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Figure 4.15: In the upper plots, the 3D-projections of the voltages x,y, z in Fig.
4.14 under different realizations (mismatches and process variability). Upper-left:
complex periodic dynamics. Upper-right: chaotic dynamics exhibiting sensitivity to
initial conditions, highlighted in the trajectories below.
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Figure 4.16: The reference DNO architectures considered for the analysis of the
proposed topology. DNO A is a 7-nodes Ring Oscillator, DNO B is a 7-nodes Galois
Ring Oscillator.

designed, which were located in different areas of the chip; in this way it is possible
to evaluate the effect of intra-device variability on the performance of the circuits.
Furthermore, to also evaluate the effect of inter-device variability, the design of the
16 instances was implemented in six different FPGAs, always using the same posi-
tions for the circuits. Following this procedure, each DNO was evaluated through
96 different implementations. Finally, taking control of the place and route policies
using the special directives shown in Section 3.5, we forced a compact layout for the
three oscillators, selecting LUTs belonging to couples of slices of single CLBs, such
to minimize the propagation times associated to signal routing. Fig. 4.17 shows the
resulting layout for DNO C. DNOs A and B have a similar layout, as the used LUTs
are the same; the difference between DNOs is in the routing used for the connections
between the LUTs.

For each oscillator, we performed acquisitions of sequences of 1 million bits at
different frequencies, defined on a range between 100 kHz and 100 MHz. The ac-
quisition was carried out through an architecture designed on the FPGA, which
collects the acquired bits in a RAM and subsequently transmits them via RS232
serial interface to a PC, on which a virtual instrument was implemented with Na-
tional Instruments LabVIEW. The virtual instrument stores the data in binary files,
which are then processed with MathWorks MATLAB.

4.5.1 Performance Comparison

The acquired sequences were used to calculate the Average Shannon Entropy
(ASE) and the Decorrelation Time 7, already introduced in Section 3.2. Figs. 4.18
and 4.19 show the results obtained in terms of ASE, calculated on 10 bits long
symbols, and in terms of Decorrelation Time, calculated for an energy ratio equal
to 99.9% of the total energy evaluated over a 10 us window. Table 4.1 instead
summarizes the statistics related to the figures of merit, comparing the DNOs in
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Figure 4.18: Average Shannon Entropy of the three compared DNOs, estimated on
the basis of binary words of 10 bits (ASE-10) acquired from 96 instances for each
topology, implemented on 6 Xilinx Artix 7 xc7a35 FPGAs. For each DNO, the ASEs
of all the instances are reported, organized according to the chip on which they are
implemented.
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terms of achieved performance and consumed FPGA hardware resources.

The results shown in the figures and in the table show that the DNO C achieves
higher performance than the two reference DNOs, both in terms of ASE and Decor-
relation Time. In all cases, the bits collected at a sampling rate of 100 MHz from
the DNO C were found to have negligible or undetectable correlation, as also shown
in Fig. 4.20. Consequently, the DNO C does not reach an entropy exactly equal
to 1 only due to a residual offset of the sequences. This aspect is related to the
average value of the analog output signal of the DNO, which depends on the shape
of the trajectory, and on the level of quantization thresholds of the flip-flops D used
for sampling. This problem is more evident in DNO B and less important in the
Ring Oscillator (DNO A), as it generates a square wave with a duty cycle of ap-
proximately 50%: although DNO B has a Decorrelation Time on average lower than
that of DNO A, the bias it is affected by limits its ASE. In DNO C the bias is
maintained on adequate values thanks to the symmetrical structure of the topology
and the mutual interaction through the XOR3 gate of the two feedback loops. Since
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Figure 4.19: Decorrelation Time 7 of the three DNOs, estimated as the time at
which the autocorrelation function of the binary source expresses the 99.9% of its
variation-energy, referring to an observation time-window of 10 us. For each DNO,
the Decorrelation Times of 96 instances implemented on 6 Xilinx Artix 7 xc7a35 FP-
GAs are reported, organized according to the chip on which they are implemented.

Ring Galois Ring Proposed
Oscillator  Oscillator Circuit
(DNO A) (DNO B) (DNO C)
CLBs 1 1 1
Slices 2 2 2
ELBs (LUTS) 7 (+1) 7 (+1) 6 (+1)
ASE-10pax [bit/sym] 0.695 0.700 0.955
ASE-101ean [bit/sym| 0.613 0.664 0.949
ASE-10pin [bit/sym)| 0.530 0.610 0.937
Tmin [DS] 7380 6730 <10
Tmean |1 8893 8350 53
Tmax |18 9780 9740 80

Table 4.1: Comparison of the device utilization and the measurements results for

the three DNOs.

The device utilization is described in terms of required LUTs

taking into account a compact layout, the measurements are compared in terms of
maximum, minimum and average ASEs and Decorrelation Times.
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DNO C achieves such results, we can assume that all implementations worked in
structurally stable chaotic regions.

To better appreciate the comparison between the three topologies, Fig. 4.21
shows the byte patterns for the three DNOs evaluated for the 10-bits maximum
ASE and, for DNO C, the 10-bits minimum ASE implementations, respectively
with 100 kHz and 100 MHz sampling.

4.5.2 Performance Dependency on the Implementation Lay-
out

Figs. 4.18 and 4.19 demonstrate that the DNO C is able to achieve much higher
performance than the reference oscillators. However, a variability of the performance
of the circuit implementations is observed both between different positions and chips.

This variability depends on the differences in the hardware resources related to
the chip manufacturing process, but there is also an influence given by routing and,
consequently, by the layout.

To evaluate the impact of the selected layout on the variability of the circuit per-
formance, we decided to repeat the measurement campaign for DNO C, evaluating
two different designs, one adopting a condensed layout (i.e. the one already used in
the analysis reported in Subsection 4.5.1) and one adopting a scattered layout. The
CLBs utilization map in the two analyzed cases is shown in Fig. 4.22.

The two layouts were evaluated by acquiring 1 million bits long sequences from
96 implementations of the DNO, obtained using six Xilinx Artix 7 xc7a35 FPGAs
and implementing 16 oscillators on each of them. The sequences were acquired
at a sampling rate of 400 MHz, achieved by implementing a PLL in the FPGA
architecture. We increased the sampling frequency with respect to the previous
analyzes to obtain more correlated sequences of bits, thus highlighting the variability
associated with the two layouts. The acquired sequences were used to calculate the
Average Shannon Redundancy (ASR) of 10-bits symbols. In Information Theory,
the ASR is a figure of merit that is complementary to the ASE, since it is defined
as:

ASR(n)=1— ASE(n), (4.10)

where the ASE(n) is given in (3.10). In an ideal binary random source the ASR(n)
is equal to 0 bit/sym. for any n > 0. In practical cases, the lower is the ASR, the
higher is its entropy. For the analysis of high-entropy sources it is often convenient to
report results referring to redundancy, instead of entropy, for a clearer presentation.
Indeed, when the values of ASE are close to 1 bit/sym, a logarithmic representation
of the ASR allows for a better comparison of different solutions.

Fig. 4.23 shows the experimental results obtained with the condensed layout,
evaluating its intra-device and inter-device variabilities. The percentile levels L.,
expressed in bit/sym for = 10, 50, 80, 90, 95, were estimated for the whole set of 96
instances, while the red squares highlight the ASR obtained for the DNO in position
1 (plot A) and in chip 1 (plot B). From the figure it can be appreciated that 90% of
the DNOs are capable of providing impressive levels of ASR lower than Lgg = 0.077
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bit/sym with a sampling frequency of 400 MHz, which corresponds, in principle,
to 369.2 Mbit/s of true random information, generated with the minimum use of
two slices of the FPGA. By reducing the set, in half of the cases (ASR lower than
Lso = 0.0067 bit/sym) the throughput rises to 397.3 Mbit/s.

Fig. 4.24 reports the same results as Fig. 4.23 for the scattered layout. In
this case, a slight deterioration in performance is observed, as 90% of the cases
provide an ASR lower than Lgy = 0.17 bit/sym, corresponding to a throughput of
332.0 Mbit/s of true random information, and in half cases the ASR is less than
Lso = 0.03 bit/sym, with throughput equal to 388.0 Mbit/s. However, these are
still exceptional result, given the small number of used hardware resources.

The equivalent throughputs reported for the analyzed data are values that can
be reached by applying post-processing techniques compressing the input data to re-
move information redundancy. Unfortunately, the use of these techniques increases
the complexity of the whole structure. In particular, to reach the considered through-
puts, lossless algorithms must be used; this algorithms require large quantities of
hardware resources and power. As an alternative, lossy algorithms can be used,
which are less demanding from the hardware and power consumption point of view,
but reduce the resulting throughput.

What is more, considering the variability between implementations, a correct
design of TRNGs requires to ensure adequate performance against the source imple-
mentation worst case. Referring to the results achieved in the condensed case, this
would require to adapt the overall project to the maximum found ASR, equal to 0.4
bit/sym, corresponding to a throughput of 160 Mbit /s, which is much less than the
throughput achieved by the majority of the analyzed cases.

A possible solution to this problem derives from the simplicity of the considered
circuit: since the DNO occupies only one CLB of the FPGA, it is much more
convenient, compared to the implementation of a post-processing architecture, to
duplicate the structure of the DNO (i.e. to implement two DNOs) and to XOR the
random output bits by applying a 2:1 lossy compression. The result, shown in Fig.
4.25, drastically reduces the variability, allowing to reach much higher performance.

4.5.3 Performance Dependency on Temperature Variations

In the previous subsections, we evaluated the performance variability of the
topology under study with respect to the hardware used for its implementation and
to the layout design. These two sources of variability can be considered static: their
influence on a DNO performance is defined by the hardware resources and the layout
chosen for its implementation, and does not change over time.

However, there is a third source of variability that we still must consider, whose
effect on a DNO performance changes over time, that is temperature.

Transistors are characterized by different temperature-dependent parameters,
such as mobility, threshold voltage, saturation velocity, parasitic drain/source re-
sistances [51-54|. Taking into account digital devices, this dependency is directly
transferred to the gates high-low and low-high propagation time, affecting therefore
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Figure 4.23: Experimental results highlighting the effects on the ASR of both the
chip-to-chip variability and the intra-device variability, for a condensed layout. The
percentile levels L,, expressed in bit/sym, were estimated on the base of the entire
data set (96 DNO instances). Red square symbols were used to highlight the chip
location 1 (upper plot A) or the chip number 1 (lower plot B).
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Figure 4.24: Experimental results highlighting the effects on the ASR of both the
chip-to-chip variability and the intra-device variability, for a scattered layout. The
percentile levels L,, expressed in bit/sym, were estimated on base of the entire data
set (96 DNO instances). Red square symbols were used to highlight the chip location
1 (upper plot A) or the chip number 1 (lower plot B).
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Figure 4.25: Rejection of intra-device variability by XORing the binary stream
generated exploiting two instances of the discussed DNO (16 tested locations, four
FPGA slices for each obtained generator).
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Figure 4.26: 10-bits Average Shannon Redundancy of 64 implementations of the
DNO shown in Fig. 4.14 at three different ambient temperatures, i.e. -14 °C, 22 °C
and 70 °C.

14°C 22°C 70 °C
ASR-10,;, [bit/sym| | 0.0017 0.0014 0.0014
ASR-100an [bit/sym| | 0.0442 0.0269 0.0293
ASR-104y [bit/sym]| | 0.5137 0.3998 0.4240

Table 4.2: Measurements results for the DNO shown in Fig. 4.14 at three different
ambient temperatures, i.e. -14 °C, 22 °C and 70 °C. The measurements are compared
in terms of maximum, minimum and average ASRs.

the performance of dynamic systems based on digital hardware, such as DNOs.

To evaluate the effect of temperature fluctuation on the performance of the DNO
under investigation, we designed 64 implementations of the DNO on four Xilinx
Artix 7 xc7a35 FPGAs (16 oscillators per FPGA), and we acquired 1 million bits
long sequences at a sampling rate of 400 MHz from each implementation at three
different ambient temperatures, i.e. -14 °C, 22 °C and 70 °C. The acquired sequences
were used to calculate the Average Shannon Redundancy (4.10) of 10-bits symbols.

