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Abstract
Multiple sclerosis is an immune-mediated inflammatory disease of the central nervous system characterised by demyeli-
nation, neuroaxonal loss and a heterogeneous clinical course. Multiple sclerosis presents with different phenotypes, most 
commonly a relapsing–remitting course and, less frequently, a progressive accumulation of disability from disease onset 
(primary progressive multiple sclerosis). The majority of people with relapsing–remitting multiple sclerosis, after a variable 
time, switch to a stage characterised by gradual neurological worsening known as secondary progressive multiple sclerosis. 
We have a limited understanding of the mechanisms underlying multiple sclerosis, and it is believed that multiple genetic, 
environmental and endogenous factors are elements driving inflammation and ultimately neurodegeneration. Axonal loss 
and grey matter damage have been regarded as amongst the leading causes of irreversible neurological disability in the 
progressive stages. There are over a dozen disease-modifying therapies currently licenced for relapsing–remitting multiple 
sclerosis, but none of these has provided evidence of effectiveness in secondary progressive multiple sclerosis. Recently, 
there has been some early modest success with siponimod in secondary progressive multiple sclerosis and ocrelizumab in 
primary progressive multiple sclerosis. Finding treatments to delay or prevent the courses of secondary progressive multiple 
sclerosis is an unmet and essential goal of the research in multiple sclerosis. In this review, we discuss new findings regarding 
drugs with immunomodulatory, neuroprotective or regenerative properties and possible treatment strategies for secondary 
progressive multiple sclerosis. We examine the field broadly to include trials where participants have progressive or relapsing 
phenotypes. We summarise the most relevant results from newer investigations from phase II and III randomised controlled 
trials over the past decade, with particular attention to the last 5 years.

Key Points 

Many anti-inflammatory, reparative or neuroprotective 
agents are currently in the pipeline for secondary and 
primary progressive multiple sclerosis

New trial designs may expedite the discovery of thera-
peutic compounds for progressive multiple sclerosis

The use of repurposed drugs and combination therapies 
are promising strategies to prevent or mitigate secondary 
progressive multiple sclerosis

1 Introduction

Multiple sclerosis (MS) is an immune-mediated inflamma-
tory disease of the central nervous system (CNS) character-
ised by demyelination, neuroaxonal loss and a heterogeneous 
clinical course. The most common presenting form of MS 
is relapsing–remitting (RRMS), affecting about 85% of the 
newly diagnosed patients. After 10–15 years, more than 50% 
of patients with RRMS convert to the secondary progressive 
stage of the disease (SPMS), characterised by a gradual neu-
rological decline and none or rare relapses. In about 15% of 
the cases, MS has a progressive course from the beginning 
(primary progressive MS [PPMS]). The clinically isolated 
syndrome (CIS) is a condition characterised by one neuro-
logical clinic event with associated neuroimaging features of 
demyelination that does not fulfil the MS diagnostic criteria 
[1, 2]. The risk of conversion of CIS to clinically definite MS 
is about 45% within 2 years [3]. Finally, with the spreading 
use of magnetic resonance imaging (MRI) as a diagnostic 
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tool, frequent incidental findings of diffuse white matter 
demyelination with a distribution similar to MS have been 
reported. Around two-thirds of these cases, called ‘radio-
logically isolated syndromes’, show radiological progression 
and one-third develop neurological symptoms during a mean 
follow-up of 5 years [4].

We have a limited understanding of the mechanisms 
underlying MS, and a multidisciplinary approach is needed 
to clarify the complex pathophysiology of the disease. It 
is believed that many genetic, environmental and endog-
enous factors are important elements driving inflammation 
and ultimately neurodegeneration in MS [5]. Axonal loss 
and grey matter damage have been regarded as the leading 
causes of irreversible neurological disability in the progres-
sive stages [6–11].

During the past two decades, findings in the pathophysiol-
ogy of MS have been translated into new therapeutics that 
mainly target the immune system centred on RRMS. Glati-
ramer acetate and beta-interferons represent the first-gener-
ation disease-modifying therapies (DMTs) in MS, followed 
by a second generation of DMTs initiated by natalizumab 
and fingolimod. Further agents such as teriflunomide, alem-
tuzumab, dimethyl fumarate, ocrelizumab and cladribine 
have been approved by the principal regulatory agencies—
the US Food and Drug Administration and the European 
Medicines Agency (EMA)—for RRMS (Fig. 1). Despite 
their effectiveness in preventing new relapses or MRI lesions 
and in mitigating the disability progression in the short term, 
less is known about their efficacy on disability in the long 

term. Furthermore, there is less evidence of a therapeutic 
effect of DMTs in progressive MS, and none of these can 
clearly stop the transition from RRMS to SPMS.

The purpose of this review is to discuss new findings 
regarding immunomodulatory, neuroprotective and remyeli-
nating approaches and therefore potential future treatment 
strategies for SPMS drawing broadly from the progressive 
and relapsing fields. We examine recent data over the last 
5–10 years.

2  Pathogenesis of Multiple Sclerosis: 
From Relapsing–Remitting to Secondary 
Progressive Phenotype

Many factors have been investigated in the pathophysiol-
ogy of MS, although no specific trigger has been identified. 
Whether a CNS extrinsic or intrinsic factor drives MS is still 
not known. Viral infections (particularly by Epstein–Barr 
virus), vitamin D insufficiency or smoking habit have been 
associated with a higher incidence of MS. The expres-
sions of the HLA alleles DRB1*1501, DRB1*0301 and 
DRB1*1303 on cells of the innate immune system are 
associated with an increased risk of developing MS [odds 
ratio 3.1, 1.26 and 2.4, respectively]. [12] The commonly 
accepted hypothesis of MS pathogenesis is that multiple fac-
tors in combination (genetic, environmental and lifestyle) 
act in concert and trigger an immune-mediated inflamma-
tory process. Macrophages and microglia from the innate 

Fig. 1  Disease-modifying drugs currently approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) 
for relapsing–remitting multiple sclerosis. * Licenced also for primary progressive multiple sclerosis, § withdrawn
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immune system, and T and B lymphocytes from the adap-
tive immune system are the major contributors [13]. From 
the peripheral immune system, autoreactive T-helper cells 
are primed and stimulated to infiltrate the CNS where they 
activate microglia and macrophages. These induce the pro-
duction of reactive oxygen species and nitric oxide, which in 
turn lead to neuronal mitochondrial dysfunction, energy fail-
ure and increased levels of intracellular calcium and sodium. 
Acidosis and glutamate-mediated excitotoxicity contribute 
to an increased intracellular level of calcium and ultimately 
apoptosis of oligodendrocytes, and degeneration of axons 
and neuronal death [14]. B and T cells, monocytes, natural 
killer cells and dendritic cells are all involved in any stage 
of MS, explaining why some therapeutics targeting inflam-
matory cells may be also effective in progressive MS [15].

Despite the differences in clinical phenotypes, neuropa-
thology studies have found that the patterns of inflamma-
tion are very similar between relapsing and progressive MS, 
showing the same infiltrates, mostly CD8+ T lymphocytes, 
CD20+ B cells and plasma cells, although the proportions 
of the single immune factors may differ. In RRMS, inflam-
matory infiltrates are associated with blood–brain barrier 
(BBB) damage, and there is an abundance of new focal 
white matter lesions showing active demyelination. In pro-
gressive MS, instead, inflammation is compartmentalised 
behind an apparently normal BBB, and acute plaques are 
rare, while chronic plaques are abundant and show a slowly 
expanding rim of activated microglia and macrophages 
containing myelin degradation products at borders [5, 16]. 
The concept that the BBB is intact in progressive MS, and 
therefore that mediators of DMTs cannot penetrate the CNS 
to exert their action, has been recently challenged by a study 
showing that there is a marked deposition of fibrin(ogen)—a 
marker of BBB disruption—in the cortex of patients with 
progressive MS [17].

