
CHAPTER 4. HIGH PERFORMANCE DNO

0 1 2 3 4 5 6 7 8 9 × 10
-8

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 × 10
-8

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 × 10
-8

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 × 10
-8

0

0.5

1

1.5

0

0.5

1.5

1

1.51

1.5

1
0.5

0.5

0 0

0

0.5

1.5

1

1.51

1.5

1
0.5

0.5

0 0

x

x(
t)

 [
V

]

y

y(
t)

 [
V

]

z

z(
t)

 [
V

]

x
y

z

f
(t

) 
[V

]

t [s]

t [s]

t [s]

t [s]

Figure 4.15: In the upper plots, the 3D-projetions of the voltages x, y, z in Fig.

4.14 under di�erent realizations (mismathes and proess variability). Upper-left:

omplex periodi dynamis. Upper-right: haoti dynamis exhibiting sensitivity to

initial onditions, highlighted in the trajetories below.
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Figure 4.16: The referene DNO arhitetures onsidered for the analysis of the

proposed topology. DNO A is a 7-nodes Ring Osillator, DNO B is a 7-nodes Galois

Ring Osillator.

designed, whih were loated in di�erent areas of the hip; in this way it is possible

to evaluate the e�et of intra-devie variability on the performane of the iruits.

Furthermore, to also evaluate the e�et of inter-devie variability, the design of the

16 instanes was implemented in six di�erent FPGAs, always using the same posi-

tions for the iruits. Following this proedure, eah DNO was evaluated through

96 di�erent implementations. Finally, taking ontrol of the plae and route poliies

using the speial diretives shown in Setion 3.5, we fored a ompat layout for the

three osillators, seleting LUTs belonging to ouples of slies of single CLBs, suh

to minimize the propagation times assoiated to signal routing. Fig. 4.17 shows the

resulting layout for DNO C. DNOs A and B have a similar layout, as the used LUTs

are the same; the di�erene between DNOs is in the routing used for the onnetions

between the LUTs.

For eah osillator, we performed aquisitions of sequenes of 1 million bits at

di�erent frequenies, de�ned on a range between 100 kHz and 100 MHz. The a-

quisition was arried out through an arhiteture designed on the FPGA, whih

ollets the aquired bits in a RAM and subsequently transmits them via RS232

serial interfae to a PC, on whih a virtual instrument was implemented with Na-

tional Instruments LabVIEW. The virtual instrument stores the data in binary �les,

whih are then proessed with MathWorks MATLAB.

4.5.1 Performane Comparison

The aquired sequenes were used to alulate the Average Shannon Entropy

(ASE) and the Deorrelation Time τ , already introdued in Setion 3.2. Figs. 4.18

and 4.19 show the results obtained in terms of ASE, alulated on 10 bits long

symbols, and in terms of Deorrelation Time, alulated for an energy ratio equal

to 99.9% of the total energy evaluated over a 10 µs window. Table 4.1 instead

summarizes the statistis related to the �gures of merit, omparing the DNOs in

70



CHAPTER 4. HIGH PERFORMANCE DNO

Figure 4.17: The ondensed layout implementing the DNO if Fig.4.14 using two

slies, inluding the Synhronization Interfae realized with a single D �ip-�op and

a transparent (dummy) LUT.
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Figure 4.18: Average Shannon Entropy of the three ompared DNOs, estimated on

the basis of binary words of 10 bits (ASE-10) aquired from 96 instanes for eah

topology, implemented on 6 Xilinx Artix 7 x7a35 FPGAs. For eah DNO, the ASEs

of all the instanes are reported, organized aording to the hip on whih they are

implemented.

terms of ahieved performane and onsumed FPGA hardware resoures.

The results shown in the �gures and in the table show that the DNO C ahieves

higher performane than the two referene DNOs, both in terms of ASE and Deor-

relation Time. In all ases, the bits olleted at a sampling rate of 100 MHz from

the DNO C were found to have negligible or undetetable orrelation, as also shown

in Fig. 4.20. Consequently, the DNO C does not reah an entropy exatly equal

to 1 only due to a residual o�set of the sequenes. This aspet is related to the

average value of the analog output signal of the DNO, whih depends on the shape

of the trajetory, and on the level of quantization thresholds of the �ip-�ops D used

for sampling. This problem is more evident in DNO B and less important in the

Ring Osillator (DNO A), as it generates a square wave with a duty yle of ap-

proximately 50%: although DNO B has a Deorrelation Time on average lower than

that of DNO A, the bias it is a�eted by limits its ASE. In DNO C the bias is

maintained on adequate values thanks to the symmetrial struture of the topology

and the mutual interation through the XOR3 gate of the two feedbak loops. Sine
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Figure 4.19: Deorrelation Time τ of the three DNOs, estimated as the time at

whih the autoorrelation funtion of the binary soure expresses the 99.9% of its

variation-energy, referring to an observation time-window of 10 µs. For eah DNO,

the Deorrelation Times of 96 instanes implemented on 6 Xilinx Artix 7 x7a35 FP-

GAs are reported, organized aording to the hip on whih they are implemented.

Ring Galois Ring Proposed

Osillator Osillator Ciruit

(DNO A) (DNO B) (DNO C)

CLBs 1 1 1

Slies 2 2 2

ELBs (LUTs) 7 (+1) 7 (+1) 6 (+1)

ASE-10

max

[bit/sym℄ 0.695 0.700 0.955

ASE-10

mean

[bit/sym℄ 0.613 0.664 0.949

ASE-10

min

[bit/sym℄ 0.530 0.610 0.937

τ
min

[ns℄ 7380 6730 <10

τ
mean

[ns℄ 8893 8350 53

τ
max

[ns℄ 9780 9740 80

Table 4.1: Comparison of the devie utilization and the measurements results for

the three DNOs. The devie utilization is desribed in terms of required LUTs

taking into aount a ompat layout, the measurements are ompared in terms of

maximum, minimum and average ASEs and Deorrelation Times.
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DNO C ahieves suh results, we an assume that all implementations worked in

struturally stable haoti regions.

To better appreiate the omparison between the three topologies, Fig. 4.21

shows the byte patterns for the three DNOs evaluated for the 10-bits maximum

ASE and, for DNO C, the 10-bits minimum ASE implementations, respetively

with 100 kHz and 100 MHz sampling.

4.5.2 Performane Dependeny on the Implementation Lay-

out

Figs. 4.18 and 4.19 demonstrate that the DNO C is able to ahieve muh higher

performane than the referene osillators. However, a variability of the performane

of the iruit implementations is observed both between di�erent positions and hips.

This variability depends on the di�erenes in the hardware resoures related to

the hip manufaturing proess, but there is also an in�uene given by routing and,

onsequently, by the layout.

To evaluate the impat of the seleted layout on the variability of the iruit per-

formane, we deided to repeat the measurement ampaign for DNO C, evaluating

two di�erent designs, one adopting a ondensed layout (i.e. the one already used in

the analysis reported in Subsetion 4.5.1) and one adopting a sattered layout. The

CLBs utilization map in the two analyzed ases is shown in Fig. 4.22.

The two layouts were evaluated by aquiring 1 million bits long sequenes from

96 implementations of the DNO, obtained using six Xilinx Artix 7 x7a35 FPGAs

and implementing 16 osillators on eah of them. The sequenes were aquired

at a sampling rate of 400 MHz, ahieved by implementing a PLL in the FPGA

arhiteture. We inreased the sampling frequeny with respet to the previous

analyzes to obtain more orrelated sequenes of bits, thus highlighting the variability

assoiated with the two layouts. The aquired sequenes were used to alulate the

Average Shannon Redundany (ASR) of 10-bits symbols. In Information Theory,

the ASR is a �gure of merit that is omplementary to the ASE, sine it is de�ned

as:

ASR(n) = 1− ASE(n), (4.10)

where the ASE(n) is given in (3.10). In an ideal binary random soure the ASR(n)

is equal to 0 bit/sym. for any n > 0. In pratial ases, the lower is the ASR, the

higher is its entropy. For the analysis of high-entropy soures it is often onvenient to

report results referring to redundany, instead of entropy, for a learer presentation.

Indeed, when the values of ASE are lose to 1 bit/sym, a logarithmi representation

of the ASR allows for a better omparison of di�erent solutions.

Fig. 4.23 shows the experimental results obtained with the ondensed layout,

evaluating its intra-devie and inter-devie variabilities. The perentile levels Lx,

expressed in bit/sym for x = 10, 50, 80, 90, 95, were estimated for the whole set of 96

instanes, while the red squares highlight the ASR obtained for the DNO in position

1 (plot A) and in hip 1 (plot B). From the �gure it an be appreiated that 90% of

the DNOs are apable of providing impressive levels of ASR lower than L90 = 0.077
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bit/sym with a sampling frequeny of 400 MHz, whih orresponds, in priniple,

to 369.2 Mbit/s of true random information, generated with the minimum use of

two slies of the FPGA. By reduing the set, in half of the ases (ASR lower than

L50 = 0.0067 bit/sym) the throughput rises to 397.3 Mbit/s.

Fig. 4.24 reports the same results as Fig. 4.23 for the sattered layout. In

this ase, a slight deterioration in performane is observed, as 90% of the ases

provide an ASR lower than L90 = 0.17 bit/sym, orresponding to a throughput of

332.0 Mbit/s of true random information, and in half ases the ASR is less than

L50 = 0.03 bit/sym, with throughput equal to 388.0 Mbit/s. However, these are

still exeptional result, given the small number of used hardware resoures.

The equivalent throughputs reported for the analyzed data are values that an

be reahed by applying post-proessing tehniques ompressing the input data to re-

move information redundany. Unfortunately, the use of these tehniques inreases

the omplexity of the whole struture. In partiular, to reah the onsidered through-

puts, lossless algorithms must be used; this algorithms require large quantities of

hardware resoures and power. As an alternative, lossy algorithms an be used,

whih are less demanding from the hardware and power onsumption point of view,

but redue the resulting throughput.

What is more, onsidering the variability between implementations, a orret

design of TRNGs requires to ensure adequate performane against the soure imple-

mentation worst ase. Referring to the results ahieved in the ondensed ase, this

would require to adapt the overall projet to the maximum found ASR, equal to 0.4

bit/sym, orresponding to a throughput of 160 Mbit/s, whih is muh less than the

throughput ahieved by the majority of the analyzed ases.

A possible solution to this problem derives from the simpliity of the onsidered

iruit: sine the DNO oupies only one CLB of the FPGA, it is muh more

onvenient, ompared to the implementation of a post-proessing arhiteture, to

dupliate the struture of the DNO (i.e. to implement two DNOs) and to XOR the

random output bits by applying a 2:1 lossy ompression. The result, shown in Fig.

4.25, drastially redues the variability, allowing to reah muh higher performane.

4.5.3 Performane Dependeny on Temperature Variations

In the previous subsetions, we evaluated the performane variability of the

topology under study with respet to the hardware used for its implementation and

to the layout design. These two soures of variability an be onsidered stati: their

in�uene on a DNO performane is de�ned by the hardware resoures and the layout

hosen for its implementation, and does not hange over time.

However, there is a third soure of variability that we still must onsider, whose

e�et on a DNO performane hanges over time, that is temperature.

