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Chapter 1

Introduction

In recent years, cybersecurity is gaining more and more importance. Cryptog-
raphy is used in numerous applications, such as authentication and encryption of
data in communications, access control to restricted or protected areas, electronic
payments [1-3]. It is safe to assume that the presence of cryptographic systems in
future technologies will become increasingly pervasive, leading to a greater demand
for energy efficiency, hardware reliability, integration, portability and security.

However, this pervasiveness introduces new challenges, such as the implementa-
tion of cryptographic primitives with improved performance in terms of timing, chip
area, power and computational resource consumption, addressing the increasing de-
mand of low-complexity hardware devices, like systems for the Internet of Things
(IoT). In response to this limitation, lightweight cryptography comes into play -
a branch of cryptography that provides tailor-made solutions for resource-limited
devices.

One of the fundamental classes of cryptographic hardware primitives is rep-
resented by Random Number Generators (RNGs), that is, systems that provide
sequences of binary symbols that are deemed unpredictable [4].

The circuits and systems that implement RNGs can be divided into two cate-
gories, namely Pseudo Random Number Generators (PRNGs) and True Random
Number Generators (TRNGs).

PRNGs are deterministic and eventually periodic finite state machines, capable
of generating sequences that appear to be random. In other words, a PRNG is a
device that generates and repeats a finite random sequence, saved in memory or
generated by calculation.

A TRNG, on the other hand, is a device that generates random numbers based
on stochastic physical processes. Typically, a hardware TRNG consists of a mixed-
signal circuit that is classified according to the stochastic process on which it is
based. Specifically, the most commonly used sources of randomness are [5]:

e chaotic circuits;
e high jitter oscillators;

e circuits that measure other stochastic processes.
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A chaotic circuit is an analog or mixed-signal circuit in which currents and voltages
vary over time according to systems of nonlinear differential equations [6]. The time
evolution of these currents and voltages can be understood as the evolution of the
state of a chaotic nonlinear dynamical system.

Jitter can instead be defined as the deviation of the output signal of an oscillator
from its true periodicity, due to electronic noise, which causes uncertainty in its
transition times [7].

Other possible stochastic processes that a TRNG can use may involve radioactive
decay, photon detection, or electronic noise in semiconductor devices [8-15].

TRNGs presented in the literature are typically designed in the form of Appli-
cation Specific Integrated Circuits (ASICs). On the other hand, in recent years
an increasing number of researchers are investigating the design of TRNGs in Pro-
grammable Logic Devices (PLDs) [16-25]. A PLD offers, compared to an ASIC,
clear advantages in terms of cost and versatility. At the same time, however, there
is currently a widespread lack of trust in these PLD-based architectures, starting
from specific cryptographic weaknesses found in well known solutions based on Ring
Oscillators [26-28|.

In this work we propose a novel class of circuits suitable for being implemented
in digital devices, as PLDs, as a valid alternative to traditional solutions proposed
in literature to generate random bits.

1.1 Thesis Organization

In the next chapters a new class of nonlinear circuits based on digital hardware
is introduced that can be used as entropy sources for TRNGs implemented in PLDs,
named Digital Nonlinear Oscillators (DNOs).

More in detail:

e Chapter 2 provides the definition of Digital Nonlinear Oscillator, supported
by notable examples capable of demonstrating experimentally how different
circuit topologies referable to this class can express significantly different per-
formance;

e Chapter 3 introduces the analysis methods needed to evaluate the performance
of a Digital Nonlinear Oscillator, thus establishing an approach for the design
od DNO-based TRNGs;

e Chapter 4 proposes a circuit topology usable as a high performance entropy
source;

e Chapter 5 describes an algorithmic procedure, suitable for being implemented
in low-complexity PLDs, aiming to select, within a given set of random binary
sources, the one with highest entropy.



Chapter 2

Digital Nonlinear Oscillators

In this chapter we introduce a novel class of circuits that can be used to design
entropy sources for True Random Number Generation, called Digital Nonlinear
Oscillators (DNOs). DNOs constitute nonlinear dynamical systems capable of
supporting complex dynamics in the time-continuous domain, although they
are based on purely digital hardware. By virtue of this characteristic, these
circuits are suitable for their implementation on Programmable Logic Devices.
Focusing on the analysis of Digital Nonlinear Oscillators implemented in FP-
GAs, a preliminary comparison is proposed between three different circuit
topologies belonging to the introduced class, in order to demonstrate how
circuits of this type can have different characteristics, depending on their dy-
namical behavior and hardware implementation.

