| sin

(
kz − ωt+∆ϕ′

)
, 0
)
. (1.53)

With these considerations, the EOMs become:

mγ
dv

dt
=
q

c
v ∧ (B0 +Re[δB]) ⇒

⇒



mγ
dvx
dt

=
q

c
(vyB0 − vzRe[δBy])

mγ
dvy
dt

= −q
c
(vxB0 − vzRe[δBx])

mγ
dvz
dt

=
q

c
(vxRe[δBy]− vyRe[δBx])

≃



mγ
dvx
dt

=
q

c
vyB0

mγ
dvy
dt

= −q
c
vxB0

mγ
dvz
dt

=
q

c
(vxRe[δBy]− vyRe[δBx]).

(1.54)

As it is evident, we neglected the perturbation field in the x and y components since we are inQLT
(δB ≪ B0), so the circular orbits in the plane perpendicular to the background field are approximately
unaltered. On the other hand, in general v̇z ̸= 0 due to the perturbation, that therefore acts as to
change the pitch-angle µ of the particle — not the momentum value though, as we are still in the
wave reference, so the only force acting on the particle is the Lorentz force. This picture is represented
in Figure 1.8b, where the helical CR motion is perturbed as to change — exclusively — the size of
the concentric circles. Intuitively, we can already see that a large number of pitch-angle changes can
eventually reverse the parallel velocity of the particle, but cannot shift the guiding center of the orbits.

To study the entity of the change, we are going to focus on the last equation of the system above.
In virtue of Equation (1.53) and of the particle velocity components (1.52), we find:

dvz
dt

=
q

mγc

[
v0(1− µ2)

1
2 cos(Ωt)|δB| cos(kz − ωt)± v0(1− µ2)

1
2 sin(Ωt)|δB| sin(kz − ωt+∆ϕ′)

]
=
qv0|δB|
mγc

(1− µ2)
1
2

[
cos(kz − ωt) cos(Ωt)± sin(kz − ωt+∆ϕ′) sin(Ωt)

]
=
qv0|δB|
mγc

(1− µ2)
1
2

{
cos(kz − ωt) cos(Ωt)±

[
sin(kz − ωt) + sin(kz − ωt+∆ϕ′)− sin(kz − ωt)

]
sin(Ωt)

}
.

Due to the last step, we canuse the trigonometric relation cosα cosβ±sinα sinβ = cos(α±β) andwe
are left with the difference

[
sin(kz − ωt+∆ϕ′)− sin(kz − ωt)

]
sin(Ωt). Now, since the initial phase of

thewave components is randomly distributed, wewant to average over it, and the difference above does
not contribute, aswe are integrating in awhole period: 1

2π

∫ 2π

0
d(∆ϕ′) sin(kz−ωt+∆ϕ′)−sin(kz−ωt) = 0.
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Thus, applying the trigonometric formula above and having averaged over a period [0, 2π], we get:

��v0
dµ

dt
=
q��v0 |δB|
mγc

(1− µ2)
1
2 cos(kz − ωt± Ωt)

≈ q|δB|
mγc

(1− µ2)
1
2 cos(kz ± Ωt),

(1.55)

where we used that, after a distance z = v0µtwalked by a CR, kz
ωt =

kv0µt
kvAt = µ v0

vA
≫ 1.

Since the above equation implies a periodic variation, if we integrate over a long time interval, we
average to zero, which is physically expected, as the particle orbits are concentric circles. On the other
hand, in order to have a measure of howmuch a CR has been hit by a wave, we consider the square of
the pitch-angle variation:

⟨∆µ∆µ⟩ =
(
qδB

mγc

)2

(1− µ2)

∫ ∆t

0

dt1

∫ ∆t

0

dt2 cos(kz ± Ωt1) cos(kz ± Ωt2), (1.56)

where we defined ⟨∆µ⟩ ≡
∫∆t

0
dt
(

dµ
dt

)
.

The integrand functions are even, so we can extend the interval of the dt2 integral as [0,∆t] →

[−∆t,∆t] and add a factor 1
2 . Besides, as we are considering sufficiently large times to evaluate the

effect of the scattering (∆t ≫ t2, t1), the same interval can be approximated as [−∞,+∞]. These ar-
rangements simplify the calculations, since we can now write the cosine function as cos(kv0µ ± Ω)t =

Re
{
exp

[
i (kv0µ± Ω) t

]}
and solve the integral on t2, as to obtain a delta function:

⟨∆µ∆µ⟩ =
(
qδB

mγc

)2
1− µ2

2

∫ ∆t

0

dt1 Re
{
ei(kv0µ±Ω)t1

}
2πδ(kv0µ± Ω).

Now the second integral, because of the presence of the delta function, gives just a factor
∫∆t

0
dt1 =

∆t, and we find: 〈
∆µ∆µ

∆t

〉
=

(
qB0

mγc

)2(
δB(z)

B0

)2

(1− µ2)πδ(kv∥ ± Ω), (1.57)

where we can explicitly notice that the perturbation δB is here a function of position and we easily
recognize the Larmor frequency qB0

mγc ≡ Ω. Since in general we have a packet of turbulent waves, it is
useful to consider an energy distribution per wave numberW (k)dk, as the energy density contained in
the range of wavenumbers [k, k + dk], normalized to the energy density of the background field B2

0

8π :(
δB(k)

B0

)2
def
= W (k)dk.
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With this precaution, Equation (1.57) gets modified as follows:

Dµµ ≡
〈
∆µ∆µ

∆t

〉
= Ω2(1− µ2)π

∫
dkW (k)δ(kv∥ ± Ω). (1.58)

If we divide the argument of the delta function by v∥ and use the property
∫
dx δ(cx) = 1

|c|
∫
dx δ(x),

we get to the following expression forDµµ:

Dµµ = Ω(1− µ2)πkres

∫
dkW (k)δ(k ± kres), (1.59)

where we defined a quantity similar to the inverse Larmor radius as Ω/v∥ = r̃−1
L ≡ kres.

The above equations clearly show that, under the assumptions made so far, a wave-particle interac-
tion is only possible when the inverse Larmor radius of the particlematches (≡ is resonant)—with the
wavenumber of the turbulent wave: this kind of process is in fact called gyroresonant scattering. Note
that Equation (1.58) can be obtained by the general expression of theDµµ in (1.49) for the case where
only Alfvén modes are present (IM = 0), and particles have small Larmor radius (w ≡ k⊥v

√
1−µ2

Ω ≪ 1,
so that J1(w) ≃ w/2) and do not interact with the waves via the n = 0mode (Landau resonance).

We can notice that the pitch-angle diffusion coefficient just defined is expressed in units [Dµµ] =

T−1, so we can interpret it as the rate of pitch-angle variation. This implies that we can compute the
time between one such variation and the next one as:

∆t ∼ 1

Dµµ
∼ 1

ΩkresW (kres)
.

From kinetic theory of gases*, we know that the parallel diffusion coefficient can be written as
D∥ =

v∥λm.f.p.

3 , where v∥ is the CR velocity along B0 (not the drift velocity) and λm.f.p. is its mean free
path. Therefore, λm.f.p. = v∥∆t, where∆t is the time interval computed above. Hence:

D∥ =
1

3
v2∥∆t ∼

c2

ΩkresW (kres)
=

c rL
kresW (kres)

. (1.60)

With this arrangement, we can express D∥ as a function of the CR energy E. Indeed, rL ∝ E,
kres = r−1

L ∝ E−1 and, as defined above,W (k) is the energy distribution per wavenumber, namely an
energy spectrum, that goes asW (k) ∼ k−α ∼ E+α. Therefore:

D∥ ∝ E2−α ⇒ D∥ = D0 ·
(
E

E0

)δ

, (1.61)

where we introduced D0 as the normalization of the diffusion coefficient at the reference energy E0

*In particular, this can be seen re-deriving the Fick’s law Jz = −Dzz
∂na
∂z

in terms of the kinetic motion of
particles of type a in a background gas (see for instance Feynman et al. (2011)).
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and we defined 2− α ≡ δ.
The phenomenological expression above represents the scaling with energy — or, equivalently,

rigidity ρ ≡ pc
Ze , where Z and e are respectively the atomic number and the charge of the CR — of

D∥. It is of large use in the literature and is evidently connected to the spectrum of the turbulence
that caused the parallel diffusion, although with some caveats. In particular, (i) W (k) ∼ k−α, so the
turbulent power is transferred isotropically to larger wave numbers, so to both directions k∥ and k⊥,
(ii) besides, a typical use does not distinguish betweenD andD∥. For what concerns the former, given
themutual orthogonal relation between the Alfvén andmagnetosonicmodes, their polarizations span
the whole plane perpendicular to the perturbation wave number k, if their spectra had the same statis-
tics and equal intensities (Voelk, 1975). On the latter, it has been argued that the presence of mag-
netic fluctuations of very large scale (LδB ∼ O(100 pc)) tends to isotropize the CR diffusion in the
Galaxy (Strong et al., 2007), so that the tensorial nature of the spatial diffusion coefficient Dij can be
approximately neglected.

In conclusion, Equation (1.61) can be used to empiricallymodel the Galactic cosmic-ray diffusion.
This is typically implemented in the numerical codes that compute the particle spectra propagated on
Earth by solving the transport equation, such as GALPROP*, DRAGON†, USINE‡ or PICARD (Kissmann,
2014),while a seminal attempt to separate theparallel andperpendicular diffusion in a realisticGalactic
magnetic-field structure has recently opened the way (Cerri et al., 2017a). Nonetheless, it is worth to
recall that the expression above has been found assuming the smallness of magnetic fluctuations, and
even though QLT has been proven to be a very good approximation to the exact solution for CR
transport equation in a number of situations (Jokipii and Lerche, 1973), we will see in Section 1.3.4
that the use of Equations (1.58)-(1.59) involves intrinsic inaccuracies that must be revised.

1.3.3 The transport equation in physical space: the physics of par-
allel diffusionD∥

We have seen in Section 1.3.2 that Equation (1.32) implies the isotropic behaviour of CR scattering
against magnetic turbulence. This can be approached in a more physical way as in Kulsrud and Pearce
(1969); Skilling (1971), where a solution for the transport equation is found by expanding the distri-
bution function in powers of the scattering rate ν, such that fr = O(ν−r). With this procedure, it is
explicitly shown that the isotropy statement is as stronger as larger the scattering rate is.

So the zeroth-order picture is that thewaves act tomake cosmic rays isotropic in thewave frame. To
physically understand the next term of the expansion, we easily convince ourselves that any anisotropy

*https://galprop.stanford.edu/
†https://github.com/cosmicrays/DRAGON
‡https://dmaurin.gitlab.io/USINE/
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would be caused by a net force exerted on the particle along its direction of motion (µ ≈ 1). We can
then write:

f →M + f1µ, (1.62)

whereM ≡ f0 is the isotropic average, such that 1
2

∫ +1

−1
dµ f = 1

2

∫ +1

−1
dµ f0 +

1
2

∫ +1

−1
dµ f1µ ≈ f0 +0, as we

are integrating an odd function in a symmetric interval.
Such force would be given by the induced electric field δE generated by the moving magnetic

turbulence δB, and its amount — estimated according to the Faraday’s law mentioned above — is
|δE| ∼ vA/c |δB|. In order for a particle to feel such δE, it should move as slow as the wave, at the
Alfvén speed vA. This implies that we can expect a level of anisotropy of the order ∼ vA/vCR ≈ vA/c

(Blasi, 2018). For typical parameters of the ISM, vA ∼ 10 − 100 km/s, and this corresponds to an
anisotropy amplitude of the order ∼ 10−3 − 10−4, which is confirmed by experimental observations
(see Ahlers andMertsch (2017) and reference therein).

In order to obtain the transport equation in the physical space, we first have to average over the
pitch-angle distribution. So we start by applying the isotropic operator 1

2

∫ +1

−1
dµ to Equation (1.32)

and then proceed as described in Schlickeiser (1989); Shalchi (2006, 2009). This and alternative deriva-
tions are originally due to Earl (1973, 1974); Jokipii (1966a); Kulsrud and Pearce (1969).

The different terms of Equation (1.32) become:

1

2

∫ +1

−1

dµ
∂f(z, t, µ)

∂t
=

1

2

∂

∂t

∫ +1

−1

dµ f(z, t, µ) =
∂M(z, t)

∂t
,

1

2

∫ +1

−1

dµ vµ
∂f(z, t, µ)

∂z
=

1

2
v
∂

∂z

∫ +1

−1

dµµf(z, t, µ) =
∂

∂z

[
1

2
v

∫ +1

−1

dµµf(z, t, µ)

]
≡ ∂J(z, t)

∂z
,

1

2

∫ +1

−1

dµ
∂

∂µ

(
Dµµ

∂f(z, t, µ)

∂µ

)
=

1

2

∫ +1

−1

d

(
Dµµ

∂f(z, t, µ)

∂µ

)
= Dµµ

∂f

∂µ

∣∣∣∣∣
+1

−1

= 0,

where we defined J(z, t) ≡ 1
2v
∫ +1

−1
dµµf(z, t, µ) as a current density and used that Dµµ = 0 for µ = ±1

sinceDµµ ∝ (1− µ2), as seen in the previous section.
With these rearrangement we can write the Fokker-Planck equation as follows:


∂M(z, t)

∂t
+
∂J(z, t)

∂z
= 0

J(z, t) =
1

2
v

∫ +1

−1

dµµf(z, t, µ)

(1.63)

that, due to the definition of the current density J(z, t), is a continuity equation for the isotropic part
of the CR distribution function.

Still, there is a term with f(z, t, µ) that needs to be replaced. Besides, we cannot directly use Equa-
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tion (1.63), as for large enough times (t→ ∞) it simply shows that there is no current for an isotropic
CR distribution, which is trivial.

To extract an informative equation, we rewrite J(z, t):

J(z, t) =
1

2
v

∫ +1

−1

dµµf(z, t, µ)
identity
= −1

2
· 1
2
v

∫ +1

−1

dµ
∂(1− µ2)

∂µ
f(z, t, µ)

= −v
4

{
(1− µ2)f(z, t, µ)

∣∣+1

−1
−
∫ +1

−1

dµ (1− µ2)
∂f(z, t, µ)

∂µ

}

= +
v

4

∫ +1

−1

dµ(1− µ2)
∂f(z, t, µ)

∂µ
.

(1.64)

Wewant to obtain the same expression from the Fokker-Planck equation (1.32). This will allow us
to eliminate the complete distribution function f(z, t, µ). By applying the operator

∫ µ

−1
dµ′, the three

terms become:
∫ µ

−1

dµ′ ∂f(z, t, µ
′)

∂t
=

∂

∂t

∫ µ

−1

dµ′f(z, t, µ′),

∫ µ

−1

dµ′ vµ′ ∂f(z, t, µ
′)

∂z
= v

∂

∂z

∫ µ

−1

dµ′ µ′f(z, t, µ′),

∫ µ

−1

dµ′ ∂

∂µ′

(
Dµµ

∂(z, t, µ′)

∂µ′

)
= Dµµ

∂f(z, t, µ)

∂µ
−
���������
Dµµ

∂f(z, t, µ′)

∂µ′

∣∣∣∣∣
−1

.

To obtain the same J(z, t)we multiply the three terms by 1−µ2

Dµµ
:

1− µ2

Dµµ
· ∂
∂t

∫ µ

−1

dµ′ f(z, t, µ′) +
1− µ2

Dµµ
· ∂
∂z

∫ µ

−1

dµ′ vµ′f(z, t, µ′) =
1− µ2

���Dµµ
·���Dµµ

∂f(z, t, µ)

∂µ
.

Finally, we average over the pitch-angle space:

∫ +1

−1

dµ
1− µ2

Dµµ
· ∂
∂t

∫ µ

−1

dµ′ f(z, t, µ′) + v

∫ +1

−1

dµ
1− µ2

Dµµ
· ∂
∂z

∫ µ

−1

dµ′ µ′f(z, t, µ′)

=

∫ +1

−1

dµ (1− µ2) · ∂f(z, t, µ)
∂µ

≡ J(z, t) · 4
v
,

where the last step holds because of Equation (1.64).

We nowwant to extract the isotropic part of the distribution function—we have seen that it is the
largest — namely we consider t→ ∞:

v

4

∫ +1

−1

dµ
1− µ2

Dµµ
· ∂M(z, t)

∂t

∫ µ

−1

dµ′ +
v2

4

∫ +1

−1

dµ
1− µ2

Dµµ
· ∂M(z, t)

∂z

∫ µ

−1

dµ′ µ′ = J(z, t)
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and, by solving the two internal integrals on dµ′, we get:

v

4
· ∂M(z, t)

∂t

∫ +1

−1

dµ
(1− µ2)(1 + µ)

Dµµ
− v2

8
· ∂M(z, t)

∂z

∫ +1

−1

dµ
(1− µ2)2

Dµµ
= J(z, t). (1.65)

So we found an equation that relates the temporal and spacial dependencies of the CR isotropic
distribution, which is then a form of transport equation. Therefore, we can define:


Dzt ≡

v

4

∫ +1

−1

dµ
(1− µ2)(1 + µ)

Dµµ

Dzz ≡ v2

8

∫ +1

−1

dµ
(1− µ2)2

Dµµ

(1.66)

and write the above equation as follows:

J(z, t) = Dzt
∂M(z, t)

∂t
−Dzz

∂M(z, t)

∂z
. (1.67)

From the continuity equation (1.63), we have that:

∂M(z, t)

∂t
+
∂J(z, t)

∂z
= 0 ⇒ ∂M(z, t)

∂t
= −∂J(z, t)

∂z

and, by plugging in Equation (1.67):

∂M(z, t)

∂t
= − ∂

∂z

(
Dzt

∂M(z, t)

∂t
−Dzz

∂M(z, t)

∂z

)
.

The spatial variation of a function can be evaluated in terms of its temporal variation as ∂
∂t ∼ v ∂

∂z ,
so that the factor v compensates for the difference in the factors v/4 and v2/8before the two coefficients
Dzt andDzz. Besides, looking at the integrand functions (1− µ2)2 and (1− µ2) · (1 + µ), it easily shows
thatDzt andDzz are of the same order.

On the other hand, we can evaluate the two differential operators on the right-hand side. Due to
the continuity equation, ∂M(z,t)

∂t = −∂J(z,t)
∂z , and we are evaluating the variations ∂M(z,t)

∂z ∼ O(M/L0)

and ∂J(z,t)
∂z ∼ O(J/L0) on a spatial scale where the isotropic part can appreciable change, i.e. L0 ≫

λm.f.p., where λm.f.p. = vτ , τ ≡ Tµµ ∼ D−1
µµ being the time between one wave-particle scattering and the

following one. This implies that in one L0 length many scatterings have occurred, and the anisotropy
generating the current density J(z, t) had the time to rearrange to a near-equilibrium condition. For
this reason,Dzt∂tM ≪ Dzz∂zM , and we can approximate the transport equation as follows:

∂M(z, t)

∂t
≃ ∂

∂z

(
Dzz

∂M(z, t)

∂z

)
. (1.68)
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Obviously, this rearrangement holds when the scattering between the cosmic rays and the waves is
very frequent, implying a diffusive behaviour. This is why Equation (1.68) is referred to as a transport
equation in diffusion approximation (Kirk et al., 1988).

We have seen that Equation (1.68) describes the CR transport in the reference frame of the tur-
bulent waves. As a general rule of thumb, we can picture the ISM as filled with moving magnetized-
plasma clouds, and inside those clouds there is a random distribution of turbulent waves, such as the
Alfvén waves. In the reference frame of the waves—we call it S —, cosmic rays are traveling at a speed
v ≈ c, while the waves are propagating at a speed ∼ ±vA inside the plasma cloud moving at u. Typi-
cally, we have seen that vA ∼ 10 − 100 km/s ≪ |u| and, in turn |u| ≪ v, whereas in general |u| ̸≪ vµ.
As a final point then, we have to transform the quantities in Equation (1.32) from S to the reference
frame of the Earth, that is moving with respect to the waves at a velocity |u| ± vA ≈ |u|—we call it S ′.
Since |u| ≪ v, wewill use the general Lorentz transformation in theNewtonian limit, accuratemodulo
O(u/c)2 (Webb and Gleeson, 1979). In formulas, when passing from S to S ′ we have:

f(r, t, µ) → f ′(r′,p′, t′, µ)

such that (Barone, 2004):

x′ = x

y′ = y

z′ = γ(z − ut)

t′ = γ

(
t− u

c2
z

)



p′x = px

p′y = py

p′z = γ

(
pz −

u

c2
E

)
E′ = γ(E − upz)

where β = u/c, γ = 1√
1−(u/c)2

≈ 1 and the only component of the momentum that gets transformed
is the one along ẑ, because we are assuming u ∥ B0, since the plasma is magnetized.

The terms of the Fokker-Planck equation get transformed as follows:

∂f ′

∂t
=
∂f ′

∂t′
· ∂t

′

∂t
=
∂f ′

∂t′

(
γ
∂f

∂t
− u

c2
∂z

∂t

)
≈ ∂f ′

∂t′

[
1 +O

(
u

c

)2
]
,

vµ→ (u+ vµ),

∂f ′

∂z
=
∂f ′

∂z′
· ∂z

′

∂z
+
∂f ′

∂p′z
· ∂p

′
z

∂z
≈ ∂f ′

∂z′
+
∂f ′

∂p′z
· ∂p

′
z

∂z
,

where we are assuming ∂p′
z

∂z ̸= 0 since, in moving from the Galactic plane (z = 0) to the outer regions
(|z| > 0), plasma clouds accelerate and expand. A consequence of this phenomenon is that the en-
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ergy per particle inside the clouds decreases. Cosmic rays embedded in moving plasma are said to be
advecting and the consequent energy losses are called adiabatic losses (Parker, 1965).

The Fokker-Planck equation then becomes:

∂f ′

∂t′
+ (vµ+ u)

∂f ′

∂z′
+ (vµ+ u)

∂f ′

∂p′z

∂p′z
∂z

=
∂

∂µ

(
Dµµ

∂f ′

∂µ

)
.

Looking at the Lorentz transformations, we have that ∂p′
z

∂z ≈ − E
c2

∂u
∂z , hence, up to order O(u/c)2,

we have:
∂f ′

∂t′
+ (vµ+ u)

∂f ′

∂z′
− Ev

c2
µ
∂f ′

∂p′z

∂u

∂z
=

∂

∂µ

(
Dµµ

∂f ′

∂µ

)
.

We have to evaluate the derivative ∂f ′

∂p′
z
≡ ∂f ′

∂p′
∥
, where the direction ∥ refers to the background field

B0. In particular:
p′∥ = p′µ, → dp′∥ = µdp′ + p′dµ

so that:
∂f ′

∂p′∥
=
∂f ′

∂p′
· ∂p

′

∂p′∥
+
∂f ′

∂µ
· ∂µ
∂p′∥

.

To write ∂p′

∂p′
∥
and ∂µ

∂p′
∥
, we separate p′ in its parallel and perpendicular component:

dp′ = µdp′∥ + (1− µ2)
1
2 dp′⊥

and plug in this expression in the differential dp′∥ above:

dp′∥ = µ
(
µdp′∥ + (1− µ2)

1
2 dp′⊥

)
+ p′dµ ⇒ dp′∥ = µ2dp′∥ + µ(1− µ2)

1
2 dp′⊥ + p′dµ

⇒ dµ =
1− µ2

p′
dp′∥ −

µ(1− µ2)
1
2

p′
dp′⊥.

From the above expressions we thus get:

∂µ

∂p′∥
=

1− µ2

p′
,

∂p′

∂p′∥
= µ

⇒ ∂f ′

∂p′∥
=
∂f ′

∂p′
µ+

∂f ′

∂µ

1− µ2

p′
f ′ ̸≈f ′(µ)

≈ ∂f ′

∂p′
µ.

So finally, the Fokker-Planck equation gets transformed as follows:

∂f ′

∂t′
+ (vµ+ u)

∂f ′

∂z′
− µ2 ∂f

′

∂p′
p′
∂u

∂z
=

∂

∂µ

(
Dµµ

∂f ′

∂µ

)
, (1.69)

where the factor p′ in the adiabatic term comes fromEv/c2 ≈ E/c = p and p′ ≈ p, as the two quantities
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in that specific term would differ only at order O
(
u/c
)2.

From the above equation, wewant to obtain a transport equation in space, aswe didwithEquation
(1.68). Applying exactly the same procedure as before we find that we only have to add the result
coming from averaging the adiabatic term over the pitch-angle space—we can also notice that the first
two terms are simply the total derivative of the distribution function:

1

2

∫ +1

−1

dµµ2 ∂f
′

∂p′
p′
∂u

∂z
≈ 1

2

∂u

∂z
p′
∂M

∂p′

∫ +1

−1

dµµ2 =
1

3

∂u

∂z
p′
∂M

∂p′
.

Therefore, within the same diffusion approximation discussed above, the transport equation takes
the following definitive form:

∂M

∂t
+ u

∂M

∂z
− 1

3

∂u

∂z
p
∂M

∂p
≃ ∂

∂z

(
Dzz

∂M

∂z

)
, (1.70)

where we dropped the apices for clarity.
The above equation describes the propagation of charged— recall that pitch-angle scattering is an

electromagnetic process — cosmic rays in an ordered background magnetic field— it is 1D—due to
advection and diffusion, and affected by adiabatic losses originated by the moving clouds.

In conclusion, we have seen that once we know Dµµ, that is directly related to the microphysics
of the CR scattering against the turbulent waves, we also know the diffusion of particles in space. In
particular, we explicitly showed that pitch-angle diffusion in phase-space implies a parallel diffusion
in the real space. In words, cumulative changes in the particle pitch-angle µ— hence in the particle
velocity-component parallel to B0 — can ultimately result in the particle reversing its direction, lead-
ing to spatial diffusion. On the other hand, due to the computed Dµµ, very small changes affect the
transverse direction of the gyration centers, resulting in a very small spatial transverse motion (Jokipii,
1966a; Voelk, 1975).

1.3.4 Limitations of the QLT

The derivation’s steps we went through in the previous sections highlighted that the pitch-angle scat-
tering coefficient Dµµ in Equations (1.58)-(1.59) and the parallel diffusion coefficient D∥ in Equation
(1.61) rely on the assumption of small magnetic fluctuations (δB ≪ B0) and transversely oscillating
turbulent waves — the transverse direction taken with respect to the particle velocity v∥. As a conse-
quence andmore general perspective, we therefore expect quasi-linear theory to give a gooddescription
ofCR transport only in the case of what is referred to as purely slab turbulence. This conclusion is sup-
ported by a number of inconsistencies that are well known when treating cosmic ray transport with
QLT (Mertsch, 2020; Shalchi, 2005):
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General Introduction to Charged Particle

Transport in Turbulence

Perpendicular Scattering of Cosmic Rays

Physical process: field line random walk

dx =
�Bx

B0
dz ) vx = vz

�Bx

B0

Figure 1.9: Diffusion of a charged particle due to a perturbation field δB, without neglecting the
perpendicular terms in the diffusion equation. The guiding center displacement is evident.

1. The 90◦ problem: due to the resonant condition in Equation (1.59), we see that particles with
pitch-angle close to µ ≈ 0 (kres = Ω/(vµ) → ∞) can only interact with extremely large wavenum-
bers. Given the scaling of turbulent power spectra (W (k) ∼ k−α), high k’s typically contain very
little energy, whichwould imply an inefficient scattering around that direction. This is of course
in large tension with the observed highly isotropic propagation of CRs in the Galaxy.

2. The problemof perpendicular diffusionD⊥: pitch-angle scattering throughQLTonly describes
parallel diffusion, while it has been shown in Jokipii and Parker (1969a,b) that, for |δB| ∼ |B0|,
the randomwalk of the magnetic field lines could be the main responsible for particle transport,
and it would act in the direction perpendicular to the background fieldB0. Specifically, neglect-
ingDxx andDyy, we are ignoring the motion sketched in Figure 1.9.

3. The geometry problem: QLT predictions on particle diffusion are in tension with the simula-
tionswhen non-slab turbulence geometry is considered. It seems likely that this and the previous
issue are strongly related.

One of the significant implications of the assumptions mentioned above is that, up to zeroth-
order in O(vA/c), the distribution function resulting from the Fokker-Planck equation is isotropic,
f ≈ M + f1µ. Ignoring higher-order corrections implies that we are turning off any possibility of en-
ergy exchange between the particle and the wave. In particular, at orderO(vA/c), we are neglecting the
effect of the momentum Fokker-Planck coefficient Dpp, as seen in Section 1.3.3, which is responsible
for the process known as reacceleration, that it will be discussed in Section 2.2.1. Further, at order
O(vA/c)

2, the second-order Fermi acceleration would occur, as discussed in Section 1.2.1. Besides, at
the same order, in Kulsrud and Pearce (1969); Lerche (1967);Wentzel (1968) the wave-particle energy
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exchange is calculated, according to the following rate:

Γk = 2π2q2
(
vA
c

)2 +∞∑
n=−∞

∫
d3p v2⊥δ(ωk − k∥v∥ − nΩ)


J ′2
n (w)

n2J2
n(w)

w2


[
∂F

∂E
+

k∥

ωkp

∂F

∂µ

]
, (1.71)

where the first and second rows in the curly braces refer to the magnetosonic and Alfvén modes, re-
spectively, and again w ≡ k⊥v

√
1−µ2

Ω .
The first term in the square brackets is the slope of the distribution function with the particle-

energy, and it is negative for typical CR spectra F ∼ E−γ . On the other hand, the second term depends
on the CR anisotropy, which is small but is highly enhanced by the factor k∥

ωkp
, that, after a few rear-

rangements of the integrand, is seen to be of the order kv/ω ∼ c/vA. This implies that the quantity Γk

canbe a growthor adamping rate, depending on the sign of ∂F
∂µ . Intuitively speaking, travelingCRs can

interact with waves moving along the same direction, exchanging energy with them. In the opposite
direction, we have the same behaviour, as both CRs and waves are roughly isotropically distributed.
However, from a statistical point of view, particles have less energy than waves, leading to an overall
small damping for the waves*. This is the so-called linear Landau damping (Landau, 1946). If an
anisotropy is present in the CR distribution, there is no longer compensation, creating an instability
for the propagating wave. This phenomenon is commonly referred to as streaming instability of the
waves.

From the above considerations, corrections due to CR feedback mechanisms on the waves should
be taken into account. In Shalchi et al. (2004), a non-linear extension of the CR transport is derived,
called weakly non-linear theory. This approach is able to solve the issues 2-3, without however affect-
ing the pitch-angle dependence of diffusion. Therefore, this argument is complementary to the study
of the 90◦ problem. In Felice and Kulsrud (2001), the authors show how this can be solved by con-
sidering the action of a mirroring force between the particle and the scattering wave. An empirical
approach is discussed in Voelk (1975); Völk (1973), where a function describing the particle-wave res-
onance is proposed, based on this mirroring force exerted specifically by magnetosonic modes. An
extension of this idea is contained in a series of paper (Yan and Lazarian, 2002a, 2004, 2008) where
parallel and perpendicular diffusions are treated in a specific turbulent geometry supported by simula-
tions, and where scattering at 90◦ does not even need any particular treatment. Even though this could
be ascribed as a non-systematic derivation, the recent identification of such plasma modes in Galactic
turbulence (Zhang et al., 2020a) certainly represents an important step for the validation of the theory.

*This is a consequence of the Maxwell-Boltzmann distribution of the velocities of the plasma-particles of
an ideal MHD plasma and the resonant nature of the CR-wave interaction. In fact, while the plasma-particle’s
velocities peak arounda certain value,CRspectradecreasewith energy, so that there are less higher-energy resonant
CRs than lower-energy ones, with reference to the resonant energy. Hence, on a statistical basis, plasmawaves give
CRs more energy than what they gain from them.
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In Chapter 5 we will adopt this interpretation and describe how CR propagation can change. In par-
ticular we will see that, under these conditions, the cosmic-ray spatial diffusion coefficient may not be
a single power-law.

1.4 Summary of the chapter

In this chapter,wehave introduced the experimental and theoretical setup thatwill be exploited through-
out the thesis. We have shown the key experimental observations that make us conclude that cosmic
rays diffuse in the interstellar medium, and we pointed towards Supernova Remnants as the main
responsible for CR origin. Then, we described the most accredited acceleration mechanism, namely
the diffusive shock acceleration at shock events, where discontinuities in the medium— caused by the
propagating shock-front — are responsible for the bouncing process that enhances the energy of the
particles that are trapped in the shock. For what concerns the transport of the cosmic rays across the
Galaxy we have seen that, due to the random nature of the magnetic irregularities, a statistical treat-
ment of the distribution function is required, which led to the famous Fokker-Planck equation (1.25)
— this is an equation inmomentum space. In order to have a practical expression for the Fokker-Planck
coefficients, we specified the nature of the interaction of CRs with the turbulent waves, by means of
the particle’s equations of motion, and the nature of the scattering centers. For the latter, in particu-
lar, we solved theMHD equations and found three different propagationmodes—Alfvénmode, fast
and slowmagnetosonicmode. Within this picture, we derived Equation (1.32)— an equation in pitch-
angle space and in the reference frame of the wave — in the framework of the so-called quasi-linear
theory. This equation implies the isotropic behaviour of the distribution function in the pitch-angle µ,
thus the diffusive nature of cosmic-ray propagation. In order to discuss all the assumptions on which
this equation relies, we derived the same Fokker-Planck equation in a more rigorous way, which let us
find an explicit expression for the largest Fokker-Planck coefficient, Dµµ. Then, we found a transport-
equation in physical space and in the Earth reference frame, deriving an expression for the parallel dif-
fusion coefficientD∥. Finally, re-examining all the assumptions made during the previous treatments,
we argued the limitations of the presented QLT in terms of particle-wave energy exchange.
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2
Implementation in the DRAGON code and

multi-messenger implications

In this chapter, we aim at giving an exhaustive presentation of the series of processes occur-
ring to cosmic-ray particles propagating throughourGalaxy. In fact, whileChapter 1was entirely
dedicated to the study of the transport equation for hadrons in a diffusive regime, we remark

that this is only valid above an energy of about E ≥ 1GeV. At lower energies, for instance, CRs get
trapped in interstellar winds and get advected by them, as a dominant transport process. Besides, the
transport equation derived before does not take into account the hadronic interactions of CRs with
particles of the interstellar gas. In densemedia, in fact, CRnuclei scatter off particles of the clouds and
break apart to give smaller nuclei (a process known as spallation), or can give rise to hadronic showers.
On the other hand, for what concerns leptons, their massive energy losses further reduce the range of
applicability of the pure diffusive regime and loss terms must be added to the equation at all energies.
All of these phenomena have to be taken into account — as they shape the CR spectra observed on
Earth — significantly complicating the propagation equation for CR particles. Here we present the
DRAGON numerical solver for the transport equation and discuss the astrophysical ingredients imple-
mented in it, with particular reference to the configuration that will be used throughout this thesis.
Finally, we give an overview of the implications that CR propagation has on detectable secondary γ-
rays and ν’s.
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2.1 DRAGON: a general overview

It was pointed out in Section 1.1 how the remarkable progress achieved in the last decade of cosmic-
ray measurements has revealed a series of observational anomalies. As introduced above, a number
of effects contribute to the shaping of the measured CR spectra, in their hadronic as well as leptonic
components. In this context, therefore, it would be necessary to introduce in the transport equation
the distribution of the gas that CRs are traveling in. As a consequence, searching for an analytical
solution of the transport equationwould require a set of oversimplifying assumptions, not allowing to
reproduce the observations with the necessary accuracy. Therefore, the use of sophisticated numerical
codes is clearly of paramount importance to study the propagated spectra. In what follows, we refer
to the DRAGON technical papers Evoli et al. (2008); Evoli et al. (2017a); Evoli et al. (2018b); Maccione
et al. (2011) to introduce the main features of the code.

