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Abstract

Ribosomes carry out protein synthesis from mRNA templates by a highly
regulated process called translation. Translational control plays a key role
in the regulation of gene expression, under physiological and pathological
conditions. How translation is regulated under different conditions and what
factors greatly influence the translation speed remains open questions in molecular
biology.
In recent years, Ribosome profiling technique (Ribo-seq) has emerged as a
powerful method for globally monitoring the translation process in vivo at
single nucleotide resolution [1]. Ribo-seq is based on deep sequencing of mRNA
fragments covered by ribosomes, called Ribosome Protected Fragments (RPFs).
Sequencing of RPFs allows to record the precise position of the ribosomes at
the time in which the translation was blocked. However, the exploitation of
the full power of this technique is hindered by notable weaknesses (e.g. a low
signal to noise ratio), influencing the reproducibility of Ribo-seq experiment.
[2]. The aim of this thesis is the development of a newly designed statistical
approach integrated with machine learning methodologies for a comprehensive
understanding of the information contained in Ribosome Profiling data and
for prediction of translation speed. Our data analysis approach consists of
a systematic comparison of Ribo-seq profiles referring to several publically
available Ribo-seq datasets generated in different laboratories, in different time
but under the same experimental conditions. In the E.coli case studio, the
analysis of 3588 Ribo-seq profiles across eight independent datasets revealed
that only 40 profiles are significantly reproducibles.
The identification of reproducible Ribo-seq profiles allows us to build consensus
sequences which highlighted the nucleotides located within fast and slow regions.
The density of the RPFs along the mRNAs reflects the different time spent
by ribosomes in translating each part of the ORF. Therefore slow regions,

i



extremely rich of ribosomes, and fast regions, characterized by few ribosomes,
can be easily identified by Ribo-seq. We analysed the occurrences of nucleotides,
dinucleotides, and codons of consensus sequences in order to conjecture the
existence (or not) of signals in the sequence that could modulate the speed of
translation. To this aim, we implemented different neural network architectures
that let us classify the translation speed of the previously identified consensus
sequences with high accuracy. Although the limited amount of data, the
results clearly demonstrate that the models can extract useful information.
Furthermore, we used the significantly reproducible profiles as a reference for
comparative analyses aimed at detecting whether modifications in experimental
conditions (heat shock stress and aminoacid starvation) could affect the
reproducibility of our Ribo-seq workflow and thus influence the translation
control. A preliminary analysis on Ribo-seq human data suggests that our
method provides a rich resource for further in-depth studies about translation
control of gene expression in all kind of Ribo-seq datasets, including those
related to highly differentiated organisms like humans.
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Thesis structure

The thesis is organized as follows:

• Chapter 1 gives a broad introduction to all the biological concepts this
dissertation is based on. In particular, a brief overview of the gene
expression regulation is provided, highlighting the main mechanisms of
transcriptional and post-transcriptional control in both prokaryotes and
eukaryotes organisms. Molecular mechanisms of translational regulation
are exploited, by focusing on known processes like codon usage bias.
Finally, the biological role of translation control in human tumorigenesis
and how its mechanisms lead to the phenotypic hallmarks of cancer are
illustrated.

• Chapter 2 describes the Ribosome Profiling technique (Ribo-seq) used
to study the translation of gene expression and to investigate the factors
that influence the velocity of the ribosomes during translation.
Its advantages and its limits are reported.

• Chapter 3 introduces our data analysis approach to identify the
reproducible Ribo-seq profile from the comparison of independent Ribo-
seq experiments. The implementation of a novel data analysis method
to address the limitations of Ribo-seq and to recover its full resolution is
proposed. Based on [3].

• In Chapter 4 our method is applied to different E.coli ’s Ribo-seq datasets
performed in different laboratories under the same conditions. The results
obtained will be analyzed in the following chapters, through statistical
and machine learning approaches to deepen the content of the consensus
sequences of the reproducible Ribo-seq profiles.



4 List of Tables

• Chapter 5 explores the nucleotide/dinucleotide and codon composition of
the consensus sequences through statistical methods in order to conjecture
the existence of signals that could modulate the speed of translation.

• Chapter 6 provides a brief presentation of Artificial Neural Network
(ANN) models and their application in our study (Multilayer Perceptron
model and Convolutional Neural network). In addition, we discuss some
possible extensions for the results presented and suggest eventual areas
of future research.

• Chapter 7 describes how our approach is used to perform comparative
analysis aimed at detecting other conditions potentially affecting
translational control, using E.coli datasets under stress condition (i.e.
heat shock and amino acid starvation). The significantly reproducible
profiles identified in Chapter 4 are used as a reference for these comparative
experiments.

• Chapter 8 examines the preliminary results of Human Ribo-seq profiles
of paired liver tumours and adjacent noncancerous normal liver tissues
from 10 patients with hepatocellular carcinoma (HCC).

• Our results are discussed in the Chapter 9, accompanied by supplementary
material in the Appendix section.

• Chapter 10 examines the research carried out during the PhD period,
but not directly covered by this thesis.



Chapter 1

Background

1.1 From DNA to RNA

The central dogma of molecular biology defines the basic flow of genetic
information within a biological system. In every cell, the information encoded
in a segment of DNA (gene) is transcribed into an RNA molecule, which can
then be translated into a linear sequence of amino acids. The information
stored in the DNA sequences is expressed in a highly selective, differentiated,
and regulated manner depending on internal conditions and external stimuli.
When a particular protein is needed by the cell, the gene is transcript into
another type of nucleic acid—RNA (ribonucleic acid). The RNA polymerase
moves stepwise along the DNA and the single growing RNA chain is synthesized
in 5’ => 3’ direction, using an exposed DNA strand as a template. The
resulting RNA (mRNA) is then used to carries genetic information from the
nucleus to cytoplasm for protein synthesis (See Figure 1.1).

DNA 

mRNA 

Protein 

Codons 

3' 

Asn Pro Gly Thr 

5' 

3' 5' Transcription 

Translation 

3' 5' 

Amino acids 

Replication 

Figure 1.1: Central dogma of molecular biology. Schematic representation
showing the main steps involved in protein synthesis. The information stored
in a segment of DNA is transcribed into an RNA molecule (transcription).
The mRNA is then used as template for the synthesis of an amino acidic chain
(translation). Adapted from “Central Dogma”, by BioRender.com (2020).
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In addition to the mRNAs, a transcriptome also contains many RNA transcripts
which do not encode for proteins (i.e. noncoding RNAs).
Prokaryotic genome is characterized by a low percentage of noncoding DNA
(average of 12%). In contrast, the noncoding sequences account for a large
portion of eukaryotic genome. It is estimated that only around 2% of the
human genome contains coding genes, i.e DNA sequences that encode for
protein products [4]. In accordance with several studies, the importance of
non-coding RNAs (ncRNAs) has been recognized [5]. They have emerged as
pivotal molecules that are related to several biological processes, including
mRNA stability, RNA processing and transcriptional regulation[6].
Figure 1.2 summarizes the most common types of RNA based on their function
within the cell. Some of them have important roles in regulating gene expression
at multiple levels (e.g. microRNAs and small nucleolar RNA), while others like
transfer RNAs (tRNA) and ribosomal RNAs (rRNA) are directly involved in
translation process.

mRNA tRNA rRNA snRNA 

Encodes proteins Acts as adaptor between 
mRNA and amino acids  

Forms the ribosome Functions in various nuclear 
processes (e.g. splicing) 

snoRNA miRNA siRNA lncRNA 

Facilitates chemical 
modification of RNAs 

Regulates gene expression Silences gene expression Regulates gene expression 

Figure 1.2: Types of RNA Produced in Cells The diagram shows the
structure of the different types of RNA and their main functions. Adapted
from BioRender.com (2020).

1.1.1 Main principles of genes regulation

Both prokaryotic and eukaryote cells carry out the control of gene expression
at different levels by modulating the amount and type of protein. Although the
genome is far more complex in eukaryotes than in bacteria, basic similarities
in regulation of gene expression exist between them. Transcription is the first
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stage of gene expression and its regulation can occur in every step, including
initiation, elongation and termination. Some genes, namely housekeeping
genes, are expressed continuously across different tissues, because theirs products
are constantly needed to maintain essential cellular functions.
The constant expression not subjected to regulation is defined constitutive
gene expression. Differently, other genes are expressed at different quantitative
levels in different cell types (e.g. the genes encoding for insulin which is secreted
exclusively by the pancreas cells). The genes whose expression increase in
response to external stimuli are called inducible genes (e.g genes that encode
for enzymes involved in DNA reparation in response to DNA damage). Instead,
the genes whose expression decrease in response to certain molecular stimuli
are known as repressible genes. Although the constitutive genes are expressed
at a constant level, the proteins they encode are present in variable amounts.
For these genes, the RNA polymerase-promotor interaction influences (affects)
considerably the timing of transcription initiation [7].

Transcription overview in Prokaryotes

Initiation of transcription requires the assembly of the pre-initiation complex
at the transcription start site.
In bacteria, the transcription process is catalyzed by a single type of RNA
polymerase. Specifically, in E.coli the complete enzyme or holoenzyme has
a molecular weight of 460 kD and it consists of two components: the core
enzyme with its five subunits (α2ββω) performs the elongation reaction of RNA
polymerization and the σ factor, which is involved in promoter recognition [8].
In E.coli, the expression of housekeeping genes depends on the expression of
σ70, the first sigma factor discovered. It is able to recognize specifically two
conserved sequences in the promoter, at 10 and at 35 base pairs upstream of
the transcription start site (5 'TATAAT 3 'and 5 'TTGACA 3', respectively)
[9]. E.coli encodes seven alternative σ factors which allow RNA polymerase
to bind different promoter consensus sequences and regulate distinct classes
of genes. The availability of different σ factors allows to modify the gene
expression pattern in response to environmental changes such as heat shock
stress. In the case of heat shock stress, the transcription initiation is mediated
by a specialized sigma-factor namely σ32, which directs the core
RNA polymerase to recognize the promoters for heat shock genes[8]. In addition,
some E.coli promoters have a third sequence (UP) located upstream of the 35
region which binds C-terminal domain of the subunit α.
Transcription initiation involves several defined steps: 1)Firstly, RNAP
holoenzyme, leading by the factor σ, binds to the promoter sequence to form
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the closed “preinitiation” complex; 2) then unwinds the DNA around the
initiation site (12-14 bases of DNA) to form the open-promoter complex. The
single stranded DNA is available as a template for transcription; 3) Once
RNAP has added about the first ten nucleotides, the σ factor dissociates from
the core polymerase which leaves the promoter, moves along the template
DNA and elongates the growing RNA chain in the 5'-to-3' direction. The
last step of the transcription phase is represented by termination. It is a
crucial step in the regulation of gene expression since it modulates the relative
levels of various genes and controls the transcription response to a metabolic or
regulatory signal. Two classes of termination signals have been identified: one
of them involves a nascent RNA-dependent helicase (Rho), while the other
relies on specific Rho-independent sequences in the DNA template strand
[10]. Typically, these sequences consist of a GC-rich sequence followed by
approximately seven A residues and let the formation of a stable stem-loop
structure by complementary base pairing in the transcribed mRNA.
While basic similarities in gene transcription exist between prokaryotes and
eukaryotes—including the fact that RNA polymerase binds upstream of the
gene on its promoter to initiate the process of transcription —multicellular
eukaryotes control cell differentiation through more complex and precise
temporal and spatial regulation of gene expression.

Regulation of gene expression: E.coli model

Because of their relative simplicity, bacteria are ideal models for studying many
fundamental aspects of control of gene expression.
Generally, in prokaryotic cells the control of gene expression occurs mainly at
the transcription level, through the activation or inactivation of genes. One of
the key characteristics of bacterial chromosome is that that functionally-related
genes are organized in clusters and they are transcribed together into a single
mRNA molecule (polycistronic mRNA). A group of functionally-related genes
controlled by the same promoter and other regulatory sequences constitute
the prototype of genic organization namely operon. Figure 1.3 illustrates the
structure of the well-known inducible lac operon which encodes to enzymes
required to metabolize sugar lactose, a sugar used as a source of carbon
and energy. The transcription of lac genes is regulated by the binding of a
repressor, encoded by the lacI gene, to a specific DNA sequence overlapping the
promoter. The repressor is constitutively expressed and turns off transcription
in the absence of lactose by a mechanism referred to negative regulation. The
lac operon is also subjected to a positive regulation that relies on glucose
availability. When glucose is available, enzymes involved in the catabolism of
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3' 5' 

Eukaryotic Gene Structure 

Distal  
control elements 

Exon 

Proximal 
control elements 

Upstream  
Regulatory sequence Open Reading Frame (ORF) 

Promoter 
TATA box 

Exon 

Intron Intron 

Exon 

Poly-A signal 
sequence 

Terminator 
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Regulatory sequence 

Enhancer/Silencer Enhancer 
or 

Silencer 

Distal  
control elements 

DNA 

3' 5' 

Structural genes 

Regulatory gene Operon 

Promoter 

Operator Enhancer/Repressor 

Promoter Terminator 

DNA lacO + lacZ + lacY + lacA + lacI + 

Figure 1.3: Structure of Operon lac. The lac operon encodes for
enzyme proteins involved in lactose metabolism. The lac operon consists of
three structural genes controlled by the same promoter, lacZ (encoding β-
galactosidase), lacY (encoding permease), and lacA (encoding transacetylase).
Created with BioRender.com (2020).

lactose are not expressed. In contrast, if glucose is low, cyclic AMP levels are
high, and it readily binds to catabolite activator protein (CAP) and stimulates
its binding to regulatory sequences of lac operon to increase the expression
of β-galactosidase. This global mechanism is termed catabolite repression
(CCR) and allows bacteria to selectively use the preferred substrates (glucose),
inhibiting the expression and functions related to secondary carbon sources,
such as lactose [11]. Another regulatory feature found in bacteria is attenuation
which causes premature termination of transcription. This regulatory mechanism
represses genes in the presence of their own products and it is typically used to
regulate amino acid synthesis. Attenuation involves the 5'-cis-acting regulatory
regions (attenuators) that fold into alternative RNA structures (stem-loop
mRNA), acting as terminators of transcription [12]. The frequency at which
the transcription is attenuated is based on the availability of amino acids in
order to prevent unregulated and unnecessary gene expression.
One of the main aspect of control of gene expression in prokaryotes is represented
by regulon in which multiple operons and single genes are under the same type
of transcriptional control. An example of bacterial regulon in E.coli is the
response SOS which allows the simultaneous and coordinated activation of
several genes responsible for DNA damage repair [13].
Once a cell accumulates a large amount of DNA damage, the replication of
DNA is arrested and the number of single strand breaks increases. RecA,
a master protein in homologous recombination, binds to single-stranded DNA
(ssDNA), it becomes activated and its co-protease activity is induced facilitating
the excision of LexA repressor and allowing access to all promoters, operons,
and genes involved in DNA damage response. Interestingly, when the repressor
is inactivated, the transcript levels of recA gene increase 50-100 times compared
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to normal conditions.
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Figure 1.4: SOS response in E.coli. A)When the DNA is severely damaged,
DNA duplication is blocked and the number of single-chain breaks increases.
The RecA protein binds to single-stranded damaged DNA and acquires
protease activity. B) RecA protein facilitates the self-cleavage and inactivation
of the LexA repressor. Then, the SOS genes are transcribed. Created with
BioRender.com (2020).
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1.1.2 Transcription overview in Eukaryotes

The initiation of transcription is a pivotal moment of gene expression in both
prokaryotes and eukaryotes. Both in bacteria and in eukaryotes, promoters
are DNA sequences where RNA polymerase binds and initiate transcription of
specific gene.
In eukaryotes, transcription factors(TFs) are DNA binding proteins equivalent
to bacterial repressors and activators. Typically, transcription activators and
repressors contain a single DNA-binding domain and one or a few activation or
repression domains, respectively. The most common structural motifs found in
the DNA-binding domains are the C2H2 zinc finger, homeodomain, helix-turn-
helix (HTH), and basic zipper (leucine zipper). Differently from prokaryotes,
transcription control elements in eukaryotes are often located tens of thousands
of bases far away from the promoter that they regulate. These cis-acting
elements which allow to stimulate or repress eukaryotic promoter are namely
enhancers and silencers, respectively. The cooperative binding of multiple
activators close to an enhancer forms a multiprotein complex called enhanceosome
[14]. Different from bacteria, eukaryotic cells have three different nuclear RNA
polymerases, named I, II and III, that transcribe distinct classes of genes:

• RNA polymerase I (RNAPI): transcribes genes encoding precursor rRNA
(pre-rRNA), the three largest species of rRNAs (28S, 18S, and 5.8S).

• RNA polymerase II (RNAPII): transcribes all protein-coding genes,
microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) involved in
regulation of gene expression.

• RNA polymerase III (RNAPIII): synthesizes tRNAs, the smallest species
of ribosomal RNA (5s rRNA) and other short and stable RNAs involved
in splicing and protein transport.

Although eukaryote transcription is more complex than prokaryote transcription,
RNA polymerase II exhibits striking structural similarities [15]. This suggests
that the mechanism used to transcribe DNA to RNA is highly conserved among
different species. Structural domain analysis within RNAPII revealed the
presence of a major subunit with a carboxy-terminal domain (CTD) consisting
of 52 repeats of 7 amino acids (consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-
Ser). During the transcription cycle, the aforementioned domain CTD is
subject to extensive post-translational modification which regulates its
activity[16]. The promoters of many genes transcribed by polymerase II contain
a TATA box (consensus sequence TATAA) located 25-30 nucleotides upstream
of the transcription start site.
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The TATA box is the most common core promoter element and is prevalent in
rapidly transcribed genes [17].
This consensus sequence is recognized by transcription factor TFIID which
is constituted of multiple subunits, including 38-kDa TATA-binding protein
(TBP) and thirteen TBP associated factors (TAFs).
The complex TFIID-TATA acts as catalizator by adding the other transcriptional
factors sequentially. The preinitiation complex (PIC) includes RNA polymerase
II and six general transcription factors: TFIIA, TFIIB, TFIID, TFIIE, TFIIF,
and TFIIH.
The ATP-dependent helicase activity of the TFIIH subunit allows to separates
the template strands at the start site in most promoters [18].
Figure 1.5 summarizes the stepwise of transcriptional Initiation in eukaryotic
cells.
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Figure 1.5: Transcriptional Initiation. Assembly of eukaryotic preinitiation
complex (PIC) is stimulated in response to activator binding to enhancer,
which in turn recruits mediator, which interacts directly with CTD of RNAPII
and TFs. Adapted from BioRender.com (2020).

Before the start of transcription, the CTD domain of RNA polymerase II is
not phosphorylated but associated with a large protein complex (mediators)
which serves as a functional link between TFs bound to enhancer and the basal
transcriptional complex. Once the complex is complete, the RNA polymerase
II begins transcription and is phosphorylated on the Ser 5 residues of the
CTD by Transcription Factor IIH (TFIIH). After mediator interacts with the
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CTD of RNAPII, it undergoes a conformational change and is released when
elongation phase begins. Mediator functions are related to chromatin structure
and enhancer-promoter contacts [19]. It also has been observed that mutation
in Saccharomyces Cerevisiae genes product belonging to the mediator complex
causes block of transcription (SRB loci) [10].
The initial phosphorylation of CTD recruit DRB Sensivity Inducing Factor
(DSIF), which in turn recruits NELF (Negative Elongation Factor), which
forces RNA polymerase to stop transcription; First, the capping complex
interacts with DSIF and then with the phoshorylated CTD. At this time, the
cap is added at the 5 'end; DSIF turned into a positive elongation factor upon
phosphorylation by positive transcription elongation factor (P-TEFb), which
is recruited by the capping complex. P-TEFb phosphorylates both the Ser 2
on the CTD and DSIF. Through the last modification, the RNA polymerase
II stall complex disassembles, and it can thus restart the elongation of the
transcript.
These phases can be further dissected into distinct biochemical steps, each of
which can become a regulatory level. To understand how regulation occurs
at the level of a gene, it is necessary to identify which steps represent the
"rate-limiting steps " and analyze how activators and repressors act on them.

Regulation of transcription: eukaryotic model

Transcription of eukaryotic genes is controlled by proteins that bind to regulatory
sequences, which can be located either near promoters or in distant enhancers.
Both activators and repressors can regulate transcription at the level of formation
of a preinitiation complex, e.g. by binding with the mediator of
transcription complex who then binds to RNAPII and directly regulates assembly
of transcription preinitiation complex. Eukaryotic transcription is regulated
at elongation step as well as initiation steps, by direct modulation of RNAP
activity and by effects on chromatin structure.
Several studies have shown that the recruitment of RNAPII and its stalling
from 20 to 50 nucleotides downstream of the transcriptional start site (TSS) of
genes are key steps for the transcriptional regulation. Then, the pause of the
polymerase II downstream of the TSS is not only functional in determining
the capping of nascent transcript, but represents a first fine mechanism for
controlling the level of transcription of the genes [20]. The escape of paused
Pol II into productive elongation is tightly regulated in relation to the response
to an environmental stimulus or to embryonic differentiation, in which a very
high response speed is required [21]. Transcription elongation is dependent on
activity of P-TEFb and its recruitment represents the major regulatory step
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in the control of this phase [22]. As mentioned above, in eukaryotic cells the
gene expressions are also largely controlled by chromatin-regulating proteins.
Eukaryotic DNA is packaged into chromatin and its basic structural unit is
the nucleosome. It contains 147 bp of DNA wrapped tightly around a central
octamer composed of two copies of each of the four core histones H2A, H2B,
H3, and H4 [23]. The transcriptionally active regions tend to have few H1
histones and it is rich in the histone variants H3.3 and H2AZ. About 10% of the
chromatin is found in a more condensed form and is transcriptionally inactive.
In order for the RNA polymerase and TFs to bind the gene’s regulatory regions,
they must be accessible. The chromatin structural changes are generated by a
process called chromatin remodeling. Acetylation and methylation of histones
are part of this processes. During transcription, H3 is methylated at Lysine 4
at the 5 'end of the coding region and at lysine 36 present in the coding region.
These methylations facilitate the binding of HAT (histone acetyltransferase),
enzymes that acetylate lysine residues. Acetylation of the side chains of specific
lysine residues is crucial for the interaction of nucleosomes with other proteins.
The acetyl groups are negatively charged and neutralize the positively charged
histones that slowly lose affinity for the negatively charged DNA, by relaxing
chromatin structure. When the transcription of a gene is no longer required,
the degree of acetylation of adjacent nucleosomes is reduced by the action
of HDACs (histone deacetylase), returning chromatin to a transcriptionally
inactive state.

1.1.3 Translation overview

Translation is the process by which polypeptide chains are produced using
a molecule of mRNA as a template. Although the machinery complex of
translation is highly conserved, several differences are known between prokaryotic
and eukaryotic cells. In particular, differences have been detected in the signals
that determine the positions at which synthesis of a polypeptide chain is started
on an mRNA template [24]. mRNA is composed of two untranslated regions
(UTRs) placed at the extremities of the mRNA and of a central region, the
coding sequence (CDS), that contains the information for synthesizing the new
protein (See Figure 1.6). Translation is performed by a ribosome, consisting of
ribosomal RNA (rRNA) and a set of distinct ribosomal proteins, arranged in
two ribosomal subunits: small (SSU) and large (LSU). The bacterial ribosome
is composed of about 65% of rRNA and the remaining 35% of proteins. The
size of bacterial ribosome is 70S with the small subunit (30S) is composed of
the 16S rRNA and 21 ribosomal proteins (RPs) and the large subunit (50S)
consisting of the 23S and 5S rRNAs and 34 RPs ( See Figure 1.7).



1.1. From DNA to RNA 15

Prokaryotic mRNA 

Single translations start site 

Protein 1 
5'  m 7  G 

UTR UTR 
AAAA (n)   3' 

Eukaryotic mRNA 

5' 3' 
UTR UTR Protein 1 Protein 2 Protein 3 

Multiple translations start site 

Figure 1.6: Prokaryotic and eukaryotic mRNAs.
Prokaryotic and eukaryotic mRNAs have untranslated regions (UTRs) at their
5'and 3'ends. Prokaryotic mRNAs are frequently polycistronic while eukaryotic
mRNAs encodes a single protein. In addition, Eukaryotic mRNAs also contain
5'7-methylguanosine (m7G) caps and 3'poly-A tails. Red arrows indicate
translations start sites. (Created with Biorender).

