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Figure 4.15: In the upper plots, the 3D-proje
tions of the voltages x, y, z in Fig.

4.14 under di�erent realizations (mismat
hes and pro
ess variability). Upper-left:


omplex periodi
 dynami
s. Upper-right: 
haoti
 dynami
s exhibiting sensitivity to

initial 
onditions, highlighted in the traje
tories below.
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Figure 4.16: The referen
e DNO ar
hite
tures 
onsidered for the analysis of the

proposed topology. DNO A is a 7-nodes Ring Os
illator, DNO B is a 7-nodes Galois

Ring Os
illator.

designed, whi
h were lo
ated in di�erent areas of the 
hip; in this way it is possible

to evaluate the e�e
t of intra-devi
e variability on the performan
e of the 
ir
uits.

Furthermore, to also evaluate the e�e
t of inter-devi
e variability, the design of the

16 instan
es was implemented in six di�erent FPGAs, always using the same posi-

tions for the 
ir
uits. Following this pro
edure, ea
h DNO was evaluated through

96 di�erent implementations. Finally, taking 
ontrol of the pla
e and route poli
ies

using the spe
ial dire
tives shown in Se
tion 3.5, we for
ed a 
ompa
t layout for the

three os
illators, sele
ting LUTs belonging to 
ouples of sli
es of single CLBs, su
h

to minimize the propagation times asso
iated to signal routing. Fig. 4.17 shows the

resulting layout for DNO C. DNOs A and B have a similar layout, as the used LUTs

are the same; the di�eren
e between DNOs is in the routing used for the 
onne
tions

between the LUTs.

For ea
h os
illator, we performed a
quisitions of sequen
es of 1 million bits at

di�erent frequen
ies, de�ned on a range between 100 kHz and 100 MHz. The a
-

quisition was 
arried out through an ar
hite
ture designed on the FPGA, whi
h


olle
ts the a
quired bits in a RAM and subsequently transmits them via RS232

serial interfa
e to a PC, on whi
h a virtual instrument was implemented with Na-

tional Instruments LabVIEW. The virtual instrument stores the data in binary �les,

whi
h are then pro
essed with MathWorks MATLAB.

4.5.1 Performan
e Comparison

The a
quired sequen
es were used to 
al
ulate the Average Shannon Entropy

(ASE) and the De
orrelation Time τ , already introdu
ed in Se
tion 3.2. Figs. 4.18

and 4.19 show the results obtained in terms of ASE, 
al
ulated on 10 bits long

symbols, and in terms of De
orrelation Time, 
al
ulated for an energy ratio equal

to 99.9% of the total energy evaluated over a 10 µs window. Table 4.1 instead

summarizes the statisti
s related to the �gures of merit, 
omparing the DNOs in
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Figure 4.17: The 
ondensed layout implementing the DNO if Fig.4.14 using two

sli
es, in
luding the Syn
hronization Interfa
e realized with a single D �ip-�op and

a transparent (dummy) LUT.
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Figure 4.18: Average Shannon Entropy of the three 
ompared DNOs, estimated on

the basis of binary words of 10 bits (ASE-10) a
quired from 96 instan
es for ea
h

topology, implemented on 6 Xilinx Artix 7 x
7a35 FPGAs. For ea
h DNO, the ASEs

of all the instan
es are reported, organized a

ording to the 
hip on whi
h they are

implemented.

terms of a
hieved performan
e and 
onsumed FPGA hardware resour
es.

The results shown in the �gures and in the table show that the DNO C a
hieves

higher performan
e than the two referen
e DNOs, both in terms of ASE and De
or-

relation Time. In all 
ases, the bits 
olle
ted at a sampling rate of 100 MHz from

the DNO C were found to have negligible or undete
table 
orrelation, as also shown

in Fig. 4.20. Consequently, the DNO C does not rea
h an entropy exa
tly equal

to 1 only due to a residual o�set of the sequen
es. This aspe
t is related to the

average value of the analog output signal of the DNO, whi
h depends on the shape

of the traje
tory, and on the level of quantization thresholds of the �ip-�ops D used

for sampling. This problem is more evident in DNO B and less important in the

Ring Os
illator (DNO A), as it generates a square wave with a duty 
y
le of ap-

proximately 50%: although DNO B has a De
orrelation Time on average lower than

that of DNO A, the bias it is a�e
ted by limits its ASE. In DNO C the bias is

maintained on adequate values thanks to the symmetri
al stru
ture of the topology

and the mutual intera
tion through the XOR3 gate of the two feedba
k loops. Sin
e
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Figure 4.19: De
orrelation Time τ of the three DNOs, estimated as the time at

whi
h the auto
orrelation fun
tion of the binary sour
e expresses the 99.9% of its

variation-energy, referring to an observation time-window of 10 µs. For ea
h DNO,

the De
orrelation Times of 96 instan
es implemented on 6 Xilinx Artix 7 x
7a35 FP-

GAs are reported, organized a

ording to the 
hip on whi
h they are implemented.

Ring Galois Ring Proposed

Os
illator Os
illator Cir
uit

(DNO A) (DNO B) (DNO C)

CLBs 1 1 1

Sli
es 2 2 2

ELBs (LUTs) 7 (+1) 7 (+1) 6 (+1)

ASE-10

max

[bit/sym℄ 0.695 0.700 0.955

ASE-10

mean

[bit/sym℄ 0.613 0.664 0.949

ASE-10

min

[bit/sym℄ 0.530 0.610 0.937

τ
min

[ns℄ 7380 6730 <10

τ
mean

[ns℄ 8893 8350 53

τ
max

[ns℄ 9780 9740 80

Table 4.1: Comparison of the devi
e utilization and the measurements results for

the three DNOs. The devi
e utilization is des
ribed in terms of required LUTs

taking into a

ount a 
ompa
t layout, the measurements are 
ompared in terms of

maximum, minimum and average ASEs and De
orrelation Times.
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DNO C a
hieves su
h results, we 
an assume that all implementations worked in

stru
turally stable 
haoti
 regions.

To better appre
iate the 
omparison between the three topologies, Fig. 4.21

shows the byte patterns for the three DNOs evaluated for the 10-bits maximum

ASE and, for DNO C, the 10-bits minimum ASE implementations, respe
tively

with 100 kHz and 100 MHz sampling.

4.5.2 Performan
e Dependen
y on the Implementation Lay-

out

Figs. 4.18 and 4.19 demonstrate that the DNO C is able to a
hieve mu
h higher

performan
e than the referen
e os
illators. However, a variability of the performan
e

of the 
ir
uit implementations is observed both between di�erent positions and 
hips.

This variability depends on the di�eren
es in the hardware resour
es related to

the 
hip manufa
turing pro
ess, but there is also an in�uen
e given by routing and,


onsequently, by the layout.

To evaluate the impa
t of the sele
ted layout on the variability of the 
ir
uit per-

forman
e, we de
ided to repeat the measurement 
ampaign for DNO C, evaluating

two di�erent designs, one adopting a 
ondensed layout (i.e. the one already used in

the analysis reported in Subse
tion 4.5.1) and one adopting a s
attered layout. The

CLBs utilization map in the two analyzed 
ases is shown in Fig. 4.22.

The two layouts were evaluated by a
quiring 1 million bits long sequen
es from

96 implementations of the DNO, obtained using six Xilinx Artix 7 x
7a35 FPGAs

and implementing 16 os
illators on ea
h of them. The sequen
es were a
quired

at a sampling rate of 400 MHz, a
hieved by implementing a PLL in the FPGA

ar
hite
ture. We in
reased the sampling frequen
y with respe
t to the previous

analyzes to obtain more 
orrelated sequen
es of bits, thus highlighting the variability

asso
iated with the two layouts. The a
quired sequen
es were used to 
al
ulate the

Average Shannon Redundan
y (ASR) of 10-bits symbols. In Information Theory,

the ASR is a �gure of merit that is 
omplementary to the ASE, sin
e it is de�ned

as:

ASR(n) = 1− ASE(n), (4.10)

where the ASE(n) is given in (3.10). In an ideal binary random sour
e the ASR(n)

is equal to 0 bit/sym. for any n > 0. In pra
ti
al 
ases, the lower is the ASR, the

higher is its entropy. For the analysis of high-entropy sour
es it is often 
onvenient to

report results referring to redundan
y, instead of entropy, for a 
learer presentation.

Indeed, when the values of ASE are 
lose to 1 bit/sym, a logarithmi
 representation

of the ASR allows for a better 
omparison of di�erent solutions.

Fig. 4.23 shows the experimental results obtained with the 
ondensed layout,

evaluating its intra-devi
e and inter-devi
e variabilities. The per
entile levels Lx,

expressed in bit/sym for x = 10, 50, 80, 90, 95, were estimated for the whole set of 96

instan
es, while the red squares highlight the ASR obtained for the DNO in position

1 (plot A) and in 
hip 1 (plot B). From the �gure it 
an be appre
iated that 90% of

the DNOs are 
apable of providing impressive levels of ASR lower than L90 = 0.077
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Figure 4.20: Auto
orrelation fun
tions for the three DNOs (typi
al results for a

sampling frequen
y of 1/Ts = 100 MHz). For an ideal random binary sour
e the

auto
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sampling rates.
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bit/sym with a sampling frequen
y of 400 MHz, whi
h 
orresponds, in prin
iple,

to 369.2 Mbit/s of true random information, generated with the minimum use of

two sli
es of the FPGA. By redu
ing the set, in half of the 
ases (ASR lower than

L50 = 0.0067 bit/sym) the throughput rises to 397.3 Mbit/s.

Fig. 4.24 reports the same results as Fig. 4.23 for the s
attered layout. In

this 
ase, a slight deterioration in performan
e is observed, as 90% of the 
ases

provide an ASR lower than L90 = 0.17 bit/sym, 
orresponding to a throughput of

332.0 Mbit/s of true random information, and in half 
ases the ASR is less than

L50 = 0.03 bit/sym, with throughput equal to 388.0 Mbit/s. However, these are

still ex
eptional result, given the small number of used hardware resour
es.

The equivalent throughputs reported for the analyzed data are values that 
an

be rea
hed by applying post-pro
essing te
hniques 
ompressing the input data to re-

move information redundan
y. Unfortunately, the use of these te
hniques in
reases

the 
omplexity of the whole stru
ture. In parti
ular, to rea
h the 
onsidered through-

puts, lossless algorithms must be used; this algorithms require large quantities of

hardware resour
es and power. As an alternative, lossy algorithms 
an be used,

whi
h are less demanding from the hardware and power 
onsumption point of view,

but redu
e the resulting throughput.

What is more, 
onsidering the variability between implementations, a 
orre
t

design of TRNGs requires to ensure adequate performan
e against the sour
e imple-

mentation worst 
ase. Referring to the results a
hieved in the 
ondensed 
ase, this

would require to adapt the overall proje
t to the maximum found ASR, equal to 0.4

bit/sym, 
orresponding to a throughput of 160 Mbit/s, whi
h is mu
h less than the

throughput a
hieved by the majority of the analyzed 
ases.

A possible solution to this problem derives from the simpli
ity of the 
onsidered


ir
uit: sin
e the DNO o

upies only one CLB of the FPGA, it is mu
h more


onvenient, 
ompared to the implementation of a post-pro
essing ar
hite
ture, to

dupli
ate the stru
ture of the DNO (i.e. to implement two DNOs) and to XOR the

random output bits by applying a 2:1 lossy 
ompression. The result, shown in Fig.

4.25, drasti
ally redu
es the variability, allowing to rea
h mu
h higher performan
e.

4.5.3 Performan
e Dependen
y on Temperature Variations

In the previous subse
tions, we evaluated the performan
e variability of the

topology under study with respe
t to the hardware used for its implementation and

to the layout design. These two sour
es of variability 
an be 
onsidered stati
: their

in�uen
e on a DNO performan
e is de�ned by the hardware resour
es and the layout


hosen for its implementation, and does not 
hange over time.

However, there is a third sour
e of variability that we still must 
onsider, whose

e�e
t on a DNO performan
e 
hanges over time, that is temperature.

Transistors are 
hara
terized by di�erent temperature-dependent parameters,

su
h as mobility, threshold voltage, saturation velo
ity, parasiti
 drain/sour
e re-

sistan
es [51�54℄. Taking into a

ount digital devi
es, this dependen
y is dire
tly

transferred to the gates high-low and low-high propagation time, a�e
ting therefore
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Figure 4.23: Experimental results highlighting the e�e
ts on the ASR of both the


hip-to-
hip variability and the intra-devi
e variability, for a 
ondensed layout. The

per
entile levels Lx, expressed in bit/sym, were estimated on the base of the entire

data set (96 DNO instan
es). Red square symbols were used to highlight the 
hip

lo
ation 1 (upper plot A) or the 
hip number 1 (lower plot B).
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Figure 4.24: Experimental results highlighting the e�e
ts on the ASR of both the


hip-to-
hip variability and the intra-devi
e variability, for a s
attered layout. The

per
entile levels Lx, expressed in bit/sym, were estimated on base of the entire data

set (96 DNO instan
es). Red square symbols were used to highlight the 
hip lo
ation

1 (upper plot A) or the 
hip number 1 (lower plot B).
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Figure 4.25: Reje
tion of intra-devi
e variability by XORing the binary stream

generated exploiting two instan
es of the dis
ussed DNO (16 tested lo
ations, four

FPGA sli
es for ea
h obtained generator).
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Figure 4.26: 10-bits Average Shannon Redundan
y of 64 implementations of the

DNO shown in Fig. 4.14 at three di�erent ambient temperatures, i.e. -14

◦
C, 22

◦
C

and 70

◦
C.