Multiple sclerosis plaque location is spread in the CNS of 
all phenotypes, involving both grey and white matter. In the 
later stages of the disease, there is diffuse and often exten-
sive cortical demyelination that correlates with neuroaxonal 
loss and motor and cognitive disability [18, 19]. Cortical 
demyelination extends along the subpial surface of the cor-
tex and seems to be pathognomonic of MS, as there is no 
evidence of such cortical damage in other neurological dis-
orders. The exact pathogenesis of cortical lesions is debated, 
but it is believed to be linked to a local accumulation of 
proinflammatory cells or soluble factors from the meninges. 
In areas of reduced cerebrospinal fluid (CSF) flow, menin-
geal ectopic B-cell follicle-like structures have been identi-
fied and associated with SPMS, suggesting that meningeal 
inflammation may play a role in neurodegeneration [20, 
21]. Lisak and colleagues also demonstrated that B cells 
from patients with RRMS, but not from healthy controls, 
secrete factors in vitro toxic to neurons and oligodendrocytes 

independent of immunoglobulins, not complement mediated 
and involving apoptosis. They hypothesised that B cells 
entering the meninges and CSF from the peripheral immune 
system could secrete soluble factors different from antibod-
ies that lead to the characteristic damage of MS in the under-
lying cortical grey matter [22, 23]. Finally, profound diffuse 
pathology can be found in the normal-appearing white and 
grey matter, where there is evidence of perivenous inflam-
matory infiltrates surrounded by rims of demyelination, 
diffuse astrocytic gliosis, microglia activation and axonal 
degeneration.

From a diagnostic perspective, it may be difficult to 
identify the conversion from RRMS to SPMS or distinguish 
between PPMS and SPMS. To date, there are no clear patho-
logic, imaging, immunological or clinical criteria to identify 
the exact point of conversion from RRMS to SPMS, which 
is usually gradual and based on the observation of relentless 
increasing disability. Although PPMS and SPMS are consid-
ered as separate phenotypes, clinical, imaging and genetic 
data suggest that there are no pathophysiologically distinct 
features [2].

3  Measures of Neuroaxonal Loss in MS 
Clinical Trials

A detailed description of clinical trial outcome measures is 
beyond the scope of this review and exhaustive reads of this 
topic can be found elsewhere [24–27]. Clinical trials with 1- 
to 3-year follow-up in progressive MS have to infer long-term 
irreversible disability outcomes from short-term confirmed 
progression events [28]. Outcome measures related to progres-
sion vary across trials. The more recent phase III clinical trials 
primarily focus on the time to confirmed disability progression 
or the proportion of patients with or without confirmed dis-
ability progression. In phase III trials, disability progression is 
usually assessed on clinical grounds by means of the Expanded 
Disability Status Scale (EDSS), the MS Functional Composite 
(MSFC) and its sub-components, or recently by a combina-
tion of EDSS and/or walking and/or upper limb progression 
[29–31]. Despite its widespread use, the EDSS is a non-linear 
scale mostly weighted towards motor and lower limb func-
tions and has shown low inter- and intra-rater reproducibil-
ity [32]. The MSFC is a composite score weighted on three 
components testing lower limb (timed 25-foot walk [T25FW] 
test), upper limb (9-hole peg test [9HPT]) and cognitive func-
tion (Paced Auditory Serial Addition Test [PASAT]). The 
PASAT has been criticised because of its practise effects and 
patient frustration with the test. Like the PASAT, the Sym-
bol Digit Modalities Test (SDMT) can measure the speed of 
information processing, one of the cognitive domains more 
often affected in MS, most reliably than the PASAT and with-
out causing anxiety in patients. The SDMT seems to be the 
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neuropsychological test most sensitive to the MS cognitive 
disorder and correlates well with MRI measures of atrophy and 
lesion burden, and it has been proposed that the SDMT should 
replace the PASAT in the MSFC [33, 34]. In trials testing the 
visual pathways, and in general to add a sensitive measure of 
the vision function in MS trials, the Sloan low-contrast letter 
acuity has been used [35, 36].

In phase II trials, disease progression is measured by means 
of imaging or laboratory biomarkers that have been linked 
to neuroaxonal loss [37]. Quantitative MRI can measure: (1) 
active inflammation, by counting new or enlarged T2 lesions 
or gadolinium-enhancing lesions (GELs), and (2) neuroaxonal 
loss, by calculating changes in the whole brain volume (or 
regional grey matter and deep grey matter volumes) or spinal 
cord cross-sectional area, which are believed to reflect irrevers-
ible tissue damage, or atrophy [38, 39].

Studies of brain atrophy in patients with untreated MS 
and who are clinically stable have shown that brain volume 
loss occurs at a rate of about 0.5–1% per year compared with 
0.1–0.3% in healthy controls [40] and the brain volume loss is 
particularly pronounced in SPMS [18, 41–43]. Neuroaxonal 
tissue constitutes a large proportion of brain volume and the 
increased rate of brain atrophy has been interpreted as evi-
dence for neuroaxonal loss [40]. Moreover, brain atrophy sig-
nificantly correlates with disability and cognitive impairment 
in MS [44].

Advanced MRI techniques, such as magnetic transfer ratio 
(MTR) or magnetic resonance spectroscopy may reflect spe-
cific myelin or neuroaxonal loss [38].

The anterior visual system, which represents the most vis-
ible part of the human brain, is a common site of damage in 
MS. Visual evoked potentials (VEPs) have been used for a 
long period to objectively quantify the axonal integrity of the 
visual pathways. The VEP latency has been used to confirm 
the efficacy of remyelination or neuroprotective drugs. More 
recently, optical coherence tomography has emerged in MS 
studies as a non-invasive tool that allows investigation of the 
neuronal retina [45]. Optical coherence tomography can quan-
tify the thickness of the retinal nerve fibre layer (RNFL) made 
of unmyelinated axons originated from the retinal ganglion cell 
bodies. Ganglion cell layer and RNFL thicknesses are plausi-
ble biomarkers of neuronal and axonal loss, respectively [46]. 
In MS, some studies have reported significant associations 
between RNFL thickness and EDSS or MSFC, as well as with 
cognitive measures and brain atrophy [47–51]. A multicen-
tre cohort study showed that decreased peripapillary RNFL 
thickness was associated with an increased risk of disability 
worsening during follow-up in patients with MS [52].

Laboratory biomarkers may be useful to quantify the extent 
of neuroaxonal loss, with blood and CSF biomarkers such as 
osteopontin and neurofilament light-chain levels starting to be 
measured in clinical trials [53, 54]. 

4  Agents Under Investigation: From 
Relapsing–Remitting to Progressive MS

To modify the natural history of SPMS, preventing or 
delaying the accumulation of disability should be the goal 
of the treatment. T and B cells migrate from the peripheral 
blood into the CNS inducing local inflammation and pro-
ducing immunoglobulins, which can be found in the CSF. 
The inflammatory activity of RRMS can be targeted in 
different ways, mostly blocking the trafficking of lympho-
cytes from the periphery to the CNS or by depleting the 
number of lymphocytes to reduce the amount of those that 
cross the BBB. In the progressive forms of MS, however, 
other cells, such as microglia and astrocytes, are believed 
to exert an important role and are now regarded as possible 
treatment targets [55]. New drug categories, such as puta-
tive neuroprotective agents, remyelination or neural repair 
agents are currently under investigation (Tables 1, 2).