The usual starting point is the phenomenological equation that extends the spatial transport equa-
tion derived in Chapter 1—Equation (1.70)— to capture CR diffusion in space andmomentum, en-
ergy losses, advection, re-acceleration, nuclear spallation and decay (Berezinsky et al., 1990; Ginzburg
and Syrovatskii, 1964b):

∇ · (D∇Ni − uwNi) +
∂

∂p

[
p2Dpp

∂

∂p

(
Ni

p2

)]
− ∂

∂p

[
ṗNi −

p

3
(∇ · uw)Ni

]
=

S +
∑
j>i

(
cβngas σj→i +

1

γτj→i

)
Nj −

(
cβngas σi +

1

γτi

)
Ni,

(2.1)

whereNi(r, p) is the particle spectrumdensity of the i species in units [Ni] = [L]−3 ·[p]−1—this quantity
is connected to the phase-space density introduced in Chapter 1 by Ni(p)dp = 4πp2fi(p)dp—, Dpp is
themomentum diffusion coefficient,D ≡ Dij is the spatial diffusion tensor, uw(r) is the wind velocity,
responsible for CR advection, and S(r, p) a term describing the distribution of the CR sources. Still
unknown quantities are:

• a term proportional to ṗ, that accounts for momentum losses,

• two terms describing spallation of a CRnucleus with the interstellar gas of density ngas, creating
a lighter nucleus: one contributing to the species i with probability proportional to the cross-
section σj→i of the single process j → i summed over the possible j (+∑j>i cβngas σj→iNj); the
other one, reducing the particle density Ni, proportional to the cross-section σi of the inclusive
process i → {everything else} (−cβngas σiNi). For the nuclear cross-section tables, here we im-
plement the GALPROP setup, as described in Evoli et al. (2018b), while for the production of
secondary leptons in pp interaction, we use the implementation fromKamae et al. (2006). Alter-
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The transport equation
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Figure 2.1: A 2D configuration of a Galaxy with cylindrical symmetry, with a thin dense disk sur-
rounded by a much larger fainted halo of vertical size 2zmax. The advection velocity is indicated as
directed away from the disk and a typical CR diffusion path is pictured.

native compilations are also possible, although we verified that lead to negligible changes.

• Two terms accounting for: the nuclear decay of a nucleus j > i on a time scale τj→i, increasing
theNi; the destruction of the nucleus of the species i on a time scale τi.

These processes will be discussed in Section 2.2, as well as all the necessary modelizations of the astro-
physical ingredients. The equation above is evaluated at steady state ∂tNi = 0.

Galactic structure. Equation (2.1) can be solved in DRAGON in a (2 + 1)-dimensional (2D) or (3 + 1)-
dimensional (3D)configuration,where the extra dimension regards for theparticle energy. The 2Dcase
pictures a Galaxy with azimuthal (≡ cylindrical) symmetry, where the cylinder axis is perpendicular to
the thin-disk region, while in the 3D configuration the spiral arms are resolved. The results on the
diffuse component of the cosmic-rays presented in Part II and Part III of the present thesis are carried
out onGalactic scales, for which it is reasonable to reduce to azimuthal symmetry, according to which,
in the system of cylindrical coordinates (r, ϕ, z), we set ∂ϕNi = 0. This is sketched in Figure 2.1: the
dense disk has typical half-size zd ∼ 0.1 kpc and the faintedhalo zH ∼ 4 kpc, while their radius is typically
as large as Rd,H ∼ 20 kpc. Details on their modeling will be discussed in Section 2.2.

Overall magnetic-field structure. For what concerns the large-scale magnetic-field structure, it ba-
sically reflects the Galactic geometry, with concentric circles piled up (but exponentially decreasing at
larger latitudes) along the cylinder axis and a vertical component (Cerri et al., 2017a; Jansson and Far-
rar, 2012). This is pictured in Figure 2.2a, where the vertical magnetic field lines dense up towards the
Galactic bulge (X,Y < 2.9 kpc) and thin out in the outer regions (X,Y ≥ 5 kpc). As a consequence, it
is in general appropriate to consider a vertical component forB that vanishes going further away from
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where the best-fits of the four free parameters have been determined in Ref. [19] to be
B

0
X = 4.6 µG, ⇥0

X = 49�, Rc
X = 4.8 kpc, and RX = 2.9 kpc. The role of this magnetic

field component is crucial in our setup, since it determines the progressively more and
more “vertical escape” (i.e., along z) of the CRs in the parallel direction as R decreases.
This feature will be indeed characterized by a harder scaling of the CR spectrum with
rigidity as R decreases.

In figure 1 we provide a three-dimensional visualization of the complete magnetic field
model described by eqs. (2.5)–(2.11).

Figure 1. Three-dimensional representation of the Galactic regular magnetic field model used in our
simulations and described by eqs. (2.5)–(2.11). The values of the vertical component, Bz, is shown
with colors on top of the magnetic field lines and as a contour plot on the z = 0 Galactic plane. Note
that the field lines in the plot are randomly selected and the plot is meant for illustrative purpose
only.

• Energy losses: As far as hadronic particles are concerned, in the energy range we are
considering the role of energy losses is negligible, as clearly shown e.g. in [31] (figure 1

– 6 –

(a)
(b)

Figure 2.2: (a) A realistic configuration of the Galactic magnetic field is pictured, with the mag-
netic field lines directed along the azimuthal component, and a vertical component significantly
contributing around the Galactic center. Figure from Cerri et al. (2017a). (b) Typical perpendicu-
lar diffusion coefficients reflecting a Galactic magnetic disk with a denser vertical component at low
longitudes, for a CRmomentum p = 1TeV. Figure from Evoli et al. (2017a).

the Galactic center, e.g. exponentially:

Drr = D⊥(r, p)

Dzz = D⊥(r, p) +D∥(r, p) = D⊥(r, p) + e−rD∥(p).

(2.2)

This is shown in Figure 2.2b, where the phenomenological parametrization is taken from De Marco
et al. (2007). Due to our location inside the Milky Way (R⊙ = 8.3 kpc), for the problems studied in
this work we are going to assume an azimuthal-only magnetic field (B = Bϕ̂) such that in Equation
(2.1) Drr = Dzz ≡ D⊥ and D∥ plays no role, as it would appear only connected to ∂ϕNi = 0. Coupled
to the assumed 2D configuration, this corresponds to the following substitution in Equation (2.1):

∇ ·D∇Ni → Drr(r, z, p)
∂2Ni

∂r2
+Dzz(r, z, p)

∂2Ni

∂z2
+ χ(r, z, p)

∂Ni

∂r
+ ψ(r, z, p)

∂Ni

∂z

χ(r, z, p) =
Drr(r, z, p)

r
+
∂Drr(r, z, p)

∂r

ψ(r, z, p) =
∂Dzz(r, z, p)

∂z

Drr = Dzz ≡ D⊥.

Incidentally, this approximation is likely at the origin of the so-called gradient problem, namely
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the well known discrepancy (for Eγ ≥ 100MeV) between the theoretical CR-flux profile obtained
by assuming SNRs to be the sources of Galactic CRs and that inferred from the EGRET (Hunter
et al., 1997) and Fermi-LAT (Abdo et al., 2010; Ackermann et al., 2011) γ-ray diffuse observations. In
fact, neglecting the parallel component e−rD∥(p) of the diffusion coefficient in Equation (2.2) causes a
longer residence time (i.e. less-efficient diffusion)—with respect to the exact spatialD(p) parametriza-
tion — of the particles around the Galactic center, resulting in a larger production of photons. Re-
questing the normalization of the CR source term at our position in the Galaxy eventually leads to a
sharper longitudinal profile. We would expect to find a solution in a framework of anisotropic diffu-
sion.

As anticipated in Chapter 1, it is a common practice to assume an isotropization mechanism for
the transport, due to large-scale fluctuations of the magnetic field, which allows us to consider D⊥ ≈

D∥ ≡ D(r, z, p) and adopt the phenomenological parametrization in Equation (1.61), inspired by the
results of the quasi-linear theory, with the free parameters typically fitted over the data (Strong et al.,
2007):

D(r, z, p) = D0

(
p

p0

)δ

g(r, z), (2.3)

where the spatial dependence is assigned to the function g. The results presented in Part II are based on
a homogeneous diffusion, thus with g(r, z) = 1, while Part III considers a two-zone model where CR
diffusion in the halo and in the disk is caused by differentmechanisms. In this case, the parametrization
above does not hold any longer, asD(r, z, p)will not be separable in momentum and space.

Discretization procedure. Equation (2.1) is linear in the unknown function, therefore can be split
in a set of linear operators to be evaluated separately. The general solution for each species will be
therefore the sumof the particular solutions of the set of equations. Thismethod is referred to asLocal
One Dimensional operator splitting. The basic idea is to consider the equation in its time-dependent
version:

∂Ni

∂t
=
∑
l

Ll(Ni) + S, (2.4)

where we denoted with Ll the l-th linear operator, then to give an ansatz for the initial condition and
finally to evolve iteratively until an equilibrium situation is reached, which corresponds to the station-
ary condition of the original Equation (2.1). With this approach, each linear operator can be indepen-
dently discretized.

In Equation (2.4), for each node of the space-energy grid we have ∂Ni

∂t → Nn+1
i −Nn

i

∆t , where (n, n+1)

are nodes of the time grid, therefore we have to choose whether the differential operators on the right-
hand side have to evaluated at the time-node n or n+1. A third option is to consider themean value of
the two. The DRAGON code is based on this discretization scheme, which is known asCranck-Nicholson
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method (Press et al., 2002).

2.2 Astrophysics in DRAGON

This section is dedicated to the astrophysical modeling of the code configuration used in the present
work. For all the alternative choices, the reader can refer to the technical papers cited above.

2.2.1 Parametrization of the interstellar environment

Gas distribution. As mentioned in the previous section, modelization of the interstellar gas is of
paramount importance for its interaction with cosmic-ray particles, which gives rise to energy losses,
causedbyparticle-scattering, and to secondary-particle production. Interstellar gas ismostly composed
by hydrogen and helium, in proportions [He]/[H] ≃ 0.11 (Grevesse et al., 1996). Hydrogen, in turn,
is present in form of atomic (HI), ionized (HII) and molecular (H2) gas, HI and H2 being the most
abundant.

TheHI is distributed as in Strong andMoskalenko (1998):

nHI(r, z) = nHI(r) · exp
[
− log 2

(z/z0(r))2

]
, (2.5)

where nHI(r) is taken from Gordon and Burton (1976) and the parameter z0 from Cox et al. (1986):

z0(r) =


0.25 kpc r ≤ 10 kpc

0.083 e0.11r kpc r > 10 kpc.

The ionized hydrogen (HII) is composed by two terms (Cordes et al., 1991):

nHII(r, z) = 0.025 exp

[
− |z|
1 kpc

−
(

r

20 kpc

)2
]
+ 0.2 exp

[
− |z|
0.15 kpc

−
(

r

2 kpc
− 2

)2
]
cm−3, (2.6)

where the first term represents thewarm ionizedmedium (WIM) and the second term is a distribution
peaked around r = 4kpc. This modelization is specifically derived for a distribution of free electrons
in a cylindrically symmetric Galaxy, as we are assuming here.

Molecular hydrogen is not directly observable due to its long-lifetime decay (τdecay ∼ 100 yr) and
hardly-excited transitions (at temperature T ∼ 100K), but it is traced by means of the observation of
other molecules that are in a mixture with it. In particular, the most abundant one is the 12C16O —
hereinafter simply referred to as CO— for which the 2.6mm emission line is observed, corresponding
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to the J = 1 → 0 angular-momentum transition. The relevant factor to estimate the H2 is therefore
the CO-to-H2 conversion factor at each point of the Galaxy, commonly calledXCO:

nH2
(r) = XCO(r) ·W (12C16O, J = 1 → 0), (2.7)

where [nH2
] = cm−2 is the column density, [W (CO)] = K · km s−1 is the integrated line intensity and

XCO is in general a function of the longitudinal (radial) coordinate. Here we use for the Milky Way
disk the value XCO = 1.9 · 1020 cm−2/(K · km s−1), consistent with the value inferred in Bolatto et al.
(2013), and a uniform longitudinal profile (Strong and Mattox, 1996). The H2 distribution is then
taken as follows (Bronfman et al., 1988):

nH2(r, z) = nH2(r) · exp
[
− log 2

(z/70 pc)2

]
, (2.8)

where nH2
results from Equation (2.7).

Magnetic field model. The knowledge of the magnetic field structure in the code significantly af-
fects the energy losses that leptons undergo during their wandering in the Galaxy. Measurements of
the Galactic magnetic field are mainly based on the observation of the rotation measures* of the polar-
ized light and on leptonic synchrotron emission, the latter especially to infer its vertical extent. Typi-
cally, the total field is parametrized separating a regular and a turbulent (random) component, that are
treated independently (see e.g. for a review on the topic Beck et al. (1996).)

The regular component is in turn separated into the field in the disk and in the halo. In the disk,
the magnetic field is parametrized in cylindrical coordinates as follows (Sun et al., 2008):



Bd
r = D1(r, ϕ, z), D2(r, ϕ, z) sin p

Bd
ϕ = −D1(r, ϕ, z), D2(r, ϕ, z) cos p

Bd
z = 0,

(2.9)

where p = arctan

(
Bd

r

Bd
ϕ

)
is called pitch-angle and (D1, D2) regulate B spatial variations, including pos-

sible reversal and asymmetries. Their parametrization and values are given as in Pshirkov et al. (2011),
in particular Bd

0 = 2µG.
In the halo, themagnetic field structure is a double-torus in one half of theGalaxy and the reversed

*When a source at distance d emits linearly-polarized light, at wavelength λ, this can be decomposed into
two opposite-polarized circular waves, that gain a phase difference when passing through the magnetized plasma,
∆ϕobs ∝ λ2 (Faraday rotation). The proportionality factor depends on the strength of the magnetic field and is
called Rotation Measure (RM): RM = 0.81

∫ d

0
dl ne(l)B∥(l), where [ne] = cm−3 is the electron density along the

line-of-sight and the field is given in [B∥] = µG (Sun et al., 2008).
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direction in the other half (Prouza and Šmída, 2003; Pshirkov et al., 2011; Sun et al., 2008):

BH
ϕ = BH

0

1 +( |z| − zH0
zH1

)2
−1

· r

RH
0

exp

(
1− r

RH
0

)
, (2.10)

where BH
0 = 4µG, RH

0 = 4kpc, zH0 = 1.5 kpc and zH1 = 0.2 kpc (0.4 kpc) for |z| < zH0 (|z| ≥ zH0 ).

The turbulent component is poorly constrained, but observations disfavor a correlation with the
regular field (Beck, 2001), hence we implement the simplest possible azimuthally-symmetric configu-
ration (Sun et al., 2008):

Bturb(r, z) = Bturb,0 exp

(
−r −R⊙

RB

)
exp

(
− |z|
zB

)
, (2.11)

where Bturb,0 = 7.5µG, RB = 6kpc and zB = 2kpc.

The Interstellar Radiation Field. The Galactic environment is filled with electromagnetic radi-
ation generated in processes of different nature. This goes under the name of Interstellar Radiation
Field (ISRF) andhas therefore different components, such as thermal emission from starlight and from
the dust injected by galaxies, γ-rays emitted by traveling cosmic rays, and the background radiation
composed by the Cosmic Microwave Background (CMB), Infrared Radiation (IR), optical radiation
and Ultra-Violet radiation (UV). Accurate knowledge of the ISRF is important as these low-energy
photons constitute the targets for high-energy CRs to scatter off via the Inverse Compton (IC) process.
Here, we adopt the modelization described in Porter and Strong (2005), which is based on a realistic
distribution of stars and dust in our Galaxy.

The source term. We assume that the bulk of cosmic rays in the Milky Way gets accelerated and
injected by Supernova Remnants (Blasi, 2013). The phenomenological parametrization of the source
term takes the following form:

S(r, z, ρ) = S0 RSN(r, z)Φinj(ρ)e
− ρ

ρc , (2.12)

where S0 is a normalization factor, [RSN(r, z)] = L−3 ·T−1 is the rate per unit volume of SN explosions
in the MilkyWay, Φinj(ρ) is the injection spectrum and ρc is the cutoff rigidity.

In our runs, we consider the rates of explosion of SNe of type I and II as parametrized in Ferriere
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(2001) as a function of the Galactic latitude z:

RI(r, z) =
(
7.3 kpc−3 Myr−1

)
· e−

r−R⊙
4.5 kpc−

|z|
0.325 kpc

Rin
II

∣∣∣∣
r≤3.7 kpc

(r, z) =
(
177.5 kpc−3 Myr−1

)
·
{
0.79 e

−
(

|z|
0.212 kpc

)2

+ 0.21 e
−
(

|z|
0.636 kpc

)2
}
· e

(
− r−3.7 kpc

2.1 kpc

)2

Rout
II

∣∣∣∣
r>3.7 kpc

(r, z) =
(
50 kpc−3 Myr−1

)
·
{
0.79 e

−
(

|z|
0.212 kpc

)2

+ 0.21 e
−
(

|z|
0.636 kpc

)2
}
· e

(
− r−R⊙

6.8 kpc

)2

.

(2.13)

In this parametrization, type-II SNe are traced by theHII regions or by pulsars, while type-I SNe
follow the distribution of old stars found in the Galactic disk.

The injection spectrum Φinj(ρ) that we use is assumed to be the same for each source and follows a
multiply broken power-law, where the position of the break and the slope in each rigidity-interval are
chosen by the user.

Stochastic reacceleration of cosmic-rays. The process known as reacceleration or, alternatively, dis-
tributed acceleration, is the exchange of energy betweenparticles and turbulentwaves, and it is a process
of order O(vA/c), thus not present in pure QLT expressions, as discussed in Section 2.2.1. Observa-
tional evidence tells us that it cannot be the main mechanism responsible for particle acceleration in
the Galaxy, at least in the energy range 1GeV ≲ E ≲ 100GeV. In fact, if this was the case, then it
would mean that higher-energy particles have reached such energy because they spent more time in
the Galaxy, but this would imply that secondary-to-primary ratios would have an opposite trend with
respect to the observation (Strong et al., 2007). On the other hand, reacceleration is likelymore impor-
tant at lower energies, where it could be responsible for the peak in the B/C ratio, for instance. From
the technical point of view, it is taken into account in our runs by means of the following parametriza-
tion (Drury and Strong, 2016; Osborne and Ptuskin, 1988; Seo and Ptuskin, 1994):

Dpp =
1

α(4− α)(4− α2)

p2v2A
D∥

, (2.14)

where α is the slope of the turbulence spectrumW (k) ∼ k−α andD∥ ∝
(
p/p0

)δ is the parallel diffusion
coefficient seen in Equation (1.61), here isotropized to haveD∥ ≈ D⊥.

Reacceleration is only marginal in our calculations. In fact the Alfvén velocity can be computed as
follows— this is the same expression derived in Section 1.3.1, but in more convenient units:

vA =
B0√

4πρISM
cm · s−1, (2.15)

where [B0] = G = cm−1/2 · g1/2 · s−1 and [ρISM] = g · cm−3 and, due to typical ISM conditions, we
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obtain vA ∼ O(1−10) km · s−1. Of course, due to large uncertainties in the values of both themagnetic
field and the ISM, this parameter might in principle change a lot. However, we choose to to keep it
low, vA = 13 km · s−1.

Adiabatic losses due to advection. As mentioned in Section 1.3.3, the vertical (along ẑ) motion of
Galactic winds occurs at increasing velocity duw

dz > 0 and it is always accompanied by the expansion of
the wind cloud. Therefore, in order to preserve the total energy, cosmic rays trapped in the cloud loose
energy adiabatically, according to the coupled advection equations:


∂Ni

∂t
= −∂(uwNi)

∂z

−Dzz
∂2Ni

∂z2
− ∂(uwNi)

∂z
= S(r, z = 0)δ(z)

(2.16)

for the species i, that can be solved independently of the other equations, due to the operator splitting
procedure. For thefirst equation,we assumeGaussian initial conditionNi(z, t = 0) =

√
2πσ2

z exp
(
− z2

2σ2
z

)
,

while for the second we impose Ni(|z| = LH) = 0, with LH size of the Galactic halo. In our runs, we
consider a linearly increasing wind velocity |uw|(z) = uw,0 + duw

dz z (Strong and Moskalenko, 1998),
where the input parameters are chosen according to Zirakashvili et al. (1996).

2.2.2 Cosmic-ray non-adiabatic energy losses

In this paragraph we briefly describe all the mechanisms of energy-loss suffered by cosmic-ray particles.
We have seen that the interstellar environment contains both radiation andmatter, therefore we distin-
guish the energy-losses occurring to charges due to their passage through (i) a gas of photons, (ii) a gas
of atoms or molecules, either ionized, partially ionized or neutral.

(i)When a charged particle traverses a photon gas, it scatters against photons via a process known as
Inverse Compton scattering (ICor ICS), and accelerates them. At low energy, we can visualize the direct
process (Compton scattering) as an electron that gets scattered by an electromagnetic wave and starts to
oscillate due to the oscillating electric field transported by the wave — this is known as Thomson scat-
tering. Accelerated particles of charge q traveling at relativistic speed emit electromagnetic radiation,
according to the well-known Larmor formula (Barone, 2004):

P ≡ −dE
dt

=
2q2

3c3
v̇2. (2.17)

In our case, the particle accelerates due to the force F = qE(x, t) exerted by the electric field E(x, t) =

ϵ̂E0 sin(ωwavet), with ωwave frequency of the wave. Thus v̇ = qϵ̂E0 sin(ωwavet)
m , and it is clear that the

power emitted in form of dipole-radiation is at expenses of the oscillating field. This means that this
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process involves exchange of energy between the charge and the field and, as a consequence, its com-
plete treatment requires the use of quantum electrodynamics.

On the other hand, when the same charge encounters a staticmagnetic field, it only feels a Lorentz
force perpendicular to its direction of motions. Therefore, no field-particle energy-exchange is in-
volved, and the classical treatment is valid at all energies. The radiation emitted is called in this case
Synchrotron radiation.

In both the synchrotron and IC cases, the emitted radiation comes from the acceleration of the
charged particle (either in direction or momentum), which is of course much more efficient for light
particles. This is why synchrotron and IC scattering can be neglected for protons and nuclei. This will
be quantified below.

(ii)As for thepassageof theCRs throughmatter, thenature of the interaction ismainly ofCoulomb
origin, and thus regulated by the famousRutherford formula for the scattering cross-section, forwhich
we remind to Rutherford (1911). In fact, charged particles scatter off the medium nuclei, causing
their excitation— when the quantum state changes — or ionization — when an external electron is
ripped off. The energy loss resulting from this mechanism changes based on the degree of ionization
of themedium, whether it is neutral/weakly ionized (i.e. interstellar gas) or fully ionized (i.e. a plasma)
and its rate depends on the different declinations of the general Bethe-Bloch formula, formalizing the
stopping-power (−dE

dx = − 1
v
dE
dt ) of a medium under different conditions (Ginzburg and Haar, 2013).

For a satisfactory physical treatment, we remind to the classic book Ginzburg and Haar (2013) (pages
357− 387). In particular, when particles traverse neutral or weakly ionized gases, the process is techni-
cally referred to as ionization, otherwise in fully ionized plasmas the process is simply called Coulomb
scattering (Mannheim and Schlickeiser, 1994). As expected, both processes involve the charge of the
particles (not the mass) and are only affected by the properties of the media they are propagating into
(their density and the mass of the ionizing electron). Therefore they are equally efficient for electrons
and nucleons.

When the interaction does not involve the change of state of the target nucleus nor of the incident
particle, the Coulomb interaction leads to an acceleration (or deceleration) of the projectile, emitting
as expected an electromagnetic radiation that is commonly known asBremsstrahlung (literally braking
radiation) (see Ginzburg and Haar (2013), Chapter 16). Again, the change of the particle velocity is
more efficient for light particles, and therefore will be here neglected for nucleons.

Finally, hadronic interactions between the CR nucleons and the nucleons of the interstellar gas
lead to the production of pions and other composite particles, according to quantum chromodynamics
(QCD), as pointed out in Mannheim and Schlickeiser (1994).

In what follows, we discuss the rates of energy losses for the above-described processes, as they are
implemented in our DRAGON runs.
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Synchrotron radiation. The power of the electromagnetic radiation emitted by accelerated charged
particles can be computed in general via the relativistic extension of the Larmor formula (Barone,
2004):

P ≡ −dE
dt

=
2q2γ2

3m2c3
·

(dp
dt

∣∣∣∣
gyr

)2

− 1

c2

(
dE

dt

∣∣∣∣
gyr

)2
 , (2.18)

where γ = E/(mc2) is the Lorentz factor.
In the specific case where there is only a uniform and time-independent magnetic fieldB0, in each

gyration the variation of the particle momentum is large in direction, as given by the Lorentz force
dp
dt = q

cvB0 sinχ = mγc2β2

rL
sinχ— χ is the angle between the particle velocity and theB0-field—while

its energy variation can be neglected. Therefore, Equation (2.18) becomes:

−dE
dt

=
2q2c

3r2L
β4

(
E

mc2

)4

sinχ, (2.19)

which is the power emitted in the form of synchrotron radiation. We immediately notice that, due to
the proportionality ∝ m−4 of the equation above and to the mass ratio me/mp ≈ 10−3, electrons are
largely more affected by synchrotron losses than protons.

To obtain the loss-rate in a randomly-oriented magnetic field, we finally average over the angle
χ (Blumenthal and Gould, 1970):

−dE
dt

∣∣∣∣
Syn

=
4

3
σT c β

2 E2

m2c4
· B

2
0

8π
, (2.20)

where we defined the Thomson cross-section σT = 8π
3

(
q2

mc2

)2
, rL = pc

qB0
is, as usual, the Larmor radius

and
[
B2

0

8π

]
= erg · cm−3 is the energy density of the magnetic field.

Synchrotron radiation, in the reference frame of the observer, is peaked around a characteristic
frequency νc ≃ γ3

2π
qB0

mγc = γ3

2πωL, that depends on the gyration frequency of the particle (Jackson, 1975).
This can be rearranged in a practical way as follows:

Eγ,Syn = γ3ℏωL = ℏ
E2

eqB0

m3
ec

6
≃ 5 · 10−6

(
B0

µG

)(
Ee

10GeV

)2

eV, (2.21)

from which we get that the synchrotron emission for typical ISM magnetic fields of the order B0 ∼

1µG is expected in the range fromhigh-frequency radio waves (∼ O(100)MHz) up to the infrared band
(∼ O(100)THz).

Inverse Compton scattering. We have seen above that CRs can scatter off photons of the ISRF
accelerating them and that this process can be neglected for massive particles like protons. The energy
loss rate is implemented in itsmost complete form, valid for any energy regime (Blumenthal andGould,
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1970):
−dE
dt

∣∣∣∣
IC

=3σT c

∫ ∞

0

dϵi ϵi

∫ 1

1/(4γ2
e )

dq
(4γ2e − Γ)q − 1

(1 + Γq)3
dη

dϵi
×

×

{
1 + 2q

(
log q − q +

1

2

)
+

1− q

2

(Γq)2

1 + Γq

}
,

(2.22)

where q ≡ ϵ̂f
Γ(1−ϵ̂f )

, ϵ̂f ≡ ϵf
γemc2 , (ϵi, ϵf ) are the initial and final energies of the scattered photon, respec-

tively, Γ ≡ 4γeϵi
mc2 and dηa

dϵi
is the black-body Planck distribution of the a-component of the ISRF:

dηa
dϵi

= Na
8πϵ2i

(2πℏc)3
(
e

ϵi
kbTa − 1

)−1

.

The normalization Na and temperature Ta are taken according to Delahaye, T. et al. (2010), where
the observational ISRF from Porter and Strong (2005) is fitted with the superposition of 6 different
photon-fields Planck distributions.

The Thomson low-energy limit of the process reduces to (Blumenthal and Gould, 1970):

−dE
dt

∣∣∣∣Thomson

IC

=
4

3
σT c β

2 E2

m2c4
· Urad, (2.23)

where Urad is the energy density of the radiation field.

This expression is the same as Equation (2.20) giving the synchrotron loss-rate. This is not a coinci-
dence: in fact, as synchrotron radiation is produced from particles gyrating about staticmagnetic-field
lines, it can be considered as the radiation generated by a Compton process against a virtual photon—
namely a photon that does not carry observablemomentum. Furthermore, as for the synchrotron, the
loss rate scales as∝ m−4 with themass of the charge, which is why IC losses can be ignored for protons
and heavier nuclei.

As for the spectrumof the resulting radiation, a rule of thumb can be found considering the average
rate of scattered photons: 〈

nγσvCR

〉
≃ σT c

Urad

ℏω0
[T ]−1,

where [nγ ] = cm−3 is the radiation-field number density and ℏω0 the energy of a single scattered photon.

Based on the energy-loss rate in the Thomson-limit, Equation (2.23), we have:

〈
dE

dt

〉
=

〈
4

3
β2

(
σT c

Urad

ℏω0

)
ℏω0γ

2

〉
⇒ ⟨dE⟩ ∼ 4

3
β2γ2ℏω0, (2.24)

from which it follows that ℏω ≈ 4
3γ

2ℏω0 (Longair, 2011) for relativistic electrons (β ≈ 1). From this
relation, we immediately find that the emitted photons have energies going from the UV (∼ 1015 Hz)
up to the intermediate γ-rays (∼ 1020 Hz) — for 10GeV electrons scattering off the CMB photons.
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Bremsstrahlung. As introduced above, this is the radiation emitted when a charged projectile inter-
acts with the charges of the medium (ions) and changes its state of motion. In a classical way, we con-
sider theLarmor formula inEquation (2.17), where the acceleration—consequence of theCoulomb’s
law— is written in natural units as a = − Zq2

mr2 , where r is the distance between the CR charge and the
medium charge. Therefore, the power emitted during this process is derived as follows:

−dE
dt

=
2Z2q6

3c3
1

m2r4
. (2.25)

As anticipated above, given the∝ m−2 dependenceof themass of theCRparticle, this formof radiation
is only significant for electrons.

Fully quantum-mechanical and relativistic expressions are implemented in DRAGON, according to
Blumenthal and Gould (1970); Ginzburg and Haar (2013), and change based on the degree of ioniza-
tion of the crossed medium:

−

(
dE

dt

∣∣∣∣
Brem

)
WS

=
3αcσT
2π

meγc
2

[
log(2γ)− 1

3

] ∑
i=H,He

Zi(Zi + 1)ni

−

(
dE

dt

∣∣∣∣
Brem

)
SS

= cE
∑

i=H,He

niMi

λi
,

(2.26)

where the labels WS and SS stand for weakly-shielded neutral gas (also ionized) and strongly-shielded
neutral gas, Mi is the atomic mass and (λH , λHe) ≈ (62.8, 93.1) g · cm−2 the radiation lengths of hy-
drogen and helium, respectively. The shielding refers to how the projectile CR feels the Coulomb
potential of the medium charges: if it is weak or not present at all, a small Lorentz factor is sufficient
to produce radiation — the first equation holds for γ < 100. On the other hand, if there is a strong
shielding, the braked particle can produce radiation only if moving extremely fast, indeed the second
equation is valid for γ ≥ 800. In the intermediate Lorentz-factor values (100 < γ < 800), we use a linear
interpolation of the two relations.

For what concerns the resulting radiation, it presents a continuous spectrum that can be under-
stood as the conversion of the kinetic energy of the projectile electron. Thus, the spectrum is rather
flat up to a frequency νmax = Ee/h, hbeing the Planck constant. However, looking at Figure 2.4, we see
that for typical ISM conditions Bremsstrahlung is dominating typically in a very small electron-energy
window (10−1 GeV < Ee < 10GeV), which corresponds to a photon energy in the γ-ray range.

Ionization. When an electron is removed from an atom or excited to a higher energy-state, the CR
projectile loose a part of its energy, according to the famousBethe-Bloch formula, which contains several
terms that depend on the status of the crossed medium. For hadrons, DRAGON contains the following
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expression (Mannheim and Schlickeiser, 1994):

−

(
dE

dt

∣∣∣∣
Ion

)
p

=
3σTmec

3

4β
Z2

∑
i=H,He

ni

log(2mec
2β2γ2Qmax

⟨Ii⟩2

)
− 2β2

 , (2.27)

where (⟨IH⟩ , ⟨IHe⟩) = (19, 44) eV are the geometrical means of the ionization potentials of hydrogen
and helium, respectively, in all their possible configurations regarding energy levels and angular mo-
menta, andQmax ∼ 2mec

2β2γ2

1+2γme/M
is the maximum energy transferred by the CR particle of massM to the

electron, valid under the conditionM ≫ me.

When we consider the case of CR electrons, its inertial mass is the same as that of the removed
particle, therefore the simplifications in the general Bethe-Bloch formula have to change and we use the
following expression (Longair, 2011):

−

(
dE

dt

∣∣∣∣
Ion

)
e

=
3σTmec

3

4β

∑
i=H,He

Zini

log(γ2mec
2Qmax

2I2i

)

−
(
2

γ
− 1

γ2

)
log 2 +

1

γ2
+

1

8

(
1− 1

γ

)2
]
,

(2.28)

where (IH , IHe) = (13.6, 24.59) eV are the ionization potentials of the ground-state atoms and Qmax =

γ2mec
2

1+γ .

Coulomb scattering. Coulomb collisions in a completely ionized plasma are dominated by scattering
off the thermal electrons. For hadrons, we use the following expression (Mannheim and Schlickeiser,
1994):

−

(
dE

dt

∣∣∣∣
Coul

)
p

=
3

2
σTmec

3Z2ne log Λ
1

β
We

(
β

β

)
, (2.29)

where β ≡
√

2kbTe

mec2
, (ne, Te) are the density and temperature of the ionized thermal plasma, respectively,

the functionWe(x) is defined as follows:

We(x) = erf(x)− 2√
π

(
1 +

me

Amp

)
xe−x2

,

with A atomic mass of the projectile CR, and log Λ = 1
2 log

(
m2

ec
2

πreℏ2ne

Ampγ
2β4

Amp+2γmec2

)
is called Coulomb

logarithm and it is here defined in the cold-plasma limit (Dermer, 1985).
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As for electrons and positrons, we implement the loss rate following Ginzburg and Haar (2013):

−

(
dE

dt

∣∣∣∣
Coul

)
e±

=
3

4
σTmec

3ne

log( Emec
2

4πreℏ2c2ne

)
− 3

4

 . (2.30)

Pion production. Cosmic-ray nucleons impacting against photons or nucleons of the interstellar gas
generate hadronic showers, mainly in the form of charged and neutral pions. Basically, the interesting
processes are the following:

p+ γ −→ ∆+ −→

 pπ0

nπ+
p+ p −→



ppπ0

pnπ+

ppπ+π−

...

depending on whether CRs scatter off diffuse photons or interstellar matter.