Transistors are haraterized by di�erent temperature-dependent parameters,

suh as mobility, threshold voltage, saturation veloity, parasiti drain/soure re-

sistanes [51�54℄. Taking into aount digital devies, this dependeny is diretly

transferred to the gates high-low and low-high propagation time, a�eting therefore
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Figure 4.23: Experimental results highlighting the e�ets on the ASR of both the

hip-to-hip variability and the intra-devie variability, for a ondensed layout. The

perentile levels Lx, expressed in bit/sym, were estimated on the base of the entire

data set (96 DNO instanes). Red square symbols were used to highlight the hip

loation 1 (upper plot A) or the hip number 1 (lower plot B).
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Figure 4.24: Experimental results highlighting the e�ets on the ASR of both the

hip-to-hip variability and the intra-devie variability, for a sattered layout. The

perentile levels Lx, expressed in bit/sym, were estimated on base of the entire data

set (96 DNO instanes). Red square symbols were used to highlight the hip loation

1 (upper plot A) or the hip number 1 (lower plot B).
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Figure 4.25: Rejetion of intra-devie variability by XORing the binary stream

generated exploiting two instanes of the disussed DNO (16 tested loations, four

FPGA slies for eah obtained generator).
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Figure 4.26: 10-bits Average Shannon Redundany of 64 implementations of the

DNO shown in Fig. 4.14 at three di�erent ambient temperatures, i.e. -14

◦
C, 22

◦
C

and 70

◦
C.

-14

◦
C 22

◦
C 70

◦
C

ASR-10

min

[bit/sym℄ 0.0017 0.0014 0.0014

ASR-10

mean

[bit/sym℄ 0.0442 0.0269 0.0293

ASR-10

max

[bit/sym℄ 0.5137 0.3998 0.4240

Table 4.2: Measurements results for the DNO shown in Fig. 4.14 at three di�erent

ambient temperatures, i.e. -14

◦
C, 22

◦
C and 70

◦
C. The measurements are ompared

in terms of maximum, minimum and average ASRs.

the performane of dynami systems based on digital hardware, suh as DNOs.

To evaluate the e�et of temperature �utuation on the performane of the DNO

under investigation, we designed 64 implementations of the DNO on four Xilinx

Artix 7 x7a35 FPGAs (16 osillators per FPGA), and we aquired 1 million bits

long sequenes at a sampling rate of 400 MHz from eah implementation at three

di�erent ambient temperatures, i.e. -14

◦
C, 22

◦
C and 70

◦
C. The aquired sequenes

were used to alulate the Average Shannon Redundany (4.10) of 10-bits symbols.

Fig. 4.26 shows the obtained ASR values and Table 4.2 reports the performane

variability with respet to temperature in terms of maximum, minimum and average

ASRs. From the measurements we an observe that, in general, the DNO is more

a�eted by lower temperatures with respet to higher ones, as we have slightly worse

ASRs at -14

◦
C. However, looking at the ASR mean values in the table, we note also

that the temperature-dependent loss in perfomane is almost negletable, resulting

lower than 0.001 bit/sym.
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Figure 4.27: Comparison of the 10-bits Average Shannon Redundany of 16 imple-

mentations of the DNO shown in Fig. 4.14 on a Xilinx Artix 7 x7a35 FPGA at

three di�erent ambient temperatures, i.e. -14

◦
C, 22

◦
C and 70

◦
C.

What is more, from Fig. 4.27, in whih the omparison of the ASRs of a sin-

gle FPGA implementations at the three di�erent temperatures is reported, we an

observe that the ASR does not hange monotonially with the temperature.

4.5.4 Statistial Testing

Besides omparing the performane of DNO C with two referene topologies

using the �gures of merit, we tested it statistially with the standard NIST 800.22

tests.

In general, a TRNG onsists of an entropy soure and a post-proessing blok

with the purpose of reduing the information redundany, e.g. through a ompres-

sion operation, and to mask residual statistial defets, e.g. by means of stream

yphers [4, 55, 56℄. The minimum post-proessing neessary to pass all the NIST

800.22 tests required by the DNO C in eah of its implementation was a bit-by-bit

XORing of the olleted bits with an 8-bits PRNG (Fibonai LFSR based on the

primitive polynomial x8 + x6 + x5 + x4 + 1). In 90% of the implementation a 4-bits

XORing [57℄ is su�ient and in general any post-proessing of greater omplexity

proposed in literature allows the DNO C to pass the tests (obviously at the ost

of a greater onsumption of hardware resoures). Table 4.3 shows typial results

obtained with respet to NIST tests, evaluated on the basis of 100 binary sequenes

of 1 million bits olleted for eah run.
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Test Name p-Value Proportion Result

Frequeny 0.474986 1.00 pass

Blok Frequeny 0.911413 0.97 pass

Cumulative Sums

a
0.191687 0.99 pass

Runs 0.935716 1.00 pass

Longest Run 0.015598 1.00 pass

Rank 0.474986 0.99 pass

FFT 0.534146 0.98 pass

Non Overlapping Template

a
0.955835 0.96 pass

Overlapping Template 0.350485 0.99 pass

Universal 0.699313 0.99 pass

Approximate Entropy 0.798139 0.98 pass

Random Exursions

a
0.888137 0.96 pass

Random Exursions Variant

a
0.324180 0.96 pass

Serial

a
0.145326 0.97 pass

Linear Complexity 0.289667 0.99 pass

a
Worst ase reported for tests with multiple outomes.

Table 4.3: NIST 800.22 Rev.1a statistial tests results for the DNO under test,

evaluated on the basis of 100 binary sequenes of 1 million bits olleted for eah

run.

4.5.5 Inspetion of Physial Signals

Sine the dynamial speed of the implemented DNO is too high to be able to

aquire the signals diretly, to evaluate its performane we must resort to the �g-

ures of merit applied on binary sequenes aquired by sampling its output signal

internally to the FPGA.

However, by varying the number of delay elements in eah loop, it is possible to

arti�ially slow down the dynamis to a few MHz of frequeny and propagate the

z signal diretly to the FPGA I/O pins. This operation avoids the distortion e�et

aused by the parasiti apaities o�ered by the I/O pins.

Using this expedient, we arried out two study ampaigns.

We initially implemented the iruit in Fig. 4.28 in a Xilinx Artix 7 x7a35

FPGA, plaing asades of logially transparent LUTs in the loops. The external

exitation φ was generated by a Rigol Waveform Generator ontrolled by a Lab-

VIEW virtual instrument, with the purpose of on�guring the osillation frequeny

and automatially haraterizing the dynamis of the resulting devie. The output

z signal was aquired via a Textronix MSO64 Osillosope at a sampling rate of 1.25

GS/s. Observation of the aquired signal on�rmed that the exitation-free DNO

(φ = 0 V) exhibits omplex osillations, while it is possible to observe di�erent types

of dynamis when the exitation is on, as a funtion of the frequeny of φ.
For example, in Fig. 4.29 two typial ases are reported, obtained for exitation

frequenies equal to 1.208 MHz (A) and 1.160 MHz (b) by adding a asade of

1200 delay elements in asade to the ELBs#(2,3) of Fig. 4.28. Depending on the
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Figure 4.28: DNO topology implemented on a Xilinx Artix 7 x7a35 FPGA, slowed

down adding transparent delay LUTs in the loops, for the evaluation of the output

signal dynamis in funtion of the osillation frequeny of an externally generated

exitation signal.
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osillation frequeny, the nonlinear osillator an be fored to work in periodi or

haoti bifuration windows. The observation of the autoorrelation funtion for

the two analyzed ases, shown in Fig. 4.30, reveals that in the periodi ase (A)

the fundamental period of the signal z is about 1 kHz, far below the frequeny of

exitation. On the other hand, in the ase of the haoti signal (B) it is not possible

to detet relevant periodi omponents.

By applying an inrement step of 10 Hz, we experimentally evaluated the infor-

mation entropy of the fored nonlinear osillator over an osillation frequeny range

between 1.15 MHz and 1.25 MHz. The aquired signal was sampled at 1 bit by

applying a threshold quantization of 1.65 V and for eah tested frequeny we esti-

mated the 8-bit ASE starting from sequenes of 1 million aquired bits, obtaining

the result shown in Fig. 4.31. We indiated in the �gure the ases (A) and (B) of

Figs. 4.29 and 4.30. The experiments show that the iruit generates information

by exploiting two possible soures of entropy, namely jitter and haos, as a funtion

of the exitation frequeny. While the eletroni noise generating jitter is always

present, haos is ativated only under ertain onditions, whih in the tested iruit

appear to be struturally robust. This result is unexpeted, as usually in the pres-

ene of omplex dynamis small parametri perturbations ause signi�ant hanges

in the dynamial behavior [58℄.

The seond study ampaign foused on the analysis of the iruit in Fig. 4.14,

implemented on a Xilinx Artix 7 x7a35 FPGA. We added transparent delay LUTs

to the loops and to the Ring Osillator providing the exitation signal. We aquired

the z signal on 20 ms windows by adopting a sampling rate equal to 3.125 GS/s.

The sampling frequeny was seleted onsidering the band of the aquired signal, in

order to avoid aliasing.

By varying the number of LUTs in the three loops, we observed periodi and

haoti dynamial behaviors, as shown in Fig. 4.32. The autoorrelation funtion

related to the haoti ase (b) has some residual periodiities. These harmonis

are due to the Ring Osillator, whih in�uenes the output signal as it supplies the

exitation to the system, and by some ative omponents mounted on the board used

for interfaing with the FPGA (Digilent Arty), suh as the swithed power supplies.

These periodiity elements an be removed by reduing the number of transparent

LUTs in the Ring Osillator (by inreasing its osillation frequeny and pushing

its fundamental harmoni towards higher bands) and by appropriately seleting the

eletroni omponents used to power the FPGA.

4.5.6 Comparison with the State of the Art

To onlude the analysis relating to the proposed DNO, in Table 4.4 we report a

omparison of the analyzed solution with the most relevant reent works published in

the literature. The TRNG resulting from DNO C and the minimum post-proessing

required to pass the NIST tests is made up of 15 LUTs and provides a throughput

of 6.66 Mbit/s per LUT. A result of this type far exeeds the performane of any

other proposal. This fat is justi�ed by the simpliity of the topology, that inreases

86



CHAPTER 4. HIGH PERFORMANCE DNO

0 500250

time [ms]

0 500250

time [ms]

-1

0

1

2

3

4

a
m

p
lit

u
d

e
 [
V

]

A

-1

0

1

2

3

4

a
m

p
lit

u
d

e
 [
V

]

B

Figure 4.29: The fored-osillator signal z extrated from an I/O pin of the FPGA,

for exitation frequenies of 1.208MHz (A) and 1.160MHz (B), using 1200 delay

elements for eah loop in Fig. 4.28 to slow down the dynamis speed.
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Figure 4.30: The unsaled autoorrelation funtion estimated for the two signals

(A) and (B) reported in Fig. 4.29.
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Figure 4.31: The 8-bit Average Shannon Entropy estimated on the basis of 1 mil-

lion bits, obtained 1-bit quantizing the signal z aquired at a 1.25GHz sampling

frequeny.

the dynamis speed of the resulting nonlinear dynamial system, whih operates,

aording to the design, in struturally stable haoti regions.

4.6 Conlusion

We presented the omplete work�ow followed for the design of a DNO har-

aterized by haoti dynamial behaviors; the DNO ahieves high performane in

terms of generated entropy, downstream of a redued hardware omplexity and high

sampling rates.

The topology was formalized on the basis of the theoretial evaluations arried

out through the simpli�ed dynamial model on the primitive subiruit presented

in Subsetion 3.3.1 and of the theory related to fored osillators.

We analyzed the topology using the simpli�ed dynamial model, fousing mainly

on the fored part of the DNO. This analysis highlighted how the dynamial system

resulting from the model onstitutes a stable osillator in the absene of the exi-

tation signal, while in the presene of periodi exitation it is possible to observe

transitions from periodi to haoti behaviors as a funtion of the ratio between the

osillation frequeny of the exitation signal and the natural osillation frequeny of

the fored part of the DNO.

We built the topology in Cadene Virtuoso using the basi omponent library

de�ned starting from the UMC 180 nm tehnology, and we repeated the dynamis

analysis of the resulting iruit in the absene and in the presene of an exitation

signal. The obtained results appeared to be onsistent with the simpli�ed dynamial
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Figure 4.32: DNO output signal aquisitions from the digital I/O pins of a Xilinx

Artix 7 FPGA mounted on a Arty board. The upper plots show the time behavior

of on�gurations with strong periodiities (a) and with haoti behavior (b). The

middle plots show the spetrum of the above signals, from whih we an observe

the presene of harmonis in ase (a) and the relatively �at spetrum in ase (b).

