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Utility maximization with current utility on the wealth:

regularity of solutions to the HJB equation ∗
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Abstract

This paper deals with an investment-consumption portfolio problem when the cur-

rent utility depends also on the wealth process. Such kind of problems arise, e.g., in

portfolio optimization with random horizon or with random trading times. To overcome

the difficulties of the problem a dual approach is employed: a dual control problem is

defined and treated by means of dynamic programming, showing that the viscosity so-

lutions of the associated Hamilton-Jacobi-Bellman equation belong to a suitable class

of smooth functions. This allows to define a smooth solution of the primal Hamilton-

Jacobi-Bellman equation and to prove, by verification, that such solution is indeed

unique in a suitable class of smooth functions and coincides with the value function of

the primal problem. Applications of the results to specific financial problems are given.
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Italy. E-mail: fgozzi@luiss.it

1



4 The dual value function as classical solution of the dual HJB equation 12

4.1 W as viscosity solution of the dual HJB equation . . . . . . . . . . . . . . . 12

4.2 Regularity of W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Back to the primal control problem: verification and optimal controls 19

5.1 W̃ as a classical solution of the primal HJB equation . . . . . . . . . . . . . 20

5.2 Verification theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Optimal feedback controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 An alternative way to optimality : probabilistic duality . . . . . . . . . . . 26

6 Applications 29

6.1 Portfolio optimization with random horizon . . . . . . . . . . . . . . . . . . 29

6.2 Investment/consumption problems in markets with illiquid assets . . . . . . 30

1 Introduction

This paper deals with the problem of utility maximization in consumption-investment mod-

els over a fixed horizon when the current utility depends also on the wealth process. The

fact that the current utility may depend also on the wealth is motivated by the fact that

this situation arises in some concrete financial problems, as discussed in Section 6.

We tackle the problem by duality and using a dynamic programming approach both on

the primal and on the dual problem. Since the papers by Karatzas, Lehoczky and Shreve

[18] and by Cox and Huang [7], the duality approach to consumption-investment problems

has been extensively treated in the literature (see the survey paper by Rogers [24], and the

book by Karatzas and Shreve [20, Ch. 3 and 6] - and the references therein) to treat gen-

eralizations of the classical Merton problem (incomplete markets, non-Markovian setting,

strategies constraints, transaction costs, etc.). Notably with regard to our paper, Bouchard

and Pham [4] treat the case of current utility depending on the wealth in a semimartingale

setting without developing the dynamic programming approach.

When the stock is assumed to evolve according to a stochastic differential equation, one

can apply the dynamic programming machinery both to the primal and the dual problem

to get some more insights on the solution of the problem. In particular the duality can be

read at the analytical level of the Hamilton-Jacobi-Bellman (HJB) equation, providing a

dual equation. This is what is done in Bian, Miao and Zheng [2] (see also the extension

of such results in [3]) in the case of no current utility on the wealth. But, as far as we

know, duality has been never employed combined with the dynamic programming when

the current utility depends on the wealth process. This may be due to the fact that when

there is no dependence of the current utility on the wealth process the HJB equation

associated to the dual problem is linear - so approachable by semi-explicit solution written

in terms of the heat kernel (see [2, 3]) - while when the current utility also depends on

the wealth such HJB equation is just semi-linear - so more difficult to study. At the level

of control problems, this corresponds to the fact that in the former case the dual problem

is simpler, as the control does not appear in it, while in the latter one the dual problem
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is a real control problem (these issues are discussed in Remark 3.1). Nevertheless, also in

this last case, the dual control problem is still simpler to treat than the primal one, as the

control only appears in the drift of the process, consistently with the fact that the HJB

equation is semilinear (while the HJB equation associated to the primal control problem is

fully nonlinear and degenerate, so very difficult to tackle directly by the PDE’s theory of

classical solutions).1

Our method to solve the problem is the following.

Step 1 : Starting from the original primal problem (with value function V and an asso-

ciated primal HJB equation), we define a dual problem, which is still a control problem,

Step 2 : We associate to the dual problem a dual HJB equation and prove that the

value function W of this dual problem is a viscosity solution of the dual HJB equation

(Proposition 4.4).

Step 3 : Since the dual HJB equation is semilinear and nondegenerate, we are able to

prove good regularity results for W . This is proved in Theorem 4.5, which is the key result

of the paper.

Step 4 : The regularity of W allows to define a smooth solution to the primal HJB

equation, which is the Legendre transform W̃ of W .

Step 5 : We prove a verification theorem for our primal problem within a suitable class

C of smooth solutions of the primal HJB equation. Since W̃ ∈ C, this theorem, together

with a result of existence and uniqueness for the associated closed loop equation, will imply

that W̃ = V and that V is the unique classical solution of the primal HJB equation within

the class C. These results will yield also the construction of an optimal feedback control

for the primal problem.

The rest of the paper is organized as follows. In Section 2 we set the problem and state

the assumptions. In Section 3 we define the dual problem (Step 1 above). In Section 4 we

study the dual HJB equation by a viscosity approach and state the regularity of the value

function W (Steps 2 and 3 above). In Section 5 we prove that V is a classical solution of

the HJB equation and provide the optimal feedbacks through a verification theorem (Steps

4 and 5 above); moreover we also provide an alternative approach based on the exploiting

of the duality at a probabilistic level. Finally, Section 6 provides two concrete applications

of our framework.

2 Model and optimal control problem

In this section we present the financial model and the (primal) stochastic control problem

we deal with.

Let us consider a complete filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual

conditions, on which is defined a standard Brownian motion (Bt)t≥0. We assume that

(Ft)t≥0 is the filtration generated by this Brownian motion and enlarged by the P-null sets.

1We also should mention the paper [25], where the HJB equation associated to the dual problem is again

fully nonlinear, but admits a semi-explicit solution in the form of a power series.
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On this space we consider a riskless asset with deterministic rate of return that without

loss of generality (see Remark 2.3(ii) below) we set equal to 0, and a risky asset S = (St)t≥0

with dynamics

dSt = St (b(t)dt+ σ(t)dBt),

where b, σ are deterministic coefficients representing, respectively, the drift and the volatil-

ity of the risky asset.

Fix a time horizon T > 0. In the setting above, we define a set of admissible trad-

ing/consumption strategies in the following way. Consider all the couples of processes

(c, π) such that

(h1) c = (ct)t∈[0,T ] is a real nonnegative process (Ft)t∈[0,T ]-predictable and with trajectories

locally integrable in [0, T ); ct represents the consumption rate at time t;

(h2) π = (πt)t∈[0,T ] is a real process (Ft)t∈[0,T ]-predictable and with trajectories locally

square integrable in [0, T ); πt represents the amount of money invested in the risky

asset at time t.

Given a couple (c, π) satisfying the requirements (h1)-(h2) above, we can consider the

process Xt representing the wealth associated to such strategy. Its dynamics are given by{
dXt = πt(b(t)dt+ σ(t)dBt)− ctdt,
X0 = x0,

(1)

where x0 ≥ 0 is the initial wealth. As class of admissible controls we consider the couples

of processes (c, π) satisfying (h1)-(h2) and such that the corresponding wealth process X

is nonnegative (no-bankruptcy constraint). The optimization problem is

E
[∫ T

0
U1(t, ct, Xt)dt+ U2(XT )

]
. (2)

We introduce the following notations that will be used in the paper.

- R+ := [0,+∞).

- Given an integer k ≥ 0, a real number δ ∈ (0, 1] and O ⊂ Rn open, the symbol

C
δ
2
,k+δ

loc ([0, T )×O;R) shall denote the space of real continuous functions on [0, T )×O
such that all the space derivatives up to order k exist and are δ/2-Hölder continuous

with respect to t and δ-Hölder continuous with respect to the space variables on each

compact subset of [0, T )×O.

- Given an integer k ≥ 0, a real number δ ∈ (0, 1] and O ⊂ Rn open, the symbol

C
1+ δ

2
,k+δ

loc ([0, T )×O;R) shall denote the space of real continuous functions on [0, T )×O
such that the first time derivative and all the space derivatives up to order k exist and

are δ/2-Hölder continuous with respect to t and δ-Hölder continuous with respect to

the space variables on each compact subset of [0, T )×O.
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We make the following assumptions on the model.

Assumption 2.1 b, σ : [0, T ] → R are strictly positive and (δ/2)-Hölder continuous for

some δ ∈ (0, 1].

Assumption 2.2 The preference of the agent are described by utility functions U1, U2 sat-

isfying the following:

(i) U1 : [0, T ) × R2
+ → R is such that U1 ∈ Cδ/2,k+δ

loc ([0, T ) × (0,+∞) × (0,+∞);R) for

some k ≥ 2 (and the same δ of Assumption 2.1). For each fixed t ∈ [0, T ) the function

U1(t, ·, ·) is concave with respect to (c, x) and nondecreasing with respect to both the

variables c, x.

Moreover either

(a)



∂
∂c U1(t, 0+, x) = +∞, ∀(t, x) ∈ [0, T )× R+,

∂
∂c U1(t,+∞, x) = 0, ∀(t, x) ∈ [0, T )× R+,

∂
∂c U1 > 0, ∂2

∂c2
U1 < 0, in [0, T )× (0,+∞)× (0,+∞),

or

(b)
∂

∂c
U1 ≡ 0.

(ii) U2 : R+ → R is continuous, nondecreasing, concave. Without loss of generality we

assume

U2(0) = 0. (3)

(iii) The following growth condition holds: there exist K > 0 and p ∈ (0, 1) such that

U1(t, c, x) + U2(x) ≤ K(1 + cp + xp), ∀(t, c, x) ∈ [0, T )× R2
+. (4)

Moreover, without loss of generality for the optimization problem, we assume that

U1(t, 0, 0) = 0, ∀t ∈ [0, T ). (5)

(iv) Either

(a) ∃ ε > 0 such that lim
c→+∞

U1(t, c, 0) = +∞ uniformly in t ∈ [T − ε, T ),

or

(b) lim
x→+∞

U2(x) = +∞

or both.