Figure 1.7: A comparison of the structures of prokaryotic and eukaryotic
ribosomes.
Prokaryotic and eukaryotic ribosomes are commonly designated as 70S and
80S, respectively. The unit "S" stands for Svedberg, a coefficients measuring
its sedimentation time during ultracentrifugation.

Differently, eukaryotic ribosome is a complex macromolecular machine formed
of 4 rRNA species and 80 RPs. The mature ribosome is composed of the small
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40S subunit, containing the 18S rRNA and 33 RPs and the large 60S subunit
containing the 28S, 5.8S, and 5S rRNAs and 47 RPs (Figure 1.7).
The large subunit of the ribosome contains three active sites where the translation
occurs, capable of binding tRNA molecules, carrying amino acids which will
form a peptide. The aminoacyl-site (A-site) binds aminoacyl-tRNA (aa-tRNA,
a tRNA with an amino acid attached to its 3 'end), the peptidyl bond between
two amino acids is formed at the Peptidyl-site (P-site) while Exit site (E-site)
binds free tRNA before it exits the ribosome. The peptide moves through
the exit tunnel, which spans from the P-site to the cytoplasmic surface of the
large subunit of the ribosome. Each site can accommodate a single tRNA.
tRNA has two distinct ends, one of which binds to a specific amino acid,
and the other which binds to the corresponding mRNA codon or triplets in
the mRNA. The 3 'end of all tRNAs have the sequence CCA, and amino
acids are covalently bound to the terminal adenosine by a family of enzymes
namely aminoacyl tRNA synthetases. The relationship between triplets and
amino acids is contained in the genetic code that is highly conserved among
all organisms [25].
The translation process is composed of three main phases: initiation, elongation,
termination. The initiation represents a rate-limited step of the translation
process and will be discussed separately between prokaryotic and eukaryotic
organisms, while the general steps of translation process, applicable for both
prokaryotes and eukaryotes, are summarized in Figure 1.8.
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Figure 1.8: Phases of translation. 1) Initiation: mRNA binds to the small
ribosome subunit. The ribosome moves along the mRNA in the 5 'to 3
'direction until it encounters the start codon. As the start codon is recognized,
the ribosomal subunits are assembled together. 2) Elongation: a peptide bond
is formed on the nascent chain in the P-site. The ribosomes then move one
codon towards the 3 'direction. 3)Termination: Once the ribosome hits a stop
codon, a release factor binds in the P-site. The polypeptide chain is released
and the subunits of ribosome are disassembled.

Translation Initiation in Prokaryotes

In bacteria transcription and translation are coupled and a mRNA is being
translate on ribosome before their transcription is complete, since no nuclear
membrane separates these processes. In both prokaryotic and eukaryotic cells,
the AUG start codon signal usually represents the start of translation. The
selection of alternative start codons by the small ribosomal subunit can also
occur in E.coli even though it causes a less efficient translation [26]. Initiation
sites in prokaryotic mRNAs are characterized by the Shine-Dalgarno (SD)
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sequence (5'AGGAG 3') 5-8 nt upstream from the initiation codon. It binds
specifically to a complementary conserved sequence motif in the 3'end of the
16S rRNA, the so-called anti-Shine-Dalgarno sequence (3 'UCCUC 5') [27].
Bacterial ribosomes can start translation not only at the 5'end of an mRNA
but also at the internal initiation sites of polycistronic messages, as depicted
in Figure 1.6. The ribosomal small subunit complexes with three initiation
factors (IF1, IF2 and IF3) and Met-tRNA, recruits the mRNA and recognizes
the start codon, forming the 30S initiation complex. In particular, IF1 and
IF3 act together to prevent premature association of 50S subunits. [28]. The
start codon on the mRNA template is then recognized by the anticodon loop of
tRNA. Once the complex joins the 50S ribosomal subunit, the IF2-GTP bound
determines the hydrolysis of GTP to GDP and P, causing a conformational
change in IF2 and the detachment of all three factors from the ribosome.
Therefore, the correct binding of fMet-tRNA to the P site of the 70S initiation
complex is ensured by the presence of at least three points of recognition:
the codon-anticodon interaction; the interaction between the SD sequence and
rRNA 16S; the binding interaction between the P site of the ribosome and
fMet-tRNA. The result is the formation of a 70S initiation complex which is
ready for the elongation phase of protein synthesis.

Translation Initiation in Eukaryotes

Before a mRNA is ready to be translated into a protein in eukaryotic cells, it
has already been processed by (1) capping, a process involved in the attachment
of 7-methylguanosine residue to the 5’ terminal of the transcript (5’cap), (2)
polyadenylation that allow the addition of poly-adenosine (Poly-A) tail to the
3’end of the transcript, (3) RNA splicing that refers to the removal of non-
coding RNA introns and the joining of exons to form the mature mRNA and (4)
optional modifications. The poly(A) tail is bound by multiple poly-A binding
proteins (PABP), a protein family consisting of four RNA-recognition motifs
(RRMs) and a C-terminal region containing a peptide binding region known
as the PABC domain [29]. Besides to protect the mRNA from degradation by
interacting with the poly (A), several studies have demonstrated that PABP
proteins can interact through its PABC domain with other regulatory sequences
and perform different functions inside the cell, e.g. control of mRNA stability,
export, surveillance of transcripts, miRNA activity [30]. Interestingly, some
eukaryotic and viral mRNAs (e.g. hepatitis C virus) have internal ribosome
entry sites (IRESs) in which the translation can initiate independently of
the 5 'cap, by direct engagement of the small subunit of ribosome [31]. In
eukaryotes translation occurs in the cytoplasm, making this process uncoupled
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from transcription. Eukaryotic initiation factors (eIFs) promote the binding
of the mRNA and methionyl-tRNA to the small subunit (40S), giving rise
to the pre-initiation complex 43S. In more detail, the 5 'cap of the mRNA is
recognized by eIF4E. The pre-initation complex binds with a mature mRNA by
addition of eIF4F and PABPs, resulting into the initiation complex 48S. During
this phase, the small subunit scans the mRNA to identify the initiation codon.
Once the 40S reaches the initiation start site, eIF5 triggers the hydrolysis of
GTP bound to eIF2 inducing its release. Then, the 60S subunit joins the 48S
complexes and 80S ribosome is assembled. After the initiation complex has
formed, translation proceeds by elongation of the polypeptide chain.

Elongation

The elongation process involves the formation of a complex consisting of the
aminoacyl-tRNA, elongation factors and GTPs. The ribosome reads the ORF
moving towards its 3'end by three nucleotides at a time, adding at each
step the correct amino acids to the nascent peptide chain. Then, it involves
repetitive cycles of decoding, peptide bond formation, and translocation. The
basic mechanism is very similar in bacteria and eukaryotes, it is facilitated
by homologous elongation factors (EF-Tu, EF-G, EF-P, SelB for bacteria and
eEF1α, eEF2, eIF5A, EFsec for eukaryotes). During the elongation phase,
the correct amminoacyl-tRNA binds to the EF-Tu-GTP forming the so-called
ternary complex. The resulting aminoacyl-tRNA-EF-Tu-GTP complex binds
to the A site of the 70S initiation complex. This leads to a conformational
change that induces hydrolysis of GTP bound to EF-Tu/eEF1α and release
of elongation factor from the ribosome. Once EF-Tu/eEF1α has left the
ribosome, a peptide bond is formed between the second aminoacyl-tRNA at
the A site of initiator and methionyl tRNA at P-site, by peptidyl transferase
activity. Generally, the selection of the correct aminoacyl tRNA for its incorpo-
ration into the growing polypeptide chain represents a crucial step to determines
the efficiency of protein synthesis [32]. The final step of the elongation cycle
is defined translocation. It allows the next codon to move into the decoding
center. [33]. During translocation, the ribosome moves by one codon toward
the 3 'end of the mRNA, positioning the next codon in an empty A site. This
movement translocates the peptidyl tRNA to the P site and the uncharged
tRNA to the E site, leaving an empty A site ready for addition of the next
amino acid. Translocation is mediated by eEF2, coupled to GTP hydrolysis
[34]. Finally, EF-G/eEF2 and the tRNA are released and another cycle can
start. The speed of elongation phase is not uniform and multiple upstream
factors can influence it (e.g. codon usage).
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Termination

Elongation of the polypeptide chain continues until a stop codon (UAA, UAG,
or UGA) is translocated into the A site of the ribosome. Then the release
factors recognize these signals and terminate protein synthesis. In bacteria,
two release factors termed RF1 and RF2 read UAG/UAA and UGA/UAA
codons, respectively. A third factor, RF3, promotes turnover of the other two.
In eukaryotes, all three stop codons are recognized by a single release factor
namely eRF1 [35]. Subsequently, the ribosomes leaves the stop codon and may
be recycled.
It is interestingly to highlighted that the process of translation is not limited to
the conversion of mRNA into protein, it also regulates the effective composition
of the proteame, in a coordinated and reactive way.

1.1.4 Translation control in prokaryotes

Once the mRNA is synthesized, its function can be modulated by a
heterogeneous group of molecules called RNA regulators that also include
small RNA (sRNA) and riboswitches. sRNAs are trans-acting factors that
exert their regulatory function by binding to a specific sequence in the mRNA
target inhibiting its translation. The majority of sRNAs regulate responses
to environmental changes and a well-characterized example is represented by
OxyS, oxidative stress response regulatory protein. OxyS functions to prevent
the expression of unnecessary repair pathways by inhibiting the synthesis of
rpoS (sigma factor of RNA polymerase) through antisense mechanism [36].
Transregulatory elements include RNA binding proteins (RPB) and non coding
RNAs, increasing the complexity of regulatory mechanisms. Another class of
RNA regulators is represented by riboswitches. Riboswitches are regulatory
sequences encoded within the mRNA itself (usually at the 5’ end of mRNA)
that bind metabolites or metal ions and regulate mRNA expression by forming
alternative structures in response to ligand binding. Since the regulatory
sequence is encoded within the same mRNA molecule that also encode the gene
which expression has been affected they are called cis-acting elements. The
binding of a bio-switch to its specific ligand causes a conformational change
in the mRNA and the inhibition of translation due to the stabilization of a
premature termination structure [37].

1.1.5 Translation control in Eukaryotes

The latest findings underline the complexity of protein synthesis and show how
translational regulatory mechanisms may acting both in cis through specific
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sequences within the mRNA molecule, different usage of the codons and
secondary stable structures formation and in trans through the binding of
ncRNA and RNA binding proteins (RBPs) [38]. The initiation phase strongly
depends on RBPs which play a key role in controlling various aspects of
transcript fate and metabolism, including transcript degradation and its stability
[39]. It has been shown that abnormalities in the expression of RBPs can
promote malfunctions at the level of RNA stability in several types of diseases,
including multiple sclerosis and cancer [40, 41]. In response to stress stimuli,
eukaryotic cells activate an adaptive pathway termed Integrated Stress Response
pathway (ISR) that inhibits pre-initiation complex formation. As evidenced
in [42] all stress stimuli like amino acid deprivation and oncogene activation
converge to eIF2α phosphorylation, leading to a decrease in global protein
synthesis. Among the regulatory mechanisms described above, codon usage
bias has been object of different studies due to its potential role in modulating
gene expression levels in both eukaryotes and prokaryotes. The term codon
usage bias refers to different frequency of synonymous codons which codify
for the same aminoacid. Recently, the concept of "codon optimality" has
been defined and allows to discriminate between optimal codons encoded with
high speed, and non-optimal codons which are slowly translated [43]. Optimal
codons are decoded by abundant tRNA and are found mainly in high expressed
gene in E.coli and eukaryotes. Non-optimal codons are associated with secondary
structures like as inter-domain linker regions and are recognized by less abundant
tRNAs . The presence of rare codons represent an efficient mechanism able to
stall the elongation phase, leading to the premature termination of translation
[44]. In addition, codon usage can also influence splicing, and polyadenylation
process [45]. A bioinformatics approach has been employed to investigate the
role of codon usage in translation process. It reveals that optimal and non-
optimal codons are clustered in different region of mRNA to optimize the
translation efficiency. In particular, it has been evidenced that non optimal
codons are widely used to slow translation in order to facilitate the correct
folding of the proteins in regions where errors in co-translation folding are more
costly. [46]. In addition, a recent study highlighted the effect of codon context
on translation process, in Salmonella enterics. It has been demonstrates that
the rate of translation of the UCA codon, encoding Serine, is also modulated
by neighboring codon’s position [43].
Although several studies have deepened the mechanisms by which codon usage
affects translation speed, they remain still unclear and elusive [47].
The relative density of ribosomes and the speed at which they move along the
mRNA template has been challenged by recent Ribosome profiling (Ribo-seq)
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studies. The Ribo-seq technique will be described in the next chapter.

Translation deregulation during tumorigenesis

Translational control has a significant impact on eurkaryotic cellular functions
and thus plays an important role in modulating the expression of many genes in
response to stress conditions. Disregulation of translation control is implicated
in a wide range of diseases, including cancer. Highly proliferating cancer cells
required rapid and continuous protein synthesis that can be associated with
1) altered expression of genes encoding proto-oncogenes such as c-MYC, RAS,
mTOR, 2) inhibition of tumor-suppressor genes such as TP53, PTEN, RB1 and
3) modification of translation initiation factors. Misregulation of translation
initiation is the major contributing event in tumorigenesis [48]. The formation
of the complex containing the initiation factors eIFs and the binding of the
small ribosomal subunit to the 5'mRNA cap structure represents two crucial
steps of regulation of translation. Normally, the eIF2 activity is regulated by a
mechanism involving both guanine nucleotide exchange and phosphorylation.
During stress condition, serine kinase proteins (PERK, PKR, HRI, and GCN2)
phosphorylate eIF2α subunit at Serine 51. Guanine nucleotide exchange factor
(GEF) eIF2B, can exchange GDP to GTP only when eIF2α is unphospo-
rylated. Once phosporylated, eIF2α sequesters eIF2B and cannot return to
their active state, thereby hindering the ternary complex.
Differently, a constitutively expression of elF2α is observed across different
cancer types, including non-Hodgkins lymphomas [49]. At the same time,
downregulation of elF2α kinase like eIF2α kinase heme-regulated inhibitor
(HRI) can be implicated in tumori-genesis and promotion of cancer growth [50].
Other initiation factors are strongly involved in malignancy: For instance, high
levels of eIF4E is an indicator of poor prognosis in luminal B breast cancers,
suggesting that it could be a potential breast cancer biomarker and therapeutic
target [51]. Its overexpression is associated with the upregulation of huge
number of proto-oncogenes, like component of cell cycle machinery (c-Myc,
Cyclin D1, CDK2), growth factors implicated in angiogenesis (VEGF, FGF-2,
PDGF), and proteases involved in the process of tumor invasion ( MMP-3 and
MMP-9) [48] [52]. Although several studies have been done in this field, the
responses caused by different regulatory mechanisms affecting mRNA are still
unclear.
In the following chapter, we will focus on the Ribosome profiling approach,
which allows assessing ribosome occupancy along the ORF, in order to investigate
the translation status of different transcripts, how the translation is regulated,
where it occurs, as well as the study of the roles of specific translation factors.
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Ribosome Profiling

2.1 Ribosome profiling

In this section, we present Ribosome Profiling (Ribo-seq) technique [53] which
represents the most advanced tool able to exploits deep sequencing to study the
translation of gene expression. The correlation between mRNA and protein
levels is frequently poor due to the sophisticated regulation mechanisms of
translation [54]. Ribo-seq approach investigates the translation status of different
transcript at single nucleotide resolution, providing a global measurement of
the translation in vivo. The general idea of this approach is based on the
fact that each ribosome covers a short fragment around 28-30 nucleotides of
translated mRNA [47]. Ribo-seq consists in the blockage of the translation
process (elongation phase) in living cells, followed by nuclease digestion of
the mRNA not covered by ribosomes. The remaining mRNA fragments, called
Ribosome Protected Fragments (RPFs), are used to infer the ribosome’s precise
location. Deep sequencing are performed to characterizes the pool of RPFs
and measure the abundance of different sequences. Once the sequences are
processed and aligned to the reference transcriptome, Ribosome Profiles are
generated and the number of reads that cover each nucleotide along the ORF is
calculated. Aligning the sequenced reads back to the transcriptome produces a
quantitative profile of ribosome occupancy. Therefore, Ribo-seq can reveal the
composition and regulation of the expressed proteome by identifying transcripts
undergoing active translation.

2.1.1 Protocol

A typical Ribo-seq experiment consists in the following steps (See Figure 2.1):
Lysis: Cells or tissue are mainly lysed using a lysis buffer containing
Cycloheximide (CHX), which freezes ribosomes in the act of translation (other
translational inhibitors are Harringtonine and Lactimidomycin [1].
Nuclease Footprinting: Nuclease digestion of the mRNA sequences
unprotected by bound ribosomes is performed by using an endonuclease such
as RNAse I. This process leaves ribosome intact and it is followed by recovery
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Figure 2.1: Ribosome Profiling overview. The positions of Ribosome on
different mRNA templates are converted in ribosome footprints (RPFs) by
nuclease treatment. These RPFs are converted into a DNA library and
subjected to deep sequencing. RPFs typically cover coding DNA sequence.
(Created with BioRender).

of the ribosome-protected fragments (RPFs).
Purification of protected fragment: RPFs can be purified using a sucrose
density gradient or sucrose cushion ultracentrifugation.
rRNA depletion: Ribosomal RNA (rRNA) composes the majority of total
RNA preparations. Different strategies can be applied to remove rRNA, including
the use of specific beads with the RiboZero method. This protocol involves
steps of washing and resuspention of magnetic beads that bind to removal
probed hybridized to rRNA, allowing its removal. It produces an RNA sample
ready for library preparation and for deep sequencing.
Size selection: Ribosomes leave 30 nt footprints when they are bound to
mRNAs that can be extracted using PAGE (poly-acrylamide gel electrophoresis).
Library preparation and Sequencing: RPFs are recovered and converted
into a DNA library. Reverse transcription (RT) and then PCR amplification



2.1. Ribosome profiling 25

are performed. To add the adapter sequences, the 3'end of the fragments must
be phosphorylated. After adapter ligation, cDNA libraries are analyzed by
deep sequencing.
Computational analysis: The fragments are then mapped to the appropriate
reference genome. Typically, the ribosome footprints show precise positioning
between the start and the stop codon of a gene (coding sequence).
A modified protocol to isolate mitochondrial ribosomes has been also established
[55]. The abundance of mtrRNA is extremely variable and it depends on cell
type and stages of differentiation [56].

To globally measure translation in vivo at single nucleotide resolution, the
original Ribo-seq protocol requires a high amount of RNA material, usually
corresponding to tens of million cells. Recently, a new library construction
strategy has been employed to generate mouse brain tissue data. It is based
on skipping the adapter ligation step, using a much lower amount of input RNA
material ( 1 ng of purified RNA footprints) [57]. Although the high amount of
input data required and a lengthy protocol (> 5 days), Ribo-seq experiments
have been applied to different organisms, including bacteria, plants, viruses
and human cells/tissues [1, 53, 58].
The application of this method to a different number of organisms subjected
to different conditions, from deprivation of nutrients in bacterial cells to
development of cancer in human cells, has allowed to investigate fundamental
aspect of cell biology. Ribo-seq provides measurement for how the translation
is regulated, what is being translated and where a specifics protein is translate.
Several studies have highlighted the discovery of translation mechanisms and
investigated the roles of specific translation factors, in different organism [59, 2].
For instance, the function of dom34 in yeast cells (a homologue of eukaryotic
release factor 1) in freeing ribosomes from truncated transcripts in 3 'UTR [60].
Ribo-seq experiment has been adapted to identify non-canonical translation
events, including upstream open reading frames (uORFs) which regulate the
level of downstream protein coding genes [48]. In addition, Ribo-seq experiments
have provided novel insights into molecular mechanisms of miRNAs.
For instance, they can affect mRNA abundance and translation of target genes
by repression and inducing mRNA decay, as evidenced in [61]. Interestingly,
Ribo-seq data reveal the density of the ribosomes at each position along the
mRNA and events that can influence the translation dynamics (like as, e.g.,
tRNAmodification, codon mutation) can be detected by producing a quantitative
profile of ribosome occupancy. As mentioned above, the cells are treated with
translation elongation inhibitors in order to capture the exact positions of the
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ribosomes on the coding sequence.
A Ribo-seq experiment allows to reveal regions of higher and lower ribosome
density along mRNA template. Local differences in the density of RPFs along
the ORF reflect differences in the speed of translation elongation, determining
regions where the translation is slower and faster (See Figure 2.2). This

slow elongation fast elongation 

high ribosome density low ribosome density 

Figure 2.2: Ribosome footprint density along mRNA. The schematics
distribution of translating ribosomes along mRNA (top) and their ribosome
profiles (bottom). Ribo-seq data show differences in the density of ribosomes:
regions of fast elongation accumulate fewer ribosomes (slow density) than the
region of slow elongation (high density). (Created with BioRender).

schematic figure illustrates how the translation speed is not uniform, pointing
out the differences in ribosome occupancy. This information are well visible in
Ribo-seq profiling data and it can be used to infer how the codon usage, the
protein sequences and other features can regulate the speed of translation [62].

Unfortunately, the reproducibility of Ribo-seq experiments can be affected
by multiple variables due to the complexity of the experimental protocol and
computational data analysis [63]. In particular, a critical issue is the choice
of the translation elongation inhibitor and nuclease treatment. Indeed, it is
known that an inhibitor such as cycloheximide can alter the local distribution of
RPFs, causing spurious peaks near the initiation site. Nuclease such as RNAse I
potentially compromises the stability of the ribosomal structure. Interestingly,
it has been found that the use of this nuclease in Drosophila Melanogaster
leads to a degradation of the ribosome while it not detected in budding yeast.
Alternatives nucleases are considered, such as Nuclease S7 [64].
This thesis is inspired by the idea to exploit the full power of the Ribosome
Profiling technique, trying to overcome the aforementioned limitations by
introducing a newly designed statistical method.
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In the following chapter, we will describe the fine-tuning of a novel data analysis
approach for Ribo-seq data that will identify the reproducible Ribo-seq profiles.
To this aim we will take advantages from publically available dataset of E.coli
and we will compare different Ribo-seq datasets referring to experiments
performed independently in different laboratories.





Chapter 3

Method

Our analysis of the ORF-specific Ribo-seq profiles consists of two phases, that
were originally introduced in [3].

3.0.1 Upstream phase

The upstream phase allows us to compute the Ribo-seq profiles starting from
the raw Ribo-seq data. The sequence for each read is provided in a fastaq file.
The overall quality of our sequences is encoded in a Phred score (Q-score),
which represents the estimated probability of an error, i.e. that the base is
incorrect. The fastq data is filtered using CUTADAPT (release 1.8.3) in order
to keep only high quality reads with Q-score ≥ 40. Moreover, the Ribo-seq
protocol produces short RNA sequences and, the 3’ adaptor sequence needs to
be trimmed from the remaining reads, in order to obtain the exact footprinted
RNA fragment. Furthermore, the reads which are shorter than 15 nucleotides
are discarded to reduce the prevalence of multi-mapping errors. The reads
originated from rRNAs and tRNAs sequences are identified and filtered out
by aligning the reads to bacterial rRNA and tRNA sequences using Bowtie2
aligner (release 2.2.5) with no mismatch allowed [65]. To reconstruct the Ribo-
seq profiles, the remaining reads are mapped against the whole set of coding
sequences (CDS) in E. coli K12 MG, taken from the EnsemblBacteria database
[66]. Among the reads that mapped on the reference ORFs we selected the ones
those are mapped with the highest score possible for Bowtie2, using a mapping
quality (MAPQ) equal to 42. To assess the quality of the reads before and
after trimming we used fastqc tool [67]. After the mapping was complete, we
get the alignments reported in the Sequence Alignment Map (SAM) format
file, containing the genomic position where our reads are mapped and their
mapping statistics, including mapping quality score which recorded in the fifth
column. In our experiment, we extracted and counted the number of reads
mapping to each gene/region from SAM/BAM alignment file using bedtools
[68]. Therefore the genomics coordinates are stored in a BED file to build the
Ribo-seq profiles representing the input of the subsequent analysis.
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Figure 3.1: Bioinformatic pipeline used for processing Ribosome Profiling
data in our study.