-14

◦
C 22

◦
C 70

◦
C

ASR-10

min

[bit/sym℄ 0.0017 0.0014 0.0014

ASR-10

mean

[bit/sym℄ 0.0442 0.0269 0.0293

ASR-10

max

[bit/sym℄ 0.5137 0.3998 0.4240

Table 4.2: Measurements results for the DNO shown in Fig. 4.14 at three di�erent

ambient temperatures, i.e. -14

◦
C, 22

◦
C and 70

◦
C. The measurements are 
ompared

in terms of maximum, minimum and average ASRs.

the performan
e of dynami
 systems based on digital hardware, su
h as DNOs.

To evaluate the e�e
t of temperature �u
tuation on the performan
e of the DNO

under investigation, we designed 64 implementations of the DNO on four Xilinx

Artix 7 x
7a35 FPGAs (16 os
illators per FPGA), and we a
quired 1 million bits

long sequen
es at a sampling rate of 400 MHz from ea
h implementation at three

di�erent ambient temperatures, i.e. -14

◦
C, 22

◦
C and 70

◦
C. The a
quired sequen
es

were used to 
al
ulate the Average Shannon Redundan
y (4.10) of 10-bits symbols.

Fig. 4.26 shows the obtained ASR values and Table 4.2 reports the performan
e

variability with respe
t to temperature in terms of maximum, minimum and average

ASRs. From the measurements we 
an observe that, in general, the DNO is more

a�e
ted by lower temperatures with respe
t to higher ones, as we have slightly worse

ASRs at -14

◦
C. However, looking at the ASR mean values in the table, we note also

that the temperature-dependent loss in perfoman
e is almost negle
table, resulting

lower than 0.001 bit/sym.
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Figure 4.27: Comparison of the 10-bits Average Shannon Redundan
y of 16 imple-

mentations of the DNO shown in Fig. 4.14 on a Xilinx Artix 7 x
7a35 FPGA at

three di�erent ambient temperatures, i.e. -14

◦
C, 22

◦
C and 70

◦
C.

What is more, from Fig. 4.27, in whi
h the 
omparison of the ASRs of a sin-

gle FPGA implementations at the three di�erent temperatures is reported, we 
an

observe that the ASR does not 
hange monotoni
ally with the temperature.

4.5.4 Statisti
al Testing

Besides 
omparing the performan
e of DNO C with two referen
e topologies

using the �gures of merit, we tested it statisti
ally with the standard NIST 800.22

tests.

In general, a TRNG 
onsists of an entropy sour
e and a post-pro
essing blo
k

with the purpose of redu
ing the information redundan
y, e.g. through a 
ompres-

sion operation, and to mask residual statisti
al defe
ts, e.g. by means of stream


yphers [4, 55, 56℄. The minimum post-pro
essing ne
essary to pass all the NIST

800.22 tests required by the DNO C in ea
h of its implementation was a bit-by-bit

XORing of the 
olle
ted bits with an 8-bits PRNG (Fibona

i LFSR based on the

primitive polynomial x8 + x6 + x5 + x4 + 1). In 90% of the implementation a 4-bits

XORing [57℄ is su�
ient and in general any post-pro
essing of greater 
omplexity

proposed in literature allows the DNO C to pass the tests (obviously at the 
ost

of a greater 
onsumption of hardware resour
es). Table 4.3 shows typi
al results

obtained with respe
t to NIST tests, evaluated on the basis of 100 binary sequen
es

of 1 million bits 
olle
ted for ea
h run.
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Test Name p-Value Proportion Result

Frequen
y 0.474986 1.00 pass

Blo
k Frequen
y 0.911413 0.97 pass

Cumulative Sums

a
0.191687 0.99 pass

Runs 0.935716 1.00 pass

Longest Run 0.015598 1.00 pass

Rank 0.474986 0.99 pass

FFT 0.534146 0.98 pass

Non Overlapping Template

a
0.955835 0.96 pass

Overlapping Template 0.350485 0.99 pass

Universal 0.699313 0.99 pass

Approximate Entropy 0.798139 0.98 pass

Random Ex
ursions

a
0.888137 0.96 pass

Random Ex
ursions Variant

a
0.324180 0.96 pass

Serial

a
0.145326 0.97 pass

Linear Complexity 0.289667 0.99 pass

a
Worst 
ase reported for tests with multiple out
omes.

Table 4.3: NIST 800.22 Rev.1a statisti
al tests results for the DNO under test,

evaluated on the basis of 100 binary sequen
es of 1 million bits 
olle
ted for ea
h

run.

4.5.5 Inspe
tion of Physi
al Signals

Sin
e the dynami
al speed of the implemented DNO is too high to be able to

a
quire the signals dire
tly, to evaluate its performan
e we must resort to the �g-

ures of merit applied on binary sequen
es a
quired by sampling its output signal

internally to the FPGA.

However, by varying the number of delay elements in ea
h loop, it is possible to

arti�
ially slow down the dynami
s to a few MHz of frequen
y and propagate the

z signal dire
tly to the FPGA I/O pins. This operation avoids the distortion e�e
t


aused by the parasiti
 
apa
ities o�ered by the I/O pins.

Using this expedient, we 
arried out two study 
ampaigns.

We initially implemented the 
ir
uit in Fig. 4.28 in a Xilinx Artix 7 x
7a35

FPGA, pla
ing 
as
ades of logi
ally transparent LUTs in the loops. The external

ex
itation φ was generated by a Rigol Waveform Generator 
ontrolled by a Lab-

VIEW virtual instrument, with the purpose of 
on�guring the os
illation frequen
y

and automati
ally 
hara
terizing the dynami
s of the resulting devi
e. The output

z signal was a
quired via a Textronix MSO64 Os
illos
ope at a sampling rate of 1.25

GS/s. Observation of the a
quired signal 
on�rmed that the ex
itation-free DNO

(φ = 0 V) exhibits 
omplex os
illations, while it is possible to observe di�erent types

of dynami
s when the ex
itation is on, as a fun
tion of the frequen
y of φ.
For example, in Fig. 4.29 two typi
al 
ases are reported, obtained for ex
itation

frequen
ies equal to 1.208 MHz (A) and 1.160 MHz (b) by adding a 
as
ade of

1200 delay elements in 
as
ade to the ELBs#(2,3) of Fig. 4.28. Depending on the
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Figure 4.28: DNO topology implemented on a Xilinx Artix 7 x
7a35 FPGA, slowed

down adding transparent delay LUTs in the loops, for the evaluation of the output

signal dynami
s in fun
tion of the os
illation frequen
y of an externally generated

ex
itation signal.
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os
illation frequen
y, the nonlinear os
illator 
an be for
ed to work in periodi
 or


haoti
 bifur
ation windows. The observation of the auto
orrelation fun
tion for

the two analyzed 
ases, shown in Fig. 4.30, reveals that in the periodi
 
ase (A)

the fundamental period of the signal z is about 1 kHz, far below the frequen
y of

ex
itation. On the other hand, in the 
ase of the 
haoti
 signal (B) it is not possible

to dete
t relevant periodi
 
omponents.

By applying an in
rement step of 10 Hz, we experimentally evaluated the infor-

mation entropy of the for
ed nonlinear os
illator over an os
illation frequen
y range

between 1.15 MHz and 1.25 MHz. The a
quired signal was sampled at 1 bit by

applying a threshold quantization of 1.65 V and for ea
h tested frequen
y we esti-

mated the 8-bit ASE starting from sequen
es of 1 million a
quired bits, obtaining

the result shown in Fig. 4.31. We indi
ated in the �gure the 
ases (A) and (B) of

Figs. 4.29 and 4.30. The experiments show that the 
ir
uit generates information

by exploiting two possible sour
es of entropy, namely jitter and 
haos, as a fun
tion

of the ex
itation frequen
y. While the ele
troni
 noise generating jitter is always

present, 
haos is a
tivated only under 
ertain 
onditions, whi
h in the tested 
ir
uit

appear to be stru
turally robust. This result is unexpe
ted, as usually in the pres-

en
e of 
omplex dynami
s small parametri
 perturbations 
ause signi�
ant 
hanges

in the dynami
al behavior [58℄.

The se
ond study 
ampaign fo
used on the analysis of the 
ir
uit in Fig. 4.14,

implemented on a Xilinx Artix 7 x
7a35 FPGA. We added transparent delay LUTs

to the loops and to the Ring Os
illator providing the ex
itation signal. We a
quired

the z signal on 20 ms windows by adopting a sampling rate equal to 3.125 GS/s.

The sampling frequen
y was sele
ted 
onsidering the band of the a
quired signal, in

order to avoid aliasing.

By varying the number of LUTs in the three loops, we observed periodi
 and


haoti
 dynami
al behaviors, as shown in Fig. 4.32. The auto
orrelation fun
tion

related to the 
haoti
 
ase (b) has some residual periodi
ities. These harmoni
s

are due to the Ring Os
illator, whi
h in�uen
es the output signal as it supplies the

ex
itation to the system, and by some a
tive 
omponents mounted on the board used

for interfa
ing with the FPGA (Digilent Arty), su
h as the swit
hed power supplies.

These periodi
ity elements 
an be removed by redu
ing the number of transparent

LUTs in the Ring Os
illator (by in
reasing its os
illation frequen
y and pushing

its fundamental harmoni
 towards higher bands) and by appropriately sele
ting the

ele
troni
 
omponents used to power the FPGA.

4.5.6 Comparison with the State of the Art

To 
on
lude the analysis relating to the proposed DNO, in Table 4.4 we report a


omparison of the analyzed solution with the most relevant re
ent works published in

the literature. The TRNG resulting from DNO C and the minimum post-pro
essing

required to pass the NIST tests is made up of 15 LUTs and provides a throughput

of 6.66 Mbit/s per LUT. A result of this type far ex
eeds the performan
e of any

other proposal. This fa
t is justi�ed by the simpli
ity of the topology, that in
reases
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Figure 4.29: The for
ed-os
illator signal z extra
ted from an I/O pin of the FPGA,

for ex
itation frequen
ies of 1.208MHz (A) and 1.160MHz (B), using 1200 delay

elements for ea
h loop in Fig. 4.28 to slow down the dynami
s speed.
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Figure 4.30: The uns
aled auto
orrelation fun
tion estimated for the two signals

(A) and (B) reported in Fig. 4.29.
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Figure 4.31: The 8-bit Average Shannon Entropy estimated on the basis of 1 mil-

lion bits, obtained 1-bit quantizing the signal z a
quired at a 1.25GHz sampling

frequen
y.

the dynami
s speed of the resulting nonlinear dynami
al system, whi
h operates,

a

ording to the design, in stru
turally stable 
haoti
 regions.

4.6 Con
lusion

We presented the 
omplete work�ow followed for the design of a DNO 
har-

a
terized by 
haoti
 dynami
al behaviors; the DNO a
hieves high performan
e in

terms of generated entropy, downstream of a redu
ed hardware 
omplexity and high

sampling rates.

The topology was formalized on the basis of the theoreti
al evaluations 
arried

out through the simpli�ed dynami
al model on the primitive sub
ir
uit presented

in Subse
tion 3.3.1 and of the theory related to for
ed os
illators.

We analyzed the topology using the simpli�ed dynami
al model, fo
using mainly

on the for
ed part of the DNO. This analysis highlighted how the dynami
al system

resulting from the model 
onstitutes a stable os
illator in the absen
e of the ex
i-

tation signal, while in the presen
e of periodi
 ex
itation it is possible to observe

transitions from periodi
 to 
haoti
 behaviors as a fun
tion of the ratio between the

os
illation frequen
y of the ex
itation signal and the natural os
illation frequen
y of

the for
ed part of the DNO.

We built the topology in Caden
e Virtuoso using the basi
 
omponent library

de�ned starting from the UMC 180 nm te
hnology, and we repeated the dynami
s

analysis of the resulting 
ir
uit in the absen
e and in the presen
e of an ex
itation

signal. The obtained results appeared to be 
onsistent with the simpli�ed dynami
al
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Figure 4.32: DNO output signal a
quisitions from the digital I/O pins of a Xilinx

Artix 7 FPGA mounted on a Arty board. The upper plots show the time behavior

of 
on�gurations with strong periodi
ities (a) and with 
haoti
 behavior (b). The

middle plots show the spe
trum of the above signals, from whi
h we 
an observe

the presen
e of harmoni
s in 
ase (a) and the relatively �at spe
trum in 
ase (b).