In the remark below we comment on some features of the model and explain when and how

they can be eventually modified to cover other interesting cases.
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Remark 2.3 (i) In the applications one is often interested to work with power utility

functions. Assumption 2.2 includes only the case of positive power. On one hand the case

of negative exponent is interesting, as it seems to be even more realistic from the point

of view of the agents’ behavior; on the other hand, it would require a slightly different

treatment. Just for simplicity, we will work with Assumption 2.2, nevertheless we stress

that the case of negative power utility can be treated by the same techniques by suitable

modifications.

(ii) The assumption that the riskless rate of return is 0 can be done without loss of

generality. Indeed, since we are considering a quite general time-dependent U1, the interest

rate can be discarded in it by a suitable discounting of the variables (see [17, Rem. 2, p. 189]).

(iii) The problem without consumption falls in our setting as well. Indeed, take a prob-

lem without consumption and with running utility u1(t, x). Defining U1(t, c, x) = u1(t, x) in

our setting, consuming turns out to be not convenient, as its negative effect on the wealth

does not have a trade-off in terms of utility from consumption. In other terms, the optimal

consumption is c∗t ≡ 0. As a consequence the problem in our setting with U1 defined as

above is equivalent to the problem without consumption and with utility function u1. In

particular, when u1 ≡ 0 we fall in the setting of [2].

(iv) We have set the problem with finite horizon. However, some problems arising in

the applications - see Section 6 - involve the infinite horizon case, where T = +∞, for

which the functional usually looks like

E
[∫ ∞

0
e−ρtU1(t, ct, Xt)dt

]
,

where, as usual for infinite horizon problems, ρ > 0 is a discount rate sufficiently large

to guarantee the finiteness of the value function. The results we provide in the present

paper for the finite horizon case can be suitably generalized to the infinite horizon case,

with the complication of dealing in the viscosity treatment of the HJB equation with growth

conditions for t → +∞ in place of terminal boundary conditions at t = T . We refer, e.g.,

to [12] for an example of the technical treatment of this kind of conditions and stress here

that our main results - the regularity results - do not “see” whether the horizon is finite or

infinite, as they are based on local arguments. Of course, in this case one needs to assume

that Assumption 2.2(iv) is satisfied at point (a).

(v) We comment on Assumption 2.2(i). It requires that either U1 is independent of c

or it satisfies Inada’s conditions with respect to c. We need this assumption to get in a

straightforward way the regularity of the Legendre transform of U1 with respect to c (Propo-

sition 4.1(6)), which is in turn needed to get the regularity of the dual value function,

see Section 4.2. Basically it is thought to cover the case of separable utility in the form

U1(t, c, x) = U
(1)
1 (t, c) + U

(2)
1 (t, x), where U

(1)
1 is identically 0 or satisfies the Inada condi-

tions with respect to c, which is the case arising in the applications we have in mind (see

Section 6). Relaxing this assumption seems possible, but at a price of more demanding

technical arguments. We prefer to avoid such technicalities in order to focus on the main

topic of the paper, which is the the regularity of solutions of the HJB equation by means of

the duality approach.
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(vi) The assumption of strict positivity of b, σ is done to have strict parabolicity of the

HJB equation. Actually this is needed only in the interior, so we might allow the cases

b(T ) = 0 and/or σ(T ) = 0. However, allowing that would bring some other technicalities,

so we prefer to impose strict positivity also at T . We also stress that we actually need just

the assumption b(t) 6= 0 for all t ∈ [0, T ]; but, due to continuity, this is equivalent to say

that b keeps the sign. Since the assumption making sense from a financial point of view is

b(·) > 0, we impose it.

(vii) Although for simplicity we consider in our model the case of just one risky asset,

it is easy to see that the program we described in the introduction works also in more

dimensions (more risky assets, as in [2]). In that case strict positivity of b(t) and σ(t) in

Assumption 2.1 should be replaced by the assumption that for all t ∈ [0, T ) (the matrix)

σ(t) is invertible and (the vector) b(t) 6= 0, so that in the dual HJB equation (26) the term

|σ−1(t)b(t)|2 is then still well-defined and strictly positive.

(viii) We are concerned with a utility maximization problem. Nevertheless, our ap-

proach seems applicable also to different cases, e.g. to the case of quadratic risk minimiza-

tion, by suitably adapting the arguments.

3 Primal and dual control problem

Since we are going to apply the dynamic programming techniques, we define the optimiza-

tion problem for generic initial data (t, x) ∈ [0, T ]×R+. Let t ∈ [0, T ] and consider all the

couples of processes (c, π) such that

(h1′) c = (cs)s∈[t,T ] is a real nonnegative process (Fs)s∈[t,T ]-predictable and with trajectories

locally integrable in [0, T ).

(h2′) π = (πs)s∈[t,T ] is a real process (Fs)s∈[t,T ]-predictable and with trajectories square

locally integrable in [0, T ).

Given x ≥ 0 and a couple (c, π) satisfying the requirements (h1′)-(h2′) above, we denote by

Xt,x,c,π the solution to (1) starting at time t from x and under the control (c, π). We define

a class of admissible controls A(t, x) depending on the initial (t, x) ∈ [0, T ]× [0,+∞) as the

set of couples (c, π) satisfying the requirement above and such that the corresponding state

trajectory Xt,x,c,π is nonnegative. We notice that such set is nonempty for each t ∈ [0, T ]

and x ≥ 0, as for such initial data the null strategy (c, π) ≡ (0, 0) is always admissible.

Moreover A(t, x) = {(0, 0)} if and only if x = 0. Then we define the functional

J(t, x; c, π) := E
[∫ T

t
U1(s, cs, X

t,x,c,π
s )ds+ U2(Xt,x,c,π

T )

]
.

We call primal control problem - and denote it by (P) - the optimization problem

(P) sup
(c,π)∈A(t,x)

J(t, x; c, π),

and denote by V the value function associated to this problem - that we call primal value

function, i.e.

V (t, x) := sup
(c,π)∈A(t,x)

J(t, x; c, π), (t, x) ∈ [0, T ]× R+.
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Due to the fact that the state 0 is an absorbing boundary for the problem and to (5)-(3),

we see that V satisfies the boundary condition

V (t, 0) = 0, ∀t ∈ [0, T ]. (6)

On the other hand V clearly satisfies also the the terminal condition

V (T, x) = U2(x). (7)

Set

DT := [0, T )× (0,+∞).

By standard arguments of stochastic control (see e.g. [26, Ch. 4]), we can associate to V a

HJB equation in DT , which we call primal HJB equation. It is

−vt(t, x)− sup
c≥0, π∈R

Hcv(t, x, vx(t, x), vxx(t, x); c, π) = 0, (8)

where the function Hcv is defined for (t, x, y,Q) ∈ DT × R2, c ≥ 0, π ∈ R, as

Hcv(t, x, y,Q; c, π) := U1(t, c, x) + (b(t)π − c)y +
σ(t)2

2
π2Q.

When y > 0 and Q < 0 (the case we shall consider), the Hamiltonian

H(t, x, y,Q) := sup
c≥0, π∈R

Hcv(t, x, y,Q; c, π)

is finite and takes the form

H(t, x, y,Q) = U∗1 (t, y, x)− b2(t)

2σ2(t)

y2

Q
, (9)

where U∗1 is the sup-Legendre transform of U1 with respect to c, i.e. the function (convex

in y)

U∗1 (t, y, x) := sup
c≥0
{U1(t, c, x)− cy}, (t, y, x) ∈ [0, T )× (0,+∞)× R+.

We expect that V may be characterized as solution of (8) completed by the boundary and

terminal conditions (6)-(7). We do not tackle directly the above equation (8), even if a

characterization of V as unique viscosity solution to it could be performed.2 We just note

here that this equation is fully nonlinear and degenerate, so the regularity of its solutions

2One could try to prove the continuity of V , then show that V is a viscosity solution of the HJB equation

and finally use quite standard analytical techniques to prove a comparison in the viscosity sense for the

equation and therefore get uniqueness for it (see e.g. [6, 14, 26]). Otherwise one could try to drop the proof

of the continuity and deal with discontinuous viscosity solutions, for which the comparison is a bit harder to

prove (see [14, Ch. VII]), and then prove the continuity a posteriori as a consequence of the characterization

as viscosity solution. We will not do that, since our study of the dual HJB equation will be sufficient to

come back and prove a characterization of V as classical solution to the HJB equation within a suitable

class of smooth functions. Our uniqueness result will be weaker than what can be obtained by the viscosity

approach, but will be enough for our purposes.
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cannot be obtained dealing directly with it by the known methods of classical solutions of

PDE’s.3 What we can do is to apply duality to the problem and get a dual control problem

with an associated HJB equation for which we are able to prove regularity results. For this

purpose, consider, for (t, y) ∈ [0, T ) × (0,+∞), the sup-Legendre transform of U∗1 (t, y, ·),
i.e. the function (convex in (y, u))

Ũ∗1 (t, y, u) := sup
x≥0
{U∗1 (t, y, x)− xu}, (10)

= sup
c,x≥0
{U1(t, c, x)− cy − xu}, (t, y, u) ∈ [0, T )× (0,+∞)× (0,+∞).

For convenience of the reader, we notice that, when U1 is separable in x and c, i.e.

U1(t, c, x) = U
(1)
1 (t, c) + U

(2)
1 (t, x), we have

Ũ∗1 (t, y, u) = Ũ1
(1)

(t, y) + Ũ1
(2)

(t, u),

where Ũ1
(1)
, Ũ1

(2)
are, respectively, the sup-Legendre transform of U1

(1), U1
(2) with respect

to the second variable. Finally, we consider also the sup-Legendre transform of U2, i.e. the

function

Ũ2(y) = sup
x≥0
{U2(x)− xy} , y > 0. (11)

Given (t, y) ∈ DT , we may consider a new control problem - which we call dual control

problem and denote by (D) - that we are going to define (for the derivation of the argument

see [24, Sec. 1]). Let β = (βs)s∈[t,T ) be a fixed adapted process with locally bounded

integrable trajectories and consider the controlled process Y t,y,β,u defined by the SDE{
dYs = −usds+ βsYsdBs,

Yt = y,
(12)

with u ∈ Uβ(t, y), where

Uβ(t, y) =
{

(us)s∈[t,T ] is (Fs)s∈[t,T ]−predictable, nonnegative, with integrable trajectories,

and such that Y t,y,β,u
s > 0 a.s. ∀s ∈ [t, T ]

}
. (13)

Let x ∈ R+, y > 0 (c, π) ∈ A(t, x), u ∈ Uβ(t, y), and set X = Xt,x,c,π and Y = Y t,y,β,u.