The lower plots show the autoorrelation funtions of the two signals, on�rming

the periodi behavior in ase (a), while in ase (b) the autoorrelation funtion is

almost a delta.
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model, as we obtained a stable periodi osillator in the absene of exitation and a

omplex dynamial system apable of passing from periodi to haoti behaviors as

a funtion of the ratio between the osillation frequenies when the exitation signal

is turned on.

The topology was �nally implemented on FPGA. This implementation was an-

alyzed from di�erent points of view.

We ompared the DNO under study with a Ring Osillator and a Galois Ring

Osillator of equivalent hardware omplexity, implementing for eah of them 96 in-

stanes using 6 Xilinx Artix 7 FPGAs. The output signals of this implementations

were sampled at 100 MHz to aquire sequenes of bits, whih were then used to

investigate the Deorrelation Time and the Average Shannon Entropy. The om-

parison aording these �gures of merit proved that the proposed iruit is apable

to reah outstanding values of entropy with negligible orrelation between samples,

suggesting that in every implementation the iruits were working in haoti ondi-

tions.

We investigated the e�et of the DNO iruit layout in the FPGA on the vari-

ability of the ASE between di�erent implementations. We designed two di�erent

LUTs layouts (one ondensed and one sattered), and for eah of them we imple-

mented 96 instanes using 6 Xilinx Artix 7 FPGAs. We sampled the output signals

of these implementations at 400 MHz to enhane the orrelation between samples

with respet to the previous analysis, we omputed the Average Shannon Entropy on

the aquired sequenes and we evaluated the variability between the entropies. We

observed that the ondensed layout provides slightly lower variability with respet

to the sattered one, reahing in any ase high values of throughput of information.

To minimize this variability, we proposed a 2:1 lossy ompression of the generated

information, by XORing the output bits of two DNO implementations working in

parallel.

We evaluated the e�et of temperature �utuation on the performane of the

DNO under investigation. We designed 64 implementations of the DNO on four

Xilinx Artix 7 x7a35 FPGAs (16 osillators per FPGA), and we aquired 1 million

bits long sequenes at a sampling rate of 400 MHz from eah implementation at

three di�erent ambient temperatures, i.e. -14

◦
C, 22

◦
C and 70

◦
C. The aquired

sequenes were used to alulate the Average Shannon Redundany (4.10) of 10-bits

symbols. We an observe that the DNO is more a�eted by older temperatures

with respet to hotter ones, even if the temperature-dependent loss in perfomane

is almost negletable.

We subjeted the DNO to the NIST 800.22 standard statistial tests, observing

that a bit-by-bit XORing of the olleted bits with an 8-bits PRNG is su�ient to

pass the tests with eah implementation of the iruit.

By applying a redution in the dynamial speed of the iruit adding transparent

delay LUTs to the iruit loops, we observed diretly the output signals of the

DNO, both by providing external exitation and by internal exitation. The signal

observation on�rmed that, aording to the ratio between the natural frequeny of

the osillator and the exitation signal frequeny, the DNO an pass from periodi

91



CHAPTER 4. HIGH PERFORMANCE DNO

to haoti dynamis.

Finally, we ompared the proposed DNO with the state of the art, observing

that a iruit of this type outperforms the most relevant works reently published

in literature.
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[59℄ Jitter Xilinx 528 LUTs 6 Von Neumann

Spartan-3A

[60℄ Jitter and Xilinx 1PLL + 100 XOR

Metastability UltraSale 5 primitives Compression

+ 17 LUTs

[61℄ Jitter Xilinx 131202 LUTs 167.4 Stream

Virtex-6 Ciphering

[62℄ Metastability Altera 298 LUTs 150 Hashing

Cylone IV

[63℄ Metastability Xilinx 1 Dig. Clok 12.6 Custom

Spartan-6 Manager

+ 36 LUTs

[57℄ Timing Xilinx 224 Slies 50 XOR

Skew Virtex-6 Mixing

[64℄ DNO (Undetermined Altera ≈120 LUTs 200 Stream

Complex Dynamis) Cylone IV Ciphering

This Work DNO (Chaos Xilinx 15 LUTs 100 Stream

Evidene) Artix-7 Ciphering

Overall hardware resoures neessary to design the TRNG subsystem.

Table 4.4: Comparison of the proposed solution with similar reently proposed TRNGs (NIST-tests passing)
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Chapter 5

A Maximum Worst-Case Entropy

Seletion Algorithm and its

Hardware Implementation

In this hapter we present an algorithm, alled Maximum Worst-Case En-

tropy Seletor (MWCES), that aims to identify, within a set of entropy soures,

whih o�ers the best performane in terms of worst-ase entropy, also known in

literature as "min-entropy". This algorithm is designed to be implemented in

low-omplexity digital arhitetures, suitable for lightweight ryptographi ap-

pliations, thus allowing online maximization of the performane of a random

number generation system based on Digital Nonlinear Osillators. This hap-

ter presents the theoretial premises underlying the algorithm formulation,

some notable examples of its generi appliation and, �nally, onsiderations

related to its hardware implementation in FPGA.

5.1 Sub-Optimal Entropy Estimation

The analysis of the DNO presented in Chapter 4 demonstrates how an in-depth

study of this lass of iruits requires the use of omplex and varied tools.

Di�erent tehniques to assess the statistial harateristis of True Random Num-

ber Generators were proposed in literature, as also disussed in Chapter 3 [4,5,56℄.

Most of these solutions investigate the statistial properties of the random soure

olleting and inspeting long binary sequenes, and are not suitable for being im-

plemented in lightweight digital hardware systems. In this hapter we present a low-

omplexity algorithm addressing the online evaluation of di�erent random soures

that may be available in a same hip, aiming to selet the one with the highest

entropy. As it is made learer in the following, to redue algorithmi/hardware

omplexity, it is neessary to resort to sub-optimal methodologies aimed at provid-

ing a rough estimate of the statistial harateristis of a iruit under examination.
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The primary objetive of the lass of iruits analyzed in this thesis is the gener-

ation of entropy. Aording to Shannon [65℄, given an ergodi soure X of symbols

taking values from the set A = {x1, x2, . . . , xk} with probability P (X = xi) = pi,
i = 1, 2, . . . , k, its entropy is de�ned as:

E(X) = −
k

∑

i=1

pi log2 pi. (5.1)

An estimate of this expression appears partiularly omplex to ahieve, as it requires

de�ning a method apable of extrating information relating to the probability dis-

tribution of the analyzed soure.

Aording to the reommendations for entropy soure provided by NIST [56℄, the

essential �gure of merit to establish how unpreditable is a soure is its min-entropy,

de�ned as:

I(X) = min
1≤i≤k

(− log2 pi) = − log2(max
1≤i≤k

pi). (5.2)

If X has min-entropy I, the probability for X to generate any of its symbols annot

be greater than 2−I
. It is observed that, unlike entropy, min-entropy depends solely

on the probability of the most probable symbol of the distribution; this fat suggests

that the estimate of this �gure of merit an be made in a muh less omplex way

than the estimate of the Shannon entropy of the soure.

In this hapter, we present an algorithm for the assessment of the Shannon

entropy, based on the estimation of the probability of the most probable symbol

of the distribution assoiated with the evaluated soure. This algorithm an be

implemented on PLDs for the online evaluation of the performane of a DNO or,

alternatively, for the automati identi�ation, within a set of soures, of the imple-

mentation with maximum entropy.

At the time of writing this thesis, the results presented in this hapter are un-

der development for forthoming submission to peer-reviewed journals for possible

publiation.

5.2 Estimation-Based Entropy Bounds

The Shannon entropy (5.1) of a random soure is dependent on the probability

distribution assoiated to the symbol generation. Attempting to assess the Shan-

non entropy starting from the estimation of the generation probability of the most

probable symbol introdues unertainty, sine di�erent distributions an be related

to di�erent Shannon entropy levels, even if their most probable symbols have the

same generation probability. However, as shown in the following, starting from

the knowledge of this probability, we an identify lower and upper bounds of the

Shannon entropy.
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5.2.1 Theoretial Framework

Let us onsider an ergodi stohasti soure S of independent and identially dis-

tributed (i.i.d.) symbols belonging to the alphabet A = {s1, s2, . . . , sN}. We denote

with M(N) ⊂ [0, 1]N ⊂ R
N
the set of probability mass funtions expressing di�erent

generation probabilities for the symbols in A. Aordingly, if P = (p1, p2, . . . , pN) ∈
M(N), we have

∑N

i=1 pi = 1 and 0 ≤ pi ≤ 1. Furthermore, the following properties

hold.

Proposition 5.1. Let P = (p1, p2, . . . , pN) ∈ M(N). By denoting pL = mini pi and
pH = maxi pi, it results:

pL ≤
1

N
≤ pH . (5.3)

Proof. Sine pL ≤ pi ≤ pH for all 1 ≤ i ≤ N , we have:

1 =
N
∑

i=1

pi ≥
N
∑

i=1

pL = NpL, (5.4)

or pL ≤ 1/N . Analogously, we have:

1 =

N
∑

i=1

pi ≤

N
∑

i=1

pH = NpH , (5.5)

or pH ≥ 1/N .

We de�ne the Shannon entropy of the soure S as:

ES(P ) =
N
∑

i=1

h(pi) [bit/sym℄, (5.6)

where if h(x) = −x log2 x, x ∈ [0, 1]. In the spei� ase in whih the symbols are

evenly distributed, i.e. U = (1/N, 1/N, . . . , 1/N) ∈ M(N), then E(U) = log2N =
EU .

As shown in Fig. 5.1, funtion h is in�nitely di�erentiable and stritly onave

for x ∈ (0, 1), having maximum value:

h
max

= h(x
max

) =
log2 e

e
≈ 0.53, (5.7)

where x
max

= 1/e ≈ 0.37. Consequently, h is stritly monotoni inreasing for

x ∈ [0, x
max

].

Lemma 5.1. Given two arbitrary probability mass funtions P = (p1, p2, . . . , pN) ∈
M(N) and Q = (q1, q2, . . . , qN) ∈ M(N), it results:

ES(P ) ≤ −

N
∑

i=1

pi log2 qi, (5.8)

with the equality holding if and only if P = Q.
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Figure 5.1: The funtion h(x) = −x log2 x is monotonially inreasing in the interval

[0, 1/e] = [1, xmax].

Proof. It an be easily proved that:

log2 t ≤ t− 1 ∀t ∈ R
+. (5.9)

Indeed, f(t) = log2 t and g(t) = t − 1 are in�nitely di�erentiable funtions with

f ′(t) = 1/t and g′(t) = 1. It results g(t)−f(t) = g(1)−f(1)+
∫ t

1
(1− 1

θ
)dθ =

∫ t

1
h(θ)dθ.

We observe that:

• if t ≥ 1, h(t) ≥ 0 and g(t)− f(t) =
∫ t

1
h(θ)dθ ≥ 0;

• if 0 < t < 1, h(t) < 0 and g(t)− f(t) = −
∫ 1

t
h(θ)dθ > 0;

Aordingly to (5.9), given two real numbers p, q ∈ (0, 1) we have log2(
q

p
) ≤ q

p
− 1

or, equivalently:

p− p log2 p ≤ q − p log2 q. (5.10)

Sine (5.10) holds for all pi, qi with i = 1, 2, . . . , N , we have:

N
∑

i=1

pi −

N
∑

i=1

pi log2 pi ≤

N
∑

i=1

qi −

N
∑

i=1

pi log2 qi. (5.11)

Realling that

∑N

i=1 pi =
∑N

i=1 qi = 1, the inequality (5.8) is proven.