The lower plots show the auto
orrelation fun
tions of the two signals, 
on�rming

the periodi
 behavior in 
ase (a), while in 
ase (b) the auto
orrelation fun
tion is

almost a delta.
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model, as we obtained a stable periodi
 os
illator in the absen
e of ex
itation and a


omplex dynami
al system 
apable of passing from periodi
 to 
haoti
 behaviors as

a fun
tion of the ratio between the os
illation frequen
ies when the ex
itation signal

is turned on.

The topology was �nally implemented on FPGA. This implementation was an-

alyzed from di�erent points of view.

We 
ompared the DNO under study with a Ring Os
illator and a Galois Ring

Os
illator of equivalent hardware 
omplexity, implementing for ea
h of them 96 in-

stan
es using 6 Xilinx Artix 7 FPGAs. The output signals of this implementations

were sampled at 100 MHz to a
quire sequen
es of bits, whi
h were then used to

investigate the De
orrelation Time and the Average Shannon Entropy. The 
om-

parison a

ording these �gures of merit proved that the proposed 
ir
uit is 
apable

to rea
h outstanding values of entropy with negligible 
orrelation between samples,

suggesting that in every implementation the 
ir
uits were working in 
haoti
 
ondi-

tions.

We investigated the e�e
t of the DNO 
ir
uit layout in the FPGA on the vari-

ability of the ASE between di�erent implementations. We designed two di�erent

LUTs layouts (one 
ondensed and one s
attered), and for ea
h of them we imple-

mented 96 instan
es using 6 Xilinx Artix 7 FPGAs. We sampled the output signals

of these implementations at 400 MHz to enhan
e the 
orrelation between samples

with respe
t to the previous analysis, we 
omputed the Average Shannon Entropy on

the a
quired sequen
es and we evaluated the variability between the entropies. We

observed that the 
ondensed layout provides slightly lower variability with respe
t

to the s
attered one, rea
hing in any 
ase high values of throughput of information.

To minimize this variability, we proposed a 2:1 lossy 
ompression of the generated

information, by XORing the output bits of two DNO implementations working in

parallel.

We evaluated the e�e
t of temperature �u
tuation on the performan
e of the

DNO under investigation. We designed 64 implementations of the DNO on four

Xilinx Artix 7 x
7a35 FPGAs (16 os
illators per FPGA), and we a
quired 1 million

bits long sequen
es at a sampling rate of 400 MHz from ea
h implementation at

three di�erent ambient temperatures, i.e. -14

◦
C, 22

◦
C and 70

◦
C. The a
quired

sequen
es were used to 
al
ulate the Average Shannon Redundan
y (4.10) of 10-bits

symbols. We 
an observe that the DNO is more a�e
ted by 
older temperatures

with respe
t to hotter ones, even if the temperature-dependent loss in perfoman
e

is almost negle
table.

We subje
ted the DNO to the NIST 800.22 standard statisti
al tests, observing

that a bit-by-bit XORing of the 
olle
ted bits with an 8-bits PRNG is su�
ient to

pass the tests with ea
h implementation of the 
ir
uit.

By applying a redu
tion in the dynami
al speed of the 
ir
uit adding transparent

delay LUTs to the 
ir
uit loops, we observed dire
tly the output signals of the

DNO, both by providing external ex
itation and by internal ex
itation. The signal

observation 
on�rmed that, a

ording to the ratio between the natural frequen
y of

the os
illator and the ex
itation signal frequen
y, the DNO 
an pass from periodi
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to 
haoti
 dynami
s.

Finally, we 
ompared the proposed DNO with the state of the art, observing

that a 
ir
uit of this type outperforms the most relevant works re
ently published

in literature.
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H
A
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T
E
R
4
.
H
I
G
H
P
E
R
F
O
R
M
A
N
C
E
D
N
O

Referen
e Chief Entropy FPGA Hardware Throughput Post-Pro
essing

Sour
e Devi
e Resour
es

a

[Mb/s℄

[59℄ Jitter Xilinx 528 LUTs 6 Von Neumann

Spartan-3A

[60℄ Jitter and Xilinx 1PLL + 100 XOR

Metastability UltraS
ale 5 primitives Compression

+ 17 LUTs

[61℄ Jitter Xilinx 131202 LUTs 167.4 Stream

Virtex-6 Ciphering

[62℄ Metastability Altera 298 LUTs 150 Hashing

Cy
lone IV

[63℄ Metastability Xilinx 1 Dig. Clo
k 12.6 Custom

Spartan-6 Manager

+ 36 LUTs

[57℄ Timing Xilinx 224 Sli
es 50 XOR

Skew Virtex-6 Mixing

[64℄ DNO (Undetermined Altera ≈120 LUTs 200 Stream

Complex Dynami
s) Cy
lone IV Ciphering

This Work DNO (Chaos Xilinx 15 LUTs 100 Stream

Eviden
e) Artix-7 Ciphering

Overall hardware resour
es ne
essary to design the TRNG subsystem.

Table 4.4: Comparison of the proposed solution with similar re
ently proposed TRNGs (NIST-tests passing)

9
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Chapter 5

A Maximum Worst-Case Entropy

Sele
tion Algorithm and its

Hardware Implementation

In this 
hapter we present an algorithm, 
alled Maximum Worst-Case En-

tropy Sele
tor (MWCES), that aims to identify, within a set of entropy sour
es,

whi
h o�ers the best performan
e in terms of worst-
ase entropy, also known in

literature as "min-entropy". This algorithm is designed to be implemented in

low-
omplexity digital ar
hite
tures, suitable for lightweight 
ryptographi
 ap-

pli
ations, thus allowing online maximization of the performan
e of a random

number generation system based on Digital Nonlinear Os
illators. This 
hap-

ter presents the theoreti
al premises underlying the algorithm formulation,

some notable examples of its generi
 appli
ation and, �nally, 
onsiderations

related to its hardware implementation in FPGA.

5.1 Sub-Optimal Entropy Estimation

The analysis of the DNO presented in Chapter 4 demonstrates how an in-depth

study of this 
lass of 
ir
uits requires the use of 
omplex and varied tools.

Di�erent te
hniques to assess the statisti
al 
hara
teristi
s of True Random Num-

ber Generators were proposed in literature, as also dis
ussed in Chapter 3 [4,5,56℄.

Most of these solutions investigate the statisti
al properties of the random sour
e


olle
ting and inspe
ting long binary sequen
es, and are not suitable for being im-

plemented in lightweight digital hardware systems. In this 
hapter we present a low-


omplexity algorithm addressing the online evaluation of di�erent random sour
es

that may be available in a same 
hip, aiming to sele
t the one with the highest

entropy. As it is made 
learer in the following, to redu
e algorithmi
/hardware


omplexity, it is ne
essary to resort to sub-optimal methodologies aimed at provid-

ing a rough estimate of the statisti
al 
hara
teristi
s of a 
ir
uit under examination.
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The primary obje
tive of the 
lass of 
ir
uits analyzed in this thesis is the gener-

ation of entropy. A

ording to Shannon [65℄, given an ergodi
 sour
e X of symbols

taking values from the set A = {x1, x2, . . . , xk} with probability P (X = xi) = pi,
i = 1, 2, . . . , k, its entropy is de�ned as:

E(X) = −
k

∑

i=1

pi log2 pi. (5.1)

An estimate of this expression appears parti
ularly 
omplex to a
hieve, as it requires

de�ning a method 
apable of extra
ting information relating to the probability dis-

tribution of the analyzed sour
e.

A

ording to the re
ommendations for entropy sour
e provided by NIST [56℄, the

essential �gure of merit to establish how unpredi
table is a sour
e is its min-entropy,

de�ned as:

I(X) = min
1≤i≤k

(− log2 pi) = − log2(max
1≤i≤k

pi). (5.2)

If X has min-entropy I, the probability for X to generate any of its symbols 
annot

be greater than 2−I
. It is observed that, unlike entropy, min-entropy depends solely

on the probability of the most probable symbol of the distribution; this fa
t suggests

that the estimate of this �gure of merit 
an be made in a mu
h less 
omplex way

than the estimate of the Shannon entropy of the sour
e.

In this 
hapter, we present an algorithm for the assessment of the Shannon

entropy, based on the estimation of the probability of the most probable symbol

of the distribution asso
iated with the evaluated sour
e. This algorithm 
an be

implemented on PLDs for the online evaluation of the performan
e of a DNO or,

alternatively, for the automati
 identi�
ation, within a set of sour
es, of the imple-

mentation with maximum entropy.

At the time of writing this thesis, the results presented in this 
hapter are un-

der development for forth
oming submission to peer-reviewed journals for possible

publi
ation.

5.2 Estimation-Based Entropy Bounds

The Shannon entropy (5.1) of a random sour
e is dependent on the probability

distribution asso
iated to the symbol generation. Attempting to assess the Shan-

non entropy starting from the estimation of the generation probability of the most

probable symbol introdu
es un
ertainty, sin
e di�erent distributions 
an be related

to di�erent Shannon entropy levels, even if their most probable symbols have the

same generation probability. However, as shown in the following, starting from

the knowledge of this probability, we 
an identify lower and upper bounds of the

Shannon entropy.
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5.2.1 Theoreti
al Framework

Let us 
onsider an ergodi
 sto
hasti
 sour
e S of independent and identi
ally dis-

tributed (i.i.d.) symbols belonging to the alphabet A = {s1, s2, . . . , sN}. We denote

with M(N) ⊂ [0, 1]N ⊂ R
N
the set of probability mass fun
tions expressing di�erent

generation probabilities for the symbols in A. A

ordingly, if P = (p1, p2, . . . , pN) ∈
M(N), we have

∑N

i=1 pi = 1 and 0 ≤ pi ≤ 1. Furthermore, the following properties

hold.

Proposition 5.1. Let P = (p1, p2, . . . , pN) ∈ M(N). By denoting pL = mini pi and
pH = maxi pi, it results:

pL ≤
1

N
≤ pH . (5.3)

Proof. Sin
e pL ≤ pi ≤ pH for all 1 ≤ i ≤ N , we have:

1 =
N
∑

i=1

pi ≥
N
∑

i=1

pL = NpL, (5.4)

or pL ≤ 1/N . Analogously, we have:

1 =

N
∑

i=1

pi ≤

N
∑

i=1

pH = NpH , (5.5)

or pH ≥ 1/N .

We de�ne the Shannon entropy of the sour
e S as:

ES(P ) =
N
∑

i=1

h(pi) [bit/sym℄, (5.6)

where if h(x) = −x log2 x, x ∈ [0, 1]. In the spe
i�
 
ase in whi
h the symbols are

evenly distributed, i.e. U = (1/N, 1/N, . . . , 1/N) ∈ M(N), then E(U) = log2N =
EU .

As shown in Fig. 5.1, fun
tion h is in�nitely di�erentiable and stri
tly 
on
ave

for x ∈ (0, 1), having maximum value:

h
max

= h(x
max

) =
log2 e

e
≈ 0.53, (5.7)

where x
max

= 1/e ≈ 0.37. Consequently, h is stri
tly monotoni
 in
reasing for

x ∈ [0, x
max

].

Lemma 5.1. Given two arbitrary probability mass fun
tions P = (p1, p2, . . . , pN) ∈
M(N) and Q = (q1, q2, . . . , qN) ∈ M(N), it results:

ES(P ) ≤ −

N
∑

i=1

pi log2 qi, (5.8)

with the equality holding if and only if P = Q.
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Figure 5.1: The fun
tion h(x) = −x log2 x is monotoni
ally in
reasing in the interval

[0, 1/e] = [1, xmax].

Proof. It 
an be easily proved that:

log2 t ≤ t− 1 ∀t ∈ R
+. (5.9)

Indeed, f(t) = log2 t and g(t) = t − 1 are in�nitely di�erentiable fun
tions with

f ′(t) = 1/t and g′(t) = 1. It results g(t)−f(t) = g(1)−f(1)+
∫ t

1
(1− 1

θ
)dθ =

∫ t

1
h(θ)dθ.

We observe that:

• if t ≥ 1, h(t) ≥ 0 and g(t)− f(t) =
∫ t

1
h(θ)dθ ≥ 0;

• if 0 < t < 1, h(t) < 0 and g(t)− f(t) = −
∫ 1

t
h(θ)dθ > 0;

A

ordingly to (5.9), given two real numbers p, q ∈ (0, 1) we have log2(
q

p
) ≤ q

p
− 1

or, equivalently:

p− p log2 p ≤ q − p log2 q. (5.10)

Sin
e (5.10) holds for all pi, qi with i = 1, 2, . . . , N , we have:

N
∑

i=1

pi −

N
∑

i=1

pi log2 pi ≤

N
∑

i=1

qi −

N
∑

i=1

pi log2 qi. (5.11)

Re
alling that

∑N

i=1 pi =
∑N

i=1 qi = 1, the inequality (5.8) is proven.