Then, in turn, pions decay nearly always (∼ 99%) via the following channels:

π0 −→ γγ
π+ −→ µ+νµ

µ+ −→ e+ν̄µνe

π− −→ µ−ν̄µ

µ− −→ e−νµν̄e.

From the kinematics of the pγ and pp processes, it can be easily seen — by creating the secondary
products at rest in the center-of-mass (CM) reference frame— that the threshold energies of the projec-
tile protons are Eth

pp = mp +
m2

π+4mpmπ

2mp
≈ 1.2GeV and Eth

pγ =
mpmπ+m2

π/2
Et

γ
≈ 1017

(
1 eV
Et

γ

)
eV, where Et

γ

indicates the target photon energy. Due to themuch higher threshold of the process, proton-γ interac-
tions are mostly important for extra-galactic CRs, that are less abundant than lower-energy ones (see
Figure 1.1). This is why it is commonly assumed that the highest contribution to the pion production
comes from pp scattering.

The energy spectrum of the pions is found from the proton spectrum Sp ∝ E−δ, considering the
scattering targets and the dynamics of the process, namely the cross section σpp:

Qπ0,±(E) = c

∫
dEp Sp(Ep)δ(E −Kpπ0Ep)σpp(Ep)ngas, (2.31)

whereKpπ0 is the mean fraction of the proton-energy carried away by the secondary pion.

From experiments, it is foundKpπ0 ≃ 0.17 for each collision— this parameter is called inelasticity.
Besides, from the kinematics we have that, on average,

〈
Eγ

〉
≈ 1

2Eπ0 and
〈
Eν,ν̄

〉
≈ 1

4Eπ± (Mannheim
and Schlickeiser, 1994). From this, we derive that a rule-of-thumb estimation for the resulting photon
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Gamma-Ray Astronomy: p-p interactions
Let’s now calculate the spectrum of photons from pion decay - III

Ekin

q⇡0

GeV TeV

⇡ E��

n�

E�
m⇡0

2

⇡ E��

 the gamma ray spectrum is symmetric (in log-log) with respect to:

 at high energy the spectrum mimic the CR spectrum, with (roughly):

m⇡0

2
⇠ 70 MeV

E� ⇡ ECR

10

pion bump

Figure 2.3: Spectrum of the photons coming from π0 → γγ. Each energy-interval of the pion
spectrum (red boxes on the left figure) results in a flat distribution — symmetric with respect to
log(mπ0)/2—betweenEmin

γ andEmax
γ for the secondaryphotons (red emptyboxes in the rightfigure).

Its convolution is peaked around log(mπ0)/2 and scales as the progenitor pion spectrum.

and neutrino energies from the above processes gives:

Eγ ≃ 0.1Ep, Eν,ν̄ ≃ 0.05Ep.

Photons can be further characterized, as they only come from the two-body decay of the neu-
tral pion. In fact, in the CM, their final energy is half of the pion mass E∗

γ =
mπ0

2 , which has to
be Lorentz-transported in the laboratory frame, where it has minimum and maximum values Eγ =

γπ0
mπ0

2 (1± βπ0). Therefore, in log10-scale, we have:

log10(E
min
γ ) + log10(E

max
γ )

2
= log10

(
mπ0

2

)
. (2.32)

Besides, coming in a two-bodydecay, photons present a flat distribution— dnγ

dEγ
= const—between

Emin
γ and Emax

γ , both depending on the Lorentz factor of the progenitor proton.
In conclusion, in log10-scale we expect a flat distribution for each dE-interval of the pion energy,

each of them peaked around the half of the pion mass Eγ ≃ 70MeV — this falls in the high-energy
γ-ray band. This is sketched in Figure 2.3, where the characteristic pion bump, which serves as the
identification feature for the pion-decay component of the γ-ray spectra, is shown. Furthermore, the
secondary-photon spectra have the same slope as the pion’s that, in turn, has the same spectrum as
the progenitor proton — this can be immediately seen from Equation (2.31) due to a constant cross-
section in this energy regime (Ep > Eth

pp ≈ 1.2GeV) (Pancheri and Srivastava, 2017).
Regarding the produced neutrinos, we notice that Equations (2.31) and (2.32) still hold — the

latter slightlymodified to include the neutrino energy in the CM frame,E∗
ν . This implies that, as far as

the two-bodyprocessesπ± → µ±
(−)

ν µ are concerned, the resultingneutrinos present an energy spectrum
peaked around E∗

ν =
m2

π−m2
µ

2mπ
≃ 29.8MeV, with the same slope of the progenitor pion — and of the

proton as well— due to the kinematics. On the other hand, the neutrinos generated in the three-body
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decay of the muons have a broad spectrum typical of such processes, depending on the Lorentz factor
of the progenitors.

InDRAGON, the processes above cause theCR-particles to loose energy at a rate (Krakau and Schlick-
eiser, 2015):

−dE
dt

∣∣∣∣
Pion

= 3.85 · 10−16

(
nHI + 2nH2

cm−3

)(
E

GeV

)1.28

·
(

E

GeV
+ 200

)−0.2

GeV s−1. (2.33)

Analogously, to model the energy loss by heavier nuclei, Equation (2.33) is increased by a factor
A0.79 (Krakau and Schlickeiser, 2015), where A is the atomic mass of the nucleus.

The occurrence of the processes described above can be evaluated in terms of their characteristic
time scales, defined by:

τloss = E

/∣∣∣∣dEdt
∣∣∣∣, (2.34)

in each energy interval [E,E + dE].
These time scales are shown in Figure 2.4 separately for leptons (left column) and nucleons (right

column) and in different Galactic environments, around us (upper row) and in the Galactic center
(bottom row) for reference densities and ISRF as reported in the caption. For comparison, the diffu-
sion timescale τdiff =

L2
Halo

2D(E) is shown. From this figure, it is clear that, for leptons, losses dominate over
diffusion from E > 10GeV (E > 100GeV) in the Galactic center (locally), while for hadrons diffusion
is always the fastest process.
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Figure 27. The energy loss timescales for electrons or positrons (left panels) and protons (right
panels) are shown for the mechanisms reported in section C.10. For the local gas density we assume
nH = 0.9 cm�3 (upper panels) and nH = 10 cm�3 for the GC (lower panels). To compute the leptonic
losses we assume the constant ISRF from Delahaye2010 and the magnetic field model Sun2007ASS.
The total energy loss timescale (black solid line) is compared with the di↵usion timescale (black
dashed line) in a halo with H = 4 kpc and di↵usion coe�cient with D0 = 1028 cm2/s and � = 0.4.

• Concerning electrons and positrons, the Coulomb energy loss rate in the fully ionised
medium (with electron density ne), can be written in the following way: [132]:

�
✓
dE

dt

◆
=

3

4
�T cmec

2ne


ln

✓
Emec2

4⇡re~2c2ne

◆
� 3

4

�
. (C.47)

or, in numerical form,

�
✓
dE

dt

◆
⇠ 7.64 ⇥ 10�18

⇣ ne

cm�3

⌘
ln

✓
E

mec2

◆
� ln

⇣ ne

cm�3

⌘
+ 73.57

�
GeV s�1

(C.48)

– 52 –

Figure 2.4: The timescales for energy losses are shown for leptons (left column) and hadrons (right
column), around the solar system (upper row) and at theGalactic center (bottom row), for reference
densities nlocH = 0.9 cm−3 (nGC

H = 10 cm−3) and ISRF as reported in Delahaye, T. et al. (2010) The
diffusion time scale is computed forD0 = 1028 cm2 · s−1, δ = 0.4 and a halo size LHalo = 4kpc. Figure
from Evoli et al. (2017a).
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2.3 Multi-messenger implicationsofCRtransport inthe
Galaxy

In the previous sectionwe discussed the physical processes leading each cosmic-ray particle to the loose
part of its energy. In most cases, these losses occur along with the emission of secondary photons and
neutrinos of energy defined by the specific loss mechanism. This is summarized in Table 2.1.

CR involved Target Secondary ID Secondary E

Synchrotron
e±

B-field

γ

radio band
Brems ISM gas X-rays
ICS ISRF high γ-rays

π0 → γγ
p, He, nuclei ISM gas+

decay

high γ-rays
π± → µ±

(−)

ν µ
ν

high-energy ν
µ± → e±

(−)

ν µ
(−)

ν e sec µ broadband

Table 2.1: The table summarizes the interaction processes involving the emission of secondary γ’s
and ν’s. Specified are the primary particle, the target, the type of the produced secondary and its
emission energy-range.

These particles, measured by dedicated observatories, trace the passage of the cosmic rays and there-
fore are clear imprints to identify the nature and distribution of the CR sources. This broad-range
overview of the problem is usually referred to as multi-messenger approach and it has become an ex-
tremely promising field of research in recent times. In what follows, we show some of the implications
of the CRmodels described in the previous section.

The photon emission due to energy losses can be quantified in a quantity called emissivity, which
is the result of an integration, over the progenitor energy, of (i) the CR spectrum, (ii) the target dis-
tribution (ISRF for IC and gas density for π0 → γγ and bremsstrahlung), (iii) the cross section of the
interaction. For the exact formulas we remind to the classic book Longair (2011).

The emissivity integral, involving space/energy distributions of such ingredients, requires dedi-
cated codes to be calculated numerically. Here — for illustrative purposes only — we use the results
from the numerical tool GammaSky*. The following set of figures — Figures 2.5-2.6-2.7 — shows the
photon emissivity due to IC, pion decay and bremsstrahlung processes calculated with GammaSky for
three different photon energies — Eγ = 1.5GeV, 100GeV, 1TeV. The CR model-setup is the one
adopted in Fornieri et al. (2020b) — this will be described in detail in Section 3 — the ISRF is com-

*https://github.com/cosmicrays/hermes
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puted in Vernetto and Lipari (2016) and the gas distribution is an improved version of Remy et al.
(2017, 2018a,b). We notice that such parametrizations for the ISRF and the gas distribution are more
recent than the ones currently implemented in DRAGON, but do not significantly differ from them.

From the figures, it is clear that the decay of the neutral pion — produced in pp interactions —
dominates the photon production in the whole energy-range here probed, with contaminations from
bremsstrahlung and leptonic IC scattering, both, however, at least one order of magnitude smaller.
Besides, nearly all the emission is concentrated in the Galactic plane, strongly correlating the sources
of cosmic rays with the distribution of the gas.

To support this conclusion, in Figure 2.8 we show the emissivity measured by the Fermi Collabo-
ration*, integrated over the energy range covered by the Fermi Large-Area Telescope (Fermi-LAT), i.e.
from 1GeV up to the ∼ TeV scale, calculated over 5 years of data taking†.

From theFermimap,we can easily recognizemore luminous spots, which identify high-luminosity
isolated sources. However, the ability to isolate these spots gets reduced around theGalactic center. In
this region, the three processes have comparable emissivities up to O(100)GeV, while from Figure 2.7
we see that, at 1TeV, π0 decay is by far the only process contributing to the γ-ray sky. The possibility
to study powerful sources and the diffuse γ-ray emission at the center of our Galaxy justifies the need
for γ-ray detectors above the ∼ TeV threshold. Above this energy, Cherenkov telescopes are necessary:
among them,H.E.S.S.‡,MAGIC§, VERITAS¶ are already operating, while CTA‖ is expected to start
taking data by the end of 2025.

For what concerns the neutrino sky, neutrino emissivity can be computed similarly to what ex-
plained for photons (Longair, 2011). On the other hand, the state of the current observations is con-
siderably different. In fact, taking part only in the weak interaction, neutrinos are at the same time
unambiguous witnesses of the astrophysical events where they are produced and the most elusive par-
ticles to detect. Dedicated observatories require large sizes due to the low number of events. For this
reason they have to be built on Earth, thus detecting a huge amount of atmospheric background, i.e.
the hadronic showers generated when CRs impact our surrounding atmosphere.

Roughly speaking, atmospheric neutrinos present a power-law spectrum that, with respect to the
CR spectrum locally observed

(
dNCR

dE ∝ E−2.7
)
gets softened due to the atmospheric processes: in par-

ticular, it is expected to be dNatm
ν

dE ∝ E−3.7 (Aartsen et al., 2013). On the other hand, astrophysical (or,
alternatively, cosmic) neutrinos are produced at the source and the travel unaltered to the Earth, hence
their flux is expected to reflect the diffusive-shock-acceleration ∝ E−2 spectrum of the parent cosmic

*https://fermi.gsfc.nasa.gov/
†https://svs.gsfc.nasa.gov/11342
‡https://www.mpi-hd.mpg.de/hfm/HESS/
§https://magic.mpp.mpg.de/
¶https://veritas.sao.arizona.edu/
‖https://www.cta-observatory.org/
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IC - 1.5 GeV

1.58423e-07 1.70591e-05

(a)
π0 from HI -1.5 GeV

7.38094e-08 7.90572e-05

(b)

π0 from CO - 1.5 GeV

5.52142e-08 0.000246418

(c)
Bremsstrahlung from HI -1.5 GeV

8.26293e-09 1.24255e-05

(d)

Bremsstrahlung from CO - 1.5 GeV

6.06541e-09 2.16874e-05

(e)

Figure 2.5: Photon emissivities due to (a) IC, (b,c) pion decay and (d,e) bremsstrahlung are shown,
for a photon energy Eγ = 1.5GeV.
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IC - 100 GeV

9.4875e-09 1.38155e-06

(a)
π0 from HI -100 GeV

4.10716e-09 4.41592e-06

(b)

π0 from CO - 100 GeV

3.07754e-09 1.3539e-05

(c)
Bremsstrahlung from HI -100 GeV

6.58383e-11 8.52041e-08

(d)

Bremsstrahlung from CO - 100 GeV

4.74432e-11 1.09574e-07

(e)

Figure 2.6: Photon emissivities due to (a) IC, (b,c) pion decay and (d,e) bremsstrahlung are shown,
for a photon energy Eγ = 100GeV.
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IC - 1000 GeV

2.51376e-10 3.10886e-08

(a)
π0 from HI -1000 GeV

8.12815e-10 8.75629e-07

(b)

π0 from CO - 1000 GeV

6.09072e-10 2.67654e-06

(c)
Bremsstrahlung from HI -1000 GeV

3.3157e-13 4.42291e-10

(d)

Bremsstrahlung from CO - 1000 GeV

2.37108e-13 5.02201e-10

(e)

Figure 2.7: Photon emissivities due to (a) IC, (b,c) pion decay and (d,e) bremsstrahlung are shown,
for a photon energy Eγ = 1TeV.
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Figure 2.8: Galactic view of the γ-ray sky, after 5 years of data taking from FermiGamma-ray Space
Telescope. The map shows photon emission above Eγ = 1GeV, mainly due to π0 → γγ decay with
IC contamination. Clearly visible is the intense emission from the Galactic plane. Credit: NASA
Goddard Media Studios.

rays. Models on the cosmic-neutrino flux predict indeed dNcosm
ν

dE ∝ E−2.15 (Loeb and Waxman, 2006).
Todiscriminate the two components, neutrino telescopes are typically builtwhere they canbe shielded:
this can be done with underground detectors such as SuperKamiokande* in Japan, or with detectors
aiming at observing only one half of the Galactic hemisphere, the one shielded by the Earth. This is
the case of IceCube† at the South Pole, in joint collaboration with the northern-hemisphere telescope
ANTARES‡.

So far, the overall signal-distribution on the sky is consistent with being isotropic, although a weak
hint (2σ significance) has been found to correlate the diffuse neutrino background with the Galactic
plane (Aartsen et al., 2019; Albert et al., 2018) at energies above Eν ∼ 100TeV, within a framework
where a radial dependence of the diffusion coefficient is introduced, as in Gaggero et al. (2017). With
this regard, we notice that the possibility to improve the accuracy of γ-ray and neutrino joint obser-
vations around the Galactic center has important implications on the cosmic-ray diffusion (Pothast
et al., 2018). In fact, as seen in Section 2.1, a vertical component of the Galactic magnetic field could
be significant in this region, leading to a different scaling of the diffusion coefficient with rigidity.

In conclusion, a joint effort of the multi-messenger community is now acknowledged to be of

*http://www-sk.icrr.u-tokyo.ac.jp/sk/index-e.html
†https://icecube.wisc.edu/
‡https://antares.in2p3.fr/
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paramount importance for the understanding of the astrophysical environments so far unaccessible to
the observatories, as well as of the physics of the cosmic-ray transport, still far from being completely
understood.

2.4 Summary of the chapter

In this chapter, we described the overall structure of the DRAGONnumerical code thatwill be used in the
following parts of the thesis to solve the cosmic-ray transport equation for the CR diffuse component.
First, we discussed the physical model-settings regarding the Galactic environment: in particular, a
cylindrically symmetric Galaxy and an azimuthal magnetic field are adopted. Then, we presented in
detail the physical ingredients implemented in the transport equation, paying particular attention to
the physics of the energy losses that are suffered by both hadrons and leptons. In fact, energy losses are
often accompanied by the production of secondary γ-rays and neutrinos, that can serve as informative
tracer of the passage of the charged particles in both photon- and matter-gases. With this regard, we
have shown that γ-ray emission is concentrated on the Galactic plane, correlating photon emission
with the sources of cosmic rays and the gas distribution, while neutrino signal is so far compatible
with an isotropic distribution. The necessity of further clarifying this secondary emission, especially
in the region around the Galactic center, justifies the joint effort recently born with the name ofmulti-
messenger astrophysics.
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Part II
Impact of local sources on the
hadronic and leptonic spectra





3
Features in the lepton spectra set the ground for

a hidden nearby source

In this chapter, we interpret the most relevant cosmic-ray observables — namely B/C ratio,
fluxes of protons and light-nuclei, leptonic spectra— in a numerical setup based on the physical
ingredients discussed in the previous chapter. As seen above, even though the interstellar envi-

ronment ismodeled in light of independent experimental observations, particles are injected and prop-
agate according to a transport framework that is driven by phenomenological considerations, namely
is set on the data. With this regard, we solve the transport equation with the DRAGON numerical solver,
identifying a small number of free parameters the allow to tune the model on the most recent data,
bothmodulated and unmodulated. On top of this large-scale background, when considering the well-
known excess in the positron fraction and observing a missing flux in the electron as well, we study
the leptonic spectra as coming from discrete sources. In doing so, we treat the positron and electron
fluxes independently, assuming that they are injected by two different classes of sources. In particular,
we fit the e+ flux assuming a pulsar origin, implementing an injection spectrum typical of the already-
mentionedmagnetic-reconnectionmechanism; on the other hand, e− are believed to be of SNRorigin,
with an injection typical of the DSAmechanism.
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3.1 Motivations

As mentioned in some of the previous sections, several experiments have recently provided accurate
measurements of the leptonic (e−, e+ and e+ + e−) cosmic-ray spectra up to ∼ O(10)TeV and have
revealed significant— as well as unexpected— features.

Regarding the e−, we point out in particular that the AMS-02 spectrum exhibits a hardening at
≃ 40GeV (Aguilar et al., 2019a). At even higher energies, H.E.S.S. (Aharonian et al., 2009; Kerszberg,
2017), DAMPE (Ambrosi et al., 2017) and CALET (Adriani et al., 2018) measured the e− + e+ spec-
trum up to ≃ 20 TeV and outlined a sharp softening at ≃ 1TeV. Above that energy, the power-law
spectrum extends, with no clear sign of cutoff, all the way up to the maximal detected energy.

On the e+ side, we know that a guaranteed flux is expected due to the interaction of CR nuclei
(mainly protons and Helium) with the ISM gas — this is the secondary-positron component. This
contribution is expected to decrease with respect to the e− + e+ flux as energy increases (Blasi, 2013).
However, the discovery of the opposite trend in the positron fraction above 10GeVbyPAMELA(Adri-
ani et al., 2009), later confirmed and better characterized by AMS-02 (Aguilar et al., 2013), was then
corroborated by the measurement of the absolute e+ spectrum by both experiments (Adriani et al.,
2013; Aguilar et al., 2014a). This result showed that the anomaly cannot be attributed to a steeper-
than-expected e− spectrum, but instead that a primary origin of Galactic high-energy positrons needs
to be identified. As discussed in a long series of papers (see e.g. Blasi and Amato (2011); Grasso et al.
(2009); Harding and Ramaty (1987); Hooper et al. (2009)), the electron+positron pairs accelerated
at Pulsar Wind Nebulae (PWNe) provide a reasonable explanation for this flux, both in terms of en-
ergy budget and spectral shape. With this regard, we notice that a scenario invoking PWNe as the
origin of the positron excess has recently been further debated after the detection of TeV γ-ray halos
around theGeminga andMonogemnearby pulsars byHAWC (Abeysekara et al., 2017) and by Fermi-
LAT (DiMauro et al., 2019), interpreted in terms of IC emission from a fresh population of electrons
and, plausibly, positrons (Hooper et al., 2017), confined in the vicinity of those pulsars. Also, recent
studies conducted on bow-shock wind nebulae associated to a nearby (∼ 150 pc) millisecond pulsar
(BSWN) discuss the contribution to the positron excess coming from those compact objects, and to
the all-lepton flux as well coming from the shockedmedium (Bykov et al., 2019). Finally, several times
in the literature, outflows of relativistic leptons have been reported in correspondence to fast neutron
stars: see for instance the Guitar Nebula (Cordes et al., 1993) and the Lighthouse nebula (Pavan et al.,
2014).

The accurate measurement the leptonic features described above may offer valuable clues on the
ages/positions of the potential sources, as well as on the details of the CR transport. In fact, given the
∝ E2 scaling of the leptonic energy-loss rate, the effective horizon associated to theCR leptons progres-
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sively shrinks as energy increases, hence the stochastic nature of the sources is expected to play a more
and more important role with increasing energy. This trend implies even more pronounced features
at high energies, as noticed already in Shen (1970) and further elaborated in more recent times (Aha-
ronian et al., 1995; Kobayashi et al., 2004).

We point out however that, in light of these recent observations, a unified picture of the leptonic
observables embedded in an up-to-date transport scenario is still lacking. Here, we propose a signif-
icant step forward towards such a picture and provide a comprehensive, state-of-the-art discussion
about the origin of these spectral features and their connection with the physical properties of the
nearby accelerators. The key elements of novelty are the following: (i) Regarding the interpretation
of the positron flux, in the context of the PWN-origin scenario we account for the large and often un-
accounted uncertainties due to the unknown details of the emission process (unknown acceleration
spectrum; unknown duration of the emission). (ii) Regarding the interpretation of the all-lepton flux,
we implement some realistic realizations of the scenario proposed in Recchia et al. (2019) in which the
e± flux above the∼ TeV is dominated by the emission of a hidden,middle-aged remnantwith declining
luminosity. After a careful assessment of the contribution of the known nearby supernova remnants,
we show that the emission of such hidden SNR is required to reproduce the spectral feature reported
by H.E.S.S. and characterize its properties.

The chapter is structured as follows. In Section 3.2, we first identify a transport scenario that pro-
vides a satisfactory description of light-nuclei CR-data released by AMS-02 mostly, solving the trans-
port equation with the DRAGON code. Such step is required to fix the diffusion parameters that will
enter in determining the shape and features of the propagated lepton spectra. Then, in Section 3.3,
we turn our attention to the positron flux and model its observed spectrum in terms of (i) a conven-
tional secondary component produced by hadronic spallation, (ii) a primary extra-component that
dominates at intermediate energies and originates by a large number of distant, old pulsars, (iii) and
one or few nearby pulsars as themain possible contributors at high-energies. Finally, in Section 3.4, we
concentrate on the all-lepton data and analyze the contributions from nearby asymmetric accelerators
within the same transport scenario.

3.2 Characterization of the large-scale CR transport
scenario

In this section we settle the cosmic-ray transport setup that will be adopted throughout the chapter.
This will allow to account for the diffuse component of each of the considered CR observables and
is computed with DRAGON, according to the modelization described in detail in Section 2.2. As antici-
pated, our runs are performed in a 2D cylindrically symmetric approximation of our Galaxy.
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3.2.1 Setting source and transport parameters against CR nuclei
data

While gas density, magnetic- and interstellar-radiation-field distributions are fixed (though with some
uncertainties) on the basis of astronomical data, CR injection spectra and diffusion parameters are
largely unknown and have to be settled by comparing DRAGON predictions with CR data. We use here
AMS-02 data for almost all species (Aguilar et al., 2015a; Aguilar et al., 2017) and for the B/C ra-
tio (Aguilar et al., 2016), complemented with Voyager data (Cummings et al., 2016) for low-energy
protons and other nuclei. Finally, HEAO-3 (Binns et al., 1989) data are considered to determine the
normalization of nuclear species heavier than Nitrogen.

Voyager data (below 1GeV/n) are collected outside the Heliosphere, allowing us to tune the low-
energy injection spectra without being affected by solar modulation. This is here taken into account
within the force-field approximation (Gleeson and Axford, 1968), introducing a new parameter re-
ferred to asmodulation potential ϕmod.

Once the injection spectra are fixed, we are able to constrain the value of ϕmod by fitting the low-
energy (≲ 10GeV/n) AMS-02 modulated data. The values of ϕmod that we obtain are consistent with
the independent measurement performed at ground-based detectors (Usoskin et al., 2005, 2011).

With this cross-checked estimation of ϕmod at hand, we can connect with the intermediate-energy
(E > 10GeV/n) AMS-02 points, and conclude that a first injection break at low energy (E ≲ 10GeV/n)
is required to reproduce the proton/nuclei data. This procedure is very important because (i) it justifies
the presence of a low-energy break also in the e− spectrum (although we are agnostic here about its
physical origin) if we consider a common origin for CR protons/nuclei and electrons (e.g. SNRs); (ii)
it validates the values used for themodulation potential, which significantly affects the leptonic spectra
all the way up to ∼ 30GeV.

A second break has to be implemented in the hadronic species at a fewhundred ofGeV, as reported
by the AMS-02 observations cited above. The origin of this break is still under debate. However,
the more pronounced hardening found in secondary nuclei seems to point towards a diffusive origin,
and the physical interpretations proposed so far deal with a different nature (Evoli et al., 2018a) — or
behaviour (Yan and Lazarian, 2002a, 2004, 2008) — of the turbulent cascade in the halo and in the
disk. We will discuss this topic in details in the next chapters.

Given that the propagated spectrum of the primaries scales as ∼ E−Γinj−δ above ∼ O(10)GeV, we
effectively mimic the diffusive break with a break in the injection. We notice that this choice leads to a
slightly underestimatedproductionof secondaries at energies of the order∼ O(100)GeV. However, for
what concerns the B/C ratio, this affects the interpretation of the last data points only — where they
aremore uncertain. Therefore, for the purpose of this chapter, this approximation does not produce a
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sizeable effect and is completely equivalent to implementing abreak in the diffusion coefficient. Indeed,
here we aim at building a background model to study the role of nearby sources. We will see instead
that it will play a central role in the results presented in Chapter 4.

On the other hand, we emphasize that a completely different treatment is required for primary
leptons: in fact, at∼ O(100)GeV, leptons aremostly coming from the local region, so they spendmost
of their time in the same galactic environment. For this reason, no spectral break is likely present in
the primaries andwe choose tomodel the smooth leptonic component as a single power-law in rigidity
above ∼ 10GeV, as it will be seen in Section 3.2.2.

In order to implement what discussed above, we performed several two-dimensional runs with
DRAGON in a gridwith41 linearly spacedpoints along the radial axisR ∈ [0, 12] kpc and81 linearly spaced
points in the vertical axis z ∈ [0,±4] kpc, wherewe propagated particles of energyEk ∈ [10MeV, 30TeV],
logarithmically spaced according to Ek[i] = exp(ln (Ek,min) + i ln (Ek,factor)), where Ek,factor = 1.2GeV.
Based on this setup, we identify a satisfactory scenario, characterized by the parameters listed in Table
3.1. As reported there, and also shown in Figures 3.1a and 3.1b, the observed spectra are reproduced in-
troducing a low-energy break at 7GeV/n, for all species, and a high-energy hardening at 335(165)GeV/n

for protons (heavier nuclei). We note that this break is required also to match the Voyager unmodu-
lated data, therefore is not related to the solar modulation.

vA

[km/s]

D0

[cm2/s]
δ Γinj,l

Eb,1

[GeV/n]
Γinj,m

Eb,2

[GeV/n]
Γinj,h

p

13 1.98 · 1028 0.45

1.8

7

2.4 335 2.26
He 2.0 2.28 165 2.15
C 2.0 2.38 165 2.15
O 2.0 2.38 165 2.15

Table 3.1: The table reports the injection parameters of our reference transport model. The labels
(l,m,h) refer to low,medium and high energy injection indices.

It should be noted that an approximate degeneracy holds between the diffusion coefficient normal-
ization and the diffusive-halo height-scale H since the CR escape time, hence the secondary/primary
ratio, only depends on the ratio D0/H. In this chapter we use H = 4 kpc. We notice that a different
choice of H within a wide range of allowed values has no significant effect on the electron spectrum
andmay affect the positron spectrum only below∼ 10GeV (see Figure 4 in Di Bernardo et al. (2013))
with no impact on the results of this analysis.

Similarly to the results reported in Di Bernardo et al. (2010), and—more recently — in Génolini
et al. (2019); Yuan et al. (2017), theB/C ratio is nicelymatched for a value of δ close to 0.45. Performing
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Figure 3.1: Thepropagated spectra computedwith our referencemodel of (a)protons, (b)Helium,
Carbon and Oxygen (Oxygen flux is divided by 10 for clarity) are compared with AMS-02 (Aguilar
et al., 2015a; Aguilar et al., 2017) (accounting for solar modulation) and Voyager (Cummings et al.,
2016) (interstellar) data. For Voyager C and O data, data points may overlap due to measurements
coming from different telescopes and modes (denoted as TT in the reference). In (c) the B/C ratio
is computed for the same model and is plotted against AMS-02 experimental data (Aguilar et al.,
2016). (d) Primary and secondary e− and e+ spectra computed with DRAGON accounting only for
the contribution of distant SNRs and secondary production in the ISM. The red and blue dots are
AMS-02 experimental data (Aguilar et al., 2019a; Aguilar et al., 2019). The silver band accounts for
the solar modulation ⟨ϕmod⟩ = 0.54±0.10, estimated according toUsoskin et al. (2005, 2011) for the
whole period of data taking.
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a statistical analysis aimed at the determination of the uncertainties in the propagation parameters,
involving the full set of secondary/primary ratios, is beyond the aims of what discussed in this thesis.
We mention however that varying the main parameters in the small allowed ranges found in Génolini
et al. (2019) would have no relevant impact on the electron and positron spectra and therefore on the
conclusions derived in this chapter.

3.2.2 Primary electrons and secondary positrons

In the standard CR transport scenario, the Galactic SNRs are expected to generate the bulk of the
observed CR electrons as well. Moreover, as seen in Section 2.2.2, a guaranteed source of secondary
electrons and positrons is provided by the scattering of CR nuclei —mostly protons and 4He—with
the ISM gas.

For what concerns the primary electrons, we remark that, although the acceleration mechanism
is expected to be the same as the one at work for the nuclear species, the injection spectrum into the
ISM should be steeper (with ∆Γ as large as ∼ 0.4) due to synchrotron losses in the SNR magnetic
field, which is also amplified by CR-induced turbulence (Diesing and Caprioli, 2019). We notice that
the DRAGON output is in good agreement with analytical computations (Bulanov and Dogel, 1974;
Lipari, 2019a) predicting a propagated spectral index Γ = Γinj +

δ

2
+

1

2
above few GeV. We compute

the propagated spectra at Earth with DRAGON adopting the setup derived in the previous paragraph
and implementing an electron injection spectrum Γe

inj = 2.7 (1.6) above (below) 7GeV. This allows to
reproduce the measured spectrum up to ∼ 50 GeV, above which it displays a pronounced hardening
(see Figure 3.1d).

It is our opinion that such feature corresponds to the expected breakdown of the assumption of a
continuous, steady-state source term that characterizes the large-scale models developed with DRAGON.
Indeed, the mean distance of active SNRs from the Earth is expected to be of few kpc’s. As a con-
sequence, we expect that already above ∼ 100 GeV the energy losses will limit the number of SNRs
contributing to the observed CR electron flux to just a few. The contribution of individual CR elec-
tron sources will be discussed in detail in Section 3.4.

Regarding the secondary positrons, they are computedwith DRAGON as well, within the same trans-
port setup. The result is also reported in Figure 3.1d. The plot clearly shows evidence of the well
known positron excess above ∼ 40 GeV, pointed out since the first release of the PAMELA data (Adri-
ani et al., 2009). However, differently from other previous works (see e.g. Moskalenko and Strong
(1998); Strong andMoskalenko (1998)), we find an excess at all energies above ∼ 1GeV: this is consis-
tent with other dedicated analyses, such as Boudaud et al. (2017).

Even though alternative CR propagation scenarios may be invoked to account for the unexpected
productionof positrons (Lipari, 2017), aswell as interpretations basedondarkmatter annihilation (see
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for instance the recent review Gaggero and Valli (2018) and references therein), lepton pair emission
from pulsar wind nebulae seems to be a more natural candidate. We will assess their contribution in
the next paragraph.

3.3 The positron excess

In this section we focus on positron data and present a detailed discussion on their possible interpre-
tation. In particular we address from the phenomenological point of view the role of local and distant
sources of relativistic electron+positron pairs, such as pulsar wind nebulae: we discuss whether a sce-
nario in which the positron flux is dominated by this class of sources is viable (both from the point of
view of the energy budget and of the spectral features) and assess whether the current data allow us to
pinpoint which PWNe are most likely to contribute in the different energy ranges.

3.3.1 Basic aspects of injection pulsar wind nebulae and relevant
caveats

Pulsar wind nebulae are structures born inside the shells of supernova remnants, which emit a broad-
band spectrum of non-thermal radiation powered by fast-spinning magnetized neutron stars with a
typical radius R ∼ 10 km and periods of O(0.1 − 10) s, typically detected in the radio and/or gamma-
ray band as pulsars.

As mentioned in Section 3.1, the role of pulsars and PWNe as relevant and efficient antimatter
factories in the formof e± pairs and their contribution to the detected all-lepton fluxhave been debated
for a long time in the literature, since the pioneering works of the past century (Atoyan et al., 1995;
Harding and Ramaty, 1987; Shen, 1970). We will recall in this section some important aspects of the
physics that characterizes these objects, in order to motivate our phenomenological parameterization
of the problem.