If P = Q, (5.8) redues to an identity.
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On the other hand, if (5.8) is an equality, we have to prove that P = Q. Indeed

from (5.10) we note that:

q − p log2 q − p+ p log2 p ≥ 0. (5.12)

If (5.8) is an equality, we have:

−

N
∑

i=1

pi log2 pi = −

N
∑

i=1

pi log2 qi, (5.13)

or:

1−

N
∑

i=1

pi log2 pi = 1−

N
∑

i=1

pi log2 qi. (5.14)

Realling that

∑N

i=1 pi =
∑N

i=1 qi = 1, (5.14) an be rewritten as:

N
∑

i=1

(qi − pi log2 qi − pi + pi log2 pi) = 0. (5.15)

As notied in (5.12), sine the summation involves non-negative terms, (5.15) implies

that, for i = 1, 2, . . . , N , (qi − pi log2 qi − pi + pi log2 pi) = 0, that an be rearranged

as:

log2
qi
pi

=
qi
pi

− 1 i = 1, 2, . . . , N, (5.16)

that is true only if pi = qi.

From Lemma 5.1 we have the following theorem.

Theorem 5.1. For any probability mass funtion P ∈ M(N) we have:

ES(P ) ≤ EU , (5.17)

with the equality holding if and only if if P = U .

Proof. The proof derives diretly from Lemma 5.1, noting that if in (5.8) P = U ,

we have qi = 1/N, i = 1, 2, . . . , N and:

ES(P ) ≤ −

N
∑

i=1

pi log2
1

N
= log2N

N
∑

i=1

pi = EU . (5.18)

Theorem 5.1 states that a random soure of evenly distributed independent sym-

bols has maximal entropy equal to EU = log2N bits/sym.
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5.2.2 Worst Case Entropy

Given a probability mass funtion, we an redue the omplexity related to the

aurate omputation of (5.6) fousing on the onept of worst ase entropy. We

start �rst to prove the following lemma.

Lemma 5.2. Consider K real numbers x1, x2, . . . , xK suh that 1 > x1 ≥ x2 ≥
· · · ≥ xK > 0. For any K-tuple of nonnegative real numbers {δ1, δ2, . . . , δK} suh

that δ1 =
∑K

i=2 δi, with 0 ≤ δ1 ≤ 1− x1 and 0 ≤ δi ≤ xi, i = 2, 3, . . . , K, it results:

K
∑

i=1

h(xi) ≥ h(x1 + δ1) +

K
∑

i=2

h(xi − δi). (5.19)

Proof. We an rewrite (5.19) as:

h(x1 + δ1)− h(x1) ≤

K
∑

i=2

[h(xi)− h(xi − δi)]. (5.20)

Sine the prime derivative of h:

h′(x) = − log2 x−
1

ln 2
(5.21)

is a stritly dereasing funtion, we have h(x1+δ1)−h(x1) ≤ δ1h
′(x1). On the other

hand, h(xi)− h(xi − δi) ≥ δih
′(xi) and:

K
∑

i=2

[h(xi)− h(xi − δi)] ≥

K
∑

i=2

δih
′(xi) ≥ h′(x2)

K
∑

i=2

δi = δ1h
′(x2). (5.22)

Sine x1 ≥ x2 ⇒ h′(x2) ≥ h′(x1), we have:

h(x1 + δ1)− h(x1) ≤ δ1h
′(x1) ≤ δ1h

′(x2) ≤

K
∑

i=2

[h(xi)− h(xi − δi)]. (5.23)

The following theorem provides the theoretial worst ase entropy for a stohasti

soure S in whih the most probable symbol has generation probability pH .

Theorem 5.2. Let P = (p1, p2, . . . , pN) ∈ M(N), N > 2. It results:

ES(P ) ≥ E
WC

= Fh(pH) + h(1− FpH), (5.24)

where pH = maxi pi, i = 1, 2, . . . , N and F = ⌊1/pH⌋.
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Figure 5.2: The probability mass funtion QpH ∈ OpH for pH = 0.16, N = 8.
Aording to the Theorem 5.2 this probability mass funtion provides minimum

entropy in OpH .

Proof. Entropy (5.6) is a summation that does not depend on the probability dis-

tribution ordering. Aordingly, M(N) an be partitioned in equivalene lasses,

eah one ontaining permutations of probability mass funtions, and we an fous

on the subset OpH ⊂ M(N) of the lass representatives with weakly dereasing

probabilities, i,e. satisfying the ondition:

T = (t1, t2, . . . , tN) ∈ OpH ⇔ pH = t1 ≥ t2 ≥ tN . (5.25)

Every probability mass funtion P ∈ M(N) has a unique lass representative in

(O)pH suh that ES(P ) = ES(T ).
Among the probability mass funtions in OpH we hoose the element QpH =

(q1, q2, . . . , qN ) for whih:

qi =











pH , if 1 ≤ i ≤ F

1− FpH, if i = F + 1

0, otherwise

. (5.26)

An example of QpH is shown in Fig. 5.2.

Applying (5.6), we observe that ES(QpH) = Fh(pH) + h(1− FpH) = E
WC

.

To onlude the proof, we have to show that:

ES(QpH) = min
T∈OpH

ES(T ). (5.27)
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To this aim, for any P = (p1, p2, . . . , pN) ∈ M(N) we build a sequene of F + 1
probability mass funtions {T 1,T 2, . . . ,T F+1}, in whih T F+1 = QpH and T 1

is the

lass representative of P in OpH , suh that:

ES(P ) = ES(T
1) ≥ ES(T

2) ≥ · · · ≥ ES(T
F+1) = E

WC

. (5.28)

Proeeding by indution, assume that for 1 ≤ k ≤ F the probability mass density

T k = (tk1, t
k
2, . . . , t

k
N) ∈ OpH has the �rst k probability levels equal to pH , namely

tk1 = tk2 = · · · = tkk = pH . Suh element T k
exists in OpH sine kpH ≤ 1 and the

weakly dereasing nonnegative levels tki for k + 1 ≤ i ≤ N an be arbitrarily hosen

to satisfy the normalization property

∑N

i=1 t
k
i = 1.

Comparing T k
with QpH , we observe that qk+1 ≥ tk+1. Indeed, if qk+1 < pH ,

we reall that, aording to (5.26), qi = pH for i = 1, 2, . . . , F , qi = 0 for i =
F + 2, F + 3, . . . , N and qk+1 is the unique value lower than pH that satis�es the

normalization property for QpH . Thus, the normalization property for T k
an be

satis�ed only if qk+1 ≥ tk+1. If qk+1 = pH we have nothing to prove.

Starting from T k
, we now build a new mass probability funtion W k+1 =

(wk+1
1 , wk+1

2 , . . . , wk+1
N ∈ M(N) suh to have:

wk+1
i =

{

qi, if 1 ≤ i ≤ k + 1

tki − δi, otherwise

, (5.29)

where 0 ≤ δi ≤ tki , i = 1, 2, . . . , N are arbitrary values suh to satisfy

∑N

i=k+2 δi =
qk+1 − tkk+1.

The onstrution of W k+1
is well de�ned sine wk+1

i ≥ 0 and 1 =
∑N

i=1 t
k
i =

kpH +
∑N

i=k+1 t
k
i = kpH +

∑N

i=k+1 t
k
i + qk+1 − tkk+1 −

∑N

i=k+2 δi = kpH + qk+1 +
∑N

i=k+2(t
k
i − δi) =

∑N

i=1w
k+1
i .

As a result, sine by onstrution the �rst k probabilities of QpH , W
k+1

and T k

are equal, we have:

ES(W
k+1)− ES(T

k) =
N
∑

i=k+1

[h(wk+1
i )− h)tki )] =

= h(qk+1)− h(tkk+1) +

N
∑

i=k+2

[h(tki − δi)− h(tki )] =

= h(tkk+1 + δkk+1)− h(tkk+1) +
N
∑

i=k+2

[h(tki − δi)− h(tki )].

(5.30)

Aording to Lemma 5.2, we have ES(W
k+1) ≤ ES(T

k).
Finally, we de�ne T k+1

as the lass representative of W k+1
in OpH . Sine

ES(T
k+1) = ES(W

k+1), k = 1, 2, . . . , F , proeeding iteratively we proved (5.28),

noting that T F+1 = QpH . Being the initial probability mass funtion P arbitrary

in M(N), also (5.27) is true.
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Figure 5.3: Normalized worst ase entropy EWC/EU for N = 6 and pH ranging in the

interval ( 1
N
, 1− 1

N
). Theoretial bounds are ompared with Monte Carlo simulations

(minimum entropy among 1000 probability mass funtions randomly hosen, for eah

pH , in OpH ).
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Fig. 5.3 reports as an example the normalized worst ase entropy for N = 6 and
pH ranging in the interval ( 1

N
, 1− 1

N
).

A simpler expression providing a lower bound for the worst ase entropy is pre-

sented in the following orollary.

Corollary 5.1. Let P = (p1, p2, . . . , pN) ∈ M(N), N > 2. It results:

ES(P ) ≥ E
WC

≥ − log2 pH , (5.31)

where pH = maxi pi, i = 1, 2, . . . , N .

Proof. The min-entropy an be rewritten as follows:

− log2 pH = − log2 pH

(

1−

⌊

1

pH

⌋

pH +

⌊

1

pH

⌋

pH

)

=

= −

⌊

1

pH

⌋

pH log2 pH −

(

1−

⌊

1

pH

⌋

pH

)

log2 pH =

=

⌊

1

pH

⌋

h(pH) + h

(

1−

⌊

1

pH

⌋

pH

)

log2 pH

log2

(

1−
⌊

1
pH

⌋

pH

) .

(5.32)

The quantity 1 −
⌊

1
pH

⌋

pH is the reminder of the division 1/pH and is lower than

pH < 1. As a result, we have

log2 pH

log2

(

1−
⌊

1

pH

⌋

pH

) ≤ 1 and − log2 pH ≤ E
WC

.

5.2.3 Best Case Entropy

Following a similar reasoning, it is possible to alulate the theoretial maximum

entropy for the probability mass funtions in OpH , proving the following theorem.

Theorem 5.3. Let P = (p1, p2, . . . , pN) ∈ M(N), N > 2. It results:

ES(P ) ≤ E
BC

= (N − 1)h

(

1− pH
N − 1

)

+ h(pH), (5.33)

where pH = maxi pi, i = 1, 2, . . . , N .

Proof. Consider a generi probability mass funtion P = (p1, p2, . . . , pN) ∈ M(N),
N > 2 having maximum symbol probability pH . Sine entropy is a summation that

does not depend on the probability distribution ordering, we an substitute P with

its unique lass representative T ∈ OpH .

In this way we know that the �rst element t1 of T is equal to pH and that

∑N

i=2 ti = 1− pH .
Consider now the probability mass funtion RpH = {r1, r2, . . . , rN} for whih:

ri =

{

pH , if i = 1
1−pH
N−1

, otherwise

, (5.34)
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whose entropy is equal to:

ES(RpH) = h(pH) + (N − 1)h

(

1− pH
N − 1

)

. (5.35)

The theorem is proved simply applying Lemma 5.1 on T and RpH :

ES(P ) = ES(T ) ≤ −

N
∑

i=1

pi log2 ri =

= −pH log2 pH −
N
∑

i=2

pi log2

(

1− pH
N − 1

)

=

= −pH log2 pH − log2

(

1− pH
N − 1

) N
∑

i=2

pi =

= −pH log2 pH − (1− pH) log2

(

1− pH
N − 1

)

=

= −pH log2 pH − (N − 1)
1− pH
N − 1

log2

(

1− pH
N − 1

)

=

= h(pH) + (N − 1)h

(

1− pH
N − 1

)

= ES(RpH) = E
BC

.