If P = Q, (5.8) redu
es to an identity.
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On the other hand, if (5.8) is an equality, we have to prove that P = Q. Indeed

from (5.10) we note that:

q − p log2 q − p+ p log2 p ≥ 0. (5.12)

If (5.8) is an equality, we have:

−

N
∑

i=1

pi log2 pi = −

N
∑

i=1

pi log2 qi, (5.13)

or:

1−

N
∑

i=1

pi log2 pi = 1−

N
∑

i=1

pi log2 qi. (5.14)

Re
alling that

∑N

i=1 pi =
∑N

i=1 qi = 1, (5.14) 
an be rewritten as:

N
∑

i=1

(qi − pi log2 qi − pi + pi log2 pi) = 0. (5.15)

As noti
ed in (5.12), sin
e the summation involves non-negative terms, (5.15) implies

that, for i = 1, 2, . . . , N , (qi − pi log2 qi − pi + pi log2 pi) = 0, that 
an be rearranged

as:

log2
qi
pi

=
qi
pi

− 1 i = 1, 2, . . . , N, (5.16)

that is true only if pi = qi.

From Lemma 5.1 we have the following theorem.

Theorem 5.1. For any probability mass fun
tion P ∈ M(N) we have:

ES(P ) ≤ EU , (5.17)

with the equality holding if and only if if P = U .

Proof. The proof derives dire
tly from Lemma 5.1, noting that if in (5.8) P = U ,

we have qi = 1/N, i = 1, 2, . . . , N and:

ES(P ) ≤ −

N
∑

i=1

pi log2
1

N
= log2N

N
∑

i=1

pi = EU . (5.18)

Theorem 5.1 states that a random sour
e of evenly distributed independent sym-

bols has maximal entropy equal to EU = log2N bits/sym.
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5.2.2 Worst Case Entropy

Given a probability mass fun
tion, we 
an redu
e the 
omplexity related to the

a

urate 
omputation of (5.6) fo
using on the 
on
ept of worst 
ase entropy. We

start �rst to prove the following lemma.

Lemma 5.2. Consider K real numbers x1, x2, . . . , xK su
h that 1 > x1 ≥ x2 ≥
· · · ≥ xK > 0. For any K-tuple of nonnegative real numbers {δ1, δ2, . . . , δK} su
h

that δ1 =
∑K

i=2 δi, with 0 ≤ δ1 ≤ 1− x1 and 0 ≤ δi ≤ xi, i = 2, 3, . . . , K, it results:

K
∑

i=1

h(xi) ≥ h(x1 + δ1) +

K
∑

i=2

h(xi − δi). (5.19)

Proof. We 
an rewrite (5.19) as:

h(x1 + δ1)− h(x1) ≤

K
∑

i=2

[h(xi)− h(xi − δi)]. (5.20)

Sin
e the prime derivative of h:

h′(x) = − log2 x−
1

ln 2
(5.21)

is a stri
tly de
reasing fun
tion, we have h(x1+δ1)−h(x1) ≤ δ1h
′(x1). On the other

hand, h(xi)− h(xi − δi) ≥ δih
′(xi) and:

K
∑

i=2

[h(xi)− h(xi − δi)] ≥

K
∑

i=2

δih
′(xi) ≥ h′(x2)

K
∑

i=2

δi = δ1h
′(x2). (5.22)

Sin
e x1 ≥ x2 ⇒ h′(x2) ≥ h′(x1), we have:

h(x1 + δ1)− h(x1) ≤ δ1h
′(x1) ≤ δ1h

′(x2) ≤

K
∑

i=2

[h(xi)− h(xi − δi)]. (5.23)

The following theorem provides the theoreti
al worst 
ase entropy for a sto
hasti


sour
e S in whi
h the most probable symbol has generation probability pH .

Theorem 5.2. Let P = (p1, p2, . . . , pN) ∈ M(N), N > 2. It results:

ES(P ) ≥ E
WC

= Fh(pH) + h(1− FpH), (5.24)

where pH = maxi pi, i = 1, 2, . . . , N and F = ⌊1/pH⌋.
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Figure 5.2: The probability mass fun
tion QpH ∈ OpH for pH = 0.16, N = 8.
A

ording to the Theorem 5.2 this probability mass fun
tion provides minimum

entropy in OpH .

Proof. Entropy (5.6) is a summation that does not depend on the probability dis-

tribution ordering. A

ordingly, M(N) 
an be partitioned in equivalen
e 
lasses,

ea
h one 
ontaining permutations of probability mass fun
tions, and we 
an fo
us

on the subset OpH ⊂ M(N) of the 
lass representatives with weakly de
reasing

probabilities, i,e. satisfying the 
ondition:

T = (t1, t2, . . . , tN) ∈ OpH ⇔ pH = t1 ≥ t2 ≥ tN . (5.25)

Every probability mass fun
tion P ∈ M(N) has a unique 
lass representative in

(O)pH su
h that ES(P ) = ES(T ).
Among the probability mass fun
tions in OpH we 
hoose the element QpH =

(q1, q2, . . . , qN ) for whi
h:

qi =











pH , if 1 ≤ i ≤ F

1− FpH, if i = F + 1

0, otherwise

. (5.26)

An example of QpH is shown in Fig. 5.2.

Applying (5.6), we observe that ES(QpH) = Fh(pH) + h(1− FpH) = E
WC

.

To 
on
lude the proof, we have to show that:

ES(QpH) = min
T∈OpH

ES(T ). (5.27)
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To this aim, for any P = (p1, p2, . . . , pN) ∈ M(N) we build a sequen
e of F + 1
probability mass fun
tions {T 1,T 2, . . . ,T F+1}, in whi
h T F+1 = QpH and T 1

is the


lass representative of P in OpH , su
h that:

ES(P ) = ES(T
1) ≥ ES(T

2) ≥ · · · ≥ ES(T
F+1) = E

WC

. (5.28)

Pro
eeding by indu
tion, assume that for 1 ≤ k ≤ F the probability mass density

T k = (tk1, t
k
2, . . . , t

k
N) ∈ OpH has the �rst k probability levels equal to pH , namely

tk1 = tk2 = · · · = tkk = pH . Su
h element T k
exists in OpH sin
e kpH ≤ 1 and the

weakly de
reasing nonnegative levels tki for k + 1 ≤ i ≤ N 
an be arbitrarily 
hosen

to satisfy the normalization property

∑N

i=1 t
k
i = 1.

Comparing T k
with QpH , we observe that qk+1 ≥ tk+1. Indeed, if qk+1 < pH ,

we re
all that, a

ording to (5.26), qi = pH for i = 1, 2, . . . , F , qi = 0 for i =
F + 2, F + 3, . . . , N and qk+1 is the unique value lower than pH that satis�es the

normalization property for QpH . Thus, the normalization property for T k

an be

satis�ed only if qk+1 ≥ tk+1. If qk+1 = pH we have nothing to prove.

Starting from T k
, we now build a new mass probability fun
tion W k+1 =

(wk+1
1 , wk+1

2 , . . . , wk+1
N ∈ M(N) su
h to have:

wk+1
i =

{

qi, if 1 ≤ i ≤ k + 1

tki − δi, otherwise

, (5.29)

where 0 ≤ δi ≤ tki , i = 1, 2, . . . , N are arbitrary values su
h to satisfy

∑N

i=k+2 δi =
qk+1 − tkk+1.

The 
onstru
tion of W k+1
is well de�ned sin
e wk+1

i ≥ 0 and 1 =
∑N

i=1 t
k
i =

kpH +
∑N

i=k+1 t
k
i = kpH +

∑N

i=k+1 t
k
i + qk+1 − tkk+1 −

∑N

i=k+2 δi = kpH + qk+1 +
∑N

i=k+2(t
k
i − δi) =

∑N

i=1w
k+1
i .

As a result, sin
e by 
onstru
tion the �rst k probabilities of QpH , W
k+1

and T k

are equal, we have:

ES(W
k+1)− ES(T

k) =
N
∑

i=k+1

[h(wk+1
i )− h)tki )] =

= h(qk+1)− h(tkk+1) +

N
∑

i=k+2

[h(tki − δi)− h(tki )] =

= h(tkk+1 + δkk+1)− h(tkk+1) +
N
∑

i=k+2

[h(tki − δi)− h(tki )].

(5.30)

A

ording to Lemma 5.2, we have ES(W
k+1) ≤ ES(T

k).
Finally, we de�ne T k+1

as the 
lass representative of W k+1
in OpH . Sin
e

ES(T
k+1) = ES(W

k+1), k = 1, 2, . . . , F , pro
eeding iteratively we proved (5.28),

noting that T F+1 = QpH . Being the initial probability mass fun
tion P arbitrary

in M(N), also (5.27) is true.
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Figure 5.3: Normalized worst 
ase entropy EWC/EU for N = 6 and pH ranging in the

interval ( 1
N
, 1− 1

N
). Theoreti
al bounds are 
ompared with Monte Carlo simulations

(minimum entropy among 1000 probability mass fun
tions randomly 
hosen, for ea
h

pH , in OpH ).

102



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

Fig. 5.3 reports as an example the normalized worst 
ase entropy for N = 6 and
pH ranging in the interval ( 1

N
, 1− 1

N
).

A simpler expression providing a lower bound for the worst 
ase entropy is pre-

sented in the following 
orollary.

Corollary 5.1. Let P = (p1, p2, . . . , pN) ∈ M(N), N > 2. It results:

ES(P ) ≥ E
WC

≥ − log2 pH , (5.31)

where pH = maxi pi, i = 1, 2, . . . , N .

Proof. The min-entropy 
an be rewritten as follows:

− log2 pH = − log2 pH

(

1−

⌊

1

pH

⌋

pH +

⌊

1

pH

⌋

pH

)

=

= −

⌊

1

pH

⌋

pH log2 pH −

(

1−

⌊

1

pH

⌋

pH

)

log2 pH =

=

⌊

1

pH

⌋

h(pH) + h

(

1−

⌊

1

pH

⌋

pH

)

log2 pH

log2

(

1−
⌊

1
pH

⌋

pH

) .

(5.32)

The quantity 1 −
⌊

1
pH

⌋

pH is the reminder of the division 1/pH and is lower than

pH < 1. As a result, we have

log2 pH

log2

(

1−
⌊

1

pH

⌋

pH

) ≤ 1 and − log2 pH ≤ E
WC

.

5.2.3 Best Case Entropy

Following a similar reasoning, it is possible to 
al
ulate the theoreti
al maximum

entropy for the probability mass fun
tions in OpH , proving the following theorem.

Theorem 5.3. Let P = (p1, p2, . . . , pN) ∈ M(N), N > 2. It results:

ES(P ) ≤ E
BC

= (N − 1)h

(

1− pH
N − 1

)

+ h(pH), (5.33)

where pH = maxi pi, i = 1, 2, . . . , N .

Proof. Consider a generi
 probability mass fun
tion P = (p1, p2, . . . , pN) ∈ M(N),
N > 2 having maximum symbol probability pH . Sin
e entropy is a summation that

does not depend on the probability distribution ordering, we 
an substitute P with

its unique 
lass representative T ∈ OpH .

In this way we know that the �rst element t1 of T is equal to pH and that

∑N

i=2 ti = 1− pH .
Consider now the probability mass fun
tion RpH = {r1, r2, . . . , rN} for whi
h:

ri =

{

pH , if i = 1
1−pH
N−1

, otherwise

, (5.34)
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whose entropy is equal to:

ES(RpH) = h(pH) + (N − 1)h

(

1− pH
N − 1

)

. (5.35)

The theorem is proved simply applying Lemma 5.1 on T and RpH :

ES(P ) = ES(T ) ≤ −

N
∑

i=1

pi log2 ri =

= −pH log2 pH −
N
∑

i=2

pi log2

(

1− pH
N − 1

)

=

= −pH log2 pH − log2

(

1− pH
N − 1

) N
∑

i=2

pi =

= −pH log2 pH − (1− pH) log2

(

1− pH
N − 1

)

=

= −pH log2 pH − (N − 1)
1− pH
N − 1

log2

(

1− pH
N − 1

)

=

= h(pH) + (N − 1)h

(

1− pH
N − 1

)

= ES(RpH) = E
BC

.

(5.36)

Fig. 5.4 reports as an example the normalized best and worst 
ase entropies for

N = 6 and pH ranging in the interval ( 1
N
, 1− 1

N
).

5.3 Sequen
e Length and Symbols Generation Prob-

abilities

In Se
tion 5.2 we addressed the un
ertainty given by the attempt to estimate

the entropy of a sour
e based solely on the knowledge of the generation probability

of its most likely symbol.