2.1 Definition

We open this chapter with an informal definition [29].

Definition 2.1. A Digital Nonlinear Oscillator (DNO) is a network of electronic
circuits, originally designed to behave as digital logic gates, which implements an
autonomous nonlinear dynamical system that exhibits complez (periodic or chaotic)
dynamics in the time-continuous domain.

Therefore, a DNO is a circuit capable of generating entropy on the basis of two
possible dynamical behaviors. In case of chaotic dynamics, the generated entropy
mainly depends on the dynamical characteristic of the implemented circuit topology.
Alternatively, the circuit acts as a periodic oscillator, and the information generation
mechanism depends on the electronic noise (e.g. causing phase noise or jitter).

What links both the described cases is the nonlinearity of DNOs, which depends
on the intrinsically nonlinear nature of the electronic circuits necessary for the design
of digital logic gates present in the system. In fact, these circuits typically use
transistors as switches, with the aim, on a ‘large signal’ scale, of bringing the output
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voltages to saturation towards ground or power supply voltages, representing binary
logic levels. As it is clarified in this thesis, DNOs can be understood as analog
systems implemented in digital devices.

2.2 DNO Design in Programmable Logic Devices

As anticipated by Definition 2.1, a DNO is a dynamical system that can be
implemented using only digital hardware. By virtue of this characteristic, focusing
the design of this class of circuits in Programmable Logic Devices (PLDs) is of
particular interest.

In digital electronics, a PLD is an integrated circuit which at the time of man-
ufacture is not configured to perform any specific boolean operation and therefore,
before being able to use it, must be programmed (i.e. configured). This implies
that, using PLDs, different logic circuits, although functionally different from each
other, are implemented by programming the same hardware.

Without losing generality, we can refer to FPGAs, that are a special class of
PLDs [30].

Giving a simplified description, an FPGA can be seen as a 2D matrix of cells,
called Configurable Logic Blocks (CLBs). A CLB is the fundamental logical resource
for the implementation of sequential or combinatorial circuits. Each CLB connects
with the others via a local switch matrix, which then allows to access to the general
routing matrix.

Each CLB includes a defined number of slices, within which there are pro-
grammable hardware elements for the implementation of the different logic func-
tions. The set of elements in a slice is referred to as Elementary Logic Block (ELB).

An ELB basically includes three elements:

e a Look-Up Table (LUT), that can be used to store truth tables of arbitrary
1-bit logic functions;

e a flip-flop, through which it is possible to memorize the logic output state of
the function, for the implementation of synchronous gates;

e a multiplexer for the synchronous or asynchronous configuration of the logic
port.

Using this generic structure, it is possible to program any logic function characterized
by one output bit and a given number of input bits up to the maximum supported
by the ELB hardware, as shown in Fig. 2.1.

Based on this observation and recalling Definition 2.1, it is possible to state that,
in the context of the design of a DNO on PLDs, each ELB represents a node of the
topology. In this sense, a DNO can be represented as an oriented graph whose nodes
are the ELLBs and whose arcs are the connections between the output and the inputs
of each ELB, as shown in Fig. 2.2.

On the other hand, each autonomous network of ELBs capable of supporting
periodic or chaotic dynamics constitutes a DNO. It is clear that a statement of this

4
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Figure 2.1: Simplified structure of an FPGA configurable Elementary Logic Block
(ELB), representing the set of elements required to implement a logic port.
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Figure 2.2: Oriented graph representation of a possible network topology for a 7-
nodes DNO designed in FPGAs. The graph nodes are the FPGA ELBs, while the
arcs are the connections between the output and the inputs of each ELB.
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type defines a broad family of circuits, as it does not limit the complexity or size of
the considered networks.

In addition, it should also be noted that the performance of a DNO topology is
strictly dependent on the characteristics of the specific hardware implementation.
This means that, to evaluate a DNO, it is not sufficient to define the network topol-
ogy and the logical function performed by each node, but it is necessary to analyze
also the effects introduced by the use of a specific technology for the implementation
of the circuit, including logic gates and routing elements.