(5.36)

Fig. 5.4 reports as an example the normalized best and worst ase entropies for

N = 6 and pH ranging in the interval ( 1
N
, 1− 1

N
).

5.3 Sequene Length and Symbols Generation Prob-

abilities

In Setion 5.2 we addressed the unertainty given by the attempt to estimate

the entropy of a soure based solely on the knowledge of the generation probability

of its most likely symbol.

Targeting the design of an estimator for this probability, it is also neessary

to take into aount another fator that an a�et the quality of the estimate:

typially an estimator bases its funtioning on the observation of events, eah of

whih provides a ertain amount of information neessary to re�ne the auray of

the estimate with respet to the parameter of interest. In our ase, this involves

the need to observe sequenes of symbols generated by the analyzed soure whose

length is long enough to allow for an adequate estimation of the probability of the

most likely symbol evaluating its frequeny in the sequene under observation.

From a theoretial point of view, it is possible to establish what the minimum

length of the sequenes must be to obtain an adequate estimate, by evaluating the
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Figure 5.4: Normalized entropy ES/EU for N = 6 and pH ranging in the interval

( 1
N
, 1 − 1

N
). Theoretial bounds are ompared with Monte Carlo simulations (5000

random values for pH , uniformly distributed, one random probability mass funtion

in OpH for eah pH).
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minimum number of elements that a soure must generate to ensure that a symbol

with a ertain probability is generated a de�ned number of times.

Consider again an ergodi stohasti soure S of i.i.d. symbols belonging to

the alphabet A = {s1, s2, . . . , sN}. Sine the alphabet A is indexed, there exists a

look-up table:

φ : A → {1, 2, . . . , N} ⊂ N (5.37)

that assoiates any symbol s ∈ A to its index in N. For example, if A = {A,B,C},
the index of the symbol B is φ(B) = 2.

For any L ∈ N, we de�ne the set:

Ω(N,L) =

{

o ∈ {0, 1, . . . , L}N :

N
∑

i=1

oi = L

}

(5.38)

as the set of all the possible integer vetors ounting the ourrenes for the N
symbols in A when observing sequenes of L elements. Hereafter, vetors o ∈
Ω(N,L) are named ourrenes vetors.

For example, if A = {A,B,C} and L = 4, the set Ω(3, 4) ontains integer

vetors in {0, 1, . . . , 4}3 enumerating the symbols ourrenes when observing all

the possible sequenes of L = 4 elements, as shown in Table 5.1.

Any sequene of L elements σ = {s1, s2, . . . , sL}, being si ∈ A, is desribed by

the sequene of alphabet indexes identifying the symbols in A that are generated

aording to the sequene order, i.e.:

σ = {s1, s2, . . . , sL} ⇔ {i1 = φ(s1), i2 = φ(s2), . . . , iL = φ(sL)}. (5.39)

Sine the elements in the sequene are i.i.d., the sequene σ has generation proba-

bility equal to:

P (σ) =
L
∏

j=1

pφ(sj) =
L
∏

j=1

pij . (5.40)

Consider now the ourrenes vetor o ∈ Ω(N,L). We de�ne the funtion H :
Ω(N,L) → AL

providing the set of sequenes of L elements ounting the same

symbol ourrenes given by o. For example, referring to Table 5.1:

H(o2) = {AAAB,AABA,ABAA,BAAA}. (5.41)

Aordingly, the generation probability for any ourrenes vetor o ∈ Ω(N,L) =
{o1, o2, . . . , oN} is equal to the generation probability of any sequene ounting the

same symbol ourrenes given by o, i.e.:

P (o) =
∑

σ∈H(0)

P (σ). (5.42)
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Vetors oi ∈ Ω(3, 4) Sequenes σ (Realizations)

o1 = {4, 0, 0} → AAAA
o2 = {3, 1, 0} → AAAB,AABA,ABAA,BAAA
o3 = {3, 0, 1} → AAAC,AACA,ACAA,CAAA
o4 = {2, 2, 0} → AABB,ABAB,ABBA,BAAB,BABA,BBAA
o5 = {2, 1, 1} → AABC,AACB,ABAC,ABCA,ACAB,ACBA

BAAC,BACA,BCAA,CAAB,CABA,CBAA
o6 = {2, 0, 2} → AACC,ACAC,ACCA,CAAC,CACA,CCAA
o7 = {1, 3, 0} → ABBB,BABB,BBAB,BBBA
o8 = {1, 2, 1} → ABBC,ABCB,ACBB,BABC,BACB,BBAC

BBCA,BCAB,BCBA,CABB,CBAB,CBBA
o9 = {1, 1, 2} → ABCC,ACBC,ACCB,BACC,BCAC,BCCA

CABC,CACB,CBAC,CBCA,CCAB,CCBA
o10 = {1, 0, 3} → ACCC,CACC,CCAC,CCCA
o11 = {0, 4, 0} → BBBB
o12 = {0, 3, 1} → BBBC,BBCB,BCBB,CBBB
o13 = {0, 2, 2} → BBCC,BCBC,BCCB,CBBC,CBCB,CCBB
o14 = {0, 1, 3} → BCCC,CBCC,CCBC,CCCB
o15 = {0, 0, 4} → CCCC

Table 5.1: The set Ω(3, 4) ontaining the integer vetors in {0, 1, . . . , 4}3 assoiated
to di�erent symbol ourrenes, depending on the di�erent possible realizations for

sequenes of L = 4 elements generated by a soure of i.i.d. symbols taken from the

alphabet A = {A,B,C}. The number of di�erent sequenes is NL = 34 = 81, in
the right olumn.
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Sine the sequenes in H(o) share the same generation probability, we have:

P (o) =
∑

σ∈H(0)

P (σ) = #H(o)

L
∏

j=1

pij =

= #H(o)
N
∏

j=1

p
oj
j ,

(5.43)

being #H(o) the ardinality of the set H(o) and pj the probability of the j-th
symbol in alphabet A.

As a result, to alulate the generation probability P (o) we need to express the

ardinality #H(o), that is equal to:

#H(o) =
L!

∏N

j=1 oj!
. (5.44)

For example, referring to Table 5.1, #H(o2) =
4!

3!1!0!
= 4.

Summarizing, the generation probability for any ourrenes vetor o ∈ Ω(N,L)
= {o1, o2, . . . , oN} is equal to:

P (o) =
L!

∏N

j=1 oj!

N
∏

j=1

p
oj
j . (5.45)

Fig. 5.5 reports a omparison between the alulations of (5.45) for the set Ω(3, 4)
shown in Table 5.1 and Monte Carlo simulations.

5.3.1 Event Spae Size

The set Ω(N,L) satis�es the following properties.
The number of di�erent sequenes omposed by L elements taken from an al-

phabet of N symbols is given by:

∑

o∈Ω(N,L)

#H(o) = NL. (5.46)

For example, the di�erent sequenes in Table 5.1 are NL = 34 = 81.
On the other hand, the ardinality of Ω(N,L) an be alulated noting that,

sine Ω(N,L) is de�ned as follows:

Ω(N,L) =

{

o = {o1, o2, . . . , oN} : oi ∈ {0, 1, . . . , L},
N
∑

i=1

oi = L

}

, (5.47)

for N = 1 the set Ω(1, L) is always omposed by a single element:

o = {L}, (5.48)

108



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
P

(o
)

Figure 5.5: Numerial alulation of (5.45) and omparison with Monte Carlo sim-

ulation results, in blue rosses (one million sequenes, N = 3, L = 4 for a random

probability mass funtion P ∈ M(3)).

while for N ≥ 2 eah element of Ω(N,L) an be expressed in the following way:



































o =
{

o1, o2, . . . , oN−1, L−
∑N−1

i=1 oi

}

o1 ∈ {0, 1, . . . , L}

o2 ∈ {0, 1, . . . , L− o1}
.

.

.

oN−1 ∈
{

0, 1, . . . , L−
∑N−2

i=1 oi

}

. (5.49)

As a onsequene, the ardinality of the set Ω(N,L) is given by the following ex-

pression:

#Ω(N,L) =











1, if N = 1

L+ 1, if N = 2
∑L

o1=0

∑L−o1
o2

· · ·
∑L−

∑N−3

i=1
oi

oN−2=0 (oN−2 + 1), if N > 2

. (5.50)

5.3.2 Events Counting Statistis

Now that we de�ned the set Ω(N,L) of vetors that ount the ourrenes of the
symbols generated within a sequene, we an takle the problem that we initially

set ourselves, whih is to establish how many elements a soure must generate in

order to generate a ertain symbol sj ∈ A M times.
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If pj is the generation probability for the symbol sj, we expet to have in T trials

(observations), in average, Tpj ourrenes of that symbol. Therefore, the mean

number of observations we have to perform suh to have M ourrenes for the j-th
symbol must satisfy the relation E[Tj ]pj = M , that is:

E[Tj ] = T j =
M

pj
. (5.51)

This result is limited to average values, for spei� symbols.

In the following we refer to a more preise statement of our problem, onsidering

the statistial event ΨM
N,L, orresponding to a soure with alphabet A of size N that

has to generate L elements to have at least a symbol in A generated M times.

Regarding the probability of the event ΨM
N,L, we note the following properties:

• if L < M , the probability P (ΨM
N,L) = 0 sine the number of generation steps

is smaller than M and no symbol an be generated more than L < M times;

• if L > N(M − 1) + 1, the probability P (ΨM
N,L) = 0 sine at least one symbol

was generated M times in previous generation steps; indeed, in the worst ase,

after N(M − 1) + 1 steps we have all the N symbols generated M − 1 times,

plus one ourrene of one symbol that brings its ount to M .

These onsiderations imply that:

L /∈ {M ≤ q ≤ N(M − 1) + 1, q ∈ N} ⇒ P (ΨM
N,L) = 0. (5.52)

Assuming to fous on the interval M ≤ L ≤ N(M − 1) + 1, we an alulate the

probability of ΨM
N,L partitioning the event spae aording to the last generated

symbol sL in the sequene, i.e.:

P (ΨM
N,L) =

N
∑

i=1

P (ΨM
N,L|xL = si)P (xL = si) =

=
N
∑

i=1

P (ΨM
N,L|xL = si)pi.

(5.53)

The term P (ΨM
N,L|xL = si) is the probability that at the L-th step of the generation

proess the event ΨM
N,L ours thanks to the last symbol si being generated for its

M-th time.

The onditioned event ΨM
N,L|(xL = sj) implies that:

• in the �rst L− 1 steps of the generation proess the symbol sj appears M − 1
times;

• in the �rst L− 1 steps of the generation proess any other symbol si 6= sj was
generated no more than M − 1 times;
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• the ourrenes of the symbols in the �rst L − 1 elements of the sequene,

desribed by the ourrenes vetor o ∈ Ω(N,L−1), are suh that the following
onstraints are satis�ed:











∑N

i=1 oi = L− 1

oj = M − 1

0 ≤ oi ≤ M − 1 for i 6= j

. (5.54)

We denote with Ωj ⊂ Ω(N,L − 1) the set of all ourrenes vetors o ∈
Ω(N,L− 1) ⊂ N

N
satisfying the ontraints (5.54).

Realling that the ourrenes vetors o ∈ Ωj represent disjoint events and realling

(5.45), the probability of the onditioned event ΨM
N,L|xL = sj is:

P (ΨM
N,L|xL = sj) =

∑

o∈Ωj

(L− 1)!
∏N

i=1 oi!

N
∏

i=1

poii . (5.55)

Combining (5.55) with (5.53) we have, if M ≤ L ≤ N(M − 1) + 1:

P (ΨM
N,L) =

N
∑

j=1

pj
∑

o∈Ωj

(L− 1)!
∏N

i=1 oi!

N
∏

i=1

poii , (5.56)

that an be rewritten as:

P (ΨM
N,L) =

(L− 1)!

(M − 1)!