4.1  Immune Modulation

Since the first DMT was released in 1993, many other 
immunomodulatory drugs have been tested in both RRMS 
and progressive MS. Clinical trials of beta-interferons and 
glatiramer acetate in the progressive stages have provided 
mixed results and overall have not shown clear efficacy in 
preventing disability. In 2000, mitoxantrone was approved 
for SPMS after the findings of the MIMS trial showed 
that the active arm experienced a decreased relapse rate 
and disability progression. These effects were at least 
partially driven by the anti-inflammatory effect of mitox-
antrone [56]. Currently, the use of mitoxantrone has been 
abandoned in many countries because of concerns over 
safety [57, 58]. However, a short time course of mitox-
antrone might be useful in very active MS as an induction 
treatment, with an acceptable safety profile [59–61]. The 
immunosuppressants azathioprine, cyclosporine, cyclo-
phosphamide and methotrexate have been also trialled 
in both RRMS and progressive MS, leading to negative 
or inconclusive results. More details about these drugs 
have been extensively reported elsewhere [24, 62–64]. 
We describe here the agents that have been tested most 
recently in progressive MS, with a particular focus on 
SPMS (Table 3).

4.1.1  Negative Trials

4.1.1.1 Alemtuzumab Alemtuzumab is a chimeric mono-
clonal antibody targeting the CD52 surface protein mainly 
expressed by B and T lymphocytes [65]. A small phase II 
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trial with 36 subjects with SPMS attempted CD52-lympho-
cyte depletion with alemtuzumab [66]. The study showed 
that patients relentlessly accrued clinical disability and MRI 
evidence of cerebral atrophy [67, 68].

4.1.1.2 Cladribine Cladribine is a synthetic deoxyadeno-
sine analogue chemotherapy agent that is activated by 
intracellular phosphorylation in specific cell types, such as 
lymphocytes. Cladribine phosphates interfere with deoxyri-
bonucleic acid synthesis and repair in lymphocytes inducing 
their death and resulting in a targeted reduction of circulat-
ing lymphocytes [69, 70]. Cladribine showed no efficacy on 
slowing disability progression and decreasing brain atrophy 
rates in a placebo-controlled trial in 159 patients with pro-
gressive MS, although some previous results from a small 
phase II trial had suggested positive effects [71–73].

4.1.1.3 Dirucotide Negative results were also obtained 
with dirucotide (MBP8298), a myelin basic protein capa-
ble of inactivating autoreactive T and B cells and restoring 
self-tolerance. Indeed, after a preliminary small trial show-
ing that dirucotide significantly delayed clinical progression 
in patients expressing the allele HLA-DR2/DR4, two phase 
III trials, MAESTRO-01 and MAESTRO-03, were com-
menced in patients with SPMS carrying the specific allele. 
In MAESTRO-1, dirucotide did not provide a clinical ben-
efit compared to placebo and this led to the decision to ter-
minate the MAESTRO-03 trial early [74, 75].

4.1.1.4 Fingolimod Amongst the DMTs approved for 
RRMS, fingolimod (FTY720) is an antagonist of the sphin-
gosine-1-phosphate receptors that works by preventing lym-
phocytes egressing from lymphoid tissues into circulation 
and then migrating to the CNS. Fingolimod can cross the 
BBB and inhibits astrogliosis. In a clinical trial in RRMS, 
fingolimod significantly reduced brain volume loss [76, 77]. 
Fingolimod has been investigated in the large, phase III 
INFORMS trial in PPMS, showing that there was no differ-
ence in the rate of disability progression between the active 
and placebo arms [78].

4.1.1.5 MIS416 MIS416 is a bacterial-derived micro-
particle capable of stimulating the innate immune system 
response [79]. Initially used for compassionate use in a few 
patients with SPMS in New Zealand, the drug was found to 
be safe and well tolerated in animal models of MS and in 19 
patients with SPMS in a non-randomised phase Ib/IIa open-
label trial [80]. A further randomised, placebo-controlled 
phase IIb trial, however, did not show efficacy of MIS416 in 
the recruited 90 people with SPMS [79, 81].

4.1.1.6 Natalizumab Natalizumab is a monoclonal anti-
body that targets the α4 subunit of the very late activation-4 Ta
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molecule on leucocytes, which blocks the transmigration of 
systemic immune cells to the CNS reducing inflammation 
[82–84]. In a small, phase II open-label trial, natalizumab 
was associated with a decrease of osteopontin, a marker of 
neuronal damage, in progressive MS [85]. However, in the 
recently published, phase III ASCEND trial, no treatment 
effect was observed on the primary outcome, a composite 
score combining the EDSS, T25FW test and 9HPT used to 
measure the proportion of patients with confirmed disability 
progression over 96 weeks. Looking at the sub-components 
of the primary outcome, there was, however, a significant 
44% reduction in the relative risk of confirmed upper-limb 
disability progression as measured by the 9HPT [15% with 
natalizumab vs. 23% with placebo; adjusted odds ratio 0.56 
(95% confidence interval [CI] 0.40–0.80); p = 0·001] [86].

4.1.1.7 Sulfasalazine The anti-inflammatory and immune-
modulator sulfasalazine, used as a DMT for rheumatoid 
arthritis, showed some efficacy in improving the outcomes 
of experimental allergic encephalomyelitis (EAE) and 
showed remyelination properties in animal models. How-
ever, it did not prevent the accumulation of clinical disabil-
ity in active RRMS and progressive MS [87, 88].

4.1.2  Positive Trials or Promising Results

4.1.2.1 Rituximab and  Ocrelizumab In 2008, the phase II 
HERMES trial showed that rituximab, a B-cell-depleting 
chimeric anti-CD20 monoclonal antibody, significantly 
reduced the number of GELs and the number of relapses 
in RRMS when compared with placebo [89]. These find-
ings changed the traditional view of MS pathophysiology 
as an inflammatory disorder principally mediated by T 
cells. Rituximab was later investigated in progressive MS, 
namely in the OLYMPUS [90] and RIVITaLISe [91] tri-
als. Both these studies reported negative results. RIVITaL-
ISe was terminated early, after an interim analysis showing 
a lower‐than‐expected depletion of intrathecal B cells that 
would have been insufficient to translate to potential clinical 
efficacy in a small phase II trial. In a subgroup of younger 
patients with active inflammatory lesions from OLYMPUS, 
selective B-cell depletion could reduce disease progression.

The findings from the OLYMPUS trial had a significant 
impact on further research and served as a rationale for test-
ing ocrelizumab, another CD20 monoclonal antibody, in 
both RRMS and PPMS. The OPERA I and OPERA II phase 
III trials provided the evidence of ocrelizumab as a more 
effective drug over interferon-β in RRMS [92]. In the PPMS 
ORATORIO trial, patients taking ocrelizumab showed lower 
rates of 12-week confirmed disability progression (primary 
outcome) vs. placebo with a relative risk reduction of 24%. 
Eligibility criteria for ORATORIO included younger age 
(less than 55 years), evidence of CSF immunoglobulin G 

oligoclonal bands, and disease duration no longer than 10 or 
15 years according to the EDSS. Ocrelizumab has received 
a licence from the Food and Drug Administration and Euro-
pean Medicines Agency in PPMS.

4.1.2.2 Siponimod Recent encouraging results have been 
reported from the phase III EXPAND trial that is investigat-
ing the efficacy of siponimod (BAF312) in more than 1651 
patients with SPMS (siponimod n = 1105 vs. placebo n = 
546). Siponimod can cross the BBB, reduce CNS inflam-
mation, and promote mechanisms of repair via modulation 
of sphingosine-1-phosphate on astrocytes and sphingo-
sine-1-phosphate receptor 5 on oligodendrocytes [93, 94]. 
Results from the core study showed that siponimod reduced 
the risk of 3-month confirmed disability progression by 21% 
compared with placebo (hazard ratio 0.79, 95% CI 0.65–
0.95; p = 0.013). The increase in T2 lesion volume from 
baseline was significantly lower with siponimod than with 
placebo (between-group difference − 695.3  mm3, 95% CI − 
877.3 to − 513.3; p < 0.0001). Brain volume was preserved 
to a higher degree in the siponimod group than in the pla-
cebo group (mean percentage change over months 12 and 
24 0.15%, 95% CI 0.07–0.23; p = 0.0002). Siponimod did 
not reduce the time to 3-month confirmed worsening of the 
T25FW test, the key secondary outcome (hazard ratio 0.94, 
95% CI 0.80–1.10; risk reduction 6%; p = 0.44) [95, 96].