To characterize the emission from a PWN, it is important to assess: 1) the energy release as a func-
tion of time, and 2) the acceleration mechanisms of the electron+positron pairs, hence the energy
spectrum of such leptons when they are eventually released in the interstellar medium.

1. Regarding the former, we recall that the pulsar spin-down is usually described by the following
model-independent equation:

Ω̇(t) = −κ0 · Ω(t)n, (3.1)

whereΩ(t) = P−1(t) is the rotation frequency, κ0 andn are parameters that dependon the specific
energy-loss process; in particular n is commonly called braking index.
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This equation can be solved to getΩ(t) and the time evolution of the luminosity, which, in terms
of the conversion efficiency (η±) of the released energy into e± pairs, can be written as follows:

L(t) = IΩ(t)Ω̇(t) =
η±L0,γ(

1 + t
τ0

) n+1
n−1

(3.2)

where τ0 ≡ 1

(n− 1)κ0Ω
n−1
0

and t is the age of the source.

Under the assumption that at present time the pulsar rotation period is P (t) ≫ P0 ≡ P (t = 0),
we can approximate twith its characteristic age, tch ≈ P

(n− 1)Ṗ
(Roberts et al., 2005).

According to Equation (3.2), the release process is regulated by the ratio tch/τ0. When tch/τ0 ≪

1, we can Taylor-expand the function L(t) ≈ η±L0,γ (1 − n+1
n−1 · tch/τMD

0 ) and approximate the
luminosity as a constant over time. In the opposite limit tch/τ0 ≫ 1, the luminosity drops very
fast and we can see the injection as a burst.

If the energy-loss mechanism responsible for the spin-down were exclusively magnetic dipole
(MD) emission, then the braking index would be n = 3 (Roberts et al., 2005) and the character-
istic timescale of the frequency (and luminosity) dropwould be given by τMD

0 =
3Ic3

B2R6Ω2
0

, where
I is the moment of inertia of the spinning neutron star, B is the surface magnetic field, Ω0 is the
initial frequency.

For all the nearby pulsars tabulated in the ATNF catalogue* (Manchester et al., 2005), the ratio
tch/τ

MD
0 given above is typically one order ofmagnitude lower than 1 (∼ 0.3), whichwould point

towards a constant-luminosity injection.

However, n can be inferred only when observations are long enough to allow the derivation
of all three quantities Ω, Ω̇, Ω̈. For this reason, they are available for a limited number of cases
only (Hamil et al., 2015), and in each of them the results show values of 1.9 < n < 2.8, signifi-
cantly different from the ideal MDmodel. Moreover, a comparison between the energy budget
released by the pulsars calculated via MD-emission with the same quantity derived by observa-
tions, independently of the emission model, reveals significant discrepancies, as discussed in de-
tail in Appendix 3.A3. Finally, even if the constant-luminosity injection were a good approxi-
mation, it would become progressively more unreliable for increasing pulsar age.

For these reasons, we are led to conclude that other energy-loss mechanisms, rather than MD-
emissiononly,mightbe atwork. Thus, in the followingwewill consider only themodel-independent
equations (3.1)-(3.2) and study the two limiting cases of burst-like (discussed many times in the
literature) and constant-luminosity injection of e±, in order to bracket the above-mentioned un-
certainty.

*http://www.atnf.csiro.au/people/pulsar/psrcat/
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2. As far as the acceleration spectrum is concerned, we recall that the broad-band radiation emit-
ted by PWNe can be typically modeled as synchrotron and IC emission from a population of
relativistic electrons and positrons distributed in energy as a broken power-law. These leptonic
pairs, initially extracted by the surface of the neutron star, are then most likely accelerated at, or
close to, the termination shock (TS) by a variety of possible mechanisms.

The current data probing the non-thermal radiation (in Radio and X-ray frequencies) emitted
from several well-observed PWNe (Jankowski et al., 2018) require a lepton spectrum which has
the shape of a broken power law, with a hard spectrum (with slope 1 ≲ Γinj ≲ 2) below a break
at ∼ 200 – 400 GeV, and a steeper one (Γinj > 2) at larger energies (see Amato (2014); Blasi and
Amato (2011); Bucciantini et al. (2011); Bykov et al. (2017)). The hard, low-energy spectrum
has been object of debate over the years, and several acceleration mechanisms were proposed,
including magnetic reconnection and resonant absorption of ion-cyclotron waves.

Motivated by these considerations, in the following we will adopt both a broken power-law and
a single power law with exponential cutoff and compare our result with those obtained in sev-
eral previous analyses (see for instance the recent reviews Gabici et al. (2019); Gaggero and Valli
(2018) and the references therein).

As a final remark, we point out that the particles are expected to be released from the PWN region
with some delay. A minimal contribution to this delay is given by the time the pulsar — due to its
proper motions — takes to leave the associate SNR shell, which we estimate to be trel = 6.4 · 104 yr
for pulsars (see Appendix 3.A1). That estimate could be even larger if we were to take into account
the results of recent analyses of theHAWC (Abeysekara et al., 2017) and Fermi-LAT (DiMauro et al.,
2019) data for the Geminga and Monogem regions, showing that e± diffusion may be even more de-
layed around those objects— this was mentioned in Section 1.1. However, the possible consequences
of these pockets of slow diffusion (the TeV-halos) around PWNe still have to be determined. In fact,
while Profumo et al. (2018), for instance, states that a two-zone model separating the TeV-halo from
the rest of the ISM still allows positrons from Geminga andMonogem to reach the Earth, in another
recent study (Johannesson et al., 2019) the authors argue that the same result depends on the size and
other properties of the halo. We believe that the growing interest of the community in these TeV-halos
will lead to dedicated observations of other similar high-confinement regions, in order to establish if
they are present around each PWN, as already outlined in Linden et al. (2017). Collectingmore statis-
ticswill eventually allow to infer their physical properties and to shed light on the puzzle of the positron
origin.
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3.3.2 Diffusive propagation of leptons in the Galaxy: study of the
analytical solution

With the parametrization of the source term and the delay of the particle release properly settled, we
now turn our attention to the propagation of the electron+positron pairs from individual sources in
the ISM.

We describe the transport process by means of a simplified version of the transport equation (2.1),
where low-energy effects such as advection and reacceleration are neglected. In fact, comparing the
timescales for diffusion

(
τdiff = H2

2·D(E)

)
and advection

(
τadv = H

vA

)
for typical ISM conditions — we

have vA ∼ O(1− 10) km · s−1, see Section 2.2.1)—, a Halo size ofH = 4 kpc and a diffusion coefficient
here invoked asD(E) = 1.98 · 1024

(
E

1GeV

)0.45
m2/s, we see that advection contributes to the CR trans-

port only below ∼ 100 MeV. As we are interested in a high-energy regime (above ∼ 1 GeV), we can
neglect the advection term and write the transport equation in polar coordinates as follows:

∂N(E, t, r)

∂t
=
D(E)

r2
∂

∂r
r2
∂N

∂r
+

∂

∂E
(b(E)N) +Q(E, t, r), (3.3)

whereQ(E, t, r) is the source term, b(E) ≡ dE
dt the rate of energy-loss, andN(E, t, r) is the usual particle

number density per unit energy.

The loss term, in general, takes into account a variety of processes: ionization, Coulomb scattering,
bremsstrahlung, Inverse Compton, synchrotron. Whereas the DRAGON setup properly accounts for all
of them (see Section 2.2.1), in this section we approximate b(E)with the following expression:

dE

dt
≃ −b0E2 (3.4)

with b0 = 1.4·10−16GeV−1 s−1, corresponding to a typical local interstellar gas density ofnISM = 1 cm−3

and a total magnetic field Btot = 5µG, compatible with a recent analysis (Sofue et al., 2019). This
expression captures the dominant leptonic processes (Inverse Compton and Synchrotron) in the local
environment, as far as the energy range of interest for the present work is concerned (E > 1GeV).
It is worth mentioning that, although a full numerical treatment of the energy losses for relativistic
leptons would require a correction to the ∝ E2 scaling due to the Klein-Nishina calculation of the
IC scattering (Blumenthal and Gould, 1970), the authors of Delahaye, T. et al. (2010) showed that
the propagated spectra would change only up to a factor of ∼ 1.5 in normalization for the adopted
value of Btot (see their Figure 2). This uncertainty does not affect the results presented in this chapter,
therefore we neglect the full treatment.

Equation (3.3) can be solved analytically following the general treatment in Atoyan et al. (1995),
for different injection scenarios.
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Under the assumption that the emitting source is point-like, theGreen-function approach to solve
the equation gives the general solution (Berezinsky et al., 1990):

N(r, t, E) =
Q(Et)b(Et)

π3/2b(E)r3diff
· e

− r2

r2
diff , (3.5)

wherewe drop the dependence of the source termQ on t and r for simplicity. Et refers to the energy at a
time (t−trel) ago, that, given the currently-measured energyE and the rate of energy-loss b(E) = −b0E2,
is Et =

E
1−b0(t−trel)E

. Therefore, the solution in Equation (3.5) becomes:

N(r, t, E) =
Q(Et)

π3/2r3diff
· 1[

1− b0(t− trel)E
]2 · e

− r2

r2
diff , (3.6)

where r2diff(Et, E) ≡ +4
∫ E

Et

D(E′)
b(E′) dE

′ is the diffusive distance travelled by a particle loosing its energy
from Et to E. This solution is still general, in that it does not contain any information about the
injection term, that in general can be written Q(E, t, r) = S(E)L(t)δ(r), where we assume a power-law
spectrum with index Γinj, S(E) = S0

(
E
E0

)Γinj

.

Decaying-luminosity injection. Whenno further information is providedon the luminosity timescale,
the decaying-luminosity function is in the general form L(t) = L0(

1+ t
τd

)αd —the same form introduced

in Equation (3.2)—, where now (αd, τd) are parameters characteristic of the emission mechanism. In-
tegrating over time the expression (3.6), we obtain:

N(r, tage, E) =

∫ tage

trel

dt′
S(Et′)L(t

′)

π3/2r3diff(E,Et′)
· 1[

1− b0(tage − t′)E
]2 · e

− r2

r2
diff , (3.7)

where trel is the release time of the particles.
Equation (3.7) is themost general formof the solution and it can be noticed that, as the integration

over time is not performed yet, any injection feature can still be easily implemented in the expression
of S(E). In particular, throughout this and the following chapters we use source features such as an
exponential cutoff or a break in the power-law:

- S(E) = S0

(
E
E0

)Γinj

· e−
E

Ecut

- S(E) = S0

(
E
E0

)Γinj

·
(
1 +

(
E

Ebreak

)|∆Γinj|·s
)sign(∆Γinj)/s

,

where ∆Γinj is the change in the injection index and s a parameter that regulates the sharpness of the
change in the slope. It can be easily seen that in the two limits E ≪ Ebreak and E ≫ Ebreak we find the
two different power-laws.

Constant-luminosity injection. This is a physical scenario that corresponds to the limiting case of
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(3.7) where the luminosity timescale τ0 is much larger than the age of the source. Based on this, the
luminosity function can be approximated by L(t) → L0dt.

Beside, if the injection function S(E) does not have any dependence on time, the integral is easily
performed and the solution takes the form:

N(r, tage, E) =
L0S(E)

4πD(E)r
· erfc

(
r√

4D(E)(tage − trel)

)
, (3.8)

with erfc(x) = 2√
π

∫∞
x
e−t2dt the complementary error-function.

Burst-like injection. This scenario corresponds to the opposite limit with respect to the previous
one, namely the case where τ0 is much smaller than the age of the source. The luminosity function is
thereforeL(t) → L0δ(t−trel)dt, and the solution (3.7) basically takes the formof the integrand function:

N(r, tage, E) =
S(Etage)

π3/2r3diff(E,Etage)
· 1[

1− b0(tage − trel)E
]2 · e

− r2

r2
diff . (3.9)

It is worth mentioning that any injection features such as the ones discussed before (i.e. cutoff
and break) can be implemented at this step without worrying about the time integration, due to the
presence of the delta function.

The decaying-luminosity and burst-like solutions are valid as long as the condition 1 − b0(tage −

trel)E ̸= 0 holds, which can also be written as E ̸= 1
b0(tage−trel)

. However, this expression represents
the maximum energy that a particle can have after a time (tage − trel) spent in the Galaxy. Therefore,
the condition becomes immediately E < 1

b0(tage−trel)
. This condition translates into a sharp cutoff

in the spectrum for the burst injection and a peak in the case of decaying luminosity. For energies
above this peak, the release time trel grows and the maximum energy becomes larger, even though the
normalizationdecreases, due to the smaller luminosity. This behaviour does not occur for the constant-
luminosity scenario, where emission lasts constantly up the current time tage, represented indeedby the
simpler mathematical condition tage − trel > 0.

For the purpose of what is here described, we are interested in the behaviour of the solution as a
function of the age and the distance. A time-decaying luminosity function as given in Equation (3.2),
assuming a power-law injection spectrum, yields the solutions plotted in Figure 3.2.

Theprominent peak in in each curve is due (at fixeddistance) to the interplay between the diffusion
dominating at low energy and the energy losses at high energy. While a burst-like injection gives rise to
a sharp cutoff above the peak energy, a long-lasting source results in a plateau or even a growing-with-
energy behaviour for large values of τ0 or short distances.

Taking into account the possible presence of a UV cutoff in the source spectrum (see discussion in
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Figure 3.2: Solution of the transport equation for a decaying-luminosity single source, plotted for
pulsars of (a) different ages and fixed distance (1 kpc) and (b) different distances and fixed age (1 ·106
yr). The order of magnitude of the energy-budget is compatible with the one expected from pulsar
emission (O(1047 − 1049erg)). The injection index is Γinj = 1.7, although we verified that the shifting
is independent of it. As the source age increases, the emission peak shifts to the low-energy range.

the previous paragraph), the peak energy is determined by the condition

Emax(t) = min

{
1

b0(t− trel)
, Ecut

}
, (3.10)

where t is the age of the source and trel the time it takes for particles to leave the source region. Therefore,
the peak progressively shifts towards lower energies for increasing PWN ages.

3.3.3 Contributionfromoldandyoungpulsarstothepositronflux

We start by considering the low-energy part of the positron spectrum and assume that it is originated
by a large number of PWNe with age older than ∼ 106 years.

This assumption is motivated by the trend of the peak energy outlined above and by the fact that,
below∼ 100GeV, the diffusionhorizon (dmax =

√
4D(E)(t− trel)) growsup to fewkiloparsecs. Within

that distance, a very large number of pulsars are observed, and — provided that the diffusive time of
their injected particles is smaller than their ages — all of them are expected to contribute to the flux
reaching the Earth, at energies that get lower with increasing age, as already outlined in Delahaye, T.
et al. (2010). The cumulative spectrumof this “large scale” e± component is therefore the convolution
of the contributions frommany single sources, integrated over their age distribution.

A detailedMonte Carlo simulation of this integrated spectrum is beyond the scope of the present
thesis and is postponed to a dedicated work. However, we tested the cumulative contribution from
a sample of 104 pulsars with ages between 106 and 108 yr (the sample number is compatible with the
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observed SN rate Cappellaro et al. (1999)), assuming that e± pairs are injected from these sources with
a total energy budget in the [1046 – 1049] erg range, and with spectral indices between 1.3 and 1.9. We
found that the simulated total spectrum from those sources displays a small scatter for different re-
alizations of the pulsar distribution and — with good approximation — typically follows a smooth
power-law.

Motivated by these considerations, we choose to consider an effective modeling of such large scale
e± component within the DRAGON framework, similarly to what done in previous works (see e.g. Di
Bernardo et al. (2013)). Therefore, we add to our setup a charge-symmetric smooth extra-component
with the same spatial distribution of SNRs and tune its normalization and slope (Γextra = 2.28) to
reproduce theAMS-02 data. It is important to remark that, given the large number of sources involved,
the resulting convoluted soft (Γextra > 2) spectrum is not related to each single-source hard (Γinj < 2)
injection.

We now focus on the high-energy part E > 100 GeV of the e± spectrum which should receive a
significant contribution either from relatively young pulsars (t ≲ 105 years) or even by older pulsars if
they are long lived.

The key aspect in this energy domain is the pronounced drop-off in the positron spectrum ob-
served by AMS-02 above ∼ 250 GeV. The considerations discussed so far may lead us to two distinct
interpretations of this feature:

• Given the properties of the analytical solution, assuming that no relevant spectral steepening
or cutoff is present at the source in this energy range, it is possible to ascribe the feature to the
interplay between diffusion and energy loss. This would imply a dominant contribution in this
range from a number of pulsar wind nebulae of approximate age of ∼ 106 yr (see Figure 3.2a).
Besides, in order to reproduce the above-mentioned drop-off in the data, such PWNe should be
at a distance larger than or similar to ∼

√
4D(E = 230GeV) · (tage = 106yr) ≈ 1.5 kpc (see Figure

3.2b).

• Alternatively, given our knowledge of the injection spectrum of PWNe, summarized in Section
3.3.1, a natural interpretation is that the positron flux around 200GeV is dominated by few (or
one) nearby, young pulsar wind nebulae, which provide a relevant contribution on top of the
diffuse, large-scale component discussed above, and is characterized by either a spectral break or
a cutoff at that energy, explained by the acceleration processes taking place near the termination
shock.

In what follows we will explore the second option. We just mention that detailed Monte Carlo
simulations have been recently performed in Cholis et al. (2018)* and inManconi et al. (2020).

*Interestingly, their model E1 — which is characterized by diffusion and loss parameters very close to those
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3.3.4 Characterization of the high-energy flux

We here investigate in further details the case where, on top of the secondary positron flux and a large-
scale extra component associated to a large number of old PWNe—as discussed in Section 3.3.3—the
high-energy positron flux is dominated by the contribution from a prominent young object featuring
a break or a cutoff in the injection spectrum of e± pairs.

In order to do so, we consider four different scenarios, deriving from the combination of two
limit behaviours of the luminosity function (i.e. burst-like injection and constant-luminosity injec-
tion) with the two possibilities for the injection feature (i.e. exponential cutoff and break). These are
parametrized in the single-source term Q(E, r, t) of the transport equation (3.3).

In each case, the properties of the young, dominant object are assessed by means of a Bayesian fit.
The fits are performedwith thePYTHONmoduleemcee (Foreman-Mackey et al., 2013), that is based on
theMarkov chain Monte Carlo (MCMC) approach to build the final posterior distribution functions
(PDF) organized in form of corner plots, that evaluate the goodness of the results (for recent reviews on
this topic, see e.g. Kruschke and Liddell (2017); Sharma (2017)). Given the corner plot associated to a
fit procedure, the best-fit choice of each parameter can be represented by several possibilities:

• themaximum-a-posteriori (MAP), namely the peak-value of the posterior distribution function,

• themean value,

• the median — also called 0.5-quantile —, namely the value dividing the sample in two equal
parts.

The choice among these options may depend on the specific situation. For instance, it frequently
happens that the PDFs are not well centered in a squared plot (see Appendix 3.A2 for clarity), which
means that the choice of the priorsmaynot be perfectly compatiblewith the data. In this case, choosing
one between themean and themedianwould not represent themost probable fit-parameter, but only
an average over a sample that is not properly constructed. Therefore, for the sake of definitiveness, here
we choose to consider the MAP value for each PDF. Note, additionally, that for well-resulting sets of
PDFs, the three choices are consistent with each other, within the uncertainties.

We consider data fromAMS-02 (Aguilar et al., 2019b) from 20GeV on, to avoid problems deriving
from solar modulation. We set priors on the injection index, that we expect to be Γinj ∈ [1, 2], and on
the critical energy above which we expect the injection feature to come into play, Ecut,break > 150GeV.
For the burst-like injection we consider the age and distance of the Monogem pulsar, while for the
constant-luminosity we use the age and distance of Geminga. This is in accordance to what is shown

adopted in this chapter — predicts a positron fraction steadily growing with energy up to 100GeV; above that
energy, the fraction flattens reaching a maximum at about 300GeV.
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and discussed in Appendix 3.A3, where all the high-energy nearby (within 1.3 kpc) sources are plotted
in both injection scenarios, and the dominant contribution is assessed in both cases.

The resulting fluxes are shown in Figure 3.3, where the source terms entering each fit function are
shown inside each canvas, and the MAP parameters of the fits are listed in Tables 3.2 and 3.3.

N0 Γinj
Ecut

[GeV]

Etot

[erg]
η±

Burst 2.4 · 1048 [GeV]−1 1.31 270.78 2 · 5.39 · 1046 0.8

L0 1.17 · 1035 [GeV · s]−1 1.07 200.43 2 · 2.02 · 1045 < 1.2 · 10−2

Table 3.2: Our MAP values for the injection parameters from e± sources with an intrinsic cutoff,
set to have a prior distribution with Ecut > 150 GeV. The total energy injected in the ISM in the
form of leptons is indirectly computed from the fit-parameters: the factor 2 is multiplied because
of the e± symmetry. The conversion efficiency η± is calculated with respect to the nominal ATNF
observed parameters: for what explained in the text, this is an upper bound.

N0 Γinj ∆γ
Ebreak

[GeV]
s

Etot

[erg]
η±

Burst 1.08 · 1048 [GeV]−1 1.02 −2.77 321.65 0.31 2 · 2.35 · 1047 O(1)

L0 1.11 · 1035 [GeV · s]−1 1.10 −1.74 158.02 1.11 2 · 3.35 · 1047 O(1)

Table 3.3: Our MAP values for the injection-parameters from e± sources with an injection break,

parametrized by themultiplying factor
(
1 +

(
E

Ebreak

)|∆γ|·s
)sign(∆γ)/s

, set to have a prior distribution
with Ebreak > 150 GeV. The total energy injected in the ISM in the form of leptons is indirectly
computed from the fit-parameters: the factor 2 is multiplied because of the e± symmetry. The con-
version efficiency η± is calculated with respect to the nominal ATNF observed parameters: for what
explained in the text, this is an upper bound.

We notice that each of the four combinations is compatible with the positron data. The corner
plots that we obtain outline a regular and well-behaved set of PDFs, that are shown in Appendix 3.A2.
Nonetheless, when comparing the numerical values on the tables, relevant physical aspects have to be
noticed:

• Even thoughwe set a prior for the injection indices to be hard, data seem to favorite the very-hard
end of the range: all the cases present Γinj ≲ 1.3, with the softest being the burst-like injection
with intrinsic cutoff.

• For theburst-like solutions the injection features are foundat energies higher (Ecut,break > 270GeV)
with respect to the constant-luminosity case (Ecut,break ≲ 200GeV): this effect is due to the pecu-
liar shape of the burst-like solution, which features a sharp cutoff that is required to match the
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Figure 3.3: Fit to the AMS-02 positron flux for two classes of injection scenarios, where intrin-
sic features are added. (a) Burst-like injection with cutoff, (b) constant-luminosity injection with
cutoff, (c) burst-like injection with broken power-law, (d) constant-luminosity injection with a
broken power-law. The grey band represents the uncertainty in to the solar modulation potential
⟨ϕmod⟩ = 0.54± 0.10.
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drop-off of the data.

• The total amount of energy converted into e± pairs is estimated by means of:

Etot =

∫ Emax

Emin

dE

∫ tage

trel

dt

∫
dr E ·Q(E, t, r), (3.11)

where Emin = 1GeV and Emax = +∞: only in the cases of logarithmic divergences a cut at
very high-energies (Ecut = 100TeV) is set. Equation (3.11) gives values compatible with the
order-of-magnitude energies that are thought to be injectedbypulsars in the ISM(Amato, 2014).
Besides, an efficiency is estimated with respect to the total energy injected by the source, that we
compute multiplying the observed rate of rotational-energy loss Ėrot = d

dt

(
1
2IΩ

2
)
= −IΩΩ̇ by

the characteristic age of the source. As discussed in detail in Appendix 3.A3, we observe that
the quantity thus computed is actually a lower bound. Nevertheless, we notice that the values
of η± estimated in the two injection scenarios are very different. This is not unexpected: in fact,
at given age tch and loss rate Ėrot, if a source is continuously emitting, then the total amount of
energy injected in the ISM is much larger than in the burst-like case. Therefore, to match with
the observed lepton spectrum, only amuch smaller fraction of this energy needs to be converted
into leptons (Blasi and Amato, 2011). These observations are visible only in the cases with a
cutoff in the injection and are compatible with what is shown in Appendix 3.A3.

We point out that energetics (as listed in Table 3.3) cannot be taken as a strong argument against
one scenario or the other, because we do not have a better model-independent estimation forEtot, and
also because of the large statistical uncertainties on the high-energy positron flux. Future data with
more statistics and higher energies may play a crucial role in this context: for instance, an additional
data point in the TeV domain may allow to disentangle between the scenarios presented in the upper
and lower panels of Figure 3.3.

As a final comment, we also remark that the grey band accounting for the solar modulation is
within the intervals identified by the time structures discussed in Aguilar et al. (2018a).

In conclusion, in this section we found that scenarios characterized by a prominent young pulsar
that dominates the high-energy positron flux, and a large number of middle-aged and old pulsars —
modeled as a continuous contribution to the flux— are compatible with current data, under different
hypotheses on both the injection spectrum and the timescale of the luminosity decline. The best-fit
values for the injection spectra are compatible with the physical mechanisms outlined at the beginning
of the section. However, different scenarios correspond to different estimates of the total energy bud-
get and to a different hierarchy of the contributions from the nearby pulsars, as shown in Figure 3.9.
Therefore, given the current data and the current knowledge on the physics of pulsar wind nebula
emission, it is not possible to clearly identify which objects actually provide the most relevant contri-
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bution to the positrons. Nevertheless, the measurement of the absolute positron flux has important
implications. In fact, positrons are likely emitted in e± pairs, giving us the exact contribution of this
class of sources to the electron flux as well. Therefore, since a significant part of the e+ + e− spectrum
is still missing after accounting for these contributions, we state that the high-energy lepton flux re-
quires the presence of a different class of local electron-only sources. This allows us to focus on the
next section, without worrying about the uncertainties on the positron origin.

3.4 Localelectronacceleratorsexplainthehigh-energy
electron data

This section is dedicated to the interpretation of the all-lepton spectrum. We adopt the best-fit CR
transport scenario evaluated in Section 3.2 and the best-fit e± flux (assumed charge symmetric) deter-
mined in the previous section for one of the four combinations discussed: the specific choice for the
pulsar injection setup does not affect the results presented in this section. Wewill show that the closest
observed SNRs are not sufficient to describe the observed spectrum and an additional source with spe-
cific characteristics has to be invoked to reproduce in particular the ∼ 1 TeV break recently measured
by the space-born and ground-based experiments H.E.S.S., VERITAS, CALET and DAMPE. Even
though no information is given on the nature of the object, we model it as a SNR. This is because,
mainly based on energetic arguments (see for instance Blasi (2013)), these objects are expected to pro-
vide the bulk of CRs observed at the Earth. Although not used here, we also notice that the combined
study of the all-electron and radio emission of nearby SNR can also provide valuable complementary
information (see e.g. the recent Manconi et al. (2019)).

3.4.1 Contribution from the known objects

Multi-wavelength observations show the presence of five Supernova Remnants (SNRs) in the local
region (within ∼ 1 kpc) surrounding the Earth* (Ferrand and Safi-Harb, 2012), identified with the
names Vela Jr, Vela, Cygnus Loop, Simeis-147, IC-443.

We report in Table 3.4 the nominal ages and distances of these objects and the distances that par-
ticles with energy 1TeV and 10TeV can travel in the ISM via diffusive transport, as well as the ratios
between the diffusive distance and the true distance of each source. We outline that, given the values
reported in that table, the contribution of Vela Jr — the youngest remnant in the set under considera-
tion—should peak around∼ 100TeV, wherewe donot have reliable data. As far as the other SNRs are
concerned, Vela is expected to provide the dominant contribution; the emissions of the other SNRs

*http://www.physics.umanitoba.ca/snr/SNRcat

106

http://www.physics.umanitoba.ca/snr/SNRcat


are expected to be subdominant, though not negligible, since their diffusive distance is smaller than
or comparable to the nominal one. Therefore, we choose to take into account all the remnants listed
above with the only exception of Vela Jr.

tage

[yr]

d

[pc]

rdiff,1TeV

[pc]

rdiff,10TeV

[pc]

rdiff,1TeV

d
rdiff,10TeV

d

Vela Jr 2.5 · 103 214.2 1.08 · 102 1.82 · 102 0.51 0.85

Vela 1.23 · 104 250.92 2.69 · 102 4.52 · 102 1.07 1.80

Cygnus L 8 · 103 449.82 2.17 · 102 3.64 · 102 0.48 0.80

Simeis-147 4 · 104 918 4.85 · 102 8.14 · 102 0.52 0.89

IC-443 3 · 104 918 4.20 · 102 7.05 · 102 0.46 0.77

Table 3.4: The nominal ages and distances of the five closest observed SNRs are listed. The diffu-
sive distances are also shown for particles of 1TeV and 10TeV, in order to have a clear look on the
sources that can contribute to the multi-TeV lepton flux. For a comparison with the loss-properties,
rloss,1TeV ≃ 1.15 · 103 pc and rloss,10TeV ≃ 6.13 · 102 pc. From the numbers, Vela seems the one that
can contribute the most to the e+ + e− flux.

In order to estimate the contributions from the sources mentioned above, we perform a fit, based
on the all-lepton data from AMS-02 (Aguilar et al., 2014) plus H.E.S.S. (Kerszberg, 2017), in which
each SNR is modeled as a continuous source of e−. The choice of the AMS-02 data is consistent with
the previous part of the analysis, since we calibrated our model based on AMS-02 observations. Then,
we choose to consider H.E.S.S. data, although in their preliminary release, because they provide the
best combination of up-to-date and highest-energy observations, and are consistent within the error
band with AMS-02 experiment.

It is possible to parametrize the problem with the same formalism we used for the pulsar decaying-
luminosity injection, i.e. the luminosity function can be written as:

L(t) =
L0(

1 + t
τd

)αd , (3.12)

where now τd and αd are specific for the release from a SNR and have nothing to do with pulsar injec-
tion mechanisms, and t is as usual the age of the source. The particle propagation is accounted for by
solving the transport equation as described above.

The parameters we vary in the fitting procedure are the flux normalization N0, the injection in-
dex Γinj, and the luminosity-decline parameters (τd, αd) of the sources. Based on the physical assump-
tion that the acceleration mechanism is the diffusive shock acceleration (DSA) (Axford et al., 1977;
Bell, 1978; Blandford and Ostriker, 1978; Krymskii, 1977), a prior is set for the injection indices to
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be Γinj ∈ [2, 3] (Caprioli et al., 2008; Malkov and Drury, 2001), as it was described in Section 1.2.2.
The parameters (τd, αd) are allowed to vary, but are set as identical for each source: we verified that this
approximation has no significant impact on the final result, for values in the ranges 103 < τd < 106yr

and 1 < αd < 3, due to the relatively large distance of the sources of interest.
The results are shown in Figure 3.4, and the MAP parameters listed in Table 3.5.
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Figure 3.4: Fit of the e+ + e− flux. The secondary and primary production and the extra-
component, along with the fitted pulsar contribution, are considered as background, while the four
SNRs have their parameters resulting from the fit. The blue dots are data from AMS-02 (Aguilar
et al., 2014), the red dots fromCALET (Adriani et al., 2018) and the green dots fromH.E.S.S. (Ker-
szberg, 2017).

N0 [GeV · s]−1 Γinj τd [yr] αd Etot [erg]

Vela 1.31 · 1041 2.84

1.87 · 103 2.47

9.52 · 1048

Cygnus L 6.11 · 1039 2.95 3.78 · 1047

Simeis-147 3.98 · 1042 2.98 2.59 · 1050

IC-443 1.03 · 1041 2.93 7.04 · 1048

Table 3.5: The table reports the MAP parameters resulting from the fit. Also, the total energy
injected by each source in the form of e± is computed, based on the normalization.

As expected, the main contribution to the all-lepton flux above ∼ 100GeV comes from the Vela
SNR, due to the interplay among the diffusive distance, the distance of the source and the energy-loss
characteristic distance. Simeis-147 and IC-443 cannot give contribution to the O(10TeV) flux, since
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their distance is larger than the loss distance at this energy, and indeed their peaks lie at energies smaller
than ∼ 8TeV. The contribution from Cygnus Loop is extremely suppressed and even not visible in
the plot, because the source is younger than the others and its peakwould appear at an energy too-high
to be compatible with the data. Finally, the energy budgets of those sources are compatible with those
expected at SNR events (∼ 1051 erg), taking into account the conversion efficiency into leptons within
the range η± ∼ 10−4 − 10−1 (Zirakashvili and Ptuskin, 2017), due to physical phenomena such as the
particle escape at the shock front (Gabici, 2011; Schwartz and Skilling, 1978).

Themost relevant implication of this result is that the∼ 1TeV spectral break cannot be reproduced
with known sources. In fact, as noticed inRecchia et al. (2019), the propagated spectrum fromanearby
SNRwould peak at that energy only for a source as old as∼ 2 ·105, a much larger age compared to that
of the observed sources considered here.

Finally, we notice that those conclusions strictly hold as long as we consider only statistical errors
for the H.E.S.S. data. However, the systematic uncertainty quoted by the H.E.S.S. experiment is ac-
tually much larger than the statistical one, therefore the claim relies on the assumption of a very high
correlation among the systematic errors of the different energy bins. We hope that a future better esti-
mation for the covariance matrix will help to better assess the compatibility between this scenario and
the data.

3.4.2 Characterization of a source reproducing the ∼ 1TeV break

A fit considering the emission of all the known sources in the current catalogs has shown that either
a radical change in the propagation paradigm or an unknown source are needed. In particular, an old
(∼ 105 yr) SNR seems to be necessary to reproduce correctly the ∼ 1TeV break, as first pointed out in
Recchia et al. (2019).

In order to better characterize this potential source in terms of its distance and energy budget, we
perform a fit of the data in two different scenarios:

1) none of the listed known sources contribute to the flux,

2) all of them add their maximal contributions to the flux.

The free parameters of the fit in both cases are the normalization N0, the injection index Γinj, the
(τd, αd) luminosity parameters, the age and distance of the source. We set a flat prior for the injection
index in the range Γinj ∈ [2, 3], since we assume DSA to be the acceleration mechanism at work. In the
second case, we also assume a flat prior for the distance in the range d < 1.2 · 103 pc because we do not
expect∼ 1TeV leptons to come frommore distant sources, due to energy-losses. For the fit, we use the
same data set as before.
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The outcome of this procedure is shown in 1) Figure 3.5a and 2) Figure 3.5b and the parameters
summarized in Table 3.6.

N0

[GeV · s]−1 Γinj
τd

[yr]
αd

tage

[yr]

d

[pc]

Etot

[erg]

1 hidden 2.14 · 1039 2.25 1.13 · 105 2.40 1.54 · 105 658.21 2.45 · 1049

4+1 hidden 6.10 · 1039 2.05 4.97 · 103 2.45 4.97 · 105 1.19 · 103 1.94 · 1049

Table 3.6: The table reports theMAPparameters resulting from the fit to the all-lepton flux. The (1
hidden) scenario identifies the casewhere only an unknownobject is considered, while (4+1 hidden)
fits an unknown SNR on top of the observed SNRs. The total energy injected by each source in the
form of e± is also computed, based on the normalization.