N
∑

j=1

∑

o∈Ωj

pM−1
j

N
∏

i=1,i 6=j

poii
oi!

. (5.57)

This expression provides the omplete statistial haraterization of the event ΨM
N,L

for M ≤ L ≤ N(M − 1) + 1, realling that out of this bound P (ΨM
N,L) = 0. The

neessary onditon to have P (ΨM
N,L) > 0 an be also rewritten as:

M
min

=

⌈

L− 1

N

⌉

< M < L+ 1 = M
max

. (5.58)

Fig. 5.6 shows the omparison between the numerial alulation of (5.57) and

Monte Carlo simulation results for N = 5, L = 20 and the uniform probability mass

funtion P ∈ M(5).

5.4 Maximum Worst-Case Entropy Seletion Algo-

rithm

In Setions 5.2 and 5.3 we evaluated the range of unertainty assoiated with

the attempt to assess the Shannon entropy of an information soure based on the

estimation of the probability pH of the most probable symbol of the soure, and we

de�ned what should be the length L of the sequene of generated symbols that the

estimator must analyze to orretly reognize what the value of this probability is.

On the basis of the obtained results, we an establish that:
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Figure 5.6: Numerial alulation of (5.57) and omparison with Monte Carlo sim-

ulation results (blue rosses), for N = 5, L = 20 and the uniform probability mass

funtion P ∈ M(5) (one million sequenes). Highly improbable events require orders

of magnitude longer Monte Carlo simulations for being deteted.
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• the unertainty given by an entropy estimator based on the evaluation of the

probability pH of the most probable symbol is not onstant, as it depends on

the value of pH ;

• aording to the values ofM and L, the alulation of the probability P (ΨM
N,L)

through the appliation of (5.57) an beome unfeasible beause of the mag-

nitude of the involved parameters.

However, the priniple underlying an estimator of this type an be used for om-

parative purposes applied to sets of soures, rather than for the assessment of the

entropy of a single soure.

Consider a set of soures with di�erent maximum symbol generation probabili-

ties.

Sine both the best-ase and the worst-ase entropies are monotonially dereas-

ing funtions of pH , the soure in the set with the lowest pH will be more likely to

have higher entropy with respet to the other soures.

Furthermore, if we limit our goal to the identi�ation of the soure with the

lowest pH in the set, we an �nd heuristially a minimum value of L for whih the

soure with the lowest pH in the set is identi�ed.

These onsiderations are the starting point of a proedure for identifying the

information soure with the maximum worst-ase entropy within a set, de�ned as

the Maximum Worst-Case Entropy Seletor (MWCES).

5.4.1 Soure Seletion Proedure

The soure seletion proedure is desribed by the algorithm shown in Fig. 5.7.

Consider a set of N entropy soures, eah one generating K-bits long symbols.

To evaluate the soures entropy, we de�ne 2K ounters (symbol_ount) with

over�ow value equal to 2L (one ounter per symbol in the ditionary) and another

ounter (total_ount) able to ount up to 2K+L
.

The algorithm sans sequentially all the soures to understand whih one has

the lowest pH and, therefore, the maximum entropy.

The proedure requires to sample the seleted entropy soure output and to

inrease by one the values of the ounter orresponding to the generated symbol and

of total_ount. These operations are repeated until one of the symbol ounters

reahes the 2L over�ow value.

The pH estimation is given by the value stored in total_ount when the over�ow

event happens, as it orresponds to the time needed to reah the over�ow.

The soure with the highest total_ount value is, aording to the seletor, the

one with the lowest pH and, onsequently, the one with the highest entropy.

5.4.2 Algorithm Optimization Strategies

The algorithm omplexity depends on three parameters, i.e. the number of

soures N , the symbols bit length K and the over�ow value bit length L. The
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ALGORITHM A1:

1. best_soure = 0;

2. best_ount = 0;

3. for(soure = 0; soure < N; soure ++)

4. {

5. overflow = 0;

6. total_ount = 0;

7. for(symbol = 0; symbol < 2^K; symbol ++)

8. {

9. symbol_ount[symbol℄ = 0;

10. }

11. while(overflow == 0)

12. {

13. symbol = get_sample(soure);

14. symbol_ount[symbol ℄++;

15. total_ount++;

16. if(symbol_ount[symbol℄ == 2^L)

17. {

18. overflow = 1;

19. }

20. }

21. if(total_ount > best_ount)

22. {

23. best_ount = total_ount;

24. best_soure = soure;

25. }

26. }

Figure 5.7: Maximum Worst-Case Entropy Seletor algorithm.
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maximum possible exeution time is reahed when, for every soure, at the iteration

preeding the over�ow all the symbol_ount array elements are equal to 2L − 1.
This means that, referring to the worst ase, the proposed algorithm has a time

omplexity order O(N2K+L).
The time omplexity grows withK and L as a power of 2, so these two parameters

should be kept as small as possible without a�eting the seletor performane. It is

not possible to understand a priori whih are the minimum values of K and L that

math this ondition, beause they depend on the statistial properties of the soures

on whih the MWCES is employed. At the same time, an a posteriori on�guration

based on the knowledge of the soures statistial properties would make the use of

the MWCES useless, sine in that ondition we would already know whih is the

soure with the maximum ASE.

To overome these problems, we de�ned a proedure for on�guring K and L
whih takes into onsideration the spei� soures to be analyzed without having to

diretly evaluate their statistial properties.

The on�guration proedure is desribed by the algorithm shown in Fig. 5.8.

Suppose that we want to apply the MWCES to a group of N soures with the

purpose of generating KMAX-bits long symbols. To on�gure K and L we start

implementing M groups of these N soures. In eah group, the soures are hara-

terized by slightly di�erent statistial properties with respet to their equivalents in

the other groups; suh di�erenes are an e�et of their implementation proess.

For eah soure, a sequene of 2KMAX+LMAX KMAX -bits long symbols is gener-

ated. LMAX is the exponent of the maximum over�ow threshold, de�ned as a power

of two, we an aept for the MWCES that we are implementing.

Aording to [55℄, a good rule of thumb for 2L is to set it greater than 10. The
minimum power of two greater than this value is 16, i.e. L = 4. For this reason the

algorithm takes 4 as a lower bound for L.
The generated sequenes are used to ompute the KMAX-bits ASEs. Aording

to this omputation, we identify the maximum ASE of every group and we ompute

the mean value of these maxima. The obtained parameter (ase_m) is taken as a

referene of the best performane the MWCES an reah on the onsidered soures.

At this point, we employ the MWCES on eah group of soures, testing all the

possible ombinations ofK and L in the sets {1, 2, . . . , KMAX} and {4, 5, . . . , LMAX}
respetively. For eah ombination, we take the soures hosen by the MWCES in

every group and we ompute the mean value ase_s of their KMAX -bits ASEs, alu-

lated in the previous phase. ase_s is ompared with ase_m through the alulation

of the relative error between them. If the error is below the error tolerane ERRMAX ,

the atual (K,L) ombination is onsidered valid.

All the valid (K,L) ombinations must be ompared to understand whih is the

one for whih the MWCES would have the minimum omplexity. To do so, we

de�ned a ost funtion:

C(K,L) = 2K · L+ 2 · (K + L). (5.59)

(5.59) refers to a raw implementation of the MWCES based on ounting registers:

in this ase the seletor would employ 2K L-bits long registers (symbol_ount) and
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ALGORITHM A2:

1. for(grp = 0; grp < M; grp++)

2. {

3. max_ase[grp℄ = 0;

4. for(sr = 0; sr < N; sr++)

5. {

6. for(samp = 0; samp < 2^(K_MAX+L_MAX); samp++)

7. {

8. seq[grp℄[sr℄[samp℄ = get_symbol(grp ,sr ,K_MAX);

9. }

10. ase[grp℄[sr℄ = ompute_ase(grp ,sr ,K_MAX);

11. if(ase[grp℄[sr℄ > max_ase[grp℄)

12. {

13. max_ase[grp℄ = ase[grp℄[sr℄;

14. }

15. }

16. }

17. ase_m = mean(max_ase);

18. ost = 2^K_MAX*L_MAX+2*(K_MAX+L_MAX);

19. K = K_MAX;

20. L = L_MAX;

21. for(k = 1; k <= K_MAX; k++)

22. {

23. for(l = 4; l <= L_MAX; l++)

24. {

25. for(grp = 0; grp < M; grp++)

26. {

27. sr = exeute_mes(k,l,grp);

28. sel_ase[grp℄ = ase[grp℄[sr℄;

29. }

30. ase_s = mean(sel_ase);

31. mes_err = (ase_m -ase_s)/ase_m;

32. if(mes_err < ERR_MAX)

33. {

34. new_ost = 2^k*l+2*(k+l);

35. if(new_ost < ost)

36. {

37. ost = new_ost;

38. K = k;

39. L = l;

40. }

41. else if(new_ost == ost && k < K)

42. {

43. K = k;

44. L = l;

45. }

46. }

47. }

48. }

Figure 5.8: Proposed proedure to on�gure the parameters used in MWCES algo-

rithm (Fig. 5.7).
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0 11- 0.5

0.5
Figure 5.9: Two-states Markov hain for the generation of random bit sequenes.

two (K + L)-bits long registers (total_ount and best_ount). The ost funtion

orresponds to the total number of bits required by these registers, i.e. a �rst

evaluation of the hardware resoures required by the MWCES.

The valid ombination (K,L) with the lowest ost is the one hosen for the

onsidered appliation. If two ombinations have the same ost, we hoose the one

with the lowest K, beause a lower K implies a lower number of registers, whih

simpli�es the overall MWCES arhiteture.

To better understand the presented proedure, an example based on Markov

hains is given in the following setion.

5.5 Example Case: Markov Chain-Based MWCES

Test

To provide a demonstration of the proedure to be followed to on�gure and

apply the Maximum Worst-Case Entropy Seletor (MWCES) algorithm, in this se-

tion we present an example analysis performed on entropy soures based on Markov

hains. We hose this kind of soures beause they allow, through a proper de�nition

of their transition matrix, to ontrol the resulting ASE, as shown in the following.

Let's onsider the two-states Markov hain in Fig. 5.9.

The hain transition matrix Π is parametrized dependently on the probability π
to pass from state 0 to state 1:

Π =

[

p00 p10
p01 p11

]

=

[

1− π 0.5
π 0.5

]

. (5.60)

The steady-state probabilities to get a 0 or a 1 for a Markov hain of this kind an
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be omputed solving the following system:

[

1− π 0.5
π 0.5

] [

P0

P1

]

=

[

P0

P1

]

, (5.61)

where Pi is the steady-state probability to get the symbol i.
Remembering that P0 + P1 = 1, we obtain that:

{

P0 =
0.5

π+0.5

P1 =
π

π+0.5

. (5.62)

π is a probability, therefore it is a real number limited between 0 and 1. The obtained
steady-state probabilities are ontinuous on this domain and aording to the value

of π it is possible to get both a deterministi soure:

π = 0 ⇒

{

P0 = 1

P1 = 0
, (5.63)

and a uniformly distributed soure:

π = 0.5 ⇒

{

P0 = 0.5

P1 = 0.5
. (5.64)

The Average Shannon Entropy is a ombination of ontinuous funtions in π, so it

is again a ontinuous funtion:

ASE = −P0 log2 P0 − P1 log2 P1, (5.65)

and sine π an be tuned to get both a deterministi (ASE = 0) and a uniformly

distributed (ASE = 1) soures, the ASE image is ontinuously de�ned between 0
and 1.

This result an be extended to K-bits long symbols. In this ase, the probability

to get a K-bits long symbol starting from an initial state P (b0), b0 ∈ {0, 1} is:

P (b0, b1, . . . , bK−2, bK−1) = P (b0)pb0b1pb1b2 . . . pbK−2bK−1
=

= P (b0)p
#00
00 p#01

01 p#10
10 p#11

11 ,
(5.66)

where pbi−1bi is the probability to get a bit bi after a bit bi−1, and #ij is the number
of i to j bit transitions in the onsidered symbol.