Targeting the design of an estimator for this probability, it is also ne
essary

to take into a

ount another fa
tor that 
an a�e
t the quality of the estimate:

typi
ally an estimator bases its fun
tioning on the observation of events, ea
h of

whi
h provides a 
ertain amount of information ne
essary to re�ne the a

ura
y of

the estimate with respe
t to the parameter of interest. In our 
ase, this involves

the need to observe sequen
es of symbols generated by the analyzed sour
e whose

length is long enough to allow for an adequate estimation of the probability of the

most likely symbol evaluating its frequen
y in the sequen
e under observation.

From a theoreti
al point of view, it is possible to establish what the minimum

length of the sequen
es must be to obtain an adequate estimate, by evaluating the
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Figure 5.4: Normalized entropy ES/EU for N = 6 and pH ranging in the interval

( 1
N
, 1 − 1

N
). Theoreti
al bounds are 
ompared with Monte Carlo simulations (5000

random values for pH , uniformly distributed, one random probability mass fun
tion

in OpH for ea
h pH).
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minimum number of elements that a sour
e must generate to ensure that a symbol

with a 
ertain probability is generated a de�ned number of times.

Consider again an ergodi
 sto
hasti
 sour
e S of i.i.d. symbols belonging to

the alphabet A = {s1, s2, . . . , sN}. Sin
e the alphabet A is indexed, there exists a

look-up table:

φ : A → {1, 2, . . . , N} ⊂ N (5.37)

that asso
iates any symbol s ∈ A to its index in N. For example, if A = {A,B,C},
the index of the symbol B is φ(B) = 2.

For any L ∈ N, we de�ne the set:

Ω(N,L) =

{

o ∈ {0, 1, . . . , L}N :

N
∑

i=1

oi = L

}

(5.38)

as the set of all the possible integer ve
tors 
ounting the o

urren
es for the N
symbols in A when observing sequen
es of L elements. Hereafter, ve
tors o ∈
Ω(N,L) are named o

urren
es ve
tors.

For example, if A = {A,B,C} and L = 4, the set Ω(3, 4) 
ontains integer

ve
tors in {0, 1, . . . , 4}3 enumerating the symbols o

urren
es when observing all

the possible sequen
es of L = 4 elements, as shown in Table 5.1.

Any sequen
e of L elements σ = {s1, s2, . . . , sL}, being si ∈ A, is des
ribed by

the sequen
e of alphabet indexes identifying the symbols in A that are generated

a

ording to the sequen
e order, i.e.:

σ = {s1, s2, . . . , sL} ⇔ {i1 = φ(s1), i2 = φ(s2), . . . , iL = φ(sL)}. (5.39)

Sin
e the elements in the sequen
e are i.i.d., the sequen
e σ has generation proba-

bility equal to:

P (σ) =
L
∏

j=1

pφ(sj) =
L
∏

j=1

pij . (5.40)

Consider now the o

urren
es ve
tor o ∈ Ω(N,L). We de�ne the fun
tion H :
Ω(N,L) → AL

providing the set of sequen
es of L elements 
ounting the same

symbol o

urren
es given by o. For example, referring to Table 5.1:

H(o2) = {AAAB,AABA,ABAA,BAAA}. (5.41)

A

ordingly, the generation probability for any o

urren
es ve
tor o ∈ Ω(N,L) =
{o1, o2, . . . , oN} is equal to the generation probability of any sequen
e 
ounting the

same symbol o

urren
es given by o, i.e.:

P (o) =
∑

σ∈H(0)

P (σ). (5.42)
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Ve
tors oi ∈ Ω(3, 4) Sequen
es σ (Realizations)

o1 = {4, 0, 0} → AAAA
o2 = {3, 1, 0} → AAAB,AABA,ABAA,BAAA
o3 = {3, 0, 1} → AAAC,AACA,ACAA,CAAA
o4 = {2, 2, 0} → AABB,ABAB,ABBA,BAAB,BABA,BBAA
o5 = {2, 1, 1} → AABC,AACB,ABAC,ABCA,ACAB,ACBA

BAAC,BACA,BCAA,CAAB,CABA,CBAA
o6 = {2, 0, 2} → AACC,ACAC,ACCA,CAAC,CACA,CCAA
o7 = {1, 3, 0} → ABBB,BABB,BBAB,BBBA
o8 = {1, 2, 1} → ABBC,ABCB,ACBB,BABC,BACB,BBAC

BBCA,BCAB,BCBA,CABB,CBAB,CBBA
o9 = {1, 1, 2} → ABCC,ACBC,ACCB,BACC,BCAC,BCCA

CABC,CACB,CBAC,CBCA,CCAB,CCBA
o10 = {1, 0, 3} → ACCC,CACC,CCAC,CCCA
o11 = {0, 4, 0} → BBBB
o12 = {0, 3, 1} → BBBC,BBCB,BCBB,CBBB
o13 = {0, 2, 2} → BBCC,BCBC,BCCB,CBBC,CBCB,CCBB
o14 = {0, 1, 3} → BCCC,CBCC,CCBC,CCCB
o15 = {0, 0, 4} → CCCC

Table 5.1: The set Ω(3, 4) 
ontaining the integer ve
tors in {0, 1, . . . , 4}3 asso
iated
to di�erent symbol o

urren
es, depending on the di�erent possible realizations for

sequen
es of L = 4 elements generated by a sour
e of i.i.d. symbols taken from the

alphabet A = {A,B,C}. The number of di�erent sequen
es is NL = 34 = 81, in
the right 
olumn.
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Sin
e the sequen
es in H(o) share the same generation probability, we have:

P (o) =
∑

σ∈H(0)

P (σ) = #H(o)

L
∏

j=1

pij =

= #H(o)
N
∏

j=1

p
oj
j ,

(5.43)

being #H(o) the 
ardinality of the set H(o) and pj the probability of the j-th
symbol in alphabet A.

As a result, to 
al
ulate the generation probability P (o) we need to express the


ardinality #H(o), that is equal to:

#H(o) =
L!

∏N

j=1 oj!
. (5.44)

For example, referring to Table 5.1, #H(o2) =
4!

3!1!0!
= 4.

Summarizing, the generation probability for any o

urren
es ve
tor o ∈ Ω(N,L)
= {o1, o2, . . . , oN} is equal to:

P (o) =
L!

∏N

j=1 oj!

N
∏

j=1

p
oj
j . (5.45)

Fig. 5.5 reports a 
omparison between the 
al
ulations of (5.45) for the set Ω(3, 4)
shown in Table 5.1 and Monte Carlo simulations.

5.3.1 Event Spa
e Size

The set Ω(N,L) satis�es the following properties.
The number of di�erent sequen
es 
omposed by L elements taken from an al-

phabet of N symbols is given by:

∑

o∈Ω(N,L)

#H(o) = NL. (5.46)

For example, the di�erent sequen
es in Table 5.1 are NL = 34 = 81.
On the other hand, the 
ardinality of Ω(N,L) 
an be 
al
ulated noting that,

sin
e Ω(N,L) is de�ned as follows:

Ω(N,L) =

{

o = {o1, o2, . . . , oN} : oi ∈ {0, 1, . . . , L},
N
∑

i=1

oi = L

}

, (5.47)

for N = 1 the set Ω(1, L) is always 
omposed by a single element:

o = {L}, (5.48)
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Figure 5.5: Numeri
al 
al
ulation of (5.45) and 
omparison with Monte Carlo sim-

ulation results, in blue 
rosses (one million sequen
es, N = 3, L = 4 for a random

probability mass fun
tion P ∈ M(3)).

while for N ≥ 2 ea
h element of Ω(N,L) 
an be expressed in the following way:



































o =
{

o1, o2, . . . , oN−1, L−
∑N−1

i=1 oi

}

o1 ∈ {0, 1, . . . , L}

o2 ∈ {0, 1, . . . , L− o1}
.

.

.

oN−1 ∈
{

0, 1, . . . , L−
∑N−2

i=1 oi

}

. (5.49)

As a 
onsequen
e, the 
ardinality of the set Ω(N,L) is given by the following ex-

pression:

#Ω(N,L) =











1, if N = 1

L+ 1, if N = 2
∑L

o1=0

∑L−o1
o2

· · ·
∑L−

∑N−3

i=1
oi

oN−2=0 (oN−2 + 1), if N > 2

. (5.50)

5.3.2 Events Counting Statisti
s

Now that we de�ned the set Ω(N,L) of ve
tors that 
ount the o

urren
es of the
symbols generated within a sequen
e, we 
an ta
kle the problem that we initially

set ourselves, whi
h is to establish how many elements a sour
e must generate in

order to generate a 
ertain symbol sj ∈ A M times.
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If pj is the generation probability for the symbol sj, we expe
t to have in T trials

(observations), in average, Tpj o

urren
es of that symbol. Therefore, the mean

number of observations we have to perform su
h to have M o

urren
es for the j-th
symbol must satisfy the relation E[Tj ]pj = M , that is:

E[Tj ] = T j =
M

pj
. (5.51)

This result is limited to average values, for spe
i�
 symbols.

In the following we refer to a more pre
ise statement of our problem, 
onsidering

the statisti
al event ΨM
N,L, 
orresponding to a sour
e with alphabet A of size N that

has to generate L elements to have at least a symbol in A generated M times.

Regarding the probability of the event ΨM
N,L, we note the following properties:

• if L < M , the probability P (ΨM
N,L) = 0 sin
e the number of generation steps

is smaller than M and no symbol 
an be generated more than L < M times;

• if L > N(M − 1) + 1, the probability P (ΨM
N,L) = 0 sin
e at least one symbol

was generated M times in previous generation steps; indeed, in the worst 
ase,

after N(M − 1) + 1 steps we have all the N symbols generated M − 1 times,

plus one o

urren
e of one symbol that brings its 
ount to M .

These 
onsiderations imply that:

L /∈ {M ≤ q ≤ N(M − 1) + 1, q ∈ N} ⇒ P (ΨM
N,L) = 0. (5.52)

Assuming to fo
us on the interval M ≤ L ≤ N(M − 1) + 1, we 
an 
al
ulate the

probability of ΨM
N,L partitioning the event spa
e a

ording to the last generated

symbol sL in the sequen
e, i.e.:

P (ΨM
N,L) =

N
∑

i=1

P (ΨM
N,L|xL = si)P (xL = si) =

=
N
∑

i=1

P (ΨM
N,L|xL = si)pi.

(5.53)

The term P (ΨM
N,L|xL = si) is the probability that at the L-th step of the generation

pro
ess the event ΨM
N,L o

urs thanks to the last symbol si being generated for its

M-th time.

The 
onditioned event ΨM
N,L|(xL = sj) implies that:

• in the �rst L− 1 steps of the generation pro
ess the symbol sj appears M − 1
times;

• in the �rst L− 1 steps of the generation pro
ess any other symbol si 6= sj was
generated no more than M − 1 times;
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• the o

urren
es of the symbols in the �rst L − 1 elements of the sequen
e,

des
ribed by the o

urren
es ve
tor o ∈ Ω(N,L−1), are su
h that the following

onstraints are satis�ed:











∑N

i=1 oi = L− 1

oj = M − 1

0 ≤ oi ≤ M − 1 for i 6= j

. (5.54)

We denote with Ωj ⊂ Ω(N,L − 1) the set of all o

urren
es ve
tors o ∈
Ω(N,L− 1) ⊂ N

N
satisfying the 
ontraints (5.54).

Re
alling that the o

urren
es ve
tors o ∈ Ωj represent disjoint events and re
alling

(5.45), the probability of the 
onditioned event ΨM
N,L|xL = sj is:

P (ΨM
N,L|xL = sj) =

∑

o∈Ωj

(L− 1)!
∏N

i=1 oi!

N
∏

i=1

poii . (5.55)

Combining (5.55) with (5.53) we have, if M ≤ L ≤ N(M − 1) + 1:

P (ΨM
N,L) =

N
∑

j=1

pj
∑

o∈Ωj

(L− 1)!
∏N

i=1 oi!

N
∏

i=1

poii , (5.56)

that 
an be rewritten as:

P (ΨM
N,L) =

(L− 1)!

(M − 1)!

N
∑

j=1

∑

o∈Ωj

pM−1
j

N
∏

i=1,i 6=j

poii
oi!

. (5.57)

This expression provides the 
omplete statisti
al 
hara
terization of the event ΨM
N,L

for M ≤ L ≤ N(M − 1) + 1, re
alling that out of this bound P (ΨM
N,L) = 0. The

ne
essary 
onditon to have P (ΨM
N,L) > 0 
an be also rewritten as:

M
min

=

⌈

L− 1

N

⌉

< M < L+ 1 = M
max

. (5.58)

Fig. 5.6 shows the 
omparison between the numeri
al 
al
ulation of (5.57) and

Monte Carlo simulation results for N = 5, L = 20 and the uniform probability mass

fun
tion P ∈ M(5).

5.4 Maximum Worst-Case Entropy Sele
tion Algo-

rithm

In Se
tions 5.2 and 5.3 we evaluated the range of un
ertainty asso
iated with

the attempt to assess the Shannon entropy of an information sour
e based on the

estimation of the probability pH of the most probable symbol of the sour
e, and we

de�ned what should be the length L of the sequen
e of generated symbols that the

estimator must analyze to 
orre
tly re
ognize what the value of this probability is.