3.0.2 Downstream phase

The downstream phase is the most important step of our method because we
can appraise the similarity and difference between Ribo-seq profile coming from
different dataset with a statistical approach. All the procedures described are
implemented through a custom script in the ‘Python environment’.
Our method is articulated as follows:

Signal digitalisation strategy

To make the pairwise comparison of ORF-specific Ribo-seq profile coming
from different datasets, we decided to proceed as follows. Each ORF can be
associated to a specific Ribo-seq profile, an histogram that counts the number
of reads that cover each nucleotide position. After calculating the median
of the coverage values at each nucleotide, we assign +1 or -1 to the position
having a coverage value higher or lower than the median, respectively. Each
Ribo-seq profile is converted into the corresponding digitalised profile that is
a vector of the length of the associated ORF, made by a sequence of -1 and
+1. Figure 3.2 illustrates an example of Riboseq profile and the correspondent
digitalised profile.

Comparison of the digital profiles

Digital profiles are used to quantify similarities and difference between riboseq
profile of different dataset referring to the same ORF. A similarity score (si,k)
is assigned to each pairwise comparison. It is computed by aligning each pair of
digital profile and counting the number of times(n) that the same value (+1 or
-1) appeared in the same position in both profiles and dividing the sum (n) by
the length of the corresponding ORF. Mathematically, the similarity score can
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Figure 3.2: Example of a Ribo-seq profile (top figure) and the correspondent
digitalised profile (bottom figure) for the gene ispB (EG10017) taken from E.
coli dataset 1 (detailed in table 4.1). Red horizontal line (top): median of the
Ribo-seq profile; y-axis (bottom): y-coordinate of the digitalised profile (+1:
the corresponding coverage value is above the median; −1: the corresponding
coverage value is below the median).

be between 0 and 1, but two random and independent profiles, in general, would
give a score very close to 0.5. Figure 3.3 illustrates the pairwise comparison of
two Ribo-seq profiles. Table 3.1 illustrates an example of a matrix similarity
score. Similarity score has not statistically significant because each score has a
certain probability of being obtained by chance. Then, we developed a method
of two steps to give to similarity score a statistical significance.

Dataset 1 vs Dataset 2 Dataset 1 vs Dataset 3 ...
alr 0.5 0.6 ...

modB 0.6 0.8 ...
cysZ 0.7 0.5 ...
dfp 0.5 0.7 ...
fruB 1 0.6 ...
... ... ... ...

Table 3.1: Illustrative example of a matrix similarity score. For the sake of
readability, only two pair comparison between Dataset 1 and Dataset 2 are
reported here.
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Figure 3.3: Pairwise comparison of two Ribo-seq profiles. Left: Two
independent Ribo-seq profiles obtained by computing the coverage at each
nucleotide position within the same ORF are compared to the median coverage
to produce the digital ±1 profiles on the right. Blue horizontal lines (left side):
median coverage. Right: The digital profiles can be easily compared to detect
matches (e.g. green rectangle) and mismatches (e.g. red rectangle). The ratio
between the number of matches and the total number of nucleotides in the
ORF gives the matching score.

A data-driven hypothesis test to assess the reproducibility of Ribo-
seq profiles

Our strategy for assessing the significance of a given similarity score (si,k)
consists of two steps:

• Construction of the null model:

Given a pair of Ribo-seq profiles referring to the same ORF and coming from
two different experiments, e.g. the two profiles reported in Figure 3.2, the
null model (H0) represents the distribution of the similarity scores as they
would be if the matches and mismatches between the two profiles are due
to randomness. To build such a distribution, we consider the two sets of
reads those generated the Ribo-seq profiles in hand and we re-distribute them
randomly on the respective ORF, thus generating a pair of random Ribo-
seq profile. Starting from them and following the procedure used to create
the ORF-specific digitalised profiles, it is then possible to compute a pair of
digitalised random profiles. In turn, these profiles can be compared pairwise
according to the method explained above, thus obtaining a random similarity
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score.
Reiterating this process, we generated 104 pairs of random Ribo-seq profiles
and an equal number of digitalised random profiles that, compared pairwise,
yielded 104 random similarity scores. These scores are used to build a ORF-
specific null distribution which allows us to estimate the probability of obtaining
by chance each similarity score. It is worth to point out here that our way of
building the null distribution through a data-driven random process allows
us to formulate the null hypothesis taking solely into account the features of
the data without any further hypotheses or approximations. The workflow to
evaluate the significance of a given similarity score is shown in Figure 3.4.

Figure 3.4: .
Workflow for the derivation of matching score significance. For each gene, two
Ribo-seq profiles from independent dataset are digitalised and then compared
to obtain the real matching score (purple arrows). The RPFs of each dataset
are used to generate random profiles, which are digitalised and compared
pairwise to obtain a distribution of matching scores (yellow arrows).

• Mapping the similarity score on the null distribution:

Given a pair of Ribo-seq profiles, the similarity score arising from their comparison
is tested for significance by comparing it with the correspondent ORF-specific
null distribution, as depicted in Figure 3.5. For each si,k contained in the
scores matrix and the corresponding null distribution, we computed a z-score
zi,k, mapping each similarity score on a standard normal distribution through
the equation

zi,k =
si,k − µNi,k

σNi,k

(3.1)

where µNi,k and σNi,k are, respectively, the mean and standard deviation of
the Ni,k null distribution. Subsequently, we computed the p-value pi,k, as the
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integral:

pi,k =

∫ +∞

zi,k

NS(z)dz (3.2)

where NS(z) is the standard normal distribution. The results of this process
can be summarised into a matrix (call it p-values matrix, Table 3.2) containing
all the computed p-values and composed by one column for each pairwise
comparison and one row for each considered ORF. Each p i,k quantifies the
probability of obtaining a similarity score at least as extreme as the corresponding
si,k, given that the null hypothesis is true. In our context, the lower the p-
value, the lower the probability that the similarity between the compared pairs
of (digital) Ribo-seq profiles occur by chance.

Dataset 1 vs Dataset 2 Dataset 1 vs Dataset 3 Dataset 1 vs Dataset 4 . . .
alr 0.769298564 0.122368427 0.632263895 . . .

modB 0.165522551 0.056591384 0.601754757 . . .
cysZ 0.005770742 0.00011569 0.2021111 . . .
dfp 0.002343099 0.000384015 0.093624025 . . .
fruB 0.566785395 0.85548442 0.381131384 . . .
. . . . . . . . . . . . ...

Table 3.2: Representation of the p-value matrix. Each column corresponds to
a pairwise comparison between two datasets while each row contains the gene
ID. For the sake of readability, only three columns and 5 rows are reported
here.

Identification of the significantly reproducible Ribo-seq profiles

Our strategy consists in inspecting each row of the p-values matrix. We define
reproducible the Ribo-seq profiles referring to those rows featuring all the p-
values below a chosen significance threshold. To cast our strategy into a more
rigorous statistical framework, we exploited the False Discovery Rate (FDR)
concept and the Benjamini-Hockberg (BH) method correction for multiple
testing.
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MATCHING SCORE 

Figure 3.5: The null distribution for the gene ispB (EG10017) of E.coli. The
red arrow indicates the value of the real matching score obtained comparing
the Ribo-seq profiles.





Chapter 4

Analysing a broad-scale scenario: The E. coli
case-study

To illustrate how our method works, we report here the analysis applied to
E.coli’s Ribo-seq profiles. To this aim, we relied on the data stored in the
GEO repository [69]. The GEO coordinates for these datasets are reported in
the fourth and fifth columns of Table 4.1.
Firstly, our analysis regarded a subset of nine samples, each belonging to a
different series, that refer to experiments performed culturing wild-type E.coli
strains under control conditions.
Specifically, this subset includes samples obtained through experiments characterised
by K-12 MG1655 genotype and cultured in a MOPS-based medium.
Subsequently, in Chapter 7 we used the group of samples grown under normal
conditions as a benchmark and then we compared it to datasets with different
stress conditions like starvation or heat stress.
Table 4.1 summarizes the main features of the control series and the samples
contained therein. More precisely, we compared the datasets under control
conditions following our method previously described:

Dataset Genotype Culture’s medium GEO Series ID GEO Sample ID Ref

1 GSE64488 GSM1572266 [70]
2 GSE90056 GSM2396722 [71]
3 GSE72899 GSM1874188 [72]
4 GSE53767 GSM1300279 [73]
5 E.coli k-12 MG1655 MOPS, 0.2 % glucose GSE51052 GSM1399615 [74]
6 GSE77617 GSM2055244 [75]
7 GSE35641 GSM872393 [76]
8 GSE88725 GSM2344796 [77]
9 GSE58637 GSM1415871 [78]

Table 4.1: The Samples chosen for our analysis belonging to different GEO
Series. Column 1: ID Dataset. Column 2: Genotype. Column 3: Culture
media. Columns 4 and 5: Samples coordinates (GEO Series ID and GEO
Sample ID. Column 6: references.
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Quantifying similarities between Ribo-seq profiles: a signal digitalisation
strategy

Set up of the coverage matrix Firstly, we selected the 3534 ORFs in
common between all the nine datasets highlighted in Table 4.1. For each ORF
of each dataset, we generated a Ribo-seq profile which has collected into a
matrix, named coverage matrix. In this case, each matrix is composed of 3534
rows which correspond to the genes in common between the dataset, and the
number of columns corresponds to the length of the longest gene. In our case,
the longest is yeeJ, a bacterial Ig-like protein (long 7077 bp). In more detail,
each column corresponds to a single nucleotide position. Table 4.2 shows an
example of coverage matrix.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 ...
rodZ 0 1 2 3 4 8 45 46 47 47 ...
arcB 0 0 0 3 3 3 3 6 6 6 ...
dld 0 0 0 2 2 3 7 7 7 20 ...
dnaX 8 8 8 10 10 12 12 16 18 18 ...
fhuA 4 4 4 4 4 4 4 4 4 4 ...
... ... ... ... ... ... ... ... ... ... ... ...

Table 4.2: Representation of the coverage matrix obtained from the Dataset
1. For the sake of readability, only ten columns (nucleotide positions) and five
rows (genes ID) are reported here. The complete matrix is composed by 7077
columns and 3534 rows.

Elaboration of the digitalised profiles According to our method, each
Ribo-seq profile is digitalised: the coverage is compared with the median value
compute along the entire ORF. In this way, we obtained a vector containing a
sequence of -1 and +1 for each ORF.
Comparison of the digitalised profiles Subsequently, we compared pairwise
digital profiles in common between our subset of samples. We carried out
36 -

(9
2

)
comparison for each ORF. A matching score close to one reveals a

high degree of similarity of pairwise comparison. Differently, a matching score
around 0.5 could indicate those matches occurred by chance (random matches).
Assessment of similarity scores To check the statistical significance of the
matching score and to avoid that it is obtained by chance, we generated a
distribution of 104 random similarity scores, as previously explained. Each
null distribution fits very closely a normal distribution. For each dataset, we
computed the mean and standard deviations on 104 random coverage. Then,
we mapped the real scores obtained by comparing the real coverage matrices
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in the random distribution. The results of this process can be summarised
into a summary matrix containing 1) computed mean, 2) standard deviation,
3) zscores and 4) pvalue for each pairwise comparison for the same ORF (See
Table 4.3).

Mean:
Dataset 1

vs
Dataset 2

Std:
Dataset 1

vs
Dataset 2

Zscore:
Dataset 1

vs
Dataset 2

Pvalue:
Dataset 1

vs
Dataset 2

rodZ 0.536424063 0.057725514 3.571721991 0.000177321
arcB 0.515414848 0.036041052 3.508046211 0.000225705
dld 0.520227622 0.041626933 2.25794901 0.011974419

dnaX 0.526314545 0.039817469 2.952919859 0.001573918
fhuA 0.513242112 0.035942448 3.92145903 4.40E-05
... ... ... ... ...

Table 4.3: Representation of the summary matrix. Each column correspond
to a pairwise comparison between Dataset 1 and Dataset 2 (mean, standard
deviation, z-score and p-value).

Identification of reproducible Ribo-seq profiles For any given row of the
p-values matrix, we set an FDR threshold of 0.01. It means that we accept
1% of the reproducible profiles to be so by chance. Then, we counted in each
row how many p-values resulted significant according to the BH method, and
we defined reproducible those Ribo-seq profiles associated with the rows where
80% of the p-values are significant. Following this strategy, we found that out
of 3534 genes that are in common to 9 datasets, the 25 genes listed in Table
4.4 have a significantly reproducible Ribo-seq profile.

Samples quality check

To identify the samples affected by unpredictable bias, we applied a jackknife
approach on our dataset. Specifically, we repeated the entire
reproducibility analysis nine times, excluding each time one of the control
datasets. After this analysis, it turned out that when the GEO Sample ID
GSM1415871 belonging to the Series GSE58637 is excluded, the number of
reproducible Ribo-seq profiles raised from 25 to 40. We interpreted this result
as originating from a peculiarity of this experiment. Indeed, it is interesting
to note that the genes in common increase from 3534 to 3588, excluding the
sample GSM1415871.
Thus, we decided to keep out this Sample from the subsequent analysis, and we
considered the set of 40 genes as a benchmark. The list of reproducible genes
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Genes ID Annotation

rodZ Cytoskeleton protein RodZ
dnaX DNA polymerase III subunit tau
gltB Glutamate synthase [NADPH] large chain
infB Translation initiation factor IF-2
secY Protein translocase subunit SecY
purL Phosphoribosylformylglycinamidine synthase
rne Ribonuclease E
sucA 2-oxoglutarate dehydrogenase E1 component
tufA Elongation factor Tu 1
tufB Elongation factor Tu 2
hokB Toxic component of a type I toxin-antitoxin (TA) system
ubiJ Ubiquinone biosynthesis protein UbiJ
lptD LPS-assembly protein LptD
rpnC Recombination-promoting nuclease RpnC
rpnA Recombination-promoting nuclease RpnA
fdoG Formate dehydrogenase-O major subunit
wbbH O-antigen polymerase
wbbI Beta-1,6-galactofuranosyltransferase WbbI
rpnE Inactive recombination-promoting nuclease-like protein RpnE
lpoA Penicillin-binding protein activator LpoA
intR Putative transposase
rlmL Ribosomal RNA large subunit methyltransferase K/L
rsxC Electron transport complex subunit RsxC
yfcI Recombination-promoting nuclease RpnB
gtrS Uncharacterized protein YfdI; Putative ligase

Table 4.4: Genes with significantly reproducible Ribo-seq profiles using the
nine dataset listed in table 4.1. Column 1: Genes ID. Column 2: Annotation

across eight datasets is presented in Table. 4.5. For one of these genes, namely
ompC (EG10670), we show its profiles across all dataset as an illustrative
example (See Figure 4.1).
OmpC, also known as outer membrane (OM) protein C, is a porin of gram-
negative bacteria tightly associated with the peptidoglycan layer. It has been
recognized to have a crucial role in the non-specific diffusion of small solutes
such as sugars, ions and amino acids across the outer membrane or the cell [79].

The analysis of the control dataset confirmed the poor reproducibility of Ribo-
seq: only 40 genes of 3588 profiles could be defined as reproducible when eight
different datasets are considered. However, these analyses provide a small but
reliable reference set that can be used as a benchmark for comparative studies,
as we will illustrate in Chapter 7.
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Figure 4.1: Illustrative example of a significantly reproducible Ribo-seq
profile (gene ompC, EG10670)

Although is beyond the scope of this dissertation, we decided to deepen the
role and the features of the genes corresponding to these reproducible Ribo-
seq profiles. We investigated the functional implication of the 40 reproducible
genes and classified them by gene ontology categories (i.e. molecular function
and biological processes) using PANTHER gene Classification System [80].
"Catalytic activity" (GO:0003824) ranked the top in the molecular function
ontology, with 18 genes. In the biological process ontology, cellular processes
(GO:0009987) and metabolic processes (GO:0008152) possess the top two
represented GO categories, with 22 and 21 genes, respectively.
Over-representation test and pathway analysis are performed but not significant
results have been obtained. This could be related to the low number of input
genes. Future works will be devoted to repeat the entire pipeline previously
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described, choosing a less conservative false discovery rate. It could represents
an immediate solution and highly alleviate this problem, increasing the number
of reproducible Ribo-seq profile.

To highlight which specific regions within the Riboseq profiles are similar to
each other we built a consensus sequence.
The consensus sequence is a character string representing the nucleotides of
the reference ORF: In red are reported those position where a peak is present
and the ribosome proceeds slower while in green where a valley is located and
the ribosome proceeds faster (See Figure 4.2 below for a graphic representation
of the consensus sequence).

Figure 4.2: Part of a consensus sequence with fast and slow translation
regions. The nucleotides located within fast regions are depicted in green
while those located in the slow region in red.

The consensus sequences built from the 40 reproducible Ribo-seq profiles constitute
the dataset on which the following statistic analysis and machine learning
approaches are conducted.
In this dissertation, we focused on the labelled portions of the consensus
sequences +1 and -1, i.e. the subsequences in which the ribosome proceeds
at speed fast and slow, respectively.



43

Genes ID Annotation

rodZ Cytoskeleton protein RodZ
arcB Aerobic respiration control sensor protein ArcB
dld Quinone-dependent D-lactate dehydrogenase
dnaX DNA polymerase III subunit tau
fhuA Ferrichrome outer membrane transporter/phage receptor
glnA Glutamine synthetase
gltB Glutamate synthase NADPH large chain
hisS Histidine–tRNA ligase
infB Translation initiation factor IF-2
katG Catalase-peroxidase
malF Maltose transport system permease protein MalF
metG Methionine–tRNA ligase
mukB Chromosome partition protein MukB
ompC Outer membrane protein C
parC DNA topoisomerase 4 subunit A
secY Protein translocase subunit SecY
purL Phosphoribosylformylglycinamidine synthase
rne Ribonuclease E
sucA 2-oxoglutarate dehydrogenase E1 component
tufA Elongation factor Tu 1
tufB Elongation factor Tu 2
leuA 2-isopropylmalate synthase
hokB Toxin HokB; Toxic component of a type I toxin-antitoxin (TA) system.
acnA Aconitate hydratase A
ubiJ Ubiquinone biosynthesis protein UbiJ
lptD LPS-assembly protein LptD
rpnC Recombination-promoting nuclease RpnC
rpnA Recombination-promoting nuclease RpnA
fdoG Formate dehydrogenase-O major subunit
wbbH O-antigen polymerase
wbbI Beta-1,6-galactofuranosyltransferase WbbI
wbbK Putative glycosyltransferase WbbK
rpnE Inactive recombination-promoting nuclease-like protein RpnE
lpoA Penicillin-binding protein activator LpoA
gspD Putative type II secretion system protein D
yfjI Uncharacterized protein YfjI; Phage or Prophage Related
rlmL Ribosomal RNA large subunit methyltransferase K/L
rsxC Electron transport complex subunit RsxC
yfcI Recombination-promoting nuclease RpnB
gtrS Uncharacterized protein YfdI; Putative ligase

Table 4.5: Genes with significantly reproducible Ribo-seq profiles after
excluding the dataset GSM1415871. Column 1: Genes ID. Column 2:
Annotation.





Chapter 5

Statistical data analysis

In this Chapter, the thesis will explore the composition of the consensus
sequences, relating to the assigned labels: −1 for fast speed and +1 for slow
translation speed. In general, descriptive statistics can be helpful to provide
basic information about variables in our benchmark and highlight the potential
relationships between variables ( e.g. if exist a correlation between a high or
low frequency of a specific nucleotide in one of the classes under investigation).
Based on results obtained with our method, we defined the elements of consensus
sequences labelled with -1 as fast subsequences, while the elements labelled
with +1 as slow subsequences. In the following, we will briefly describe the
statistical analyses performed in the dissertation.

Descriptive analysis

Firstly, we computed the relative frequency for each nucleotide (A, T, G,
C). Then, relative frequencies are also computed for all possible couples of
nucleotides: the number of occurrences is calculated for each dinucleotide
along the subsequences and then normalized by the total number of base pairs.
Once the relative frequency for each nucleotide and base pairs are analyzed, we
focused on the frequency distribution of all codons across our subsequences. As
explained in Chapter 2, the codon usage bias refers to the concept that different
organisms have divergences in the frequency of occurrence of the synonymous
codons during translation. According to [81, 82, 83], it is widely assumed
that codon choice has strong effects on protein expression in organism from
E.coli to more complex like human. More recently, codon optimality has been
shown to be an important regulatory mechanism involved in the kinetics of
protein synthesis[84]. Based on this evidence, once the relative frequency of
the four nucleotides is calculated we decide to explore the distribution of 64
codons which encode a pool of 20 amino acid and translation stop signal.
Two distinct analyses are carried out: Firstly, only triplets containing all
nucleotides with label -1/+1 are included in the computation; Subsequently, a
"tolerance" is introduced and we considered fast/slow translated codons only
those containing at least two nucleotides labelled with -1/+1.
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In the following, we report the frequency analysis results obtained using fast
and slow subsequences.

5.0.1 Analysis of "fast subsequences"

First, we report the statistical methods employed on fast subsequences, labelled
with -1. To start the analysis, we computed the relative frequency for each
nucleotide (A, T, G, C). In Figure 5.1, the nucleotide frequency is displayed
along the bottom of the barplot. The table with frequency values for each
nucleotide is shown in the right panel of Figure 5.1. As we can observe, adenine
has a greater frequency than other nucleotides across the fast subsequences,
with a relative frequency of approximately 0.32 while, cytosine has the lowest
frequency (0.2).
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A 0.318326031
T 0.25683638
G 0.21604472
C 0.208792869

Figure 5.1: Nucleotide relative frequency across fast subsequences

In Table 5.1 and in Figure 5.2 we report the number of occurrences calculated
for each dinucleotide along the subsequences labelled with -1. As we note, the
frequency distribution of the dinucleotides reflects the nucleotide frequency:
the base pair AA has the highest frequency (0.12439954), while the GG and CC
dinucleotides show the lowest relative frequencies (0.03014742 and 0.03693888,
respectively). As evidenced in multiple studies [85] [86], an mRNA rich in A-
residues at the beginning of the sequence can promote the translation initiation
due to its unstructured domain in a wide variety of bacterial species, including
E.coli. [85]. The results of the analysis of codon relative frequency are
presented below 5.3. In Table (5.2), the first column displays the amino-acid
encoded, the second lists the triplet which encodes the specific amino-acid, and
the last two columns correspond to the codon relative frequency ( computed
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Dinucleotide Frequency
AA 0.12439954
AT 0.0722213
AG 0.05565678
AC 0.05880404
TA 0.0601292
TT 0.07520292
TG 0.07172437
TC 0.05416598
GA 0.06609243
GT 0.05565678
GG 0.03014742
GC 0.06410469
CA 0.06178566
CT 0.05052178
CG 0.06244824
CC 0.03693888

Table 5.1: Dinucleotide relative frequency across fast subsequences

with and without tolerance, as explained above). The triplets are grouped
based on the amino-acid encoded in order to observe which synonymous codons
are used in the fast translated subsequences. Interestingly, the triplet AGG
results absent across the fast subsequences. In E.coli, AGG is a rare arginine
codon which occurs at a frequency of 0.14% [87]. It has been demonstrated that
the triplet AGG can negatively influence the translation process by reducing
protein synthesis [88].
Based on codon usage bias and the nucleotide relative frequency in E.coli genes
[89], we can state that our fast subsequences have a similar frequency value. For
example, codons with the highest frequency detailed in Table 5.2 correspond
to the optimal codon chosen during the translation process.