Taking into aount the proposed Markov hain, it an be observed that the

obtained probabilities are again ontinuous in π and at the steady-state they are

equal to:

P (b0, b1, . . . , bK−2, bK−1) = Pb0(1− π)#00π#010.5#10+#11, (5.67)

where Pb0 denotes the steady-state probabilities obtained in (5.62). Setting π equal

to 0 and to 0.5 we obtain again a deterministi and a uniformly distributed soures

respetively:

π = 0 ⇒

{

Ps0 = 1

Psi = 0, i = 1, . . . , 2K − 1
, (5.68)
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Figure 5.10: 10-bits ASR distribution of the whole set of Markov hain-based entropy

soures. The blue dashed line indiates the mean value of the distribution.

π = 0.5 ⇒ Psi =
1

2K
, i = 0, . . . , 2K − 1, (5.69)

therefore the ASE image is ontinuously de�ned between 0 and 1 also when we

evaluate it for K-bits long symbols. The probabilities Psi, i = 0, . . . , 2K − 1 are the
steady-state probabilities of the K-bits long symbols.

5.5.1 Experiments and Results

We simulated 1000 soures based on Markov hains, organized in M = 100
groups of N = 10 soures. The designed Markov hains are of the type shown in

Fig. 5.9, with π randomly hosen on the interval 0.3± 20%.

We �xed the maximum symbol bit length at KMAX = 10 and the maximum

threshold bit length at LMAX = 10.
The resulting 10-bits Average Shannon Redundanies (ASRs), as shown in Fig.

5.10, are distributed on the interval [0.115, 0.284] bit/sym, with a mean value equal

to 0.194 bit/sym and a standard deviation equal to 0.048 bit/sym.

Looking only at the 10-bits ASE of the best soures for eah group, shown in Fig.

5.11, we observe that an optimal seletor would inrease the performane narrowing

the distribution on the interval [0.115, 0.175] bit/sym, with a mean value equal to

0.128 bit/sym and a standard deviation equal to 0.012 bit/sym.

The error tolerane was set at ERRMAX = 1%. The (K,L) ombination math-

ing the error threshold ondition that minimizes the ost funtion (5.59) is (K,L) =
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Figure 5.11: 10-bits ASR distribution of the best soures for eah group of Markov

hain-based entropy soures. The blue dashed line indiates the mean value of the

whole set of soures, while the red dashed line orresponds to the mean value of the

best soures for eah group.

(2, 9). The 10-bits ASR distribution of the soures seleted by the MWCES on�g-

ured with these parameters is shown in Fig. 5.12.

The ASE of the soures seleted by the MWCES is distributed on the interval

[0.116, 0.208] bit/sym, with a mean value equal to 0.134 bit/sym and a standard

deviation equal to 0.018 bit/sym. With respet to the optimal solution, we observe

that the MWCES introdues an error on the mean value of the 0.7% with an inrease

of the standard deviation of 0.006 bit/sym.

5.6 Tunable Digital Nonlinear Osillator

The test ase of the MWCES based on Markov hains presented in Setion

5.5 highlighted the possibility of using this estimation methodology to ensure a

maximization, net of a ontrolled error tolerane, of the entropy extratable from

a set of entropy soures, based solely on an approximate a priori knowledge of the

statistial harateristis of the involved soures. In this setion we show how this

priniple an be applied to Digital Nonlinear Osillators, with the aim of mitigating

the performane variability introdued by their physial implementation.

Let us onsider again the DNO topology analyzed in Chapter 4, whose struture

is shown again in Fig. 5.13.

In Setion 4.5 we highlighted that, although it is apable of ahieving partiu-

larly high performane, the iruit is a�eted by a variability in terms of generated
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Figure 5.12: 10-bits ASR distribution of the soures seleted by a MWCES on�g-

ured with K = 2 and L = 9 for eah group of Markov hain-based entropy soures.

The blue dashed line indiates the mean value of the whole set of soures, the red

dashed line orresponds to the mean value of the best soures for eah group, the

green dashed line is the mean value of the soures seleted by the MWCES.
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Figure 5.13: The omplete topology studied in Chapter 4, in whih a nonlinear

osillating struture (the nonlinear osillator in Fig.4.8), is exited by a ring osillator

to produe omplex dynamis.
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nmux nmux nmux
xor

xor

nxor

del ff

sel[5:0]

clk

rbit

Figure 5.14: DNO topology inspired by the topology shown in Fig. 5.13, modi�ed

to be tunable through the MWCES. The red elements represent the ative routing

delay introdued by its hardware implementation. The del and ff bloks represent

respetively a retifying gate and a �ip-�op, forming a 1-bit A/D onverter.

entropy, aused by the di�erenes in the hardware used to implement the resoures

that ompose it and by the routing between the pins of the LUTs.

Although in the spei� analyzed ase an optimized solution was presented that

redues this variability, that is a 2:1 lossy ompression based on the XORing of the

output bits of two implementations of the DNO operating in parallel, this problem

distinguishes any DNO.

In this ontext, the MWCES an be used as a generi solution, appliable to any

topology simply by applying small hanges to the on�guration of some used LUTs,

suh as to make the routing of the iruit tunable, as desribed below for the iruit

of Fig. 5.13.

Consider the DNO topology shown in Fig. 5.14.

The represented iruit is a modi�ed version of the topology presented in Chap-

ter 4. In fat, we an immediately reognize the three XOR and NXOR gates on-

neted in loops. The main di�erene is the presene of three negated multiplexers

(NMUXes) onneted to form an independent loop.

From a logi point of view, this loop is equivalent to the three-stages Ring Os-

illator, beause the four inputs of eah multiplexer are short iruited, forming a

single logi path. From an analog point of view, however, eah line is harater-

ized by a di�erent propagation time (represented by the red delay bloks). For this

reason, the NMUXes loop an be seen as a frequeny-programmable exitation sig-

nal generator, whose frequeny an be hosen among a set of 64 di�erent values,

obtained hanging the value of the multiplexers ontrol signal sel.

Aording to our analyzes, we expet the DNO dynamis to hange in dependene

of the seleted frequeny. In this sense, the presented DNO topology desribes a

set of 64 di�erent omplex dynamial systems, eah one employable as an entropy
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soure, whih an be seleted simply �xing the value of sel.

A struture of this kind onstitutes a lear appliation for the MWCES: it is

not possible to know a priori whih is the best multiplexers on�guration from an

entropy generation point of view, sine the propagation times assoiated to the DNO

lines are di�erent for eah implementation; using the MWCES we expet to be able

to inrease on average the iruit entropy without having to worry about the spei�

harateristis of the implementation under onsideration.

5.6.1 Experiments and Comments

To evaluate the performane of the MWCES in tuning the DNO proposed in

the previous setion, we designed the iruit to be implemented on Xilinx Artix 7

FPGAs.

As shown in Fig. 5.14, the proposed iruit is omposed by seven logi gates

and a �ip-�op. Exploiting the attributes to be inluded in the RTL design already

desribed in Setion 3.5, we took preise ontrol on the resoures plaement to fore

the FPGA synthesizer to implement the designed DNO in the most ompat way,

programming only LUTs belonging to a single CLB. In this way, we tried to maximize

the repeatability between di�erent implementations of the same iruit in di�erent

loations of the CLB matrix. Unfortunately, we already know that this operation

does not allow to have ontrol on the routing between the gates, sine the ELBs

are interonneted through the swith matries, whose internal onnetions are not

programmable. This lak of ontrol, together with the parasiti e�ets introdued

by the hardware, make it impossible to determine a priori the performane of the

spei� implementation of the iruit.

For this reason, we had to on�gure the MWCES in funtion of the Xilinx Artix

7 FPGA implementation of the DNO, following the proedure shown in Fig. 5.8.

We designed the iruit in �ve Xilinx Artix 7 x7a35 FPGAs. In eah devie

we implemented sixteen di�erent instanes of the DNO, seleting their loations

to over di�erent areas of the matrix. All the implementations were sampled at a

frequeny of 400 MHz. Referring to the MWCES proedure and remembering the

DNO topology is ontrolled by a 6-bits seletion line (sel), with this on�guration

we an analyze M = 80 groups of N = 26 = 64 soures.

We �xed the maximum symbol bit length at KMAX = 10 and the maximum

threshold bit length at LMAX = 9.
The resulting 10-bits ASRs, as shown in Fig. 5.15, are distributed on the interval

[0.020, 0.893] bit/sym, with a mean value equal to 0.083 bit/sym and a standard

deviation equal to 0.122 bit/sym.

The �gure learly shows that, even if on average the DNO implementation is

able to reah very high entropy values, a wrong on�guration of the multiplexers

an lead to a marked deterioration in the performane. In fat, if we onsider only

the best multiplexers setup for eah implementation, the 10-bits ASE distribution

shrinks signi�antly, as shown in Fig. 5.16.

An optimal on�guration of the multiplexers provides a 10-bits ASE distribution
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Figure 5.15: 10-bits ASR distribution of the whole set of DNOs, taking into aount

any possible on�guration of the multiplexers. The blue dashed line indiates the

mean value of the distribution.

Figure 5.16: 10-bits ASR distribution of the DNOs, taking into aount the best

on�gurations of the multiplexers. The blue dashed line indiates the mean value

of the whole set of soures, while the red dashed line orresponds to the mean value

of the best on�guration for eah implementation.

124



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

Figure 5.17: 10-bits ASR distribution of the soures seleted by a MWCES on-

�gured with K = 3 and L = 8 for eah DNO implementation. The blue dashed

line indiates the mean value of the whole set of soures, the red dashed line or-

responds to the mean value of the best multiplexer on�guration for eah instane,

the green dashed line is the mean value of the multiplexer on�gurations seleted

by the MWCES.

de�ned on the interval [0.020, 0.061] bit/sym, with a mean value equal to 0.031
bit/sym and a standard deviation equal to 0.009 bit/sym. From this result we an

expet therefore that, with a proper seletion of the multiplexers inputs, even a

suboptimal setup ould keep the DNO performane high.

To on�gure the MWCES, we set an error tolerane ERRMAX = 1%. The (K,L)
ombination mathing the error threshold ondition that minimizes the ost funtion

(5.59) is (K,L) = (3, 8). The 10-bits ASE distribution of the soures seleted by

the MWCES on�gured with these parameters is shown in Fig. 5.17.

The ASE of the soures seleted by the MWCES is distributed on the interval

[0.024, 0.072] bit/sym, with a mean value equal to 0.038 bit/sym and a standard

deviation equal to 0.012 bit/sym. With respet to the optimal solution, we observe

that the MWCES introdues an error on the mean value of the 0.8% with an inrease

of the standard deviation of 0.003 bit/sym.

This result represents a suboptimal solution, sine the ASE that we an reah

with a on�guration of this kind is slightly worse with respet to the maximum one.

However, if we ompare it with the ASE distribution of the whole set of DNOs,

taking into aount any possible on�guration of the multiplexers, the performane

gain we get is evident.

125



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

5.7 MWCES Hardware Implementation

To onlude the analyzes related to the MWCES algorithm, we deided to eval-

uate the hardware resoures onsumption assoiated with an implementation on

FPGA.