Fig. 4.26 shows the obtained ASR values and Table 4.2 reports the performance
variability with respect to temperature in terms of maximum, minimum and average
ASRs. From the measurements we can observe that, in general, the DNO is more
affected by lower temperatures with respect to higher ones, as we have slightly worse
ASRs at -14°C. However, looking at the ASR mean values in the table, we note also
that the temperature-dependent loss in perfomance is almost neglectable, resulting
lower than 0.001 bit/sym.
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Figure 4.27: Comparison of the 10-bits Average Shannon Redundancy of 16 imple-
mentations of the DNO shown in Fig. 4.14 on a Xilinx Artix 7 xc7a35 FPGA at
three different ambient temperatures, i.e. -14 °C, 22 °C and 70 °C.

What is more, from Fig. 4.27, in which the comparison of the ASRs of a sin-
gle FPGA implementations at the three different temperatures is reported, we can
observe that the ASR does not change monotonically with the temperature.

4.5.4 Statistical Testing

Besides comparing the performance of DNO C with two reference topologies
using the figures of merit, we tested it statistically with the standard NIST 800.22
tests.

In general, a TRNG consists of an entropy source and a post-processing block
with the purpose of reducing the information redundancy, e.g. through a compres-
sion operation, and to mask residual statistical defects, e.g. by means of stream
cyphers [4,55,56]. The minimum post-processing necessary to pass all the NIST
800.22 tests required by the DNO C in each of its implementation was a bit-by-bit
XORing of the collected bits with an 8-bits PRNG (Fibonacci LFSR based on the
primitive polynomial 2® 4+ 2 + 2° + 2% + 1). In 90% of the implementation a 4-bits
XORing [57] is sufficient and in general any post-processing of greater complexity
proposed in literature allows the DNO C to pass the tests (obviously at the cost
of a greater consumption of hardware resources). Table 4.3 shows typical results
obtained with respect to NIST tests, evaluated on the basis of 100 binary sequences
of 1 million bits collected for each run.
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Test Name p-Value | Proportion | Result
Frequency 0.474986 1.00 pass
Block Frequency 0.911413 0.97 pass
Cumulative Sums?® 0.191687 0.99 pass
Runs 0.935716 1.00 pass
Longest Run 0.015598 1.00 pass
Rank 0.474986 0.99 pass
FFT 0.534146 0.98 pass
Non Overlapping Template® | 0.955835 0.96 pass
Overlapping Template 0.350485 0.99 pass
Universal 0.699313 0.99 pass
Approximate Entropy 0.798139 0.98 pass
Random Excursions® 0.888137 0.96 pass
Random Excursions Variant® | 0.324180 0.96 pass
Serial® 0.145326 0.97 pass
Linear Complexity 0.289667 0.99 pass

® Worst, case reported for tests with multiple outcomes.

Table 4.3: NIST 800.22 Rev.la statistical tests results for the DNO under test,
evaluated on the basis of 100 binary sequences of 1 million bits collected for each
run.

4.5.5 Inspection of Physical Signals

Since the dynamical speed of the implemented DNO is too high to be able to
acquire the signals directly, to evaluate its performance we must resort to the fig-
ures of merit applied on binary sequences acquired by sampling its output signal
internally to the FPGA.

However, by varying the number of delay elements in each loop, it is possible to
artificially slow down the dynamics to a few MHz of frequency and propagate the
z signal directly to the FPGA I/O pins. This operation avoids the distortion effect
caused by the parasitic capacities offered by the I/O pins.

Using this expedient, we carried out two study campaigns.

We initially implemented the circuit in Fig. 4.28 in a Xilinx Artix 7 xc7a35
FPGA, placing cascades of logically transparent LUTs in the loops. The external
excitation ¢ was generated by a Rigol Waveform Generator controlled by a Lab-
VIEW virtual instrument, with the purpose of configuring the oscillation frequency
and automatically characterizing the dynamics of the resulting device. The output
z signal was acquired via a Textronix MSO64 Oscilloscope at a sampling rate of 1.25
GS/s. Observation of the acquired signal confirmed that the excitation-free DNO
(¢ = 0 V) exhibits complex oscillations, while it is possible to observe different types
of dynamics when the excitation is on, as a function of the frequency of ¢.

For example, in Fig. 4.29 two typical cases are reported, obtained for excitation
frequencies equal to 1.208 MHz (A) and 1.160 MHz (b) by adding a cascade of
1200 delay elements in cascade to the ELBs#(2,3) of Fig. 4.28. Depending on the
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oscillation frequency, the nonlinear oscillator can be forced to work in periodic or
chaotic bifurcation windows. The observation of the autocorrelation function for
the two analyzed cases, shown in Fig. 4.30, reveals that in the periodic case (A)
the fundamental period of the signal z is about 1 kHz, far below the frequency of
excitation. On the other hand, in the case of the chaotic signal (B) it is not possible
to detect relevant periodic components.

By applying an increment step of 10 Hz, we experimentally evaluated the infor-
mation entropy of the forced nonlinear oscillator over an oscillation frequency range
between 1.15 MHz and 1.25 MHz. The acquired signal was sampled at 1 bit by
applying a threshold quantization of 1.65 V and for each tested frequency we esti-
mated the 8-bit ASE starting from sequences of 1 million acquired bits, obtaining
the result shown in Fig. 4.31. We indicated in the figure the cases (A) and (B) of
Figs. 4.29 and 4.30. The experiments show that the circuit generates information
by exploiting two possible sources of entropy, namely jitter and chaos, as a function
of the excitation frequency. While the electronic noise generating jitter is always
present, chaos is activated only under certain conditions, which in the tested circuit
appear to be structurally robust. This result is unexpected, as usually in the pres-
ence of complex dynamics small parametric perturbations cause significant changes
in the dynamical behavior [58].

The second study campaign focused on the analysis of the circuit in Fig. 4.14,
implemented on a Xilinx Artix 7 xc7a35 FPGA. We added transparent delay LUTs
to the loops and to the Ring Oscillator providing the excitation signal. We acquired
the z signal on 20 ms windows by adopting a sampling rate equal to 3.125 GS/s.
The sampling frequency was selected considering the band of the acquired signal, in
order to avoid aliasing.

By varying the number of LUTs in the three loops, we observed periodic and
chaotic dynamical behaviors, as shown in Fig. 4.32. The autocorrelation function
related to the chaotic case (b) has some residual periodicities. These harmonics
are due to the Ring Oscillator, which influences the output signal as it supplies the
excitation to the system, and by some active components mounted on the board used
for interfacing with the FPGA (Digilent Arty), such as the switched power supplies.
These periodicity elements can be removed by reducing the number of transparent
LUTs in the Ring Oscillator (by increasing its oscillation frequency and pushing
its fundamental harmonic towards higher bands) and by appropriately selecting the
electronic components used to power the FPGA.

4.5.6 Comparison with the State of the Art

To conclude the analysis relating to the proposed DNO, in Table 4.4 we report a
comparison of the analyzed solution with the most relevant recent works published in
the literature. The TRNG resulting from DNO C and the minimum post-processing
required to pass the NIST tests is made up of 15 LUTs and provides a throughput
of 6.66 Mbit/s per LUT. A result of this type far exceeds the performance of any
other proposal. This fact is justified by the simplicity of the topology, that increases
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Figure 4.29: The forced-oscillator signal z extracted from an I/O pin of the FPGA,
for excitation frequencies of 1.208MHz (A) and 1.160MHz (B), using 1200 delay
elements for each loop in Fig. 4.28 to slow down the dynamics speed.
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Figure 4.30: The unscaled autocorrelation function estimated for the two signals
(A) and (B) reported in Fig. 4.29.
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Figure 4.31: The 8-bit Average Shannon Entropy estimated on the basis of 1 mil-
lion bits, obtained 1-bit quantizing the signal z acquired at a 1.25GHz sampling
frequency.

the dynamics speed of the resulting nonlinear dynamical system, which operates,
according to the design, in structurally stable chaotic regions.

4.6 Conclusion

We presented the complete workflow followed for the design of a DNO char-
acterized by chaotic dynamical behaviors; the DNO achieves high performance in
terms of generated entropy, downstream of a reduced hardware complexity and high
sampling rates.

The topology was formalized on the basis of the theoretical evaluations carried
out through the simplified dynamical model on the primitive subcircuit presented
in Subsection 3.3.1 and of the theory related to forced oscillators.

We analyzed the topology using the simplified dynamical model, focusing mainly
on the forced part of the DNO. This analysis highlighted how the dynamical system
resulting from the model constitutes a stable oscillator in the absence of the exci-
tation signal, while in the presence of periodic excitation it is possible to observe
transitions from periodic to chaotic behaviors as a function of the ratio between the
oscillation frequency of the excitation signal and the natural oscillation frequency of
the forced part of the DNO.

We built the topology in Cadence Virtuoso using the basic component library
defined starting from the UMC 180 nm technology, and we repeated the dynamics
analysis of the resulting circuit in the absence and in the presence of an excitation
signal. The obtained results appeared to be consistent with the simplified dynamical
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Figure 4.32: DNO output signal acquisitions from the digital I/O pins of a Xilinx
Artix 7 FPGA mounted on a Arty board. The upper plots show the time behavior
of configurations with strong periodicities (a) and with chaotic behavior (b). The
middle plots show the spectrum of the above signals, from which we can observe
the presence of harmonics in case (a) and the relatively flat spectrum in case (b).
The lower plots show the autocorrelation functions of the two signals, confirming
the periodic behavior in case (a), while in case (b) the autocorrelation function is
almost a delta.
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model, as we obtained a stable periodic oscillator in the absence of excitation and a
complex dynamical system capable of passing from periodic to chaotic behaviors as
a function of the ratio between the oscillation frequencies when the excitation signal
is turned on.

The topology was finally implemented on FPGA. This implementation was an-
alyzed from different points of view.

We compared the DNO under study with a Ring Oscillator and a Galois Ring
Oscillator of equivalent hardware complexity, implementing for each of them 96 in-
stances using 6 Xilinx Artix 7 FPGAs. The output signals of this implementations
were sampled at 100 MHz to acquire sequences of bits, which were then used to
investigate the Decorrelation Time and the Average Shannon Entropy. The com-
parison according these figures of merit proved that the proposed circuit is capable
to reach outstanding values of entropy with negligible correlation between samples,
suggesting that in every implementation the circuits were working in chaotic condi-
tions.

We investigated the effect of the DNO circuit layout in the FPGA on the vari-
ability of the ASE between different implementations. We designed two different
LUTs layouts (one condensed and one scattered), and for each of them we imple-
mented 96 instances using 6 Xilinx Artix 7 FPGAs. We sampled the output signals
of these implementations at 400 MHz to enhance the correlation between samples
with respect to the previous analysis, we computed the Average Shannon Entropy on
the acquired sequences and we evaluated the variability between the entropies. We
observed that the condensed layout provides slightly lower variability with respect
to the scattered one, reaching in any case high values of throughput of information.
To minimize this variability, we proposed a 2:1 lossy compression of the generated
information, by XORing the output bits of two DNO implementations working in
parallel.

We evaluated the effect of temperature fluctuation on the performance of the
DNO under investigation. We designed 64 implementations of the DNO on four
Xilinx Artix 7 xc7a35 FPGAs (16 oscillators per FPGA), and we acquired 1 million
bits long sequences at a sampling rate of 400 MHz from each implementation at
three different ambient temperatures, i.e. -14 °C, 22 °C and 70 °C. The acquired
sequences were used to calculate the Average Shannon Redundancy (4.10) of 10-bits
symbols. We can observe that the DNO is more affected by colder temperatures
with respect to hotter ones, even if the temperature-dependent loss in perfomance
is almost neglectable.

We subjected the DNO to the NIST 800.22 standard statistical tests, observing
that a bit-by-bit XORing of the collected bits with an 8-bits PRNG is sufficient to
pass the tests with each implementation of the circuit.

By applying a reduction in the dynamical speed of the circuit adding transparent
delay LUTs to the circuit loops, we observed directly the output signals of the
DNO, both by providing external excitation and by internal excitation. The signal
observation confirmed that, according to the ratio between the natural frequency of
the oscillator and the excitation signal frequency, the DNO can pass from periodic
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to chaotic dynamics.