48 5. Statistical data analysis

AA Codon Frequency Frequency (Tol)
Ala GCT 0.02530964 0.022065728
Ala GCC 0.02638665 0.023474178
Ala GCA 0.01507808 0.015492958
Ala GCG 0.02423263 0.022065728

Arg AGA 0.00323102 0.002816901
Arg AGG 0 0
Arg CGG 0.00215401 0.001877934
Arg CGA 0.00107701 0.000938967
Arg CGC 0.01992461 0.017840376
Arg CGT 0.03231018 0.033333333

Asn AAT 0.02907916 0.030985915
Asn AAC 0.0360797 0.03943662

Asp GAT 0.03931072 0.038967136
Asp GAC 0.01938611 0.019248826

Cys TGT 0.00430802 0.003755869
Cys TGC 0.00215401 0.002347418

Gln CAA 0.02692515 0.027699531
Gln CAG 0.03231018 0.030985915

Glu GAA 0.06031233 0.062441315
Glu GAG 0.01669359 0.015962441

Gly GGT 0.01184707 0.010798122
Gly GGC 0.01077006 0.009389671
Gly GGA 0.00107701 0.001408451
Gly GGG 0.00161551 0.001408451

His CAT 0.00861605 0.010328638
His CAC 0.00646204 0.006103286

Ile ATA 0.00484653 0.004694836
Ile ATT 0.02154012 0.021596244
Ile ATC 0.02261712 0.022065728

Leu TTA 0.01238557 0.014084507
Leu TTG 0.01400108 0.015023474
Leu CTT 0.00700054 0.007511737
Leu CTC 0.00969305 0.008920188
Leu CTA 0.00323102 0.003755869
Leu CTG 0.04684976 0.042723005

Lys AAA 0.07162089 0.076525822
Lys AAG 0.01615509 0.015492958

Met ATG 0.03177167 0.030046948

Phe TTT 0.02746365 0.030046948
Phe TTC 0.03446419 0.032394366

Pro CCC 0.00323102 0.002816901
Pro CCA 0.00538503 0.005633803
Pro CCG 0.01507808 0.01314554
Pro CCT 0.00376952 0.003755869

Ser AGT 0.00538503 0.005633803
Ser TCT 0.00969305 0.010798122
Ser TCC 0.00484653 0.004694836
Ser TCA 0.00538503 0.005164319
Ser TCG 0.00323102 0.002816901
Ser AGC 0.01023156 0.010798122

Thr ACT 0.01023156 0.012676056
Thr ACC 0.01292407 0.011737089
Thr ACA 0.00376952 0.003286385
Thr ACG 0.00430802 0.003755869

Trp TGG 0.00538503 0.005164319

Tyr TAT 0.02423263 0.029107981
Tyr TAC 0.01507808 0.017370892

Val GTT 0.02530964 0.025821596
Val GTC 0.01561659 0.013615023
Val GTA 0.01184707 0.013615023
Val GTG 0.01184707 0.010798122

Stop TAA 0.00969305 0.008920188
Stop TAG 0 0
Stop TGA 0.00323102 0.002816901

Table 5.2: Codon relative frequency (fast subsequences)
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Figure 5.2: Relative frequency histogram of base pairs in fast sequences

5.0.2 Analysis of "slow subsequences"

We applied the same procedure of the fast subsequences analysis on the slow
subsequences, labelled with +1. Figure 5.4 shows the frequency of each nucleotide.
The table to the right panel reports the frequency values of each nucleotide.
The number of occurrences calculated for each dinucleotide along subsequences
with +1 are listed in Table 5.3 and shown in Figure 5.5. Looking at the
data, both guanine and cytosine have the highest relative nucleotide frequency
across the fast subsequences. In contrast to fast subsequences, the most
frequent base pair in slow subsequences turns out GC, with a relative frequency
of 0.088507266. In contrast to fast subsequences, the rare codon AGG is
present and has a frequency of 0.00460678. According to the literature [90],
non optimal codons are usually associated with protein domain linker regions
along the mRNA sequence, where the ribosome tends to move slowly. Recent
evidence suggests that these regions could be related to co-translational folding
[91]. In histogram 5.6 both the relative frequencies of all fast codons and those
of the triplets with at least two fast nucleotides have been reported. Table
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Figure 5.3: Relative frequency histogram of all 64 codons (fast subequences)
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Figure 5.4: Nucleotide frequency across slow subsequences (label +1)

Dinucleotide Frequency
AA 0.064464993
AT 0.056169089
AG 0.048929987
AC 0.062826948
TA 0.038097754
TT 0.055852048
TG 0.077886394
TC 0.053579921
GA 0.063989432
GT 0.055270806
GG 0.071228534
GC 0.088507266
CA 0.06002642
CT 0.057807133
CG 0.084174373
CC 0.061188904

Table 5.3: Dinucleotide relative frequency value across slow subsequences
(label +1)

5.6 shows the codon frequency relative to all 64 codons in slow subsequences.
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AA Codon Frequency Frequency (Tol)
Ala GCT 0.01908523 0.01813748
Ala GCC 0.02599539 0.02438653
Ala GCA 0.01842711 0.01813748
Ala GCG 0.02862784 0.02743484

Arg AGA 0.00460678 0.00426764
Arg AGG 0.00246792 0.00228624
Arg CGG 0.00361961 0.00335315
Arg CGA 0.00279697 0.00259107
Arg CGC 0.02286936 0.02179546
Arg CGT 0.02221125 0.02149063

Asn AAT 0.01135242 0.01082152
Asn AAC 0.01694636 0.01981405

Asp GAT 0.0266535 0.03200732
Asp GAC 0.02435012 0.02834934

Cys TGT 0.00477131 0.00472489
Cys TGC 0.00723922 0.00685871

Gln CAA 0.01233959 0.01204085
Gln CAG 0.02879237 0.03139765

Glu GAA 0.03948667 0.04039018
Glu GAG 0.02105956 0.02210029

Gly GGT 0.03208292 0.03094041
Gly GGC 0.04162553 0.03993294
Gly GGA 0.00806186 0.00746837
Gly GGG 0.01036525 0.00960219

His CAT 0.00839092 0.00838287
His CAC 0.01135242 0.01326017

Ile ATA 0.00691017 0.00670629
Ile ATT 0.02566634 0.02560585
Ile ATC 0.02648898 0.02819692

Leu TTG 0.00987167 0.00960219
Leu TTA 0.0088845 0.00929736
Leu CTT 0.01233959 0.01204085
Leu CTC 0.01020072 0.01036427
Leu CTA 0.00361961 0.00365798
Leu CTG 0.05100362 0.0501448

Lys AAA 0.02862784 0.02773967
Lys AAG 0.01135242 0.01112635

Met ATG 0.0266535 0.02621552

Phe TTT 0.01793353 0.01828989
Phe TTC 0.0159592 0.01569883

Pro CCC 0.00510036 0.00472489
Pro CCA 0.00839092 0.00777321
Pro CCG 0.03191839 0.02987349
Pro CCT 0.00871997 0.00807804

Ser AGT 0.00789733 0.00731596
Ser TCT 0.01135242 0.01066911
Ser TCC 0.01316222 0.01280293
Ser TCA 0.00839092 0.00792562
Ser TCG 0.00839092 0.00777321
Ser AGC 0.01497203 0.01386984

Thr ACT 0.01118789 0.01082152
Thr ACC 0.03339914 0.03109282
Thr ACA 0.00674564 0.00640146
Thr ACG 0.01497203 0.01402225

Trp TGG 0.01382034 0.01295534

Tyr TAT 0.01135242 0.01234568
Tyr TAC 0.01447845 0.01691815

Val GTT 0.01826259 0.01874714
Val GTC 0.01135242 0.01204085
Val GTA 0.01118789 0.01249809
Val GTG 0.02221125 0.0231672

Stop TAA 0.00131622 0.00121933
Stop TAG 0 0
Stop TGA 0.00032906 0.00030483

Table 5.4: Relative frequency value of all 64 codons (slow subsequences)
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Figure 5.5: Relative frequencies histogram of base pairs in slow sequences
(label +1)

Test of Significance of the Relative Frequency of Nucleotides

To assess the significance of our results and to find out if the subsequences
obtained are specific characteristics of fast and slow subsequences or simply
related to the chance, we built a statistical test.
This significance test is developed exclusively for the relative frequency at
the nucleotide level. The null hypothesis is the following: the slow or fast
subsequences are characterized by nucleotide composition equal to which one
would occur if the nucleotides are arranged in random way.
The aim of the test is to assign a probability value ( i.e. p-value) to the null
hypothesis. Therefore, we build a random distribution of relative frequency
for each nucleotide in order to test the null hypothesis of the randomness
of the frequencies: 104 profiles are generated, each representing a dataset
random created from the original dataset. Then, we used them to build a
null distribution which allowed us to estimate the probability of obtaining by
chance each nucleotide frequency.
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Figure 5.6: Relative frequency histogram of all 64 codons (slow sequences)
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We performed random permutation inside each subsequence keeping the
consecutive labels with all values equal to -1 or +1. In the randomization
process, the length of the subsequences is kept fixed, as shown in Figure
5.7. The relative frequencies of the nucleotides are calculated on each dataset

Figure 5.7: Example of a sequence fragment with the labels of the original
dataset (above) and the random one (below). In this case, we report the
random permutation of slow subsequences (red nucleotides). The length of the
red nucleotide string is kept fixed during randomization

and the results are represented by four histograms which correspond to the
frequency distribution of each nucleotide along the random dataset (See Figure
5.8).
Once the null distributions has been achieved, we compared them with the
frequency values computed in the original datasets.
Intuitively, the data is significant depending on how far it is from the mean
of null distribution: if it is centered, then it is completely random while if
it is found in the tails it is significant. The p-value is computed based on
the frequency of the original position compared to the mean distribution. If
the frequency is greater than the mean, we calculate the probability that a
value greater than or equal to the real value can be found by chance. If this
probability is under a specific cut-off (0.05), it attests that the subsequences
have a nucleotide frequency greater than can occur simply by chance. Conversely,
if the original frequency is lower than the mean, we calculate the probability
that a value lower than or equal to the real value can be found by chance. In
the case of rejection of the null hypothesis, it is established that the fast/slow
subsequences are characterized by a nucleotide frequency lower than expected
to find by chance.
Once we applied this statistical method to the relative frequency of slow and
fast data, we obtained that all four nucleotides have p-values equal to 0. In
our context, the lower the p-value represents the lower probability that the
nucleotide frequency across subsequences fast and slow occurs by chance.
Therefore, we can assert that the subsequences with both label -1 and +1 are
not characterized by a random distribution of the nucleotides.
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Figure 5.8: A) Null distribution of four nucleotides across fast subsequences
with label -1. B) Null distribution of four nucleotides across slow subsequences
with label +1. Each set of random profiles is computed distributing randomly
the labels coming from fast subsequences (-1) and slow subsequences (+1).

5.0.3 Discussion

In conclusion, we can affirm that the nucleotide frequencies observed are
statistically significant: it is unlikely to find them by chance. Based on the
results obtained, we can state the frequency distributions are notably different
for each nucleotide and dinucleotide across the subsequences, slow and fast. In
particular, we can observe that A and T nucleotides have a higher frequency in
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fast sequences than G and C. Differently, the frequency of G and C nucleotides
is significantly higher in slow sequences than A and T. The frequency results
on the pairs reflect those on nucleotides: the most frequent pairs are GC and
CG, that one less frequent of AT. In this work, we do not address the possible
causes of the origin of fast and slow regions along the ORF.
Further analysis is necessary to interpret their biological impact during the
translation process. It would be interesting to analyse each of the 40 sequences,
in order to deepen where effectively the region rich in GC and AT are located
along the ORF.
However, our results suggest that the nucleotide composition of the subsequences
constitutes useful information for recognizing and distinguishing the fast from
the slow subsequences. Based on this evidence, we have thought it would be
interesting to exploit this information to predict the translational speed using
machine learning approaches.
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5.1 Subsequences frequency distribution analysis

Finally, we analyzed the evolution of frequency distributions of nucleotides
in order to verify whether the composition of subsequences is homogeneous.
In this section, we report the evolution of frequency distribution experiment
relating to fast subsequences. Figure 5.9 depicts the frequency distribution of
fast subsequences with a minimum length of four nucleotides. The nucleotide
composition seems almost homogeneous throughout the entire dataset, especially
if we exclude the noise due to the very short subsequences.

Figure 5.9: Frequency distribution in the subsequences with a minimum
length of four nucleotides

We have reproduced the previous analysis selecting subsequences with a minimal
length of 6 nucleotides and a maximum length of 18 nucleotides. In this way,
we have removed the noise due to too short sequences and the vanish gradient
caused by too long sequences [92]. As can be seen in Figures 5.10, 5.11, 5.12,
5.13 the frequency distributions turn out to be quite symmetrical and centred
around the mean. 5.10. Based on the results obtained, we can state that
the interval of observations where the frequencies are, is reduced. Thanks to
our experiments, we can state that the optimal length of the subsequences
for the classification analyses with the machine learning approach is 6 to 18
nucleotides. In the following analyses, we will use only the subsequences which
satisfy the criteria chosen. From 1251, we selected 485 subsequences, whose
220 are fast and 265 are slow.
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Figure 5.10: Frequency distribution of A nucleotide in the fast subsequences
with a minimum length from 6 to 18 nucleotides
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Figure 5.11: Frequency distribution of T nucleotide in the fast subsequences



5.1. Subsequences frequency distribution analysis 61

Figure 5.12: Frequency distribution of G nucleotide in the fast subsequences



62 5. Statistical data analysis

Figure 5.13: Frequency distribution of C nucleotide in the fast subsequences



Chapter 6
Artificial Neural Networks

This chapter provides a brief presentation of Artificial Neural Network (ANN)
models and their application in our study. With the increasing availability
of highly dimensional and complex data, the application of ANNs, especially
deep architectures, has become more frequent. Thanks to their ability to make
predictions and to address sequence classification problems, ANNs have been
useful in the field of ’-omics’ research, including genomics and transcriptomics
[93]. Indeed, ANN approaches represent a powerful tool for biological data
processing. For instance, they have been used for medical image classification
[94], for the prediction of structural properties of the protein surface, for variant
calling [95], and in many other type of biological problems [96][97]. To provide
the information necessary to interpret their meaning, we will introduce the
theoretical framework of the model and comprehensively examine the basic
methods used.

6.1 Biological neural networks

The relationship between biology and the field of machine learning is very
complex.
The nervous system comprises neurons, excitable cells that process information,
contributing to more significant cognitive functions. The human brain includes
tens of billions of neurons, which represent the functional unit of substantia
nigra (SN). Each of them is interconnected through cytoplasmic extensions to
approximately ten thousands of other neurons.
As shown in Figure 6.1 a) , a typical neuron consists of:

• a cell body (soma), the region containing the nucleus and most other
cell organelles; it combines and integrates incoming signals;

• dendrites and an axon, which are two types of cytoplasmic extensions.
Dendrites are thin fibers that extend like tendrils to receive many signals
from neighboring neurons and conduct them towards the cell body; the
axon is a long thin fiber that carries potential actions away from the cell
body.
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Neuronal communication occurs through synapses, specialized structures that
allow to receive and transfer the signals from one neuron to another. Most
synapses are chemical and enable communication via the release of chemical
signaling molecules, called neuro-transmitters. Chemical agents are synthesized
and packaged into vesicles by the presynaptic axon terminal. Firstly, they
are released from the presynaptic cell into the space between the pre- and
postsynaptic cells, known as synaptic clefts and then they bound to receptors
on the membrane of the postsynaptic cell. The general structure of a chemical
synapse is illustrated schematically in Figure 6.1 c)
If the total strength of the electrical signal exceeds a certain threshold limit,
the signal will be sent down the axon to the synapses. The ability of neurons to
conduct neural impulses is mainly related to the presence (or spreading) along
the axons of three specific types of voltage-gated ion channels, which are able
to generate the membrane potential (Vm). The charge separation gives rise to
a difference of electrical potential, or voltage, across the membrane, called the
membrane potential. Vm is defined as

Vm = Vin − Vout

where Vin is the potential on the inside of the cell and Vout the potential on
the outside. The ion flow through a voltage channel induces a redistribution
of charges on the two sides of the membrane, modifying the Vm value.

Figure 6.1: Model of the neuron: a) Structure of the biological neuron; b)
Action Potential diagram; c) Signal transmission across the synaptic cleft.
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Similar to neurons in the brain, an ANN is a collection of simple processing
units, called artificial neurons, that are connected together through weighted
edges, that resemble synapses.

6.2 Mathematical model of the neuron

The origins of neural networks are based on the construction of a model that
mimics the functioning of the human brain. Indeed, understanding biological
systems, such as the neural system, has been a major challenge for many
researchers. Dating back to 1943, the mathematical model known as Threshold
Logic Unit (TLU), proposed by McCulloch and Pitts [98], represents the first
step in this direction: The TLU is a system capable of receiving n binary inputs
producing an output based on them, able to realize any boolean function.
This neuron is a finite-state machine that describes a propositional logic with
quantifiers, allowing to formulate precise hypotheses on the nature of brain
mechanisms.
Later on, in 1969, Frank Rosenblatt, inspired by the Hebbian theory of synaptic
plasticity, developed the first type of artificial neuron — the perceptron —
able to process real data [99]. This mathematical model is a binary classifier,
constituted by a single neuron, able to correctly partition only linearly separable
patterns. A historic application of the perceptron model can be found in [100],
in which the identification of translational initiation sites in E. coli is carried
out.
The perceptron model is depicted in Figure 6.2.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Synapse weights

Bias
b

Inputs

Figure 6.2: Perceptron model — Rosenblatt’s model of a neuron, with input
vector x, weights w, bias b, activation function f and output y.
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Specifically, the perceptron receivesN inputs (x1, . . . , xn) from a set of incoming
edges, processes them and transmits an output signal (inputs can be either
excitatory or inhibitory). Each synapse i has an associated weight wi, being
the weights the tunable parameters of the model.
Therefore, the neuron receives the signals [x1w1, . . . , xnwn] and sums them to
produce an output:

S =

n∑
i=1

xiwi (6.1)

where W = (w1, . . . , wn) collects the synaptic weights and X = (x1, . . . , xn)

is the input vector. Plausibly, the bias can be thought of as a w0 weighing a
constant input of −1 and can be included in Eq. (6.1). Afterwards, a non-
linear function of the weighted sum, known as the activation function f , is
calculated to produce the output y:

y = f(S)

The activation function establishes how the neuron should react to the input
signals. It also defines the numerical value emitted as the unit output. If the
sum of the inputs exceeds a certain threshold (the bias), the neuron is turned
on and can send an impulse through its axon.
Then, the neuron output will be 0 or 1 if S is less or greater than the activation
threshold :

y =

{
0 if

∑n
i=1wixi ≤ w0

1 if
∑n

i=1wixi ≥ w0

According to the task to perform, different activation functions can be used.
The activation functions of interest for this dissertation (Figure 6.3) are as
follows.

• The logistic sigmoid function:

σ(x) =
1

1 + exp(−x)

It maps real numbers to the range [0, 1], making it suitable for binary
classification. A generalization of the logistic function is the Softmax
function, which is used to normalize the output of a network with multiple
outputs to a probability distribution over the predicted output classes.

• The hyperbolic tangent function:
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Figure 6.3: Commonly used activation functions: sigmoid, tanh and ReLU.

σ(x)= tanh(x)

It can take any real value as input and produces an output with values
ranging between [-1,1]. It has a sigmoidal shape with a scaling factor
and a vertical shift.

• The rectified linear unit (ReLU) [101]:

σ(x) = max(x, 0)

It is currently one of the most popular activations for deep neural networks
(since it partially overcomes the vanishing gradient problem and performs
better w.r.t. classical sigmoids). The main advantage of its use is that it
does not activate all the neurons simultaneously. It returns 0 if it receives
any negative input, while for any positive value, it returns that value.
The ReLU is widely applied in convolutional neural networks.

Neurons can be organized and connected in different ways depending on the
type of activity the network carries out. In the biological field, the most
common network architectures present neurons collected in fully connected
layers: Each neuron of one layer is connected to all the neurons of the next
layer. The input signal propagates through the network in a forward direction
and it flows layer by layer from the input to the output (hence the term
feedforward neural network).
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6.2.1 Multi-Layer Perceptron

Architecturally, feedforward neural networks are represented by acyclic graphs.
There is a partial ordering between the vertices (neurons) of the graph, while
each neuron can be connected to both other neurons and inputs. A Multi-
Layer Perceptron (MLP) is a particular type of feedforward neural network
in which neurons are organized in fully-connected layers, with no intralayer
or shortcut connections. The MLP represents the natural extension of the
perceptron architecture, combining neurons in multiple layers.
MLPs have been used extensively for classification and prediction tasks because
of their simple structure and fast learning process.
Specifically, MLPs — which can classify also non-linearly separable data —
are composed of at least three layers, containing one or more neurons.

• Input Layer: level designed to receive information from the outside. The
number of neurons (which are buffers, simply passing the information
coming though them) depends on the size of the input vector.

• Hidden Layers: intermediate layers located between the input and output
layers. There is often more than one hidden layer. Each hidden neuron
receives a numerical value in input, which corresponds to a weighted sum
of the signals coming from the previous layer (input or hidden).

• Output Layer: the final level that receives input from hidden units and
transmit signals outside the system.

The MLP model, shown in Figure 6.4, represents a feedforward neural network
with three hidden layers. This architecture allows to learn more complicated
features from the input data and, if used as a classifier, to realize complicated
separation surfaces. Indeed, a two-layer network with sigmoids (or similar)
on all units can represent any Boolean function. Moreover, according to the
universal approximation theorem, even an MLP with a single sigmoidal hidden
layer — composed by a sufficient number of hidden neurons —, trained with
enough data, can approximate any bounded continuous real function to any
desired accuracy [102].

6.2.2 Network training algorithm

In order to perform a particular task, the network should be appropriately
set up and then trained. Learning is defined as the process through which the
network adapts its weights to external stimuli in order to be able to produce the
desired output. Learning in MLP neural networks can happen in supervised
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Figure 6.4: Multi-layer perceptron with four neurons in the input layer, five
neurons for each hidden layer, and one output neuron.

fashion: the patterns in a given set of samples are predicted using a known
labeled subset. Supervised learning aims to build a system that can classify
new patterns based on the available knowledge, codified into the connection
weights and acquired during the network training. The most used learning
algorithm for MLPs is Backpropagation: it consists in the iterated modification
of the connection weights to minimize the loss function [103]. Indeed, the loss
function or error function gives a measure of the distance between the network
outputs and the expected results at any iteration. The total error that the
network commits in the learning phase can be described as:

E = ΣpEp = Σp(tp − op)
2 (6.2)

where p is the number of data supplied to the network during training, Ep is
the error for the input pattern p, while tp and op are the expected and observed
results for p , respectively. Then, the network parameters are iteratively
adjusted to reduce the error, starting from to the top and propagating the
error signal backward to the lower layers. The first step in training an MLP
consists in choosing the network architecture and setting its initial synaptic
weights. Subsequently, the model fits a training set, which is representative
of the dataset as a whole. A cycle of presentation to the network of all the
examples belonging to the training set is called an epoch. After processing
the whole training set, the next step is to calculate the loss function. During
the backward computation, the ANN modifies its parameters to minimize the
error function through a learning algorithm. Finally, to evaluate the final
model performance, the network behaviour is verified on a different dataset,
called test set. For example, when the network represents a classifier, the
accuracy of the model is evaluated, i.e. the percentage of test examples for



70 6. Artificial Neural Networks

which the network produces the correct output, over the test set dimension.
In fact, the main objective of a supervised learning strategy is to get the
generalization ability, which consists of producing a correct classification for
unknown examples. An optimal generalization requires a trained model able
to recognize the difference between signal and noise. However, especially when
learning has been done for too long or based on too few examples, the model
may work well on the training set but be unable to generalize well, resulting
in overfitting. In contrast to overfitting, underfitting typically occurs when
a model is unable to capture the relationship between the input x and the
target output y. Both underfitting and overfitting yield poor performance
of the machine learning algorithm. Figure 6.5 explains these phenomenons.
Generally, the more training data given to the model, the less likely it is to fit
too much. When more data are added, the model becomes unable to overuse
all the samples and is forced to generalize to make progress.