As a result of this analysis, we find that a hidden old remnant of ∼ 105 yr is actually needed to
reproduce correctly the data, and the best-fit distance is expected to be in the range (600– 1200 pc). This
range of distances is far from the one quoted inRecchia et al. (2019), where a very close source (d = 100

pc) is invoked tomatch the observed all-lepton data. The discrepancy ismainly due to the propagation
model: we checked and found that, in accordancewithRecchia et al. (2019), such a close sourcewould
correctly reproduce the data only if a diffusion coefficient with a Kolmogorov-like rigidity scaling (δ =
0.33) and a smaller normalization were assumed. However, we exclude these parameters as they are not
compatible with the observables we considered to calibrate our propagation setup (p, nuclei, B/C).
Furthermore, we remark that our reference transport scenario with δ = 0.45 is consistent with the
MCMC analysis carried out in Yuan et al. (2017).

Given the required age, such a remnantwouldmost likely be in its final radiative phase andmay be
not clearly detectable (while this would be unrealistic for the much smaller distance found in Recchia
et al. (2019)). The SNR catalogue (Ferrand and Safi-Harb, 2012) reports a possible candidate that we
find particularly interesting, the Monogem Ring, which is categorized as uncertain Supernova Rem-
nant. However, this source is too close (d < 300 pc) to the Earth and its propagated spectrum does
not seem to be compatible with the high-energy (E > 10TeV) all-lepton data, according to our propa-
gation scenario. We will see in Chapter 4 that a different parametrization of the diffusion coefficient
could reveal a different behaviour of the propagated spectrum from such distance.

We point out that, asmentioned above, alternative explanations of the features we have analyzed so
far have been recently put forward in the literature. In particular, in López-Coto et al. (2018) an undis-
covered pulsar is invoked to account for the all-lepton data. Another physical picture that requires a
change in the propagation paradigm is found in Lipari (2019a,b). In that scenario the positron flux is
entirely of secondary origin and the spectral break in the all-lepton spectrum is generatedby energy-loss
effects, possibly motivated by a much smaller (≃ 0.7 − 1.3Myr) residence time of the charged cosmic
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Figure 3.5: Fits of the e+ + e− flux: the secondary and primary production, the extra-component
and the fitted pulsar contribution, are considered as background. An additional hidden SNR with
free parameters

(
N0,Γinj, αd, τd, tage, rdist

)
is fitted when: (a) no known SNR is taken into account,

(b) contributions from all the observed SNRs are also considered. The blue dots are data fromAMS-
02 (Aguilar et al., 2014), the red dots from CALET (Adriani et al., 2018) and the green dots from
H.E.S.S. (Kerszberg, 2017).
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rays in theGalaxy compared to conventional scenarios; moreover, the break at 1TeV in the lepton spec-
trum would correspond to the energy at which the loss time becomes comparable with the diffusion
timescale. We remark that a coherent picture that includes charged CR channels, together with γ-ray
and radio data, based on this idea has not been provided yet. However, it is an intriguing possibility
that can be further tested with future, more accurate data. Furthermore, we notice again that the pres-
ence of a spectral hardening at ≃ 40GeV in the electron spectrum can be interpreted, in our scenario,
as the breakdown of the assumption of a continuous source term, and the signature of local sources
that start to dominate the flux; on the other hand, this feature does not have a simple explanation in
the alternative scenario based on purely secondary origin.
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3.5 Summary of the chapter

In this chapter we provided a comprehensive discussion about the origin of the most relevant features
observed in the positron, electron and all-lepton data recently released by the AMS-02, CALET, and
H.E.S.S. Collaborations.

We first identified a CR transport scenario that very well reproducesB/C data published by AMS-
02, and the proton, He, C and O data measured by AMS-02 and Voyager.

With this propagation setup at hand, we considered the positron data, that show a remarkable
excess with respect to the secondary flux expected from the conventional proton-proton spallation
process, and studied the expected contribution from individual pulsar wind nebulae. Starting from a
careful study of the analytical solution of the diffusion-loss equation from individual sources, we char-
acterized the contribution due to a large number of old PWNe as a large scale extra-component which
is often neglected in the related literature. Thenwe focused on the prominent peak and drop-off in the
positron spectrum recently found by AMS-02 around 300GeV. After pointing out that this feature is
not compatible with alternative scenarios in which the largest part of the positron population is origi-
nated byCRnuclei scattering onto the ISM gas, we described it in terms of the emission from a young
PWN under different conditions. We emphasize that, given the poor knowledge of the emission pro-
cesses’ details, we chose not to rely on a specificmodel but rather on purely observational information,
and performed a fit of the injection parameters for the extremal assumptions of burst-like and continu-
ous injections, and for different injected spectral features. We found that a hard acceleration spectrum
and a spectral break or a cutoff at few hundredGeV are required tomatch the data, which is consistent
with recent theoretical modeling of the typical acceleration mechanisms at the termination shock of
PWNe.

Finally, we turnedour attention to the all-lepton spectrumand tried to reproduce its shape account-
ing for the contribution of known and possibly hidden SNRs. We pointed out that the contribution
of local SNRs takes over the softer large-scale component at≃ 40GeV. We found however that known
nearby SNRs cannot reproduce the ∼ TeV feature recently identified by the H.E.S.S. Collaboration.
Then, building on previous results from Recchia et al. (2019), we found that, if a relatively near, old
remnant is included in the calculation—with declining luminosity andwith age∼ 105 yr and distance
in the range 600− 1200 pc— then the data points are nicely reproduced within the propagation setup
described in the first part, consistently with all the hadronic and leptonic channels under considera-
tion.
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3.A1 Estimation of the release time from PWNe

Since the release of the PAMELA data on the positron fraction, several phenomenological scenarios
invoked a relevant delay between pulsar formation and the release of the electron+positron pairs in
the ISM (see for instance Grasso et al. (2009)). The physical picture behind this time delay, extensively
discussed for example in Blasi and Amato (2011), is the following. A typical pulsar forms in a core
collapse supernova event with a natal kick velocity of≃ 400 km/s or larger; this relevant proper motion
drives the compact object far from the place of its formation, across the supernova remnant and then
across the shocked ejectedmaterial. After the escape from the remnant, as a consequence of the impact
of the relativistic PWNwind onto the ISM, a bow shock forms. Such structure can hardly confine the
electron+positron pairs accelerated within the PWN: the particles can hence escape from the PWN
and contribute to the diffuse sea of cosmic radiation.

In this appendix, guided by this physical picture, we estimate the release time by computing the
time needed by a pulsar with a typical kick velocity to escape a typical SN Ia remnant. The time evo-
lution of the SNR shock radius is computed following the prescriptions summarized in Gaggero et al.
(2018). In particular, the ejecta-dominated phase is described by the self-similar solutions provided
by Chevalier (1982), and the subsequent Sedov phase is modeled adopting the thin-shell approxima-
tion (Ostriker andMcKee, 1988), based on the assumption that themass ismostly concentratedwithin
a shell of negligible thickness at the forward shock. Given these assumptions on the SNRs, and within
a wide range of pulsar kicks, spanning from 100 to 1000 km/s, we obtain release times in the interval
[104 – 6.5 · 105] yr. This is shown in Figure 3.6, where we see that the release time corresponds to the
intersection value between the curve representing the time-evolution of the shock radius and the dis-
tance travelled by a pulsar with a given initial kick. For the result we aim at presenting, we consider an
intermediate reference value trel = 6.4 · 104 yr, that corresponds to a pulsar with kick vpulsar = 400 km/s.
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Figure 3.6: The time-evolution of the shock radius of a type-Ia SN (red line) and the distance
travelled by two pulsars with initial kick vpulsar = 100 km/s (blue line) and vpulsar = 1000 km/s (purple
line) are shown. These two values span the uncertainties in pulsars’ initial velocity.

115



3.A2 Posteriordistributionfunctionsforthefittothe
positron flux
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Figure 3.7: Posterior distribution functions of the bayesian fit to the positron flux, corresponding
to the four different scenarios discussed in the text: (a) burst-like injection with exponential cut-
off, (b) constant-luminosity injection with exponential cutoff, (c) burst-like injection with broken
power-law, (d) constant-luminosity injection with broken power-law. The value of themedian, the
0.16-quantile and 0.84-quantile are also shown.
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3.A3 Notes on the pulsars from ATNFCatalogue

The position of the peak in the positron flux (∼ 250GeV) requires sources that are as old as ∼ 106 yr,
based on Epeak = 1/(b0 · (tch − trel)). A particle diffusing in the Galaxy for this time interval is coming
from a distance

√
4 ·D(Epeak) · (tch − trel) ≃ 1.3 kpc.

In Figure 3.8 we report all the pulsars listed in the ATNF Catalogue that are found within this
distance and younger than 2 ·108 yr. Wemake them inject leptons with a hard spectrum (Γinj = 1.5) up
to an energy Ecut = 300GeV, where an exponential cutoff e−

E
Ecut is implemented. This is consistent

with Amato (2014), where it is argued that pulsar emission requires an injection break due to a change
in the accelerating site around the compact object: leptons up to 200 – 400GeV are accelerated within
the nebula by mechanisms that are not fully understood (e.g. magnetic reconnection — which was
briefly mentioned in Section 1.2), with a hard injection Γinj < 2, while more energetic leptons are
accelerated at the termination shock, thus with a softer spectrum Γinj > 2 characteristic of the DSA.
It is not clear whether the second population can be considered subdominant, thus justifying a cutoff
instead of a break. However, this does not affect much the energy budget injected by the source. After
the injection, we make them propagate through the Galaxy via the transport-equation (3.3).

For the release time of the leptons, we consider the value trel = 6.4 ·104 yr, corresponding to a pulsar
with birth speed vpulsar = 400 km/s, as described inAppendix 3.A1. We verified that the extreme values
discussed there do not change qualitatively the results.We observe that a different release time from
the PWN effectively mimics the effect of a surrounding confinement region, like the ones observed by
HAWC (Abeysekara et al., 2017), although we are not taking into account the possible reshaping of
the spectral index introduced by losses inside those regions.

With this emission paradigm, we plot all the sources that in Figure 3.8 are marked as high-energy
pulsars. This denomination is due to the emission frequency, but we consider them because they uni-
formly span the scatter plot and thus constitute a good sample. The result is shown inFigure 3.9, where
the constant-luminosity (3.9a) and the burst-like (3.9b) solutions to (3.3) are compared: only the con-
stant luminosity injection can reproduce the positron data. This can be due to the total amount of
injected energy, that we estimated trivially as Etot = |Ėloss| · tch.

As it can be easily understood, this is a lower bound (LB), since it is based on the current measure-
ments of Ω and Ω̇ in Ėloss = −IΩΩ̇. In fact the rotational frequency Ω is currently smaller than at the
beginning of its life, as well as its variation Ω̇. We can do an attempt to improve the estimation for Etot

by implementing the magnetic dipole (MD) radiation model, as follows:

Etot,MD =

∫ tage

trel

|ĖMD| dt, (3.A3.1)
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where ĖMD = −B2R6Ω4

6c3 , Ω(t) = Ω0√
1+ t

τ0,MD

.

Carrying out the integral, we obtain:

Etot,MD = τ0,MD
B2R6Ω4

0

6c3
·

 1

1 + trel
τ0,MD

− 1

1 +
tage

τ0,MD

 . (3.A3.2)

With the ATNF parameters, we find Etot,MD < Etot,LB, which is a hint that the emission mecha-
nism requires some modification. Different values of trel do not affect this conclusion.

Regardless, there are two model-independent aspects that we observe:

1. There is a very different conversion efficiency for the two injection scenarios, compatibly with
what is discussed in Section 3.3.4.

2. Among the dominant sources, the hierarchy is inverted betweenMonogem andGeminga: this is
expected as well, if one considers the interplay among the nominal parameters of the two pulsars.
In fact, when particles are injected instantaneously (burst-like), the younger source dominates
over the older one, as particles had less time to loose energy. On the other hand, for the constant-
luminosity case, the sources are still emitting, therefore the discriminating parameter here isEtot.

In both cases, one source dominates by a factor of ∼ 2, which helps supporting our parametrization
of the fits in Section 3.3.4 with one prominent source.
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Figure 3.8: The figure is a (distance, age) scatter plot of all the pulsars in the ATNF Catalogue
within 1.3 kpc and younger than 2 · 108 yr. Marked with red triangles there are high-energy pulsars,
that have an emission at frequency higher than infrared. As they are distributed quite uniformly, we
will consider them as a good sample of pulsar population.
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Figure 3.9: We plot here all the high-energy pulsars within 1.3 kpc and younger than 2 · 108 yr
found in Figure 3.8. (a) Sources are propagated from a constant-luminosity injection: the high-
energy data are reproduced with a conversion efficiency of η± = 0.043. (b) Sources are propagated
from a burst-like injection: the high-energy data cannot bematched, due to the insufficient nominal
injected energy. The black line is the sum of all the contributions. Notice the inverted hierarchy of
the dominant sources.
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4
A varying-slope diffusion coefficient connects

the lepton and proton spectra

In this chapter, we want to build upon the hidden, nearby source scenario, hypothesized pre-
viously. As we have studied above, in the standard scenario where Supernova Remnants are the
largely-dominant sources of cosmic-ray particles, the high-energy e+ + e− spectrum observed is

not reproduced by their large-scale distribution. Contributions from known, nearby objects seems to
be not sufficient, due to the specific age of the source needed to reproduce the ∼ 1TeV spectral break;
moreover, γ-ray observations favor the picture where none of these objects significantly contribute to
the all-lepton spectrum. Considering another observational channel, it is known that SNRs also inject
protons, that therefore are expected to contribute somehow to the proton propagated flux. To chal-
lenge this picture, sources of protons at the considered relatively-small distance (d ≲ 600 pc) are likely
to be seen in the dipole anisotropy observed in the directional CR-flux: in particular, their anisotropy
is well-above the data points in a framework where the diffusion coefficient scales with energy as a sin-
gle power-law. On the other hand, we discussed about the CR hardening observed above ∼ 250GeV

in the primary and secondary hadronic species. Within the assumption of a diffusive origin for such
spectral feature, we then expect that the same hardening would be experienced by particles injected by
potential nearby sources as well. Therefore, in what follows, we consider a realistic picture where parti-
cles coming from the single source are injected into the ISM at an energy-dependent release time, and
propagate within the same large-scale diffusion setup, that was tuned to reproduce the most relevant
CR species.
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4.1 Motivations

In the recent years, the AMS-02 Collaboration measured the fluxes of light nuclei and showed that
the spectral index of several species progressively hardens at high rigidities (∼ 250GeV), (Aguilar et al.,
2015a, 2016). However, the observed hardening in secondary hadronic species is twice as large as the
one observed in primaries (Aguilar et al., 2018b), suggesting a diffusive origin for this feature, as dis-
cussed for instance in Génolini et al. (2017); Vladimirov et al. (2012). More recently, the DAMPE
Collaboration has confirmed this feature in the high-energy CR proton spectra and reported a soften-
ing at 13.6TeV,with the spectral index changing from 2.60 to 2.85 (An et al., 2019). This spectral bump
— independently measured by the ATIC and NUCLEON experiments —might be originated from
a nearby Supernova Remnant (SNR). However, in order to reconcile this possibility with the current
anisotropy data, an anomalously slow diffusion in the region between the remnant and the Earth has
been invoked in a recent analysis (Fang et al., 2020). In absence of such a high-confinement region—
and with a single-power-law diffusion coefficient— the predicted anisotropy would overshoot the ob-
served data by more than one order of magnitude. Another attempt to simultaneously reproduce the
nuclei spectra and the dipole anisotropy recently considered a two-zone (disk/halo) diffusion, though
applied to the backgroundparticles only andwithno connectionwith the leptonic spectrum (Liu et al.,
2019; Yuan et al., 2020).

With this regard, in the lepton domain, the spectral break at∼ 1TeV, consistentlymeasured by the
H.E.S.S. (Aharonian et al., 2009; Kerszberg, 2017), CALET (Adriani et al., 2018) and DAMPE (Am-
brosi et al., 2017) collaborations, has been considered to point towards a nearby old remnant, as shown
originally in Recchia et al. (2019) and later elaborated in a wider context in Fornieri et al. (2020b).
Moreover, attempts to assign the high-energy (E ≥ 1TeV) observed leptons to known nearby sources
— such as Vela and Cygnus Loop—using radio data have recently revealed their subdominant contri-
butions (see for example Manconi et al. (2019)).

In this chapter, wepropose a comprehensive scenario that correctly reproduces all these spectral fea-
tures. Ourmodel features two key-points of novelty. (i) First of all, we argue that a nearby, possibly hid-
den, old Supernova Remnant is responsible for both the hadronic bumpmeasured by DAMPE/NU-
CLEON/ATIC and the leptonic break reported by H.E.S.S.
(ii)Moreover, we consider, in the background+source context, a transport scenario featuring a rigidity
scaling that progressively hardens — deviating from the single power-law— as suggested by AMS-02
light nuclei data. We show that this is the crucial ingredient that allows to satisfy the anisotropy con-
straints.

The chapter is structured as follows. In Section 4.2, we describe the adopted transport model,
with particular attention to the phenomenological treatment that allows to implement a variable slope
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of the diffusion coefficient for the nearby-source solution as well. In Section 4.3, we characterize the
contributions from a hidden nearby source, connecting for the first time the leptonic and hadronic
features and showing that those interpretations are consistent with the CR dipole anisotropy. Finally,
in Section 5.5, we discuss the results and derive some conclusions. The single-source solutions of the
transport equation— for both protons and electrons— in the general setup discussed throughout the
chapter are computed with the code in Fornieri (2020b)*.

4.2 Our transport setup

In this section, we describe the propagation setup that will be used throughout the whole chapter,
which is based on the model settings presented in Chapter 3 (Fornieri et al., 2020b). In particular, we
consider a large-scale diffuse backgroundof hadronic and leptonic cosmicparticles, plus a contribution
fromanearby accelerator. While the latter component is computed in a semi-analyticalway, the former
(i.e. a smooth contribution) is characterized by solving the general diffusion-loss transport equation
with the DRAGON2 (Evoli et al., 2008; Evoli et al., 2017a) numerical code.

However, a key difference with respect to the aforementioned work resides in the assumption on
the diffusion coefficient. As mentioned in the introduction, the more pronounced effect detected
in the purely secondary species seems to point towards a feature in the transport. Specifically, the
CR particle spectrum-density at the disk level, that is found by solving the transport equation, can
be written as N0(E) ∼ S(E)/D(E), where S(E) is the particle injection-spectrum and D(E) ∼ Eδ the
diffusion coefficient. For primary species, S(E) ∼ E−Γinj , fromwhichwe getNpri

0 ∼ E−Γinj−δ, while for
secondaries, the injection spectrum is the propagated spectrum of the primaries, resulting in N sec

0 ∼

E−Γinj−δ/D(E) = E−Γinj−2δ. This implies that any change in the slope of the diffusion coefficient will
produce a change in the secondaries’ spectrum that is twice as large as that in the primaries. This is
what is observed by AMS-02 (Aguilar et al., 2018b) for the CR hardening at ∼ 200GeV.

As a consequence, assuming this hardening to be of diffusive origin, it appears quite natural that
equal changes in the transport properties should affect thepropagationofparticles fromnearby sources
as well.

To consider this, we study the phenomenological setup considered inTomassetti (2012), where the
slope of the diffusion coefficient— typically parametrized asD(E) = D0

(
E
E0

)δ(E)

, withD0 normaliza-
tion at reference energyE0 and δ here changingwithE—smoothly hardens as energy (or, equivalently,

*https://github.com/ottaviofornieri/Hidden_Remnant
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,
modifying the parameters (γHigh,∆) starting from theTHMbmodel inTomassetti (2012), as described
in the text.

rigidity) increases, assuming the following expression:

dD(ρ)

dρ
≡ γ(ρ) ≈ γhigh +

∆

1 + ξ
1−ξ

(
ρ
ρ0

)∆ , (4.2.1)

where ρ is the particle rigidity, ρ0 is the reference rigidity and (γhigh,∆, ξ) are free parameters of the
model.

In order to account for the nearby-source contribution to the proton flux, we slightly modify the
parameters (γHigh,∆) starting from their THMb-model (Two-HaloModel b) values. In what follows, we
set γhigh = 0.19, ∆ = 0.53, while the others are left unchanged, as ξ = 0.1, with a normalized diffusion
coefficient D0 = 1.21 · 1028 cm2 s−1 at reference rigidity 2GV. With these parameters, the diffusion
coefficient presents a smooth transition, specifically as shown in Figure 4.1.

The key point shown in Tomassetti (2012) is that such a setup is formally equivalent to a two-zone
transportmodel featuring a change in the properties of the interstellarmedium between an inner-halo
(|z| < ξL) region and an extended-halo (ξL < |z| < L) region, where L ∼ 4 kpc and ξ ∼ O(0.1). Possible
physical explanations for this change in the diffusive properties of the two zones have been proposed.
(i) One assigns it to a transition between a diffusion regime, generated by self-generated turbulence,
to another one for which an external cascade is responsible (Blasi et al., 2012). (ii) Alternatively, as
suggested in Yan and Lazarian (2004, 2008, 2002b), this change is interpreted within a framework
where different damping mechanisms, occurring in the two regions, produce a different behaviour in
the turbulent waves, which are the scattering centers that cause CR diffusion. This, in turn, leads to a
diffusion coefficient that may not be a single power-law (Fornieri et al., 2020a) (see Chapter 5).
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Figure 4.2: B/C ratio computed for the described model with the DRAGON2 numerical solver with
and without adding the influence of the solar modulation, against AMS-02 (red) and PAMELA
(blue) data points. Voyager unmodulated data points are also shown at low energy (green). Refer-
ences are in the text.

In Tomassetti (2012), the transport equation is analytically solved under simplifying conditions
and the diffusion parameters of Equation 4.1 are adjusted to theB/C data available at that time. Later,
the same author found a better agreement to the updated observations by incorporating a factor βη

(where β = v/c and η ∼ −0.4) into the definition of the diffusion coefficient, in Feng et al. (2016a).
This change in the low energy trend ofD(E) has been interpreted in terms of dissipation of magneto-
hydrodynamic waves in the interstellar plasma (Ptuskin et al., 2006) or, alternatively, considering non-
resonant interactions between the cosmic rays and the same turbulent waves (Reichherzer et al., 2019).
As it is clear, adding this factor has a negligible effect at particle energies for which β → 1, therefore it
can be safely ignored in the computation of the spectra from our isolated nearby source.

Here, as mentioned above, we solve the equation for the large-scale backgroundwith the DRAGON2
numerical solver, that takes into account all the processes approximated in the analytical solution. As
shown in Figure 4.2, we find that the B/C flux-ratio observed by AMS-02 (Aguilar et al., 2016) and
PAMELA (Adriani et al., 2014) can be nicely reproduced using η = −0.5 and adjusting the values of
γhigh and∆ to 0.19 and 0.53, respectively, as mentioned above and indicated in the figure. The Voyager-
1 (Cummings et al., 2016) data points, measured outside of the heliopause, are captured at low energy
by our unmodulated black solid line. The solar modulation is taken into account using the force-field
approximation, with an effective potential ⟨ϕmod⟩ = 0.54 ± 0.10, exactly as described in Chapter 3. In
the plot, its effect is shown as a grey band. We highlight that this framework suitably reproduces the
high-energy range of the B/C observations as well as the hardening found in the primary CR-species,
for which the model was originally built.

In this chapter, the transport setup described in Equation (4.2.1) — and shown in Figure 4.1 —
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is adopted consistently in both the large-scale propagation and in the propagation of particles from
the nearby remnant. As it will be shown below, this ingredient plays a key role in reconciling the high-
energy break in the all-lepton spectrum (Ee± ∼ 1TeV) with the bump recently reported byDAMPE in
the proton spectrum at Ep ∼ 10TeV. Besides, it is crucial to correctly reproduce the cosmic-ray dipole
anisotropy data.

4.3 A consistent picture for the electron, proton and
anisotropy data

It has beenmentioned in the introduction that particles coming from observed nearby sources cannot
account for most of the measured high-energy leptons. However, it is natural to wonder whether it is
plausible to invoke only one additional hidden source or rather a plurality of them. An answer, with
a detailed estimation, is given in Appendix 4.A2. In fact, based on the rate of Supernova events in the
Galaxy (Ferriere, 2001)— the same implemented in DRAGON2—andon themassive losses that leptons
undergo during the journey towards the Earth, we find that we expectNSNR ∼ 2 Supernova explosions
in the vicinity of the Solar system. The catalogues already list more than five (Ferrand and Safi-Harb,
2012), which however have been found not to contribute to the propagated leptons (Fornieri et al.,
2020b; Manconi et al., 2019). Hence, we conclude that considering only one hidden source is a physi-
cally well-motivated choice.

Therefore, within the transport setup presented above, we discuss here a scenario based on the
contribution from an old, hidden SupernovaRemnant as a time-dependent source of cosmic electrons
and protons.

The accelerator we are considering is characterized by distance d = 300 pc and age tage = 2 · 105 yr.
We assume that particles remain confined inside the SN shock as long as their energy is lower than the
maximum allowed value — we refer to this value as escape energy. This implies an energy-dependent
release time that is regulated by the different stages of the SNR evolution and is different for protons
and electrons. In this work, we assume that the CR escape energy is dominated by the limited current
that particles can generate to trigger non-resonant streaming instability during the free expansion and
Sedov phases; conversely, it is limited by geometrical losses during the later radiative phases. The time
scale of each phase of the SNR evolution, as well as the details to compute the escape energy at each
time instant, are discussed in Appendix 4.A1.

After the escape, particles are injected into the ISM according to a time-dependent luminosity
function L(t) and transported from the source to the Earth via the simplified diffusion-loss equation
described in the previous section— Equation (3.3).

Finally, as a consistency check, the total energy budget associated to each CR population injected
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by the source can be calculated as follows:

Etot =

∫
dr

∫ tage

trel(E)

dt

∫ +∞

0

dE E ·Q(E, t, r), (4.3.1)

where trel is the instant of the release and tage the current age of the source.

As it is clear, the general calculation setup is similar to that presented in Section3.3.2 in theprevious
chapter. However, we find useful to recall the equations when necessary, since new dependences for
the physical quantities (such as trel ≡ trel(E) and δ ≡ δ(E)) lead to a few modifications.

4.3.1 All-lepton spectrum

In the case of leptonic cosmic rays above ∼ 1GeV, the energy-loss term accounts for Inverse Comp-
ton (IC) scattering and synchrotron losses. The IC cross-section above ∼ 50GeV gets modified by
relativistic effects, as shown in Hooper et al. (2017), and the loss rate can be written as follows:

b(E) = −4

3
cσT

[
f iKNUi + UB

]( E

mec2

)2

(4.3.2)

where σT ≃ 6.65 · 10−25 cm2 is the Thomson cross-section, (Ui, UB) are respectively the energy density
of the Interstellar Radiation Field (ISRF) components and of the backgroundmagnetic field, and f iKN

is the approximated correction factor:

f iKN(E) ≃
45

64π2 · (mec
2/kBTi)

2

45
64π2 · (mec2/kBTi)2 + (E2/m2

ec
4)
, (4.3.3)

where Ti are the black-body spectrum temperatures corresponding to the Ui. For each contribution,
we adopted the reference value reported in Evoli et al. (2020b).

The Green function of Equation (3.3) reads:

N(r, t, E) =
Q(Et)b(Et)

π3/2b(E)r3diff
· e

− r2

r2diff , (4.3.4)

whereEt refers to the energy at a time (t− trel) ago and r2diff(Et, E) ≡ +4
∫ E

Et
D(E′)
b(E′) dE

′ is the square of the
diffusive distance travelled by a particle loosing its energy fromEt toE. This solution is still general, in
that it does not contain any information about the injection term.

The dependence of the diffusion slope on energy has to be included in the integral giving the dif-
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contribution calculated in thiswork for the corresponding age tage = 2·105 yr (blue solid line). Other
ages (red and green solid lines) are added for comparison.

fusive distance
√
r2diff , as follows:

r2diff(Et, E) = 4

∫ E

Et

D0

(
E′

E0

)δ(E′)

b(E′)
dE′ = 4D0E0

∫ E/E0

ωt=Et/E0

ωδ(E0ω)

b(E0ω)
dω, (4.3.5)

where the last step is justified by the simple change of variable ω = E′

E0
. In lack of an analytic function

δ(ω), the integral can be solved numerically.
As a last step, to obtain the propagated spectra at Earth, we have to integrate Equation (4.3.4) over

time, from the instant of the release from the source to the current time, featuring amodel for the time
evolution of the luminosity. This is discussed in details in Section 3.3.2.

In Figure 4.3 we show the e+ + e− propagated spectrum resulting from the convolution of several
components, plotted against data fromAMS-02 (Aguilar et al., 2014b), CALET (Adriani et al., 2018)
and H.E.S.S. (Kerszberg, 2017). Data from other experiments have not been added to avoid superpo-
sition, being consistent with the present ones. The smooth diffuse background (red dashed line) is
the sum of: (i) primary e−, injected with DRAGON2 with a power-law spectrum ΓDRA e−

inj = 2.74 and a
cutoff EDRA e−

cut = 20TeV that is estimated equating the acceleration and loss timescales (Vink, 2012);
(ii) secondary e±, fixed by the DRAGON2-propagated primary species; (iii) the smooth extra-component
of primary e+ + e− pairs coming from the convolution of ∼ O(104) old (tage > 106 yr) pulsars (see
Section 3.3.2).

The solar modulation is ignored in the plot, as it nearly has no effect at energies E ≥ 10GeV (see,
for instance, Figure 3.4).

The blue dashed curve represents a fit of the positron flux: here, we invoke pulsars and use the fit
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to the AMS-02 data points performed in Section 3.3.4, for the simplest case of a burst-like injection
and an intrinsic cutoff in the injection spectrum. Other parametrizations of the positron component
do not change the final contribution, as they are fit over the positron flux, expected to originate from
a separate class of sources, regardless of the physical nature.

The three solid curves correspond to the contribution from the hidden remnant discussed in this
work. They are computed by solving Equation (3.3) for different ages, with the calculations described
above in this section. The electron population is injected as a single power-lawwith a slope Γe−

inj = 2.45.
This spectrum is softer than theoneused for theprotonflux, aswewill see in thenext section. However,
such difference is physically motivated by the sychrotron losses that electrons undergo before being
released (Diesing and Caprioli, 2019). The total energy budget associated to the leptonic population,
computed by means of Equation (4.3.1), is Ee−

tot ≃ 4.5 · 1047 erg.
Finally, the black curve is the sum of all the contributions, where we have chosen the source of age

tage = 2 · 105 yr as our best-fit choice (blue solid).
The plot shows how the energy-dependent release cuts off the low-energy particles (E ≲ 100GeV)

— they are the last ones to reach the energy to escape from the shock— that did not have the time to
reach the Earth. This effect is slightly amplified by theKNcorrection. Indeed, a corrected cross-section
increases the propagated flux of a factor∼ 1.5− 2, with respect to the non-relativistic treatment, above
energies E ∼ 200GeV (Delahaye, T. et al., 2010). Therefore, in order to reproduce the ∼ 1TeV peak, a
lower injected flux is needed.

As far as the luminosity function is concerned, we varied αd ∈ [1, 3] and reported negligible varia-
tions in the spectrum. On the other hand, while varying τd in the range [104, 2 · 105] yr does not qual-
itatively change the results, smaller values cannot reproduce the data points above the ∼ TeV break.
Indeed, since τd acts as a timescale for the luminosity function, a quickly decaying luminosity would
approach the limit of a burst-like injection (L(t) → L0 δ(t − trel) dt), and accordingly the ∼ TeV peak
energy allowed by the source age would be followed by an abrupt cutoff in the spectrum. This leads
us to conclude that a declining luminosity from the source is necessary to match the observations.

4.3.2 Proton spectrum

The proton data are characterized by a hardening at ∼ 200 GeV and a softening at energies as high
as ∼ 13 TeV. Here, we connect this feature to the same hidden remnant considered in the previous
section.

To compute the contribution from the nearby source to the proton flux, we use again Equation
(3.3), neglecting the loss processes considered for leptons, as they would would start to play a role at
much higher energies (above ∼ 100TeV). Besides, spallation and nuclear decay only affect the propa-
gation of low energy particles (below ∼ 1GeV).
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lines), as well as the unmodulated spectrum (black dashed line) are added for comparison.

Therefore, from the same Green function used for the leptons, Equation (4.3.4), we can reduce to
the hadronic distribution function. Indeed, considering the losses as negligible, b(Et) ≈ b(E). Besides,
the diffusive distance

√
r2diff is not dominated by the loss timescale and becomes r2diff(E) = 4D(E)(t −

trel).
In conclusion, the Green function for protons can be written as follows:

N(r, t, E) =
Q(Et)

π3/2r3diff
· e

− r2

r2diff =
Q(Et)[

4πD(E)(t− trel)
]3/2 · e−

r2

4D(E)(t−trel) . (4.3.6)

In the above expressionwe can directly implement the effect of a variable diffusion slope asD(E) =

D0

(
E
E0

)δ(E)

.
Finally, as done for the leptons, we get the propagated spectra integrating the Green function

(4.3.6) over time, from the release time to the current instant.
In Figure 4.4, we show our result. This is the sum of two different components: (i) the first is the

diffuse CR background, i.e. a proton population injected with slope ΓDRA p
inj ≃ 2.4 and propagated with

DRAGON2 as described in Section 4.2. This component is shown unmodulated (dashed line) and mod-
ulated with the average effective potential discussed above ⟨ϕmod⟩ = 0.54 (dashed-dotted line); (ii) the
single source, namely an injection spectrum S(E) parametrized as a power-law with slope Γp

inj = 2.1,
plus a data-driven high-energy exponential cutoff implemented at Ecut = 20TeV. This contribution is
computed by solving Equation (3.3), in the limit of negligible losses (b(Et) ≈ b(E) → 0), and shown
for three different ages.

The total energy budget of the proton population originating in the source is calculated again via
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Equation (4.3.1) and found to be Ep
tot ≃ 2.5 · 1049 erg for the source of our choice, i.e. the one of age

tage = 2 · 105 yr. The model is plotted against data points from AMS-02 (Aguilar et al., 2015b) and
DAMPE (An et al., 2019) in the whole energy range. Furthermore, Voyager data (Cummings et al.,
2016) are also reported in the plot and appear consistent with the unmodulated propagated spectrum.
Finally, the modulated sum of the two contributions is shown as the black solid line.

We notice that, as for the case of the all-lepton spectrum, the effect of the energy-dependent release
time cuts off the low-energy (E ≲ 100GeV) part of the spectrum.