Integration by parts yields

d(XsYs) = (−usXs − csYs)ds+ Ys
(
πsσ(s) + βsXs)dBs + Ysπs(b(s) + βsσ(s))ds.

If

b(s) + βsσ(s) = 0, ∀s ∈ [t, T ], (14)

3To this regard, we should mention, e.g., [5, 8, 27] for direct results in this direction, when the problem

is autonomous and over an infinite horizon, and the equation elliptic. Up to our knowledge, despite a sketch

in [27], there are no results of this kind for parabolic HJB equations coming from investment-consumption

problems - as the one we deal with in this paper.
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it follows that the process (XsYs +
∫ s
t (urXr + crYr)dr)s∈[t,T ] is a supermartingale (as a

positive local martingale), and in particular

E
[
XTYT +

∫ T

t
(usXs + csYs)ds

]
≤ xy. (15)

Now, by definition of Ũ∗1 and Ũ2 and by (15), if Ys > 0 almost surely for each s ∈ [t, T ],

then

E
[∫ T

t
U1(s, cs, Xs)ds+ U2(XT )

]
≤ E

[∫ T

t

(
Ũ∗1 (s, Ys, us) + csYs + usXs

)
ds+ Ũ2(YT ) +XTYT

]
(16)

≤ E
[∫ T

t
Ũ∗1 (s, Ys, us)ds+ Ũ2(YT )

]
+ xy.

Since (c, π) ∈ A(t, x) is arbitrary, taking the supremum over (c, π) ∈ A(t, x) on the left

handside in (16), we get for every u ∈ U(t, y)

V (t, x) ≤ E
[∫ T

t
Ũ∗1 (s, Ys, us)ds+ Ũ2(YT )

]
+ xy. (17)

Therefore, when (14) holds, the right handside of (17) is an upper bound for the primal

value function. On the other hand we can take the infimum over u ∈ Uβ(t, y) in the right

handside of (17). Taking into account that (17) has been derived under (14), this leads to

consider the control problem

(D) inf
u∈U(t,y)

J̃(t, y;u),

where U(t, y) is the set defined in (13) when β is given by (14),

J̃(t, y;u) = E
[∫ T

t
Ũ∗1 (s, Y t,y,u

s , us)ds+ Ũ2(Y t,y,u
T )

]
, (18)

and Y t,y,u is the solution to (12) when β is given by (14), i.e. the solution todYs = −usds−
b(s)

σ(s)
YsdBs,

Yt = y.

(19)

We denote by W the value function associated to this problem - that we call dual value

function - i.e.

W (t, y) := inf
u∈U(t,y)

J̃(t, y;u), (t, y) ∈ [0, T ]× (0,+∞). (20)

Taking the infimum over u ∈ U(t, y) in the right handside of (17) we get the inequality

V (t, x) ≤ W (t, y) + xy, ∀(t, y) ∈ [0, T ]× (0,+∞). (21)
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Defining the Legendre transform of the primal value function

Ṽ (t, y) := sup
x≥0
{V (t, x)− xy}, (t, y) ∈ [0, T ]× (0,+∞),

from (21) we get

Ṽ ≤ W, on [0, T ]× (0,+∞). (22)

What one can expect is the equality

Ṽ = W, on [0, T ]× (0,+∞). (23)

We will prove (23) as corollary of our next results.

By standard stochastic control arguments we associate to W an HJB equation that we

call dual HJB equation. It is the semilinear equation

−wt(t, y)− b2(t)

2σ2(t)
y2wyy(t, y)− inf

u≥0
H̃cv(t, y,−wy(t, y)) = 0, (24)

where

H̃cv(t, y, q) := Ũ∗1 (t, y, u) + uq, q ∈ R. (25)

with terminal condition w(T, ·) = Ũ2. Since U∗1 (t, y, ·) is concave over R+, we have

U∗1 (t, y, x) = inf
u≥0
{Ũ∗1 (t, y, u) + ux}, x > 0.

So, in the set where wy < 0 - it will be for every (t, y) ∈ [0, T )× (0,+∞) in the case of our

solution - the HJB equation (24) can be rewritten as

−wt(t, y)− b2(t)

2σ2(t)
y2wyy(t, y)− U∗1 (t, y,−wy(t, y)) = 0. (26)

Remark 3.1 Due to the presence of current cost in the state (i.e. the dependence of U1 on

x), we have a (real) dependence of Ũ∗1 on us in the functional (18) defining the dual problem.

Since this dependence is monotone (nonincreasing) and since Ũ∗1 is also nonincreasing on Ys
and us appears with the negative sign in (19), this creates a trade-off between the functional

(18) and the state equation (19), giving rise to a real (nontrivial) control problem. At

the level of the dual HJB equation (24) above, this can be appreciated by the presence

of a nonlinearity in the first order term. When, as in [2, 24], the function U1 does not

depend on x,4 the dependence of this term on wy disappears and the dual HJB equation is

linear. While in [2] the linearity of the dual equation allows to deal with analytical solutions

expressed through the heat kernel, a different and more theoretical approach is needed here.

We are not aware of papers where the dual problem is investigated when also utility on the

current wealth is considered; nevertheless, we stress that utility on the current wealth arises

in concrete problems, as the ones described in Section 6.

4Actually in [2] the function U1 expressing the current utility is not even considered. However, as outlined

in [2], considering a current utility depending only on consumption would not complicate the mathematical

problem.
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4 The dual value function as classical solution of the dual

HJB equation

In this section we show that W is a classical solution to the HJB equation (26). To do that

first we show that it is a viscosity solution to (26) and then we show its regularity.

4.1 W as viscosity solution of the dual HJB equation

Before proceeding further, we need to investigate some properties of Ũ∗1 , Ũ2 and derive

qualitative properties for W .

Proposition 4.1 We have the following properties of the functions Ũ∗1 and Ũ2.

1. Ũ∗1 : R+× (0,+∞)× (0,+∞)→ R is nonnegative, convex in (y, u) and nonincreasing

in y and u.

2. Ũ2 : (0,+∞)→ R is nonnegative, convex and nonincreasing.

3. We have the following growth estimate: there exists K̃ > 0 such that

Ũ∗1 (t, y, u) + Ũ2(y) ≤ K̃(1 + y
− p

1−p + u
− p

1−p ), t ∈ [0, T ), u > 0, y > 0. (27)

4. We have

(i) lim
y∧u→+∞

Ũ∗1 (t, y, u) = 0; (ii) lim
y→+∞

Ũ2(y) = 0. (28)

5. According to (a) or (b) of Assumption 2.2(iv), we have respectively either

(a) ∃ ε > 0 such that lim
y→0+

Ũ∗1 (t, y, u) = +∞ uniformly in (t, u) ∈ [T−ε, T )×R+,

or

(b) lim
y→0+

Ũ2(y) = +∞,

or both.

6. U∗1 ∈ C
δ/2,k+δ
loc ([0, T )× (0,+∞)× (0,+∞);R), where k ≥ 2 is the integer constant of

Assumption 2.2 (i).

Proof. 1-2-3 follow straightly by using the properties of Legendre transforms and Assump-

tion 2.2(i, ii, iii).

4. For fixed t > 0, let for y > 0, u > 0,

Λy,u =

{
(x, c) ∈ R2

+

∣∣∣ ∂

∂c
U1(t, c, x) ≥ y,

∂

∂x
U1(t, c, x) ≥ u

}
∪ {(0, 0)}.

Using Assumption 2.2(i), it is not difficult to see that the maximizer in the definition of

Ũ∗1 (t, y, u) belongs to Λy,u and that Λy,u shrinks to {(0, 0)} as y → +∞ and u→ +∞; so

lim sup
y∧u→+∞

Ũ∗1 (t, y, u) ≤ lim sup
y∧u→+∞

sup
(c,x)∈Λy,u

U1(t, c, x) = U1(t, 0, 0) = 0.

12



The limit for Ũ2 follows with a similar argument.

5. If we are in the case of Assumption 2.2(iv)(a), then, due to monotonicity with respect

to u of Ũ∗1 , the statement (a) is equivalent to

∃ε > 0 such that lim
y→0

lim
u→+∞

Ũ∗1 (t, y, u) = +∞, uniformly w.r.t. t ∈ [T − ε, T ). (29)

Now, by (4), using the same argument of point 4 above, but with respect to u only, we get

lim
u→+∞

Ũ∗1 (t, y, u) = sup
c≥0
{U1(t, c, 0)− cy}, uniformly w.r.t. t ∈ [T − ε, T ). (30)

Since taking c = 1/y we get

sup
c≥0
{U1(t, c, 0)− cy} ≥ U1(t, 1/y, 0)− 1, (31)

the claim (29) follows combining (30)-(31) and using Assumption 2.2(iv)(a).

In the case of Assumption 2.2(iv)(b) the claim (b) can be obtained as above (but more

easily) by using the definition (11).

6. If Assumption 2.2(i)(b) holds, the claim is immediate as

U∗1 = U1 ∈ C
δ/2,k+δ
loc ([0, T )× (0,+∞)× (0,+∞);R).

Let us prove the claim in the case when Assumption (2.2)(i)(a) holds true. Under our

assumptions, the map c 7→ ∂
∂cU1(t, ·, x) is a bijection from (0,+∞) to (0,+∞) for each

(t, x) ∈ [0, T ) × (0,+∞), and the supremum in the definition of U∗1 is attained at the

unique c∗(t, y, x) satisfying

∂

∂c
U1(t, c∗(t, y, x), x) = y. (32)

Since ∂
∂c2
U1 < 0, it follows from the implicit function theorem that c∗ has the same regularity

properties as ∂
∂cU1, i.e. it is C

δ/2,k−1+δ
loc ([0, T )× (0,+∞)× (0,+∞);R). Writing

U∗1 (t, y, x) = U1(t, c∗(t, y, x), x)− c∗(t, y, x)y

and using (32), we obtain

∂

∂y
U∗1 (t, y, x) = −c∗(t, y, x),

∂

∂x
U∗1 (t, y, x) =

∂

∂x
U1(t, c∗(t, y, x), x).