2.3 Example Cases: from Ring Oscillator to Cus-
tom DNOs

In this section, three notable examples of DNOs characterized by the same num-
ber of nodes are provided. These examples, that constitute networks of different
complexity, are used to show how different DNOs can be characterized by particu-
larly different performance from a dynamical behavior point of view, and therefore
from their entropy.

The DNOs taken into consideration, shown in Fig. 2.3, are:

e a Ring Oscillator;
e a Galois Ring Oscillator;
e a custom DNO topology.

The three topologies are all composed of seven ELBs, plus an eighth node
(ELB#8) used for the uniform sampling of the output signal, in order to gener-
ate a random sequence of bits.

2.3.1 Ring Oscillator

The Ring Oscillator is a circuit composed by an odd number of NOT gates
closed in a loop. Its output oscillates between two voltage levels with a frequency
fro which depends on the propagation time 7, of a NOT gate and on the number

N of inverters in the chain: |

27,N
The random component linked to this structure resides in the jitter to which the
oscillator is subjected.

The Ring Oscillator is a well known topology in the context of entropy sources
based on digital oscillators [31-35], with controllable and repeatable dynamical char-
acteristics; for this reason, in this section it plays the role of reference benchmark
for the other two topologies.

fro = (2.1)
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Figure 2.3: Three different DNO topologies. The three topologies have the same
number of nodes, but they constitute networks of different complexity thanks to the
routing between nodes.

2.3.2 Galois Ring Oscillator

The Galois Ring Oscillator was proposed by Golié¢ in 2006 [36].

Inspired by Ring Oscillators and Linear Feedback Shift Registers (LFSRs), Goli¢
discussed two topologies based on loops of inverters combined with XOR gates. The
proposed structures have the appearance of LFSRs but, instead of registers, have
inverters used as delay elements. Goli¢ proposed two topologies, called Fibonacci
Ring Oscillator and Galois Ring Oscillator. The difference between the two lies in
the fact that in the Fibonacci topology a single feedback network controls the first
node of the loop, while in the Galois topology the feedback signals are distributed
over multiple nodes, similarly to the Fibonacci or Galois topologies of LFSRs.

Goli¢ investigated these structures as synchronous finite state machines, identi-
fying theoretical conditions such to have no fixed points or to maximize the period
of oscillation. From the perspective of DNOs, what is missing in the Goli¢ approach
is an assessment of the dynamical behavior of the physical circuit.

To investigate the weight of this aspect, it can be useful to analyze the dynamical
behavior of the signals involved in the Galois Ring Oscillator shown in Fig. 2.4 by
means of numerical transient simulations.

Taking as a reference the UMC 180 nm technology, we designed the LUT struc-
ture shown in Fig. 2.1 at the CMOS transistor level in Cadence Virtuoso, as shown
in Fig. 2.5. Using the LUTs we built the circuit corresponding to the Galois Ring
Oscillator topology and we carried out simulation campaigns, subjecting the circuit
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Figure 2.4: A possible 7-nodes Goli¢ system. The topology defines a Galois Ring Os-
cillator. ELB#7 output serves as feedback signal, distributed over the ELBs#(2,6].
ELB#7 output is also the output signal, uniformly sampled by ELB#38.

to additive white noise.

What emerges from the simulations, summarized in Fig. 2.6, is that the os-
cillator can exhibit limit cycles with a relatively short duration, in disagreement
with what Goli¢ theorized. Furthermore, the circuit also appears to be quite robust
to perturbations, as its periodic behavior remains recognizable even in presence of
unrealistic high noise levels.

2.3.3 Custom DNO Topology

The third system analyzed in this section consists of an original DNO topology,
obtained by combining a Ring Oscillator with loop structures composed of digital
delays and XOR gates, as shown in Fig. 2.7. The digital delays are marked in
the figure by a special symbol, which has the purpose of highlighting how, from an
analogical point of view, they constitute signal rectifiers.

The considered topology is able to exhibit complex dynamics, as can be observed
through simulations in Cadence Virtuoso based on the use of the LUTSs built using
the CMOS UMC 180 nm technology (Fig. 2.5).

For example, consider the transient simulations shown in Fig. 2.8, obtained by
forcing the initial conditions of the ELBs#[4-7] to voltages (0,0,0,0) V.