Even though the nearby-source contribution is small, wewant remark its importance for twomain
reasons:

1. as we easily notice, without it the DAMPE points could not be reproduced,

2. it must be present, since, as mentioned before, a Supernova Remnant injects at the same time
both electrons and protons.

In particular, the last statement is supported by what we find in terms of the two populations’ energy
budgets. In fact, the factor Ee−

tot/E
p
tot ≃ 1%, as well as the two quantities evaluated separately, are

consistent with the theoretical predictions of a total energy budget for a SN explosion of ESNR ∼

1051 erg, a conversion efficiency in protons of the order ∼ 10−1 − 10−2, and in electrons of the order
∼ 10−3 − 10−5 (Bell, 2013; Tatischeff, 2009; Zirakashvili and Ptuskin, 2017).

4.3.3 CR dipole anisotropy

The cosmic-ray dipole anisotropy (DA) provides a crucial complementary probe that allows to con-
strain the model proposed in this chapter. The high degree of isotropy (up to 1 part in∼ 103) detected
by a variety of experiments in a wide energy range is especially constraining as far as the contribution
from a local source is concerned. In particular, the interpretation of a single source as the origin of
the spectral feature in the proton spectrum between 1 TeV and 10 TeV is heavily challenged in the
context of a simple diffusion setup characterized by a single power-law. This consideration led the
authors of several recent papers to consider more complex diffusion scenarios featuring an extended
high-confinement zone surrounding the source of interest (see for instance Fang et al. (2020)).

In this section, we consider instead the transport scenario suggested by the hardening in the light
nuclei, as described in Section 4.2, and compute the dipole anisotropy associated with the hidden rem-
nant, with the formalism described below.

TheCRdipole anisotropy is the first order of the expansion in spherical harmonics of theCR inten-
sity as a function of the arrival direction, I(θ, ϕ) (Ahlers andMertsch, 2017). In the case of an isolated
nearby source, the dipole term is dominant and can be written as follows (Ginzburg and Syrovatskii,
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1964b):
I(α) = Ī + δiĪ cosα, δi =

Imax − Imin

Imax + Imin
, (4.3.7)

where α is the angle of the observation line, denoted as n̂, with respect to the source direction, labelled
as r̂.

In the diffusive-regime approximation, we obtain:

δi =
3D(E)

c

∣∣∣∣∣∇Ni

Ni

∣∣∣∣∣, (4.3.8)

whereNi ≡ Ni(r, t, E) is the CR number-density per unit energy transported from the single source.

The total dipole anisotropy, assuming the presence of a set of sources, can be written as:

∆tot =

∑
iNi δi r̂ · n̂∑

iNi
. (4.3.9)

If we directly observe in the direction of the anisotropy source, r̂ · n̂ = 1, and the total anisotropy
can be decomposed as the part coming from the dominant source plus an average term coming from
the background:

∆tot ≃
Ni δi∑

iNi
+

〈∑
iNi δi∑
iNi

〉
. (4.3.10)

To support the interpretation of the total anisotropy as two separate terms, we notice that, at the
energywhere the anisotropy amplitude presents an evident break (E ∼ 100GeV), we also observe phase
flip fromR.A.≃ 4h to the direction of the Galactic Center (GC) (see Ahlers andMertsch (2017), their
Figure 7). In other words, the DA data above this energy can be associated to the large-scale diffuse
background and are assumed to follow a simple power-law (Ahlers and Mertsch, 2017). It is worth
mentioning that the anisotropy associated to the diffuse cosmic rays, in principle, should directly come
from the propagated distribution function computed with DRAGON2. However, we propagated the
protons with a homogeneous diffusion coefficient, neglecting the vertical component of the Galactic
magnetic field in the GC region. In terms of the associated γ-rays, this simplification leads to what
is referred to as the gradient problem. As discussed in Section 2.1, this is the discrepancy (for Eγ ≥

100MeV) between the theoretical CR-flux profile obtained with a distribution of SNRs in the Galaxy
and that inferred from the EGRET and Fermi-LAT γ-ray diffuse observations. Physically, ignoring
the vertical escape of CRs around theGC causes a longer residence time (i.e. less-efficient diffusion)—
with respect to the exactD(E)parametrization—of the particles around theGalacticCenter, resulting
in a larger production of photons. Analogously, we would expect the same overproduction of CRs in
the GC region to overestimate the real dipole anisotropy.

Motivated by these considerations, in Figure 4.5 we show that the hypothesis of one nearby old
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Figure 4.5: Cosmic-ray dipole anisotropy amplitude for protons calculated as the sum of a back-
ground anisotropy (green solid line) and the single source contribution (red solid line) for the source
of age tage = 2 ·105 yr. Anisotropy data are consistent with each other, therefore here we plot a subset
of them, to avoid confusion. The plotted points are from ARGO (Bartoli et al., 2015, 2018) and
Tibet-ASγ (Amenomori, 2017).

remnant originating the CR populations, responsible for both the leptonic and the hadronic features,
is compatible with the current anisotropy data.

To reproduce the diffuse contribution, we use the fit parameters recently suggested in Fang et al.
(2020), according to which the background anisotropy can be written as ∆bkg = c1

(
E

1PeV

)c2
, where

(c1, c2) = (1.32 · 10−3, 0.62). The result is the green solid line in the figure.
On the other hand, the single-source contribution is found under the assumption of diffusive be-

haviour for the released particles. This component corresponds to the red solid line in the figure, for
the source of age tage = 2 · 105 yr, the same considered in the previous sections.

Wewant to remark again that a key role to reproduce the observations is here played by the slope of
the diffusion coefficient, that, according to Equation (4.2.1), becomes harder in the high-energy region
(δ ≲ 0.2 at E > 10TeV).

4.4 Discussion

As a first discussion point, we want to comment on the nature of the source here invoked. Given
its old age, it is reasonable to assume that the remnant is currently in the final stage of its evolution,
deep into the radiative phase. Hence, we expect it to be quite extended and the detection of its faint
multi-wavelength signature to be very challenging, especially from a distance as large as ∼ 300 pc. In
particular, if∼ 100GeV protons are still confined in the SNR at its age, then one should expect a γ-ray
emission, resulting from pion decay, cutting off around ∼ 10GeV. Electrons at these energies emit
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synchrotron radiation up to a frequency of ∼ 300GHz and the source may be of interest for future
Square-Kilometer Array (SKA) observations. Moreover, electrons contribute to IC γ-ray emission up
to ∼ 100MeV, ∼ 1GeV and ∼ 10GeV for IR, optical, UV soft photons background.

From a wider prospective, regarding a SNR origin for the e+ + e− spectrum, it is worth noticing
that, due to the incompleteness of the catalogues, especially for old remnants, a proof of conceptwould
be represented by a Monte Carlo simulation of all the possible configurations of source distributions
in our Galaxy. A step in this direction is presented in Evoli et al. (2020a), suggesting that the SNR ex-
planation is disfavored at more than 2σ, with respect to the average configuration. This result is model
dependent, in particular is based on a source distribution that is set to follow the Galactic spiral arms.
However, the Solar system is found in the so-called Orion Spur, a minor arm-structure in the Milky
Way between two major arms. This is not included in that work, whereas we believe it to be of major
importance, in particular for the leptonic observables above 1TeV. The amount of the uncertainty can
be estimated in their Figure 6, where the lepton horizons — as caused by their energy-loss rate — for
particles of E = 100GeV, 1TeV, 10TeV, are sketched. In particular, the 10TeV horizon includes two
arcs of two major arms at equal distance from the Solar system. Therefore, we estimate that ignoring
theOrion Spur results in neglecting roughly∼ 1/3 of the leptons of this energy. Similarly, we estimate
that∼ 20/25% of the particles are missing from the 1TeV range of the e+ + e− spectrum. This lack can
abundantly account for the 2σ dispersion of the Monte Carlo average curve. It is therefore the reason
why, on average, the high-energy (E ∼ 1TeV) range of the all-lepton spectrum cannot be captured by
their calculations.

In this context, we want to comment on the number of nearby SNRs that we may expect to con-
tribute to the high-energy part of the leptonic and hadronic spectra. We remark that a limited number
of young sources exist in the vicinity of the Sun, and theymay also provide a sizable contribution to the
observed fluxes. In particular, we emphasize the possible role of the young type II SupernovaRemnant
in the southern constellation Vela. The young age of this accelerator (≃ 1.1 · 104 yr) restricts its poten-
tial signature in the lepton spectrum at energies as large as ∼ 104 GeV, thus not limiting our proposed
scenario. However, its presence could constrain the parameters involved in the luminosity function
and in the energy-dependent release time. Indeed, a rough calculation of its emission based on our
reference transport setup has revealed a predicted flux that is strongly dependent on the parameters of
the model, and that can span between a negligible contribution — as small as more than 2 orders of
magnitude below the level of the data points — and a dominant one. However, a detailed modeling
of this object constrained by multi-wavelength data is beyond the scope of the present work.

Moreover, we are confident that more accurate data in this domain — E ∼ 1 − 50TeV, subject of
interest for theCherenkovTelescopeArray (CTA)—expected in the near futurewill help to disentangle
the question, possibly revealing the presence of a spectral feature.
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A final important point that is worth to discuss regards the implications of using the same rigidity-
dependent diffusion coefficient for both the diffuse CR component and the isolated nearby source.
In particular, this means that hardening at ∼ 200GeV is actually due to a superposition of two effects:
(i) the diffusive origin coming from physical differences in the halo and in the disk; (ii) the nearby--
source contribution. In this sense, an important role is played by the softening in the DAMPE spec-
trum, that is interpreted as an intrinsic cutoff of the hidden remnant. In fact, even though a more
pronounced hardening with no additional sources could be considered to account for the mismatch
between AMS-02 and DAMPE data, this would be still not sufficient to reproduce the complex struc-
ture observed by DAMPE— the softening at E ∼ 10TeV. In particular, no theoretical models predict
so far a cutoff in the proton propagated spectra below the knee (Eknee ∼ 5PeV). As a consequence, the
scenario here proposed predicts that the CR spectrum above E ∼ 100TeV would have a slope similar
to that observed after the∼ 200GeV hardening. With this aim, higher energy data points in the future
will certainly help to disentangle this puzzle.
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4.5 Summary of the chapter

In this chapter, we proposed the idea that the spectral feature at ∼ 13TeV in the cosmic-ray proton
spectrum, recently reported by theDAMPECollaboration, togetherwith the spectral break at∼ 1TeV

measured byH.E.S.S. in the lepton spectrum, have a common origin and can be associated to a nearby,
fading Supernova Remnant. We believe this simultaneous interpretation to be of paramount impor-
tance, since SNRs are accelerators for both electrons and protons.

We injected the particles with a realistic — and physically motivated — energy-dependent release
time, which considers the different stages of the SNR evolution as well as the surrounding medium,
and with a luminosity function that declines over time. Then, we computed their propagation from
such object in a spherically symmetric setup, and found that all the available observables can be simul-
taneously reproduced. The key ingredient in the calculation is a transport setup based on a diffusion
coefficient that presents a smooth transition to a progressively harder rigidity-scaling at higher ener-
gies, as suggested by the light-nuclei spectra measured by the AMS-02 Collaboration. This feature
allowed to reproduce the cosmic-ray anisotropy data without any further assumption. Moreover, the
combined leptonic and hadronic data led us to characterize the properties of the particles accelerated
by such object, that are in a very good agreement with the theoretical expectations.
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4.A1 Energy-dependentreleasetimefromSupernovarem-
nant shocks

In this appendix, we review the dominant mechanisms that confine particles inside the Supernova
shocks. Once those processes are overcome, particles can be released from the source. As leptons suffer
from severe energy losses and aremp/me ∼ 103 times less efficient than hadrons in generating streaming
instabilities, the release processes for hadrons and leptons will be discussed separately.

Release time for hadrons

Hadrons can escape from SNRs because of twomain reasons: (i) due to geometrical losses, when their
mean free path gets larger than a fraction of the shock radius (Berezhko et al., 1994); (ii) due to the
limited current they are able to triggerupstream* of the shock (Schure andBell, 2013). In the latter case,
the CR current is necessary to trigger the non-resonant streaming instability and to producemagnetic
field amplification at the shock precursor (Bell, 2004). As the non-resonant instability growth rate
scales as ∼ u3sh, with ush velocity of the shock — for a ∝ E−2 particle distribution that we assume
hereafter— it likely controls the maximumCR energy at the early stages of the evolution of the SNR
shock, i.e. during free expansion and, possibly, Sedov-Taylor phases.

Maximum energies imposed by geometrical losses are set because the CR diffusive path in the pre-
cursor reaches a fraction ξ < 1 of the shock radius Rsh, namely

ℓ =
D(E)

ush(t)
= ξRsh(t), (4.A1.1)

where the diffusion coefficient is here parametrized in terms of its BohmvalueD(E) = ηaccrLc/3, where
ηacc is a numerical factor ηacc ≥ 1. We consider relativistic particles of charge Ze, with a Larmor radius
rL = E/ZeB(t) (hereafter we only consider protons, so Z = 1). Therefore the maximum energy fixed
by geometrical losses is

Emax,Geo =
3ξe

ηaccc
Rsh(t)ush(t)B(t). (4.A1.2)

Hereafter we fix ξ = 0.3 and ηacc = 1.

Limited-current loss process dominates in case of strongmagnetic field amplification, hence during
the SNR evolution stages where the shock strength is high. The maximum CR energy in that case
depends on the type of ambient medium: either Circum-Stellar gas (CSM) — as for a core-collapse

*The region upstream— as opposed to the downstream—of the shock is the region where the shock front
has already passed.
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Supernova— or Interstellar gas (ISM)— as for a type Ia Supernova— (Schure and Bell, 2013):

ϕEesc,Cur,CSM =
e
√
π

γτc
χush(t)

2Rsh(t)
√
ρ(t) , (4.A1.3)

ϕEesc,Cur,ISM =
e
√
π

2γτc
χush(t)

2Rsh(t)
√
ρ, (4.A1.4)

where γτ is the number of e-folding growth timenecessary to amplify themagnetic field (we take γτ = 5

hereafter), χ = UCR/ρu
2
sh, is the fraction of the shock kinetic energy imparted intoCRs (we takeχ = 0.1

hereafter), ρ is the ambient gas mass density and ϕ = ln(Ep,max/mpc
2).

We consider a shock radius scaling with time as∼ tb, where b depends on the evolution stage: b = 1,
b = 2/5, b = 3/10, b = 1/4 in the free expansion (Free), Sedov-Taylor (Sed), pressure-driven snowplough
(PDS) and momentum-conservation phases (MCS), respectively. We use the scaling laws derived in
Cioffi et al. (1988); Truelove and McKee (1999) to evaluate the shock radius and speed at the tran-
sition between two phases. The magnetic field strength is assumed to vary as a certain power of the
shock speed, namely B(t) ∝ uash, where a may depend on the SNR evolution stage. Once the time
dependence of Ep,max is explicit, we can inverse it to find the release time t(Ep,max).

With this procedure, the timescales for the different stages of the SNR evolution, from the Sedov
phase until the dissipation of the remnant (merging stage), can be calculated as follows:

tSed,kyr = 0.3E
−1/2
SNR,51Mej,⊙n

−1/3
T,1

tPDS,kyr =
36.1e−1E

3/14
SNR,51

ξ
5/14
n n

4/7
T,1

tMCS,kyr = min

 61v3ej,8

ξ
9/14
n n

3/7
T,1E

3/14
SNR,51

,
476

(ξnΦc)9/14

 tPDS,kyr

tmerge,kyr = 153

E1/14
SNR,51n

1/7
T,1ξ

3/14
n

βC06

10/7

tMCS,kyr,

(4.A1.5)

whereESNR,51 is the total energy of the SN explosion in units of 1051 erg,Mej,⊙ is themass of the ejected
material in units of 1 Solar masses, nT,1 is the ambient medium density in units of 1 cm−3, ξn is the
ambient mediummetallicity, vej,8 is the speed of the ejected material in units of 108 cm/s, Φc = 1 is the
thermal plasma conductivity, β = 2 and C06 = 1. In this work, we fix the energy budget to Etot,SNR =

1051 erg, the ejecta massMej = 1M⊙, the ejecta velocity to vej = 109 cm/s and the ambient density to
nT = 10 cm−3. These timescales are expressed in kiloyears.

In this work we consider that the maximum CR energy is current-limited in the free expansion
and Sedov phases, while it is limited by geometrical losses during the later radiative phases. Strong
magnetic field amplification only occurs during the first two adiabatic phases. The magnetic field is
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assumed to scale as u3/2sh in the adiabatic phases and as ush in the radiative phases (see discussion in Völk
et al. (2005)). We further assume that the maximum magnetic field strength and the maximum CR
energy are reached at the start of the Sedov phase. They are fixed to 100µG and 1PeV respectively.

To summarize, we used Equation (4.A1.3) to calculate the proton escape energy as a function of
time as follows:

• ln
(

Eesc,Cur(t)
mpc2

)
Eesc,Cur(t) = ln(EM (tSed))

(
t

tSed

)−6/5

, such that EM ≡ Ep,max(tSed) = 1PeV

• Eesc,Geo,1(t) = EM(tPDS)
(

t
tPDS

)−11/10

= Eesc,Cur(tPDS)
(

t
tPDS

)−11/10

• Eesc,Geo,2(t) = EM(tMCS)
(

t
tMCS

)−5/4

= Eesc,Geo,1(tMCS)
(

t
tMCS

)−5/4

.

Release time for leptons

Besides the processes already discussed for hadrons, leptons are also sensitive to radiative losses. The
maximum energy fixed by radiative losses is Ee,max,loss. These losses can prevent them to escape the
SNR until the condition Ee,max,loss ≤ Ep,max is fulfilled (Ohira et al., 2012). The energy Ee,max is set
by the condition tacc = tloss where tacc and tloss are the acceleration and loss timescales respectively.
We assume here a simple form of the acceleration timescale, tacc = ηaccf(r)DBohm/u

2
sh, where f(r) is a

function of the shock compression ratio. For a parallel shock f(r) ∼ 3r(r+1)/(r−1), while, ifmagnetic
field amplification occurs upstream of the shock, the function assumes the form f(r) ∼ 6.6r/(r −

1) (Parizot et al., 2006). A compression ratio r = 4 is adopted hereafter. The time dependence of
radiative losses is imposed by the time variation of the magnetic field strength B(t) in the synchrotron
process. Synchrotron loss-timescale for an electron of energyE is tloss,syn = 6πm2

ec
4/σT cB(t)2E, where

me is the electron mass and σT is the Thomson cross section.
In conclusion, assuming that geometrical losses are responsible for electron escape at each stage of

the SN evolution from the Sedov phase on, to calculate the electron escape energy as a function of time
we proceed with the following steps:

• Eesc,Geo,0(t) = EM(tSed)
(

t
tSed

)−11/10

, such that EM ≡ Ee,max(tSed) = 100TeV

• Eesc,Geo,1(t) = EM(tPDS)
(

t
tPDS

)−11/10

= Eesc,Geo,0(tPDS)
(

t
tPDS

)−11/10

• Eesc,Geo,2(t) = EM(tMCS)
(

t
tMCS

)−5/4

= Eesc,Geo,1(tMCS)
(

t
tMCS

)−5/4

.

4.A2 Ontheexpectednumberofnearbyhiddenremnants

In this appendix, we discuss the motivations to consider only one additional source to look for in the
vicinity of the Earth. We consider the rate — per unit volume, at the solar circle, as a function of the
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Galactic latitude z—of both type Ia and type II Supernova events that are implemented in DRAGON2
— these are the same rates as in Equation (2.13), for the case r = R⊙ (Ferriere, 2001):

RI(z) =
(
7.3 kpc−3 Myr−1

)
· e−

|z|
325 pc

RII(z) =
(
50 kpc−3 Myr−1

)
·
{
0.79 e

−
(

|z|
212 pc

)2

+ 0.21 e
−
(

|z|
636 pc

)2
}
.

(4.A2.1)

Since we are testing the hypothesis of a Supernova as source of high-energy leptons (Ee± > 1TeV),
we integrate those rates in a cylinder of half-height hcyl = 1kpc, as this is roughly the distance that those
leptons can travel, due to their massive energy-loss. Thus we need to compute:

nSNR[kpc
−2 ·Myr−1] =

∫ +1kpc

−1 kpc

dz
(
RI(z) +RII(z)

)
. (4.A2.2)

The result of the integral has to be multiplied by the base area of the cylinder A = πr2cyl, where
rcyl = 1kpc for the same losses reasons, and by the lifetime of a typical Supernova Remnant, τage ∼ 5 ·

105 yr. Therefore, within one SNR lifetime and 1 kpc from the Earth, we expectNSNR ≃ 2.2 Supernova
Remnants potentially contributing to the observed lepton flux.

Since we already observe five of them Fornieri et al. (2020b), we expect the lowest possible number
of additional hidden sources to dominate the observed all-lepton spectrumonEarth. This assumption
is corroboratedby the observationof a directional bump in the dipole anisotropy amplitude (seeAhlers
andMertsch (2017) and references therein), as discussed in Section 4.3.3.

As a comment on the estimation of the event rate, it might be argued that the Solar system is em-
bedded in what is referred to as the Local Bubble, a low-density (nHI ≲ 0.1 cm−3) region of the Galaxy
of radius rLB > 300 pc that likely originated by the explosion of several SNe (Pelgrims et al., 2020).
This could imply a different rate of Supernova events inside it. However, since the age of the Bubble
is estimated to be∼ O(107), which is much larger than the average lifetime of a SN, this can only affect
the calculation in the sense of lowering the number of expected events.
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Part III
Impact of the microphysics of the
MHD modes on CR transport





5
The role of fast magnetosonic modes in

cosmic-ray diffusion

In this chapter, we investigate in detail how the different magneto-hydro-dynamic (MHD)
modes affect the efficiency of cosmic-ray confinement by a turbulent cascade. We have seen above
that the phenomenological expression of the diffusion coefficient — D(E) ∝ Eδ, which is typi-

cally considered in the literature— is inspired by the results of the quasi-linear theory of scattering off
alfvènic perturbations. On the other hand, the physics of the turbulence changes significantly based
on the environment where the cascade generates. As a matter of fact, the study of the turbulent cas-
cades in magnetized plasmas reveals that the turbulence power may not be isotropically distributed
among the wavenumbers’ components— k⊥ and k∥, with respect to the local magnetic-field direction
— for certain orientations of the fluctuations’ displacement. In particular, the alfvénic cascade has
been found to evolve anisotropically, with little power left for large wavenumbers to efficiently scatter
cosmic rays. Conversely, the fast magnetosonic modes cascade isotropically and, therefore, may con-
stitute the dominant scattering centers for the cosmic-ray particles. As a consequence of the interplay
among the different MHD modes, the resulting diffusion coefficient may not be a single power law
and the transport properties of the particles might be revised with respect to typical physical picture.
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5.1 Motivations

As we have extensively discussed, resonant interactions between cosmic particles and the Alfvénic part
of the MHD turbulent cascade have been considered as the main origin of cosmic-ray confinement
in the Galaxy. A perturbative theory able to predict the scattering rate as a function of the particle
rigidity (in the limit of small isotropic perturbations on top of a regular background magnetic field),
namely theQLT, has inspiredmost phenomenological characterizations of the cosmic-ray sea in terms
of the diffusion equation solved by means of the numerical or semi-analytical codes discussed above.
Inmost of these studies, however, both the normalization and slope of the diffusion coefficient are not
determined by first principles, but rather fitted to secondary-to-primary flux ratios (e.g., the Boron-to-
Carbon ratio, B/C). Furthermore, as seen in Section 1.3.2, QLT formally predicts only the transport
along the magnetic-field lines, whereas its applications to an isotropic diffusion model is typically jus-
tified in terms of large-amplitude turbulent fluctuations of the magnetic field at the scales of their
injection (Strong et al., 2007). However, a rigorous proof that this allows to treat cosmic-ray transport
as an effectively isotropic diffusion does not exist to date.

TheDRAGONpackage, in particular, has provided some very significant steps forward in this context,
i.e., by moving away from the naive zero-order modeling of isotropic, homogeneous diffusion and
implementing in some contexts position-dependent diffusion coefficients. Even so, such attempts do
not contain adescriptionof cosmic-ray transport that fully captures themicrophysics of the interaction
between CRs and themagnetized turbulent plasma. A proper implementation of these microphysical
processes seems compelling in order to usher in a new era of cosmic-ray modeling, thus providing a
proper link between theories and the plethora of increasingly accurate measurements.

From the theoretical point of view, our picture of MHD turbulence and our understanding of
CR interactions with the turbulent plasma have dramatically improved during the latest decades with
respect to the simple QLT mentioned above. These developments have now led to a more appropri-
ate description of the turbulent cascade in the interstellar medium and its interactions with the dif-
fuse CR sea. As seen in Section 1.3.1, MHD turbulence can be decomposed into a mixed cascade
of (incompressible) Alfvénic fluctuations, as well as (compressible) slow and fast magnetosonic fluc-
tuations, as theoretically demonstrated and numerically confirmed by simulations (Cho and Lazar-
ian, 2002; Cho et al., 2002). Regarding the Alfvénic component, a reference scenario is the model
put forward by Goldreich and Sridhar (hereafter, GS95 model (Goldreich and Sridhar, 1995; Srid-
har and Goldreich, 1994); see also Cho et al. (2003) for a general review). The model stems from
the observation that mixing field lines in directions perpendicular to the regular magnetic field on a
hydrodinamical-like timescale is easier than bending the lines themselves, because of the magnetic ten-
sion. This perpendicular mixing is able to couple wave-like motions that travel along the regular field,
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obeying a critical balance condition: k∥vA ∼ k⊥uk. As the turbulent energy cascades down to smaller
and smaller perpendicular scales (larger wavenumbers) with a Kolmogorov-like spectrum, it becomes
progressively more difficult for the (weaker and smaller) eddies to bend the field lines and develop
small-scale parallel structures. Therefore, most of the power is transferred to scales perpendicular to
a mean-magnetic-field direction, and the model implies a high degree of anisotropy of the Alfvénic
cascade. These considerations are captured by the scaling relationsEA(k⊥) ∝ k

−5/3
⊥ (Kolmogorov-like

spectrum in the perpendicular direction), and k∥ ∝ k
2/3
⊥ . As shown in Cho and Lazarian (2002), the

same anisotropic scaling relations hold for a cascade of slowmagnetosonic (or, pseudo-Alfvén) pertur-
bations, while fastmagnetosonic fluctuationswere shown to feature a isotropic cascade, with a different
scaling of the energy spectrum: EM (k) ∝ k−3/2. Moreover, as mentioned in Ptuskin et al. (2006), all
the relevant phases of the interstellar medium can be approximated as a low-beta plasma (the plasma β
parameter is the ratio between the plasma thermal pressure and the magnetic pressure). In this regime,
fast-magnetosonic modes are less damped than Alfvénic fluctuations (see Barnes, 1966, and references
therein); a result also confirmed by means of (collisionless) kinetic simulations of plasma turbulence
showing that, when injecting randommagnetic-field perturbations at theMHD scales, magnetosonic-
like fluctuations may compete with (and possibly dominate over) the Alfvénic cascade as the plasma
beta decreases below unity (Cerri et al., 2016, 2017).

As a consequence of this paradigm, the picture of the microphysics of cosmic-ray pitch-angle scat-
teringmay be deeply revised. As shown inChandran (2000), the cosmic-ray scattering rates, evaluated
for the GS95 highly anisotropic Alfvénic spectrum, significantly decrease with respect to the simple
assumption of isotropic cascade. On the other hand, the isotropy of the fast-magnetosonic cascade
may allow thesemodes to dominate CR scattering formost of the pitch angle range (Yan and Lazarian,
2002a).

A non-linear theory of scattering on magnetosonic modes (NLT) has been developed e.g. in Völk
(1973); Yan and Lazarian (2002a, 2004, 2008); a seminal attempt to implement these phenomena in
a numerical code, and compare the predictions with a wide set of data, has been recently presented in
Evoli and Yan (2014). This theory naturally leads to a set of well-defined predictions for the diffusion
tensor, depending on the local ISM properties.

In fact, the properties of fluctuations’ damping associated to different regions of the ISMplay a cru-
cial role in the possible suppression ofmagentosonic turbulence. For instance, in an environment such
as the magnetized, diffuse halo of our Galaxy, i.e., characterized by very low density (nH ∼ 10−3 cm−3)
and high temperatures (T ∼ 106 K), the mean-free-path associated to Coulomb scattering can be as
large as ∼ 107 astronomical units (Yan and Lazarian, 2008). As a result, collisionless (Landau-type)
damping is expected to be the dominant process affecting turbulent fluctuations. On the other hand,
in regions where a significant amount of warm ionized hydrogen is present (i.e., the extended Galac-
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tic disk, |z| ≲ 1 kpc), the Coulomb collisional mean free path can be as low as an astronomical unit.
Hence, viscous damping has to be taken into account, to the point that it may dominate over collision-
less damping. This in turn affects the relative effectiveness of the pitch-angle scattering rate associated
to differentMHDmodes. Given this picture, NLT allows to consistently compute the diffusion coeffi-
cients for a wide rigidity range in both environments, and depending on several parameters, including
the plasma β and the amplitude of the injected turbulent fluctuations.

In this chapter, we aim at providing a first phenomenological analysis based on theNLT of cosmic-
ray scattering simultaneously including magnetosonic and Alfvénic modes. By identifying a set of pa-
rameters that characterize the ISM properties in the two Galactic regions mentioned above (and thus
the relevant damping mechanisms of turbulent fluctuations therein), we compute the associated dif-
fusion coefficients from first principles, following the formalism outlined in Yan and Lazarian (2004,
2008). We then implement these coefficients in the DRAGON2 numerical package and test the predic-
tions of the theory against the most recent data provided by the AMS-02 Collaboration. In particular,
we focus on the fluxes of protons and light nuclei, as well as on the boron-to-carbon flux ratio.

The chapter is organized as follows: in Section 5.2, we describe the general physical setup, leaving
the detailed calculations to Appendix 5.A1; in Section 5.3, we show how the relevant physical quanti-
ties characterizing the diffuse Galactic halo and the extended Galactic disk shape differently the diffu-
sion coefficients within these two environments; in Section 5.4, we show that the computed diffusion
coefficients — implemented in a two-zone model in DRAGON2 — can reproduce the primaries’ flux
spectra, as well as the boron-over-carbon ratio, above∼ 200GeV, for reasonable choices of the physical
parameters. Finally, in Section 5.5, we derive the conclusions and discuss some physical implications
of the presented results.

5.2 Scatteringrateanddiffusioncoefficient inMHDtur-
bulence

Here we present a summary of the calculation leading to the diffusion coefficient experienced by a
cosmic particle with charge q and mass m in a turbulent plasma. To address the contributions to the
scattering efficiency arising from the different MHD cascades (namely, Alfvénic and fast/slow mag-
netosonic), we follow the approach based on the non-linear extension — developed in Völk (1973)
— of the original quasi-linear theory of pitch-angle scattering on Alfvénic and magnetosonic turbu-
lence (Jokipii, 1966b; Kulsrud and Pearce, 1969). We refer to Appendix 5.A1 for the detailed calcula-
tions leading to the expressions reported in this Section.

In this formalism, a particle with velocity v forming an angle θ with the background magnetic
field B0 (i.e., having a pitch angle µ ≡ v∥/|v| = cos θ) propagating in a turbulent environment whose
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fluctuations’ power spectrum is describedby I, exhibits a scattering rate in pitch-angle space that canbe
expressed by the following expression, already introduced in Section 1.3.2 (Kulsrud and Pearce, 1969;
Voelk, 1975):

Dµµ = Ω2(1− µ2)

∫
d3k

+∞∑
n=−∞

Rn(k∥v∥ − ω + nΩ)

[
n2J2

n(z)

z2
IA(k) +

k2∥

k2
J ′2
n (z)IM(k)

]
, (5.2.1)

where: Ω = qB0/mγc is the particle’s Larmor frequency; k is the wave-vector of the turbulent fluctua-
tions; k∥ ≡ |k| cosαwave is its field-aligned component (αwave being the angle between the wave vector
and the direction of the background magnetic field); ω = ω(k) the associated fluctuations’ frequency.

InEquation (5.2.1), thepower spectrumof thefluctuationshas been explicitly split into itsAlfvénic
(IA) and magnetosonic (IM) contribution, since sub-gyro-scale fluctuations belonging to these two
components are “filtered” differently by particles’ gyro-motion: this effect is described by the differ-
ent coefficients involving the n-th order Bessel functions Jn(z) (with z ≡ k⊥rL, where rL = v⊥/Ω is the
particle’s Larmor radius*) which (typically) gyro-average out the fluctuations at scales much smaller
than the particle gyro-radius (viz., z ≫ 1). This, in turn, means also that different fluctuations’ com-
ponents, Alfvénic and magnetosonic, differently feed back into particles’ motion itself (through the
resultingDµµ).

Finally, Rn represents a function that “resonantly” selects fluctuations whose frequency, in a ref-
erence frame that streams along B0 with the particle (ω′ ≡ ω − k∥v∥), is either zero (n = 0; Landau-
like wave-particle interaction†) or matching a multiple (i.e., harmonic) of the particle gyro-frequency
(n = 1, 2, 3, . . . ; gyro-resonant wave-particle interaction). In the standard QLT treatment of purely
Alfvénic turbulence, this function is a Dirac δ-function. In the present treatment, instead, we include
the effect of turbulent fluctuations on the local magnetic-field strength, i.e. the fact that the modulus
|B|may not be spatially homogeneous. This is clearly dependent on the level of the fluctuations at the
injection scale, and is particularly relevant in the presence of magnetosonic (i.e., compressible) turbu-
lence,whose finite-δB∥ fluctuations providefirst-order corrections to themagnetic-field strength (Völk,
1973).

Before proceeding further, we find physically instructive to recall the steps that lead to the reso-
nance function that we will adopt in this chapter. To do this, we follow the treatment from Yan and

*In the literature, one typically finds z rewritten in terms of the pitch angle µ and dimensionless rigidity
R = L−1|v|/Ω (L being the injection scale of the turbulence), as z = k⊥LR

√
1− µ2.

†In the case of Alfvénic fluctuations, this is the standard Landau damping of Aflvén waves, which, however,
within this framework does not contribute to the pitch-angle scattering rate to the first order in fluctuations’ am-
plitude, δB⊥/B0. On the other hand, in the case ofmagnetosonic turbulence, there is a first-order correction to the
magnetic-field strength, due to δB∥ fluctuations. As a result, there is a non-zero gradient of |B| along the field lines,
which provides a “mirroring force”, Fmirr ∝ ∇∥|B|, that determines a Landau-like damping, typically referred to
as transit-time damping (TTD). This TTD provides a non-zero contribution to the pitch-angle scattering rate.
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Lazarian (2008). The physical problem aims at understanding how it is possible to make efficient the
mirroring scattering between a cosmic-ray particle and a turbulent wave (Barnes, 1966). In fact, this
interaction occurs when particles experience a non-null gradient in the magnetic-field strength along
their propagation direction, and this has a sizeable effect only when the particle velocity matches the
phase velocity of the propagating wave, vµ ≃ ω/k∥, in order to have a large number of collisions.