Both of these functions lie in C
δ/2,k−1+δ
loc ([0, T )× (0,+∞)× (0,+∞);R), which proves the

claim. �

Proposition 4.2 W is finite, strictly positive on DT , convex and strictly decreasing in y.

Moreover, we have the growth condition, for some KW > 0,

W (t, y) ≤ KW (1 + y
− p

1−p ), ∀(t, y) ∈ [0, T ]× (0,+∞), (33)
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and terminal and boundary conditions
(i) W (T, y) = Ũ2(y), ∀y ∈ (0,+∞);

(ii) limy→0+ W (t, y) = +∞, ∀t ∈ [0, T );

(iii) limy→+∞ W (t, y) = 0, ∀t ∈ [0, T ].

(34)

Sketch of proof. The arguments are quite standard and we only sketch the proof of

the claims which are straightforward.

Taking the feedback control us = Ys in the state equation (19) and using (27), we obtain

that W is finite and satisfies the growth condition (33). The strict positivity in DT is more

tricky and we give a complete proof, which follows from Proposition 4.1(5). Indeed, let

(t, y) ∈ DT . Since Y t,y,u
T ≤ Y t,y,0

T for each u ∈ U(t, y), we get

J̃(t, y;u) ≥ E
[∫ T

t
Ũ∗1 (s, Y t,y,0

s , us)ds+ Ũ2(Y t,y,0
T )

]
, ∀u ∈ U(t, y). (35)

Since Y t,y,0 is a Geometric Brownian Motion, setting

At,yε,y0 :=
{

sup
s∈[t∨(T−ε),T ]

Y t,y,0
s < y0

}
,

we have

pt,yε,y0 := P(At,yε,y0) > 0, ∀ε > 0, ∀y0 > 0. (36)

Now, set for all (s, y0) ∈ [0, T )× (0,+∞)

g(s, y0) := lim
u→+∞

Ũ∗1 (s, y0, u). (37)

Using (35), (36) and (37), we get

J̃(t, y;u) ≥ pt,yε,y0

[∫ T

t∨(T−ε)
g(s, y0)ds+ Ũ2(y0)

]
, ∀u ∈ U(t, y). (38)

Now, if Assumption 2.2(iv)(a) holds, take ε above as the one in appearing in the same

assumption. By Proposition 4.1(5)(a), we can choose y0 > 0 such that g(s, y0) ≥ δ for all

s ∈ [t, T ] for a suitable δ > 0. Since (38) is uniform in u ∈ U(t, y), we get the claim in this

case. If we assume that Assumption 2.2(iv)(b) holds, then from it, (38) and Proposition

4.1(5)(b) still follows the claim.

Convexity comes from convexity of Ũ∗1 and Ũ2, and from linearity of the state equation

by standards arguments. Also monotonicity is consequence of standard arguments due to

monotonicity of Ũ∗1 and Ũ2.

The terminal condition (34)(i) comes from the definition of W immediately.

The boundary condition (34)(ii) can be obtained arguing as in the proof of strict posi-

tivity of W . Indeed, we can consider (38) with y0 = y. Then, since Y t,y,0 = yY t,1,0 we get

that

pt,yε,y = pt,1ε,1 > 0, ∀y ∈ (0, 1). (39)
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Therefore, (38) becomes in this case

J̃(t, y;u) ≥ pt,1ε,1

[∫ T

t∨(T−ε)
g(s, y)ds+ Ũ2(y)

]
, ∀u ∈ U(t, y). (40)

from which we get

W (t, y) ≥ pt,1ε,1

[∫ T

t∨(T−ε)
g(s, y)ds+ Ũ2(y)

]
. (41)

Taking the limit for y → 0+ and using Proposition 4.1(5), we get (34)(ii).

Let us show now the boundary condition (34)(iii). Let (t, y) ∈ [0, T ]× (0,+∞) and take

the feedback control us = Ys in (19) and consider the associated state trajectory Y t,y,u
s .

Then

W (t, y) ≤ J̃(t, y;u) = E
[∫ T

t
Ũ∗1 (s, Y t,y,u

s , Y t,y,u
s )ds+ Ũ2(Y t,y,u

T )

]
. (42)

Since

Y t,y,u
s = y · exp

(
−
∫ s

t

(
1 +

b2(ξ)

2σ2(ξ)

)
dξ −

∫ s

t

b(ξ)

σ(ξ)
dBξ

)
,

we have

Y t,y,u
s → +∞, ∀s ∈ [t, T ], a.s. (43)

Hence, using (28) and (43) we get

Ũ∗1 (s, Y t,y,u
s , Y t,y,u

s ) → 0, ∀s ∈ [t, T ], a.s., and Ũ2(Y t,y,u
T ) → 0, a.s. (44)

On the other hand, thanks to (27), we have

Ũ∗1 (s, Y t,y,u
s , Y t,y,u

s ) ≤ K̃
(

1 + 2(Y t,y,u
s )

− p
1−p
)
, Ũ2(Y t,y,u

T ) ≤ K̃(1 + (Y t,y,u
T )

− p
1−p ).

Since the above right hand sides are integrable uniformly in y ≥ 1, using (42) and (44) we

get the claim by Vitali’s Theorem.

Finally, strict monotonicity follows from convexity, monotonicity, strict positivity and

(34)(iii). �

Proposition 4.3 W is continuous on [0, T ]× (0,+∞). Moreover W (·, y) is nondecreasing

for all y ∈ (0,+∞).

Proof. First of all, by convexity, W is continuous in the space variable y for each fixed

t ∈ [0, T ].

Let us show continuity in time. For that, we need to exploit the following Dynamic

Programming Principle:5 for each t, t′ such that 0 ≤ t ≤ t′ ≤ T and each y ∈ (0,+∞),

W (t, y) = inf
u∈U(t,y)

E

[∫ t′

t
Ũ∗1 (s, Y t,y,u

s , us)ds+W (t′, Y t,y,u
t′ )

]
. (45)

5Appealing to the Dynamic Programming Principle may seem somehow unfair, as usually it is problematic

to prove it if one has not proved before the continuity of the value function (and we are just proving the

continuity invoking it). However, we observe that in this case (where the time t′ is deterministic) the proof

of the Dynamic Programming Principle (see, e.g., [26, Ch. 4]), only uses the continuity in the space variable

y.
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Now we show that W is nonincreasing in time. Indeed, let (t, y) ∈ [0, T ) × (0,+∞), let

u ∈ U(t, y) and let t′ ∈ [t, T ]. Since Ũ∗1 ≥ 0, from (45) we have

W (t, y) ≥ inf
u∈U(t,y)

E
[
W (t′, Y t,y,u

t′ )
]
. (46)

By monotonicity of W in y and since Y t,y,u
t′ ≤ Y t,y,0

t′ for all u ∈ U(t, y), we get

inf
u∈U(t,y)

E
[
W (t′, Y t,y,u

t′ )
]
≥ E

[
W (t′, Y t,y,0

t′ )
]
. (47)

Combining (46) and (47), and using Jensen’s inequality, we finally get

W (t, y) ≥ W (t′, y),

proving the monotonicity claim.

From this monotonicity it follows that the functions provided by the left and right limits

of W in t, i.e.

W+(t, ·) := lim
h↓0

W (t+ h, ·), W−(t, ·) := lim
h↓0

W (t− h, ·),

are well-defined in [0, T ) and (0, T ] respectively, and

W− ≥ W ≥ W+ (48)

(where the functions are defined). We note that W+,W− are also convex in y for fixed t,

so they are continuous in y for fixed t as well. If we show the inequalities

W− ≤ W ≤ W+ (49)

(where the functions are defined) combining with (48) the proof of continuity in time will

be complete.

Let us first show the left inequality in (49). For any s ∈ [0, T ], define Ŷ s,y as the process

corresponding to the feedback control û· = Ŷ· starting from (s, y). Then, for each r ≥ s,

Ŷ s,y
r = y exp

(∫ r

s
(−1 +

1

2

b(ξ)2

σ(ξ)2
)dξ −

∫ r

s

b(ξ)

σ(ξ)
dBξ

)
.

Note that, since b(·)
σ(·) is bounded, we have the following estimates :

E
[∣∣∣Ŷ s,y

r − y
∣∣∣] ≤ ω(|s− r|), with ω continuous and ω(0+) = 0, (50)

sup
0≤r≤s≤T

E
[
|Ŷ s,y
r |q

]
< +∞, ∀q ∈ R. (51)

Let t ∈ [0, T ] and take a sequence tn ↑ t. By (45) and (27),

W (tn, y) ≤ E
[∫ t

tn

Ũ∗1 (s, Ŷ tn,y
s , Ŷ tn,y

s )ds+W (t, Ŷ tn,y
t )

]
≤ E

[∫ t

tn

2K̃(1 + (Ŷ tn,y
s )

− p
1−p )ds+W (t, Ŷ tn,y

t )

]
. (52)
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By (51) the expectation of the integral in (52) goes to 0. On the other hand, from (50),

passing to a subsequence if necessary (we have monotonicity in t, so we can do that without

loss of generality), we see that Ŷ tn,y
t → y almost surely. Hence, using (51) and the growth

condition (33) on W , by dominated convergence we get

lim
n→∞

E
[
W (t, Ŷ tn,y

t )
]

= W (t, y).

So, we finally obtain W−(t, y) ≤W (t, y).

Now let us turn to the proof of the right inequality in (49). Let t ∈ [0, T ) and take a

sequence tn ↓ t. Again, using (45) we have that

W (t, y) ≤ E
[∫ tn

t
Ũ∗1 (s, Ŷ t,y

s , Ŷ t,y
s )ds+W (tn, Ŷ

t,y
tn )

]
.