On the basis of the obtained results, we 
an establish that:
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Figure 5.6: Numeri
al 
al
ulation of (5.57) and 
omparison with Monte Carlo sim-

ulation results (blue 
rosses), for N = 5, L = 20 and the uniform probability mass

fun
tion P ∈ M(5) (one million sequen
es). Highly improbable events require orders

of magnitude longer Monte Carlo simulations for being dete
ted.

112



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

• the un
ertainty given by an entropy estimator based on the evaluation of the

probability pH of the most probable symbol is not 
onstant, as it depends on

the value of pH ;

• a

ording to the values ofM and L, the 
al
ulation of the probability P (ΨM
N,L)

through the appli
ation of (5.57) 
an be
ome unfeasible be
ause of the mag-

nitude of the involved parameters.

However, the prin
iple underlying an estimator of this type 
an be used for 
om-

parative purposes applied to sets of sour
es, rather than for the assessment of the

entropy of a single sour
e.

Consider a set of sour
es with di�erent maximum symbol generation probabili-

ties.

Sin
e both the best-
ase and the worst-
ase entropies are monotoni
ally de
reas-

ing fun
tions of pH , the sour
e in the set with the lowest pH will be more likely to

have higher entropy with respe
t to the other sour
es.

Furthermore, if we limit our goal to the identi�
ation of the sour
e with the

lowest pH in the set, we 
an �nd heuristi
ally a minimum value of L for whi
h the

sour
e with the lowest pH in the set is identi�ed.

These 
onsiderations are the starting point of a pro
edure for identifying the

information sour
e with the maximum worst-
ase entropy within a set, de�ned as

the Maximum Worst-Case Entropy Sele
tor (MWCES).

5.4.1 Sour
e Sele
tion Pro
edure

The sour
e sele
tion pro
edure is des
ribed by the algorithm shown in Fig. 5.7.

Consider a set of N entropy sour
es, ea
h one generating K-bits long symbols.

To evaluate the sour
es entropy, we de�ne 2K 
ounters (symbol_
ount) with

over�ow value equal to 2L (one 
ounter per symbol in the di
tionary) and another


ounter (total_
ount) able to 
ount up to 2K+L
.

The algorithm s
ans sequentially all the sour
es to understand whi
h one has

the lowest pH and, therefore, the maximum entropy.

The pro
edure requires to sample the sele
ted entropy sour
e output and to

in
rease by one the values of the 
ounter 
orresponding to the generated symbol and

of total_
ount. These operations are repeated until one of the symbol 
ounters

rea
hes the 2L over�ow value.

The pH estimation is given by the value stored in total_
ount when the over�ow

event happens, as it 
orresponds to the time needed to rea
h the over�ow.

The sour
e with the highest total_
ount value is, a

ording to the sele
tor, the

one with the lowest pH and, 
onsequently, the one with the highest entropy.

5.4.2 Algorithm Optimization Strategies

The algorithm 
omplexity depends on three parameters, i.e. the number of

sour
es N , the symbols bit length K and the over�ow value bit length L. The
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ALGORITHM A1:

1. best_sour
e = 0;

2. best_
ount = 0;

3. for(sour
e = 0; sour
e < N; sour
e ++)

4. {

5. overflow = 0;

6. total_
ount = 0;

7. for(symbol = 0; symbol < 2^K; symbol ++)

8. {

9. symbol_
ount[symbol℄ = 0;

10. }

11. while(overflow == 0)

12. {

13. symbol = get_sample(sour
e);

14. symbol_
ount[symbol ℄++;

15. total_
ount++;

16. if(symbol_
ount[symbol℄ == 2^L)

17. {

18. overflow = 1;

19. }

20. }

21. if(total_
ount > best_
ount)

22. {

23. best_
ount = total_
ount;

24. best_sour
e = sour
e;

25. }

26. }

Figure 5.7: Maximum Worst-Case Entropy Sele
tor algorithm.
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maximum possible exe
ution time is rea
hed when, for every sour
e, at the iteration

pre
eding the over�ow all the symbol_
ount array elements are equal to 2L − 1.
This means that, referring to the worst 
ase, the proposed algorithm has a time


omplexity order O(N2K+L).
The time 
omplexity grows withK and L as a power of 2, so these two parameters

should be kept as small as possible without a�e
ting the sele
tor performan
e. It is

not possible to understand a priori whi
h are the minimum values of K and L that

mat
h this 
ondition, be
ause they depend on the statisti
al properties of the sour
es

on whi
h the MWCES is employed. At the same time, an a posteriori 
on�guration

based on the knowledge of the sour
es statisti
al properties would make the use of

the MWCES useless, sin
e in that 
ondition we would already know whi
h is the

sour
e with the maximum ASE.

To over
ome these problems, we de�ned a pro
edure for 
on�guring K and L
whi
h takes into 
onsideration the spe
i�
 sour
es to be analyzed without having to

dire
tly evaluate their statisti
al properties.

The 
on�guration pro
edure is des
ribed by the algorithm shown in Fig. 5.8.

Suppose that we want to apply the MWCES to a group of N sour
es with the

purpose of generating KMAX-bits long symbols. To 
on�gure K and L we start

implementing M groups of these N sour
es. In ea
h group, the sour
es are 
hara
-

terized by slightly di�erent statisti
al properties with respe
t to their equivalents in

the other groups; su
h di�eren
es are an e�e
t of their implementation pro
ess.

For ea
h sour
e, a sequen
e of 2KMAX+LMAX KMAX -bits long symbols is gener-

ated. LMAX is the exponent of the maximum over�ow threshold, de�ned as a power

of two, we 
an a

ept for the MWCES that we are implementing.

A

ording to [55℄, a good rule of thumb for 2L is to set it greater than 10. The
minimum power of two greater than this value is 16, i.e. L = 4. For this reason the

algorithm takes 4 as a lower bound for L.
The generated sequen
es are used to 
ompute the KMAX-bits ASEs. A

ording

to this 
omputation, we identify the maximum ASE of every group and we 
ompute

the mean value of these maxima. The obtained parameter (ase_m) is taken as a

referen
e of the best performan
e the MWCES 
an rea
h on the 
onsidered sour
es.

At this point, we employ the MWCES on ea
h group of sour
es, testing all the

possible 
ombinations ofK and L in the sets {1, 2, . . . , KMAX} and {4, 5, . . . , LMAX}
respe
tively. For ea
h 
ombination, we take the sour
es 
hosen by the MWCES in

every group and we 
ompute the mean value ase_s of their KMAX -bits ASEs, 
al
u-

lated in the previous phase. ase_s is 
ompared with ase_m through the 
al
ulation

of the relative error between them. If the error is below the error toleran
e ERRMAX ,

the a
tual (K,L) 
ombination is 
onsidered valid.

All the valid (K,L) 
ombinations must be 
ompared to understand whi
h is the

one for whi
h the MWCES would have the minimum 
omplexity. To do so, we

de�ned a 
ost fun
tion:

C(K,L) = 2K · L+ 2 · (K + L). (5.59)

(5.59) refers to a raw implementation of the MWCES based on 
ounting registers:

in this 
ase the sele
tor would employ 2K L-bits long registers (symbol_
ount) and
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ALGORITHM A2:

1. for(grp = 0; grp < M; grp++)

2. {

3. max_ase[grp℄ = 0;

4. for(sr
 = 0; sr
 < N; sr
++)

5. {

6. for(samp = 0; samp < 2^(K_MAX+L_MAX); samp++)

7. {

8. seq[grp℄[sr
℄[samp℄ = get_symbol(grp ,sr
 ,K_MAX);

9. }

10. ase[grp℄[sr
℄ = 
ompute_ase(grp ,sr
 ,K_MAX);

11. if(ase[grp℄[sr
℄ > max_ase[grp℄)

12. {

13. max_ase[grp℄ = ase[grp℄[sr
℄;

14. }

15. }

16. }

17. ase_m = mean(max_ase);

18. 
ost = 2^K_MAX*L_MAX+2*(K_MAX+L_MAX);

19. K = K_MAX;

20. L = L_MAX;

21. for(k = 1; k <= K_MAX; k++)

22. {

23. for(l = 4; l <= L_MAX; l++)

24. {

25. for(grp = 0; grp < M; grp++)

26. {

27. sr
 = exe
ute_mes(k,l,grp);

28. sel_ase[grp℄ = ase[grp℄[sr
℄;

29. }

30. ase_s = mean(sel_ase);

31. mes_err = (ase_m -ase_s)/ase_m;

32. if(mes_err < ERR_MAX)

33. {

34. new_
ost = 2^k*l+2*(k+l);

35. if(new_
ost < 
ost)

36. {

37. 
ost = new_
ost;

38. K = k;

39. L = l;

40. }

41. else if(new_
ost == 
ost && k < K)

42. {

43. K = k;

44. L = l;

45. }

46. }

47. }

48. }

Figure 5.8: Proposed pro
edure to 
on�gure the parameters used in MWCES algo-

rithm (Fig. 5.7).
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0 11- 0.5

0.5
Figure 5.9: Two-states Markov 
hain for the generation of random bit sequen
es.

two (K + L)-bits long registers (total_
ount and best_
ount). The 
ost fun
tion


orresponds to the total number of bits required by these registers, i.e. a �rst

evaluation of the hardware resour
es required by the MWCES.

The valid 
ombination (K,L) with the lowest 
ost is the one 
hosen for the


onsidered appli
ation. If two 
ombinations have the same 
ost, we 
hoose the one

with the lowest K, be
ause a lower K implies a lower number of registers, whi
h

simpli�es the overall MWCES ar
hite
ture.

To better understand the presented pro
edure, an example based on Markov


hains is given in the following se
tion.

5.5 Example Case: Markov Chain-Based MWCES

Test

To provide a demonstration of the pro
edure to be followed to 
on�gure and

apply the Maximum Worst-Case Entropy Sele
tor (MWCES) algorithm, in this se
-

tion we present an example analysis performed on entropy sour
es based on Markov


hains. We 
hose this kind of sour
es be
ause they allow, through a proper de�nition

of their transition matrix, to 
ontrol the resulting ASE, as shown in the following.

Let's 
onsider the two-states Markov 
hain in Fig. 5.9.

The 
hain transition matrix Π is parametrized dependently on the probability π
to pass from state 0 to state 1:

Π =

[

p00 p10
p01 p11

]

=

[

1− π 0.5
π 0.5

]

. (5.60)

The steady-state probabilities to get a 0 or a 1 for a Markov 
hain of this kind 
an
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be 
omputed solving the following system:

[

1− π 0.5
π 0.5

] [

P0

P1

]

=

[

P0

P1

]

, (5.61)

where Pi is the steady-state probability to get the symbol i.
Remembering that P0 + P1 = 1, we obtain that:

{

P0 =
0.5

π+0.5

P1 =
π

π+0.5

. (5.62)

π is a probability, therefore it is a real number limited between 0 and 1. The obtained
steady-state probabilities are 
ontinuous on this domain and a

ording to the value

of π it is possible to get both a deterministi
 sour
e:

π = 0 ⇒

{

P0 = 1

P1 = 0
, (5.63)

and a uniformly distributed sour
e:

π = 0.5 ⇒

{

P0 = 0.5

P1 = 0.5
. (5.64)

The Average Shannon Entropy is a 
ombination of 
ontinuous fun
tions in π, so it

is again a 
ontinuous fun
tion:

ASE = −P0 log2 P0 − P1 log2 P1, (5.65)

and sin
e π 
an be tuned to get both a deterministi
 (ASE = 0) and a uniformly

distributed (ASE = 1) sour
es, the ASE image is 
ontinuously de�ned between 0
and 1.

This result 
an be extended to K-bits long symbols. In this 
ase, the probability

to get a K-bits long symbol starting from an initial state P (b0), b0 ∈ {0, 1} is:

P (b0, b1, . . . , bK−2, bK−1) = P (b0)pb0b1pb1b2 . . . pbK−2bK−1
=

= P (b0)p
#00
00 p#01

01 p#10
10 p#11

11 ,
(5.66)

where pbi−1bi is the probability to get a bit bi after a bit bi−1, and #ij is the number
of i to j bit transitions in the 
onsidered symbol.

Taking into a

ount the proposed Markov 
hain, it 
an be observed that the

obtained probabilities are again 
ontinuous in π and at the steady-state they are

equal to:

P (b0, b1, . . . , bK−2, bK−1) = Pb0(1− π)#00π#010.5#10+#11, (5.67)

where Pb0 denotes the steady-state probabilities obtained in (5.62). Setting π equal

to 0 and to 0.5 we obtain again a deterministi
 and a uniformly distributed sour
es

respe
tively:

π = 0 ⇒

{

Ps0 = 1

Psi = 0, i = 1, . . . , 2K − 1
, (5.68)
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Figure 5.10: 10-bits ASR distribution of the whole set of Markov 
hain-based entropy

sour
es. The blue dashed line indi
ates the mean value of the distribution.