4.1.2.3 Autologous Haematopoietic Stem Cell Transplanta‑
tion Autologous haematopoietic stem cell transplantation 
(AHSCT) induces an initial profound immunosuppression 
followed by a sub-sequent reconstitution of a qualitatively 
different immune system. This phenomenon might halt the 
progression of neurological disability and induce a prolonged 
medication-free interval. Muraro et  al. reported the long-
term results of a multicentre, observational, retrospective 
cohort study on AHSCT [97]. Progression-free survival in 
the subgroup with relapsing MS was 73% (95% CI 57–88%) 
at 5 years after AHSCT. Amongst patients with SPMS, 
the largest subgroup in the study, 33% (95% CI 24–42%) 
remained free from EDSS score deterioration with a rate of 
mortality of 2.8%. A recent meta-analysis has reported an 
increased risk of mortality in progressive patients with high 
EDSS scores undergoing AHSCT and a favourable effect 
in RRMS reaching levels of ‘no evidence of disease activ-
ity’ comparable to those reported from DMTs. This findings 
suggest that AHSCT may be a more effective alternative to 
approved DMTs in selected patients [98]. A phase III ran-
domised trial is currently recruiting participants to assess 
the relative role of AHSCT vs. alemtuzumab in adults with 
RRMS no older than 50 years of age, with an EDSS score 
of ≤ 5.5 and the presence of significant inflammatory dis-
ease activity in the last year despite treatment with standard 
DMTs (NCT03477500).
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4.1.3  Ongoing Trials

4.1.3.1 Dimethyl Fumarate Dimethyl fumarate (DMF) 
may have a role in the treatment of progressive MS given its 
anti-inflammatory and neuroprotective properties [99, 100]. 
Strassburger-Krogias and colleagues carried out an observa-
tional study in 26 patients with progressive MS (12 PPMS, 
14 SPMS) treated with the fumarate mixture  Fumaderm®, 
approved for psoriasis in Germany, or DMF by pharmaceu-
tical preparation [101]. They found no disease progression 
in more than 75% of the treated patients after a mean fol-
low-up period of about 15 months. In 2015, the phase III, 
randomised controlled trial INSPIRE was started to further 
investigate the effects of DMF in SPMS. Because of the fail-
ure of the similarly designed ASCEND study, INSPIRE was 
terminated early. However, the phase II study FUMAPMS 
is currently recruiting participants to assess the efficacy of 
DMF in decreasing the neurofilament light chain, a marker 
of neuronal damage, in 90 patients with PPMS after 48 
weeks (NCT02959658).

4.1.3.2 Masitinib Masitinib can inhibit mast cell activa-
tion. Migration and degranulation of mast cells in the CNS 
release proinflammatory and vasoactive mediators, which 
actively participate in the pathogenesis of MS [102, 103]. 
Masitinib is being investigated in a phase II/III randomised 
controlled trial assessing its safety and efficacy in lowering 
clinical disability in 450 people with PPMS and relapse-
free SPMS (NCT01433497) [104]. In a previous, pilot 
phase II study in 12 subjects with PPMS and 18 subjects 
with relapse-free SPMS, masitinib showed some therapeutic 
benefits on reducing the rate of upper and lower limb func-
tion impairment [105].

4.2  Neuroprotection

Several mechanisms can be addressed to achieve neuropro-
tection. As reported by neuropathology studies, MS shows 
neuroaxonal loss at any stage of the disease, with a prepon-
derance in the progressive courses [6, 106]. A number of 
studies are currently investigating putative neuroprotective 
agents in progressive and relapsing MS (Table 4).

4.2.1  Negative Trials

4.2.1.1 Dronabinol Dronabinol is a cannabinoid that 
showed experimental evidence for neuroprotective effects 
[107]. Dronabinol was investigated in the placebo-con-
trolled CAMS study looking for anti-spasticity effects. The 
CAMS study was negative, but it incidentally showed that 
patients with a progressive course had alleviation of symp-
toms [108]. Dronabinol was then tested in the phase III 
CUPID trial, which did not show a benefit of dronabinol on 

the progression rate or in decreasing rates of brain volume 
loss. The unexpected low progression rate in the placebo 
arm may have affected the results [109].

4.2.1.2 Erythropoietin Erythropoietin can stimulate brain 
neuroprotection in experimental studies, promoting axonal 
repair, neurogenesis and angiogenesis [110]. After a pilot 
study in chronic progressive MS, Schreiber and colleagues 
undertook a randomised, placebo-controlled phase II trial of 
high-dose recombinant human erythropoietin in 52 patients 
with progressive MS (34 had SPMS and 18 PPMS). They 
reported that erythropoietin did not improve the change in a 
composite measure of maximum gait distance, hand dexter-
ity and cognition from baseline to 24 weeks [111, 112].

4.2.1.3 Idebenone Idebenone is a coenzyme Q10 analogue 
with antioxidant properties. Idebenone can decrease reac-
tive oxygen species contributing to the maintenance of a 
normal neuronal energy state [113]. A phase I/II adaptive 
study, the IPPoMS trial, had been recently reported show-
ing no difference between the active treatment group and 
placebo in the rate of disability progression in the 77 ran-
domised patients with PPMS [114]. An open-label safety 
and efficacy extension of the IPPoMS trial has been under-
taken (NCT00950248 and NCT01854359). Full results are 
not available yet [114].

4.2.1.4 Lamotrigine Lamotrigine, licenced as an anticon-
vulsant, is thought to exert neuroprotective properties by 
the blockade of sodium channels. In a phase II trial, lamo-
trigine failed to show a reduction in brain atrophy rates over 
placebo in patients with SPMS. It was speculated that the 
results were affected by a high rate of non-adherence in the 
lamotrigine arm and by decreased brain volume during the 
first year of study likely owing to pseudoatrophy. This is 
a phenomenon characterised by an apparent brain volume 
reduction, whose mechanisms can include fluid shifts or 
oedema resolution after the commencement of drugs with 
potent anti-inflammatory effects [115, 116].

4.2.1.5 Laquinimod Laquinimod is another drug that has 
shown some neuroprotective properties in preclinical stud-
ies [117]. The phase II proof-of-concept ARPEGGIO trial, 
however, did not reduce MRI-derived brain atrophy or the 
rate of confirmed disability progression over 48 weeks in 
PPMS (NCT02284568) [118, 119].

4.2.1.6 Lithium Lithium is a mood-stabilising drug that 
exerts anti-inflammatory effects and has shown some poten-
tial in reducing progression in animal models of several 
neurodegenerative diseases [120]. Rinker and colleagues 
reported the results from a 2-year open-label crossover trial 
of adjunctive low-dose lithium carbonate vs. standard care 
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in 23 patients with progressive MS (3 PPMS and 20 SPMS). 
Subjects were randomly assigned to take lithium daily in 
year 1 or 2. Primary outcome measures were safety, toler-
ability and change in brain parenchymal fraction. Prelimi-
nary results showed a non-statistically significant decrease 
in brain atrophy over 1 year (brain parenchymal fraction 
increased by a mean of 0.560 ± 0.379%, compared to 0.139 
± 0.304% during standard care; p = 0.399). Relapse rates 
and change in EDSS did not significantly differ between on- 
and off-lithium time periods. The authors concluded that 
low-dose lithium was well tolerated and that a preliminary 
analysis could not rule out a benefit on brain volume com-
pared to standard care [121]. Full publication is pending.

4.2.1.7 Polyphenon E Polyphenon E is a natural antioxidant 
agent capable of reducing oxidative stress in mitochondrial 
and consequent axonal injury. In 2011, the phase II POEMS 

study opened the recruitment to assess the safety and the 
neuroprotective effects of Polyphenon E in MS. Unexpect-
edly, Polyphenon E caused liver toxicity and the trial was 
terminated [122].