Overfitting Underfitting Balance

Figure 6.5: .
Supervised learning over/under/good-fitting. By looking the graph on the
left side, we can observe that the blue line covers all the points which are

present (also noise and outliers). This model tends to cause data overfitting.
The middle graph shows that the blue line is not able to capture the point
distribution. Such model tends to cause data underfitting. The blue line fits

the majority of the points in the graph on the right side, representing a
balanced model.
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6.2.3 The k-fold cross-validation technique

The k-fold cross-validation is a model validation technique used to guarantee
the generalization ability of a network and to avoid the overfitting phenomenon.
The available dataset is split randomly into k subsets or folds. The first fold
is kept as the test set while the other k− 1 form the training set. The process
is repeated k times, and each time a different fold is used for the validation,
as depicted in Figure 6.6. At each of the k steps, the metrics to evaluate the
network performance are calculated.
Another strategy to reduce overfitting and improve generalization consists
in applying the early stopping method. During training, a validation set
is used to evaluate the network generalization after each epoch. Once the
model performance drops on the validation set, the training process is stopped,
possibly before convergence [104].

TRAINING SET TEST SET

divide into 10 folds of equal size

run experiments
using 10 different

partitionings

Figure 6.6: Depiction of the k-fold cross validation for 10 folds.
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6.2.4 Convolutional Neural Network

Convolutional Neural Networks (ConvNets) [105] are specialized deep neural
networks de-signed to process data with a grid-like structure. In machine
learning applications, the CNN input is usually a multi-dimensional array of
data (e.g. 1D for signals and biological sequences; 2D for images or audio
spectrograms; 3D for video or volumetric images) and the kernel is
a multidimensional array of learnable parameters [106]. Convolutional networks
are characterized by the use of convolutions in some of their layers. The term
convolution refers to the mathematical operation

s(t) =

∫
x(a)w(t− a)da (6.3)

evaluated on two real-valued functions, namely the input function x and the
weighting function w, called the kernel. Typically, when processing image-like
data, they are repre-sented as tensor of shape (h×w×d), with d image channels
of height h and width w. Then, a convolution between a two dimensional image
I and a kernel K can be defined as

S(i, j) =
∑∑

I(m,n)K(i−m, j − n) (6.4)

where m and n are the image dimensions in pixels.
In the MLP architecture, each neuron is fully connected to all neurons in the
previous layer and is completely independent from the other neurons belonging
to the same layer. This means that O(h × w × d) parameters are needed for
each neuron in the first hidden layer. Specifically, when the input consists of
an image of dimesion 256 × 256 × 3, a single neuron presents two million of
parameters, approximately. Therefore, the fully-connected architecture is too
expensive in this context, involving an enormous amount of parameters that
would lead quickly to overfitting. Differently, CNNs are more effective in this
case, since they are more parsimonious in terms of parameters. The general
idea is that the convolutional operations can extract valuable information from
an image, using a very small amount of parameters.
A typical convolutional neural network architecture consists of a series of
interleaved convolutional layers, pooling layers and fully-connected layers, as
illustrated in Figure 6.7. Convolutional and pooling layers, perform feature
extraction from the image, while a fully connected layer uses the extracted
features, for instance, to classify the image.
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Figure 6.7: An overview of the propagation model of a typical CNN
architecture for image classification.

Convolutional layer

In the convolutional layer, a convolutional kernel is applied to the input.
During the forward pass, the kernel slides along the image (both in width and
in height). Then, the scalar product between the filter and the corresponding
matrix in the input grid is calculated. Once N multiple convolutional kernels
are applied within a convolutional layer, N so-called feature maps of size
Ffm×Wfm are created, one from each convolutional kernel. The computation
of the final volume not only depends on the size of the input (h×w×d) but also
on two hyperparameters, i.e. the stride (S), which represents the sliding size of
the kernel, and the spatial extension of the filter (F). For example, given a 3×3

kernel, the input grid can be slid with a stride equal to 1, 2 or 3. If S=1, given
an input of dimension h×w×d and a filter of dimension fh×fw×d, the output
of the convolution operation has a dimension (h−fh+1)×(w−fw+1)×1. The
convolution operation performed by the first convolutional layer is depicted in
Figure 6.8.

Figure 6.8: Depiction of a convolutional layer composed by 3x3 kernels. The
N output feature maps are obtained sliding N kernels along the input.

Furthermore, the size of the feature map is also controlled by the zero-padding
procedure. Indeed, pixels on the corners and the edges "are touched" much
less than those in the middle and, consequently, the information on the borders
of images are not preserved as well as the information in the middle.
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Zero-padding allows to solve this problem, "including" the image into a frame
of 0s. The convolution computation is usually followed by a ReLU (= max(0, x))
layer, which replaces all negative pixel values in the feature map by 0.

Pooling Layer

Another relevant component of CNNs is the pooling layer that aggregates
(summing up, averaging or extracting the maximum) the values computed by
the convolution filters in small sub-regions (e.g. 2 × 2) of the input feature
map. Its function is to reduce the spatial dimension of the input (width and
height) progressively, to diminish the number of parameters and, consequently,
the computational requirements. One type of pooling layer is the average
pooling layer, which will be used in this dissertation. The average pooling is an
operation that computes the average value for each patch across each channel,
and uses it to create a downsampled feature map, as depicted in Figure 6.9. In
contrast to max pooling, the average pooling retains much information about
the block.

Figure 6.9: The 2 × 2 average-pool operator, applied on a single-channel
image

Fully-Connected Layer

The last level of a CNN architecture is represented by (one or more) Fully-
Connected Layer(s), similar to those composing MLPs. The output function
used is the softmax : It maps the output value of each neuron in the range
[0, 1], representing the probability that the input grid belongs to one specific
class.

The CNN architecture is based on the formalization of three fundamentals
properties: sparse interaction, weight sharing and equivariance to translation.

• Sparse interaction: accomplished by making the kernel smaller than the
input; differently from MLP architectures, CNN neurons are connected
only locally to neurons in their neighborhood. This means that fewer
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parameters must be stored, reducing the memory requirement of the
model and improving its statistical efficiency.

• Weight sharing: In a traditional neural network, each element of the
weight matrix is used once while, in the CNN model, weights applied
to one input are the same as the weight applied elsewhere or, in other
words, each member of the kernel is used in all parts of the input.

• Equivariance to translation: The architecture of the CNN, characterized
by the weight sharing property, ensures that the convolutional layer can
produce the same output when detecting the same pattern in different
locations.
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6.3 Machine learning applications

Due to their characteristics, neural networks lend themselves well to the analysis
of information encoded along a protein sequence. In our specific case, the
models we have implemented can perceive the presence of sequence signals
made up of particular nucleotide arrangements. Depending on the type of
signals that the networks can recognize, they will classify the functional characte-
ristics associated with the signal itself. Once we obtained the reproducible
Ribo-seq profiles, we investigated their consensus sequences through machine
learning approaches to classify their translation speed.

Vectorial Sequential 

Nucleotide subsequences 
Nucleotide frequency 

vector 

Two types of information 

MLP CNN 

Figure 6.10: Schematic machine learning experimental workflow. Left: The
nucleotide frequency vector is analyzed by an MLP. Right: A nucleotide
sequence is processed by a 1D CNN.

The consensus sequences labeled with −1 and +1 represent the input for the
following analyses with the neural network models. In our specific problem,
exploiting a network architecture can reveal to us whether there is enough
information in the data to classify the subsequences into slow and fast with high
accuracy. To accomplish this task, we used two different types of information:
vector and sequential. In fact we first considered a four-dimensional array
that collects the frequencies of occurrence of the four nucleotides and then
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we took into consideration the whole sequences, to understand if the order in
which the nucletides are arranged helps to capture the translation speed signal.
Consequently, the experiments were carried out by applying two different
neural network architectures: MLPs and CNNs, previously described. A
sort of comparison between the two models is possible since they have been
tested using the same dataset. In particular, as explained in Chapter 6, only
subsequences of length from 6 to 18 nucleotides have been selected.

6.3.1 Classification based on nucleotide frequencies by MLPs

In the first experiment, the main purpose is to show the ability of the Multi-
layer Perceptron to predict the translation speed of sequences based on their
nucleotide frequency. Therefore, once we have identified the 485 subsequences,
of which 265 are slow and 220 are fast, we calculated the vector of the relative
frequencies of the four nucleotides within them. The target of each example
has been coded according to the one-hot encoding with two bits: [0,1] for fast
sequences and [1,0] for slow sequences, as shown in Figure 6.11.

G A T C 
Freq Freq Freq Freq 

G A T C 
Freq Freq Freq Freq 

0 

0 

1 

1 

Figure 6.11: One-hot encoding: fast (green) and slow (red) sequences

The examples were split into two sets: 436 made up the training set (about 92%
of the entire dataset) and 49 the test set. The first set is used for training the
network, while the second to evaluate its generalization. The MLP architecture
is shown in Figure 6.12.
Once the dataset has been divided into training and test sets, the hyperparameters
have been defined:

• learning rate: 0.05

• epoch: 800

• hidden units: one hidden layer with 10 neurons

• Activaction function: sigmoidal
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Figure 6.12: An MLP architecture having the nucleotides frequency as input,
and predicting the sequence class probability distribution (slow or fast).

In agreement with the size of the input vector and the target, the MLP has
four neurons in the input layer, one for each relative frequency value (A, T, G,
C). The neurons in the input layer receive the features and propagate them to
the neurons in the unique hidden layer. The choice of using a small number
of neurons within the hidden layer is closely related to the small size of our
dataset: The idea is to get a simpler model that is easier to interpret. When
relatively few data are available, the use of too many parameters leads to the
overfitting phenomenon.
Our model can be easily implemented using modern machine learning libraries
since it is wholly based on a training function that updates weight and bias
values according to the resilient backpropagation algorithm [107]. Then, we
applied the Softmax function at the output layer, which gives a probability
distribution for each class label (slow or fast). Finally, we evaluated the
accuracy on the test set and then summarized the model performance across
five runs. Average and standard deviation of the classification accuracy without
cross-validation on five runs are reported in Table 6.1. In order to avoid the
overfitting phenomenon and improve the generalization capability of the model,
we additionally carried on an experiment using the k-fold cross validation.
Average and standard deviation of the classification accuracy with a 5-fold
cross-validation (described in details in Section 6.2.3) are reported in Table
6.2. It can be noted that the network reaches 77.17% and 75.67% of average
training accuracy and average test accuracy, respectively. In both experiments,
the standard deviation of the accuracy-test does not exceed 1%.
The accuracy percentages are surprising, considering that they are obtained
using only nucleotide frequencies as input. The next step is to verify how
much the sequential order of the nucleotides can impact the prediction of the
speed of translation.
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Run Training Accuracy (%) Test Accuracy (%)
1 81.70 78.35
2 79.90 78.35
3 82.73 79.38
4 82.99 77.32
5 82.99 79.38
Average 82.06 78.56
Standard Dev. 1.32 0.86

Table 6.1: Multilayer Perceptron accuracy over 5 runs. We report the
obtained Training and Test Accuracy (second and third columns, respectively)
obtained over 5 runs. The last two rows report the average and standard
deviation of the computed metric.

Run Training Accuracy (%) Test Accuracy (%)
1 76.29 75.26
2 76.03 75.26
3 77.32 77.32
4 77.84 75.26
5 78.35 75.26
Average 77.17 75.67
Standard Dev. 0.99 0.92

Table 6.2: Multilayer Perceptron accuracy with 5-fold cross-validation. We
report the obtained Training and Test Accuracy (second and third columns,
respectively) obtained over 5 fold with the cross-validation mechanism
described in Section 6.2.3. The last two rows report the average and standard
deviation of the computed metric over the folds.

6.3.2 Classification based on nucleotide sequences by 1-D CNNs

The good performance of the MLP model leads to the conclusion that much
of the information to understand the levels of protein synthesis could lie in the
relative frequencies of the four nucleotides. Once the frequencies of the four
nucleotides have been analyzed, we decided to use a more complex architecture
able to process the sequential data. The main goal of our analysis is to
investigate how strongly the order of nucleotides affects the accuracy of the
prediction. In our specific case, a one-dimensional convolutional neural network
was implemented, considering biological sequences of fixed length. Unlike 2-D
images treated with three color channels (R, G, B), our subsequences have
been processed considering four channels (A, T, G, C). Firstly, the 1-D CNN
recognizes the local patterns in each subsequence through its convolutional
layers. Just as with 2-D CNNs, the 1-D pooling operation leads to extract
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the 1-D patches from the input. In particular, the average pooling is used for
reducing the length of the input.
The 40 reproducible sequences identified through our method are randomly
shuffled and divided into the standard training, validation and test sets. Among
these, 31 constitute the training set, 6 the validation and the remaining 3 the
test set. The validation set is built automatically, selecting 15% of sequences
from the training set. See Figure 6.13 for a graphical representation.

Figure 6.13: The dataset composition. The available 40 Sequences have been
randomly split into training (31), validation (6) and test (3) Sequences in order
to compose the final dataset.

Our model elaborates some examples constituted by a single nucleotide, of
which we want to predict the translation speed, plus a context, that is a set
of nucleotides that precede or follow the position under consideration. Each
nucleic sequence of fixed length corresponds to an example, which is obtained
by “cutting out” from the gene a fragment of 36 nucleotides containing the
sequence. Nucleotides with target equal to 0 are ignored. Padding is applied,
at the beginning and at the end of the sequences, to reach the fixed context
length of 36 nucleotides (18 nucleotides to the left and 18 − X to the right
of the sequence, if X is the sequence length). The one-hot encoding is used
for the targets based on two bits — [0,1] for slow sequences and [1,0] for fast
sequences, respectively (see Figure 6.14).
Initially, we defined the CNN model using the Keras deep learning library [108].
Input sequences are processed via the CNN depicted in Figure 6.15, which
consists of 2 convolutional layers, equipped with average-pooling, followed by
2 fully connected layers. The architecture is based on 1-D kernels having
size 3 and leverages a ReLU activation function. In particular, each hidden
convolutional layer is composed by 16 filters. The last fully-connected layer
output is projected onto a two-class probability distribution via a softmax
function.
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Figure 6.14: Pipeline for the dataset encoding. See the main text for further
details.

We trained our model for five thousand epochs, measuring the accuracy on the
validation data.

Figure 6.15: The 1-D CNN model exploited for sequence classification. The
implemented CNN is capable to process 1-D sequential data employing two
convolutional layers each composed by 16 filters of 3x3 kernels. The obtained
representation is projected with a fully-connected output layer onto a two-class
probability distribution via a softmax function.

We summarize the model performance across five runs in Table 6.3. The
metrics used to evaluate a classification model are precision, recall, F1-score
and accuracy. We can see that the model performed well achieving a classification
accuracy of about 89.39%. It is important to note that, by training a significantly
more complex network than the MLP, and by providing a sequential data input,
the accuracy increases by 9 percentage points. To further improve performance,
we have set up a more complex architecture consisting of seven CNNs: each of
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CNN

Run Precision Recall F1- score Accuracy
slow fast slow fast slow fast

1 96.00 86.00 90.00 95.00 93.00 90.00 91.84
2 96.00 82.00 87.00 95.00 91.00 88.00 89.80
3 93.00 85.00 90.00 89.00 92.00 87.00 89.80
4 100.00 73.00 77.00 100.00 87.00 84.00 85.71
5 93.00 85.00 90.00 89.00 92.00 87.00 89.80

Average 95.60 95.60 90.00 93.60 91.00 87.20 89.39
Standard Dev. 2.88 5.36 5.20 4.67 2.35 2.17 2.24

Table 6.3: Summary of the results obtained with the 1-D CNN model. We
report the obtained test set metrics computed over 5 different runs. The last
two rows report the average over the runs and the corresponding standard
deviations. In the case of Precision, Recall, F1-score, we report the results for
slow and fast class.

them provides a different prediction, i.e. a pair of probabilities describing the
membership of a sequence in a given class (slow or fast).
Each of the seven CNN uses a random 15% of data as the validation set.
The models are trained for 5000 epochs using the Adam optimiser. After, we
calculate the average of all the predictions. All the experiments are repeated
5 times, reporting the test accuracy corresponding to the best result on the
validation data.
The results of the experiments performed by the CNN ensemble are summarised
in Table 6.4. Our model reaches a 91% accuracy.
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ENSEMBLE: 7_CNN

Run Precision Recall F1- score Accuracy
slow fast slow fast slow fast

1 96.00 86.00 90.00 95.00 93.00 90.00 91.84
2 96.00 82.00 87.00 95.00 91.00 88.00 89.80
3 96.00 86.00 90.00 95.00 93.00 90.00 91.84
4 96.00 86.00 90.00 95.00 93.00 90.00 91.84
5 93.00 85.00 90.00 89.00 92.00 87.00 89.80

Average 95.40 95.40 90.00 93.80 92.40 89.00 91.02
Standard Dev. 1.34 1.73 1.22 2.68 0.89 1.41 1.12

Table 6.4: Summary of the results obtained with the CNN-ensemble model.
We report the obtained test set metrics computed over 5 different runs. The
last two rows report the average over the runs and the corresponding standard
deviations. In the case of Precision, Recall, F1-score, we report the results for
slow and fast class.

6.3.3 Conclusions and future work

The usage of complex architectures is a challenge because of the limited number
of data. We have chosen the convolutional neural network model since weight
sharing allows us to employ a limited number of parameters though using the
sequential nature of the data. Our 1-D CNN is a typical architecture built of
two convolutional layers, followed by one fully-connected layer.
The obtained results clearly show that this model can extract useful information
from a limited amount of data in a better way than MLPs. The high accuracy
(89,39 %) and low calculated variance (2.24 %) demonstrate that the training
process is stable and, therefore, the results are steady and not influenced by
the parameter initialization.
Furthemore, we have proposed an ensemble CNN model to further improve
performance. As expected, the accuracy of the ensemble CNN increases while
the variance decreases, with results which assess a good ability to discern
between fast and slow subsequences (see Table 6.4).

Work in progress

Guided by the results obtained in Chapter 5, we hypothesise that the different
codon usage may affect the translation initiation and then, in general, the
kinetics of translation. However, even today, the debate on how translation is
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regulated under different conditions and what factors greatly affect translation
speed remains open. Therefore, to obtain a comprehensive overview, we repeated
the machine learning experiments through different types of encoding. Indeed,
a viable direction for future research is to build other representations of the
same dataset, by enlarging the sliding window or by considering not only a
sequence encoding based on nucleotides but also encodings based on codons
and amino acids. In the context of the codon dataset, the sequence is processed
based on a sliding window on the nucleotide of size 3, where each nucleotide is
one-hot encoded. Therefore, the representation of each codon corresponds to
the concatenation of the one-hot vectors of its three-nucleotides. Differently, for

A) B) 

Figure 6.16: Alternative encodings: A) Codon dataset; B) Amino acid
dataset.

the amino acid dataset, the sequence is read from codon to codon. The triplets
which encode the same amino acid are labelled in the same way. Therefore each
codon is encoded by a vector of length 21. Figure 6.16 shows the two other
types of encoding we could use in our future experiments. In this way, we can
obtain a deeper understanding of the consensus sequence features, in order to
define better which is the most useful information to classify nucleic sequences
as fast or slow.
This method could represents a starting point to investigate the possible causes
of the homogeneous behaviour that characterises the 40 reproducible Ribo-seq
profiles identified.
Prompted by good results obtained until now, we think that the classification
of all E.coli transcriptome through machine learning approaches could be very
interesting. Starting from the 40 E.coli ORFs, whose consensus sequences
are known, we can analyze unlabelled sequences and classify them as fast or
slow sequences. In order to do so, we decided to implement different types
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of architectures suitable for processing sequential data, namely CNNs, Long-
Short Term Memories (LSTMs) and Graph Neural Networks (GNNs). There-
fore, our main purpose is to classify all E.coli ORFs, using different data
representations (encodings) to choose the best one. In addition, four neural
network models — which have been trained to predict the translational speed
of codons — will be evaluated to determine which one is the most suitable for
this task. The input data to this task consists of the codons for which we want
to predict the translational speed and a context. Further analysis allows to
find the context size that leads to the most accurate predictions.
In the following, we report the preliminary results, obtained using LSTMs
on amino acid sequences. Briefly, LSTMs are a type of recurrent neural
network (RNN). LSTMs (and in general RNNs) typically contain some neurons
whose activation depends directly or indirectly on their output and can handle
input sequences of varying length. In particular, unlike feedforward neural
networks, RNNs can use their internal state or memory to process sequences of
inputs. Through its memory, the neural network gains the ability to integrate
information from past inputs [109]. Our architecture processes the sequences
one element at a time plus the biological context, which consists of the subsequence
of elements following and preceding the element under analysis. The length of
both sides of the context is set as a parameter.
For the LSTM model, the penultimate fully-connected top layer has a Scaled
Exponential Linear Unit (SELU) activaction. The output layer consists of 2
neurons and is equipped with a softmax activation, generating the probability
distribution over the predicted output classes (fast and slow). The models are
trained for 800 epochs using the Adam SGD optimiser (see Table 6.5 for the
parameters).

Model Type Dataset Epochs LR Parameters HU LSTM HU Dense
LSTM-A Bi-Lstm Aminoacids 800 10−4 3826 12 30

Table 6.5: LSTM model and training parameters

In the context of unbalanced datasets, accuracy is not an adequate measure,
as it does not distinguish between the number of correctly classified examples
of different classes. Balanced accuracy is a popular metric used to evaluate
a classifier’s prediction performance in such scenarios that account for the
imbalance by normalizing true positive and true negative predictions based on
the number of positive and negative samples. Table 6.6 and Figure 6.17 show
the performance obtained with the LSTM model, by varying the length of the
context. It is interesting to note that our model can reach 79.20% balanced
accuracy using the entire ORF as input and a context equal to 8 and 9. We
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Figure 6.17: Accuracy obtained varying the length (x-axis) of the context
sequence.

decided to repeat the experiment with the context equal to 8 because it is
computationally less expensive, still maintaining the same accuracy. A context
length equal to 8 means that the network will analyse 8 aa upstream and 8 aa
downstream plus the central element. Both the average and standard deviation
of the accuracy across 5 runs are reported in Table 6.7. As our results show, the
context appears to play a very important role in determining improvements in
accuracy. In our case, too long or too short contexts seem not to be particularly
informative. Therefore according to the literature [43], in addition to codons
also the context seems to have an impact to predict the speed of the translation
initiation process. Furthermore, as evidenced by the results obtained with the
MLP and CNN models, the composition and order of the nucleotides within
the sequence is important in predicting the speed of translation. Different runs
of the same experiment often show variable results, with a standard deviation
of up to 2%. This is likely due to the unbalanced distribution of the two
classes in the dataset: 80% of the examples belong to the fast class, while
only 20% belong to the slow class. This often leads the network to learn the
prior probability distribution, instead of generalizing properly. Even though
this issue is usually managed by introducing class weights that can restore the
prior probability balance, our network showed to be capable of reaching good
performances even without class weights. Advanced optimization schemes,
inspired by gradient descent [110] [111], should be implemented to adjust the
network parameters to values that produce a performance improvement. As we
know, the presence of more data results in better and more accurate models.
Therefore, we could increase the number of reproducible Ribo-seq profiles by
choosing a less conservative false discovery rate.
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LSTM-A Precision Recall Accuracy F1 Score Balanced
15 82.92 99.05 82.42 90.15 56.21
14 82.71 99.11 82.27 90.07 55.73
13 83.00 98.70 82.22 90.01 56.26
12 89.57 96.48 87.79 92.79 74.08
11 89.58 96.59 87.85 92.82 74.08
10 87.20 96.94 85.30 91.63 67.63
9 91.48 95.37 89.09 93.37 79.20
8 91.54 94.80 88.75 93.14 79.20
7 90.80 95.05 88.22 92.87 77.47
6 89.07 95.16 86.67 92.01 73.31
5 88.21 95.18 85.87 91.56 71.19
4 85.78 95.56 83.64 90.40 64.86
3 83.76 95.99 81.77 89.46 59.35
2 81.40 98.38 80.57 89.08 52.50
1 80.83 98.67 80.07 88.86 50.74

Table 6.6: Summary results of LSTM context variation. The first column
indicates the length of the context. In the case of Precision, Recall, F1-score,
we report the results for each length of the context examined.The last column
reports the balanced accuracy obtained varying the length of the context
sequence.