Considering that the ELBs#[1-3] constitute a Ring Oscillator, we can exclude
the presence of stable fixed points for the entire structure. Focusing on the output
dynamics of ELBs#[4-7], we observe that the first low-high transition of ELB#3
propagates in subsequent ELBs until it triggers the self-oscillation of the loop com-
posed by ELB#7 (evidence mark A). This oscillation is then transferred to ELB#4
and mixed with the signal from the Ring Oscillator. All this can lead to the creation
of complex periodic dynamics, depending on the ratio between the time constants
of the two subsystems.

Bringing our attention to the evidence mark B, it is possible to notice the non-
linear behavior of the digital delays, as the high gain in each stage tends to saturate
the input signals towards ground or power supply voltages.
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the 2-inputs multiplexers composing the LUT, designed in Cadence Virtuoso at
transistor level using the UMC 180 nm technology.
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Figure 2.6: Cadence Virtuoso transient simulations of the Galois Ring Oscillator
shown in Fig. 2.4, designed using the LUT reference structure shown in Fig. 2.5
(UMC 180nm CMOS technology). Case A: no additive noise; case B: relevant addi-
tive noise; case C: abnormal additive noise.
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Figure 2.7: 7-nodes system belonging to the new class of proposed DNOs. The topol-
ogy combines a 3-nodes Ring Oscillator (ELBs#[1-3]) with loop structure composed
of digital delays (ELB#|5,6]) and XOR gates (ELBs#[4,7]). ELB#8 uniformly sam-
ples the output signal, selectable among the ELBs#[4-7|.

2.3.4 Experimental Analysis

We implemented the three topologies on a Xilinx Artix 7 xc7a35 FPGA to ana-
lyze the performance of the three DNOs from the point of view of generating random
numbers. The same hardware resources were used for each of them, to ensure a fair
comparison between the three implementations. To do this, manual control of FPGA
resources place and route phases was applied. More specific details regarding the
procedure by which DNOs are implemented on FPGAs are provided in Section 3.5.

The output signal of each implementation was sampled at different frequencies,
defined on a range between 100 kHz and 100 MHz. For each sampling frequency, one
million bits long sequences were acquired, on which analyzes were then performed
aimed at evaluate the level of randomness.

Since the goal of this analysis was to compare the performance of three different
topologies, rather than evaluating the outcome of standard statistical tests, such as
NIST 800.22 [4], we adopted the following conventional metrics:

e pattern distribution of subsequent generated bytes;

average Shannon redundancy;

autocorrelation function;

runs distribution;

probability distribution of generated bytes.

In this way it is possible to compare imperfect sources, avoiding the typical “satu-
rated to fail” results of standard high sensitivity cryptographic statistical tests.

Fig. 2.9 shows the pattern distributions of successive generated bytes for the
three topologies, evaluated at different frequencies. From the image, it can be seen
that the Ring Oscillator loses the uniform pattern for frequencies higher than 100
kHz, the Galois Ring Oscillator for frequencies higher than 500 kHz, the custom
system maintains uniformity up to 5 MHz.

Fig. 2.10 shows the average Shannon redundancy (defined as the complement
the average Shannon entropy) for binary words up to 16 bits for the three systems,

11
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Figure 2.8: Cadence Virtuoso transient simulations of the custom DNO topology
shown in Fig. 2.7, designed using the LUT reference structure shown in Fig. 2.1
(UMC 180 nm CMOS technology). The simulations are performed without additive
noise. Mark A highlights the propagation in the circuit of the first low-high transition
of ELB#3. Mark B highlights the nonlinear behavior of the digital delays.
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Figure 2.9: Pattern distributions of successive generated bytes on the plane
(b, byy1), for the three considered DNOs, for different sampling frequencies. Each
column shows the distributions for a topology, sampled at frequencies going from
100 kHz (lower plots) to 50 MHz (upper plots).
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Figure 2.10: Average Shannon redundancy for binary words up to 16 bits, for the
three systems, for different sampling frequencies.
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evaluated at different frequencies. The custom DNO has lower redundancy than the
other two systems at all frequencies except 100 kHz. In this case, the entropy is
limited by a residual biasing of the mean value of the generated sequences.