4.2.2  Positive Trials or Promising Results

4.2.2.1 Ibudilast Ibudilast (MN166-001) has anti-inflam-
matory actions, and inhibits nitric oxide synthesis and 
tumour necrosis factor-α, which is released by activated 
astrocytes and microglia [123, 124]. In a phase II, ran-
domised placebo-controlled trial in RRMS, ibudilast was 
not effective in decreasing the number of relapses or new 
MRI lesions, but significantly reduced brain atrophy after 
2 years [125]. Based on these results, the phase II SPRINT-
MS study recruited 255 patients with progressive MS and 
tested the efficacy of ibudilast against placebo in reducing 

Table 4  Ongoing phase II and III clinical trials of agents with putative neuroprotective properties in progressive multiple sclerosis

EDSS Expanded Disability Status Scale, MRI-BVC magnetic resonance imaging-brain volume change, MS multiple sclerosis, NFL neurofila-
ment, PPMS primary PMS, PRRMS progressive relapsing-remitting MS, RCT  randomised controlled trial, SPMS secondary PMS, T25FWT 
timed 25-foot walking test
a Clinical trials have been searched on https ://clini caltr ials.gov, last accessed date 3 Apr 2018

Drug(s) Title Phase Study design Subjects 
(estimated)

Primary 
endpoint(s)

Time frame Study 
comple-
tion

Status NCT  numbera

Andro-
grapholides

Efficacy, 
safety and 
tolerability 
of andro-
grapholides 
versus 
placebo in 
patients with 
progressive 
forms of MS

I/II RCT (pla-
cebo)

68 PMS MRI-BVC 2 y 2017 Unknown NCT02273635

Amiloride
Fluoxetine
Riluzole

MS secondary 
progressive 
multi arm 
randomisa-
tion trial 
(MS-
SMART)

II Multi-arm 
RCT (pla-
cebo)

445 SPMS MRI-BVC 96 wk 2018 Active, not 
recruiting

NCT01910259

Lipoic acid Lipoic acid for 
progressive 
MS

II RCT (pla-
cebo)

118 PMS T25FWT 2 y 2021 Not yet 
recruiting

NCT03161028

Oxcarbaz-
epine

Protective role 
of oxcarbaz-
epine in MS 
(PROXI-
MUS)

II RCT (pla-
cebo)

30 SPMS/
PRRMS

NFL light 
chain

48 wk 2018 Recruiting NCT02104661

Simvastatin Multiple 
sclerosis-
Simvastatin 
trial 2 (MS-
STAT2)

III RCT (pla-
cebo)

1180 SPMS EDSS 182 wk 2023 Recruiting NCT03387670

https://clinicaltrials.gov
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the rate of MRI-derived brain atrophy over 96 weeks. Pre-
liminary results showed that treatment with ibudilast was 
associated with a 48% slowing in the rate of brain atrophy 
(atrophy rate for ibudilast: − 0.00105; 90% CI − 0.00160, 
− 0.00049; atrophy rate for placebo: − 0.00202; 90% CI − 
0.00256, − 0.00147) [126, 127].

4.2.2.2 Lipoic Acid Lipoic acid is an antioxidant promoting 
free-radical scavenging, metallic ion chelation, regeneration 
of intracellular glutathione and oxidative damage repair of 
macromolecules. It also takes part in the mitochondrial oxi-
dative respiration and nucleic acid synthesis, and inhibits 
macrophage and microglial activation in EAE [128, 129]. 
Spain and colleagues presented the results of a phase II 
study investigating lipoid acid in SPMS [130]. They showed 
that, after 2 years, participants taking lipoic acid had signifi-
cantly less annualised percentage of brain volume change 
(− 0.21%, standard error of the estimate = 0.14) than con-
trols (− 0.65%, standard error of the estimate = 0.10, p = 
0.002). The beneficial effect size of lipoic acid treatment 
corresponded to a 0.44 ± 0.29% improvement in the rate of 
whole-brain atrophy (95% CI 0.157–0.727).

4.2.2.3 Minocycline Minocycline is a tetracycline antibiotic 
with immunomodulatory and neuroprotective properties 
capable of crossing the BBB, preventing microglial activa-
tion, glutamate excitotoxicity and apoptosis [131, 132]. Evi-
dence supporting the neuroprotective role of minocycline 
has emerged from experimental models of acute neuronal 
injury (stroke, brain and spinal cord trauma), chronic neu-
rodegenerative diseases (amyotrophic lateral sclerosis, Hun-
tington’s disease) and autoimmune CNS inflammation [131, 
133]. An open-label study of interferon-β and minocycline 
in ten people with active RRMS showed positive effects on 
disease inflammation, decreasing the total number of GELs; 
whereas no superiority was found in decreasing the number 
of GELs in the combination therapy of minocycline with 
glatiramer acetate or interferon-β1-a vs. injectable mono-
therapies in two double-blind, placebo-controlled phase II 
studies [134–136]. More recently, a study of minocycline 
vs. placebo in 142 patients with CIS suggested that mino-
cycline may delay the conversion to MS [137]. The neuro-
protective role of minocycline has not been investigated in 
progressive MS yet and whether this drug may have a role 
in the future trials in progressive MS is currently unknown.

4.2.2.4 Phenytoin Phenytoin, similarly to oxcarbazepine, 
is a selective sodium-channel inhibitor with neuroprotective 
properties [138]. In a randomised phase II trial of 58 sub-
jects with acute optic neuritis, the adjusted mean difference 
(i.e. phenytoin group minus placebo group) of the RNFL 
in the affected eye was 7.15 µm (95% CI 1.08–13.22; p = 
0.021) after 6 months. This result corresponded to a 30% 

reduction in the extent of RNFL loss with phenytoin com-
pared with placebo, showing potential neuroprotection of 
the optic nerve [139]. Phenytoin has not yet been tested in 
progressive MS.

4.2.2.5 Simvastatin Simvastatin is used for the treatment of 
primary hyperlipidaemia and secondary prevention of myo-
cardial or cerebral ischaemia. Experimental evidence, how-
ever, suggested that statins can also exert anti-inflammatory 
and protective properties in the CNS. After some contradic-
tory results from trials in RRMS, the phase II MS-STAT 
trial was undertaken investigating the effect of high-dose 
simvastatin vs. placebo in reducing brain atrophy rate in 
140 patients with SPMS over 2 years. They found that sim-
vastatin significantly reduced the annualised MRI-derived 
brain atrophy rate by 43% (adjusted difference in atrophy 
rate between the groups: − 0.254%; 95% CI − 0.422 to − 
0.087; p = 0.003) [140]. In the cognitive sub-study of the 
MS-STAT trial, there was evidence of a positive effect of 
simvastatin on frontal lobe function (difference 1.2 points, 
95% CI 0.2–2.3 between baseline and month 24) and on the 
physical component of a quality-of-life measure (difference 
2.5 points, 95% CI 0.3–4.8; p = 0.028) [141]. Following 
these positive results, the phase III study MS-STAT2 will 
shortly start the recruitment of 1180 patients with SPMS in 
the UK. MS-STAT2 will assess the time to confirmed dis-
ability progression between simvastatin and placebo arm as 
measured by the EDSS after 36 months (NCT03387670).