LSTM-A
Length Run Precision Recall Accuracy F1 Score Balanced

8(17)

1 90.81 93.64 87.24 92.21 0.771571
2 90.91 94.72 88.11 92.78 0.776984
3 92.75 95.26 90.19 93.99 0.821825
4 91.92 95.40 89.53 93.63 0.802839
5 91.29 94.99 88.66 93.10 0.786764

Average 91.54 94.80 88.75 93.14 0.792023
Standard Dev. 0.81 0.70 1.16 0.70 2.05

Table 6.7: Results averaged over five runs of LSTM experiments with context
equal to 8 (8 aminoacids upstream and 8 aminoacids downstream plus the
central element). The last two rows report the average over the runs and the
corresponding standard deviations.





Chapter 7

A comparative Ribo-seq profiles analysis:
normal vs stress conditions

This chapter describes how our approach evaluates whether performing Ribo-
seq experiments performed in conditions different from those characterising the
control group might affect experimental reproducibility.

7.1 Impact of heat-shock

Firstly, we examined the samples belonging to the GSE90056 Series listed in
Table 7.1, exposed after 10-20 minutes of heat shock at 42◦C.
We started this comparative analysis considering the sample GSM2396724,
which refers to Ribo-seq data collected from E.coli k-12 MG1655 cultured and
exposed to heat-shock (42◦C) for 10 min.
Specifically, we investigated whether the experimental variable (in this case
control condition vs heat-shock condition) might influence the reproducibility
of the Ribo-seq experiment. To achieve this, we performed two experiments,

Dataset Genotype Culture’s medium Stress(s) GEO Series ID GEO Sample ID

1 GSE64488 GSM1572266
2 GSE90056 GSM2396722
3 GSE72899 GSM1874188
4 GSE53767 GSM1300279
5 E.coli k-12 MG1655 MOPS, 0.2 % glucose None GSE51052 GSM1399615
6 GSE77617 GSM2055244
7 GSE35641 GSM872393
8 GSE88725 GSM2344796

Shock 10 E.coli k-12 MG1655 MOPS, 0.2 % glucose 42◦C x10’ GSE90056 GSM2396724

Shock 20 E.coli k-12 MG1655 MOPS, 0.2 % glucose 42◦C x20’ GSE90056 GSM2396726

Leu stress E.coli k-12 MG1655 MOPS, 0.2 % glucose leu starvation GSE51052 GSM1399610

Table 7.1: Control samples chosen for comparative analysis belonging
to different GEO Series (Dataset 1-8). GEO Series ID/GEO Sample ID
underlained represent the control samples that will be replaced by the
"stressed" samples belonging to the same GEO Series. Column 1: ID Dataset.
Column 2: Genotype. Column 3: Culture media. Columns 4 and 5: Samples
coordinates (GEO Series ID and GEO Sample ID.



90 7. A comparative Ribo-seq profiles analysis: normal vs stress conditions

namely "control" and "stressed", testing the bed files with only the 40 reproducible
genes identified previously. To balance the analysis between control and stress
samples, we create a new control group: it consists of the eight samples
analyzed (our benchmark constitutes of 40 genes) and a duplicate of the sample
not stressed (GSM2396722) belonging to the same GEO Series (GSE90056)
of dataset stressed that will be examined. It turned out that only 30 genes
obtained from the new control group have reproducible Ribo-seq profile.
Then, we performed the "stressed" experiment testing the dataset GSE90056-
GSM2396724 against our benchmark of 30 genes belonging to the new control
group (excluding the duplicate sample). Due to using the Benjamini-Hochberg
method, we are aware that adding a duplicate dataset reduces the number
of reproducible genes. This is a point we are working on. However, even
with this limit, we obtained promising results. Once the sample GSM2396724
are challenged against the benchmark, we found that out of 30 reproducible
genes that are in common to all eight control datasets, the 24 genes listed in
Table 7.2 have significantly reproducible Ribo-seq profiles. Following the same
strategy described above, we compared the sample GSM2396726, subjected to
heat-shock (42◦C) for 20 min, against our control group. In this comparative
analysis, only 30 ORFs obtained from the previous analysis are considered.
The table summarises the results of this investigation. According to these
results, the different stress condition is a variable to consider in terms of
experimental reproducibility. Indeed, up to our results, when the cells are
exposed to heat-shock for 20 minutes, the number of reproducible Ribo-seq
profiles falls to 19 (see Table 7.3). We observe a significant drop in the number
of reproducible Ribo-seq profiles changing from control condition to stressed
condition. Furthermore, the increase of exposure time to heat-shock, from 10
min to 20 min, significantly reduced the reproducible Ribo-seq profiles. Thus,
our results indicate that translation under heat-shock condition is significantly
differentially regulated. As can be seen from Tables 7.2 and 7.3, ompC gene
is no longer reproducible when E.coli is exposed to heat stress condition (both
for 10 and 20 minutes). Figure 7.2 shows the Riboseq profiles of ompC gene,
relating to control condition (top plot), heat shock for 10 minutes (middle plot)
and heat shock for 20 minutes (bottom plot).
We report the pvalue matrix obtained for ompC gene. The table 7.4 shows the
pairwise comparison between control samples (new control benchmark), while
the table 7.5 and table 7.6 report the pairwise comparison between control
samples ad heat-shock samples for 10 minutes and 20 minutes, respectively.
As evidenced by pvalue observed, ompC is not longer reproducible in stressed
condition.
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Genes Annotation

rodZ Cytoskeleton protein
dnaX DNA polymerase III subunit tau
glnA Glutamine synthetase
gltB Glutamate synthase NADPH large chain
infB Translation initiation factor IF-2
katG Catalase-peroxidase
metG Methionine–tRNA ligase
rne Ribonuclease E
sucA 2-oxoglutarate dehydrogenase
tufA Elongation factor Tu 1
tufB Elongation factor Tu 2
hokB Toxic component of a type I toxin-antitoxin (TA) system
ubiJ Ubiquinone biosynthesis protein
lptD LPS-assembly protein
rpnC Recombination-promoting nuclease
rpnA Recombination-promoting nuclease
fdoG Formate dehydrogenase-O major subunit
wbbH O-antigen polymerase
wbbI Beta-1,6-galactofuranosyltransferase
rpnE Inactive recombination-promoting nuclease-like protein
lpoA Penicillin-binding protein activator
rsxC Electron transport complex subunit
yfcI Recombination-promoting nuclease
gtrS Uncharacterized protein YfdI

Table 7.2: Set of Ribo-seq profiles that resulted to be reproducible
independently of heat-shock temperature of 42◦C, 10 minutes

7.2 Impact of amino-acid starvation:

We reiterated our comparative analysis strategy to investigate the effect of
leucine starvation on translational control.
More in detail, we considered the sample GSM1399610 belonging to GSE51052
Series that refers to Riboseq data obtained from E.coli k-12 MG1655, characterized
by 30 min of leucine starvation. Generally, amino acid starvation can decrease
the elongation rate of ribosomes, influencing the expression levels of the protein
as evidenced in [74]. In addition, this stress condition may impact the expression
levels of the protein due to the reduction of aminoacyl-tRNA concentration
[112]. Once again, to balance the analysis, we generated the control group
consisting of the eight datasets not stressed and a duplicate of dataset GSM1399615
belonging to the same Series of dataset GSM1399610. For all of them, we
generated the Ribo-seq profiles corresponding to the 40 ORFs identified previously
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Genes Annotation

rodZ Cytoskeleton protein
dnaX DNA polymerase III subunit tau
gltB Glutamate synthase NADPH large chain
infB Translation initiation factor IF-2
metG Methionine–tRNA ligase
secY Protein translocase subunit SecY
rne Ribonuclease E
sucA 2-oxoglutarate dehydrogenase
tufA Elongation factor Tu 1
tufB Elongation factor Tu 2
hokB Toxic component of a type I toxin-antitoxin (TA) system
ubiJ Ubiquinone biosynthesis protein
lptD LPS-assembly protein
rpnC Recombination-promoting nuclease
fdoG Formate dehydrogenase-O major subunit
wbbH O-antigen polymerase
yfjI Uncharacterized protein YfjI
rsxC Electron transport complex subunit
yfcI Recombination-promoting nuclease

Table 7.3: Set of Ribo-seq profiles that resulted to be reproducible
independently of heat-shock temperature of 42◦C, 20 minutes

Control
vs

Dataset 1

Control
vs

Dataset 3

Control
vs

Dataset 4

Control
vs

Dataset 5

Control
vs

Dataset 6

Control
vs

Dataset 7

Control
vs

Dataset 8
5.10E-05 1.22E-07 8.56E-06 0.002080224 0.000757534 0.002002657 0.000824481

Table 7.4: p-value matrix referring to ompC gene of E.coli (Control,
GSE90056-GSM2396722, Dataset 2). The columns contain p-values associated
to each pairwise comparison.

in chapter 4. According to our method, we generated the corresponding
digitalised profiles and then we compared them pairwise. Once we mapped
the similarity scores on the corresponding null distributions, we obtained 27
reproducible Ribo-seq profiles which are used as a benchmark for the subsequent
analysis. To perform the "stressed" experiment, we substituted the duplicate
sample with the corresponding "stressed" dataset GSM1399610 and we compared
it against our benchmark.
Finally, we turned that out of 27 possible Ribo-seq profiles only 13 found
out to be reproducible, using a FDR threshold of 0.01. We interpreted these
results, summarized in Table 7.7, highlighting that the genes that are no
longer reproducible are those that, due to stress, have been influenced by the
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Figure 7.1: Ribo-seq profiles of ompC gene. Top plot depicts the control
condition, middle plot the heat shock for 10 minutes, while the bottom plot
represents the heat shock for 20 minutes.

Shock 10
vs

Dataset 1

Shock 10
vs

Dataset 3

Shock 10
vs

Dataset 4

Shock 10
vs

Dataset 5

Shock 10
vs

Dataset 6

Shock 10
vs

Dataset 7

Shock 10
vs

Dataset 8
0.059723569 0.008329774 0.024878088 0.413734806 0.285821703 0.791321552 0.631009377

Table 7.5: p-value matrix referring to ompC gene of E.coli (Shock 10,
GSE90056-GSM2396724,42◦C for 10 minutes). The columns contain p-values
associated to each pairwise comparison.

translational control. Starvation of leucine caused a pronounced change in the
distribution of RPFs along the ORFs, as illustrated in Figure 7.2.

Following the same procedure of heat shock comparison, based on the
pvalue matrix of ompC gene (see Table 7.8 and Table 7.9), we can state that this
gene is not longer reproducible whether E.coli grows under leucine starvation
conditions for 30 minutes.
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Shock 20
vs

Dataset 1

Shock 20
vs

Dataset 3

Shock 20
vs

Dataset 4

Shock 20
vs

Dataset 5

Shock 20
vs

Dataset 6

Shock 20
vs

Dataset 7

Shock 20
vs

Dataset 8
0.018967262 0.004085189 0.069977386 0.654819705 0.642425128 0.943959924 0.914184849

Table 7.6: p-value matrix referring to ompC gene of E.coli (Shock 20,
GSE90056-GSM2396726, 42◦C for 20 minutes). The columns contain p-values
associated to each pairwise comparison

.

Gene Annotation

rodZ Cytoskeleton protein
dnaX DNA polymerase III subunit tau
gltB Glutamate synthase, large chain
metG Methionine–tRNA ligase
tufA Elongation factor Tu 1
tufB Elongation factor Tu 2
hokB Small toxin membrane polypetide
ubiJ Ubiquinone biosynthesis protein
lptD LPS-assembly protein
rpnC Recombination-promoting nuclease
wbbH O-antigen polymerase
rpnE Inactive recombination-promoting nuclease-like protein
rsxC Electron transport complex subunit

Table 7.7: Genes with significantly reproducible Ribo-seq profiles under
leucine starvation.

Control
vs

Dataset 1

Control
vs

Dataset 2

Control
vs

Dataset 3

Control
vs

Dataset 4

Control
vs

Dataset 6

Control
vs

Dataset 7

Control
vs

Dataset 8
0.00321645 3.62E-05 0.00175841 0.00010679 0.00039528 0.00691943 0.00410076

Table 7.8: p-value matrix referring to ompC gene of E.coli (Control,
GSE51052-GSM1399615, Dataset 5). The columns contain p-values associated
to each pairwise comparison.

Leu stress
vs

Dataset 1

Leu stress
vs

Dataset 2

Leu stress
vs

Dataset 3

Leu stress
vs

Dataset 4

Leu stress
vs

Dataset 6

Leu stress
vs

Dataset 7

Leu stress
vs

Dataset 8
0.51536943 0.0334051 0.28700529 0.36798143 0.48971448 0.57416258 0.16804795

Table 7.9: p-value matrix referring to ompC gene of E.coli (Leu stress,
GSE51052-GSM1399610). The columns contain p-values associated to each
pairwise comparison.



7.3. Discussion 95

100 200 300 400 500 600 700 800 900 1000

0.0000

0.0025

0.0050

0.0075

0.0100

0.0000

0.0025

0.0050

0.0075

0.0100

re
la
tiv

LEUCINE STARVATION

CONTROL

1100
ompC

re
la

tiv
e 

co
ve

ra
ge

Figure 7.2: ompC Ribo-seq profiles control vs leucine starvation

7.3 Discussion

Once we have substituted the control dataset with the stressed dataset belonging
to the same GEO Series, we applied our method to perform a comparative
analysis between two different conditions. The results confirm that our method
can be used for comparative analyses, allowing us to identify biological differences
in the comparative Ribo-seq profiles due to the translation being regulated
differently. In the table 7.5, and 7.6, we can observe that the p-values obtained
comparing pairwise the control samples with the stressed samples are not
significant.
Outmembran porines (ompC and ompF) are expressed when E.coli is grown
at 37°C. The upregulation of ompC and ompF can occur through responses
elicited by osmolarity, pH, ionic strength, and temperature [113]. In particular,
their expression levels are controlled by the ompB regulon, which is comprised
of positive transcriptional regulator OmpR and an inner membrane sensor
histidine kinase EnvZ [114]. The role of kinase EnvZ in response to osmotic
stress is known [115]. At high osmolarity, EnvZ autophosphorylates and transfers
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the phosphoryl group to the regulator OmpR (aspartate residue), leading to
conformational changes. OmpR-P then binds to the promoter regions of the
porin genes ompF and ompC and activate their transcription.
The outer membrane is the first barrier between E.coli and the surrounding
environment. When the cells are exposed to different stress condition like
starvation or temperature changes, the expression of outmembran porines
represents a crucial factor in determining the survival of bacterial cells. It
is known that the rate of omps protein in the outer membrane is correlated
to several factors, including the growth temperature, as evidenced in [116]. In
addition, porine genes are subject to complex post-transcriptional regulation
by a variety of siRNA molecules, including MicC, RseX and RybB. [117]. It
has been demonstrated that MicC inhibits the binding of the small subunit of
the ribosome to ompC mRNA, suggesting that MicC is able to prevents the
translation initiation [118].
Considering that we assessed the comparative analysis starting from 40 Ribo-
seq profiles as a benchmark and only three "stressed" samples, more extensive
data sets are required to exploit the power of the analyses, in future studies.
Further analysis would be needed to achieve a comprehensive overview of
translation regulation in response to a stress condition.



Chapter 8

The human case-study: liver tumours vs
their adjacent non-cancerous liver tissues

In this section, we report a preliminary analysis of Riboseq profiles referring
to liver tumours and their adjacent noncancerous normal liver tissues from 10
patients with hepatocellular carcinoma (HCC) [119].
The data are stored in the European Nucleotide Archive (ENA) at EMBL-EBI
under accession number PRJNA448763. The coordinates for these datasets are
reported in Table 8.1.

SRA ID Dataset

SRR6939924 Dataset 1 normal
SRR6939926 Dataset 1 tumor

SRR6939928 Dataset 2 normal
SRR6939930 Dataset 2 tumor

SRR6939932 Dataset 3 normal
SRR6939934 Dataset 3 tumor

SRR6939936 Dataset 4 normal
SRR6939938 Dataset 4 tumor

SRR6939940 Dataset 5 normal
SRR6939942 Dataset 5 tumor

SRR6939944 Dataset 6 normal
SRR6939946 Dataset 6 tumor

SRR6939948 Dataset 7 normal
SRR6939950 Dataset 7 tumor

SRR6939952 Dataset 8 normal
SRR6939955 Dataset 8 tumor

SRR6939957 Dataset 9 normal
SRR6939959 Dataset 9 tumor

SRR6939961 Dataset 10 normal
SRR6939963 Dataset 10 tumor

Table 8.1: Summary of the ribosome profiling data from HCC patients

The pre-processing procedure of the ribosome profiling data has been described
in Chapter 2. The only difference concerning the pre-processing analysis
performed on E.coli data is related to the read quality score. In this case,
low-quality scores lower than 20 are removed, using trimgalore tool. This
choice is attributed since the datasets under investigation are tissues, and they
result more degraded than the E.coli cell cultures.
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tissues

The goal of this analysis upon the thesis is centered is to provide an effective
method that can be applied to each kind of Ribo-seq dataset including those
related to complex organisms such humans. In this chapter, our method
delivers a unique set of genes for each condition under investigation ( i.e.
normal and cancer tissues) that have a robust and reproducible ribosome
profiles. The obtained high resolution Ribo-seq profiles libraries serve as
reliable benchmarks to explore conditions potentially affecting translation control
and to detect possible differential translation events which occur during tumorigenesis.

8.0.1 Preliminary results

Firstly, our novel data analysis approach is applied to the human control
datasets and then to the cancer datasets, in order to identify the reproducible
Ribo-seq profiles for each condition and then to compare them.
According to our method described in Chapter 4, we counted in each row how
many p-values resulted significant according to the BH method. In this case,
we defined reproducible those Ribo-seq profiles referring to the rows with all
the p-values are below a chosen significance threshold (p < 0.01).
All the data analysis results are included in the appendix, chapter 11. Following
the strategy described in Chapter 4, we found that, out of 1045 genes that
are in common to all ten control datasets, the 49 genes listed in Table 11.2
are reproducible. Interestingly, from 3306 genes in common to all ten cancer
dataset, 138 Ribo-seq profile are defined as significantly reproducible (Table
11.3). We report here an illustrative example of a reproducible gene identified
in the control group, Ornithine carbamoyltransferase (OTC) (See Figure 8.1).
OTC is reproducible in the control group but no longer in the tumour group.
The Figure 8.2 shows the comparison of OTC Ribo-seq profiles referred to
Dataset 1 (control and adjacent cancer sample). In the control sample, the
reads seem uniformly distributed across the entire length of the ORF while, in
their adjacent cancer sample the distribution of ribosome occupancy results
in two isolated footprint peaks along the ORF. OTC is found exclusively
specific to the liver mitochondria [120]. It is an enzyme that participates in
the urea cycle to detoxify the ammonia produced from amino acid catabolism.
Several studies have suggested that accumulated ammonia resulting from OTC
deficiency causes chronic liver damage, a potential risk factor of HCC.[121]. It
also has been observed that OTC expression is significantly downregulated in
HCC [122]. Further analyses are necessary to investigate the role of OTC in
the pathogenesis of HCC.
As mentioned above, there is a significant difference between the genes in
common between control and cancer datasets that may be related to an
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Figure 8.1: OTC Ribo-seq profile across all ten control dataset
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Figure 8.2: OTC Ribo-seq profile between controls vs adjacent cancer tissue
(Dataset 1)

experimental issue or a specific pattern expressed by cancer-related genes. As
evidenced in [119], it has been observed that the most abundant reads (peaks)
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tissues

are shifted by 1 or 2 nucleotides between different patients. This occurs because
the tissue samples from different patients are collected at different times and
then subjected to different digestion efficiency by RNase I treatment. Another
explanation can be traced back to varying amounts of starting material of
RNA. However, to deepen the reason for these results, we performed an over-
representation statistics analysis of reproducible cancer genes using Panther
tool [80].
Over-representation analysis determines whether genes from predefined sets
(human genes) are found more than would be expected in a subset of our
data. In our case, the main objective is to observe whether exist a correlation
between reproducible genes and pathway associate with liver cancer. Then, we
compared our reproducible cancer gene list to a reference gene list represented
by human genes, to determine whether a particular class (e.g. Reactome
pathway) of genes is over-represented or under-represented. We observed that
66 pathways are significant, with a FDR of 0.05. For the results of the over-
representation analysis, see appendix Table 11.4. If we consider Reactome
pathways as a category under investigation and more genes are observed in
the test list than expected, we have an over-representation of genes involved
in specifics pathways. Otherwise, if fewer genes are observed than expected,
we have an under-representation. Interestingly, genes involved in Signaling by
NOTCH4 (R-HSA-9013694) are over-represented (p= 2.87E-04). NOTCH4 is
prevalently expressed in endothelial cells [123]. In the liver, this pathway is
involved in biliary tree development and tubulogenesis and its dysregulation
has been observed as a determinant in the development of HCC [124]. A recent
study has highlighted the role of Notch pathway in liver cells transition to the
mesenchymal phenotype [125]. We next investigated the disease association
of the reproducible cancer genes using the gene–disease association network
(DisGeNET) [126] in EnrichR [127] plugin, in order to demonstrate that these
genes express a specific liver cancer pattern. Disease enrichment analysis
showed liver carcinoma is the most high-ranked (p = 2.16E-13), as illustrated
in Figure 8.3.
This result indicates the existence of a specific expression fingerprint of these
genes that are shared in patients with HCC cancer.

8.0.2 Future works

For what concerns machine learning analysis, once we have obtained the
consensus sequences of reproducible Ribo-seq profiles, we carried on a preliminary
analysis exploiting the same neural architectures optimized for the E.coli datasets.
Unfortunately, this analysis did not result in remarkable performances. Given
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Figure 8.3: Bar graph of top ten enriched disease terms across input
reproducible cancer genes, sorted by p-value ranking.

the increased complexity of the human dataset task, we believe that through
further analysis, in particular defining ad-hoc neural architectures and with a
specialized hyperparameter search, the performances could be greatly improved.
Considering that we analyzed Ribo-seq data from 10 liver tumours and their
adjacent non-cancerous normal liver tissues, future works will be focused on
the assessment of the reproducibility of Ribo-seq experiments from different
dataset. Our aim is to analyze samples coming from human cell cultures
because they are more homogeneous than tissue: when tissue is taken during
a surgical biopsy procedures, it is difficult to have a uniform sample (e.g., it
is unavoidable to take parts of the stroma and vessels with the parenchyma of
an organ). In addition, during a biopsy or surgery, it is not easy to properly
store the tissue before analyzing it.
Future works will be centered to perform a comparative transcriptome and
translatome analysis in cancerous vs normal cells, in order to reveals different
gene regulatory mechanisms at the transcriptional and translational level between
the two conditions. Indeed, several studies in mammalians cells have shown
that although most stress responsive genes are regulated at the transcriptional
level, mRNA abundance is not always a good proxy of protein concentration
[128] [129]. This suggest that the transcriptome needs to be studied in conjunction
with translatome and proteome, in order to unravel molecular insights into gene
regulatory mechanisms involved in development of cancer.