The proof is now the same once we show that W (tn, Ŷ
t,y
tn ) → W+(t, y) almost surely. We

observe that W (tn, ·) ↘ W+(t, ·) pointwise by definition. Since all these functions are

continuous, by Dini’s Theorem we get W (tn, ·) ↘ W+(t, ·) locally uniformly. Therefore

tn ↓ t, yn → y implies W (tn, yn) → W+(t, y). Since, by passing to a subsequence if

necessary (again we may do that without loss of generality because of monotonicity in t)

we can assume Y t,y
tn → y almost surely, it follows that W (tn, Ŷ

t,y
tn )→W+(t, y) almost surely.

And again by dominated convergence this implies W (t, y) ≤ W+(t, y). This completes the

proof of continuity in time.

Now it just remains to notice that again by Dini’s Theorem the continuity of W in t

is locally uniform in y, which combined to the fact that W is continuous in y for fixed t,

implies joint continuity of W in (t, y). �

Now we may state the viscosity property of W .

Proposition 4.4 W is a continuous viscosity solution to (26) in DT .

Proof. Due to continuity of W , this is quite standard. We omit the proof for brevity

and refer to classical references, such as [14, 26]. �

4.2 Regularity of W

In this section we prove a regularity result for the dual value function W .

Theorem 4.5

1. W ∈ C1+ δ
2
,k+2+δ

loc (DT ;R).

2. Wy(t, ·) < 0, Wy(t, 0
+) = −∞ and Wy(t,+∞) = 0, for every t ≥ 0.

3. Wyy > 0 over DT .

Proof. 1. Take any (t0, y0) ∈ DT and consider, for suitable ε > 0, the square

Dε(t0, y0) := [t0, t0 + ε)× (y0 − ε, y0 + ε) ⊂ DT .
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First of all, note that, due to convexity, the right and left space derivatives of W ex-

ist. Denoting them by Wy(t, y
+) and Wy(t, y

−) respectively, again by convexity we have

Wy(t, y
+) ≥Wy(t, y

−). Moreover, there exist Mε, mε > 0 such that

Mε ≥ sup
(t,y)∈Dε(t0,y0)

−Wy(t, y
−) ≥ inf

(t,y)∈Dε(t0,y0)
−Wy(t, y

+) ≥ mε. (53)

Indeed, by convexity −Wy(t, y
+) ≥ 1

y (W (t, y)−W (t, 2y)), and, since W is continuous and

strictly decreasing in y for each t, the infimum above must be strictly positive. In the same

way, −Wy(t, y
−) ≤ − 2

y (W (t, y)−W (t, y/2)) and the supremum is finite.

By Proposition 4.4, the dual value function W is a viscosity solution of the dual HJB

equation (26) in Dε(t0, y0) with Dirichlet boundary condition

w = W, on P(Dε(t0, y0)), (54)

where P(Dε(t0, y0)) is the parabolic boundary of Dε(t0, y0) defined as

P(Dε(t0, y0)) := {t0 + ε} × [y0 − ε, y0 + ε] ∪ [t0, t0 + ε]× {y0 − ε, y0 + ε}.

Consider the function F defined on Dε(t0, y0)× R by

F (t, y, q) := U∗1
(
t, y,−[(mε ∨ q) ∧Mε]

)
.

By Proposition 4.1(6), F is Hölder continuous in Dε(t0, y0)× R. By (53), we have that W

is actually a viscosity solution in Dε(t0, y0) to the equation

−wt(t, y)− b2(t)

2σ2(t)
y2wyy(t, y)− F (t, y, wy(t, y)) = 0. (55)

Since W is continuous on P(Dε(t0, y0)), then we have uniqueness of viscosity solutions to

(55) with boundary condition (54) (see, e.g., [14, Cor. 8.1, Ch. V]). On the other hand, due

to Assumption 2.1 and to Hölder continuity of F , the PDE (55) is semilinear uniformly

parabolic on Dε(t0, y0) with Hölder continuous coefficients, so by Theorem 12.22 of [22] -

with the assumptions of Theorem 12.16 of the same book - it admits a solution fulfilling

the boundary condition (54) in the space C1,2(Dε(t0, y0);R). This (classical) solution is

also a viscosity solution, thus, due to uniqueness of viscosity solutions, it coincides with

W . Hence, we conclude that W ∈ C1,2(Dε(t0, y0);R), therefore, by arbitrariness of (t0, y0),

that W ∈ C1,2(DT ;R).

Given that, we know that −Wy is strictly positive and locally Lipschitz continuous

in DT . Moreover, by Proposition 4.1(6), U∗1 ∈ C
δ/2,k+δ
loc ([0, T ) × (0,+∞) × (0,+∞);R).

Therefore, the claim follows from a simple induction, using regularity results for linear

equations of the form −ut − Lu = f (see, e.g., Theorem 8.12.1, p. 131, in [21]).

2. The first claim follows (53). The other ones follow from convexity and from (34)(ii)

and (34)(iii), respectively.

3. As in [2] we use a maximum principle argument. Differentiating twice (26), we get

− (Wyy)t −
b2(s)

2σ2(s)

[
2Wyy + 4y(Wyy)y + y2(Wyy)yy

]
− (U∗1 )yy(t, y,−Wy) +Wyyy · (U∗1 )x(t, y,−Wy)

+ 2Wyy · (U∗1 )xy(t, y,−Wy)−W 2
yy · (U∗1 )xx(t, y,−Wy) = 0.
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Noting that U∗1 is convex in y, we see that Wyy is a nonnegative supersolution to the linear

parabolic PDE

− ut −
b2(s)

2σ2(s)

[
2u+ 4yuy + y2uyy

]
+ (U∗1 )x(t, y,−Wy)uy

+ [2(U∗1 )xy(t, y,−Wy)−Wyy · (U∗1 )xx(t, y,−Wy)]u = 0.

Hence, by a strong maximum principle (see e.g. [15, Th. 3, Ch. II]), if Wyy(t0, y0) = 0 for

some (t0, y0) ∈ DT , it must be Wyy ≡ 0 on (t0, T )× (0,+∞), which is clearly in contradic-

tion, e.g., with (34)(ii). �

From Proposition 4.4 and Theorem 4.5 we get the following

Corollary 4.6 W is a classical solution to (26) in DT .

5 Back to the primal control problem: verification and op-

timal controls

Let t ∈ [0, T ] and let W̃ be the inf-Legendre transform of W (t, ·), i.e.

W̃ (t, x) := inf
y>0
{W (t, y) + xy}, (t, x) ∈ DT . (56)

Due to its definition and to the positivity of W (see Proposition 4.2), the function W̃ is

finite and nonnegative on DT . Moreover, it is concave and nondecreasing in x for each

t ∈ [0, T ] and, due to Theorem 4.5, it can be written, for (t, x) ∈ DT , as

W̃ (t, x) = W
(
t, [Wy(t, ·)]−1(−x)

)
+ x [Wy(t, ·)]−1(−x). (57)

We are going to prove that

W̃ = V, on DT (58)

(we notice that (58) implies, as corollary, (23), i.e. Ṽ = W ) and that V is the unique

classical solution of the primal HJB equation (8) in the following class:

C =
{
v ∈ C(DT ;R) ∩ C1+δ/2,k+2+δ

loc (DT ;R) such that vx > 0, vxx < 0 in DT ,

and v fulfills the boundary and growth conditions (59) below
}

where
(i) v(t, 0) = 0, ∀t ∈ [0, T ],

(ii) v(T, x) = U2(x), ∀x ≥ 0,

(iii) ∃K0 such that 0 ≤ v(t, x) ≤ K0(1 + xp), ∀(t, x) ∈ [0, T ]× [0,+∞).

(59)

We note that if v ∈ C, due to (9), we have

H(t, x, vx(t, x), vxx(t, x)) = U∗1 (t, vx(t, x), x)− b2(t)

2σ2(t)

vx(t, x)2

vxx(t, x)
. (60)

We proceed as follows:
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1. We show that W̃ ∈ C and that it is a classical solution of the primal HJB equation

(8) (Proposition 5.1).

2. We show that a verification theorem holds for (P) for every classical solution v ∈ C
of the primal HJB equation (Theorem 5.2).

3. We show that for every classical solution v ∈ C of the primal HJB equation the associ-

ated closed loop equation admits a solution and that this implies v = V (Proposition

5.3 and Corollary 5.5).

Clearly, these three points yield the equality W̃ = V and the announced uniqueness.

5.1 W̃ as a classical solution of the primal HJB equation

Proposition 5.1 W̃ ∈ C and solves the primal HJB equation (8) in classical sense in DT .

Moreover it satisfies the Inada conditions in x:

W̃x(t, 0+) = +∞, W̃x(t,+∞) = 0, ∀t ∈ [0, T ).

Proof. Growth and boundary conditons. The growth condition (59)(iii) follows from (56)

and (33). The boundary condition (59)(i) follows from (56) and (34)(iii). The boundary

condition (59)(ii) follows from (56), (34)(i) and the fact that the inf-Legendre transform of

Ũ2 is U2.

Continuity in DT . The fact that W̃ is continuous in DT follows from (57) and Theorem

4.5. Now we show the continuity at the boundary [0, T )× {0}.
Continuity of W̃ (t, ·) at 0+ for each t ∈ [0, T ) follows from (56): it yields

W̃ (t, x) ≤ W (t, ε/x) + ε, ∀x ≥ 0, ∀ε > 0,

hence, taking into account also that W is nonnegative and (34)(iii),

0 ≤ lim sup
x↓0

W̃ (t, x) ≤ ε, ∀ε > 0,

and, since ε is arbitrary and taking into account (59)(i), we may conclude that

lim
x↓0

W̃ (t, x) = 0 = W̃ (t, 0).

Moreover, by monotonicity of W̃ (t, ·) for all t ∈ [0, T ) the convergence above is locally

uniform in t ∈ [0, T ) due to Dini’s Theorem, so, combining with the obvious continuity of

W̃ (·, 0), we get the continuity of W̃ at the boundary [0, T )× {0} in the couple (t, x).

Next we show the continuity at the boundary {T}×R+. First let us show the continuity

of W (·, x) at T− for fixed x ∈ R+. Since W̃ (t, 0) = 0 for every t ∈ [0, T ], the claim is obvious

for x = 0, so we now assume x > 0. Clearly, for any y > 0,

lim sup
t↑T

W̃ (t, x) ≤ lim sup
t↑T

{W (t, y) + xy} = W (T, y) + xy,
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by continuity of W . Taking the infimum over y, we obtain the inequality

lim sup
t↑T

W̃ (t, x) ≤ W̃ (T, x).