Fig. 2.11 shows the autocorrelation function of the binary sequences evaluated
for the three systems up to a time lag equal to 40, at different frequencies. The
gray dashed line represents the ideal level for time lags greater than 0, which for an
ideal binary random source should be 0.5 = 0.25. The red dashed line represents
the asymptotic value of the estimated autocorrelation function, equal to the square
of the mean value of the sequence. The custom DNO achieves the asymptotic
autocorrelation value much faster that the other two DNOs, regardless of the sample
rate.

Fig. 2.12 shows the runs statistics, that are sequences of consecutive equal bits,
evaluated for both Os and 1s, up to runs of 6 bits, comparing the three systems at
different sampling frequencies. The dashed gray line represents the ideal reference

14
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Figure 2.11: Autocorrelation function of the collected binary streams up to the time
lag 40, for different sampling frequencies. Gray-dashed line: ideal level for time lag
m > 0; red-dashed line: asymptotic value of the estimated autocorrelation function.
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level. The custom DNO manages to approach the ideal level at all sampling fre-
quencies, unlike the Ring Oscillator and the Galois Ring Oscillator, which instead
approach the ideal level only up to 500 kHz and 1 MHz, respectively.

Fig. 2.13 shows the probability distributions of the 8-bits symbols generated
by the three systems at the different frequencies. The dashed red line represents
the ideal reference level, corresponding to a uniform distribution characterized by
symbols with probability equal to 1/256. It is evident that the symbols generated
by the custom DNO are distributed more evenly than the Ring Oscillator and the
Galois Ring Oscillator regardless of the sampling rate.

Summarizing the observed data, we can affirm that the three systems are char-
acterized by different performance. In particular, the custom DNO reaches levels of
randomness higher than the other two systems.

In conclusion, the example shows, through informal methods of investigation,
that the DNOs constitute a class of entropy sources with very different characteris-
tics, justifying the need to define new methodologies for their analysis, aimed at the
conscious design of circuit solutions, capable of achieving satisfactory performance
for cryptographic applications.

2.4 Conclusion

We introduced the circuit class of Digital Nonlinear Oscillators (DNOs), i.e.
circuits that can be used as entropy sources for the design of True Random Number
Generators. DNOs are nonlinear dynamical systems capable of supporting complex
dynamical behaviors in the time-continuous domain, although they are based on
purely digital hardware.

We explored the possibility of implementing such circuits on Programmable Logic
Devices, with a particular focus on their implementation on FPGAs. In this sense,
we analyzed the internal structure of a chip of this type, investigating the role of
their basic circuit elements in the design of DNOs.

Finally, we presented a comparison of the performance in terms of entropy gen-
eration of three notable topologies (Ring Oscillator, Galois Ring Oscillator and a
custom topology), built using the same amount of hardware resources for each of
them, so as to be able to perform a comparison mainly related to their dynamical
characteristics.

From the comparison, it emerged that circuits with similar hardware complexity
can offer particularly different dynamical characteristics based on how the topology
is defined, thus justifying our interest in deepening the study of this class of circuits
and in defining formalized methods for their design.
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Chapter 3

Investigation Methods and
Implementation Techniques

In this chapter we formalize a methodology for the analysis and design of
Digital Nonlinear Oscillators based on the evaluation of their electronic im-
plementation, their dynamical behavior and the information rate they can
generate. The presented methodology makes use of different tools, such as
figures of merit, simplified dynamical models, advanced numerical simulations
and experimental tests carried out through implementation on FPGA. Each of
these tools is analyzed both in its theoretical premises and through explana-
tory examples.

3.1 DNO Analysis: a Need for Investigation Meth-
ods

In Chapter 2 we introduced the class of circuits called Digital Nonlinear Os-
cillators (DNOs). The proposed arguments allow us to state that a DNO can be
understood in three possible ways:

e a DNO is an analog electronic circuit built using digital hardware;

e a DNO is a complex dynamical system capable of supporting periodic or
chaotic dynamics;

e a DNO is a source of entropy that can be used for the generation of random
numbers.

Obviously, physical implementation, dynamical behavior and generated entropy are
closely linked and interdependent aspects in DNOs.

For this reason, to formalize a methodology for the analysis and design of circuits
belonging to this class, it is necessary to take into consideration all three natures of
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the considered systems. From this derives a complex approach to the study of DNOs,
which requires the use of multiple tools to evaluate the performance from every point
of view. Specifically, the analysis methods and the implementation techniques that
we employed in the context of this work can be framed as follows:

e figures of merit for the evaluation of the statistical characteristics;

e simplified dynamical models for the assessment of relevant aspects related to
system stability;

e circuit simulation of solutions based on CMOS technologies for more in-depth
dynamical evaluations;

e physical implementation of circuits in FPGA for the experimental validation
of the theorized and simulated behaviors.