4.2.3  Ongoing Trials

4.2.3.1 Amiloride, Fluoxetine and  Riluzole The MS-
SMART trial is a multi-arm, phase II placebo-controlled 
study investigating the putative neuroprotection properties 
of amiloride, fluoxetine and riluzole in 445 patients with 
SPMS [142]. Amiloride is an acid-sensing ion channel-1 
blocker. Recent studies have shown that acid-sensing ion 
channel-1 contribute to axonal degeneration in CNS lesions. 
In MS, acid-sensing ion channel-1 seem to activate under 
acidic conditions predominating in the inflammatory CNS 
lesions, leading to a  Na+ and  Ca2+ overload and resulting 
damage and apoptosis of axons [143]. A pilot open-label 
study in 14 patients with PPMS showed that amiloride sig-
nificantly reduced the rate of MRI-derived brain atrophy 
[144]. The same research group and independently an Aus-
trian team investigated the effect of amiloride in patients 
with acute optic neuritis [145]. The former study showed 
no neuroprotective benefits. A report of the results from the 
latter has not been presented yet (NCT01879527).

Fluoxetine is a selective serotonin-reuptake inhibitor 
with pleiotropic neuroprotective effects stimulating glycog-
enolysis and improving mitochondrial energy metabolism 
[146, 147]. Mostert and colleagues carried out a pilot 2-year 
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randomised, placebo-controlled phase II trial in 42 people 
with progressive MS (29 SPM and 13 PPMS) and showed no 
evidence of a significant clinical benefit [148]. However, this 
study had a low sample size and the same research team car-
ried out a further trial in progressive MS, using as a primary 
outcome measure the time to confirmed disease progression 
defined as either at least a 20% increase in the T25FW test or 
at least a 20% increase in the 9-HPT. They reported a trend 
(p = 0.07) towards a significant difference in time to con-
firmed disease progression between fluoxetine and placebo 
groups. Magnetic resonance imaging results are expected. It 
was speculated that the study was underpowered to detect a 
significant clinical effect over the 2 years of the trial [149].

Riluzole antagonises voltage-dependent sodium channels 
and is a glutamate receptor modulator that inhibits the syn-
aptic release of glutamate, which is a neurotoxic agent. A 
pilot study of riluzole in PPMS showed a reduction in the 
rate of cervical cord atrophy and the number of new brain T1 
hypointense lesions [150]. Waubant and colleagues inves-
tigated the neuroprotective effect of riluzole vs. placebo in 
patients with early RRMS as an add-on to interferon-β-1a. 
They reported no difference between placebo and riluzole 
on brain atrophy as measured by MRI [151].

4.2.3.2 Oxcarbazepine Oxcarbazepine may have neuro-
protective properties by blocking sodium channels. Oxcar-
bazepine is being investigated in the PROXIMUS study, a 
phase IIa trial that recruited patients in the early stage of 
SPMS who were still receiving DMTs. The rationale behind 
this study is the attempt to treat SPMS addressing both neu-
rodegeneration with oxcarbazepine and inflammation with 
approved DMTs. Quantification of the CSF neurofilament 
light chain is the primary outcome measure of the trial 
(NCT02104661).

4.3  Regenerative Therapies

This therapeutic approach to MS is new and a number of 
agents are currently being investigated (Table 5).

4.3.1  Negative Trials

4.3.1.1 GSK239512 GSK239512 is a selective and brain 
penetrant, histamine  H3 receptor antagonist capable of 
promoting oligodendrocyte progenitor cell differentiation 
in vitro and enhances remyelination in the cuprizone mouse 
model of remyelination [152]. In a pilot placebo-controlled 
phase II study, GSK239512 had a good safety profile and a 
small positive effect on remyelination as measured by MTR 
in a cohort of 131 patients with RRMS, although there was 
no effect on clinical or conventional MRI parameters. It was 
speculated that the development of clinical endpoints more 
directly linked to changes in myelination or the inclusion 

of a population with more disease activity, or a longer trial 
duration would have been more appropriate to explore the 
impact of GSK239512 on the disease [153].

4.3.1.2 Opicinumab Not formally assessed in patients with 
progressive MS, the human monoclonal antibody opici-
numab (BIIB033 or anti-LINGO-1) has shown remyelina-
tion and neuroprotective properties in animal models of MS 
[154–157]. In the phase II RENEW trial, 82 participants 
with acute optic neuritis were randomised to receive opici-
numab or placebo. The primary endpoint was remyelina-
tion at 24 weeks, measured as the recovery of affected optic 
nerve conduction latency using full-field VEP vs. the unaf-
fected fellow eye at baseline. Remyelination did not differ 
significantly between the opicinumab and placebo groups 
in the intention-to-treat population at week 24. However, 
results from the pre-specified per-protocol population at 
week 24 [14.7 vs. 22.2 (−15.1 to 0.0); 34%; p = 0.050] sug-
gested that opicinumab could enhance remyelination in the 
human CNS [158]. SYNERGY was a phase II study investi-
gating the additive efficacy of opicinumab to interferon-β-1a 
in patients with RRMS. Preliminary results showed that the 
trial did not meet the pre-specified primary endpoint [159]. 
The phase II AFFINITY trial is ongoing to evaluate the 
effects of opicinumab, as an add-on therapy to anti-inflam-
matory DMTs, on disability improvement over 72 weeks in 
relapsing MS (NCT03222973).

4.3.2  Positive Trials or Promising Results

4.3.2.1 Biotin Biotin (MD1003) can increase energy pro-
duction in demyelinated axons and enhance myelin synthe-
sis in oligodendrocytes, behaving as both a neuroprotective 
and myelin repair drug [160]. After an open-label pilot study 
of biotin in 23 patients with progressive MS (both SPMS 
and PPMS) showed that patients had a qualitative or quan-
titative improvement, Tourbah et al. reported the results of 
the MS-SPI trial. The primary endpoint was the proportion 
of patients with an improvement of MS-related disability 
(measured with EDSS or T25FW) at month 9, confirmed at 
month 12. They found an improvement in MS-related dis-
ability at month 9, confirmed at month 12, in 12.6% of the 
patients, and a reduced proportion of patients with EDSS at 
month 9 (confirmed at month 12) [161, 162]. Interestingly, 
an MRI sub-study of the trial showed an improvement in 
MTR and fractional anisotropy on diffuse tensor imaging, 
markers of myelin density and axonal integrity, respectively, 
and a reduction in whole brain volume and grey matter vol-
ume. The decrease in brain volume was perhaps the result 
of pseudoatrophy [163]. Further results from the placebo-
controlled crossover MS-ON trial of biotin in patients with 
progressively worsening optic neuritis did not meet the 
primary outcome—a mean change in 100% contrast visual 
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acuity at 6 months [164]. The confirmatory phase III SPI-2 
trial is currently recruiting patients with progressive MS 
(NCT02936037).

4.3.2.2 Clemastine Fumarate Clemastine fumarate pro-
motes oligodendrocyte precursor differentiation and 
remyelination without modulating the immune system. 
Green et al. reported the results from the crossover, ran-
domised, placebo-controlled phase II ReBUILD trial, 
where clemastine fumarate was used in patients showing 

chronic optic neuritis and evidence of VEP P100 latency 
of 118 ms and RNFL > 70 µm. The primary outcome was 
a shortening of P100 latency delay on full-field pattern-
reversal VEPs. The primary pre-specified efficacy end-
point for the trial was met with a reduction in latency 
delay of 1.7 ms/eye (95% CI 0.5–2.9; p = 0.0048) in the 
crossover model [165]. A new phase II trial on clemastine 
fumarate in acute optic neuritis is now recruiting aiming 
at assessing the degree of recovery with or without clem-
astine (ReCOVER trial, NCT02521311) [166].