For the opposite inequality, we notice that, by definition of W , we have for each y > 0 and

each t ∈ [0, T ]

W (t, y) ≥ E
[
Ũ2(Y t,y,0

T )
]
≥ Ũ2

(
E
[
Y t,y,0
T

])
= Ũ2(y),

where we have used Jensen’s inequality. Since W̃ (T, ·) = U2(·), we get W (t, ·) ≥ W (T, ·),
which in turn yields

lim inf
t↑T

W̃ (t, x) ≥ W̃ (T, x).

Now, taking into account the obvious continuity of W̃ (T, ·) in R+, the continuity of W̃ at

the boundary {T} × R+ in the couple (t, x) follows again from Dini’s Theorem, as W̃ (·, x)

inherits from W (·, y) the monotonicity (Proposition 4.3). This concludes the proof of the

continuity of W̃ on DT .

Further regularity in DT . From (57) and taking into account Theorem 4.5, we get for

each (t, y) ∈ DT 

(i) W̃t(t, x) = Wt

(
t, [Wy(t, ·)]−1(−x)

)
,

(ii) W̃x(t, x) = [Wy(t, ·)]−1(−x),

(iii) W̃xx(t, x) = − 1

Wyy(t, [Wy(t, ·)]−1(−x))
.

(61)

So, due to Theorem 4.5, we have W̃ ∈ C1+δ/2,k+2+δ
loc (DT ;R) and W̃x > 0, W̃xx < 0 in DT .

This completes the proof that W̃ ∈ C.
W̃ as solution to the HJB equation. The fact that W̃ solves the HJB equation (8) in

classical sense in DT follows from Corollary 4.6 by straightforward computations using (60)

and (61).

Inada’s conditions. Inada’s conditions follow from Theorem 4.5(2) and (61)(ii). �

5.2 Verification theorem

Theorem 5.2 Let v ∈ C be a classical solution to the primal HJB equation (8). Then:

(i) v(t, x) ≥ V (t, x) for all (t, x) ∈ DT .

(ii) Let (t, x) ∈ DT , let (c∗, π∗) ∈ A(t, x) and let X∗ := Xt,x,c∗,π∗. If

Hcv(s,X
∗
s , vx(s,X∗s ), vxx(s,X∗s ); c∗s, π

∗
s) = H(s,X∗s , vx(s,X∗s ), vxx(s,X∗s )) (62)

P-almost surely for almost every s ∈ [t, T ], then (c∗, π∗) is an optimal control and

v(t, x) = V (t, x).
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Proof. (i) Let (t, x) ∈ DT , (c, π) ∈ A(t, x), and, to simplify the notation, let us write

Xs := Xt,x,c,π
s for all s ∈ [t, T ]. Set

τ := inf {s ∈ [t, T ] | Xs = 0} ∧ T.

We notice that, due to the state constraint, A(s, 0) = {(0, 0)} for all s ∈ [t, T ] and the

corresponding state trajectory is identically 0, so

if τ < T, then (c, π,X) ≡ (0, 0, 0) in the random time interval [τ, T ]. (63)

Now we may find a sequence of stopping times τn ↗ τ such that
∫ ·

0 vx(s,Xs)πsσ(s)dBs is

a martingale in [t, τn]. Since v ∈ C1,2([t, T ) × (0,+∞);R) and satisfies the HJB equation

(8), Itô’s formula yields

E [v(τn, Xτn)] = v(t, x) + E
[ ∫ τn

t

(
Hcv −H)(s,Xs, vx(s,Xs), vxx(s,Xs); cs, πs)ds

]
− E

[ ∫ τn

t
U1(s, cs, Xs)

)
ds

]
≤ v(t, x)− E

[∫ τn

t
U1(s, cs, Xs)ds

]
.

This gives us

v(t, x) ≥ E
[
v(τn, Xτn) +

∫ τn

t
U1(s, cs, Xs)ds

]
, ∀n ∈ N. (64)

Letting n → ∞ in (64), using Fatou’s Lemma on the first term of the expectation of the

right handside, and monotone convergence on the second one, we get

v(t, x) ≥ E
[
v(τ,Xτ ) +

∫ τ

t
U1(s, cs, Xs)ds

]
= E

[
1{τ<T}

(
v(τ,Xτ ) +

∫ τ

t
U1(s, cs, Xs)ds

)]
(65)

+E
[
1{τ=T}

(
v(τ,Xτ ) +

∫ τ

t
U1(s, cs, Xs)ds

)]
.

Using (63), the fact that U2(0) = 0 and that U1(·, 0, 0) = v(·, 0) = 0, we get

v(t, x) ≥ E
[
U2(XT ) +

∫ T

t
U1(s, cs, Xs)ds

]
. (66)

Since (c, π) ∈ A(t, x) was arbitrary, this means that v(t, x) ≥ V (t, x), and (i) is proved.

(ii) Let (c∗, π∗) ∈ A(t, x) satisfying (62), and denote X∗ = Xt,y,c∗,π∗ . In this case we

have equality in (64), i.e.

v(t, x) = E
[
v(τn, X

∗
τn) +

∫ τn

t
U1(s, c∗s, X

∗
s )ds

]
, ∀n ∈ N. (67)

Now we take the limit for n → ∞ keeping the equality above. We cannot use Fatou’s

Lemma as before for the part v(τn, Xτn), but we need to use a result keeping the equality

22



in the limit. Since limn→∞ v(τn, X
∗
τn) = v(τ,X∗τ ) almost surely, it suffices to prove uniform

integrability of (v(τn, X
∗
τn))n≥0. For this purpose, write Ys := Y t,1,0

s for all s ∈ [t, T ]. We

know from the discussion following (14) that
(
X∗sYs+

∫ s
t c
∗
uYudu

)
s∈[t,T ]

is a supermartingale.

Since c∗sYs ≥ 0, we see that also (X∗sYs)s∈[0,T ] is a supermartingale, hence E[X∗τnYτn ] ≤ x.

Now, taking q ∈ (p, 1), we get, using (59)(iii) ,

E
[
v(τn, X

∗
τn)q/p

]
≤ E

[
K
q/p
0 (1 + |X∗τn |

p)q/p
]
≤ K

q/p
0 2

q
p
−1(

1 + E[|X∗τn |
q]
)
.

Now, using Hölder’s inequality, from the inequality above we get

E
[
v(τn, X

∗
τn)q/p

]
≤ K0

(
1 + E[X∗τnYτn ]qE[(Yτn)

− q
1−q ]1−q

)
≤ K ′0

(
1 + xq

)
.

So the sequence v(τn, X
∗
τn)n≥0 is bounded in Lq/p with q/p > 1. By de La Vallée Poussin’s

Theorem it is uniformly integrable. Hence taking the limit in (67) we get

v(t, x) = E
[
v(τ,X∗τ ) +

∫ τ

t
U1(s, c∗s, X

∗
s )ds

]
. (68)

Splitting on the sets {τ < T} and {τ = T} as above, taking into account that v(T, ·) = U2(·)
for the part corresponding to set {τ = T}, taking into account (63) and that v(·, 0) = 0 =

U1(·, 0, 0) on the set {τ < T}, we finally rewrite (68) as

v(t, y) = J(t, y; c∗, π∗). (69)

Combining (69) with the claim (i) we get the claim (ii). �

From Proposition 5.1 and Theorem 5.2, we see that W̃ ≥ V .6 What we want to get is

indeed the equality, and in order to get it we need to exploit further item (ii) of Theorem

5.2 finding optimal feedback controls.

5.3 Optimal feedback controls

Given v ∈ C, we may define feedback maps in classical sense associated to the maximization

of Hcv in the HJB equation (8). They are, for s ∈ [0, T ),

Cv(s, x) =



{[
∂
∂cU1(t, ·, x)

]−1
(vx(t, x)), if x > 0,

0, if x = 0,
if Assumption 2.2(i)(a) holds,

0, if Assumption 2.2(i)(b) holds,

(70)

Πv(s, x) =

{
− b(s)vx(s,x)
σ(s)vxx(s,x) , if x > 0,

0, if x = 0.
(71)

6This inequality may be also proved using (22) and the concavity of V in x which could be proved

directly.
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Their definition for x > 0 is indeed given by the maximization of Hcv in the HJB equation

taking into account the structure of the Hamiltonian (9) for functions in C, while the defi-

nition at x = 0 is due to the the state constraint, which implies A(t, 0) = {(0, 0)}.

The closed loop equation associated to the feedback maps Cv,Πv is{
dXs = −Cv(s,Xs)ds+ b(s)Πv(s,Xs)ds+ σ(s)Πv(s,Xs)dBs,

Xt = x.
(72)

Since v ∈ C, one has local Lipschitz continuity of Πv(s, ·) on (0,+∞) for every s ∈ [t, T ).

and local Lipschitz continuity of Cv(s, ·) on (0,+∞) for every s ∈ [t, T ). We notice that,

since we have defined the coefficients Πv(s, ·)and Cv(s, ·) only on R+, we only look for

nonnegative solutions to the above equations.

Proposition 5.3 Given v ∈ C and (t, x) ∈ [0, T )×R+, there exists a unique (nonnegative)

solution Xt,x;v to the closed loop equation (72) in the interval [t, T ].

Proof. Existence. If x = 0 the claim is clear, just by taking Xt,x;v ≡ 0. Let x > 0. Due to

local Lipschitz continuity of Cv(s, ·),Πv(s, ·), using standard SDE’s theory (see, e.g., [19,

Ch. 5, Th. 2.9 ]), we get for each ε > 0 the existence of a unique solution Xt,x,ε;v ∈ [ε, ε−1]

in the stochastic interval [t, τε), where τε is implicitly defined in terms of the solution itself

as

τε = inf {s ∈ [t, T ] | Xt,x,ε;v
s ≤ ε or Xt,x,ε;v

s ≥ ε−1},

with the convention inf ∅ = T . Of course, if ε < ε′, we have τε > τε′ and

Xt,x,ε
s ≡ Xt,x,ε′

s on [t, τε′), ∀ 0 < ε < ε′. (73)

Set

τ = lim
ε↓0

τε.