In the next sections each of these tools is analyzed, providing their theoretical
premises and some explanatory examples.

3.1.1 References

The material presented in this chapter includes results that have been published
in the following publications:

e T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, V. Vignoli, and M. G. Bosque,
“Lightweight true random bit generators in plds: Figures of merit and perfor-

mance comparison,” in 2019 IEEE International Symposium on Ciruits and
Systems (ISCAS). IEEE, 2019, pp. 1-5 [37].

e T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, and V. Vignoli, “Analysis of
a circuit primitive for the reliable design of digital nonlinear oscillators,” in
2019 15th Conference on Ph. D Research in Microelectronics and Electronics
(PRIME). IEEE, 2019, pp. 189-192 [38|.

3.2 Figures of Merit

The first tools that we consider are two figures of merit for the comparative
evaluation of the statistical characteristics of DNOs.

A DNO is as a device that can be used for the generation of random numbers.
To evaluate the quality of an object of this type, the state of the art provides the
application of standard statistical tests [4,39].

However, this approach constitutes a poorly informative method regarding the
actual statistical characteristics of the circuit. In fact, the statistical tests are lim-
ited to providing an absolute pass/fail outcome, which only establishes whether the
considered system complies with the minimum quality that agrees with the stan-
dard. Taking a set of systems capable of passing these tests, we are unable to
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determine which of these systems are better or worse relying solely on the tests
outcome. In addition to this, given a set of arbitrary tests, it is always possible to
identify an adequate invertible post-processing algorithm capable of manipulating
the data generated by a system in order to make it pass the tests [5].

For this reason it is useful to introduce figures of merit that allow to evaluate,
in the comparison between two or more sources, which ones are capable of offering
better performance [37]. Obviously this type of analysis has a comparative value
only, and is not intended to replace standard statistical tests, which instead establish
in absolute terms whether a source of entropy used in the generation of random
numbers is valid or not for a specific application.

3.2.1 Decorrelation Time

The first figure of merit we consider is the Decorrelation Time. To provide a
definition of this figure, we must first introduce some notations and definitions.

Definition 3.1. Given an ergodic information source that generates a binary se-
quence S = {s; : i € N}, we say that the source has a vanishing statistical depen-
dence if for each k-tuple of random variables {sj,,s;,,...,s; :j € Nk € N0 <
J1 < jo < -+ < jJx} and for each ¢ € RT, an index my € N exists such that if

m > myg then |P(Sj,+m|Sj, Siss - -5 Sj.) — P(Sj,+m)| <€, or more succintly:
lim P<Sjk+M|8j17 Sjzs v s Sjk) = P(Sjk+m) = P(S>7 (31)
m—r0o0

where P is a measure of probability and P(A|B) = P(ANB)/P(B) is the conditional
probability for two events A and B.

In general, Definition 3.1 is valid for any circuit characterized by free oscillations
and affected by electronic noise, uniformly sampled by adopting a 1-bit quantization
resolution [37].

Theorem 3.1. Given an ergodic information source with vanishing statistical de-
pendence that generates a binary sequence S = {s; : i € N}, the limit of the auto-
correlation function associated with the sequence Rg(m) = E[$;Sivm| for m — oo is
equal to [P(s = 1)]*> = R%(0).

Proof. The autocorrelation function associated with the sequence S depends on the
expected value of the symbols in the sequence and their covariance:

Rs(m) = E[3:8i1m] = E[8i|E[Si1m] + Cov(si, Sixm) = (E[s])> + Cov(sy, Sitm). (3.2)

The expected value of a binary random variable is equal to the probability that the
variable has a value of 1:

Els]=0-P(s=0)+1-P(s=1)=P(s=1), (3.3)

and it is also equal to the autocorrelation function for m = 0. Since the information
source has a vanishing statistical dependence, according to (3.1), for m — oo the
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two symbols s; and s;.,, can be considered statistically independent. This implies
that the covariance for m — oo tends to 0. In conclusion, we have that:

lim Rg(m) = [P(s = 1)]*> = R%(0). (3.4)

m—o0
U

Let us now consider a DNO whose output is sampled at a frequency f, to acquire
a test sequence with finite length of N bits.