Finally, we compared the proposed DNO with the state of the art, observing
that a circuit of this type outperforms the most relevant works recently published
in literature.
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Reference Chief Entropy FPGA Hardware = Throughput Post-Processing
Source Device Resources® [Mb/s]
[59] Jitter Xilinx 528 LUTs 6 Von Neumann
Spartan-3A
[60] Jitter and Xilinx IPLL + 100 XOR
Metastability UltraScale 5 primitives Compression
+ 17 LUTs
|61] Jitter Xilinx 131202 LUTs 167.4 Stream
Virtex-6 Ciphering
|62] Metastability Altera 298 LUTs 150 Hashing
Cyclone IV
|63] Metastability Xilinx 1 Dig. Clock 12.6 Custom
Spartan-6 Manager
+ 36 LUTs
|57 Timing Xilinx 224 Slices 50 XOR
Skew Virtex-6 Mixing
|64] DNO (Undetermined Altera ~120 LUTs 200 Stream
Complex Dynamics)  Cyclone IV Ciphering
This Work DNO (Chaos Xilinx 15 LUTs 100 Stream
Evidence) Artix-7 Ciphering

Overall hardware resources necessary to design the TRNG subsystem.

Table 4.4: Comparison of the proposed solution with similar recently proposed TRNGs (NIST-tests passing)
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Chapter 5

A Maximum Worst-Case Entropy
Selection Algorithm and its
Hardware Implementation

In this chapter we present an algorithm, called Maximum Worst-Case En-
tropy Selector (MWCES), that aims to identify, within a set of entropy sources,
which offers the best performance in terms of worst-case entropy, also known in
literature as "min-entropy". This algorithm is designed to be implemented in
low-complexity digital architectures, suitable for lightweight cryptographic ap-
plications, thus allowing online maximization of the performance of a random
number generation system based on Digital Nonlinear Oscillators. This chap-
ter presents the theoretical premises underlying the algorithm formulation,
some notable examples of its generic application and, finally, considerations
related to its hardware implementation in FPGA.

5.1 Sub-Optimal Entropy Estimation

The analysis of the DNO presented in Chapter 4 demonstrates how an in-depth
study of this class of circuits requires the use of complex and varied tools.

Different techniques to assess the statistical characteristics of True Random Num-
ber Generators were proposed in literature, as also discussed in Chapter 3 [4,5,56].
Most of these solutions investigate the statistical properties of the random source
collecting and inspecting long binary sequences, and are not suitable for being im-
plemented in lightweight digital hardware systems. In this chapter we present a low-
complexity algorithm addressing the online evaluation of different random sources
that may be available in a same chip, aiming to select the one with the highest
entropy. As it is made clearer in the following, to reduce algorithmic/hardware
complexity, it is necessary to resort to sub-optimal methodologies aimed at provid-
ing a rough estimate of the statistical characteristics of a circuit under examination.
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The primary objective of the class of circuits analyzed in this thesis is the gener-
ation of entropy. According to Shannon [65], given an ergodic source X of symbols
taking values from the set A = {x1,2s,..., 2z} with probability P(X = z;) = p;,
1=1,2,...,k, its entropy is defined as:

k
E(X) = —Zpi log, p;. (5.1)
i=1

An estimate of this expression appears particularly complex to achieve, as it requires
defining a method capable of extracting information relating to the probability dis-
tribution of the analyzed source.

According to the recommendations for entropy source provided by NIST [56], the
essential figure of merit to establish how unpredictable is a source is its min-entropy,
defined as:

I(X) = min (~logy pi) = —log,(max pi). (52)
If X has min-entropy I, the probability for X to generate any of its symbols cannot
be greater than 2. It is observed that, unlike entropy, min-entropy depends solely
on the probability of the most probable symbol of the distribution; this fact suggests
that the estimate of this figure of merit can be made in a much less complex way
than the estimate of the Shannon entropy of the source.

In this chapter, we present an algorithm for the assessment of the Shannon
entropy, based on the estimation of the probability of the most probable symbol
of the distribution associated with the evaluated source. This algorithm can be
implemented on PLDs for the online evaluation of the performance of a DNO or,
alternatively, for the automatic identification, within a set of sources, of the imple-
mentation with maximum entropy.

At the time of writing this thesis, the results presented in this chapter are un-
der development for forthcoming submission to peer-reviewed journals for possible
publication.

5.2 Estimation-Based Entropy Bounds

The Shannon entropy (5.1) of a random source is dependent on the probability
distribution associated to the symbol generation. Attempting to assess the Shan-
non entropy starting from the estimation of the generation probability of the most
probable symbol introduces uncertainty, since different distributions can be related
to different Shannon entropy levels, even if their most probable symbols have the
same generation probability. However, as shown in the following, starting from
the knowledge of this probability, we can identify lower and upper bounds of the
Shannon entropy.
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5.2.1 Theoretical Framework

Let us consider an ergodic stochastic source S of independent and identically dis-
tributed (i.i.d.) symbols belonging to the alphabet A = {sy, s2,...,sy}. We denote
with M(N) C [0,1]Y C RY the set of probability mass functions expressing different
generation probabilities for the symbols in A. Accordingly, if P = (p1,ps,...,pn) €
M(N), we have Zi]\ilpi =1 and 0 < p; < 1. Furthermore, the following properties
hold.

Proposition 5.1. Let P = (p1,pa2,...,pn) € M(N). By denoting pr, = min,; p; and

pg = max; p;, it results:
1

pr < N < pnu. (5.3)

Proof. Since p;, < p; < py for all 1 < < N, we have:
N N
1= pi>> pL=Npi, (5.4)
i=1 i=1
or p;, < 1/N. Analogously, we have:
N N
1:Zpi§ZpH:NpHa (5.5)
i=1 i=1

or pg > 1/N. O

We define the Shannon entropy of the source S as:

N
Es(P) =Y h(p) [bit/syml, (56)

i=1
where if h(z) = —zlogyz,x € [0,1]. In the specific case in which the symbols are

evenly distributed, i.e. U = (1/N,1/N,...,1/N) € M(N), then E(U) = log, N =
Eu.
As shown in Fig. 5.1, function h is infinitely differentiable and strictly concave
for x € (0, 1), having maximum value:
_ log, e

anae = () = —2— = 0.53, (5.7)

where Ty = 1/e =~ 0.37. Consequently, h is strictly monotonic increasing for
x € [0, Tmax]-

Lemma 5.1. Given two arbitrary probability mass functions P = (p1,pa,...,DN) €
M(N) and Q = (q1, 2, - --,qn) € M(N), it results:

N
Es(P) < — Zpl- log, i, (5.8)
i=1
with the equality holding if and only if P = Q.
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Figure 5.1: The function h(x) = —xlog, « is monotonically increasing in the interval
0,1/€] = [1, Zmax]-
Proof. Tt can be easily proved that:
log,t <t—1 VteR". (5.9)

Indeed, f(t) = log,t and g(t) = ¢t — 1 are infinitely differentiable functions with

f'(t) = 1/tand ¢'(t) = 1. Tt results g(t)—£(t) = g(1)— f(1)+ [/ (1—1)d6 = [ h(6)d6.
We observe that:

o if t > 1, h(t) > 0 and g(t) — f(t) = [ h(8)do > 0;
o if 0 <t<1,h(t)<0and g(t) — f(t) = — [ h(h)dd > 0;

Accordingly to (5.9), given two real numbers p,q € (0,1) we have log,(%) < 2 —1

P
or, equivalently:

iSHISY

p—plogyp < q —plogy q. (5.10)
Since (5.10) holds for all p;, ¢; with i =1,2,... N, we have:

N N N N
Zpi_zpilog2pi < ZQi_Zpilog2Qi- (5.11)
i=1 i=1 i=1 i=1

Recalling that S-N p; = S| ¢; = 1, the inequality (5.8) is proven.
If P=Q, (5.8) reduces to an identity.

97



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

On the other hand, if (5.8) is an equality, we have to prove that P = Q. Indeed
from (5.10) we note that:

q—plogyq —p+plogyp > 0. (5.12)

If (5.8) is an equality, we have:

N N
—sz‘ log, pi = _Zpi log, g, (5.13)
=1 =1
or:
N N
1= pilogopi=1- ) pilog,q (5.14)
i=1 i=1

Recalling that S°N  pi = SN, ¢ = 1, (5.14) can be rewritten as:

N
Z(q@' — p;log, ¢; — pi + pilogy pi) = 0. (5.15)

i=1

As noticed in (5.12), since the summation involves non-negative terms, (5.15) implies
that, for i = 1,2,..., N, (¢ — pilogy ¢i — p; + pilogy p;) = 0, that can be rearranged

as. ) )
log, L =% 1 =12, N, (5.16)

that is true only if p; = ¢;. O
From Lemma 5.1 we have the following theorem.

Theorem 5.1. For any probability mass function P € M(N) we have:

Es(P) < &u, (5.17)
with the equality holding if and only if if P = U.
Proof. The proof derives directly from Lemma 5.1, noting that if in (5.8) P = U,
we have ¢; = 1/N,i=1,2,..., N and:

N N
1
Es(P) < — sz‘ log, N log, szi =&u. (5.18)
=1 =1

O

Theorem 5.1 states that a random source of evenly distributed independent sym-
bols has maximal entropy equal to & = log, N bits/sym.
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5.2.2 Worst Case Entropy

Given a probability mass function, we can reduce the complexity related to the
accurate computation of (5.6) focusing on the concept of worst case entropy. We
start first to prove the following lemma.

Lemma 5.2. Consider K real numbers xi,xs,...,xx Such that 1 > x1 > x9 >
<o > x> 0. For any K-tuple of nonnegative real numbers {61,0s,...,0x} such
that 6 = Zf;éi, with 0 <6 <1—x7 and 0 < 0; < 23,1 =2,3,..., K, it results:

> h(wi) > h(zi+6) + Y bz —5). (5.19)

Proof. We can rewrite (5.19) as:

h(zy +6,) — h(zy) < Z[h(azi) — h(x; — 6;)). (5.20)

Since the prime derivative of h:

1
h'(z) = —logy x — ) (5.21)

is a strictly decreasing function, we have h(xy+01) —h(x1) < 01h/(z1). On the other
hand, h(z;) — h(z; — §;) > §;1/(x;) and:

> (@) = bl = 6)] =6 (35) > W (22) Y 6 = 61k (w2). (5.22)

=2 i=2 =2
Since xy > x9 = h'(x2) > KW (x1), we have:

W +61) — hia) < 61k (21) < 60 (w2) < Y [h(zs) = hizi —6)].  (5.23)

i=2
U

The following theorem provides the theoretical worst case entropy for a stochastic
source S in which the most probable symbol has generation probability pg.

Theorem 5.2. Let P = (p1,p2,...,pn) € M(N), N > 2. It results:

where pg = max; p;,i = 1,2,...,N and F' = [1/py].
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Figure 5.2: The probability mass function Q,, € O,, for pg = 0.16,N = 8.
According to the Theorem 5.2 this probability mass function provides minimum
entropy in O,,,.

Proof. Entropy (5.6) is a summation that does not depend on the probability dis-
tribution ordering. Accordingly, M(N) can be partitioned in equivalence classes,
each one containing permutations of probability mass functions, and we can focus
on the subset O,, C M(N) of the class representatives with weakly decreasing
probabilities, i,e. satisfying the condition:

T:(tl,tg,...,t]v) EOpH<:>pH:t1 >ty >ty (525)

Every probability mass function P € M(N) has a unique class representative in
(O)p,, such that E¢(P) = Es(T).

Among the probability mass functions in O, we choose the element Q,, =
(1,42, - - -, qn) for which:

¢G=41—Fpy, ifi=F+1. (5.26)
0, otherwise

An example of Q,,, is shown in Fig. 5.2.
Applying (5.6), we observe that £s(Q,,,) = Fh(pu) + h(1 — Fpu) = Ewe.
To conclude the proof, we have to show that:

gS(QpH) = min gs(T) (527)

TEO,,
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To this aim, for any P = (p1,p2,...,pn) € M(N) we build a sequence of F + 1
probability mass functions {T", T, ..., T¥*!} in which T = Q,,, and T" is the
class representative of P in O,,,, such that:

Es(P) = Eg(T") > E5(T?) > -+ > E(TF™) = Ewe. (5.28)

Proceeding by induction, assume that for 1 < k < F' the probability mass density
TF = (th 5, ... t%) € O,, has the first k probability levels equal to py, namely
th =tk = ... =¥ = py. Such element T* exists in O,, since kpy < 1 and the
weakly decreasing nonnegative levels t¥ for k +1 <4 < N can be arbitrarily chosen
to satisfy the normalization property ZZ (=1,

Comparing T* with Q,,,, we observe that gx11 > tx11. Indeed, if g1 < pm,
we recall that, according to (5.26), ¢; = py for i = 1,2,...)F, ¢ = 0 for i =
F+2 F+3,...,N and ¢ is the unique value lower than py that satisfies the
normalization property for @,,. Thus, the normalization property for T* can be
satisfied only if qx11 > tiy1. If gx1 = py we have nothing to prove.