π = 0.5 ⇒ Psi =
1

2K
, i = 0, . . . , 2K − 1, (5.69)

therefore the ASE image is 
ontinuously de�ned between 0 and 1 also when we

evaluate it for K-bits long symbols. The probabilities Psi, i = 0, . . . , 2K − 1 are the
steady-state probabilities of the K-bits long symbols.

5.5.1 Experiments and Results

We simulated 1000 sour
es based on Markov 
hains, organized in M = 100
groups of N = 10 sour
es. The designed Markov 
hains are of the type shown in

Fig. 5.9, with π randomly 
hosen on the interval 0.3± 20%.

We �xed the maximum symbol bit length at KMAX = 10 and the maximum

threshold bit length at LMAX = 10.
The resulting 10-bits Average Shannon Redundan
ies (ASRs), as shown in Fig.

5.10, are distributed on the interval [0.115, 0.284] bit/sym, with a mean value equal

to 0.194 bit/sym and a standard deviation equal to 0.048 bit/sym.

Looking only at the 10-bits ASE of the best sour
es for ea
h group, shown in Fig.

5.11, we observe that an optimal sele
tor would in
rease the performan
e narrowing

the distribution on the interval [0.115, 0.175] bit/sym, with a mean value equal to

0.128 bit/sym and a standard deviation equal to 0.012 bit/sym.

The error toleran
e was set at ERRMAX = 1%. The (K,L) 
ombination mat
h-

ing the error threshold 
ondition that minimizes the 
ost fun
tion (5.59) is (K,L) =
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Figure 5.11: 10-bits ASR distribution of the best sour
es for ea
h group of Markov


hain-based entropy sour
es. The blue dashed line indi
ates the mean value of the

whole set of sour
es, while the red dashed line 
orresponds to the mean value of the

best sour
es for ea
h group.

(2, 9). The 10-bits ASR distribution of the sour
es sele
ted by the MWCES 
on�g-

ured with these parameters is shown in Fig. 5.12.

The ASE of the sour
es sele
ted by the MWCES is distributed on the interval

[0.116, 0.208] bit/sym, with a mean value equal to 0.134 bit/sym and a standard

deviation equal to 0.018 bit/sym. With respe
t to the optimal solution, we observe

that the MWCES introdu
es an error on the mean value of the 0.7% with an in
rease

of the standard deviation of 0.006 bit/sym.

5.6 Tunable Digital Nonlinear Os
illator

The test 
ase of the MWCES based on Markov 
hains presented in Se
tion

5.5 highlighted the possibility of using this estimation methodology to ensure a

maximization, net of a 
ontrolled error toleran
e, of the entropy extra
table from

a set of entropy sour
es, based solely on an approximate a priori knowledge of the

statisti
al 
hara
teristi
s of the involved sour
es. In this se
tion we show how this

prin
iple 
an be applied to Digital Nonlinear Os
illators, with the aim of mitigating

the performan
e variability introdu
ed by their physi
al implementation.

Let us 
onsider again the DNO topology analyzed in Chapter 4, whose stru
ture

is shown again in Fig. 5.13.

In Se
tion 4.5 we highlighted that, although it is 
apable of a
hieving parti
u-

larly high performan
e, the 
ir
uit is a�e
ted by a variability in terms of generated
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Figure 5.12: 10-bits ASR distribution of the sour
es sele
ted by a MWCES 
on�g-

ured with K = 2 and L = 9 for ea
h group of Markov 
hain-based entropy sour
es.

The blue dashed line indi
ates the mean value of the whole set of sour
es, the red

dashed line 
orresponds to the mean value of the best sour
es for ea
h group, the

green dashed line is the mean value of the sour
es sele
ted by the MWCES.
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Figure 5.13: The 
omplete topology studied in Chapter 4, in whi
h a nonlinear

os
illating stru
ture (the nonlinear os
illator in Fig.4.8), is ex
ited by a ring os
illator

to produ
e 
omplex dynami
s.
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nmux nmux nmux
xor

xor

nxor

del ff

sel[5:0]

clk

rbit

Figure 5.14: DNO topology inspired by the topology shown in Fig. 5.13, modi�ed

to be tunable through the MWCES. The red elements represent the a
tive routing

delay introdu
ed by its hardware implementation. The del and ff blo
ks represent

respe
tively a re
tifying gate and a �ip-�op, forming a 1-bit A/D 
onverter.

entropy, 
aused by the di�eren
es in the hardware used to implement the resour
es

that 
ompose it and by the routing between the pins of the LUTs.

Although in the spe
i�
 analyzed 
ase an optimized solution was presented that

redu
es this variability, that is a 2:1 lossy 
ompression based on the XORing of the

output bits of two implementations of the DNO operating in parallel, this problem

distinguishes any DNO.

In this 
ontext, the MWCES 
an be used as a generi
 solution, appli
able to any

topology simply by applying small 
hanges to the 
on�guration of some used LUTs,

su
h as to make the routing of the 
ir
uit tunable, as des
ribed below for the 
ir
uit

of Fig. 5.13.

Consider the DNO topology shown in Fig. 5.14.

The represented 
ir
uit is a modi�ed version of the topology presented in Chap-

ter 4. In fa
t, we 
an immediately re
ognize the three XOR and NXOR gates 
on-

ne
ted in loops. The main di�eren
e is the presen
e of three negated multiplexers

(NMUXes) 
onne
ted to form an independent loop.

From a logi
 point of view, this loop is equivalent to the three-stages Ring Os-


illator, be
ause the four inputs of ea
h multiplexer are short 
ir
uited, forming a

single logi
 path. From an analog point of view, however, ea
h line is 
hara
ter-

ized by a di�erent propagation time (represented by the red delay blo
ks). For this

reason, the NMUXes loop 
an be seen as a frequen
y-programmable ex
itation sig-

nal generator, whose frequen
y 
an be 
hosen among a set of 64 di�erent values,

obtained 
hanging the value of the multiplexers 
ontrol signal sel.

A

ording to our analyzes, we expe
t the DNO dynami
s to 
hange in dependen
e

of the sele
ted frequen
y. In this sense, the presented DNO topology des
ribes a

set of 64 di�erent 
omplex dynami
al systems, ea
h one employable as an entropy
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sour
e, whi
h 
an be sele
ted simply �xing the value of sel.

A stru
ture of this kind 
onstitutes a 
lear appli
ation for the MWCES: it is

not possible to know a priori whi
h is the best multiplexers 
on�guration from an

entropy generation point of view, sin
e the propagation times asso
iated to the DNO

lines are di�erent for ea
h implementation; using the MWCES we expe
t to be able

to in
rease on average the 
ir
uit entropy without having to worry about the spe
i�



hara
teristi
s of the implementation under 
onsideration.

5.6.1 Experiments and Comments

To evaluate the performan
e of the MWCES in tuning the DNO proposed in

the previous se
tion, we designed the 
ir
uit to be implemented on Xilinx Artix 7

FPGAs.

As shown in Fig. 5.14, the proposed 
ir
uit is 
omposed by seven logi
 gates

and a �ip-�op. Exploiting the attributes to be in
luded in the RTL design already

des
ribed in Se
tion 3.5, we took pre
ise 
ontrol on the resour
es pla
ement to for
e

the FPGA synthesizer to implement the designed DNO in the most 
ompa
t way,

programming only LUTs belonging to a single CLB. In this way, we tried to maximize

the repeatability between di�erent implementations of the same 
ir
uit in di�erent

lo
ations of the CLB matrix. Unfortunately, we already know that this operation

does not allow to have 
ontrol on the routing between the gates, sin
e the ELBs

are inter
onne
ted through the swit
h matri
es, whose internal 
onne
tions are not

programmable. This la
k of 
ontrol, together with the parasiti
 e�e
ts introdu
ed

by the hardware, make it impossible to determine a priori the performan
e of the

spe
i�
 implementation of the 
ir
uit.

For this reason, we had to 
on�gure the MWCES in fun
tion of the Xilinx Artix

7 FPGA implementation of the DNO, following the pro
edure shown in Fig. 5.8.

We designed the 
ir
uit in �ve Xilinx Artix 7 x
7a35 FPGAs. In ea
h devi
e

we implemented sixteen di�erent instan
es of the DNO, sele
ting their lo
ations

to 
over di�erent areas of the matrix. All the implementations were sampled at a

frequen
y of 400 MHz. Referring to the MWCES pro
edure and remembering the

DNO topology is 
ontrolled by a 6-bits sele
tion line (sel), with this 
on�guration

we 
an analyze M = 80 groups of N = 26 = 64 sour
es.

We �xed the maximum symbol bit length at KMAX = 10 and the maximum

threshold bit length at LMAX = 9.
The resulting 10-bits ASRs, as shown in Fig. 5.15, are distributed on the interval

[0.020, 0.893] bit/sym, with a mean value equal to 0.083 bit/sym and a standard

deviation equal to 0.122 bit/sym.

The �gure 
learly shows that, even if on average the DNO implementation is

able to rea
h very high entropy values, a wrong 
on�guration of the multiplexers


an lead to a marked deterioration in the performan
e. In fa
t, if we 
onsider only

the best multiplexers setup for ea
h implementation, the 10-bits ASE distribution

shrinks signi�
antly, as shown in Fig. 5.16.

An optimal 
on�guration of the multiplexers provides a 10-bits ASE distribution
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Figure 5.15: 10-bits ASR distribution of the whole set of DNOs, taking into a

ount

any possible 
on�guration of the multiplexers. The blue dashed line indi
ates the

mean value of the distribution.

Figure 5.16: 10-bits ASR distribution of the DNOs, taking into a

ount the best


on�gurations of the multiplexers. The blue dashed line indi
ates the mean value

of the whole set of sour
es, while the red dashed line 
orresponds to the mean value

of the best 
on�guration for ea
h implementation.
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Figure 5.17: 10-bits ASR distribution of the sour
es sele
ted by a MWCES 
on-

�gured with K = 3 and L = 8 for ea
h DNO implementation. The blue dashed

line indi
ates the mean value of the whole set of sour
es, the red dashed line 
or-

responds to the mean value of the best multiplexer 
on�guration for ea
h instan
e,

the green dashed line is the mean value of the multiplexer 
on�gurations sele
ted

by the MWCES.

de�ned on the interval [0.020, 0.061] bit/sym, with a mean value equal to 0.031
bit/sym and a standard deviation equal to 0.009 bit/sym. From this result we 
an

expe
t therefore that, with a proper sele
tion of the multiplexers inputs, even a

suboptimal setup 
ould keep the DNO performan
e high.

To 
on�gure the MWCES, we set an error toleran
e ERRMAX = 1%. The (K,L)

ombination mat
hing the error threshold 
ondition that minimizes the 
ost fun
tion

(5.59) is (K,L) = (3, 8). The 10-bits ASE distribution of the sour
es sele
ted by

the MWCES 
on�gured with these parameters is shown in Fig. 5.17.

The ASE of the sour
es sele
ted by the MWCES is distributed on the interval

[0.024, 0.072] bit/sym, with a mean value equal to 0.038 bit/sym and a standard

deviation equal to 0.012 bit/sym. With respe
t to the optimal solution, we observe

that the MWCES introdu
es an error on the mean value of the 0.8% with an in
rease

of the standard deviation of 0.003 bit/sym.

This result represents a suboptimal solution, sin
e the ASE that we 
an rea
h

with a 
on�guration of this kind is slightly worse with respe
t to the maximum one.

However, if we 
ompare it with the ASE distribution of the whole set of DNOs,

taking into a

ount any possible 
on�guration of the multiplexers, the performan
e

gain we get is evident.
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5.7 MWCES Hardware Implementation

To 
on
lude the analyzes related to the MWCES algorithm, we de
ided to eval-

uate the hardware resour
es 
onsumption asso
iated with an implementation on

FPGA.