The source autocorrelation function Rg(m) = E[s;Sitm], with 0 < m < M <
N — 1 can be estimated using the following formula:

N—-1-m
- 1

Rs(m) = -—— > Sisiem (3.5)
=0

Assuming that the DNO is an ergodic source with vanishing statistical depen-
dence, by Theorem 3.1 the autocorrelation function tends asymptotically to the
value R%(0). We then introduce the normalized autocorrelation function ¢g :
{0,1,....,.M} — [0,1] C R:

Rs(m) — Rg(0)

Rs(0) - R%(0)

¢s(m) = (3.6)

Definition 3.2. Given a DNO that respects the condition of an ergodic source with
vanishing statistical dependence, sampled at frequency fs to acquire an N-bits long
sequence S, the Decorrelation Time 75(M,n) associated to the sequence S on a
window of M + 1 < N bits with energy ratio n, where n € [0,1] C R, is defined
as the minimum time necessary for the residual normalized energy associated to the
normalized autocorrelation function ¢g to be less than 1 —n, that is:

rs(M, ) = ’“}” sl (3.7)

where: i
2
Fmin = min —Zyo (ZS (m)
k<M Zmzo ¢S (m)
As shown in Fig. 3.1, the product between f, and 75(M,n) defines the minimum

number of sampling periods to reach the energy ratio n estimated on the interval
[0, M].

> 1. (3.8)

3.2.2 Average Shannon Entropy

The second figure of merit to evaluate the performance of a DNO is the Average
Shannon Entropy.
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Figure 3.1: The vanishing autocorrelation function (a) of a DNO under test, sam-
pled uniformly with f; = 50M H z, and the correspondent Decorrelation Time (here
normalized and represented as f, - 7¢(M,n)), as a function of n for M = 200 (b).
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Let us again consider a DNO sampled at frequency f, to generate a N-bits long
sequence. Suppose to collect the generated bits grouping them into n-bits long
symbols, thus obtaining a sequence of | N/n| symbols.

By indicating with {B; : i = 0,1,...,2"—1} the set of all possible n-bits symbols,
the probability of generating the i-th symbol can be estimated as follows:

]5<Bz‘) = ﬁﬁf@ )

where # B; is the number of occurrences of the i-th symbol in the generated sequence.

(3.9)

Definition 3.3. Given a DNO sampled at frequency fs to generate a sequence of
N bits grouped in n-bits words, thus obtaining a sequence of |N/n| symbols, the
Average Shannon Entropy (ASE) is defined as:

2"1

ASE(n) = —= Z P(B;)log, P(B;)  [bit/sym)]. (3.10)

The product of the ASE and the sampling frequency f, defines the average
amount of information per second generated by the DNO.

3.2.3 Example: Comparison of three DNO Topologies

To show an example of application of the introduced figures of merit, let’s con-
sider the three topologies analyzed in Section 2.3, shown again in Fig. 3.2.

The three DNOs were implemented in five Xilinx Artix 7 xc7a35 FPGAs, de-
signing in each chip and for each DNO 16 oscillators in different positions (same
positions for each analyzed topology), obtaining a total of 80 DNO instances. The
different topologies differ in the LUTs thruth tables and routing, whereas using the
same amount of slices. Each implementation was sampled at defined frequencies
ranging between 100 kHz and 100 MHz, collecting one million bits long sequences
in any case. Each sequence was used to calculate both the Decorrelation Time and
the Average Shannon Entropy.

The Decorrelation Time was estimated by setting in (3.7) M = 200 and n =
0.999, properly selecting, among the chosen set of sampling frequencies, the highest
fs such to experience the adequate vanishing of the autocorrelation function in the
observation time window [0, M/fs]. The choice of M and 7 influences the result
of the estimate in absolute terms, but a reasonable choice of parameters, based on
heuristic considerations, allowed for a reliable comparison of the systems under test.