Chapter 9

Discussion

The Ribosome Profiling technique represents the most advanced tool able to
exploits deep sequencing to study the translation of gene expression. Ribo-seq
provides a measurement for how the translation is regulated, what is being
translated and where a specifics protein is translated. In this dissertation,
we have described a new data analysis approach that allows to address the
limitations that affect the reproducibility of Ribo-seq experiments. Moreover,
we have shown that our method can identify a set of significantly reproducible
ribo-seq profiles coming from the comparison of independent Ribo-seq
experiments. Although the low number of profile (40 genes), this library
represents a comprehensive workbench for comparative experiments aimed to
study the factors that influence the translation process.
The consensus sequences built from the 40 reproducible Ribo-seq profiles are
labelled with +1 and -1 and correspond to fast and slow regions, respectively.
The purpose of this thesis is to verify the existence, within the sequence of
the gene, of signals or nucleotide patterns capable to influence the efficiency
of translation. Based on several hypotheses present in the literature, to justify
the variations of the ribosome speed, we have proposed an investigation on the
nucleotide composition in slow and fast sequences. The nucleotide frequencies
observed in the fast and slow subsequences are statistically significant and it
is highly unlikely to find them by chance.
Our results suggest that the nucleotide composition of the subsequences
constitute useful information to discriminate the fast from the slow subsequences.
Leveraging such intuition, we exploited statistical information on the nucleotide
frequencies to train simple artificial neural networks to predict the nature of
the subsequences. In particular, a MLP network is capable to leverage such
information in order to predict the nature of the
subsequences (i.e., with 75.67% average test accuracy) to distinguish slow and
fast subsequences.
Moreover, training a 1-D Convolutional neural network directly on the nucleotide
subsequences allowed us to achieve an accuracy of about 89.39% in the same
task, confirming the significance of our hypothesis. An increase of performance
was expected compared to the frequency-based prediction, because in this
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latter approach the information on nucleotides is enriched thanks to sequential
and contextual information. The usage of more complex architectures (i.e., 7-
CNN ensemble model) improves the prediction of two percentage point (91%).
We believe that this represents a good prospect for further analysis, opening the
road to an improvement in performances leveraging ad-hoc neural architectures
and a specialized hyperparameter search. Considering that we analyzed a
relatively small-sized dataset which could hinder our machine learning based
method, future works will be devoted to studies on more extensive datasets,
in order to fully leverage the representational capability of machine learning
approaches. Understanding the factors that affect translation speed, what
is the origin of peaks and valleys that we can observe by looking the ribo-
seq profiles obtained, remains still unclear. This kind of question could be
addressed by considering multiple options such as the presence of optimal
or non-optimal codon in the ORF, mRNA secondary structure downstream,
mRNA stability, translation pause sites, ribosomal binding sites (e.g IRES),
and codon context. Preliminary results on E.coli genome revealed that codon-
context is a variable to take into account to predict the translation speed. The
performance of the experiments changes depending on the length of context
chosen. Based on the results obtained using LSTM architecture, too long or
too short contexts seems not to be informative.
Furthermore, in Chapter 7, we have shown that our data analysis approach can
be used for comparative analysis. The same strategy can be easily applied to
other experimental variables in order to detect possible differential mechanisms
of translation regulation.
In Chapter 8, our approach has been proved to be very efficient because it
allows us to compare large datasets, such as the human one, in a short time.
Although the results of data analysis approach are promising, further analyses
are required to optimize the neural architectures due to the complexity of the
human dataset task. Finally, it is worth mentioning that our method represents
an effective approach applied to each kind of Ribo-seq dataset, to investigate
an extremely relevant open questions in biology, such the features which could
influence the velocity of the ribosome during translation. The application
of machine learning-based methodologies has provide an unprecedented point
of view in this context, focusing on the role of the context in determining
the translation rate. We proposed an innovative methodology bridging two
different scientific areas (i.e. biology and data science) and a clear applicative
perspective of the obtained results is found in the biotechnology field. It
is known that the levels of expression of a target protein can be optimized
by several approaches [130] [131] and our methodologies could represent an
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important resource for the improvement of translational efficiency. When we
don’t have information from the Ribo-seq data analysis approach, we can use
machine learning methods to predict fast and slow unlabelled translated region.
Starting from a small number of reproducible genes, the implementation of
efficient neural network architectures allow us to classify all E.coli transcriptome.
Genetic engineering can exploit these findings in order to understand which
region of a not identified ORF is fast or slow, with the purpose to optimise or
slow down translation, for instance by changing synonymous codons based on
an organism’s codon bias.





Chapter 10

Summary of additional research topics

This chapter reviews the research conducted during the PhD period, but not
directly covered by this thesis.

10.1 Graph Neural Networks for the Prediction of
Protein–Protein Interfaces

More details on this work are available in [132].
Binding site identification allows to determine the function-ality and the quaternary
structure of protein–protein complexes. Various approaches to this problem
have been proposed without reaching a viable solution. Representing the
interacting peptides as graphs, a correspondence graph describing their interaction
can be built. Finding the maxi-mum clique in the correspondence graph
allows to identify the secondary structure elements belonging to the interaction
site. Although the maximum clique problem is NP-complete, Graph Neural
Networks make for an approximation tool that can solve the problem in affordable
time. Our experimental results are promising and suggest that this direction
should be explored further.

10.2 Deep Learning Techniques for Dragonfly Action
Recognition

More details on this work are available in [133].
Anisoptera are a suborder of insects belonging to the order of Odonata, commonly
identified with the generic term dragonflies. They are characterized by a
long and thin abdomen, two large eyes, and two pairs of transparent wings.
Their ability to move the four wings independently allows dragonflies to fly
forwards, backwards,to stop suddenly and to hover in mid–air, as well as to
achieve high flight performance, with speed up to 50km per hour. Thanks to
these particular skills, many studies have been conducted on dragonflies, also
using machine learning techniques. Some analyze the muscular movements of
the flight to simulate dragonflies as accurately as possible, while others try
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to reproduce the neuronal mechanisms of hunting dragonflies. The lack of a
consistent database and the difficulties in creating valid tools for such complex
tasks have significantly limited the progress in the study of dragonflies. We
provide two valuable results in this context: first, a dataset of carefully selected,
pre–processed and labeled images, extracted from videos, has been released;
then some deep neural network models, namely CNNs and LSTMs, have been
trained to accurately distinguish the different phases of dragonfly flight, with
very promising result.

10.3 AKUImg: A database of cartilage images of
Alkaptonuria patients

More details on this work are available in [134]. ApreciseKUre is a multi-
purpose digital platform facilitating data collection, integration and analysis
for patients affected by Alkaptonuria (AKU), an ultra-rare autosomal recessive
genetic disease. We present an ApreciseKUre plugin, called AKUImg, dedicated
to the storage and analysis of AKU histopathological slides, in order to create
a Precision Medicine Ecosystem (PME), where images can be shared among
registered researchers and clinicians to extend the AKU knowledge network
(See figure 10.1).
AKUImg includes a new set of AKU images taken from cartilage tissues acquired
by means of a microscopic technique. The repository, in accordance to ethical
policies, is publicly available after a registration request, to give to scientists
the opportunity to study, investigate and compare such precious resources.
AKUImg is also integrated with a preliminary but accurate predictive system
able to discriminate the presence/absence of AKU by comparing histopatological
affected/control images. The algorithm is based on a standard image processing
approach, namely histogram comparison, resulting to be particularly effective
in performing image classification, and constitutes a useful guide for non-AKU
researchers and clinicians.

10.4 A Transcriptional Study of Oncogenes and Tumor
Suppressors Altered by Copy Number Variations
in Ovarian Cancer

More details on this work are available in [135] The most popular approach to
explain cancer is based on the discovery of oncogenes and tumor suppressor
genes as a preliminary step in estimating their impact on altered pathways.
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Figure 10.1: A snapshot of the home page of the ApreciseKUre database
(left) and a prediction example (right). In particular, an AKU image was fed
into the prediction model, which reports similarity values for all AKU images
in the dataset (lighter colors indicate a higher similarity).

The present paper proposes a pipeline which aims at detecting “weak” or
“indirect” functions impacted by Copy Number Variations (CNVs) of cancer-
related genes, integrating such signals over all known oncogenes/tumor suppressor
genes of a cancer type. We applied the pipeline to the task of detecting the
aberrant functional effects of these alterations across ovarian cancer patients
from The Cancer Genome Atlas (TCGA) data.

10.5 Analysis of brain NMR images for age estimation
with deep learning

More details on this work are available in [136] During the last decade, deep
learning and Convolutional Neural Networks (CNNs) have produced a devastating
impact on computer vision, yielding exceptional results on a variety of problems,
including analysis of medical images. Recently, these techniques have been
extended to 3D images with the downside of a large increase in the computational
load. In particular, state-of-the-art CNNs have been used for brain Nuclear
Magnetic Resonance (NMR) imaging, with the aim of estimating the patients’
age. In fact, a large discrepancy between the real and the estimated age is a
clear alarm for the onset of neurodegenerative diseases, such as some types
of early dementia and Alzheimer’s disease. In this paper, we propose an
effective alternative to 3D convolutions that guarantees a significant reduction
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of the computational requirements for this kind of analysis. The proposed
architectures achieve comparable results with the competitor 3D methods,
requiring only a fraction of the training time and GPU memory (See figure
10.2).

Figure 10.2: 3D–CNN architecture proposed for predicting age from NMR
brain images

10.6 Fusion of Visual and Anamnestic Data for the
Classification of Skin Lesions with Deep Learning

More details on this work are available in [137] Early diagnosis of skin lesions
is essential for the positive outcome of the disease, which can only be resolved
with surgical treatment. In this manuscript, a deep learning method is proposed
for the classification of cutaneous lesions based on their visual appearance and
on the patient’s anamnestic data. These include age and gender of the patient
and position of the lesion. The classifier discriminates between benign and
malignant lesions, mimicking a typical procedure in dermatological diagnostics.
Good preliminary results on the ISIC Dataset demonstrate the importance of
the information fusion process, which significantly improves the classification
accuracy.
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1 vs 2 1vs3 1 vs 4 1 vs 5 1 vs 6 1 vs 7 1 vs 8 2 vs 3 2 vs 4
rodZ 0,000302 9,9E-10 4,65E-05 0,001141 1,63E-05 0,000622 0,001052 7,05E-05 5,59E-05
arcB 0,016648 2,35E-08 0,001357 0,003275 1,15E-08 0,363792 0,013135 0,000223 9,99E-06
dld 0,002944 1,11E-16 4,91E-09 0,000046 7,71E-08 0,000353 0,007627 0,000185 0,002696

dnaX 4,96E-05 0 9,16E-09 7,61E-09 2,6E-08 0,039177 1,01E-06 0,000139 0,002955
fhuA 0,000314 0 8,3E-12 0,051982 0,001026 0,005756 0,000436 0,004054 5,78E-05
glnA 0,004247 0 6,11E-06 0,0004 4,43E-08 0,000251 0,000209 0,007783 0,000486
gltB 1,58E-09 0 3,5E-09 6,52E-08 2,05E-09 1,51E-09 5,49E-08 2,23E-12 8,92E-13
hisS 0,164359 1,11E-15 7,59E-07 1,16E-10 0,000225 9,39E-07 0,000166 0,024632 7,95E-05
infB 0,00027 0 1,61E-11 0,000115 1,38E-06 1,27E-07 4,31E-09 1,09E-05 7,27E-06
katG 0,000128 0 2,93E-09 3,82E-05 3,94E-11 1,05E-05 0,000158 2,75E-06 1,14E-07
malF 0,000209 4,45E-14 0,000284 0,000199 0 2,62E-14 0 0,011484 0
metG 0,00466 0 7,16E-10 7,81E-05 5,04E-05 3,21E-06 3,55E-06 0,008396 0,001194
mukB 0,000225 0 7,1E-11 5,36E-06 2,28E-06 0,000513 2,4E-06 5,28E-05 1,18E-05
ompC 0,000122 6,22E-15 0,000281 0,00038 4,32E-07 8,82E-05 0,000152 9,01E-08 8,63E-06
parC 0,005318 0 6,62E-08 0,003695 2,28E-05 3,47E-06 3,04E-08 4,95E-06 3,44E-05
secY 0,000179 0 3,72E-05 9,91E-05 6,58E-06 0,013403 0,009769 2,93E-05 8,08E-08
purL 0,008598 0 5,82E-09 0,006168 4,41E-08 6,5E-07 2,92E-07 0,000523 0,016132
rne 0,000197 0 1,1E-10 4,16E-05 6,37E-08 5,06E-05 7,72E-05 8,99E-07 2,25E-10

sucA 0,0074 0 2,77E-07 4,64E-05 1,59E-07 0,000833 0,000491 0,000583 6,99E-12
tufA 0 0 0 0 0 0 0 0 0
tufB 0 0 0 0 0 0 0 0 0
leuA 0,000361 3,08E-10 0,000703 0,000444 0,000483 0,000188 0,000177 1,07E-05 6,28E-06
hokB 0,001322 0,000256 0,001418 0,001901 0,003894 0,002409 0,001682 0,001385 0,001209
acnA 2,77E-05 0 0,035974 0,000556 6,99E-08 5,6E-09 3,14E-07 0,000378 0,004064
ubiJ 2,78E-05 1,05E-10 4,73E-08 6,05E-05 0,000016 2,41E-08 4,73E-09 2,57E-06 5,06E-05
lptD 0,004531 0 1,09E-09 0,000161 1,26E-07 4,62E-05 4,08E-05 0,00011 1,27E-06
rpnC 1,22E-15 0 0 0 0 1,35E-10 0 5,22E-14 2,22E-16
rpnA 1,73E-14 1,8E-12 1,34E-13 0 2,02E-14 2,22E-16 6,41E-14 2,57E-10 1,83E-10
fdoG 3,64E-05 0 0,000645 0,567612 3,63E-10 2,9E-08 1,68E-08 6,28E-06 8,08E-09
wbbH 1,9E-06 4,96E-14 7,03E-05 7,42E-07 6,72E-05 0,000273 0,000249 5,99E-09 5,93E-07
wbbI 0,000019 9,44E-15 1,92E-06 0,008666 0,003151 0,004661 0,000234 2,28E-07 3,59E-09
wbbK 1,57E-05 0 2,96E-07 0,008659 1,94E-10 0,001045 0,002247 0,000143 0,000477
rpnE 0 1,22E-15 1,55E-15 0 0 0 0 5,55E-16 1,5E-14
lpoA 0,00174 0 4,78E-05 0,006497 0,000328 0,03418 0,018665 1,97E-05 0,000817
gspD 0,116793 1,95E-13 0,128488 0,118626 8,39E-08 9,62E-07 1,68E-06 0 0
yfjI 0 5,27E-13 0 0 0 0 0 0,081787 0
rlmL 1,04E-05 0 4,38E-08 8,34E-05 7,42E-05 2,28E-05 4,12E-06 9,43E-08 6,29E-07
rsxC 2,91E-06 0 1,75E-06 1,89E-05 4,86E-07 0,000131 0,002812 1,02E-06 0,000686
yfcI 6,35E-14 6,99E-15 3,97E-14 0,000219 2,51E-14 1,11E-16 0 0 1,4E-12
gtrS 8,01E-06 1,73E-14 1,28E-09 4,19E-06 5,75E-14 8,93E-05 0,00637 7,49E-06 3,55E-05

2 vs 5 2 vs 6 2 vs 7 2 vs 8 3 vs 4 3 vs 5 3 vs 6 3 vs 7 3 vs 8
rodZ 0,000523 3,35E-07 9,25E-07 0,000177 4,47E-07 0,005145 4,99E-07 0,00026 0,001198
arcB 0,000533 0,000207 8,24E-06 0,000226 0,053975 3,56E-05 1,29E-08 0,023564 0,006714
dld 5,09E-05 0,000418 0,00553 0,011974 1,3E-08 1,85E-05 5,59E-09 0,020211 0,023751

dnaX 3,28E-07 3,95E-07 0,004477 0,001574 2,62E-06 5,98E-08 1,02E-08 0,003527 7,01E-06
fhuA 0,829726 0,001497 7,21E-06 0,000044 1,42E-14 0,005407 2,29E-05 0,000915 6,57E-05
glnA 0,017268 0,002062 0,001453 0,001327 6,75E-08 0,000834 1,26E-09 1,56E-05 3,35E-05
gltB 1,16E-11 9,72E-10 5,79E-12 1,69E-11 1,05E-12 1,57E-09 1,04E-10 2,21E-10 3,28E-12
hisS 0,195895 0,050289 0,003687 0,028351 2,11E-05 3,9E-09 9,31E-05 3,54E-06 0,000813
infB 0,000964 0,000492 7,76E-05 6,73E-05 2,29E-13 6,56E-06 1,06E-06 8,59E-06 2,69E-07
katG 0,039356 1,83E-05 4,54E-06 3,62E-06 1,69E-08 0,001595 2,16E-07 0,000133 0,001866
malF 0 0 5,08E-06 7,34E-12 0,008166 0,011794 0 1,88E-10 0
metG 0,073793 7,33E-05 0,002085 0,001178 1,58E-09 0,000112 2,55E-06 2,03E-09 5,74E-09
mukB 0,000296 1,03E-08 0,002244 0,082593 3,33E-15 3,64E-06 8,06E-10 0,002479 7,76E-05
ompC 0,001204 0,00081 0,00214 0,002844 2,82E-06 0,002592 3,11E-06 0,006417 0,000994
parC 0,001178 0,002148 0,505097 0,208047 6,27E-08 9,66E-05 4,33E-08 6,23E-06 6,7E-06
secY 0,00039 0,000195 0,002245 0,00439 6,39E-07 4,42E-05 5,59E-08 0,001641 0,000189
purL 0,05188 0,026687 0,382599 0,521956 3,99E-14 0,000422 3,21E-08 1,78E-09 7,65E-10
rne 6,74E-05 6,75E-13 2,33E-08 2,48E-10 4,37E-11 7,2E-06 1,13E-05 2,06E-06 2,63E-06

sucA 0,000453 7,45E-07 0,004906 0,002338 3,09E-08 1,56E-05 1,84E-09 3,41E-06 6,49E-06
tufA 0 0 0 0 0 0 0 0 0
tufB 0 0 0 0 0 0 0 0 0
leuA 0,115529 0,000055 0,000337 8,55E-05 0,001154 0,000646 0,005596 0,000141 7,52E-05
hokB 0,006072 0,003628 0,003169 0,000979 0,001706 0,001261 0,001044 0,001904 0,002157
acnA 0,00399 0,007659 0,004207 0,097685 0,00085 0,000318 6,64E-08 3,22E-08 1,73E-06
ubiJ 0,000155 7,06E-07 2,31E-07 4,11E-05 1,23E-07 2,62E-06 3,59E-07 9,94E-10 1,85E-10
lptD 0,001707 3,09E-05 0,015301 0,041123 3,56E-12 1,11E-09 1,64E-07 4,76E-06 0,000016
rpnC 2,22E-16 2,66E-15 4,22E-15 2,55E-15 4,44E-16 1,94E-14 7,66E-13 4,55E-15 4,33E-15
rpnA 8,48E-09 1,33E-15 1,11E-16 2,18E-11 3,33E-16 3,16E-07 3,33E-16 0 0
fdoG 0,006616 2,83E-09 4,82E-10 3,36E-05 0,001655 0,550734 7,13E-10 7,26E-10 5,41E-09
wbbH 6,06E-05 7,79E-08 0,006254 0,000122 3,77E-09 1,29E-06 3E-07 0,000108 1,06E-06
wbbI 0,000277 2,46E-05 0,005735 0,006206 2,65E-09 0,005022 0,005448 0,000288 0,000371
wbbK 0,059825 0,000365 0,040509 0,059113 9,7E-08 0,000726 1,38E-08 9,74E-07 2,99E-06
rpnE 2,25E-13 4,44E-16 6,66E-16 0 8,06E-14 9,14E-13 3,26E-14 0 3,11E-15
lpoA 0,010732 8,74E-06 0,000865 0,000153 0,000227 0,001268 4,3E-07 0,006436 0,000174
gspD 0 0 0 0 0 0 0 0 0
yfjI 0 0 0 0 0,078013 0,07842 5,3E-08 1,72E-09 1,13E-11
rlmL 0,143537 0,087541 8,84E-06 4,01E-05 1,8E-07 5,26E-05 0,001759 1,56E-05 0,000288
rsxC 6,87E-06 3,76E-08 0,003688 0,002035 1,53E-05 0,00038 5,44E-07 2,06E-06 0,000151
yfcI 3,73E-11 0 1,11E-16 0 0 2,71E-09 9,77E-15 2E-15 1,11E-16
gtrS 0,000517 1,11E-08 7,61E-05 0,000232 1,76E-10 1,4E-06 8,22E-12 0,000173 0,001364
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4 vs 5 4 vs 6 4 vs 7 4 vs 8 5 vs 6 5 vs 7 5 vs 8 6 vs 7 6 vs 8 7 vs 8
rodZ 9,11E-05 7,42E-05 0,041224 0,004966 1,88E-09 0,010968 0,000362 1,81E-06 1,61E-07 1,11E-16
arcB 1,78E-05 0,000126 0,004021 0,000721 4,57E-06 0,02243 0,000374 0,006743 0,001304 0
dld 4,77E-10 3,63E-08 0,000173 0,002606 9,12E-07 0,001296 0,00257 0,002538 0,002293 0

dnaX 3,55E-05 3,29E-08 0,025987 0,000335 1,14E-12 0,001396 0,00069 0,006071 8,7E-06 3,89E-15
fhuA 0,249669 0,001028 0,001031 1,02E-05 0,181241 0,512055 0,080773 0,007108 0,004644 0
glnA 0,006572 2,84E-05 0,006554 0,004529 8,23E-06 0,295516 0,140418 0,116553 0,030526 0
gltB 4,24E-08 1,56E-08 3,58E-06 1,97E-06 2,22E-16 1,12E-05 0,000447 1,06E-06 1,24E-06 0
hisS 0,000124 3,81E-05 0,002516 0,007929 2,32E-06 2,71E-05 0,002123 0,002231 0,004787 0
infB 7,88E-15 7,42E-10 0,000533 3,88E-06 3,01E-08 0,000169 1,22E-05 0,003769 8,61E-05 0
katG 1,77E-08 1,44E-13 0,004521 0,00539 1,97E-08 0,569418 0,676552 0,035674 0,030665 0
malF 0 0 5,51E-05 5,19E-09 0 0,000257 4,85E-07 0 0 0
metG 9,14E-05 1,98E-05 2,25E-06 1,34E-06 2,52E-06 0,025737 0,004816 0,000677 0,000147 0
mukB 8,79E-11 1,6E-07 0,043822 0,073723 2,48E-06 0,074124 0,088349 0,001461 0,001418 0
ompC 0,002423 6,9E-06 0,01693 0,003002 0,005893 2,95E-05 8,86E-06 0,000807 0,001234 0
parC 6,33E-05 2,25E-06 0,029424 0,016917 0,000109 0,299582 0,322058 0,006052 0,000414 0
secY 4,88E-06 6,97E-08 0,000384 0,000706 8,33E-09 0,000276 3,62E-05 4,24E-07 0,000012 0
purL 5,01E-08 1,1E-08 9,38E-05 8,86E-06 6,08E-11 0,003062 9,27E-05 0,000475 0,000187 0
rne 4,4E-10 0,000079 0,072103 0,007815 1,39E-06 0,13152 0,298955 0,041551 0,021358 0

sucA 4,68E-07 8,98E-10 0,001823 6,47E-05 2,13E-08 0,204503 0,098146 0,012078 0,000164 0
tufA 0 0 0 0 0 0 0 0 0 0
tufB 0 0 0 0 0 0 0 0 0 0
leuA 0,005073 6,27E-08 0,014206 0,015292 0,002805 0,014118 0,049682 0,003048 0,002536 0
hokB 0,010383 0,00123 0,001018 0,002551 0,000539 0,002035 0,001309 0,001509 0,00139 0,00239
acnA 0,000937 1,52E-05 0,302614 0,346469 0,004689 0,00218 0,001876 0,05163 0,013584 0
ubiJ 4,44E-06 1,26E-05 2,19E-07 1,16E-05 1,6E-06 7,6E-06 0,000104 2,37E-07 2,43E-05 3,99E-11
lptD 2,86E-10 6,06E-09 0,000226 0,000531 3,72E-06 0,001133 0,002534 0,023203 0,000771 0
rpnC 0 3,8E-12 2,85E-07 0 2,21E-12 4,53E-13 0 5,55E-16 1,11E-16 1,11E-15
rpnA 1,57E-13 2,22E-15 1,1E-12 1,11E-16 0 0 1,15E-12 2,22E-16 0 0
fdoG 0,0003 3,72E-07 3,02E-06 2,03E-05 0,571772 0,173064 0,099907 1,67E-10 4,53E-09 0
wbbH 0,000213 1,58E-11 0,01157 0,000328 3,3E-06 0,002542 0,001271 0,016094 0,003545 2,1E-07
wbbI 5,28E-05 0,000098 0,000165 0,00028 1,31E-10 0,004092 0,006792 0,079885 0,230906 1,26E-12
wbbK 5,47E-06 3,77E-09 0,00068 0,006263 2,73E-05 0,001708 0,004416 0,005547 0,037366 0
rpnE 7,35E-14 0 0 3,93E-13 1,78E-13 8,63E-14 2,15E-14 0 0 0
lpoA 1,45E-05 6,38E-05 0,021731 0,001311 1,63E-06 0,056306 0,029831 0,00055 0,000697 0
gspD 0 0 0 0 0 0 0 0 0 0
yfjI 0 0 0 0 0 0 0 0 0 0
rlmL 0,000192 2,17E-08 0,000902 0,001819 4,23E-07 0,301685 0,331031 0,236554 0,251152 0
rsxC 1,14E-05 0,000114 0,058399 0,044739 2,75E-07 0,000647 0,013977 0,008001 0,015512 0
yfcI 1,72E-07 6,53E-14 5,61E-13 3,33E-15 8,44E-12 1,48E-10 3E-15 1,64E-14 4,44E-16 2,22E-16
gtrS 4,35E-06 1,77E-07 3,35E-05 0,047478 1,31E-07 0,083571 0,252352 3,99E-06 8,87E-06 2,78E-10