Here we report the VHDL des
ription of the MWCES, assuming to use it to


ompare 16 di�erent sour
es.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD .ALL;

entity MaximumEntropySele
tor is

generi
 (

K : natural ;

L : natural );

port (


lk : in std_logi
 ;

en : in std_logi
 ;

sour
es : in std_logi
_ve
tor (15 downto 0);

bestsour
e : out std_logi
_ve
tor(3 downto 0);

done : out std_logi
 );

end MaximumEntropySele
tor ;

ar
hite
ture Behavioral of MaximumEntropySele
tor is

type t_sym
nt is array(integer range 2**K-1 downto 0) of natural range 0 to 2**L-1;

signal symbol : std_logi
_ve
tor(K-1 downto 0);

signal tot
nt : natural range 0 to 2**(K+L)-1;

signal sym
nt : t_sym
nt ;

signal best
nt : natural range 0 to 2**(K+L)-1;

signal bestpartialsr
 : natural range 0 to 15;

begin

MWCES: pro
ess (
lk )

type t_state is (BUILDSYM ,COUNTSYM ,CHECKTIME ,UPDATESRC ,STOP);

variable state : t_state ;

variable sr
sel : natural range 0 to 15;

variable bit
nt : natural range 0 to K -1;

variable symindex : natural range 0 to 2**K-1;

begin

if rising_edge (
lk) then

if en = '0' then

state := BUILDSYM ;

sr
sel := 0;

bit
nt := 0;

sym
nt <= (others => 0);

tot
nt <= 0;

best
nt <= 0;

bestsour
e <= (others => '0');

done <= '0';

else


ase state is

when BUILDSYM =>

symbol (K-1 downto 1) <= symbol (K-2 downto 0);

symbol (0) <= sour
es (sr
sel );

if bit
nt = K-1 then

bit
nt := 0;

state := COUNTSYM ;

else

bit
nt := bit
nt +1;

end if;

when COUNTSYM =>

symindex := to_integer (unsigned (symbol ));

tot
nt <= tot
nt +1;

if sym
nt (symindex ) = 2**L-1 then

sym
nt <= (others => 0);
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state := CHECKTIME ;

else

sym
nt (symindex ) <= sym
nt (symindex )+1;

state := BUILDSYM ;

end if;

when CHECKTIME =>

if tot
nt >= best
nt then

best
nt <= tot
nt ;

bestpartialsr
 <= sr
sel ;

end if;

tot
nt <= 0;

state := UPDATESRC ;

when UPDATESRC =>

if sr
sel = 15 then

sr
sel := 0;

bestsour
e <= std_logi
_ve
tor(to_unsigned (bestpartialsr
 ,4));

state := STOP;

else

sr
sel := sr
sel +1;

state := BUILDSYM ;

end if;

when STOP =>

done <= '1';

end 
ase;

end if;

end if;

end pro
ess MWCES;

end Behavioral ;

We 
an 
onsider this spe
i�
 
ase without losing generality, as the number of


ompared sour
es only a�e
ts the size of the ports sour
es and bestsour
e, indi-


ating the sour
es output signals and the sele
ted sour
e respe
tively, of the signal

bestpartialsour
e, that stores the best sour
e number along the algorithm 
om-

putations, and of the variable sr
sel, that sele
ts the sour
e to be analyzed. A

di�erent number of analyzed sour
es would therefore determine a small variation in

the LUTs and �ip-�ops required for the implementation with respe
t to the hardware

resour
es that are dependent on the 
hoi
e of K and L.
We used the above VHDL des
ription of the MWCES to implement it on a

Xilinx Artix 7 x
7a65 FPGA using the Xilinx Vivado Design Suite. We synthesized

the VHDL design to evaluate the hardware resour
es 
onsumption required by the


ir
uit for di�erent values ofK and L. Tables 5.2 and 5.3 report the number of LUTs
and �ip-�ops required by the the 
ir
uit for K = 2, 3, . . . , 8 and for L = 4, 5, . . . , 10.

If we 
ompare the �ip-�op numbers indi
ated in Table 5.3 with the minimum

theoreti
al �ip-�op 
onsumption de�ned by the 
ost fun
tion (5.59), reported in

Table 5.4, we observe that the FPGA implementation is 
oherent with the theoreti
al

expe
tations, sin
e the �ip-�ops number grows linearly in fun
tion of L for �xed K
and exponentially in fun
tion of K for �xed L.

The �ip-�ops number required a

ording to the Vivado design is higher with re-

spe
t to what indi
ated in Table 5.4 be
ause the 
ost fun
tion takes into a

ount only

the register required to store the symbols o

urren
es and to 
ount the estimation

time, while in the implementation we have some additional logi
.

Furthermore, the in
rement of �ip-�ops for in
reasing values of K and L is

slightly irregular, espe
ially for high values of K and L. This is be
ause of the syn-
thesizer strategies, that was left to freely operate a

ording to a balan
ed area/time
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LUT

L

4 5 6 7 8 9 10

2 35 38 42 50 47 50 53

3 49 55 59 64 70 69 71

4 70 74 81 97 102 107 105

K 5 118 130 143 145 180 177 190

6 231 216 231 267 307 330 312

7 338 370 408 448 482 519 572

8 630 704 775 856 923 1000 1206

Table 5.2: Number of LUTs required to synthesize the MWCES algorithm in Xilinx

Vivado for K = 2, 3, . . . , 8 and for L = 4, 5, . . . , 10
.

FF

L

4 5 6 7 8 9 10

2 49 55 61 67 73 79 85

3 69 79 89 99 109 119 129

4 104 122 140 158 176 194 212

K 5 172 206 240 274 308 342 376

6 303 369 435 501 569 635 699

7 562 694 824 956 1087 1217 1347

8 1084 1344 1602 1861 2124 2379 2641

Table 5.3: Number of �ip-�ops required to synthesize the MWCES algorithm in

Xilinx Vivado for K = 2, 3, . . . , 8 and for L = 4, 5, . . . , 10.
.

C(K,L)
L

4 5 6 7 8 9 10

2 28 34 40 46 52 58 64

3 46 56 66 76 86 96 106

4 80 98 116 134 152 170 188

K 5 146 180 214 248 282 316 350

6 276 342 408 474 540 606 672

7 534 664 794 924 1054 1184 1314

8 1048 1306 1564 1822 2080 2338 2596

Table 5.4: Theoreti
al minimum number of �ip-�ops required to implement the

MWCES algorithm a

ording to the 
ost fun
tion (5.59) for K = 2, 3, . . . , 8 and for

L = 4, 5, . . . , 10.
.
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design optimization strategy. In any 
ase, the overall resour
e 
onsumption is in

agreement with the expe
ted theoreti
al one.

5.8 Con
lusion

We presented an algorithm, 
alled MaximumWorst-Case Entropy Sele
tor (MWCES),

that aims to identify, within a set of entropy sour
es, whi
h o�ers the best perfor-

man
e in terms of worst-
ase entropy, also known in literature as "min-entropy".

The algorithm aims to assess the minimum entropy of a sour
e, estimating what is

the probability of the most likely symbol that 
an be generated by the sour
e.

We rigorously investigated what are the levels of un
ertainty asso
iated with an

assessment of the entropy of an information sour
e on the basis of an estimate of this

type. Taking into a

ount the properties of the Shannon entropy, we studied whi
h

are the worst and best entropies of a sour
e with a maximum symbol generation

probability pH . We also studied, from a statisti
al point of view, whi
h is the

minimum number of observations required by an estimator to properly estimate this

probability.

On the basis of these studies, we established that an estimator of the maximum

symbol generation probability of a sour
es has two main limitations:

• the range between the worst and best entropies given by pH is a not 
onstant

fun
tion of pH ;

• the optimal number of observations required by the estimator 
annot be 
om-

puted be
ause of the 
omplexity of the required 
al
ulation.

For this reason, we established a better use of the estimator for the assessment of

the sour
e with the maximum entropy among a set, observing that:

• the worst and best entropies are monotoni
ally de
reasing fun
tion of pH ,
therefore a sour
e with lower pH with respe
t to another is more likely to have

higher entropy:

• it is possible to �nd heuristi
ally a number of observations su
h to identify

whi
h is the sour
e in a set with the lowest pH , regardless of its value.

Therefore, we de�ned a pro
edure for sele
ting the maximum worst-
ase entropy

sour
e starting from a set of sour
es. This pro
edure 
ounts the o

urren
es of the

symbols generated by a sour
e and takes note of the time required by them to rea
h

an over�ow value. The slowest sour
e is the one with the lowest pH .
We proposed also a pro
edure for the 
orre
t 
hoi
e of the sele
tor parameter.

This probabilisti
 pro
edure adopts a statisti
al approa
h to establish whi
h is the

minimum symbols bit length and the minimum over�ow level for whi
h the sele
tion

error on the output Shannon entropy is lower than a 
ertain threshold.

The sele
tion algorithm was then applied in two notable examples, one based

on a set of sour
es de�ned starting from Markov 
hains, and the other based on a

modi�ed version of the DNO presented in Chapter 4.
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In the examples, we applied the sele
tor 
on�guration pro
edure to propose an

implementation of the sele
tor with minimum hardware resour
es 
onsumption and

with a sele
tion relative error on the output Shannon entropy lower than 1%.

Both 
ases showed that, downstream of a 
orre
t 
on�guration, the sele
tor is

able to maximize the output Shannon entropy of the set, net of a prede�ned relative

error threshold.

Finally, we proposed a design of the sele
tor for its implementation in FPGAs.
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Chapter 6

Con
lusion

In this thesis we introdu
ed a new 
lass of 
ir
uits that 
an be used as entropy

sour
es for True Random Number Generators, 
alled Digital Nonlinear Os
illators

(DNOs), whi
h 
onstitute dynami
al systems 
apable of supporting 
omplex dy-

nami
s (periodi
 or 
haoti
) in the analog time-
ontinuous domain, although they

are made of digital 
ir
uits.

The obje
tive of this study was to demonstrate that 
ir
uits of this type 
an

de�ne high-performan
e entropy sour
es suitable for the design of True Random

Number Generators on purely digital devi
es with limited resour
es, suitable for

lightweight 
ryptographi
 appli
ations.

For this purpose, we initially showed through notable examples how di�erent


ir
uits belonging to the DNO 
lass 
an be 
hara
terized by di�erent performan
e.

Subsequently, we introdu
ed a set of tools that allow to analyze and design

DNOs. More in detail:

• two �gures of merit, namely the De
orrelation Time and the Average Shannon

Entropy, for the 
omparative evaluation of the statisti
al 
hara
teristi
s of

DNOs were de�ned. This �gures of merit provide additional information with

respe
t
 to standard statisti
al tests, whi
h are limited to providing saturated

binary out
ome;

• a simpli�ed theoreti
al investigation approa
h based on low-
omplexity dy-

nami
al models, whose purpose is to investigate whi
h 
onditions favor 
om-

patibility with 
omplex dynami
s for a DNO starting from the analysis of the

stability of its �xed points, was proposed;

• an advan
ed numeri
al simulation setup in Caden
e Virtuoso based on UMC

180 nm te
hnology that deepens the results given by the study of the simpli�ed

dynami
al models was designed;

• design methodology for the implementation of a DNO on FPGAs, aimed at

taking 
ontrol of the synthesizer pla
e and route poli
ies for the implementa-

tion of pre
ise layouts were dis
ussed.
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The introdu
ed tools were used to investigate a novel DNO topology inspired by

the theory of for
ed nonlinear os
illators, 
hara
terized by 
haoti
 dynami
s. We

showed, through theoreti
al studies, numeri
al simulations and experiments, that

this topology a
hieves high performan
e, outperforming the most relevant re
ent

results proposed in literature both in terms of generated entropy and hardware

resour
es 
onsumption.

We studied this topology extensively, using simpli�ed dynami
al models and in-

depth numeri
al simulations to establish under whi
h 
onditions the 
ir
uit exhibits


haoti
 behaviors, and testing experimentally its dynami
al behavior through FPGA

implementations.

Spe
i�
ally, the FPGA implementations allowed to evaluate the performan
e in

terms of generated entropy, the in�uen
e of routing on the 
onsidered performan
e,

the temperature sensitivity, to inspe
t physi
al output signals for a 
omparison with

the results obtained in simulation.

The proposed DNO was also able to pass the standard NIST 800.22 statisti
al

tests, requiring only a minimum post-pro
essing, su
h that the 
omplete system

(DNO and post-pro
essing) presents a negligible 
omplexity 
ompared to the solu-

tions 
urrently proposed in literature.

Finally, we presented an algorithm 
apable of identifying within a set of entropy

sour
es whi
h one o�ers the maximum entropy, 
alled Maximum Entropy Sele
tor.

The algorithm aims to assess the worst-
ase entropy of a sour
e, estimating what is

the probability of the most likely symbol that 
an be generated by the sour
e.

We rigorously investigated what are the levels of un
ertainty asso
iated with an

assessment of the entropy of an information sour
e on the basis of an estimate of this

type. We also studied, from a statisti
al point of view, whi
h is the minimum number

of observations required by an estimator to properly estimate this probability.

On the basis of these investigations, we de�ned a pro
edure for sele
ting the max-

imum entropy sour
e starting from a set of sour
es. We provided also a pro
edure

for the 
orre
t 
hoi
e of the sele
tor parameter.

The sele
tion algorithm was then applied in two notable examples, one based

on a set of sour
es de�ned starting from Markov 
hains, and the other based on a

modi�ed version of the high-performan
e DNO.

Finally, we proposed a design of the sele
tor for its implementation in FPGAs.

On the basis of the presented results, it is possible to 
on
lude that DNOs

represent a 
lass of 
ir
uits that 
an be used for the design of high-performan
e

True Random Number Generators based on purely digital hardware, opening new

perspe
tives in the �eld of lightweight 
ryptography regarding the integration of

TRNGs 
ompliant to 
ryptographi
 se
urity standards even in devi
es with limited

resour
es.
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