Then by (73) there exists a unique solution Xt,x,v ≥ 0 to (72) in the interval [t, τ). We

now show that this solution can be extended to the whole interval [t, T ]. By a Girsanov

transformation (note that the Novikov condition holds true due to our assumptions on b, σ),

there exists a probability Q equivalent to P, and a Q-Brownian motion W̃ , such that (72)

may be rewritten as

dXs = −Cv(s,Xs)ds+ σ(s)Πv(s,Xs)dW̃s.

By nonnegativity of Cv, the process Xt,x;v is a nonnegative Q-supermartingale on [t, τ),

which can be extended to a Q-supermartingale (L1 bounded) on [t, T ] setting it equal 0 in

[τ, T ]. Hence, by Doob’s convergence Theorem (see e.g. [23, Theorem II.2.5]) , there exists

a finite random variable Xt,x;v
τ such that

lim
s↗τ

Xt,x;v
s = Xt,x;v

τ , Q-a.s.. (74)
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Since Q ∼ P, we also have

lim
s↗τ

Xt,x;v
s = Xt,x;v

τ , P-a.s.. (75)

Immediately (75) yields the desired extension on {τ = T}. Let us now consider the set

{τ < T}. On this set we have Xt,x;v
τε ∈ {ε, ε−1}, so that by (75) necessarily Xt,x;v

τ = 0

almost surely, getting

lim
s↗τ

Xt,x;v
s = 0 a.s. on {τ < T}. (76)

Therefore, we may now extend Xt,x;v to a solution defined over [t, T ] on {τ < T} by setting

Xt,x;v
s ≡ 0, for s ∈ [τ, T ].

Uniqueness. Let Y t,x;v ≥ 0 be another solution in [t, T ]. First, in view of the proof of

the existence part, we have Y t,x;v = Xt,x;v in [t, τ ], where τ is the random time defined

in the existence part. Moreover, since Xt,x;v
τ = 0, we also have Y t,x;v

τ = 0. Then, since

Y t,x;v is a nonnegative Q-supermartingale as solution of (72), it must be Y t,x;v ≡ 0 in [τ, T ],

concluding the proof (as also Xt,x;v ≡ 0 in [τ, T ]). �

Remark 5.4 Notice that in the proof of Proposition 5.3 we strongly use two facts:

1. the coefficients Cv(t, ·),Πv(t, ·) are defined only on R+, hence we look for solutions

only in the class of nonnegative processes;

2. the coefficient Cv(t, ·) is nonnegative, hence the solution (under Q) is a supermartin-

gale.

Also we notice that we do not need the continuity of the maps Cv(t, ·),Πv(t, ·) at 0+.

Corollary 5.5 We have W̃ = V and it is the unique solution in C to the HJB equation (8).

Moreover, given (t, x) ∈ [0, T ] × R+, an optimal control in feedback form for (P) starting

at (t, x) is given by

c∗s = CV (s,Xt,x;V
s ), π∗s = ΠV (s,Xt,x;V

s ), (77)

where CV ,ΠV are the feedback maps defined in (70)-(71) associated to V ∈ C, and where

Xt,x;V is the unique solution to (72) associated to CV ,ΠV .

Proof. By Proposition 5.1, we know that W̃ ∈ C and solves the HJB equation (8). On

the other hand given any solution v ∈ C to (8), for any given (t, x) ∈ [0, T ) × R+ we can

construct by Proposition 5.3 a solution Xt,x;v ≥ 0 to the closed loop equation (72). Defining

the feedback controls

c∗s = Cv(s,Xt,x;v
s ), π∗s = Πv(s,Xt,x;v

s ),

by uniqueness we have X∗ := Xt,x;c∗,π∗ = Xt,x;v and the triple (X∗, c∗, π∗) satisfies by

construction (62). Then applying Theorem 5.2 we conclude v = V . �

Remark 5.6 As consequence of Proposition 5.1 and Corollary 5.5, we see that V satisfies

the Inada condition ∂
∂x V (t, 0+) = +∞ even if ∂U1

∂c (·, 0+), ∂U1
∂x (·, 0+) and U ′2(0+) (which

are well defined by concavity) are all finite. Indeed, the fact that V satisfies the Inada

condition at 0+ is simply due to the fact that x = 0 is an absorbing boundary combined with

Assumption 2.2(iv).
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5.4 An alternative way to optimality : probabilistic duality

In the previous parts of the current section we have constructed the optimal control couple

(77) by exploiting the duality at an analytical level to study the regularity of the primal

value function V . This approach seems particularly meaningful from a PDE point of view,

as it produces a regularity result for the degenerate fully nonlinear PDE (8).

However, to construct optimal controls for the primal problem (P) it is not strictly

needed to study the regularity of V , as they can be obtained starting from the construction

of optimal controls for the dual control problem (D) and then exploiting further the duality

argument of Section 3 that led to the definition of the dual control problem (D).

We illustrate in this subsection this alternative (probabilistic) dual way to optimality7,

which is based on the following steps.

1. One constructs, by Dynamic Programming arguments, an optimal feedback control

u∗ for the dual control problem (D).

2. Considering the optimal state/control couple (Y ∗, u∗) for (D), one tries to define a

control/state triple (X∗, c∗, π∗) for (P) such that, plugging (Y ∗, u∗) and (X∗, c∗, π∗),

the inequalities in (16) become equalities.

3. Finally, one deduces the optimality of the triple (X∗, c∗, π∗) for the primal control

problem (P).

Step 1. Consider the feedback map associated to the minimization of (25), i.e. (cf.

Theorem 4.5 for the well-posedness of this definition and notice that G is nonnegative)

G(t, y) := argminu≥0

{
Ũ∗1 (s, y, u)− uWy(s, y)

}
, (t, y) ∈ [0, T )× (0,+∞).

i.e.

G(t, y) =
∂

∂x
U∗1 (s, y,−Wy(s, y)), (t, y) ∈ [0, T )× (0,+∞).

The following result can be proved using arguments similar to the ones used in Sub-

sections 5.2 and 5.3. We do not prove it for the sake of brevity, limiting ourselves to few

remarks after the statement.

Theorem 5.7 Let (t, y) ∈ [0, T )× (0,+∞).

1. The closed loop state equation associated to GdYs = −G(s, Ys)ds−
b(s)

σ(s)
YsdBs,

Yt = y,

(78)

admits a unique solution Y t,y;G > 0 over [t, T ].

7The authors are indebted to one anonymous Referee who suggested this alternative approach.
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2. The feedback control

u∗s := G(s, Y t,y;G
s ), s ∈ [t, T ], (79)

belongs to U(t, y) and is optimal for the dual control problem (D) starting from (t, y).

Remark 5.8

(i) We do not really have to prove a verification theorem for W , as we already know

that W is a classical solution to the dual HJB equation (26) (cf. Corollary 4.6); this

means that the analogue of the part (i) of the proof of Theorem 5.2 does not need to

be proved for all the admissible controls but only for the candidate optimal ones;

(ii) Since the control problem consists in minimizing positive quantities, the passage to the

limit of a localizing sequence can be done with Fatou’s Lemma and does not require

any uniform integrability.

(iii) Let us detail a bit the proof of of Theorem 5.7. The existence and uniqueness of a

nonnegative solution Y t,y;G can follow the line of the proof of Proposition 5.3 once

one shows the local Lipschitz continuity with respect to y in (0,+∞) and extending G

for y = 0 by setting it equal to 0. Instead, to prove the strict positivity one can follow

two paths.

(a) Studying the behavior of this map at y = 0+. For example, if one is able to prove

that this map is sublinear in a right neighborhood of 0, then one can compare the

solution with a stochastic exponential and then get its strict positivity.

(b) Using martingale arguments as follows. Define, with the convention inf ∅ = T ,

τ := inf{s ∈ [t, T ] | Y t,y;G
s = 0}.

By applying Itô’s formula, using the fact that W solves the HJB equation (26)

and the fact that Y t,y;G solves the closed loop equation (78), one gets as usual in

verification arguments that(
W (s, Y t,y;G

s ) +

∫ s

t
Ũ∗1 (r, Y t,y;G

r , u∗r)dr

)
s∈[t,τ)

is a local martingale. Since it is nonnegative and since the integrand above is

also nonnegative, it follows that
(
W (s, Y t,y;G

s )
)
s∈[t,τ)

is a supermartingale. The

latter implies lims→τ−W (s, Y t,y;G
s ) < ∞ almost surely. Due to (34)(ii) and

monotonicity of W (s, ·), this is equivalent to lims→τ− Y
t,y;G
s > 0, and then we

conclude Y t,y;G > 0 over [t, T ].

Step 2. Let (t, y) ∈ [0, T )× (0,+∞), consider the optimal control u∗ for (D) starting from

(t, y) defined in (79) and the associated state process Y ∗ := Y t,y,u∗ = Y t,y;G. Considering

the first inequality of (16) and plugging into it the couple (Y ∗, u∗), in order to get optimality

for the primal problem, we need to fill the duality gap. To this aim, we need first of all to
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choose, if possible, an admissible triple (X∗, c∗, π∗) - where X∗ = Xt,x,c∗,π∗ - such that this

inequality becomes an equality when plugging (X∗, c∗) into it, i.e.

E
[∫ T

t
(U1(s, c∗s, X

∗
s )− c∗sY ∗s − u∗sX∗s )ds+ U2(X∗T )−X∗TY ∗T

]
= E

[∫ T

t
Ũ∗1 (s, Y ∗s , u

∗
s)ds+ Ũ2(Y ∗T )

]
. (80)

This is done by defining the process

X∗s := −Wy(s, Y
∗
s ), s ∈ [0, T ). (81)

Using Theorem 4.5 and Corollary 4.6, the differentiation with respect to y of (26) and an

application of Itô’s formula to (81) yield X∗ = Xt,x,c∗,π∗ , where

x := X∗t = −Wy(t, y), c∗s := − ∂

∂y
Ũ∗1 (s, Y ∗s , u

∗
s), π∗s :=

b(s)

σ2(s)
Y ∗s Wyy(s, Y

∗
s ).