Starting from T*, we now build a new mass probability function W+l =

(Wit wh T Wkt € M(N) such to have:
5 if1<i<k+l
wit =% HostsR (5.29)
t7 —0;, otherwise

where 0 < §; < th.i = 1,2,..., N are arbitrary values such to satisfy Zij\ik—l—Z 0; =
Qi1 — iy
The construction of WHHL ig Well defined since wf*! > 0 and 1 = SN tF =
N
kpn + Zz w1 ti = kpm + Z@ k1 ti Pt ey — g — Yickio0i = kpm + Qe +

N k+1
Zz k+2(tk 5)221 1w+
As a result, since by construction the first k probabilities of Q,,,, W**!1 and T*
are equal, we have:

Es(WH) = E5(T4) = 3 [h(wt+) = m)th)] =
= hlgusn) = hltha) + D [B(E: = 8) = h(th)] = (530)
= h(thpy + 8F40) = h(th) + D (bl = 6) — h(th))
i=k+2

According to Lemma 5.2, we have E(WFHL) < E¢(TF).

Finally, we define T"™ as the class representative of W*™! in O,,. Since
Es(TH) = E¢(WHH Kk = 1,2,...,F, proceeding iteratively we proved (5.28),
noting that T = @,,,. Being the initial probability mass function P arbitrary
in M(N), also (5.27) is true. O
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Figure 5.3: Normalized worst case entropy Ewc/Ey for N = 6 and py ranging in the
interval (+,1—+). Theoretical bounds are compared with Monte Carlo simulations
(minimum entropy among 1000 probability mass functions randomly chosen, for each

pu, in O,,).
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Fig. 5.3 reports as an example the normalized worst case entropy for N = 6 and
py ranging in the interval (%, 1— %)

A simpler expression providing a lower bound for the worst case entropy is pre-
sented in the following corollary.

Corollary 5.1. Let P = (p1,p2,...,pn) € M(N), N > 2. It results:
gs(P) Z SWC Z - 10g2pH, (531)
where py = max; p;,t = 1,2,..., N.

Proof. The min-entropy can be rewritten as follows:

1 1
—log, py = —log, pu (1 — LEJ P+ LEJ pH) =

1 1
—_— LEJ pu logy py — (1 — \‘IEJ pH) log, prr = (5.32)

- L% h(pa) +h (1 Bl L%J pH) log, (110%ng pH) |

The quantity 1 — LL pg is the reminder of the division 1/py and is lower than

PH |
pr < 1. As a result, we have bg?—le <1 and —log, py < Ewc. O
togs (1-| 537 [prr)

5.2.3 Best Case Entropy

Following a similar reasoning, it is possible to calculate the theoretical maximum
entropy for the probability mass functions in O,,,, proving the following theorem.

Theorem 5.3. Let P = (p1,p2,...,pny) € M(N), N > 2. It results:

£a(P) < o= (V= 01 (22 ) 4 o). (5.33)

where py = max; p;,t = 1,2,..., N.

Proof. Consider a generic probability mass function P = (pq,pa,...,pn) € M(N),
N > 2 having maximum symbol probability py. Since entropy is a summation that
does not depend on the probability distribution ordering, we can substitute P with
its unique class representative T' € O,,,.

In this way we know that the first element ¢; of T is equal to py and that

Zﬁigti =1-pnu.

Consider now the probability mass function R, = {r1,72,...,ry} for which:
T, = 1—py . ) (534)
o, otherwise

103



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

whose entropy is equal to:

€)= i) + (V= 10 (724 (5.35)

The theorem is proved simply applying Lemma 5.1 on T and R,,,,:
N
Es(P)=Es(T) < — Zpi log, r; =
i=1
a 1 —pm
= —prlogy py — ;piIOgQ (N — 1) =

N
1 —pu
= —pyl —1 ;=
pH Og2pH Og? (N _ 1 ) Zzpl (536)
1—p
= —pulogy pn — (1 — pu) log, (N_If) =

1l —pn 1 —pu

= bl + (= D8 (22 ) = ERy) = e

Fig. 5.4 reports as an example the normalized best and worst case entropies for
N = 6 and pgy ranging in the interval (%, 1— %)

5.3 Sequence Length and Symbols Generation Prob-
abilities

In Section 5.2 we addressed the uncertainty given by the attempt to estimate
the entropy of a source based solely on the knowledge of the generation probability
of its most likely symbol.

Targeting the design of an estimator for this probability, it is also necessary
to take into account another factor that can affect the quality of the estimate:
typically an estimator bases its functioning on the observation of events, each of
which provides a certain amount of information necessary to refine the accuracy of
the estimate with respect to the parameter of interest. In our case, this involves
the need to observe sequences of symbols generated by the analyzed source whose
length is long enough to allow for an adequate estimation of the probability of the
most likely symbol evaluating its frequency in the sequence under observation.

From a theoretical point of view, it is possible to establish what the minimum
length of the sequences must be to obtain an adequate estimate, by evaluating the
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Figure 5.4: Normalized entropy £s/Ey for N = 6 and py ranging in the interval
(%,1 = =). Theoretical bounds are compared with Monte Carlo simulations (5000
random values for py, uniformly distributed, one random probability mass function
in O, for each py).

105



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

minimum number of elements that a source must generate to ensure that a symbol
with a certain probability is generated a defined number of times.

Consider again an ergodic stochastic source S of i.i.d. symbols belonging to
the alphabet A = {s1, $2,...,sx}. Since the alphabet A is indexed, there exists a
look-up table:

»: A—{1,2,...,N} CN (5.37)

that associates any symbol s € A to its index in N. For example, if A = {A, B,C},
the index of the symbol B is ¢(B) = 2.
For any L € N, we define the set:

Q(N,L) = {oe {0,1,...,L}N:Zoi:L} (5.38)

i=1

as the set of all the possible integer vectors counting the occurrences for the N
symbols in A when observing sequences of L elements. Hereafter, vectors o €
Q(N, L) are named occurrences vectors.

For example, if A = {A,B,C} and L = 4, the set €(3,4) contains integer
vectors in {0,1,...,4}® enumerating the symbols occurrences when observing all
the possible sequences of L = 4 elements, as shown in Table 5.1.

Any sequence of L elements 0 = {s1, so,...,s1}, being s; € A, is described by
the sequence of alphabet indexes identifying the symbols in A that are generated
according to the sequence order, i.e.:

g = {81,82, .. .,SL} -~ {Zl = ¢(81),i2 = gb(Sg), C ,iL = ¢(SL)} (539)

Since the elements in the sequence are i.i.d., the sequence ¢ has generation proba-
bility equal to:

L L
P(o) = Hp¢(s].) = Hpif' (5.40)
j=1 j=1

Consider now the occurrences vector o € Q(N,L). We define the function H :
Q(N,L) — AL providing the set of sequences of L elements counting the same
symbol occurrences given by o. For example, referring to Table 5.1:

H(o,) = {AAAB, AABA, ABAA, BAAA}. (5.41)

Accordingly, the generation probability for any occurrences vector o € Q(N, L) =
{01,09,...,0x} is equal to the generation probability of any sequence counting the
same symbol occurrences given by o, i.e.:

P(o)= »_ P(o). (5.42)
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| Vectors  o0; € Q(3,4)

Sequences o (Realizations) |

o=  {4,0,0} — AAAA
0, =  {3,1,0} > AAAB, AABA, ABAA, BAAA
05 =  {3,0,1} > AAAC, AACA, ACAA,CAAA
o.—  {2,2,0} - AADBB,ABAB, ABBA, BAAB, BABA, BBAA
os=  {2.1,1} - AABC,AACB,ABAC, ABCA, ACAB, ACBA
BAAC, BACA, BCAA,CAAB,CABA,CBAA

0, =  {2,0,2} >  AACC,ACAC,ACCA,CAAC,CACA,CCAA
or=  {1,3,0} — ABBB, BABB, BBAB, BBBA
os=  {1,2,1} - ABBC,ABCB,ACBB, BABC, BACB, BBAC
BBCA, BCAB, BOBA,CABB,CBAB,CBBA

0, =  {1,1,2} > ABCC,ACBC,ACCB, BACC, BCAC, BCCA
CABC,CACB,CBAC,CBCA,CCAB,CCBA

oo=  {1,0,3} — ACCC,CACC,CCAC,CCCA
o1 = {0,4,0} — BBBB
o,—= {0,3,1} — BBBC,BBCB, BCBB,CBBB
o3 = {0,2.2}Y—» BBCC,BCBC,BCCB,CBBC,CBCB,CCBB
o= {0,1,3}— BCCC,CBCC,CCBC,CCCB
o= {0,0,4} — CCCC

Table 5.1: The set §2(3,4) containing the integer vectors in {0, 1,..

., 4} associated

to different symbol occurrences, depending on the different possible realizations for
sequences of I = 4 elements generated by a source of i.i.d. symbols taken from the
alphabet A = {A, B,C}. The number of different sequences is N*' = 3% = 81, in
the right column.
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Since the sequences in H(0) share the same generation probability, we have:

Plo)= 3. P(o) = #H(o)[[p, =
o€ H(0) j=1

N (5.43)
= #H (o) Hp?,

being #H (o) the cardinality of the set H(o) and p; the probability of the j-th
symbol in alphabet A.

As a result, to calculate the generation probability P(0) we need to express the
cardinality #H (0), that is equal to:

L
#H(0) = oo (5.44)

For example, referring to Table 5.1, #H (02) = 3%50! =4.

Summarizing, the generation probability for any occurrences vector o € Q(N, L)
= {01,09,...,0n} is equal to:

Plo) = — L ﬁ 0 (5.45)
0) = =N p»]. .
Hj:l 0! j ’

Fig. 5.5 reports a comparison between the calculations of (5.45) for the set €(3,4)
shown in Table 5.1 and Monte Carlo simulations.

5.3.1 Event Space Size

The set Q(NN, L) satisfies the following properties.
The number of different sequences composed by L elements taken from an al-
phabet of N symbols is given by:

> #H(o)=N". (5.46)
)

o€Q(N,L
For example, the different sequences in Table 5.1 are N* = 3* = 81.

On the other hand, the cardinality of Q(NNV, L) can be calculated noting that,
since Q(N, L) is defined as follows:

N
Q(N, L) = {o ={01,09,...,0n}:0; € {071,---,[/},20@' = L} : (5.47)
i=1

for N =1 the set Q(1, L) is always composed by a single element:

o={L}, (5.48)

108



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

0.2

0.18

0.16

0.14

0.12

0.08

0.06

0.04

0.02

0

1 2 3 4 5 6 7 8 9 10 M 12 13 14 15

Figure 5.5: Numerical calculation of (5.45) and comparison with Monte Carlo sim-
ulation results, in blue crosses (one million sequences, N = 3, L = 4 for a random
probability mass function P € M(3)).

while for N > 2 each element of (N, L) can be expressed in the following way:

(O = {01’02’ cee 7ON—17L - Zzli_ll Oi}
o1 €{0,1,.... L}
Qo,€{0,1,...,L—o01} . (5.49)

yM4E{QL”wL—Xﬁf@}

As a consequence, the cardinality of the set Q(V, L) is given by the following ex-
pression:

1, it N =1
#Q(N, L) ={ L +1, fN=2.  (5.50)
L L—o; L-S"N130; .
201:0 Zog T ZON_QZO (ON—2 + 1), it N >2

5.3.2 Events Counting Statistics

Now that we defined the set (N, L) of vectors that count the occurrences of the
symbols generated within a sequence, we can tackle the problem that we initially
set, ourselves, which is to establish how many elements a source must generate in
order to generate a certain symbol s; € A M times.
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If p; is the generation probability for the symbol s;, we expect to have in T" trials
(observations), in average, T'p; occurrences of that symbol. Therefore, the mean
number of observations we have to perform such to have M occurrences for the j-th
symbol must satisfy the relation E[T}]p; = M, that is:

E[T]=T,; =—. (5.51)

This result is limited to average values, for specific symbols.

In the following we refer to a more precise statement of our problem, considering
the statistical event \Il% 1., corresponding to a source with alphabet A of size N that
has to generate L elements to have at least a symbol in A generated M times.