Here we report the VHDL desription of the MWCES, assuming to use it to

ompare 16 di�erent soures.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD .ALL;

entity MaximumEntropySeletor is

generi (

K : natural ;

L : natural );

port (

lk : in std_logi ;

en : in std_logi ;

soures : in std_logi_vetor (15 downto 0);

bestsoure : out std_logi_vetor(3 downto 0);

done : out std_logi );

end MaximumEntropySeletor ;

arhiteture Behavioral of MaximumEntropySeletor is

type t_symnt is array(integer range 2**K-1 downto 0) of natural range 0 to 2**L-1;

signal symbol : std_logi_vetor(K-1 downto 0);

signal totnt : natural range 0 to 2**(K+L)-1;

signal symnt : t_symnt ;

signal bestnt : natural range 0 to 2**(K+L)-1;

signal bestpartialsr : natural range 0 to 15;

begin

MWCES: proess (lk )

type t_state is (BUILDSYM ,COUNTSYM ,CHECKTIME ,UPDATESRC ,STOP);

variable state : t_state ;

variable srsel : natural range 0 to 15;

variable bitnt : natural range 0 to K -1;

variable symindex : natural range 0 to 2**K-1;

begin

if rising_edge (lk) then

if en = '0' then

state := BUILDSYM ;

srsel := 0;

bitnt := 0;

symnt <= (others => 0);

totnt <= 0;

bestnt <= 0;

bestsoure <= (others => '0');

done <= '0';

else

ase state is

when BUILDSYM =>

symbol (K-1 downto 1) <= symbol (K-2 downto 0);

symbol (0) <= soures (srsel );

if bitnt = K-1 then

bitnt := 0;

state := COUNTSYM ;

else

bitnt := bitnt +1;

end if;

when COUNTSYM =>

symindex := to_integer (unsigned (symbol ));

totnt <= totnt +1;

if symnt (symindex ) = 2**L-1 then

symnt <= (others => 0);
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state := CHECKTIME ;

else

symnt (symindex ) <= symnt (symindex )+1;

state := BUILDSYM ;

end if;

when CHECKTIME =>

if totnt >= bestnt then

bestnt <= totnt ;

bestpartialsr <= srsel ;

end if;

totnt <= 0;

state := UPDATESRC ;

when UPDATESRC =>

if srsel = 15 then

srsel := 0;

bestsoure <= std_logi_vetor(to_unsigned (bestpartialsr ,4));

state := STOP;

else

srsel := srsel +1;

state := BUILDSYM ;

end if;

when STOP =>

done <= '1';

end ase;

end if;

end if;

end proess MWCES;

end Behavioral ;

We an onsider this spei� ase without losing generality, as the number of

ompared soures only a�ets the size of the ports soures and bestsoure, indi-

ating the soures output signals and the seleted soure respetively, of the signal

bestpartialsoure, that stores the best soure number along the algorithm om-

putations, and of the variable srsel, that selets the soure to be analyzed. A

di�erent number of analyzed soures would therefore determine a small variation in

the LUTs and �ip-�ops required for the implementation with respet to the hardware

resoures that are dependent on the hoie of K and L.
We used the above VHDL desription of the MWCES to implement it on a

Xilinx Artix 7 x7a65 FPGA using the Xilinx Vivado Design Suite. We synthesized

the VHDL design to evaluate the hardware resoures onsumption required by the

iruit for di�erent values ofK and L. Tables 5.2 and 5.3 report the number of LUTs
and �ip-�ops required by the the iruit for K = 2, 3, . . . , 8 and for L = 4, 5, . . . , 10.

If we ompare the �ip-�op numbers indiated in Table 5.3 with the minimum

theoretial �ip-�op onsumption de�ned by the ost funtion (5.59), reported in

Table 5.4, we observe that the FPGA implementation is oherent with the theoretial

expetations, sine the �ip-�ops number grows linearly in funtion of L for �xed K
and exponentially in funtion of K for �xed L.

The �ip-�ops number required aording to the Vivado design is higher with re-

spet to what indiated in Table 5.4 beause the ost funtion takes into aount only

the register required to store the symbols ourrenes and to ount the estimation

time, while in the implementation we have some additional logi.

Furthermore, the inrement of �ip-�ops for inreasing values of K and L is

slightly irregular, espeially for high values of K and L. This is beause of the syn-
thesizer strategies, that was left to freely operate aording to a balaned area/time
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LUT

L

4 5 6 7 8 9 10

2 35 38 42 50 47 50 53

3 49 55 59 64 70 69 71

4 70 74 81 97 102 107 105

K 5 118 130 143 145 180 177 190

6 231 216 231 267 307 330 312

7 338 370 408 448 482 519 572

8 630 704 775 856 923 1000 1206

Table 5.2: Number of LUTs required to synthesize the MWCES algorithm in Xilinx

Vivado for K = 2, 3, . . . , 8 and for L = 4, 5, . . . , 10
.

FF

L

4 5 6 7 8 9 10

2 49 55 61 67 73 79 85

3 69 79 89 99 109 119 129

4 104 122 140 158 176 194 212

K 5 172 206 240 274 308 342 376

6 303 369 435 501 569 635 699

7 562 694 824 956 1087 1217 1347

8 1084 1344 1602 1861 2124 2379 2641

Table 5.3: Number of �ip-�ops required to synthesize the MWCES algorithm in

Xilinx Vivado for K = 2, 3, . . . , 8 and for L = 4, 5, . . . , 10.
.

C(K,L)
L

4 5 6 7 8 9 10

2 28 34 40 46 52 58 64

3 46 56 66 76 86 96 106

4 80 98 116 134 152 170 188

K 5 146 180 214 248 282 316 350

6 276 342 408 474 540 606 672

7 534 664 794 924 1054 1184 1314

8 1048 1306 1564 1822 2080 2338 2596

Table 5.4: Theoretial minimum number of �ip-�ops required to implement the

MWCES algorithm aording to the ost funtion (5.59) for K = 2, 3, . . . , 8 and for

L = 4, 5, . . . , 10.
.
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design optimization strategy. In any ase, the overall resoure onsumption is in

agreement with the expeted theoretial one.

5.8 Conlusion

We presented an algorithm, alled MaximumWorst-Case Entropy Seletor (MWCES),

that aims to identify, within a set of entropy soures, whih o�ers the best perfor-

mane in terms of worst-ase entropy, also known in literature as "min-entropy".

The algorithm aims to assess the minimum entropy of a soure, estimating what is

the probability of the most likely symbol that an be generated by the soure.

We rigorously investigated what are the levels of unertainty assoiated with an

assessment of the entropy of an information soure on the basis of an estimate of this

type. Taking into aount the properties of the Shannon entropy, we studied whih

are the worst and best entropies of a soure with a maximum symbol generation

probability pH . We also studied, from a statistial point of view, whih is the

minimum number of observations required by an estimator to properly estimate this

probability.

On the basis of these studies, we established that an estimator of the maximum

symbol generation probability of a soures has two main limitations:

• the range between the worst and best entropies given by pH is a not onstant

funtion of pH ;

• the optimal number of observations required by the estimator annot be om-

puted beause of the omplexity of the required alulation.

For this reason, we established a better use of the estimator for the assessment of

the soure with the maximum entropy among a set, observing that:

• the worst and best entropies are monotonially dereasing funtion of pH ,
therefore a soure with lower pH with respet to another is more likely to have

higher entropy:

• it is possible to �nd heuristially a number of observations suh to identify

whih is the soure in a set with the lowest pH , regardless of its value.

Therefore, we de�ned a proedure for seleting the maximum worst-ase entropy

soure starting from a set of soures. This proedure ounts the ourrenes of the

symbols generated by a soure and takes note of the time required by them to reah

an over�ow value. The slowest soure is the one with the lowest pH .
We proposed also a proedure for the orret hoie of the seletor parameter.

This probabilisti proedure adopts a statistial approah to establish whih is the

minimum symbols bit length and the minimum over�ow level for whih the seletion

error on the output Shannon entropy is lower than a ertain threshold.

The seletion algorithm was then applied in two notable examples, one based

on a set of soures de�ned starting from Markov hains, and the other based on a

modi�ed version of the DNO presented in Chapter 4.
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In the examples, we applied the seletor on�guration proedure to propose an

implementation of the seletor with minimum hardware resoures onsumption and

with a seletion relative error on the output Shannon entropy lower than 1%.

Both ases showed that, downstream of a orret on�guration, the seletor is

able to maximize the output Shannon entropy of the set, net of a prede�ned relative

error threshold.

Finally, we proposed a design of the seletor for its implementation in FPGAs.
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Chapter 6

Conlusion

In this thesis we introdued a new lass of iruits that an be used as entropy

soures for True Random Number Generators, alled Digital Nonlinear Osillators

(DNOs), whih onstitute dynamial systems apable of supporting omplex dy-

namis (periodi or haoti) in the analog time-ontinuous domain, although they

are made of digital iruits.

The objetive of this study was to demonstrate that iruits of this type an

de�ne high-performane entropy soures suitable for the design of True Random

Number Generators on purely digital devies with limited resoures, suitable for

lightweight ryptographi appliations.

For this purpose, we initially showed through notable examples how di�erent

iruits belonging to the DNO lass an be haraterized by di�erent performane.

Subsequently, we introdued a set of tools that allow to analyze and design

DNOs. More in detail:

• two �gures of merit, namely the Deorrelation Time and the Average Shannon

Entropy, for the omparative evaluation of the statistial harateristis of

DNOs were de�ned. This �gures of merit provide additional information with

respet to standard statistial tests, whih are limited to providing saturated

binary outome;

• a simpli�ed theoretial investigation approah based on low-omplexity dy-

namial models, whose purpose is to investigate whih onditions favor om-

patibility with omplex dynamis for a DNO starting from the analysis of the

stability of its �xed points, was proposed;

• an advaned numerial simulation setup in Cadene Virtuoso based on UMC

180 nm tehnology that deepens the results given by the study of the simpli�ed

dynamial models was designed;

• design methodology for the implementation of a DNO on FPGAs, aimed at

taking ontrol of the synthesizer plae and route poliies for the implementa-

tion of preise layouts were disussed.
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The introdued tools were used to investigate a novel DNO topology inspired by

the theory of fored nonlinear osillators, haraterized by haoti dynamis. We

showed, through theoretial studies, numerial simulations and experiments, that

this topology ahieves high performane, outperforming the most relevant reent

results proposed in literature both in terms of generated entropy and hardware

resoures onsumption.

We studied this topology extensively, using simpli�ed dynamial models and in-

depth numerial simulations to establish under whih onditions the iruit exhibits

haoti behaviors, and testing experimentally its dynamial behavior through FPGA

implementations.

Spei�ally, the FPGA implementations allowed to evaluate the performane in

terms of generated entropy, the in�uene of routing on the onsidered performane,

the temperature sensitivity, to inspet physial output signals for a omparison with

the results obtained in simulation.

The proposed DNO was also able to pass the standard NIST 800.22 statistial

tests, requiring only a minimum post-proessing, suh that the omplete system

(DNO and post-proessing) presents a negligible omplexity ompared to the solu-

tions urrently proposed in literature.

Finally, we presented an algorithm apable of identifying within a set of entropy

soures whih one o�ers the maximum entropy, alled Maximum Entropy Seletor.

The algorithm aims to assess the worst-ase entropy of a soure, estimating what is

the probability of the most likely symbol that an be generated by the soure.

We rigorously investigated what are the levels of unertainty assoiated with an

assessment of the entropy of an information soure on the basis of an estimate of this

type. We also studied, from a statistial point of view, whih is the minimum number

of observations required by an estimator to properly estimate this probability.

On the basis of these investigations, we de�ned a proedure for seleting the max-

imum entropy soure starting from a set of soures. We provided also a proedure

for the orret hoie of the seletor parameter.

The seletion algorithm was then applied in two notable examples, one based

on a set of soures de�ned starting from Markov hains, and the other based on a

modi�ed version of the high-performane DNO.

Finally, we proposed a design of the seletor for its implementation in FPGAs.

On the basis of the presented results, it is possible to onlude that DNOs

represent a lass of iruits that an be used for the design of high-performane

True Random Number Generators based on purely digital hardware, opening new

perspetives in the �eld of lightweight ryptography regarding the integration of

TRNGs ompliant to ryptographi seurity standards even in devies with limited

resoures.
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