Noting that, by definition of u∗, (81) is equivalent to X∗s = − ∂
∂u Ũ

∗
1 (s, Y ∗s , u

∗
s), we see that

U1(s, c∗s, X
∗
s )− c∗sY ∗s − u∗sX∗s = Ũ∗1 (s, Y ∗s , u

∗
s), P⊗ ds− a.e. in Ω× [0, T ); (82)

In addition (81) is also equivalent to

W (s, Y ∗s ) +X∗sY
∗
s = W̃ (s,X∗s ), P⊗ ds− a.e. in Ω× [0, T ). (83)

Letting s → T in (83), we conclude, by (34)(i), concavity of U2 - which ensures that the

inf-Legendre transform of Ũ2 coincides with U2 - and continuity of X∗· Y
∗
· , that

Ũ2(Y ∗T ) = U2(X∗T )−X∗TY ∗T , a.s..

Hence, by (82) and (83), the equality (80) is proved.

Now note that, by (83), (56) and (33), one has

X∗sY
∗
s ≤ W̃ (s,X∗s ) ≤ K(1 + |X∗s |p), P⊗ ds− a.e. in Ω× [0, T ).

Then, we can use the same argument as in the proof of Theorem 5.2 (ii) to show that(
X∗sY

∗
s +

∫ s
t (u∗rX

∗
r + c∗rY

∗
r )dr

)
t≤r≤T is in fact a uniformly integrable martingale, so that

(15) holds with equality in this case, i.e.

E
[
X∗TY

∗
T +

∫ T

t
(u∗sX

∗
s + c∗sY

∗
s )ds

]
= xy. (84)

Then, combining (80) and (84), we deduce

E
[∫ T

t
U1(s, c∗s, X

∗
s )ds+ U2(X∗T )

]
= E

[∫ T

t
Ũ∗1 (s, Y ∗s , u

∗
s)ds+ Ũ2(Y ∗T )

]
+ xy. (85)

Step 3. Using the optimality of (Y ∗, u∗) and (21), from (85) we get

E
[∫ T

t
U1(s, c∗s, X

∗
s )ds+ U2(X∗T )

]
= W (t, y) + xy ≥ V (t, x),

providing the optimality of (c∗, π∗).
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6 Applications

Current utility on the wealth may arise in several situations. For instance, we mention

pension funds allocation (see, in a context of utility maximization, [8, 11] and, in a context

of quadratic cost minimization, [9, 16]); optimal portfolio problems with random horizon

(see [1, 4]); markets with illiquidity (see [12, 13]). We are going to describe the latter two

applications.

6.1 Portfolio optimization with random horizon

A first application of our framework is to portfolio problems with random horizon. Consider

the consumption/investment problem with state equation (1) when the time horizon of the

agent is T ∧ τ where T > 0 is fixed and τ is some random variable τ ∈ [0,+∞), i.e. the

objective to maximize is a functional such as

E
[∫ τ∧T

0
G1(t, ct)dt+G2(τ ∧ T,Xτ∧T )

]
. (86)

In this context it is meaningful to assume, in general, that FT 6= F , and that τ is just

F-measurable. A special case, which is the one we illustrate, as it may be covered by our

framework, is when τ is independent of FT (this problem has been already treated in [1]

in the case of terminal utility). Since τ is independent of (Ft)t≥0, setting F (t) = P {τ ≤ t}
and assuming that F admits a density f over [0, T ), the functional (86) may be rewritten

as8

E
[∫ T

0
(G1(t, ct)(1− F (t)) +G2(t,Xt)f(t))dt+ (1− F (T ))G2(T,XT )

]
. (87)

So, it falls into our setting - under suitable assumptions on the functions G1, G2 - with

U1(t, c, x) = G1(t, c)(1− F (t)) +G2(t, x)f(t),

U2(x) = (1− F (T ))G2(T, x).

Therefore we can apply our results, which allow to construct optimal feedback controls by

Corollary 5.5. To this regard we notice that in [1] the regularity of the value function is

assumed in the verification theorem, so the results given through the Dynamic Programming

approach in [1] are definitively based on the possibility of finding (regular) explicit solutions

to the HJB equation. Hence, while in [1] it is needed to take specific structures for the

utility function, here we do not need that.

Finally, we observe that the rewriting of (86) as (87) can be performed also in the case

T = ∞. So, applying our Remark 2.3(iv), we get that our results on the HJB equation

and on the optimal feedback controls hold also in this case. The next subsection provides

a significant example.

8See [10] for the rewriting of the term corresponding to G2 in the general case when τ may be dependent

on FT , in which case one has to consider F (t) := P {τ ≤ t | Ft}.
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6.2 Investment/consumption problems in markets with illiquid assets

A related application of our results is the mixed liquid/illiquid investment model studied

in [12, 13]. We refer to the latter references for details on the model.

Consider a market constituted by a riskless asset (assumed constant), and two risky

assets L and I following Black-Scholes dynamics:

dLt = Lt (bLdt+ σLdWt), L0 = 1,

dIt = It

(
bIdt+ σI (ρdWt +

√
1− ρ2dBt)

)
, I0 = 1,

where W and B are independent Brownian motions, and ρ ∈ (−1, 1) is a correlation pa-

rameter.

The specificity of the model is that, while the liquid asset L may be observed and traded

continuously, the illiquid asset I may only be traded and observed at discrete random times

(τk)k≥0, where we assume that τ0 = 0, and the interarrival times τk+1 − τk are i.i.d., and

independent from (B,W ).

The investor’s strategy is then a triple ((ct)t≥0, (πt)t≥0, (αk)k∈N) where the components

represent, respectively, the consumption, the amount invested in the liquid asset L at time

t, and the amount invested in the illiquid asset I at time τk. The investor’s wealth then

follows the dynamics

R0 = r,

Rt = Rτk +

∫ t

τk

(
πs(bLds+ σLdWs)− csds

)
+ αk

(
It
Iτk
− 1

)
, t ∈ (τk, τk+1].

The investor aims at optimizing the following criterion

V (r) = sup
(ct,πt,αk)∈A(r)

E
∫ ∞

0
e−βsU(cs)ds,

where U is a utility function, the discount factor β > 0 is chosen large enough to guarantee

finiteness to the problem, and the set A(r) is the set of admissible controls keeping the

wealth nonnegative.

Let α0 ∈ [0, r] and define, in the random interval [0, τ1), the processes X,Y, J as

dXt = −ctdt+ πt(bLdt+ σLdWt), X0 = r − α0,

dYt = Yt

(ρbLσI
σL

dt+ ρσIdWt

)
, Y0 = α0,

Jt = α0
It
Yt
.

In other words, Xt is the liquid wealth at time t (the wealth held in the riskless or in

the liquid asset), YtJt is the wealth held in the illiquid asset I, and the total wealth is

Rt = Xt + YtJt.

We may apply a Dynamic Programming Principle between 0 and τ1, and see that V

satisfies the following dynamic programming principle:

V (r) = sup
0≤α0≤r

sup
(ct,πt)∈A′(r,α0)

E
[∫ τ1

0
e−βsU(cs)ds+ e−βτ1V (Rτ1)

]
, (88)
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where A′(r, α0) is the set of admissible controls (ct, πt) keeping the process X nonnegative

in the interval [0, τ1). Let us focus on the inner optimization problem in (88), i.e. assume

that α0 is fixed and we want to optimize only on (ct, πt) ∈ A′(r, α0), and let us show how

this problem may be rewritten so as to fall in the framework of Subsection 6.1.

Let FW = (FW )t≥0 denote the filtration generated by W . We note that Y is FW -

adapted, while J is independent of FW . Moreover, since I is not observed in the interval

[0, τ1), the information available to the investor is given by the filtration FW in that interval.

Hence, defining the function (t, x, y) 7→ G[V ](t, x, y) := E[V (x + yJt)] and taking the

conditional expectation with respect to FWτ1 in the inner optimization problem of (88), this

last one may be rewritten as

sup
(ct,πt)∈A′(r,α0)

E
[∫ τ1

0
e−βsU(cs)ds+ e−βτ1G[V ](τ1, Xτ1 , Yτ1)

]
. (89)

Now, if we choose U(c) = cp

p , p ∈ (0, 1), the value function V will be p-homogeneous,

V (r) = KV
rp

p , and we can reduce the state space of the above inner control problem to one

space dimension. Indeed, let us consider the state variable Zt := Xt
Yt

. Letting

c̃s =
cs
Ys
, θ̃s =

πs
Ys
− Zs

ρσI
σL

,

one can check that Z is a solution of the SDE

dZt = −c̃tdt+ θ̃t ((bL − ρσIσL)dt+ σLdWt) , Z0 = z =
r − α0

α0
. (90)

Furthermore, (89) may be rewritten as

sup
(c̃t,θ̃t)∈A′′(z)

E
[∫ τ1

0
e−βsY p

s U(c̃s)ds+ e−βτ1Y p
τ1G[V ](τ1, Zτ1 , 1)

]
, (91)

where A′′(z) is the set of admissible controls (c̃t, θ̃t) keeping the process Z nonnegative. We

can rewrite (91) just in terms of Z. In order to do that, notice that Y p
t = αp0Hte

kY,pt, where

kY,p = pρσIbLσL
− p(1−p)ρ2σ2

I
2 and H is a martingale defined by H0 = 1, dHs = pρσIHsdWs.

Then, denoting by Q the probability with density process Ht, we have that Ŵt := Wt−pρσIt
is a Q-Brownian motion. Moreover, (90) is equivalent to

dZt = −c̃tdt+ θ̃t

(
(bL − ρσIσL(1− p))dt+ σLdŴt

)
, (92)

and the control problem can be rewritten as

αp0 · sup
(c̃,θ̃)∈A′′(z)

EQ
[∫ τ1

0
e−(β−kY,p)sU(c̃s)ds+ e−(β−kY,p)τ1G[V ](τ1, Zτ1 , 1)

]
. (93)

Due to Subsection 6.1, the optimization problem (92)-(93) is now in the framework of this

paper (as long as we assume that τ1 has a density).
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