Regarding the probability of the event \II% 1, we note the following properties:

o if L < M, the probability P(\IIJ‘N/{L) = 0 since the number of generation steps
is smaller than M and no symbol can be generated more than L < M times;

o if L > N(M — 1) + 1, the probability P(¥}/ ;) = 0 since at least one symbol
was generated M times in previous generation steps; indeed, in the worst case,
after N(M — 1) + 1 steps we have all the N symbols generated M — 1 times,
plus one occurrence of one symbol that brings its count to M.

These considerations imply that:
Lg{M<q<NM-1)+1,geN} = P(Iy,)=0. (5.52)

Assuming to focus on the interval M < L < N(M — 1) + 1, we can calculate the
probability of \II% ; partitioning the event space according to the last generated
symbol sy, in the sequence, i.e.:

N
P(UN ) =Y P(UN lrr = si)Px, = s;) =
~ (5.53)

The term P(WY |z = s;) is the probability that at the L-th step of the generation
process the event \II%L occurs thanks to the last symbol s; being generated for its
M-th time.

The conditioned event WY, |(z, = s;) implies that:

e in the first L — 1 steps of the generation process the symbol s; appears M — 1
times;

e in the first L — 1 steps of the generation process any other symbol s; # s; was
generated no more than M — 1 times;
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e the occurrences of the symbols in the first L — 1 elements of the sequence,
described by the occurrences vector o € (N, L—1), are such that the following
constraints are satisfied:

Yio=L—1
oj=M—1 . (5.54)
0<o0;,<M—1fori#j
We denote with ; C Q(N,L — 1) the set of all occurrences vectors o €
Q(N, L —1) C N¥ satisfying the contraints (5.54).

Recalling that the occurrences vectors o € €2, represent disjoint events and recalling
(5.45), the probability of the conditioned event W}/, |z, = s; is:

P(UN Jop =s;) =Y L= 1),! [IES (5.55)

0€Q; I[iL 0! i

Combining (5.55) with (5.53) we have, ift M < L < N(M — 1) + 1:

PV ) = Z Z H (5.56)

= IS zllzl

that can be rewritten as:

P(wY,) = 'ZZ M-1 H 1:) (5.57)

Jj=1 o€y i=1,i#j

This expression provides the complete statistical characterization of the event \I/]‘N4 I
for M < L < N(M — 1) + 1, recalling that out of this bound P(¥}/;) = 0. The
necessary conditon to have P(¥}/;) > 0 can be also rewritten as:
L—-1

Min = — | < M < L+1= Muyax. (5.58)
Fig. 5.6 shows the comparison between the numerical calculation of (5.57) and
Monte Carlo simulation results for N = 5, . = 20 and the uniform probability mass
function P € M(5).

5.4 Maximum Worst-Case Entropy Selection Algo-
rithm

In Sections 5.2 and 5.3 we evaluated the range of uncertainty associated with
the attempt to assess the Shannon entropy of an information source based on the
estimation of the probability py of the most probable symbol of the source, and we
defined what should be the length L of the sequence of generated symbols that the
estimator must analyze to correctly recognize what the value of this probability is.

On the basis of the obtained results, we can establish that:
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Figure 5.6: Numerical calculation of (5.57) and comparison with Monte Carlo sim-
ulation results (blue crosses), for N = 5, L = 20 and the uniform probability mass
function P € M(5) (one million sequences). Highly improbable events require orders
of magnitude longer Monte Carlo simulations for being detected.
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e the uncertainty given by an entropy estimator based on the evaluation of the
probability pg of the most probable symbol is not constant, as it depends on
the value of py;

e according to the values of M and L, the calculation of the probability P(¥}/ )
through the application of (5.57) can become unfeasible because of the mag-
nitude of the involved parameters.

However, the principle underlying an estimator of this type can be used for com-
parative purposes applied to sets of sources, rather than for the assessment of the
entropy of a single source.

Consider a set of sources with different maximum symbol generation probabili-
ties.

Since both the best-case and the worst-case entropies are monotonically decreas-
ing functions of pgy, the source in the set with the lowest py will be more likely to
have higher entropy with respect to the other sources.

Furthermore, if we limit our goal to the identification of the source with the
lowest py in the set, we can find heuristically a minimum value of L for which the
source with the lowest py in the set is identified.

These considerations are the starting point of a procedure for identifying the

information source with the maximum worst-case entropy within a set, defined as
the Maximum Worst-Case Entropy Selector (MWCES).

5.4.1 Source Selection Procedure

The source selection procedure is described by the algorithm shown in Fig. 5.7.

Consider a set of N entropy sources, each one generating K-bits long symbols.

To evaluate the sources entropy, we define 2% counters (symbol_count) with
overflow value equal to 2 (one counter per symbol in the dictionary) and another
counter (total_count) able to count up to 25+,

The algorithm scans sequentially all the sources to understand which one has
the lowest py and, therefore, the maximum entropy.

The procedure requires to sample the selected entropy source output and to
increase by one the values of the counter corresponding to the generated symbol and
of total_count. These operations are repeated until one of the symbol counters
reaches the 2° overflow value.

The py estimation is given by the value stored in total_count when the overflow
event happens, as it corresponds to the time needed to reach the overflow.

The source with the highest total_count value is, according to the selector, the
one with the lowest py and, consequently, the one with the highest entropy.

5.4.2 Algorithm Optimization Strategies

The algorithm complexity depends on three parameters, i.e. the number of
sources N, the symbols bit length K and the overflow value bit length L. The
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ALGORITHM A1:

1. best_source = 0;

2. best_count = 0;

3. for(source = 0; source < N; source++)
4. {

5. overflow = 0;

6 total_count = O0;

7 for(symbol = 0; symbol < 2~K; symbol++)
8. {

9. symbol_count [symbol] = 0;

10. }

11. while (overflow == 0)

12. {

13. symbol = get_sample(source);
14. symbol_count [symbol]++;

15. total_count++;

16. if (symbol_count[symbol] == 2-L)
17. {

18. overflow = 1;

19. }
20. }
21. if (total_count > best_count)
22. {
23. best_count = total_count;
24 . best_source = source;
25. }

Figure 5.7: Maximum Worst-Case Entropy Selector algorithm.
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maximum possible execution time is reached when, for every source, at the iteration
preceding the overflow all the symbol_count array elements are equal to 2% — 1.
This means that, referring to the worst case, the proposed algorithm has a time
complexity order O(N2K+L).

The time complexity grows with K and L as a power of 2, so these two parameters
should be kept as small as possible without affecting the selector performance. It is
not possible to understand a priori which are the minimum values of K and L that
match this condition, because they depend on the statistical properties of the sources
on which the MWCES is employed. At the same time, an a posteriori configuration
based on the knowledge of the sources statistical properties would make the use of
the MWCES useless, since in that condition we would already know which is the
source with the maximum ASE.

To overcome these problems, we defined a procedure for configuring K and L
which takes into consideration the specific sources to be analyzed without having to
directly evaluate their statistical properties.

The configuration procedure is described by the algorithm shown in Fig. 5.8.

Suppose that we want to apply the MWCES to a group of N sources with the
purpose of generating K,;4x-bits long symbols. To configure K and L we start
implementing M groups of these N sources. In each group, the sources are charac-
terized by slightly different statistical properties with respect to their equivalents in
the other groups; such differences are an effect of their implementation process.

For each source, a sequence of 28max+lamax K.+ bits long symbols is gener-
ated. Ljsax is the exponent of the maximum overflow threshold, defined as a power
of two, we can accept for the MWCES that we are implementing.

According to [55], a good rule of thumb for 2% is to set it greater than 10. The
minimum power of two greater than this value is 16, i.e. L = 4. For this reason the
algorithm takes 4 as a lower bound for L.

The generated sequences are used to compute the Kj;4x-bits ASEs. According
to this computation, we identify the maximum ASE of every group and we compute
the mean value of these maxima. The obtained parameter (ase_m) is taken as a
reference of the best performance the MWCES can reach on the considered sources.

At this point, we employ the MWCES on each group of sources, testing all the
possible combinations of K and L in the sets {1,2,..., Kyax} and {4,5,..., Lyax}
respectively. For each combination, we take the sources chosen by the MWCES in
every group and we compute the mean value ase_s of their K, 4x-bits ASEs, calcu-
lated in the previous phase. ase_s is compared with ase_m through the calculation
of the relative error between them. If the error is below the error tolerance ERR ;4 x,
the actual (K, L) combination is considered valid.

All the valid (K, L) combinations must be compared to understand which is the
one for which the MWCES would have the minimum complexity. To do so, we
defined a cost function:

C(K,L)y=2% -L+2-(K+1L). (5.59)

(5.59) refers to a raw implementation of the MWCES based on counting registers:
in this case the selector would employ 2% L-bits long registers (symbol_count) and
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ALGORITHM A2:
for(grp = 0; grp < M; grp++)

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44 .
45.
46.
47 .
48.

{

max_ase[grp]l = 0;
for(src = 0; src < N; src++)

{

for(samp = 0; samp < 2~ (K_MAX+L_MAX); samp++)
{
seqlgrp]l[src] [samp] = get_symbol(grp,src,K_MAX);
}
asel[grpl[src] = compute_ase(grp,src,K_MAX);
if (aselgrpl[src] > max_aselgrpl)
{

max_ase[grp] = asel[grpllsrc]l;

ase_m = mean(max_ase);

cost

K =
L =

= 2~K_MAX*L_MAX+2% (K_MAX+L_MAX) ;
K_MAX;
L_MAX;

for(k = 1; k <= K_MAX; k++)

{

for(l = 4; 1 <= L_MAX; 1++)

{

for(grp = 0; grp < M; grp++)
{
src = execute_mes(k,l,grp);
sel_ase[grp] = asel[grpllsrcl;
}
ase_s = mean(sel_ase);
mes_err = (ase_m-ase_s)/ase_m;
if (mes_err < ERR_MAX)
{
new_cost = 2 k*x1+2%x(k+1);
if (new_cost < cost)
{
cost = new_cost;
K = k;
L = 1;
}

else if(new_cost == cost && k < K)

K = k;
L = 1;

Figure 5.8: Proposed procedure to configure the parameters used in MWCES algo-
rithm (Fig. 5.7).
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Figure 5.9: Two-states Markov chain for the generation of random bit sequences.

two (K + L)-bits long registers (total_count and best_count). The cost function
corresponds to the total number of bits required by these registers, i.e. a first
evaluation of the hardware resources required by the MWCES.

The valid combination (K, L) with the lowest cost is the one chosen for the
considered application. If two combinations have the same cost, we choose the one
with the lowest K, because a lower K implies a lower number of registers, which
simplifies the overall MWCES architecture.

To better understand the presented procedure, an example based on Markov
chains is given in the following section.

5.5 Example Case: Markov Chain-Based MWCES
Test

To provide a demonstration of the procedure to be followed to configure and
apply the Maximum Worst-Case Entropy Selector (MWCES) algorithm, in this sec-
tion we present an example analysis performed on entropy sources based on Markov
chains. We chose this kind of sources because they allow, through a proper definition
of their transition matrix, to control the resulting ASE, as shown in the following.

Let’s consider the two-states Markov chain in Fig. 5.9.

The chain transition matrix Il is parametrized dependently on the probability =
to pass from state 0 to state 1:

~ |poo po| |1—m 0.5
- {pm pn] _[ - 0.5]. (5.60)

The steady-state probabilities to get a 0 or a 1 for a Markov chain of this kind can
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be computed solving the following system:

1—m 0.5 PO o PQ
{ s 0.5] [Pl] a [Pl] ’ (5.61)
where P; is the steady-state probability to get the symbol .
Remembering that Py + P, = 1, we obtain that:

P — 0.5
{ 07 w05 (5.62)
Py = 7105

7 is a probability, therefore it is a real number limited between 0 and 1. The obtained
steady-state probabilities are continuous on this domain and according to the value
of 7 it is possible to get both a deterministic source:

P=1
T=0=4"" : (5.63)
P1 = O
and a uniformly distributed source:
Py=10.5
r=05=1{" . (5.64)
P, =05

The Average Shannon Entropy is a combination of continuous functions in 7, so it
is again a continuous function:

ASE = _PO 10g2 PO — P1 10g2 P17 (565)

and since 7 can be tuned to get both a deterministic (ASE = 0) and a uniformly
distributed (ASE = 1) sources, the ASE image is continuously defined between 0
and 1.