Table 5  Ongoing phase II and III clinical trials of agents with putative regenerative properties in progressive multiple sclerosis

Drugs marked with an asterisk (*) may have also additional immune-modulation properties
ABMT autologous bone marrow transplantation, ACTH adrenocorticotropic hormone, EDSS Expanded Disability Status Scale, GEP global 
evoked potential, IV intravenous, MRI-BVC magnetic resonance imaging-brain volume change, MS multiple sclerosis, PPMS primary progres-
sive multiple sclerosis, RCT  randomised controlled trial, SPMS secondary progressive multiple sclerosis, T25FWT timed 25-foot walking test
a Clinical trials have been searched on https ://clini caltr ials.gov, last accessed date 3 Apr 2018

Drug(s) Title Phase Study design Subjects (esti-
mated)

Primary 
endpoint(s)

Time frame End Status/results NCT  numbera

ACTH* ACTH in 
progressive 
forms of MS

II RCT (placebo) 100 PMS T25FWT 3 y 2022 Recruiting NCT01950234

ABMT* (IV) Assessment of 
bone marrow-
derived cel-
lular therapy 
in PMS 
(ACTiMuS) 
[229]

II Crossover RCT 
(placebo)

60 SPMS
20 PPMS

GEP 2 y 2018 Recruiting NCT01815632

Biotin 
(MD1003)

Effect of 
MD1003 in 
PMS (SPI2)

III Placebo 600 PMS EDSS
T25FWT

15 mo 2019 Recruiting NCT02936037

Domperidone Domperidone 
in SPMS

II Open label 62 SPMS T25FWT 1 y 2020 Recruiting NCT02308137

Mesenchymal 
stem cells

Optimal 
administra-
tion mode of 
autologous 
mesenchymal 
bone marrow 
stem cells in 
active and 
progressive 
multiple 
sclerosis

II Randomised 
(different 
administra-
tion)

36 PMS MRI-BVC
Immunological 

response

1 y 2018 Recruiting NCT02166021

Mesenchy-
mal stem 
cell-derived 
neural pro-
genitors

Intrathecal 
adminis-
tration of 
autologous 
mesenchy-
mal stem 
cell-derived 
neural 
progenitors 
(MSC-NP) 
in progres-
sive multiple 
sclerosis

II Crossover RCT 
(placebo)

50 PMS EDSS-Plus 27 mo 2023 Recruiting NCT03355365

https://clinicaltrials.gov
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4.3.2.3 Mesenchymal Stem Cells Mesenchymal stem cells 
(MSCs) have multipotent mesodermal differentiation poten-
tial and can promote tissue repair through the release of 
paracrine factors. Mesenchymal stem cells can also inhibit 
gliosis and promote oligodendrogenesis, showing neuropro-
tection properties. Intravenous administration of MSCs or 
their derivatives are protective against EAE in mice [167, 
168]. Pilot studies have supported the safety or the poten-
tial efficacy of MSCs [169–172]. An open-label, phase IIa 
proof-of-concept study in ten patients with SPMS showed 
that disease improved on measures of visual function and 
VEPs, and imaging showed an increase in the optic nerve 
area [173]. A small, randomised, placebo-controlled, phase 
II crossover study in nine patients with RRMS suggested 
a trend to lower cumulative GELs at brain MRI [174]. A 
recent, phase I open-label trial of an intrathecal, autolo-
gous, bone marrow MSC-derived neural progenitor showed 
good safety and tolerability and suggested possible clinical 
improvement in patients with progressive MS [175].

4.3.3  Ongoing Trials

4.3.3.1 ACTH ACTH used to treat MS relapses acts via cor-
ticosteroid-independent melanocortin pathways suppress-
ing CNS proinflammatory cytokines [176]. A randomised 
clinical trial of ACTH pulse therapy in progressive MS is 
currently recruiting participants. Safety, tolerability and 
efficacy of ACTH on a walking test at 36 months will be 
assessed (NCT01950234). At the same time, a phase IV trial 
is recruiting patients with RRMS or SPMS to determine if 
monthly pulsed doses of a 3-day course of ACTH are more 
effective than one course at recovering myelin at 12 months, 
as measured by MRI myelin water fraction, in new MS 
lesions (NCT02446886).

4.3.3.2 Domperidone Domperidone can increase the levels 
of prolactin, which seems to improve myelin repair in mice. 
A Canadian group is now leading an open-label, phase II 
futility trial assessing the efficacy of domperidone in 62 
patients with SPMS. This study is currently recruiting par-
ticipants (NCT02308137) [177].

4.3.3.3 Quetiapine Fumarate Quetiapine fumarate, an 
atypical antipsychotic, may have remyelination properties 
[178]. The University of Calgary, in collaboration with the 
Multiple Sclerosis Society of Canada, is now recruiting 
patients with RRMS and progressive MS in a phase I/II trial 
with the purpose to test the safety and dose tolerability of 
quetiapine (NCT02087631).

4.3.3.4 Triiodothyronine A phase I study is addressing the 
safety and tolerability of high-dose thyroid hormone (triio-
dothyronine or T3) as a putative remyelinating drug for MS 

(NCT02760056). Indeed, T3 is thought to enhance remyeli-
nation in the adult brain by the induction of oligodendrocyte 
maturation. In cuprizone-induced demyelination mice, T3 
promotes remyelination in chronic lesions by both enhanc-
ing oligodendrocyte maturation and attenuating astrogliosis 
[179].

4.4  Other Approaches

4.4.1  Antiviral Therapies

4.4.1.1 GNbAC1 Human endogenous retroviruses are pre-
sent in a latent form in the human genome, and in patients 
with MS. Human endogenous retrovirus-W, known as the 
MS-associated endogenous retrovirus, can be activated by 
environmental factors and produces a pathogenic surface 
envelope protein. This envelope protein can contribute to 
MS pathogenesis by inducing the activation of proinflam-
matory macrophages and inhibiting neuronal remyelina-
tion. GnbAC1 is a monoclonal antibody directed against 
this human retroviral protein that appeared to be safe in 
33 healthy subjects and ten patients with MS [180, 181]. 
Recently, GNbAC1 has been investigated in the randomised, 
placebo-controlled, phase II CHANGE-MS study in RRMS. 
The results showed no effect on inflammatory measures 
(including the number of GELs) over weeks 12–24. How-
ever, a post-hoc analysis suggested that GnbAC1 18 mg/kg 
may have remyelination properties according to the increase 
of MTR values in the cortical grey matter bands [band 3 
ΔMTR between baseline and week 24 was 2.167% (percent-
age unit) change, p = 0.059]. Given the evidence of some 
remyelinating properties, the use of GnbAC1 may be con-
sidered for SPMS in the future [182]. Full publication of this 
study is pending.

4.4.2  Immunotherapy

4.4.2.1 ATX‑MS‑1467 Induction of antigen-specific immune 
tolerance, or immunisation, is now a feasible approach to 
autoimmune disorders. ATX-MS-1467 is made of four pep-
tides of a myelin protein commonly attacked in MS. Once 
injected, the antigens carried by ATX-MS-1467 are taken 
up by immature antigen-presenting cells, which, instead 
of inactivating T cells, convert them to T-cell types that 
maintain tolerance [183]. In animal models of MS and six 
patients with SPMS, Streeter et al. have demonstrated that a 
daily injection of ATX-MS-1467 was well tolerated and led 
to inhibition of EAE and disease progression [184]. More 
recently, the results from two open-label phase I studies 
and a phase IIa proof-of-concept study showed that ATX-
MS-1467 is safe, well tolerated and potentially effective in 
RRMS. Indeed, in the phase II study, there was a statistically 
significant decrease in the number of T1 GELs on treatment 
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compared with baseline (from 7.4 ± 7.62 to 5.0 ± 7.24; p = 
0.0143) based on a non-parametric analysis [185].

4.4.2.2 NeuroVax™ Vaccination with the T-cell receptor 
(TCR) complementarity determining regions 2 (CDR2 
peptide-associated beta variable (BV) gene was able to 
cure EAE [186]. Development of the TCR peptide vac-
cination for MS required identifying target TCR BV genes 
and creating a vaccine capable of reliably boosting TCR-
reactive T cells [187, 188]. Gold et al. performed a small 
study of vaccination with a TCR BV6S5 CDR2 peptide 
emulsified in incomplete Freund’s adjuvant in MS. They 
reported no clinical benefit in the immunised patients, but 
there was evidence of a decreased number of activated 
BV6S5 T cells within the CNS [189].