As extensively discussed in Section 1.3.2, the main assumption in QLT is that of the unperturbed
orbits of particle, whosemotion can be decomposed as themotion of the guiding center and that about
the guiding center. Therefore, within QLT, this transit-time damping is effective for a limited range
of pitch-angles µ. However, it can be shown that, if the total magnetic-field strength changes slowly
along the particle motion, the quantity v⊥/|B| becomes an adiabatic invariant, namely its variations
are negligible along the particle Larmor radius (Landau and Lifshitz, 2003). This implies that, if B is
not spatially homogeneous, the perpendicular component of the particle velocity, v⊥, has to change
accordingly, and so has to do v∥. This increases the range of allowed pitch angles for the particle and
the wave to scatter efficiently via TTD.

This has an important consequence on the motion of the guiding center, that we now assume to
perturb with a Gaussian spread in the particle-motion direction, ẑ. In fact, the oscillating component
of themagnetic perturbation seen by the particle (corresponding to the function cos(k∥z−ωt±nΩt) =

Re
[
ei(k∥z−ωt±nΩt)

]
inEquation (1.55)) gets its z function changed, according to the following variation

in the averaged coordinate of the guiding center:

eik∥z

∣∣∣∣
pert

=

∫ +∞

−∞
dz eik∥z

(
1√
2πσz

e
− (z−⟨z⟩)2

2σ2
z

)
= eik∥⟨z⟩ · e−k2

∥
σ2
z
2 (5.2.2)

where ⟨z⟩ = v∥t is the mean position of the guiding center and σ2
z =

〈
∆v2∥

〉
t2 the half-width of the

Gaussian distribution.

It can be shown (Voelk, 1975) that the first-order contribution to the parallel velocity displacement
is given by the turbulence component parallel to the regular fieldB0. In particular, neglecting higher
orders in

〈
δB2

⊥
〉2:

∆v∥

v⊥
≃


〈
δB2

∥

〉
B2

0


1/4

,

from which, using Equation (5.2.2), we obtain σ2
z = v2⊥

(⟨
δB2

∥

⟩
B2

0

)1/2

t2.

Based on the above consideration, the resonance function (corresponding to the delta function in
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Equation (1.49)) becomes:

Rn

(
k∥v∥ − ω + nΩ

)
≡ Re

[∫ ∞

0

dt ei(k∥zpert−ωt+nΩt)
]

= Re


∫ ∞

0

dt e
i(k∥v∥−ω+nΩ)t− 1

2k
2
∥v

2
⊥t2

⟨
δB2

∥

⟩
B2

0

1/2
 .

(5.2.3)

With little further algebra, the expression above can be written as follows:

Rn(k∥v∥ − ω + nΩ) =

√
π

|k∥|v⊥M
1/2
A

e
−

(k∥vµ−ω+nΩ)2

k2
∥v2(1−µ2)MA , (5.2.4)

where thebroadening is determinedby the level of the fluctuations through theAlfvénicMachnumber
at the injection scale L,MA ∼ (δB/B0)L. The resonance function in (5.2.4) indeed becomes narrower
and narrower asMA decreases (to the point that reduces to aDirac δ-function,Rn → π δ(k∥v∥−ω+nΩ),
in the limitMA → 0).

From Equations (5.2.3) and (5.2.4), we see that the resonance function Rn is now broadened, and
it is the reasonwhyTTD interactionwill be extremely important in the following study. Indeed, Equa-
tion (5.2.4) allows the non-linear effect to play here an important role.

If we now searched for the resonant peak, we would have:

dRn(k∥v∥ − ω + nΩ)

dk∥
= 0 ⇒ k

(1,2)
∥ =

v∥nΩ±
√(

v∥nΩ
)2

+ 2n2Ω2∆v2∥

∆v2∥
, (5.2.5)

which, for µ → 0 (θ → 90◦), tends to k∥ ∼ Ω
∆v∥

. This, in contrast with the QLT result that kQLT
∥ ∼ Ω

v∥
,

implies that the 90◦ scattering does not require any particular treatment.

We can now go back to the main purpose. For the turbulent power spectra IA,M, we follow the
prescription given in Schlickeiser (2002); Yan and Lazarian (2002a) and consider the two-point corre-
lation tensors between the fluctuation components (see Appendix 5.A1):

⟨δBi(k) δB
∗
j (k

′)⟩/B2
0 = δ3(k − k′)Mij , (5.2.6)

where IA,M =
∑3

i=1 Mii and the spectral scalings are resulting from simulations (Cho and Lazarian,
2002; Cho et al., 2002). In particular, we use

IA,S(k∥, k⊥) = CA,S
a k

−10/3
⊥ exp(−L1/3k∥/k

2/3
⊥ ) (5.2.7)
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for the Alfvén and slow modes, consistent with the usual Goldreich-Sridhar (GS95) spectrum (Gol-
dreich and Sridhar, 1995), while for fast modes we use the isotropic spectrum

IF(k) = CF
a k

−3/2. (5.2.8)

As a final comment on the calculation of Dµµ, the integral has to be performed up to the trun-
cation scale kmax of the turbulence, namely up to the wave-number at which the cascading timescale
equals the dissipation scale, as discussed in Yan and Lazarian (2004). In general, the truncation scale
for each damping process is a function of the angle αwave, hence the damping mechanism is in general
anisotropic. We refer to the next section and to the Appendix for more details on this quantity.

Once all the contributions from the three modes are computed, we can obtain the spatial diffu-
sion coefficient D as a function of the (dimensionless) particle rigidity R = L−1|v|/Ω. The expression
of D(R) obtained will be then implemented in DRAGON to calculate the propagated particle spectra
measured at Earth (Schlickeiser, 2002):

D(R) =
1

4

∫ µ∗

0

dµ
v2 (1− µ2)2

DM,T
µµ (R) +DM,G

µµ (R) +DA,G
µµ (R)

, (5.2.9)

where µ∗ is the the largest µ ∈ [0, 1] for which a particle can be considered as confined by turbulence
(i.e., to be in the diffusion regime). In particular, thismeans that aCRwith rigidityR and pitch angle µ
should undergo a number of scatteringN ≫ 1while traveling a distance of the order of a fraction of the
Galactic regionwhere it propagates. In this work, we choose LH,D/5 ≡ L′

H,D, that roughly corresponds
to the typical coherence scales of the magnetic field in those regions (LH and LD are the typical length
scale of the diffuse Galactic halo and of the extended Galactic disk, respectively). In other words, if
τstream ∼ L′

H,D/v is the streaming timescale of a CR across a distance L′
H,D, the pitch-angle scattering

time of such cosmic particle, τµµ ∼ (1 − µ2)/Dµµ, (i.e., the typical timescale between two consecutive
pitch-angle scattering events) must be much shorter than τstream:

τµµ
τstream

∼ v

L′
H,D

(1− µ2)

Dµµ
≪ 1 . (5.2.10)

Based on this criterion, we observe that µ∗ strongly depends on the strength of the turbulence and
on the damping parameters, but forMA ≥ 0.3 it closely approaches 1 for all the energies of interest for
the present work (10−1 GeV ≤ E ≤ 105 GeV) in the disk and in the halo, while particles in the disk exit
the diffusive regime forMA = 0.1 even at low energy (E ≲ 1GeV).
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5.3 Diffusioncoefficients inGalacticdiskandhaloand
ISM properties

In this section, we want to analyze how the diffusion coefficient is shaped by the parameters involved
in the calculations. We take into account two different environments, as sketched in the Introduc-
tion: the “extended disk”, characterized by the presence of warm ionized hydrogen and a low value of
the Coulomb collisional mean free path, and the “diffuse halo”, where a low-density plasma character-
ized by a negligible Coulomb scattering rate is present. Calculations are carried out using the code in
Fornieri (2020a)*.

Figures 5.1a - 5.1b and Figures 5.1c - 5.1d visualize the diffusion coefficient as a function of the
rigidity in the halo and in the disk, respectively, plotted for several values of the Alfvénic Mach num-
berMA, given a fixed injection scale Linj and plasma β. We also show a reference diffusion coefficient
resulting from what presented in Chapter 3 (Fornieri et al., 2020b), designed to correctly reproduce
the AMS-02 data on both primary and secondary species.

First of all, we notice that (i) the high-rigidity slope predicted by the theory (and fixed by the scaling
of the fast magnetosonic cascade) is perfectly compatible with the high-rigidity slope of the reference
diffusion coefficient fitted on CR data, and (ii) the theory predicts a clear departure from a simple
power law for all values of the relevant parameters; however, this departure does not describe the low-
energy downturn of the reference coefficient, that reflects the behaviour of AMS-02 data. Hence, we
may argue that the theorymayprovide a correct description ofCRconfinement above≃ 200GV,while
an accurate low-energy treatment may require additional theoretical arguments. This argument will
be further developed in the next Section. The normalization spans several orders of magnitude; it is
important to notice that it is mainly governed by the value ofMA, and that reasonable values of this
parameter are associated to the correct normalization.

We will now elaborate more on this aspect and discuss the following key points: (i) the behaviour
with respect to the AlfvénicMach number, that reflects the strength of the injected turbulence, (ii) the
features associated to the different damping mechanisms involved in the process, and (iii) the role of
the Alfvén modes. The effect of variations on the plasma β parameter and the injection scale, Linj will
be also briefly addressed.

D(E) variation with MA. Both figures clearly show that D(E) is a decreasing function of the
AlfvénicMach number. This is due to the fact that an increased level of turbulence results in amore ef-
fective scattering rate of cosmic particles. In fact, by definitionMA ≡ δu/vA: therefore, larger values of
MA characterize larger-amplitude turbulent fluctuations that enhance the pitch-angle scattering rate,

*https://github.com/ottaviofornieri/Diffusion_MHD_modes
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Figure 5.1: We show the diffusion coefficients associated to the pitch-angle scattering onto MHD
(magnetosonic andAlfvénic) fluctuations as a function of the rigidity in the halo, (a) and (b), and in
the “extended disk”, (c) and (d), given a fixed injection scale Linj and plasma β, for several values of
MA. Black dashed line: reference diffusion coefficient taken from Fornieri et al. (2020b), designed
to correctly reproduce the AMS-02 data on both primary and secondary species.

Dµµ. As a result, CRs are more efficiently confined at high-MA, which results in a lower spatial diffu-
sion coefficient,D(E).

Effect of damping. Themost relevant difference between the behaviour ofD(E) in the halo (Figures
5.1a - 5.1b) and in the extended disk (Figures 5.1c - 5.1d) is the minimum in the low-energy domain
(ρmin ∼ 50− 100GV) in the latter case.

This feature can be explained following this train of thoughts.
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Figure 5.2: We show the truncation scale kmax of the scattering-rate integral as a function of the
pitch angle of the turbulent wave with respect toB0 for the different damping processes considered
in this work. Viscous damping is effective in the extended disk only. The values of the corresponding
physical quantities are shown in the plot.

• As mentioned in the previous Section, the expression for Dµµ involves an integral in the wave
vector space d3k up to a truncation scale kmax. This integral is dominated by the contributions
associated to waves with small angle αwave with respect to the direction of the regular magnetic
field (see Yan and Lazarian, 2004).

• The truncation scale as a function of αwave associated to the collisionless damping (present in
both the extended disk and in the halo), and to the viscous damping (present in the extended disk
only) is shown in Figure 5.2. In the critical region associated to small angles, the truncation scale
associated to collisionless damping is much larger than the one associated to viscous damping.

• As a consequence, in the extendeddisk environment, the truncationof the scattering-rate integral
over d3k at relatively small wavenumbers (kmaxL ∼ 107) implies a lower value of Dµµ for CRs at
the low energies, the ones that would resonate with comparable (or larger) wavenumbers. This
is reflected in the low-rigidity upturn of the spatial diffusion coefficient shown in Figures 5.1c -
5.1d. It can also be easily understood that the position of this upturn shifts in energy depending
on the intersection point of the two truncation-scale curves in Figure 5.2.

Role of the Alfvén modes in the confinement process. Here, we want to comment on the impor-
tance of the fast magnetosonic modes in confining charged CRs. In Figure 5.3 we show the diffusion
coefficient when fast modes are included (lower panel) compared to the case where only Alfvénmodes
enter the calculation (upper panel).

Studying the case with no fast modes, two features are immediately visible:
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Figure 5.3: We show the total diffusion coefficient with fast magnetosonic modes included in the
calculation (lower panel) compared to the case in which only Alfvén fluctuations are taken into ac-
count (upper panel). Alfvénic turbulence is not efficient in confining Galactic CRs, due to the
anisotropy of the cascade (see also Chandran (2000); Yan and Lazarian (2004)).

• The normalization ofD(E) spans from just a few up to∼ 15 orders of magnitudemore than the
case where fast modes are included. Based on the abundances and average lifetimes of unstable
elements, the average residence time of CRs in the Galaxy is found to be τesc ≃ 15Myr in the
GeV domain (Yanasak et al., 2001). This implies that, in order to be confined in a halo of a few
kpc, CRs should experience a diffusion coefficient that can be at most ⟨D⟩ = L2

H

2τesc
∼ 1030 cm2/s.

Therefore, if onlyAlfvénmodeswere responsible for confinement, the current data on secondary
and unstable species would not be reproduced. Moreover, the scattering rate would be so low
that the diffusion approximationwould not be valid anymore, and theCR“sea”would be highly
suppressed due to ballistic escape from the Galaxy.

• The behaviour of the diffusion coefficient with rigidity shows a declining trend in the pure
alfvénic case, while the total coefficient increaseswith rigidity.

Both features derive from the anisotropic behaviour of the alfvénic cascade. Indeed, as shown
in Equation (5.2.7), Alfvén modes cascade anisotropically, evolving on the isosurfaces identified by
k∥ ∝ k

2/3
⊥ (Goldreich and Sridhar, 1995). This relation implies that turbulent eddies are spatially elon-

gated along B, or, equivalently, that in the momentum space they are elongated in the perpendicular
direction. So the majority of the power goes into a k⊥ cascade. This leaves very little power (i.e. scat-
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tering efficiency) to the cascade in parallel wave numbers k∥ that, according to the resonance function
(5.2.4), is the component involved in the wave-particle interaction. Since k∥ ∼ ℓ−1

∥ , particles with small
rigidity and small Larmor radius— interactingwith large k∥ —getweakly confined, while high-energy
CRs scatter more efficiently. As a result, the spatial diffusion coefficientD(E) is shaped as a decreasing
function of the energy, if only the alfvénic component is taken into account.

Therefore, an efficient wave-particle scattering with Alfvén modes can occur only at high energies,
that resonate with scales that are not too far from the injection scale, where the anisotropic nature
of the cascade has not become significant yet. We can have an estimate of this scale, by computing for
instance howmany k⊥-orders the cascade has to evolve in order to change k∥ of one order ofmagnitude.
Indeed, as already said k∥ ∝ k

2/3
⊥ , whichmeans that the spectral anisotropy of the fluctuations increases

as follows:
k∥

k⊥
∼

(
k⊥
kinj

)−1/3

,

where we denoted with kinj the (isotropic) wavenumber associated to the injection scale, Linj.

As a safe estimate, we can consider the cascade anisotropy to be really important when there is
roughly anorder ofmagnitudebetween theparallel andperpendicularwavenumbers corresponding to
the same level of turbulent energy, i.e., k∥/k⊥ ∼ 1/10. According to the above relation, this level of cas-
cade anisotropy is reached at k⊥/kinj ∼ 103. If we now consider an injection scaleLinj ∼ 100 pc, this will
happen at ℓan ∼ 10−3Linj ≃ 0.1 pc. The Larmor radius of a chargedCR is rL = 3.37 ·1012 cm

(
p/GeV

)
≃

1.08 · 10−6 pc
(
p/GeV

)
. Therefore, a ℓan ∼ 0.1 pc scale roughly corresponds to the Larmor radius of

particles belonging to energies ∼ 105 GeV ∼ 100TeV. (Note, however, that considering the anisotropy
to be important at k∥/k⊥ ∼ 1/10 is quite arbitrary, and one may push the above constraint to even
larger energies by considering, e.g., k∥/k⊥ ∼ 1/3 to be already relevant – this would correspond to CR
energies of ∼ 3PeV.) As a consequence, we would not observe any contribution to D(E) at energy
scales that are currently of interest. If, on the other hand, turbulence is injected at smaller scales— say
Linj = 10pc for instance — the same effect comes into play at smaller scales, which therefore contains
non-negligible scattering power even atCR energies that are low enough to be experimentally explored
(E ∼ 104−105 GeV). This is indeed visible in the change of slope inD(E) for the largerMach numbers
of Figures 5.1a - 5.1b and 5.1c - 5.1d (in the right panels, corresponding to L = 10pc).

This is of course only a rough estimation, since it depends on the strength of the injection—related
to the value ofMA — and holds as soon as the critical balance is reached and the cascade follows the
GS95 spectrum. This would happen at the scale ℓtr ∼ LinjM

2
A or at ℓA ∼ Linj/M

3
A for sub-Aflvénic

(MA < 1) or super-Alfvénic (MA > 1) injection, respectively (Lazarian et al., 2020), i.e., at scales smaller
than Linj if MA ̸= 1. So it is a reasonable estimation for MA ≈ 1 and this is why there is no imprint
of a change of slope in the blue and red dashed lines in the upper panel of Figure 5.3. By increasing
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the strength of the injection (i.e., increasing MA), anisotropy starts to play a role at lower and lower
energies, as exhibited in the green dashed line of the figure. However, there are indications that typical
values of the Alfvénic Mach number in the ISM do not significantly exceedMA ≈ 2 (Tofflemire et al.,
2011).

In conclusion, for the injection scale Linj and Alfvénic Mach number we are considering through-
out this work, anisotropy of the Alfvén cascade always plays a key role and therefore cannot efficiently
confine cosmic rays, while the fast magnetosonic cascade is able to induce a very efficient pitch-angle
scattering rate.

Another important parameter to be monitored is the size of the extended disk and Galactic halo.
The Galactic halo size determines the volume where cosmic rays propagate, thus influencing the nor-
malization of the diffusion coefficient. Variations on these parameters are important when comput-
ing the total diffusion coefficient at a given position in the Galaxy. In general, what is expected to
matter is the relation between their sizes. While the halo half-size could be constrained to be between
3−12 kpc (Di Bernardo et al., 2013; Evoli et al., 2020; Zaharijas et al., 2013), the extended disk half-size
could vary from 0.5 to 2 kpc (Feng et al., 2016b). Along this chapter, we will refer to the size of these
extended zones as their half-size, i.e. a halo size of LH means that it extends from −LH to +LH in the
vertical (perpendicular to the Galactic plane) coordinate.

Finally, variations of the plasma beta parameter lead to more efficient confinement of charged
particles (i.e., a smaller diffusion coefficient) as β decreases — this is due to the fact that the fast-
magnetosonic mode becomes progressively more important in the confinement process*. This will
be shown in the next Section.

To summarize, these calculations allow us to examine how plausible plasma properties characteriz-
ing the different Galactic zones can lead to different values of the diffusion coefficient and, therefore,
to different spectra of Galactic cosmic-ray fluxes. Different combinations of the plasma parameters in
the extended disk andGalactic halo will be explored in the next Section in comparison to experimental
data.

5.4 Phenomenological implications of the theory

In this Sectionwe compare the propagatedCR spectrum, obtained adopting the diffusion coefficients
discussed above, with the most relevant CR observables.

We implement the coefficients in DRAGON, and solve the usual diffusion-loss equation previously

*This is because fast-magnetosonic modes become less and less damped at lower beta (cf., e.g., Barnes, 1966;
Cerri et al., 2016). This feature can be appreciated through the behaviour of their collisionless truncation scale
with β (see Appendix 5.A1).
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described, Equation (2.1). We adopt the setup described in detail in Chapter 2, with the cross-section
network presented in Evoli et al. (2017b) and implemented in the DRAGON2 version available online*.
This version allows to implement the chosen expressions for the diffusion coefficient in the two-zone
model here presented.

A key observable in the context of CR phenomenology is the B/C flux ratio. In fact, Boron is
entirely secondary and ismostly produced in spallation reactions involvingheavier, andmostly primary,
species (including Carbon): therefore, the ratio between those two nuclei fluxes has been widely used
over the latest years to constrain the grammage accumulated byCRswhile residing in theGalactic disk,
and ultimately the features of the diffusion coefficient.

Given these considerations, we start our analysis by focusing on this observable, recently measured
with high accuracy all the way up to the TeV scale by the AMS-02 Collaboration (Aguilar et al., 2016).
In particular, we pay attention to the dependence of the computed B/C flux ratio on the Alfvénic
Mach number parameter of pre-existing MHD turbulence, MA, which was shown to play a key role
in the overall normalization of the transport coefficients. We scan over this parameter, and find that
larger values ofMA are likely to be associated with a significant over-production of Boron, especially
at high energies. This is due to the high efficiency of the confinement mechanism that characterize
scenarios featuring turbulence with large Alfvénic Mach numbers.

• In a simple setup characterized by the same value ofMA in both the extended disk and the halo,
we find that values of order MA ∼ 0.4 for the effective Alfvénic Mach number are compatible
with current data in the high-energy range (above ∼ 100GeV) (see Figure 5.4, top panel). We
emphasize that this result is achieved with no ad hoc retuning on the data, and naturally stems
from the theoretical expression of the diffusion coefficient computed in detail in this work.

• In amore general setupwhere extended disk and halo exhibit different values of this parameter, a
diverse range of combinations is allowed by the data (see Figure 5.4, bottom panel).

We also show for illustrative purposes in Fig. 5.5 the impact of the extended disk size on the same
observable, keeping the alfvénic Mach number in the extended disk and halo fixed to one of the
combinations allowed by data.

We remark again that in all cases the high-energy slope is correctly reproduced, while the low-
energy domain suggests an extra grammage possibly associated to a different confinement mech-
anism (not capturedby the theory presentedhere) that starts to dominate below∼ 200GeV. This
point will be further discussed below.

We now widen our perspective and consider a variety of secondary and primary species.

*https://github.com/cosmicrays
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Figure 5.4: We plot the theoretical prediction (obtained with an updated version of the DRAGON
code) for the B/C within simple setup characterized by the same value ofMA in both the extended
disk and the halo up to TeV energy (top panel), and a more general setup where extended disk and
halo exhibit different values of this parameter (bottom panel). We show the most recent data in the
energy range of interest from AMS-02, PAMELA and ATIC experiments.
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Figure 5.5: We plot the theoretical prediction for the B/C for different values of the extended disk
vertical size.

TheAMS-02Collaboration has recentlymeasured the spectra of several CR light nuclei fluxes and
ratios (Aguilar et al., 2015a, 2016, 2018c). These data provided major improvement in the precision
and dynamical range, and have revealed relevant features. Themost relevant is a progressive hardening
in primary species, with the spectral index varying from ≃ 2.8 in the 50 - 100GV rigidity range to a
significantly harder value around ≃ 2.7 above 200GV. Regarding the primary species, we emphasize
that the slopes of the primary species depend on both the rigidity scaling of the diffusion coefficients,
and on the slope that is injected in the interstellar medium as a consequence of the acceleration mech-
anism taking place at the sources and subsequent escape from the sources themselves. Hence, they do
not offer a direct constraint on the scaling of the diffusion coefficient with rigidity, which is one of
the key predictions of the theory: only the purely secondary species can be exploited to this purpose.
Regarding secondaries, an indication of an even more pronounced hardening in secondary species is
also present, suggesting a transport origin for the feature (Génolini et al., 2017). Such spectral feature
may be attributed, for instance, as discussed in Aloisio et al. (2015); Blasi et al. (2012) (see also Farmer
and Goldreich (2004) for a pioneering prediction) to a transition between two different regimes: (i)
the low-energy range where CR transport is expected to be dominated by self-confinement due to
the generation of Alfvén waves via streaming instability; (ii) the high-energy range where CR confine-
ment is expected to be dominated by scattering off pre-existing turbulent fluctuations (i.e., for which
self-generation effects are not expected to play a relevant role).

Motivated by these considerations, and given the aspects highlighted in the study of B/C, we
aim at providing a comprehensive picture of the high-energy portion of the spectrum, above the afore-
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Figure 5.6: We plot the theoretical prediction for the Hydrogen, Carbon and Boron fluxes (ob-
tained with an updated version of the DRAGON code) for a few selected combinations of the param-
eters of interest. The primary injection spectrum is tuned to fit the data above 200GeV. All high-
energy data canbe consistently reproducedwithin our theoretical framework. An extra confinement
mechanismmay be required to explain the low-energy excess.

mentioned break, where the confinement due to scattering onto isotropic fast magnetosonic turbu-
lence should be the dominant physical mechanism (i.e., given on the one hand the lower impact of
self-confinement and, on the other hand, the negligible role played by scattering on the pre-existing
anisotropic Alfvénic cascade). In the case of primary species, we aim at identifying a reasonable choice
of the injection spectrum that correctly reproduce the data, given the degeneracy mentioned above.

In Figure 5.6 we show a particular realization that satisfies all the experimental constraints in the
high-energy regime. We show thatwe can consistently reproduce all the observeddata above the 200GV

spectral feature, by assuming a reasonable injection slope (γ = 2.3) andpropagating the particleswithin
our model. The “excess” at low energy cannot be reproduced within the framework discussed in the
present work, and it strongly suggests the presence of another confinement mechanism, possibly asso-
ciated to the self-generation of Alfvénic turbulence via streaming instability.

5.5 Discussion

The work discussed in this chapter is aimed at presenting the first comprehensive study on the phe-
nomenological implications of the theory describing cosmic-ray scattering onto magnetosonic fluctu-
ations. In this section we discuss potential caveats and future developments of the current work.

As a first discussion point, we want to argue on the potential impact of the anisotropic nature of
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cosmic-ray transport. In this chapter, following the line of thought outlined for instance in Strong
et al. (2007) and adopted inmost papers featuring a numerical description of cosmic-ray transport, we
worked under the hypothesis of isotropic diffusion, assuming that the same scaling relations apply to
parallel and perpendicular transport (see also Evoli and Yan (2014)). Within the current theoretical
framework, this is formally correct only for values of MA ≃ 1. In fact, in Yan and Lazarian (2008)
the authors demonstrated that the perpendicular coefficients in the NLT of scattering onto fast mag-
netosonic modes depend very strongly on the alfvénic Mach number of the turbulence, exhibiting a
∝ M4

A scaling. However, many different mechanisms may lead to an effective isotropization of the
diffusion tensor* and a commonly adopted assumption that has allowed to successfully reproduce all
local observables is that CR transport is well described by an effective scalar coefficient. A careful as-
sessment of this aspect is clearly well beyond the scope of the present work. In fact, it would require a
full three-dimensional anisotropic treatment of CR diffusion and a careful modeling of the topology
of the Galactic regular magnetic field. However, in future studies, we will address in more detail the
intrinsic anisotropic nature of CR transport within the theory presented here. We expect that the im-
pact of a different scaling for the perpendicular transport may potentially be of some relevance as far
as non-local observables — γ-rays and radio waves for instance — are concerned, especially in regions
that feature values ofMA significantly smaller than 1 (see Cerri et al. (2017b) for a pioneering study on
the impact of anisotropic transport on non-local CR observables).

Another important aspect that potentially requires a dedicated study is the interplay with self-
confinement due to alfvénic turbulence originated by CR-streaming instability. It has been pointed
out in Blasi et al. (2012); Farmer and Goldreich (2004) that this effect may dominate the low-energy
confinement. As a consequence, the transition between a confinement regime dominated by scatter-
ing off self-generated turbulence and a regime dominated by scattering onto pre-exisiting MHD tur-
bulence may be the origin of the spectral feature at ≃ 200GV outlined in detail by the AMS-02 Col-
laboration in all the CR species. On the other hand, we have shown that the relative importance of
alfvénic confinement progressively increases at high energy (Figure 5.3 upper panel). This is due to the
lower degree of anisotropy of the alfvénic cascade at scales closer to the injection scale. Consequently, a
spectral featuremay be present in the high-energy spectrum, close to the PeV domain. A careful assess-
ment of such a feature, its dependence on the environmental properties, and the potential of future
experiments (such as LHAASO) to detect it, may constitute another very interesting future avenue in
this research field.

As a final discussion point, we mention the necessity to perform complementary observations

*For instance, the role of compound diffusion, resulting from the convolution of diffusion in the parallel and
perpendicular directions with respect to the magnetic field line, has been studied in a series of papers, where, in
particular, the role offield line randomwalk (FLRW) is found tobe very important, especially for small turbulence
perturbations (Jokipii, 1966b; Jokipii and Parker, 1969a,b; Kóta and Jokipii, 2000; Shalchi and Schlickeiser, 2004;
Webb et al., 2006).
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and analyses aimed at highlighting the actual presence of magnetosonic fluctuations in the interstel-
lar plasma. In this context, the statistical study of the Stokes parameters of the synchrotron-radiation
polarization is a very promising technique. As recently demonstrated in Zhang et al. (2020b), polar-
ization analyses provide a unique opportunity to shed light on the plasma modes composition of the
Galactic turbulence, and have led to a discovery ofmagnetosonicmodes in theCygnusX superbubble.

As a take-home message for this discussion, we want to emphasize the complementarity between
different approaches. On the one hand, the arguments above outline the need of a dedicated effort
from the experimental side, regarding direct measurements of local CR fluxes, aimed at detecting and
characterizing spectral features over a wide energy range and with particular focus on the TeV - PeV
domain. On the modeling side, we have emphasized the potential for a significant advance, aimed
at analyzing the prediction of the theories in a realistic framework that takes into account the three-
dimensional structure of the Galaxy, the topology of its magnetic field, and the properties of the in-
terstellar medium. Both efforts are complemented by a research program directed towards analyzing
the properties of interstellar turbulence. Thanks to the interplay among these developments, we may
finally shed light on the long-standing puzzle of cosmic-ray confinement in the Galaxy.
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5.6 Summary of the chapter

In this chapter, we presented a comprehensive phenomenological study of the theory of non-linear
scattering of cosmic rays ontomagneto-hydro-dynamic fluctuations.

We considered a state-of-the-art description of pitch-angle scattering for various MHD cascades,
i.e., decomposed into a (anisotropic) cascade of Alfvénic fluctuations, and slow and fast (isotropic)
magnetosonic turbulence. We studied the interactionof a charged, relativistic particlewith suchmodes
and, adopting the formalism developed in Yan and Lazarian (2004, 2008), we computed the associated
transport coefficients from first principles.

We identified a set of parameters that characterize the interstellar medium and have significant
impact on our result (i.e. the AlfvénicMach number, the plasma β, and some parameters that describe
the damping processes in different environments), and presented a complete study of the dependence
of the diffusion coefficients with respect to those parameters.

Then, we implemented the coefficients in the numerical framework of the DRAGON2 code, and
tested the theory against current experimental data, with particular focus on the extremely accurate
AMS-02 dataset. We found that the high-energy behaviour of the transport coefficients nicelymatches
the secondary-over-primary slope in that regime, and a reasonable range of the aforementioned param-
eters allowed us to reproduce the correct normalization as well, without invoking any ad hoc tuning.
Overall, we found a natural and reasonable agreementwith all CR channels within a reasonable choice
of both the ISMparameters governing the transport process, andother parameters (e.g. injection slope)
that characterize our setup.

The theory is therefore adequate to describe the microphysics of Galactic CR confinement in the
high-energy domain, in particular above the ∼ 200GeV feature highlighted in all primary and sec-
ondary hadronic species by the AMS-02Collaboration. On the other hand, we confirm that the pitch-
angle scattering on pre-existing Alfvénic turbulence cannot provide a satisfactory description of CR
confinement: in fact, the highly anisotropic Alfvénic cascade turns out to be extremely inefficient in
scattering CRs of energies ≲ 100TeV. Our work strongly suggests that the interpretation of AMS-
02 data in terms of pitch-angle scattering onto turbulent fluctuations naively described in terms of a
Kolmogorov-like isotropic spectrum cannot be considered satisfactory, and a more accurate descrip-
tion of interstellar turbulence has to be considered.

The behaviour of CR observables below ∼ 200GV cannot be reproduced within our framework.
The steeper spectrum observed by AMS-02 below that energy seems to require additional physical
effects. The self-confinement due to self-generated Alfvénic fluctuations via CR-streaming instability
seems to be a good candidate in this context.
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5.A1 Pitch-angle coefficient forMHD turbulence

In this appendix we briefly review the calculations carried out in Yan and Lazarian (2008) to compute
the relative contributions from each MHDmode to the spatial diffusion coefficient. In particular, in
Yan and Lazarian (2008) the authorsmostly implement the case of trans-alfvénic turbulence (MA ≃ 1),
whereas here we consider a broader range of AlfvénicMach number, pertaining also to sub- and super-
Alfvénic regimes (i.e., roughly within the range 0.1 ≲MA ≲ 2). As shown in Yan and Lazarian (2004),
slow magnetosonic modes follow very closely the behaviour of the shear Alfvén modes.

The starting point is Equation (5.2.1) for the pitch-angle scattering rate of a charged particle in
turbulent fluctuations, that we report here for convenience:

Dµµ = Ω2(1− µ2)

∫
d3k

+∞∑
n=−∞

Rn(k∥v∥ − ω + nΩ)

[
n2J2

n(z)

z2
IA(k) +

k2∥

k2
J ′2
n (z)IM(k)

]
, (5.A1.1)

where we remind the reader that Ω = qB0/mγc is the particle’s gyro-frequency, µ = v∥/|v| = cos θ its
pitch angle (θ being the angle between the particle’s velocity v and the backgroundmagnetic fieldB0),
k and ω are the fluctuations’ wave-vector and frequency, respectively, and I(k) their turbulent power
spectrum at scales ∼ k−1 (which is modified by a combination of the Bessel’s functions Jn(k⊥rL), as
effectively seen through a particle’s gyro-motion whose Larmor radius is rL, and that scatters via a
resonance-like function Rn).

Tomodel the turbulent fluctuations of the magnetic field and of the fluid velocity at MHD scales,
δB and δu, respectively, we follow the prescription given in Yan and Lazarian (2002a) for their correla-
tion functions:

⟨δBi(k) · δB∗
j (k

′)⟩/B2
0 = δ3(k − k′)Mij(k) (5.A1.2a)

⟨δui(k) · δB∗
j (k

′)⟩/vAB0 = δ3(k − k′) Cij(k) (5.A1.2b)

⟨δui(k) · δu∗j (k′)⟩/v2A = δ3(k − k′)Kij(k), (5.A1.2c)

where the indices i, j = 1, 2, 3 represent the different components of the fluctuation vector, and the ⟨ ⟩
operator indicates the average over a phase-space ensemble (Kubo, 1957). These correlation functions
are related to the energy density of the fluctuations, e.g., ⟨δB(x)δB∗(x)⟩ formagnetic-field fluctuations.
In termsof their Fourier components, δB(x) =

∫
d3k e−ik·x δB(k) and δB∗(x) =

∫
d3k eik·x δB∗(k), the
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fluctuations’ energy density can be written as

⟨δB(x)2⟩ =
∑
i,j

∫
d3k

∫
d3k′ e−i(k−k′)·x ⟨δBi(k) · δB∗

j (k
′)⟩ (5.A1.3)

= B2
0 ·
∑
i,j

∫
d3k Mij(k), (5.A1.4)

such that the integral of the normalized fluctuation spectrum over wave-numbers gives the spatial en-
ergy density. This is in agreement with Voelk (1975) (their Equation (32)). The spectrum of a given
turbulent field is then obtained as the trace of the correlation tensor of its fluctuations. For instance,
the trace of Mij provides the magnetic-field turbulent spectrum: ∑i=j Mij = IA,S,F, where A labels
the Alfvén mode, and S, F the slow and fast magnetosonic modes, respectively. In what follows, only
the magnetic-field fluctuations and their correlation tensor in (5.A1.2a) will enter the calculations.