This result can be extended to K-bits long symbols. In this case, the probability
to get a K-bits long symbol starting from an initial state P(bg), by € {0, 1} is:

P(b07 bla ey bK—Qa bK—l) - P(bO)pboblpblbg .. 'pbK,QbK,1 -

00 01 10 11
= P(bo)pls v vl vt

(5.66)

where py,,_5, is the probability to get a bit b; after a bit b;_1, and #i7j is the number
of ¢ to j bit transitions in the considered symbol.

Taking into account the proposed Markov chain, it can be observed that the
obtained probabilities are again continuous in 7 and at the steady-state they are
equal to:

P(by, by, ..., b_2,bx_1) = Py, (1 — m)#007#01( 5#10+#11 (5.67)

where Py, denotes the steady-state probabilities obtained in (5.62). Setting 7 equal
to 0 and to 0.5 we obtain again a deterministic and a uniformly distributed sources
respectively:

0= {0 =1 (5.68)
™= , .
P=0, i=1,...,28 -1
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Figure 5.10: 10-bits ASR distribution of the whole set of Markov chain-based entropy
sources. The blue dashed line indicates the mean value of the distribution.

T=05= P, = i=0,...,25 -1, (5.69)

2_K’
therefore the ASE image is continuously defined between 0 and 1 also when we

evaluate it for K-bits long symbols. The probabilities P, i = 0,...,2% — 1 are the
steady-state probabilities of the K-bits long symbols.

5.5.1 Experiments and Results

We simulated 1000 sources based on Markov chains, organized in M = 100
groups of N = 10 sources. The designed Markov chains are of the type shown in
Fig. 5.9, with 7 randomly chosen on the interval 0.3 & 20%.

We fixed the maximum symbol bit length at Kp;ax = 10 and the maximum
threshold bit length at Ly;4x = 10.

The resulting 10-bits Average Shannon Redundancies (ASRs), as shown in Fig.
5.10, are distributed on the interval [0.115,0.284] bit/sym, with a mean value equal
to 0.194 bit/sym and a standard deviation equal to 0.048 bit/sym.

Looking only at the 10-bits ASE of the best sources for each group, shown in Fig.
5.11, we observe that an optimal selector would increase the performance narrowing
the distribution on the interval [0.115,0.175] bit/sym, with a mean value equal to
0.128 bit/sym and a standard deviation equal to 0.012 bit/sym.

The error tolerance was set at ERRyax = 1%. The (K, L) combination match-
ing the error threshold condition that minimizes the cost function (5.59) is (K, L) =
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Figure 5.11: 10-bits ASR distribution of the best sources for each group of Markov
chain-based entropy sources. The blue dashed line indicates the mean value of the
whole set of sources, while the red dashed line corresponds to the mean value of the
best sources for each group.

(2,9). The 10-bits ASR distribution of the sources selected by the MWCES config-
ured with these parameters is shown in Fig. 5.12.

The ASE of the sources selected by the MWCES is distributed on the interval
[0.116,0.208] bit/sym, with a mean value equal to 0.134 bit/sym and a standard
deviation equal to 0.018 bit/sym. With respect to the optimal solution, we observe
that the MWCES introduces an error on the mean value of the 0.7% with an increase
of the standard deviation of 0.006 bit/sym.

5.6 Tunable Digital Nonlinear Oscillator

The test case of the MWCES based on Markov chains presented in Section
5.5 highlighted the possibility of using this estimation methodology to ensure a
maximization, net of a controlled error tolerance, of the entropy extractable from
a set of entropy sources, based solely on an approximate a priori knowledge of the
statistical characteristics of the involved sources. In this section we show how this
principle can be applied to Digital Nonlinear Oscillators, with the aim of mitigating
the performance variability introduced by their physical implementation.

Let us consider again the DNO topology analyzed in Chapter 4, whose structure
is shown again in Fig. 5.13.

In Section 4.5 we highlighted that, although it is capable of achieving particu-
larly high performance, the circuit is affected by a variability in terms of generated
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Figure 5.12: 10-bits ASR distribution of the sources selected by a MWCES config-
ured with K = 2 and L = 9 for each group of Markov chain-based entropy sources.
The blue dashed line indicates the mean value of the whole set of sources, the red
dashed line corresponds to the mean value of the best sources for each group, the
green dashed line is the mean value of the sources selected by the MWCES.
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Figure 5.13: The complete topology studied in Chapter 4, in which a nonlinear
oscillating structure (the nonlinear oscillator in Fig.4.8), is excited by a ring oscillator
to produce complex dynamics.
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Figure 5.14: DNO topology inspired by the topology shown in Fig. 5.13, modified
to be tunable through the MWCES. The red elements represent the active routing
delay introduced by its hardware implementation. The del and ff blocks represent
respectively a rectifying gate and a flip-flop, forming a 1-bit A/D converter.

entropy, caused by the differences in the hardware used to implement the resources
that compose it and by the routing between the pins of the LUTs.

Although in the specific analyzed case an optimized solution was presented that
reduces this variability, that is a 2:1 lossy compression based on the XORing of the
output bits of two implementations of the DNO operating in parallel, this problem
distinguishes any DNO.

In this context, the MWCES can be used as a generic solution, applicable to any
topology simply by applying small changes to the configuration of some used LUTS,
such as to make the routing of the circuit tunable, as described below for the circuit
of Fig. 5.13.

Consider the DNO topology shown in Fig. 5.14.

The represented circuit is a modified version of the topology presented in Chap-
ter 4. In fact, we can immediately recognize the three XOR and NXOR gates con-
nected in loops. The main difference is the presence of three negated multiplexers
(NMUXes) connected to form an independent loop.

From a logic point of view, this loop is equivalent to the three-stages Ring Os-
cillator, because the four inputs of each multiplexer are short circuited, forming a
single logic path. From an analog point of view, however, each line is character-
ized by a different propagation time (represented by the red delay blocks). For this
reason, the NMUXes loop can be seen as a frequency-programmable excitation sig-
nal generator, whose frequency can be chosen among a set of 64 different values,
obtained changing the value of the multiplexers control signal sel.

According to our analyzes, we expect the DNO dynamics to change in dependence
of the selected frequency. In this sense, the presented DNO topology describes a
set of 64 different complex dynamical systems, each one employable as an entropy

122



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

source, which can be selected simply fixing the value of sel.

A structure of this kind constitutes a clear application for the MWCES: it is
not possible to know a priori which is the best multiplexers configuration from an
entropy generation point of view, since the propagation times associated to the DNO
lines are different for each implementation; using the MWCES we expect to be able
to increase on average the circuit entropy without having to worry about the specific
characteristics of the implementation under consideration.

5.6.1 Experiments and Comments

To evaluate the performance of the MWCES in tuning the DNO proposed in
the previous section, we designed the circuit to be implemented on Xilinx Artix 7
FPGAs.

As shown in Fig. 5.14, the proposed circuit is composed by seven logic gates
and a flip-flop. Exploiting the attributes to be included in the RTL design already
described in Section 3.5, we took precise control on the resources placement to force
the FPGA synthesizer to implement the designed DNO in the most compact way,
programming only LUTSs belonging to a single CLB. In this way, we tried to maximize
the repeatability between different implementations of the same circuit in different
locations of the CLLB matrix. Unfortunately, we already know that this operation
does not allow to have control on the routing between the gates, since the ELBs
are interconnected through the switch matrices, whose internal connections are not
programmable. This lack of control, together with the parasitic effects introduced
by the hardware, make it impossible to determine a priori the performance of the
specific implementation of the circuit.

For this reason, we had to configure the MWCES in function of the Xilinx Artix
7 FPGA implementation of the DNO, following the procedure shown in Fig. 5.8.

We designed the circuit in five Xilinx Artix 7 xc7a35 FPGAs. In each device
we implemented sixteen different instances of the DNO, selecting their locations
to cover different areas of the matrix. All the implementations were sampled at a
frequency of 400 MHz. Referring to the MWCES procedure and remembering the
DNO topology is controlled by a 6-bits selection line (sel), with this configuration
we can analyze M = 80 groups of N = 25 = 64 sources.

We fixed the maximum symbol bit length at Ky;4x = 10 and the maximum
threshold bit length at Ly;ax = 9.

The resulting 10-bits ASRs, as shown in Fig. 5.15, are distributed on the interval
[0.020, 0.893] bit/sym, with a mean value equal to 0.083 bit/sym and a standard
deviation equal to 0.122 bit/sym.

The figure clearly shows that, even if on average the DNO implementation is
able to reach very high entropy values, a wrong configuration of the multiplexers
can lead to a marked deterioration in the performance. In fact, if we consider only
the best multiplexers setup for each implementation, the 10-bits ASE distribution
shrinks significantly, as shown in Fig. 5.16.

An optimal configuration of the multiplexers provides a 10-bits ASE distribution
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Figure 5.15: 10-bits ASR distribution of the whole set of DNOs, taking into account
any possible configuration of the multiplexers. The blue dashed line indicates the
mean value of the distribution.
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Figure 5.16: 10-bits ASR distribution of the DNOs, taking into account the best
configurations of the multiplexers. The blue dashed line indicates the mean value
of the whole set of sources, while the red dashed line corresponds to the mean value
of the best configuration for each implementation.

124



CHAPTER 5. MAXIMUM WORST-CASE ENTROPY SELECTOR

Selected sources ASR distribution

107 1072 107! 10°
10-bits Average Shannon Redundancy [bit/sym]

S
—_
I

©

o

®
I

o

o

0]
I

Frequency of cases
o
o
~
I

o

o

N
I

Figure 5.17: 10-bits ASR distribution of the sources selected by a MWCES con-
figured with K = 3 and L = 8 for each DNO implementation. The blue dashed
line indicates the mean value of the whole set of sources, the red dashed line cor-
responds to the mean value of the best multiplexer configuration for each instance,
the green dashed line is the mean value of the multiplexer configurations selected
by the MWCES.

defined on the interval [0.020,0.061] bit/sym, with a mean value equal to 0.031
bit/sym and a standard deviation equal to 0.009 bit/sym. From this result we can
expect therefore that, with a proper selection of the multiplexers inputs, even a
suboptimal setup could keep the DNO performance high.

To configure the MWCES, we set an error tolerance FRRy ax = 1%. The (K, L)
combination matching the error threshold condition that minimizes the cost function
(5.59) is (K, L) = (3,8). The 10-bits ASE distribution of the sources selected by
the MWCES configured with these parameters is shown in Fig. 5.17.

The ASE of the sources selected by the MWCES is distributed on the interval
[0.024,0.072] bit/sym, with a mean value equal to 0.038 bit/sym and a standard
deviation equal to 0.012 bit/sym. With respect to the optimal solution, we observe
that the MWCES introduces an error on the mean value of the 0.8% with an increase
of the standard deviation of 0.003 bit/sym.

This result represents a suboptimal solution, since the ASE that we can reach
with a configuration of this kind is slightly worse with respect to the maximum one.
However, if we compare it with the ASE distribution of the whole set of DNOs,
taking into account any possible configuration of the multiplexers, the performance
gain we get is evident.
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5.7 MWCES Hardware Implementation

To conclude the analyzes related to the MWCES algorithm, we decided to eval-
uate the hardware resources consumption associated with an implementation on
FPGA.