Table 11.1: List of the ORFs corresponding to the reproducible E.coli Ribo-
seq profiles and the p-values associated to each pairwise comparison. The
columns contain p-values referring to each performed pairwise comparison

Gene name Transcript ID Gene description
POMP ENST00000380842.5 proteasome maturation protein
LAMP1 ENST00000332556.5 lysosomal associated membrane protein 1
CBR1 ENST00000290349.11 carbonyl reductase 1
ST13 ENST00000216218.8 ST13 Hsp70 interacting protein
TGM2 ENST00000361475.7 transglutaminase 2
C11orf58 ENST00000228136.9 chromosome 11 open reading frame 58
FKBP4 ENST00000001008.6 FKBP prolyl isomerase 4
MYH9 ENST00000216181.11 myosin heavy chain 9
NARS1 ENST00000256854.10 asparaginyl-tRNA synthetase 1
EEF2 ENST00000309311.7 eukaryotic translation elongation factor 2
WBP11 ENST00000261167.7 WW domain binding protein 11
ALDH1A1 ENST00000297785.8 aldehyde dehydrogenase 1 family member A1
OSBP ENST00000263847.6 oxysterol binding protein
ACTA2 ENST00000224784.10 actin alpha 2 smooth muscle
ATP6V1B2 ENST00000276390.7 ATPase H+ transporting V1 subunit B2
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THBS1 ENST00000260356.6 thrombospondin 1
AHNAK ENST00000378024.9 AHNAK nucleoprotein
MAT1A ENST00000372213.8 methionine adenosyltransferase 1A
PLVAP ENST00000252590.9 plasmalemma vesicle associated protein
LRPAP1 ENST00000650182.1 LDL receptor related protein associated protein 1
NANS ENST00000210444.6 N-acetylneuraminate synthase
PRPF19 ENST00000227524.9 pre-mRNA processing factor 19
DNAJA2 ENST00000317089.10 DnaJ heat shock protein family (Hsp40) member A2
SEL1L ENST00000336735.9 SEL1L adaptor subunit of ERAD E3 ubiquitin ligase
ZFR ENST00000265069.13 zinc finger RNA binding protein
PGAM1 ENST00000334828.6 phosphoglycerate mutase 1
PSMD3 ENST00000264639.9 proteasome 26S subunit non-ATPase 3
NUDC ENST00000321265.10 nuclear distribution C dynein complex regulator
APOB ENST00000233242.5 apolipoprotein B
ITGA1 ENST00000282588.7 integrin subunit alpha 1
RPL35 ENST00000348462.6 ribosomal protein L35
HEXB ENST00000261416.12 hexosaminidase subunit beta
SEC63 ENST00000369002.9 SEC63 homolog protein translocation regulator
PLIN2 ENST00000276914.7 perilipin 2
PSMB7 ENST00000259457.8 proteasome 20S subunit beta 7
TM9SF3 ENST00000371142.9 transmembrane 9 superfamily member 3
G6PC1 ENST00000253801.7 glucose-6-phosphatase catalytic subunit 1
SF3A1 ENST00000215793.13 splicing factor 3a subunit 1
PSMB2 ENST00000373237.4 proteasome 20S subunit beta 2
A1BG ENST00000263100.8 alpha-1-B glycoprotein
SLC25A1 ENST00000215882.10 solute carrier family 25 member 1
TMEM70 ENST00000312184.6 transmembrane protein 70
TMED10 ENST00000303575.9 transmembrane p24 trafficking protein 10
SND1 ENST00000354725.8 staphylococcal nuclease and tudor domain containing 1
PCYOX1 ENST00000433351.7 prenylcysteine oxidase 1
PLPP3 ENST00000371250.4 phospholipid phosphatase 3
UGT2B4 ENST00000305107.7 UDP glucuronosyltransferase family 2 member B4
SPTLC1 ENST00000262554.7 serine palmitoyltransferase long chain base subunit 1
EPAS1 ENST00000263734.5 endothelial PAS domain protein 1
ATP6V1A ENST00000273398.8 ATPase H+ transporting V1 subunit A
HACD2 ENST00000383657.10 3-hydroxyacyl-CoA dehydratase 2
CNOT11 ENST00000289382.8 CCR4-NOT transcription complex subunit 11
BHMT ENST00000274353.10 betaine–homocysteine S-methyltransferase
AADAC ENST00000232892.12 arylacetamide deacetylase
RHEB ENST00000262187.10 Ras homolog mTORC1 binding
C8G ENST00000371634.7 complement C8 gamma chain
TUFM ENST00000313511.8 Tu translation elongation factor mitochondrial
ADAM10 ENST00000260408.8 ADAM metallopeptidase domain 10
PPP2CA ENST00000481195.6 protein phosphatase 2 catalytic subunit alpha
SLC2A2 ENST00000314251.8 solute carrier family 2 member 2
LRP1 ENST00000243077.8 LDL receptor related protein 1
SUCLG1 ENST00000393868.7 succinate-CoA ligase GDP/ADP-forming subunit alpha
ORM2 ENST00000431067.4 orosomucoid 2
DDX18 ENST00000263239.7 DEAD-box helicase 18
PDIA3 ENST00000300289.10 protein disulfide isomerase family A member 3
B4GALT1 ENST00000379731.5 beta-1 4-galactosyltransferase 1
C3 ENST00000245907.11 complement C3
AARS1 ENST00000261772.13 alanyl-tRNA synthetase 1
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SNRNP200 ENST00000323853.10 small nuclear ribonucleoprotein U5 subunit 200
TM4SF4 ENST00000305354.5 transmembrane 4 L six family member 4
DTX3L ENST00000296161.9 deltex E3 ubiquitin ligase 3L
HGD ENST00000283871.10 homogentisate 1 2-dioxygenase
COX8A ENST00000314133.4 cytochrome c oxidase subunit 8A
ABCA1 ENST00000374736.8 ATP binding cassette subfamily A member 1
CAPZA2 ENST00000361183.8 capping actin protein of muscle Z-line subunit alpha 2
IGFBP2 ENST00000233809.9 insulin like growth factor binding protein 2
PPA1 ENST00000373232.8 inorganic pyrophosphatase 1
A2M ENST00000318602.12 alpha-2-macroglobulin
PLG ENST00000308192.14 plasminogen
GSTA1 ENST00000334575.6 glutathione S-transferase alpha 1
IFI30 ENST00000407280.4 IFI30 lysosomal thiol reductase
AOX1 ENST00000374700.7 aldehyde oxidase 1
LPCAT3 ENST00000261407.9 lysophosphatidylcholine acyltransferase 3
VCP ENST00000358901.11 valosin containing protein
LGALS3BP ENST00000262776.8 galectin 3 binding protein
TPR ENST00000367478.9 translocated promoter region nuclear basket protein
COX6A1 ENST00000229379.3 cytochrome c oxidase subunit 6A1
DYNC1H1 ENST00000360184.10 dynein cytoplasmic 1 heavy chain 1
ANPEP ENST00000300060.7 alanyl aminopeptidase membrane
C4BPA ENST00000367070.8 complement component 4 binding protein alpha
CFH ENST00000367429.9 complement factor H
VTN ENST00000226218.9 vitronectin
FGL2 ENST00000248598.6 fibrinogen like 2
HINT1 ENST00000304043.10 histidine triad nucleotide binding protein 1
NDUFB7 ENST00000215565.3 NADH:ubiquinone oxidoreductase subunit B7
SERPINF1 ENST00000254722.9 serpin family F member 1
ORM1 ENST00000259396.9 orosomucoid 1
KDELR2 ENST00000258739.9 KDEL endoplasmic reticulum protein retention receptor 2
GLUD1 ENST00000277865.5 glutamate dehydrogenase 1
PRDX2 ENST00000301522.3 peroxiredoxin 2
FGB ENST00000302068.9 fibrinogen beta chain
MRPS35 ENST00000081029.8 mitochondrial ribosomal protein S35
UGGT1 ENST00000259253.11 UDP-glucose glycoprotein glucosyltransferase 1
SRRM2 ENST00000301740.13 serine/arginine repetitive matrix 2
CTSC ENST00000227266.10 cathepsin C
MST1 ENST00000449682.2 macrophage stimulating 1
EMC3 ENST00000245046.6 ER membrane protein complex subunit 3
HSPA9 ENST00000297185.9 heat shock protein family A (Hsp70) member 9
KPNA4 ENST00000334256.9 karyopherin subunit alpha 4
EPRS1 ENST00000366923.8 glutamyl-prolyl-tRNA synthetase 1
PAK2 ENST00000327134.7 p21 (RAC1) activated kinase 2
CALR ENST00000316448.10 calreticulin
PTCD3 ENST00000254630.12 pentatricopeptide repeat domain 3
TF ENST00000402696.9 transferrin
PECAM1 ENST00000563924.6 platelet and endothelial cell adhesion molecule 1
SLC40A1 ENST00000261024.7 solute carrier family 40 member 1
HSP90B1 ENST00000299767.10 heat shock protein 90 beta family member 1
ADH5 ENST00000296412.14 alcohol dehydrogenase 5 (class III) chi polypeptide
ARPC3 ENST00000228825.12 actin related protein 2/3 complex subunit 3
PA2G4 ENST00000303305.11 proliferation-associated 2G4
UQCRC1 ENST00000203407.6 ubiquinol-cytochrome c reductase core protein 1
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PRPF40A ENST00000410080.8 pre-mRNA processing factor 40 homolog A
HPX ENST00000265983.8 hemopexin
KNG1 ENST00000644859.2 kininogen 1
PLOD1 ENST00000196061.5 procollagen-lysine 2-oxoglutarate 5-dioxygenase 1
NDUFA12 ENST00000327772.7 NADH:ubiquinone oxidoreductase subunit A12
SF3B1 ENST00000335508.11 splicing factor 3b subunit 1
NCL ENST00000322723.9 nucleolin
COPG1 ENST00000314797.10 COPI coat complex subunit gamma 1
CYP27A1 ENST00000258415.9 cytochrome P450 family 27 subfamily A member 1
EIF3I ENST00000373586.2 eukaryotic translation initiation factor 3 subunit I
PARP1 ENST00000366794.10 poly(ADP-ribose) polymerase 1
SERPINC1 ENST00000367698.4 serpin family C member 1
LRPPRC ENST00000260665.12 leucine rich pentatricopeptide repeat containing
SF3B4 ENST00000271628.9 splicing factor 3b subunit 4
SRP9 ENST00000304786.12 signal recognition particle 9
SFPQ ENST00000357214.6 splicing factor proline and glutamine rich
HSPG2 ENST00000374695.8 heparan sulfate proteoglycan 2

Table 11.3: Reproducible genes across all ten cancer dataset
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Gene name Transcript ID Gene description
OTC ENST00000039007.5 ornithine transcarbamylase
NAMPT ENST00000222553.8 nicotinamide phosphoribosyltransferase
CYP3A5 ENST00000222982.8 cytochrome P450 family 3 subfamily A member 5
C5 ENST00000223642.3 complement C5
ACTA2 ENST00000224784.10 actin alpha 2 smooth muscle
ARPC3 ENST00000228825.12 actin related protein 2/3 complex subunit 3
COX6A1 ENST00000229379.3 cytochrome c oxidase subunit 6A1
AADAC ENST00000232892.12 arylacetamide deacetylase
APOB ENST00000233242.5 apolipoprotein B
LRP1 ENST00000243077.8 LDL receptor related protein 1
MT2A ENST00000245185.6 metallothionein 2A
LYVE1 ENST00000256178.8 lymphatic vessel endothelial hyaluronan receptor 1
SDS ENST00000257549.9 serine dehydratase
CYP27A1 ENST00000258415.9 cytochrome P450 family 27 subfamily A member 1
LRPPRC ENST00000260665.12 leucine rich pentatricopeptide repeat containing
AARS1 ENST00000261772.13 alanyl-tRNA synthetase 1
LGALS3BP ENST00000262776.8 galectin 3 binding protein
PECR ENST00000265322.8 peroxisomal trans-2-enoyl-CoA reductase
PLIN2 ENST00000276914.7 perilipin 2
HGD ENST00000283871.10 homogentisate 1 2-dioxygenase
SLC51A ENST00000296327.10 solute carrier family 51 subunit alpha
DEPP1 ENST00000298295.4 DEPP1 autophagy regulator
PRDX2 ENST00000301522.3 peroxiredoxin 2
FGB ENST00000302068.9 fibrinogen beta chain
TM4SF4 ENST00000305354.5 transmembrane 4 L six family member 4
TUFM ENST00000313511.8 Tu translation elongation factor
COPG1 ENST00000314797.10 COPI coat complex subunit gamma 1
BGN ENST00000331595.9 biglycan
LAMP1 ENST00000332556.5 lysosomal associated membrane protein 1
OIT3 ENST00000334011.10 oncoprotein induced transcript 3
SF3B1 ENST00000335508.11 splicing factor 3b subunit 1
SEL1L ENST00000336735.9 SEL1L adaptor subunit of ERAD E3 ubiquitin ligase
RPL35 ENST00000348462.6 ribosomal protein L35
SND1 ENST00000354725.8 staphylococcal nuclease and tudor domain containing 1
C8A ENST00000361249.4 complement C8 alpha chain
MT-CO1 ENST00000361624.2 mitochondrially encoded cytochrome c oxidase I
C4BPA ENST00000367070.8 complement component 4 binding protein alpha
F13B ENST00000367412.2 coagulation factor XIII B chain
CFH ENST00000367429.9 complement factor H
FMO3 ENST00000367755.9 flavin containing dimethylaniline monoxygenase 3
OAT ENST00000368845.6 ornithine aminotransferase
AOX1 ENST00000374700.7 aldehyde oxidase 1
ALDH1B1 ENST00000377698.4 aldehyde dehydrogenase 1 family member B1
MASP2 ENST00000400897.8 mannan binding lectin serine peptidase 2
TF ENST00000402696.9 transferrin
ADH1C ENST00000515683.6 alcohol dehydrogenase 1C (class I)
SLC38A3 ENST00000614032.5 solute carrier family 38 member 3
KNG1 ENST00000644859.2 kininogen 1
FGA ENST00000651975.1 fibrinogen alpha chain

Table 11.2: Reproducible genes across all ten control human dataset
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Reactome pathways Ref List (20595) Input (137) Input (expected) fold Enrichment raw P-value FDR
Scavenging by Class F Receptors (R-HSA-3000484) 6 2 0.04 48.69 1.25E-03 4.33E-02
Platelet sensitization by LDL (R-HSA-432142) 17 3 0.12 25.78 3.22E-04 1.84E-02
Cytosolic tRNA aminoacylation (R-HSA-379716) 24 4 0.16 24.34 3.69E-05 3.38E-03
Plasma lipoprotein assembly (R-HSA-8963898) 18 3 0.12 24.34 3.74E-04 1.94E-02
Scavenging by Class A Receptors (R-HSA-3000480) 19 3 0.13 23.06 4.31E-04 2.14E-02
Calnexin/calreticulin cycle (R-HSA-901042) 26 4 0.18 22.47 4.89E-05 4.14E-03
N-glycan trimming in the ER and Calnexin/Calreticulin cycle (R-HSA-532668) 35 5 0.24 20.87 7.36E-06 8.40E-04
Intrinsic Pathway of Fibrin Clot Formation (R-HSA-140837) 22 3 0.15 19.92 6.34E-04 2.73E-02
Formation of Fibrin Clot (Clotting Cascade) (R-HSA-140877) 39 5 0.27 18.73 1.19E-05 1.29E-03
tRNA Aminoacylation (R-HSA-379724) 42 4 0.29 13.91 2.68E-04 1.61E-02
Hh mutants (R-HSA-5362768) 55 5 0.38 13.28 5.47E-05 4.17E-03
Platelet degranulation (R-HSA-114608) 127 11 0.87 12.65 2.67E-09 8.71E-07
Hh mutants abrogate ligand secretion (R-HSA-5387390) 58 5 0.4 12.59 6.93E-05 4.95E-03
Defective CFTR causes cystic fibrosis (R-HSA-5678895) 60 5 0.41 12.17 8.06E-05 5.58E-03
Response to elevated platelet cytosolic Ca2+ (R-HSA-76005) 132 11 0.9 12.17 3.89E-09 1.11E-06
Regulation of activated PAK-2p34 by proteasome mediated degradation (R-HSA-211733) 49 4 0.34 11.92 4.63E-04 2.16E-02
ABC transporter disorders (R-HSA-5619084) 76 6 0.52 11.53 2.03E-05 2.02E-03
Hedgehog ligand biogenesis (R-HSA-5358346) 64 5 0.44 11.41 1.07E-04 7.00E-03
Regulation of Apoptosis (R-HSA-169911) 52 4 0.36 11.24 5.72E-04 2.51E-02
HSP90 chaperone cycle for steroid hormone receptors (SHR) (R-HSA-3371497) 55 4 0.38 10.62 6.98E-04 2.95E-02
Regulation of Insulin-like Growth Factor (IGF) (R-HSA-381426) 124 9 0.85 10.6 3.20E-07 5.63E-05
Integrin cell surface interactions (R-HSA-216083) 84 6 0.58 10.43 3.46E-05 3.29E-03
Iron uptake and transport (R-HSA-917937) 57 4 0.39 10.25 7.92E-04 3.12E-02
Post-translational protein phosphorylation (R-HSA-8957275) 107 7 0.73 9.56 1.30E-05 1.35E-03
Signaling by NOTCH4 (R-HSA-9013694) 80 5 0.55 9.13 2.87E-04 1.68E-02
Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor (R-HSA-1234176) 65 4 0.45 8.99 1.26E-03 4.29E-02
ER-Phagosome pathway (R-HSA-1236974) 83 5 0.57 8.8 3.37E-04 1.83E-02
TP53 Regulates Metabolic Genes (R-HSA-5628897) 83 5 0.57 8.8 3.37E-04 1.79E-02
Respiratory electron transport (R-HSA-611105) 100 6 0.68 8.76 8.68E-05 5.83E-03
Cellular response to heat stress (R-HSA-3371556) 88 5 0.6 8.3 4.35E-04 2.12E-02
Disorders of transmembrane transporters (R-HSA-5619115) 172 9 1.18 7.64 4.20E-06 5.32E-04
Antigen processing-Cross presentation (R-HSA-1236975) 99 5 0.68 7.38 7.26E-04 3.01E-02
COPI-mediated anterograde transport (R-HSA-6807878) 100 5 0.68 7.3 7.58E-04 3.09E-02
ABC-family proteins mediated transport (R-HSA-382556) 102 5 0.7 7.16 8.26E-04 3.20E-02
Respiratory electron transport (R-HSA-163200) 123 6 0.84 7.13 2.55E-04 1.57E-02
Binding and Uptake of Ligands by Scavenger Receptors (R-HSA-2173782) 104 5 0.71 7.02 8.98E-04 3.42E-02
Regulation of Complement cascade (R-HSA-977606) 112 5 0.77 6.52 1.23E-03 4.33E-02
mRNA Splicing - Major Pathway (R-HSA-72163) 180 8 1.23 6.49 4.46E-05 3.92E-03
Asparagine N-linked glycosylation (R-HSA-446203) 303 13 2.07 6.27 2.58E-07 5.88E-05
mRNA Splicing (R-HSA-72172) 188 8 1.29 6.22 5.98E-05 4.41E-03
Platelet activation, signaling and aggregation (R-HSA-76002) 259 11 1.77 6.2 2.46E-06 3.51E-04
Translation (R-HSA-72766) 293 12 2.01 5.98 1.21E-06 1.85E-04
The citric acid (TCA) cycle and respiratory electron transport (R-HSA-1428517) 173 7 1.18 5.91 2.35E-04 1.49E-02
Neutrophil degranulation (R-HSA-6798695) 478 19 3.27 5.81 1.23E-09 4.69E-07
ER to Golgi Anterograde Transport (R-HSA-199977) 153 6 1.05 5.73 7.73E-04 3.10E-02
Transport to the Golgi and subsequent modification (R-HSA-948021) 184 7 1.26 5.56 3.37E-04 1.88E-02
Processing of Capped Intron-Containing Pre-mRNA (R-HSA-72203) 238 9 1.63 5.52 4.99E-05 4.07E-03
Signaling by NOTCH (R-HSA-157118) 200 7 1.37 5.11 5.46E-04 2.44E-02
Extracellular matrix organization (R-HSA-1474244) 299 10 2.05 4.89 5.16E-05 4.06E-03
Biological oxidations (R-HSA-211859) 219 7 1.5 4.67 9.15E-04 3.43E-02
Cellular responses to stress (R-HSA-2262752) 547 17 3.74 4.54 3.00E-07 5.72E-05
Innate Immune System (R-HSA-168249) 1105 34 7.57 4.49 1.57E-13 1.79E-10
Cellular responses to external stimuli (R-HSA-8953897) 561 17 3.84 4.43 4.23E-07 6.90E-05
Metabolism of carbohydrates (R-HSA-71387) 286 8 1.96 4.09 9.24E-04 3.40E-02
Metabolism of RNA (R-HSA-8953854) 661 17 4.53 3.76 3.72E-06 4.99E-04
Hemostasis (R-HSA-109582) 669 17 4.58 3.71 4.34E-06 5.22E-04
Diseases of signal transduction (R-HSA-5663202) 366 9 2.51 3.59 1.08E-03 3.93E-02
Metabolism of amino acids and derivatives (R-HSA-71291) 367 9 2.51 3.58 1.10E-03 3.94E-02
Disease (R-HSA-1643685) 1126 27 7.71 3.5 1.47E-08 3.73E-06
Infectious disease (R-HSA-5663205) 464 11 3.18 3.46 4.12E-04 2.09E-02
Metabolism of proteins (R-HSA-392499) 1977 43 13.54 3.18 4.88E-12 3.72E-09
Metabolism (R-HSA-1430728) 2079 42 14.23 2.95 9.51E-11 5.43E-08
Post-translational protein modification (R-HSA-597592) 1388 28 9.5 2.95 2.66E-07 5.52E-05
Vesicle-mediated transport (R-HSA-5653656) 725 14 4.96 2.82 5.23E-04 2.39E-02
Immune System (R-HSA-168256) 2158 41 14.77 2.78 1.07E-09 4.88E-07
Transport of small molecules (R-HSA-382551) 719 13 4.92 2.64 1.49E-03 5.00E-02
Signal Transduction (R-HSA-162582) 2728 34 18.68 1.82 4.39E-04 2.09E-02

Table 11.4: Summary results of over-representation test of Reproducible
cancer genes. The first column contains the name of the annotation data
category (Reactome pathway). The second column contains the number of
genes in the reference list (human genes) that map to reactome pathway
category. The third column contains the number of reproducible cancer
genes that map to the reactome pathway data category. The fourth column
contains the expected value (the number of genes we would expect in our list
for this category, based on the reference list). The fifth column shows the
Fold Enrichment of the reproducible cancer genes observed over the expected
value. If it is greater than 1, it means that the category is over-represented.
Otherwise, the category is under-represented if it is less than 1. The sixth
column is the raw p-value as determined by Fisher’s exact test. The seventh
column is the False Discovery Rate as calculated by the Benjamini-Hochberg
procedure (FDR < 0.05
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