Since then, many other TCR BV targets have been 
used. For instance, in a phase I/II study, Bourdette and 
co-workers investigated the immunogenicity and safety of 
combined administration of CDR2 TCR peptides (BV5S2, 
BV6S5 and BV13S1) emulsified in incomplete Freund’s 
adjuvant. They showed that the trivalent TCR peptide vac-
cine in incomplete Freund’s adjuvant strongly boosted cir-
culating frequencies of TCR-reactive T cells in 100% of 
patients with MS (including SPMS and RRMS), whereas a 
low rate of successful vaccination (20%) was found within 
subjects treated with individual TCR peptides in saline. 
No statistically significant differences were found in MRI 
activity between the TCR responder and non-responder 
groups. However, this study was small, including 37 sub-
jects, and short (24 weeks). A study of NeuroVax™, a 
therapeutic TCR peptide vaccine, is currently ongoing in 
SPMS (NCT02057159).

4.4.2.3 Tcelna™ Tcelna™ (previously known as Tovaxin) is 
an autologous T-cell immunotherapy consisting of in-vitro 
expanded myelin-reactive T cells manufactured against up 
to six immunodominant peptides derived from three myelin 
antigens: myelin binding protein, myelin oligodendrocyte 
glycoprotein and proteolipid protein. Autologous T-cell 
immunotherapy has been suggested to deplete or regulate 
the pathogenic myelin-reactive T cells that maintain autoim-
mune processes within the CNS of patients with MS. The 
treatment procedure includes a collection of blood from the 
patient with MS and expansion of myelin-reactive T cells 
from the blood. Myelin-reactive T cells are formulated and 
attenuated by irradiation before returning the final product to 
the clinical site for subcutaneous administration to patients. 
A phase IIb placebo-controlled study was conducted in 150 
subjects with RRMS and CIS. Although safe, Tcelna™ 
showed no statistically significant clinical or radiological 
benefit [190]. A phase II randomised trial, Abili-T, was per-
formed and concluded in 183 patients with SPMS, but the 
publication of the results is pending.

5  Future Strategies for Secondary 
Progressive MS Therapeutics

Disability progression in MS is a continuous and slow 
process that can take years. Similarly, new drug discov-
ery and testing can take up to 15 years with success not 
guaranteed. To expedite the finding of new treatments for 
SPMS, several methods have been proposed [24, 25, 64]. 
Population characteristics and outcome measures should 
be carefully chosen and be consistent with the main objec-
tives that motivated the research. Innovative trial design or 
repurposing drugs are two ways to increase efficiency and 
cut costs of drug discovery. Finally, drug efficacy can be 
increased by combining drugs with different mechanisms 
of action.

5.1  New Trial Designs

Large-scale, long-term, placebo-controlled parallel-group 
trials, using a 1:1 ratio, have been used so far to assess effi-
cacy drug in progressive MS. The efficiency of clinical trials 
in SPMS can potentially be increased by allowing a number 
of treatments to be tried concurrently. Adaptive seamless 
designs are feasible in SPMS [140, 142]. Multi-stage or 
multi-arm randomised trials have been successfully used in 
other medical research areas, such as oncology for some 
time [191]. In 1999, for example, Bauer and Kieser proposed 
an adaptive two-stage design for the situation of multiple 
treatments to be compared with a control within a single 
confirmatory trial [192]. Such a trial would allow for an 
interim analysis to determine early termination or continu-
ation of the study towards a second stage. Adaptive design 
methods are also useful in the early phases of drug develop-
ment as they are dynamically informative [193, 194].

5.2  Drug Repurposing

Drug repurposing, also known as drug repositioning or drug 
re-profiling, is the application of already approved drugs 
to new diseases [195, 196]. It is advantageous because the 
repurposed drugs have already passed the trial stages assess-
ing safety in humans, reducing the time and costs of drug 
development [197–200].

In the past, drug repositioning was merely a consequence 
of chance or unforeseen drug effects, whereas today com-
putational methods have been developed to predict new tar-
gets for established drug or different drugs that act on the 
same target [196, 197, 201]. Structurally similar molecules 
can predict similar biological effects [202–204]. Molecular 
activities of drugs can be also inferred based on their side 
effects, or predicted from the human genome [198, 205].
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Faissner and colleagues looked for repurposed drugs with 
neuroprotective potential targeting iron deposition in the 
CNS, which is thought to mediate mitochondrial dysfunction 
neurotoxicity in progressive MS. They showed that tricyclic 
antidepressants, antipsychotics and indapamide might work 
in progressive MS. They also showed that clomipramine was 
able to suppress or improve EAE [206].

Vesterinen and colleagues developed an evidence-based 
framework to select oral repurposed neuroprotective drugs 
to be tested in SPMS [207]. They found at least seven agents 
with putative neuroprotective properties. Three of these 
agents are under investigation in the MS-SMART trial and 
one has been successful in the SPRINT-MS study [142, 
208].

5.3  Combination Therapy

Combination therapy is widely used in medicine, including 
in the treatment of immune disorders, such as rheumatoid 
arthritis. The rationale for the use of combination therapy 
in MS, as highlighted by Conway and Cohen, is supported 
by the different mechanisms of action of the various avail-
able DMTs that can also have additive or synergistic efficacy 
[209]. Combination therapy has advantages and disadvan-
tages, and drugs with different mechanisms of action can 
target different aspects of the disease pathogenesis, which 
is complex and heterogeneous, but can also have additive 
side effects [210]. Some attempts at combination therapy 
have been undertaken, but no convincing results have been 
found [211–214].

Consistent with the rationale of combining immunomod-
ulators with distinct mechanism of action, other combina-
tions have obtained additive or synergistic effects in preclini-
cal studies, showing a positive effect of combining vitamin 
D and interferon-β. The combination of anti-inflammatory 
and neuroprotective agents has also been tried in small 
studies such as the phase II trial combining intramuscular 
interferon-β-1a with riluzole or the trials combining mino-
cycline and interferon-β or glatiramer acetate in RRMS 
[135, 151, 209]. The CombiRx trial, combining interferon-
β-1a and glatiramer acetate, enrolled more than a thousand 
patients with RRMS. Although the combination therapy did 
not produce a significant clinical benefit, there was evidence 
of superiority of the combination therapy over single-arm 
treatment in reducing new lesion activity and accumulation 
of total lesion volumes [211].

6  Conclusions

Studies in progressive MS have been increasing over the past 
two decades and there are many investigational products cur-
rently in the pipeline for both SPMS and PPMS (Tables 1, 

2, 3, 4, 5). With the ORATORIO trial, ocrelizumab repre-
sents the first drug that has shown some evidence of effi-
cacy in PPMS. More recently, the EXPAND trial has pro-
vided evidence of the efficacy of siponimod in SPMS [215, 
216]. Ocrelizumab and siponimod reduced the worsening 
of disability over time in PPMS and SPMS, respectively, 
but whether this effect is directly owing to an interference 
with neurodegeneration or mediated by an anti-inflammatory 
effect is still debated [217]. New evidence from immunol-
ogy and pathology is changing our understanding of MS, 
which is no longer felt as a two-stage disease but rather a 
continuum, where both inflammation and neurodegeneration 
are contemporarily present at any moment in the course of 
the disease [16, 218]. The EXPAND and ORATORIO trials 
suggest a greater therapeutic effect in patients with relative 
short disease duration, younger age and signs of baseline 
activity.

As we have written in this review, treatments in pro-
gressive MS will probably include an anti-inflammatory 
approach, which is likely to be combined with myelin repair 
and neuroprotection. The use of repurposed drugs and com-
bination therapy looks promising. Targeting specific study 
populations with appropriate outcome measures and efficient 
trial designs is essential to speed up the discovery of new 
pharmacotherapies for SPMS [24–27].
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