For what concerns the explicit form of the magnetic-field fluctuations’ correlation tensorMij , we
will make use of the expressions outlined in Cho et al. (2002), which were obtained via numerical
simulations in the trans-Alfvénic regime MA ≃ 1. However, as mentioned above, in this work we
consider turbulent regimes that span from the sub-Alfvénic (MA < 1) to the super-Alfvénic (MA > 1)

case. Therefore, the general correlation tensor (and the corresponding turbulent spectrum) of the
Alfvénic cascade that will be considered here must include an extra scaling with the Alfvénic Mach
numberMA (a scaling that also depends whether we are in the sub-Alfvénic or in the super-Alfvénic
case, as outlined in Lazarian et al. (2020), and from which the usual GS95 scaling (Goldreich and
Sridhar, 1995) is anyway recovered in the trans-Alfvénic limit,MA ∼ 1). By taking into account these
generalizations, the correlation tensors pertaining to the Alfvén and fast modes scale as follows:

MA(S),sub
ij = CA(S),sub

a Iijk
−10/3
⊥ · exp

(
−

L1/3|k∥|
M

4/3
A k

2/3
⊥

)
(MA ≤ 1) (5.A1.5)

MA(S),super
ij = CA(S),super

a Iijk
−10/3
⊥ · exp

(
−
L1/3|k∥|
MA k

2/3
⊥

)
(MA > 1) (5.A1.6)

MF
ij = CF

a Jijk
−7/2, (5.A1.7)

where Ca are normalization constants, and parallel (∥) and perpendicular (⊥) here are defined with
respect to the background magnetic field, B0. The tensors Iij = δij − kikj/k

2
⊥ and Jij = kikj/k

2
⊥

are 2D tensors defined in the sub-space perpendicular to the background magnetic field* (e.g., if B0

is along z, then Iij and Jij above are defined in the xy-plane, and are zero if i, j = z). Within the

*If Iij = δij − kikj/k
2
⊥ and Jij = kikj/k

2
⊥ are the 3D version of Iij and Jij defined for any i, j = 1, 2, 3 index,

then the 2D version can be generally written as Iij = TikIklTlj and Jij = TikJklTlj , with Tij = δij − B0,iB0,j/B
2
0

being the projecting operator onto the plane perpendicular toB0.
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plane perpendicular to B0, Iij and Jij are indeed projecting operators working as expected for the
polarization of theAlfvén and fastmodes: Iij projects onto the direction perpendicular to k⊥, whereas
Jij projects onto the direction parallel to it. As an additional remark, we point out that the above
scalings are the 3D extensions of the 1D spectra found in Cho and Lazarian (2002).

Finally, in order to determine the normalization constants Ca, we require that the energy of the
turbulent fluctuations obtained by their correlation tensor (i.e., ⟨δB(x)2⟩ from Equation (5.A1.3))
matches the root-mean-square value of the fluctuations at the injection scale L (i.e., δB2

rms ≡ ⟨δB2⟩L):

⟨δB(x)2⟩ ≡ B2
0

∑
i,j

∫
d3kMij(k)

!
= δB2

rms ≡ ⟨δB2⟩L , (5.A1.8)

where ⟨δB2⟩L is related to the (outer-scale) Alfvénic Mach numberMA by ⟨δB2⟩L/B2
0 ≈M2

A.

5.A1.1 Dµµ from Alfvén modes

In this Section, we specialize to the case of a cascade of Alfvénic fluctuations, explicitly providing
the steps of the calculation leading to the associated pitch-angle scattering rate, DA

µµ, in the relevant
regimes.

Normalization coefficient

To get the normalization coefficient CA
a for the alfvénic cases, we make use of Equation (5.A1.8) with

the spectrum (5.A1.5) or (5.A1.6) for the sub- or super-Alfvénic regime, respectively, where∑i=j Iij =

1. Moreover, since Alfvénic fluctuations are anisotropic, it is convenient to write the integral decom-
posing it as

∫
d3k =

∫ +∞
L−1 k⊥dk⊥

∫ +∞
−∞ dk∥

∫ 2π

0
dϕ.

Sub- and trans-Alfvénic regime (MA ≤ 1). Whendealingwith sub-Alfvénic turbulence, the cascade
of fluctuations at scales immediately below the injection scale belongs to the weak-turbulence regime.
This means that, initially, fluctuations develop a E(k⊥) ∼ k−2

⊥ spectrum in the direction perpendic-
ular to B0, while there is no turbulent cascade along the magnetic-field lines, E(k∥) = E(kL) = cst.
However, this weak-turbulence regime can be sustained only for a limited range of (perpendicular)
scales, [L−1, ℓ−1

tr ], as the critical-balance condition will be anyway achieved at a scale ℓtr ∼ LM2
A that

determines the transition to the strong-turbulence regime (Goldreich and Sridhar, 1995). At perpen-
dicular scales λ⊥ ≤ ℓtr, the cascade follows the modified GS95 spectrum in (5.A1.5). Therefore, to
obtain the normalization constant CA,sub

a , we now use the fact that the integral of the magnetic-field
fluctuations’ correlation tensor should match the energy of the fluctuations at the transition scale ℓtr,
i.e.,

∫
d3kMA,sub

ij (k) = ⟨δB2⟩ℓtr/B2
0 . Also, since the parallel scale does not evolve in theweak-turbulence

regime, we remind the reader that the parallel wavelength λ∥,tr corresponding to a turbulent eddy of
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perpendicular size λ⊥ = ℓtr is still the injection scale, i.e. λ∥,tr = L. As a result, the exponential function
that describes surfaces of constant energy in (k⊥, k∥) space still contains the outer-scale factor, L1/3, as
for the trans-Alfvénic limit,MA = 1. The equation that determines CA,sub

a is therefore:

CA,sub
a · 2π

∫ k⊥,max

ℓ−1
tr

k⊥dk⊥

∫
[−k∥,max,−L−1]∪[L−1,k∥,max]

dk∥ k
−10/3
⊥ · exp

(
−

L1/3|k∥|
M

4/3
A k

2/3
⊥

)
≈

≈ CA,sub
a · 2π

∫ +∞

ℓ−1
tr

k⊥dk⊥

∫ +∞

−∞
dk∥ k

−10/3
⊥ · exp

(
−

L1/3|k∥|
M

4/3
A k

2/3
⊥

)
!
=

⟨δB2⟩ℓtr
B2

0

.

The above approximations in the limits of integration involve both the cutoff and the injection
wave-number scales: (i) the former corresponds to the cascade cutoff scales (k⊥,max, k∥,max), and letting
them approach infinity does not lead to any appreciable modification. Indeed, the perpendicular spec-
trum is soft enough (E(k⊥) ∼ k

−10/3
⊥ ) that the large wave-numbers carry very little turbulent power. In

particular, this is true for the parallel spectrum, since theGS95 critical-balance relation implies an even
softer spectrum versus k∥. (ii) As far as the low-k∥ limit of integration is concerned, considering the
proper injection scale (k∥,min ∼ L−1) introduces a correction factor 1/e in the normalization constant.
This correction only affects Alfvèn and slowmodes, that will be found to be anyway strongly subdom-
inant in shaping the cosmic-ray diffusion coefficient, therefore, for the sake of simplicity, we neglect it.
Notice, however, that we will use this approximation only for the normalization constant, while the
correct wave-number range is considered when calculatingDµµ, thus not affecting the resulting slopes
of the diffusion coefficient.

Solving the integrals, the left-hand side of the above equation yields CA,sub
a 4π · 3M

4/3
A ℓ

2/3
tr

2L1/3 . Then,
taking into account the scaling ℓtr ∼ LM2

A for the transition scale, we can obtain the normalization in
terms of the injection scale L:

CA,sub
a 4π · 3

2
L1/3M

8/3
A

!
=

⟨δB2⟩ℓtr
⟨δB2⟩L

· ⟨δB
2⟩L

B2
0

≈M2
A ·M2

A =M4
A,

where we have used the scaling of weak turbulence for the fluctuations, δBλ ∼ λ
1/2
⊥ , to substitute

⟨δB2⟩ℓtr/⟨δB2⟩L = ℓtr/L ≈M2
A, and ⟨δB2⟩L/B0 ≡M2

A.
In conclusion, CA,sub

a = M
4/3
A L−1/3/6π and the correlation tensor of the magnetic-field fluctua-

tions for the Alfvén mode in the sub-Alfvénic (or trans-Alfvénic) regime is:

MA,sub
ij =

M
4/3
A L−1/3

6π
Iij k

−10/3
⊥ · exp

(
−

L1/3k∥

M
4/3
A k

2/3
⊥

)
. (5.A1.9)

Super-alfvénic case: MA > 1. Conversely to what happens in the sub-Alfvénic case, when the
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injected fluctuations are super-Alfvénic, the corresponding turbulent cascade at scales immediately
below the injection scaleL is “hydro-dynamical” in nature, i.e., isotropicwith a spectrumE(k) ∼ k−5/3.
This hydrodynamic-like behaviour is, again, sustained only within a limited range of scales, [L−1, ℓ−1

A ],
as the critical-balance condition will be eventually met at the Alfvén scale ℓA ∼ LM−3

A (Lazarian et al.,
2020). At scales λ ≤ ℓA the turbulent cascade thus becomes anisotropic with respect to the magnetic-
field direction, and follows the modified GS95 spectrum in (5.A1.6). Following the same reasoning of
the sub-Alfvénic case, the equation for CA,super

a reads as

CA,super
a · 2π

∫ +∞

ℓ−1
A

k⊥dk⊥

∫ +∞

−∞
dk∥ k

−10/3
⊥ · exp

(
−
L1/3|k∥|
MA k

2/3
⊥

)
!
=

⟨δB2⟩ℓA
B2

0

.

By explicitly solving the integral and taking into account the scaling ℓA ∼ LM−3
A , one obtains:

4πCA,super
a · 3

2
L1/3M−1

A
!
=

⟨δB2⟩ℓA
⟨δB2⟩L

· ⟨δB
2⟩L

B2
0

≈M−2
A ·M2

A,

where we have used the Kolmogorov-like scaling for the turbulent fluctuations, δBλ ∼ λ1/3, to substi-
tute ⟨δB2⟩ℓA/⟨δB2⟩L = (ℓA/L)

2/3 ≈M−2
A , and, again, ⟨δB2⟩L/B2

0 =M2
A by definition.

In conclusion, CA
a = MA L

−1/3/6π, and the correlation tensor of the magnetic-field fluctuations
for the Alfvén mode in the super-Alfvénic regime is:

MA,super
ij =

MA L
−1/3

6π
Iij k

−10/3
⊥ · exp

(
−
L1/3k∥

MA k
2/3
⊥

)
. (5.A1.10)

Resonance function

In this work, we are adopting the resonance function,Rn, described in Yan and Lazarian (2008). Such
function includes the broadening of the resonant scatteringwave-number due finite-amplitude correc-
tions in the magnetic-field strength*:

Rn(k∥v∥ − ω + nΩ) =

√
π

|k∥|v⊥M
1/2
A

· exp

(
−
(k∥vµ− ω + nΩ)2

k2∥v
2(1− µ2)MA

)
,

where we recall the reader that the above expression reduces to the usual Dirac δ-function in the limit
of vanishing fluctuations amplitude,MA → 0.

Within the present approximations, Alfvén modes can scatter CRs only via n ≠ 0 gyro-resonance
interactions,while then = 0Landau-damping interaction is neglected. Also,we consider low-frequency,
non-relativisticMHDturbulence, i.e., turbulent fluctuationswithin a range of frequenciesω andwave-

*An effect that is consistent with the inclusion in this scattering theory of the Landau-type wave-particle
interaction usually referred to as transit-time damping (TTD).
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numbers k such that their frequency is much smaller than the particles’ gyro-frequency, ω ≪ Ω, and
their phase velocity is much smaller than the speed of light, vph ∼ ω/k ≪ c. In this limit, since cosmic
particles’ are relativistic (i.e., their velocity is typically v ≈ c), one can neglect the fluctuation frequency
ω in the argument of the resonance function: k∥vµ− ω + nΩ ≃ k∥vµ+ nΩ.

Taking these considerations into account and rearranging the argument of the exponential, the
resonance function that will be adopted for scattering on Alfvénic fluctuations reads

Rn(k∥v∥ − ω + nΩ) =

√
π

|k∥|v⊥M
1/2
A

· exp

−

(
µ+ n

x∥R

)2
(1− µ2)MA

 ≡
√
π

|k∥|v⊥M
1/2
A

· En

=

√
π Ω−1

|x∥|RM
1/2
A

· En , (5.A1.11)

where we have defined R ≡ v/(ΩL) = (1 − µ2)−1/2rL/L, with rL = v⊥/Ω the cosmic particle’s Larmor
radius, and x∥,⊥ ≡ k∥,⊥L.

Pitch-angle coefficient

To finally calculate the contribution from the Alfvén modes to the pitch-angle diffusion coefficient,
we nowmake use of the spectra in Equations (5.A1.9) and (5.A1.10) in the following expression:

DA
µµ = Ω2(1− µ2)

∫
d3k

+∞∑
n=−∞

√
π

|k∥|v⊥M
1/2
A

· En

[
IA(k)

n2J2
n(z)

z2

]
. (5.A1.12)

MA ≤ 1. Using the dimensionless quantities described above, the expression for the pitch-angle scat-
tering rate on Alfvénic fluctuations in theMA ≤ 1 regime reads:

DA
µµ =

√
πv
√

1− µ2 M
5/6
A

3R2L

∫
dx⊥

∫
dx∥

+∞∑
n=−∞

n2J2
n(z)

z2
·
x
−7/3
⊥
|x∥|

· exp

(
−

x∥

M
4/3
A x

2/3
⊥

)
En

=

√
πΩM

5/6
A

3R

∫
dx⊥

∫
dx∥

+∞∑
n=−∞

n2J2
n(z)

z2
·
x
−7/3
⊥
|x∥|

· exp

(
−

x∥

M
4/3
A x

2/3
⊥

)
En, (5.A1.13)

where now z ≡ x⊥R(1−µ2)1/2. ForAlfvénmodes, n ̸= 0, andwe verified that the n = ±1 functions give
the dominant contribution, so thatDA

µµ ≈ DA,n=1
µµ +DA,n=−1

µµ . Using the property J−n(z) = (−1)nJn(z),
from which it follows J2

−n(z) = J2
n(z), we finally get:

DA,sub
µµ =

2
√
πΩM

5/6
A

3R

∫
dx⊥

∫
dx∥

J2
1 (z)

z2
·
x
−7/3
⊥
x∥

· exp

(
−

x∥

M
4/3
A x

2/3
⊥

)
(E+ + E−) (5.A1.14)
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where E+ ≡ E+
n=1 = exp

−

(
µ+ 1

x∥R

)2

(1−µ2)MA

, E− ≡ E−
n=−1 = exp

−

(
µ− 1

x∥R

)2

(1−µ2)MA

 and the factor 2 comes

from taking the integral only on x∥ > 0.

The lower boundary of integration can be found reminding that we integrate the GS95 spectrum
from the scale where the critical balance is reached. For thisMA ≤ 1 case, we have seen that, up to the
transition scale, the cascade evolves only in the direction perpendicular to the magnetic field. There-
fore, we can write:

k⊥,minℓtr = k⊥,min ·
(
ℓtr
L

)
L

!
= 1 ⇒ x⊥,min =

1(
ℓtr
L

) ≈M−2
A

x∥,min = 1,

where we denoted with ℓtr the scale where the turbulence becomes of GS95 type.

MA > 1. Following the same steps as for theMA ≤ 1 case, we eventually obtain the following expres-
sion:

DA,super
µµ =

2
√
πΩM

1/2
A

3R

∫
dx⊥

∫
dx∥

J2
1 (z)

z2
·
x
−7/3
⊥
x∥

· exp

(
−

x∥

MA x
2/3
⊥

)
(E+ + E−) . (5.A1.15)

In this case, the lower boundary for the integration can be obtained considering that the cascade
evolves isotropically until the transition scale ℓA is reached. Hence, we obtain:

k⊥,minℓA = k⊥,min ·
(
ℓA
L

)
L

!
= 1 ⇒ x⊥,min =

1(
ℓA
L

) ≈M3
A

x∥,min ≈M3
A.

To evaluate the upper boundary of the integrals, we do not treat the two regimes separately and
assume that Alfvén modes do not undergo significant damping and therefore the cascade proceeds
up to the dissipation scale. Equivalently, we will truncate the integrals at a wave-number much larger
than the inverse of the Larmor radius of the less energetic particle, k⊥ ≫ r−1

L

∣∣
Emin

. In practice, we
will consider two order of magnitudes larger than that quantity. Since we are considering particles
with energy as low as 10−2 GeV, with a Larmor radius of rL ≃ 3.37 · 1012 cm

(
p=10−2GeV

GeV

)(
10−6 G

B

)
=

3.37 · 1010 cm, this corresponds to k⊥,max = 102 · (3.37 · 1010 cm)−1 = 3 · 10−9 cm−1. Also, according to
the findings of the GS95 theory, k∥ ∝ k

2/3
⊥ .

In conclusion, the upper bounds for the integrals are:

x⊥,max = 3 · 10−9 · L[cm], x∥,max = x
2/3
⊥,max. (5.A1.16)
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5.A1.2 Dµµ from fast modes

In this Section, we instead consider the case of a cascade of fast-magnetosonic fluctuations. Analo-
gously to theAlfvénic case, the details of the calculation leading to the associated pitch-angle scattering
rate,DF

µµ, are outlined.

Normalization coefficient

Again, to normalize the spectrum resulting from the simulations, we use Equation (5.A1.8) for the cor-
responding spectrum of fast-magnetosonic turbulence obtained from the trace of the correlation ten-
sor in (5.A1.7) (we remind the reader that∑i=j Jij =

kiki+kjkj

k2
⊥

= 1). Since fast modes are found to be
isotropic, we can rearrange the integral over the intertial range as

∫
d3k =

∫ +∞
L−1 k

2 dk
∫ π

0
sinαdα

∫ 2π

0
dϕ.

The equation to solve to get the normalization is therefore:

CF
a · 2π

∫ +∞

L−1

k2 dk

∫ π

0

sinαdα k−7/2 =
⟨δB2⟩rms,L

B2
0

=M2
A

From this, we get that CF
a =

M2
A L−1/2

8π and finally:

MF
ij =

M2
A L

1/2

8π
Jijk

−7/2. (5.A1.17)

Resonance function

The resonance function is the same presented in Equation (5.A1.1), but split in two forms, as for
scattering on fast modes contributions from both transit-time damping (TTD) and gyro-resonant in-
teraction have to be taken into account.

Gyroresonance corresponds to the case n ̸= 0, and the resulting function is the same described for
the Alfvén modes:

Rn(k∥v∥ − ω + nΩ) =

√
π

|kξ|v⊥M1/2
A

· exp

(
−

(µ+ n
xξR )2

(1− µ2)MA

)
≡

√
π

|kξ|v⊥M1/2
A

· EG
n (n ̸= 0)

where ξ ≡ cosα is the “pitch-angle” of the wave vector associated to the turbulent fluctuations (i.e., α
is the angle between k andB0).

Transit-time damping corresponds to n = 0, in which case we can rearrange the argument of the

exponential as �
�k2

∥v
2

(
µ− ω

k∥v

)2

��k2
∥v

2(1−µ2)MA
=

(
µ− vA

ξv

)2

(1−µ2)MA
, where the last step holds because the phase velocity of the

fast waves is the same order of magnitude as the Alfvén speed, ω ≈ kvA, in the low-β limit.
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In this case, the resulting function is:

Rn(k∥v∥ − ω + nΩ) =

√
π

|kξ|v⊥M1/2
A

· exp

(
−

(µ− vA
ξv )

2

(1− µ2)MA

)
≡

√
π

|kξ|v⊥M1/2
A

· ET
n (n = 0).

Truncation scale

The integral over the inertial range is truncated as soon as the fastest damping mechanism for the tur-
bulent spectra comes into play. This eventually depends on the environment that we are considering.

As discussed in Yan and Lazarian (2008), in the warm ionized medium (WIM) (|d| ≲ 1 kpc) the
gas is denser and colder with respect to the extended halo region (d > 1 kpc). Therefore, in the WIM,
besides the standard collisionless damping, the collisional damping is also present. Since viscous forces
involve small-size eddies, only particles with small Larmor radii can experience them. This will even-
tually affect the low-energy range of the resulting spatial diffusion coefficient in the WIM. In the ex-
tended halo region, on the other hand, only the collisionless damping is present, and this is why we
expectD(R) to be a monotonic function of R in such environment.

To estimate the truncation scale in the two different environments, we look for the wave number
at which the energy cascading rate of the turbulence equals the dissipation rate associated to that wave-
number (Lazarian et al., 2020).

Following Yan and Lazarian (2008), the collisionless truncation scale results:

kmaxL =
4M4

A γ ξ
2

π β (1− ξ2)2
· exp

(
2

β γ ξ2

)
, (5.A1.18)

where γ =
mp

me
and β =

Pg

PB
is the ratio between the gas pressure and the magnetic pressure.

On the other hand, the collisional truncation scale is:

kmaxL =


xc (1− ξ2)−2/3 β ≪ 1

xc (1− 3 ξ2)−4/3 β ≫ 1,

(5.A1.19)

where xc =
(

6 ρ δV 2 L
η0 vA

)2/3
∼ 106 contains the ambient variables, with η0 being a longitudinal viscos-

ity (Yan and Lazarian, 2008).
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Pitch-angle coefficient

To calculate the contribution of the fast-magnetosonic modes to the pitch-angle diffusion coefficient,
we plug in the spectrum (5.A1.17) in the following equation:

DF
µµ = Ω2(1− µ2)

∫
d3k

+∞∑
n=−∞

√
π

|k∥|v⊥M
1/2
A

· EG,T
n

[
k2∥

k2
J ′2
n (z) IF(k)

]
, (5.A1.20)

where now z = k⊥LR(1− µ2)1/2 = k(1− ξ2)1/2LR(1− µ2)1/2 ≡ xR(1− ξ2)1/2(1− µ2)1/2.

With the usual notationR ≡ v/(ΩL) = (1−µ2)−1/2rL/L and kL ≡ x, and using that ξ2/|ξ| is an even
function, so that

∫ +1

−1
dξ ξ2/|ξ| = 2

∫ +1

0
dξ ξ, the general expression that computes the contributions

from the fast modes toDµµ is:

DF
µµ =

M
3/2
A v

√
π

2R2L
(1− µ2)1/2

∫ kmaxL(ξ)

1

dx

∫ +1

0

dξ ξ

+∞∑
n=−∞

x−5/2J ′2
n (z) · EG,T

n (5.A1.21)

where:

EG,T
n =


ET

n = exp

(
− (µ− vA

ξv )2

(1−µ2)MA

)
(n = 0)

EG
n = exp

(
− (µ+ n

xξR )2

(1−µ2)MA

)
(n ̸= 0).

So, in the case of TTD interaction (n = 0), we have:

DF,n=0
µµ =

M
3/2
A v

√
π

2R2L
(1− µ2)1/2

∫ kmaxL(ξ)

1

dx

∫ +1

0

dξ ξ x−5/2J2
1 (z) · exp

(
−

(µ− vA
ξv )

2

(1− µ2)MA

)
(5.A1.22)

where we used the property J ′
n(z) =

1
2

(
Jn−1(z)− Jn+1(z)

)
to get J ′

0(z) = −J1(z).

In the case of gyroresonant interaction (n ̸= 0), we have:

DF,n=1
µµ +DF,n=−1

µµ =
M

3/2
A v

√
π

2R2L
(1−µ2)1/2

∫ kmaxL(ξ)

1

dx

∫ +1

0

dξ ξ x−5/2

(
J0(z)− J2(z)

2

)2

(EG,++EG,−),

(5.A1.23)
where EG,+ ≡ EG,+

n=1 = exp

(
− (µ+ n

xξR )2

(1−µ2)MA

)
, EG,− ≡ EG,−

n=−1 = exp

(
− (µ− n

xξR )2

(1−µ2)MA

)
and we used that

J ′2
n (z) = J ′2

−n(z).
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5.A1.3 Dµµ from slowmodes

For completeness, we also report the calculations of the pitch-angle coefficient of the magnetosonic
slow modes, namely the following expression:

DS
µµ = Ω2(1− µ2)

∫
d3k

+∞∑
n=−∞

√
π

|k∥|v⊥M
1/2
A

· EG,T
n

[
k2∥

k2
J ′2
n (z) IS(k)

]
, (5.A1.24)

where we want to adopt the same notation used for the Alfvén modes, separating the parallel and
perpendicular wave-number components, as with respect to the regular magnetic field, z = k⊥LR(1−

µ2)1/2 ≡ x⊥R(1− µ2)1/2.
The statistics of the slow modes is similar to that of the Alfvén modes, as indicated in Equations

(5.A1.5)-(5.A1.6), while, on the other hand, they can interact with cosmic-ray particles by means of
both TTD and gyro-resonance. Therefore their treatment involves parts of the calculations already
detailed for the other twoMHDmodes. In particular:

• the normalized correlation tensors MS
ij for both the sub-alfvénic and super-alfvénic cases are

the same calculated for the Alfvènmodes, reported in Equations (5.A1.9) and (5.A1.10), respec-
tively;

• the resonance function is the same as for the fast modes, discussed in Section 5.A1.2, conve-
niently rewritten as follows to account for the present notation:

RG,T
n =


RT

n ≡
√
π

|k∥|v⊥M
1/2
A

· ET
n =

√
π

|k∥|v⊥M
1/2
A

· exp

(
−

(µ− ω
k∥v )

2

(1−µ2)MA

)
(n = 0)

RG
n ≡

√
π

|k∥|v⊥M
1/2
A

· EG
n =

√
π

|k∥|v⊥M
1/2
A

· exp

(
−

(µ+ n
k∥RL )2

(1−µ2)MA

)
(n ̸= 0);

• the truncation scale is also the same as that discussed for the fast modes, in Section 5.A1.2.

Pitch-angle coefficient

To calculate the Dµµ caused by the slow modes, we account for the sub- and super-alfvénic nature of
the injected cascade, separately.

Sub-alfvénic case: MA ≤ 1. The general expression that calculates the contribution from the slow
modes to the pitch-angle coefficient is then written as follows:

DS
µµ =

2
√
πv
√
1− µ2 M

5/6
A

3R2L

∫
R+

dx⊥

∫
dx∥

+∞∑
n=−∞

x
−7/3
⊥(

x2∥ + x2⊥

) · exp

(
−

x∥

M
4/3
A x

2/3
⊥

)
EG,T

n , (5.A1.25)
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where we used the even parity of the integrating function to restrict only to the positive axis and the
integral boundaries are the ones discussed in Section 5.A1.1.

In the case of TTD interaction (n = 0), the expression above reads:

DS,sub,n=0
µµ =

2
√
πv
√
1− µ2 M

5/6
A

3R2L

∫
R+

dx⊥

∫
dx∥

x
−7/3
⊥(

x2∥ + x2⊥

)J2
1 (z) · exp

−
x∥

M
4/3
A x

2/3
⊥

−
(µ− ω

x∥RΩ )
2

(1− µ2)MA

 .

(5.A1.26)
In the case of gyro-resonant scattering (n ̸= 0), on the other hand, Equation (5.A1.25) is written

as follows:

DS,sub,n=1
µµ +DS,sub,n=−1

µµ =
2
√
πv
√

1− µ2 M
5/6
A

3R2L

∫
R+

dx⊥

∫
dx∥

x
−7/3
⊥(

x2∥ + x2⊥

) (J0(z)− J2(z)

2

)2

· exp

(
−

x∥

M
4/3
A x

2/3
⊥

)
·
(
EG,+ + EG,−

)
(5.A1.27)

with obvious meaning of the terms EG,+ and EG,−.

Super-alfvénic case: MA > 1. In the case of super-alfvénic turbulence injected, the general expres-
sion for the pitch-angle coefficient is the following:

DS
µµ =

2
√
πv
√
1− µ2 M

1/2
A

3R2L

∫
R+

dx⊥

∫
dx∥

+∞∑
n=−∞

x
−7/3
⊥(

x2∥ + x2⊥

) · exp

(
−

x∥

MA x
2/3
⊥

)
EG,T

n . (5.A1.28)

In the case of TTD particle-wave interaction (n = 0), this becomes:

DS,sub,n=0
µµ =

2
√
πv
√
1− µ2 M

1/2
A

3R2L

∫
R+

dx⊥

∫
dx∥

x
−7/3
⊥(

x2∥ + x2⊥

)J2
1 (z) · exp

−
x∥

MA x
2/3
⊥

−
(µ− ω

x∥RΩ )
2

(1− µ2)MA

 .

(5.A1.29)
In the case of gyro-resonant interaction (n ̸= 0), instead, Equation (5.A1.28) becomes:

DS,sub,n=1
µµ +DS,sub,n=−1

µµ =
2
√
πv
√

1− µ2 M
1/2
A

3R2L

∫
R+

dx⊥

∫
dx∥

x
−7/3
⊥(

x2∥ + x2⊥

) (J0(z)− J2(z)

2

)2

· exp

(
−

x∥

MA x
2/3
⊥

)
·
(
EG,+ + EG,−

)
.
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Conclusions

In this thesis, we studied some of the open questions associated to the origin of theCosmic Rays (CRs),
as well as to their transport properties.

Following the increasing accuracy of the experimental observations, especially at energies of the
order ∼ O(100GeV − 1TeV), recently achieved, the standard picture of a Supernova Remnant (SNR)
origin and a diffusive randomwalk derivedwithin theQuasi-LinearTheory (QLT) of scattering against
Alfvén modes gets significantly challenged.

As far as their origin is concerned, we used themost relevant cosmic-ray observables to choose a set
of free parameters, implemented in the DRAGON numerical solver, to tune our propagation setup. On
top of this background, we studied the leptonic high-energy features. In particular, the rising of the
positron fraction at ∼ 10GeV was assigned to a population of primary positrons injected by nearby
pulsars. Since pulsar injection models are still not clearly understood, we fitted four different scenar-
ios, which allowed us to bracket such uncertainties. Then we turned our attention to the all-lepton
spectrum, and observed that the high-energy range — and, in particular, the ∼ TeV break observed
consistently by ground-based aswell as space-born experiments—cannot be reproducedby a smoothly
distributed SNR component plus nearby pulsars. Due to the massive energy losses that leptons suffer
at this energy scale, their diffusive horizon is rather limited andwe concluded that an old (tage ∼ 105 yr)

source located between ∼ 600 pc and ∼ 1 kpc is probably missing from the Catalogues.

Interpreting the hardening at ∼ 200GeV — observed in the proton and nuclear species, both in
the primary and in the secondary species — as a diffusive-origin feature, we studied the possibility
of connecting the hypothetical nearby source of electrons with a signature in the proton spectrum
as well. Indeed, Supernova Remnants release both electrons and protons, and a recent observation
— a softening observed by DAMPE at 13TeV — could be a signature of an intrinsic source-cutoff.
Within a transport setup characterized by a smoothly hardening diffusion coefficient, D(E) ∝ Eδ(E),
wewere able tomatch both hadronic and leptonic observables invoking an old (tage = 2·105 yr), nearby
(d = 300 pc) remnant, that correctly reproduced the cosmic-ray dipole anisotropy. We remark that,
without such variable diffusion coefficient, the anisotropy data would be overshot by, at least, one
order of magnitude.

Finally, we focused on the microphysics of cosmic-ray diffusion. Indeed, as extensively shown in
the review section, Part I, the typical picture invokes theQLT scattering of cosmic-ray particles against
isotropic Alfvén fluctuations, namely transversemodes, which gives rise to the typical parametrization
of the diffusion coefficient with a single power law. On the other hand,magneto-hydro-dynamic tur-
bulence includes two other propagating modes,magnetosonic fast and slow, that are typically ignored,
as they suffer severe damping in the Interstellar Medium environments, as opposed to the Alfvén
modes, that propagate essentially free of damping. However, when including the anisotropic nature
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of the alfvénic cascade and a non-linear extension of the QLT, that enhances the scattering efficiency
of the fast modes, that paradigm is found to change significantly. In particular, we found that the
alfvénic cascade is extremely inefficient in confining cosmic rays, up to an energy ∼ 100TeV, where
the anisotropy of the cascade is not developed yet and it is able to give a contribution comparable to
that of the fast modes. Interestingly, when this occurs, the contribution of the Alfvén modes to the
scattering efficiencymanifest itself as a change of slope in the spatial diffusion coefficient. Within such
setup, we implemented the resulting diffusion coefficients in DRAGON2, where two independent zones
were considered: the Halo (LHalo ∼ 5 − 6 kpc) and the Extended Disk, corresponding to the Warm
Ionized Medium (LWIM ∼ 1 kpc). Thus, we explored the parameter space of selected physical quanti-
ties, connected to the physics of the environments, and reproduced the hadronic fluxes, as well as the
boron-over-carbon ratio, from ∼ 200GeV above. Below this energy, we assumed that CR scattering
against self-generated turbulence dominates the diffusion process. Remarkably, a good compatibility
with experimental data was found with a reasonable choice of those physics parameters and did not
require any ad hoc tuning or re-normalization.

In conclusion, the scientific contribution of the present thesis aimed at a comprehensive treatment
of the open questions regarding the origin of the cosmic rays and their propagation properties. In
particular, we explored a change in the standard paradigm of cosmic-ray diffusion generated by wave-
particle scattering with slab turbulence, namely the transverse modes that inspired the QLT-based dif-
fusion coefficient parametrized as a single power law. Within this framework, however, only parallel
transport was treated, and large magnetic fluctuations that tend to isotropize diffusion on large scales
were invoked, allowing towriteD∥ ≈ D⊥. Therefore, a lot ofwork is still necessary to understand up to
what extent this is a valid assumption andwhere perpendicular transport eventually contributes. From
the phenomenological point of view, we highlight that the change of slope at high energy (∼ 100TeV)

in the D(E), corresponding to the entrance of the Alfvèn modes in the scattering rate, represents a
promising ground to test the validity of the presented theory. Indeed, such energy is expected to be
explored in the next few years by the operating telescopes.
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