Here we report the VHDL description of the MWCES, assuming to use it to
compare 16 different sources.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD .ALL;

entity MaximumEntropySelector is
generic (

K : natural;
L : natural );
port (
clk : in std_logic;
en : in std_logic;
sources : in std_logic_vector (15 downto 0);
bestsource : out std_logic_vector(3 downto 0);

done : out std_logic );
end MaximumEntropySelector;

architecture Behavioral of MaximumEntropySelector is
type t_symcnt is array(integer range 2%*K-1 downto 0) of natural range 0 to 2xxL-1;
signal symbol : std_logic_vector(K-1 downto 0);

signal totcnt : natural range 0 to 2x*x(K+L)-1;

signal symcnt : t_symcnt;

signal bestcnt : natural range 0 to 2%*(K+L)-1;

signal bestpartialsrc : natural range 0 to 15;
begin

MWCES: process (clk)
type t_state is (BUILDSYM,COUNTSYM,CHECKTIME,6 UPDATESRC,STOP);

variable state : t_state;
variable srcsel : natural range 0 to 15;
variable bitcnt : natural range 0 to K-1;
variable symindex : natural range 0 to 2%*xK-1;
begin
if rising_edge (clk) then
if en = ?0’ then

state := BUILDSYM;

srcsel := 0;

bitcnt := 0;

syment <= (others => 0);

totcnt <= 0;

bestcnt <= 0;

bestsource <= (others => 0°);

done <= ’07;

else
case state is
when BUILDSYM =>

symbol (K-1 downto 1) <= symbol(K-2 downto 0);
symbol (0) <= sources (srcsel);
if bitcnt = K-1 then

bitcnt = 0;
state = COUNTSYM;
else
bitcnt := bitcnt+1;
end if;
when COUNTSYM =>
symindex := to_integer (unsigned (symbol));

totcnt <= totcnt+1;
if symcnt (symindex) = 2x*L-1 then
syment <= (others => 0);
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state := CHECKTIME;

else
symecnt (symindex) <= symcnt(symindex)+1;
state := BUILDSYM;

end if;

when CHECKTIME =>
if totcnt >= bestcnt then
bestcnt <= totcnt;
bestpartialsrc <= srcsel;
end if;
totcnt <= 03
state := UPDATESRC;
when UPDATESRC =>
if srcsel = 15 then
srcsel := 0;
bestsource <= std_logic_vector(to_unsigned (bestpartialsrc ,4));
state := STOP;
else
srcsel := srcsel+1;
state := BUILDSYM;
end if;
when STOP =>
done <= ’17?;
end case;
end if;
end if;
end process MWCES;
end Behavioral ;

We can consider this specific case without losing generality, as the number of
compared sources only affects the size of the ports sources and bestsource, indi-
cating the sources output signals and the selected source respectively, of the signal
bestpartialsource, that stores the best source number along the algorithm com-
putations, and of the variable srcsel, that selects the source to be analyzed. A
different number of analyzed sources would therefore determine a small variation in
the LUTs and flip-flops required for the implementation with respect to the hardware
resources that are dependent on the choice of K and L.

We used the above VHDL description of the MWCES to implement it on a
Xilinx Artix 7 xc7a65 FPGA using the Xilinx Vivado Design Suite. We synthesized
the VHDL design to evaluate the hardware resources consumption required by the
circuit for different values of K and L. Tables 5.2 and 5.3 report the number of LUTs
and flip-flops required by the the circuit for K =2,3,...,8 and for L =4,5,...,10.

If we compare the flip-flop numbers indicated in Table 5.3 with the minimum
theoretical flip-flop consumption defined by the cost function (5.59), reported in
Table 5.4, we observe that the FPGA implementation is coherent with the theoretical
expectations, since the flip-flops number grows linearly in function of L for fixed K
and exponentially in function of K for fixed L.

The flip-flops number required according to the Vivado design is higher with re-
spect to what indicated in Table 5.4 because the cost function takes into account only
the register required to store the symbols occurrences and to count the estimation
time, while in the implementation we have some additional logic.

Furthermore, the increment of flip-flops for increasing values of K and L is
slightly irregular, especially for high values of K and L. This is because of the syn-

thesizer strategies, that was left to freely operate according to a balanced area/time
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LUT
L

4 5 6 7 8 9 10

2135 38 42 50 47 50 53
3149 55 39 64 70 69 71
417 7 8 97 102 107 105

K 5118 130 143 145 180 177 190
6231 216 231 267 307 330 312
71338 370 408 448 482 519 572
81630 704 775 856 923 1000 1206

Table 5.2: Number of LUTs required to synthesize the MWCES algorithm in Xilinx
Vivado for K =2,3,...,8 and for L =4,5,...,10

FF
L
4 Y 6 7 8 9 10
21 49 95 61 67 73 79 85
31 69 79 89 99 109 119 129
41 104 122 140 158 176 194 212
K 5| 172 206 240 274 308 342 376
6 303 369 435 501 569 635 699
7562 694 824 956 1087 1217 1347
8

1084 1344 1602 1861 2124 2379 2641

Table 5.3: Number of flip-flops required to synthesize the MWCES algorithm in
.,8and for L =4,5,...,10.

Xilinx Vivado for K = 2,3, ..

C(K,L)

L
4 5 6 7T 8 9 10
2 28 34 40 46 52 53 64
3/ 46 56 66 76 8 96 106
41 80 98 116 134 152 170 188
K 5| 146 180 214 248 282 316 350
6| 276 342 408 474 540 606 672
7] 534 664 794 924 1054 1184 1314

8

1048 1306 1564 1822 2080 2338 2596

Table 5.4: Theoretical minimum number of flip-flops required to implement the
MWCES algorithm according to the cost function (5.59) for K =2,3,...,8 and for

L=4,5,...,10.
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design optimization strategy. In any case, the overall resource consumption is in
agreement with the expected theoretical one.

5.8 Conclusion

We presented an algorithm, called Maximum Worst-Case Entropy Selector (MWCES),
that aims to identify, within a set of entropy sources, which offers the best perfor-
mance in terms of worst-case entropy, also known in literature as "min-entropy".
The algorithm aims to assess the minimum entropy of a source, estimating what is
the probability of the most likely symbol that can be generated by the source.

We rigorously investigated what are the levels of uncertainty associated with an
assessment of the entropy of an information source on the basis of an estimate of this
type. Taking into account the properties of the Shannon entropy, we studied which
are the worst and best entropies of a source with a maximum symbol generation
probability py. We also studied, from a statistical point of view, which is the
minimum number of observations required by an estimator to properly estimate this
probability.

On the basis of these studies, we established that an estimator of the maximum
symbol generation probability of a sources has two main limitations:

e the range between the worst and best entropies given by py is a not constant
function of py;

e the optimal number of observations required by the estimator cannot be com-
puted because of the complexity of the required calculation.

For this reason, we established a better use of the estimator for the assessment of
the source with the maximum entropy among a set, observing that:

e the worst and best entropies are monotonically decreasing function of pg,
therefore a source with lower pgy with respect to another is more likely to have
higher entropy:

e it is possible to find heuristically a number of observations such to identify
which is the source in a set with the lowest py, regardless of its value.

Therefore, we defined a procedure for selecting the maximum worst-case entropy
source starting from a set of sources. This procedure counts the occurrences of the
symbols generated by a source and takes note of the time required by them to reach
an overflow value. The slowest source is the one with the lowest pg.

We proposed also a procedure for the correct choice of the selector parameter.
This probabilistic procedure adopts a statistical approach to establish which is the
minimum symbols bit length and the minimum overflow level for which the selection
error on the output Shannon entropy is lower than a certain threshold.

The selection algorithm was then applied in two notable examples, one based
on a set of sources defined starting from Markov chains, and the other based on a
modified version of the DNO presented in Chapter 4.
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In the examples, we applied the selector configuration procedure to propose an
implementation of the selector with minimum hardware resources consumption and
with a selection relative error on the output Shannon entropy lower than 1%.

Both cases showed that, downstream of a correct configuration, the selector is
able to maximize the output Shannon entropy of the set, net of a predefined relative
error threshold.

Finally, we proposed a design of the selector for its implementation in FPGAs.
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Chapter 6

Conclusion

In this thesis we introduced a new class of circuits that can be used as entropy
sources for True Random Number Generators, called Digital Nonlinear Oscillators
(DNOs), which constitute dynamical systems capable of supporting complex dy-
namics (periodic or chaotic) in the analog time-continuous domain, although they
are made of digital circuits.

The objective of this study was to demonstrate that circuits of this type can
define high-performance entropy sources suitable for the design of True Random
Number Generators on purely digital devices with limited resources, suitable for
lightweight cryptographic applications.

For this purpose, we initially showed through notable examples how different
circuits belonging to the DNO class can be characterized by different performance.

Subsequently, we introduced a set of tools that allow to analyze and design
DNOs. More in detail:

e two figures of merit, namely the Decorrelation Time and the Average Shannon
Entropy, for the comparative evaluation of the statistical characteristics of
DNOs were defined. This figures of merit provide additional information with
respectc to standard statistical tests, which are limited to providing saturated
binary outcome;

e a simplified theoretical investigation approach based on low-complexity dy-
namical models, whose purpose is to investigate which conditions favor com-
patibility with complex dynamics for a DNO starting from the analysis of the
stability of its fixed points, was proposed;

e an advanced numerical simulation setup in Cadence Virtuoso based on UMC
180 nm technology that deepens the results given by the study of the simplified
dynamical models was designed;

e design methodology for the implementation of a DNO on FPGAs, aimed at
taking control of the synthesizer place and route policies for the implementa-
tion of precise layouts were discussed.
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The introduced tools were used to investigate a novel DNO topology inspired by
the theory of forced nonlinear oscillators, characterized by chaotic dynamics. We
showed, through theoretical studies, numerical simulations and experiments, that
this topology achieves high performance, outperforming the most relevant recent
results proposed in literature both in terms of generated entropy and hardware
resources consumption.

We studied this topology extensively, using simplified dynamical models and in-
depth numerical simulations to establish under which conditions the circuit exhibits
chaotic behaviors, and testing experimentally its dynamical behavior through FPGA
implementations.

Specifically, the FPGA implementations allowed to evaluate the performance in
terms of generated entropy, the influence of routing on the considered performance,
the temperature sensitivity, to inspect physical output signals for a comparison with
the results obtained in simulation.

The proposed DNO was also able to pass the standard NIST 800.22 statistical
tests, requiring only a minimum post-processing, such that the complete system
(DNO and post-processing) presents a negligible complexity compared to the solu-
tions currently proposed in literature.

Finally, we presented an algorithm capable of identifying within a set of entropy
sources which one offers the maximum entropy, called Maximum Entropy Selector.
The algorithm aims to assess the worst-case entropy of a source, estimating what is
the probability of the most likely symbol that can be generated by the source.

We rigorously investigated what are the levels of uncertainty associated with an
assessment of the entropy of an information source on the basis of an estimate of this
type. We also studied, from a statistical point of view, which is the minimum number
of observations required by an estimator to properly estimate this probability.

On the basis of these investigations, we defined a procedure for selecting the max-
imum entropy source starting from a set of sources. We provided also a procedure
for the correct choice of the selector parameter.

The selection algorithm was then applied in two notable examples, one based
on a set of sources defined starting from Markov chains, and the other based on a
modified version of the high-performance DNO.

Finally, we proposed a design of the selector for its implementation in FPGAs.

On the basis of the presented results, it is possible to conclude that DNOs
represent a class of circuits that can be used for the design of high-performance
True Random Number Generators based on purely digital hardware, opening new
perspectives in the field of lightweight cryptography regarding the integration of
TRNGs compliant to cryptographic security standards even in devices with limited
resources.

132



Bibliography

[1]

2]
3]

4]

[5]

(6]

7]

8]

9]

[10]

S. Vaudenay, A classical introduction to cryptography: Applications for com-
munications security. Springer Science & Business Media, 2006.

J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press, 2014.

D. R. Stinson and M. Paterson, Cryptography: theory and practice. CRC press,
2018.

L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, E. B.
Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L.. Banks et al., Sp 800-22
rev. la. a statistical test suite for random and pseudorandom number generators

for cryptographic applications. National Institute of Standards & Technology,
2010.

A. J. Acosta, T. Addabbo, and E. Tena-Sanchez, “Embedded electronic circuits
for cryptography, hardware security and true random number generation: an
overview,” International Journal of Circuit Theory and Applications, vol. 45,
no. 2, pp. 145-169, 2017.

M. Delgado Restituto and A. B. Rodriguez Vazquez, “Integrated chaos gen-
erators,” in Proceedings of the IEEE. Institute of Electrical and Electronics
Engineers, 2002.

M. P. Li, Jitter, noise, and signal integrity at high-speed. Pearson Education,
2007.

T. Yamazaki and A. Uchida, “Performance of random number generators us-
ing noise-based superluminescent diode and chaos-based semiconductor lasers,”
IEEE Journal of Selected Topics in Quantum FElectronics, vol. 19, no. 4, pp.
0600 309-0 600 309, 2013.

T.-K. Kuan, Y.-H. Chiang, and S.-I. Liu, “A 0.43 pj/bit true random number
generator,” in 201/ IEEE Asian Solid-State Circuits Conference (A-SSCC).
IEEE, 2014, pp. 33-36.

S. Yasuda, H. Satake, T. Tanamoto, R. Ohba, K. Uchida, and S. Fujita, “Phys-
ical random number generator based on mos structure after soft breakdown,”
IEEE journal of solid-state circuits, vol. 39, no. 8, pp. 1375-1377, 2004.



BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

21]

[22]

J. Holleman, S. Bridges, B. P. Otis, and C. Diorio, “A 3 pw c¢mos true random
number generator with adaptive floating-gate offset cancellation,” IEEE Journal
of Solid-State Circuits, vol. 43, no. 5, pp. 1324-1336, 2008.

M. Peri¢, P. Mili¢evié¢, Z. Banjac, V. Orli¢, and S. Mili¢evié¢, “High speed random
number generator for section key generation in encryption devices,” in 2013 21st
Telecommunications Forum Telfor (TELFOR). 1EEE, 2013, pp. 117-120.

C. De Roover and M. Steyaert, “A 500 mv 650 pw random number generator in
130 nm cmos for a uwb localization system,” in 2010 Proceedings of ESSCIRC.
[EEE, 2010, pp. 278-281.

H. Zhun and C. Hongyi, “A truly random number generator based on thermal
noise,” in ASICON 2001. 2001 4th International Conference on ASIC Proceed-
ings (Cat. No. 01TH8549). TEEE, 2001, pp. 862-864.

A. Khanmohammadi, R. Enne, M. Hofbauer, and H. Zimmermanna, “A mono-
lithic silicon quantum random number generator based on measurement of pho-
ton detection time,” IEEE Photonics Journal, vol. 7, no. 5, pp. 1-13, 2015.

H. Hata and S. Ichikawa, “Fpga implementation of metastability-based true
random number generator,” IEICE TRANSACTIONS on Information and Sys-
tems, vol. 95, no. 2, pp. 426-436, 2012.

J.-L. Danger, S. Guilley, and P. Hoogvorst, “High speed true random number
generator based on open loop structures in fpgas,” Microelectronics journal,
vol. 40, no. 11, pp. 16501656, 2009.

B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true random
number generator with built-in tolerance to active attacks,” IEEE Transactions
on computers, vol. 56, no. 1, pp. 109-119, 2006.

M. Raitza, M. Vogt, C. Hochberger, and T. Pionteck, “Raw 2014: Random
number generators on fpgas,” ACM Transactions on Reconfigurable Technology
and Systems (TRETS), vol. 9, no. 2, pp. 1-21, 2015.

K. H. Tsoi, K. Leung, and P. H. W. Leong, “Compact fpga-based true and
pseudo random number generators,” in 11th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2003. FCCM 2003. 1EEE, 2003,
pp- o1-61.

K. Wold and C. H. Tan, “Analysis and enhancement of random number gen-

erator in fpga based on oscillator rings,” in 2008 International Conference on
Reconfigurable Computing and FPGAs. 1EEE, 2008, pp. 385-390.

U. Giiler, S. Ergiin, and G. Diindar, “A digital ic random number generator with
logic gates only,” in 2010 17th IEEE International Conference on Electronics,
Circuits and Systems. TEEE, 2010, pp. 239-242.



BIBLIOGRAPHY

23]

[24]

[25]

[26]

27]

28]

[29]

[30]
[31]

[32]

33]

[34]

T. Addabbo, M. Alioto, A. Fort, S. Rocchi, and V. Vignoli, “The digital tent
map: Performance analysis and optimized design as a low-complexity source of

pseudorandom bits,” IEEE Transactions on Instrumentation and Measurement,
vol. 55, no. 5, pp. 1451-1458, 2006.

M. Dichtl and J. D. Goli¢, “High-speed true random number generation with
logic gates only,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2007, pp. 45-62.

H. Martin, T. Korak, E. San Millan, and M. Hutter, “Fault attacks on strngs:
Impact of glitches, temperature, and underpowering on randomness,” IFEFE

transactions on information forensics and security, vol. 10, no. 2, pp. 266277,
2014.

M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux, “On the security of
oscillator-based random number generators,” Journal of cryptology, vol. 24,
no. 2, pp. 398-425, 2011.

T. Amaki, M. Hashimoto, Y. Mitsuyama, and T. Onoye, “A worst-case-aware
design methodology for noise-tolerant oscillator-based true random number gen-
erator with stochastic behavior modeling,” IEEFE transactions on information
forensics and security, vol. 8, no. 8, pp. 1331-1342, 2013.

J. Yang, Y. Ma, T. Chen, J. Lin, and J. Jing, “Extracting more entropy for
trngs based on coherent sampling,” in International Conference on Security
and Privacy in Communication Systems. Springer, 2016, pp. 694-709.

T. Addabbo, A. Fort, M. Mugnaini, V. Vignoli, and M. Garcia-Bosque, “Digital
nonlinear oscillators in plds: Pitfalls and open perspectives for a novel class of
true random number generators,” in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS). TEEE, 2018, pp. 1-5.

Xilinx, 7 Series FPGAs CLB User Guide - UG474 (v1.8), Sep. 2016.

I. Vasyltsov, E. Hambardzumyan, Y.-S. Kim, and B. Karpinskyy, “Fast dig-
ital trng based on metastable ring oscillator,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2008, pp. 164—-180.

V. Fischer, F. Bernard, N. Bochard, and M. Varchola, “Enhancing security of
ring oscillator-based trng implemented in fpga,” in 2008 International Confer-
ence on Field Programmable Logic and Applications. TEEE, 2008, pp. 245-250.

R. Sivaraman, S. Rajagopalan, J. B. B. Rayappan, and R. Amirtharajan, “Ring
oscillator as confusion—diffusion agent: a complete trng drove image security,”
IET Image Processing, vol. 14, no. 13, pp. 2987-2997, 2020.

M. A. Prada-Delgado, C. Martinez-Gémez, and 1. Baturone, “Auto-calibrated
ring oscillator trng based on jitter accumulation,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). TEEE, 2020, pp. 1-4.



BIBLIOGRAPHY

[35]

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

N. Bochard, F. Bernard, V. Fischer, and B. Valtchanov, “True-randomness and
pseudo-randomness in ring oscillator-based true random number generators,”
International Journal of Reconfigurable Computing, vol. 2010, 2010.

J. D. Golic, “New methods for digital generation and postprocessing of random
data,” IEEFE transactions on computers, vol. 55, no. 10, pp. 1217-1229, 2006.

T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, V. Vignoli, and M. G. Bosque,
“Lightweight true random bit generators in plds: Figures of merit and perfor-
mance comparison,” in 2019 IEEE International Symposium on Circuits and

Systems (ISCAS). TEEE, 2019, pp. 1-5.

T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, and V. Vignoli, “Analysis of
a circuit primitive for the reliable design of digital nonlinear oscillators,” in
2019 15th Conference on Ph. D Research in Microelectronics and FElectronics
(PRIME). 1EEE, 2019, pp. 189-192.

F. Pareschi, R. Rovatti, and G. Setti, “On statistical tests for randomness in-
cluded in the nist sp800-22 test suite and based on the binomial distribution,”
IEEE Transactions on Information Forensics and Security, vol. 7, no. 2, pp.
491-505, 2012.

Xilinx, Vivado Design Suite Properties Reference Guide - UG912 (v2020.1),
Jul. 2020.

T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and V. Vignoli,
“Chaos in fully digital circuits: A novel approach to the design of entropy

sources,” in 2020 IEEE International Symposium on Circuits and Systems (IS-
CAS). I1EEE, 2020, pp. 1-5.

——, “A new class of chaotic sources in programmable logic devices,” in 2020
IEEFE International Workshop on Metrology for Industry 4.0 € IoT. 1EEE,
2020, pp. 6-10.

——, “A new class of digital circuits for the design of entropy sources in pro-
grammable logic,” IEEE Transactions on Circuits and Systems I: Regular Pa-
pers, vol. 67, no. 7, pp. 2419-2430, 2020.

P. Bak, T. Bohr, and M. H. Jensen, “Mode-locking and the transition to chaos
in dissipative systems,” Physica Scripta, vol. 1985, no. T9, p. 50, 1985.

L. Cveticanin, “Forced pure nonlinear symmetrical oscillators,” Mathematical
and Computer Modelling, vol. 55, no. 3-4, pp. 1580-1593, 2012.

C. Miwadinou, A. Monwanou, J. Yovogan, L. Hinvi, P. N. Tuwa, and J. C. Orou,
“Modeling nonlinear dissipative chemical dynamics by a forced modified van der
pol-duffing oscillator with asymmetric potential: chaotic behaviors predictions,”
Chinese journal of physics, vol. 56, no. 3, pp. 1089-1104, 2018.



BIBLIOGRAPHY

[47]

48]

[49]
[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

C. Ainamon, C. Miwadinou, A. Monwanou, and J. C. Orou, “Analysis of mul-
tiresonance and chaotic behavior of the polarization in materials modeled by
a duffing equation with multifrequency excitations,” Applied Physics Research,
vol. 6, no. 6, p. 74, 2014.

I[. Bashkirtseva and L. Ryashko, “Sensitivity and chaos control for the forced
nonlinear oscillations,” Chaos, Solitons ¢ Fractals, vol. 26, no. 5, pp. 14371451,
2005.

E. Ott, Chaos in dynamical systems. Cambridge university press, 2002.

J. K. Hale and H. Kocak, Dynamics and bifurcations. Springer Science &
Business Media, 2012, vol. 3.

N. Paydavosi, T. H. Morshed, D. D. Lu, W. M. Yang, M. V. Dunga, X. J.
Xi, J. He, W. Liu, M. C. Kanyu, X. Jin et al., “Bsim4v4. 8.0 mosfet model,”
University of California, Berkeley (CA), 2013.

E. A. Gutiérrez-D, Nano-scaled semiconductor devices: physics, modelling,
characterisation, and societal impact. The Institution of Engineering and Tech-
nology, 2016.

M. Grundmann, Physics of semiconductors. Springer, 2010, vol. 11.

S. M. Sze, Semiconductor devices: physics and technology. John wiley & sons,
2008.

T. Addabbo, M. Alioto, A. Fort, S. Rocchi, and V. Vignoli, “A variability-
tolerant feedback technique for throughput maximization of trbgs with prede-

fined entropy,” Journal of Circuits, Systems, and Computers, vol. 19, no. 04,
pp. 879-895, 2010.

M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and M. Boyle,
“Recommendation for the entropy sources used for random bit generation,”
NIST Special Publication, vol. 800, no. 90B, 2018.

X. Yang and R. C. Cheung, “A complementary architecture for high-speed
true random number generator,” in 2014 International Conference on Field-
Programmable Technology (FPT). ITEEE, 2014, pp. 248-251.

T. Addabbo, A. Fort, D. Papini, S. Rocchi, and V. Vignoli, “Invariant measures
of tunable chaotic sources: Robustness analysis and efficient estimation,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 4, pp.
806-819, 2008.

N. N. Anandakumar, S. K. Sanadhya, and M. S. Hashmi, “Fpga-based true ran-
dom number generation using programmable delays in oscillator-rings,” IEFEE

Transactions on Circuits and Systems II: Ezxpress Briefs, vol. 67, no. 3, pp.
570-574, 2019.



BIBLIOGRAPHY

[60]

[61]

[62]

[63]

[64]

[65]

G. D. P. Stanchieri, A. De Marcellis, E. Palange, and M. Faccio, “A true random
number generator architecture based on a reduced number of fpga primitives,”

AEU-International Journal of Electronics and Communications, vol. 105, pp.
15-23, 2019.

M. Tuna, A. Karthikeyan, K. Rajagopal, M. Alcin, and I. Koyuncu, “Hyperjerk
multiscroll oscillators with megastability: analysis, fpga implementation and a
novel ann-ring-based true random number generator,” AEU-International Jour-
nal of Electronics and Communications, vol. 112, p. 152941, 2019.

X. Wu and S. Li, “A new digital true random number generator based on delay
chain feedback loop,” in 2017 IEEE International Symposium on Circuits and
Systems (ISCAS). TEEE, 2017, pp. 1-4.

P. Z. Wieczorek, “An fpga implementation of the resolve time-based true ran-
dom number generator with quality control,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 61, no. 12, pp. 34503459, 2014.

S. Tao, Y. Yu, and E. Dubrova, “Fpga based true random number generators
using non-linear feedback ring oscillators,” in 2018 16th IEEE International
New Circuits and Systems Conference (NEWCAS). TEEE, 2018, pp. 213-216.

C. E. Shannon, “A mathematical theory of communication,” The Bell system
technical journal, vol. 27, no. 3, pp. 379423, 1948.



		2021-05-14T13:04:02+0000
	MORETTI RICCARDO