Fig. 3.3 summarizes the obtained results, reporting the statistics of the Decor-
relation Times (average, minimum, maximum, 10" and 90" percentiles) for each
of the five tested chips. It is evident that the three DNOs are characterized by
significantly different Decorrelation Times, although the implementations used the
same hardware resources. It is also interesting to note that, taking a topology, the
average values of the Decorrelation Times are weakly variable between among the
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Figure 3.2: The different DNO architectures considered for comparison according to
the evaluation of their Decorrelation Times and Average Shannon Entropies.
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Figure 3.3: Decorrelation Times of the three DNO topologies, evaluated for 80
instances of each topology, implemented on 5 Xilinx Artix 7 xc7a35 FPGAs. For
each chip, the average, minimum, maximum, 10" and 90" percentiles of the 16
instances implemented on that chip are reported.
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chips, suggesting that the Decorrelation Time is intrinsically related to the specific
topology.

The Average Shannon Entropy was evaluated for symbols with a length between
1 and 16 bits. The obtained results are similar among the tested chips, regardless
of the sampling frequency, therefore in Fig. 3.4 we report the results obtained for a
single FPGA by evaluating the ASE for 10-bits long symbols. Again, the figure shows
the average, minimum, maximum, 10" and 90'" percentiles of the ASE, comparing
the values for the different sampling frequencies.

Putting together the results shown in Fig. 3.3 and Fig. 3.4, it is possible to find
a link between Decorrelation Time and Average Shannon Entropy: on average, the
shorter is the Decorrelation Time the higher is the ASE.

Fig. 3.4 also highlights how ASE and sampling frequency are linked by a nonlin-
ear relationship, for which a variation in the sampling frequency involves a marginal
variation of the ASE. In this sense, the frequency at which we sample our source
has a significant weight in terms of the rate of generated information, as evidenced
by the Average Shannon Entropy per second (ASEpS) shown in Fig. 3.5.

3.3 Study of Simplified Dynamical Models

Another method of analysis we employed to study Digital Nonlinear Oscillators
is the study of DNOs simplified dynamical models.

As already highlighted several times in the previous sections, a DNO is a network
composed of circuits that in the digital domain implement logic functions, but which
in the analog domain are characterized by DC nonlinear transfer functions. From
the dynamics point of view, the parasitic components linked to the technology used
for the design of the circuits and to the connections between one circuit and another
determine not negligible signal propagation times, which can trigger more or less
complex dynamics at the DNO level.

Taking these characteristics into account, we defined a simplified model for the
description of a DNO, having the purpose, given a certain topology, to investigate
which conditions favor compatibility with complex dynamics on the basis of the
stability of its fixed points [38]. The model is designed to be used in a preliminary
analysis of the DNO, in which it is not intended to evaluate the transient behavior
of the circuit. The observation of these aspects, in fact, requires more advanced
tools, such as numerical simulators based on BSIM4 models.

Our proposal, shown in Fig. 3.6, foresees to represent each node of a DNO with
a first order cell, composed of a voltage controlled voltage generator that controls a
resistance-capacitance (RC') cell of the first order:

dvo - g(”z) — Vo
dt  RC
v, is the output voltage of the node, v; € R™ is a column vector that collects the

input voltages of the node, g : R™ — R is the DC analog transfer function of the
node.

(3.11)
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Figure 3.4: Average Shannon Entropies of the three DNO topologies for 10-bit
words according to different sampling frequencies, evaluated for 16 instances of each
topology, implemented on a Xilinx Artix 7 xc7a35 FPGAs. The average, minimum,
maximum, 10"" and 90" percentiles of the 16 implemented instances are reported.
Similar results were obtained repeating the measurements on four other chips.
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Figure 3.5: Average Shannon Entropies per Second of the three DNO topologies for
10-bit words according to different sampling frequencies, evaluated for 16 instances
of each topology, implemented on a Xilinx Artix 7 xc7a35 FPGAs. The average,
minimum and of the 16 implemented instances are reported. Similar results were
obtained repeating the measurements on four other chips.
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Figure 3.6: A first-order simplified nonlinear dynamical model used to investigate
the DNOs fixed points and their stability. Each node of a DNO is represented with
a first order cell, given by a voltage controlled voltage generator that controls a
resistance-capacitance (RC') cell of the first order.
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By adopting this representation, a N-nodes DNO can be investigated by means
of the following nonlinear generalized dynamical system of order N:

dv,
pral Flg(v,) — v,| = G(v,). (3.12)
v, = {v 13 =1,2,..., N} € RY is a column vector representing the state of the

DNO (defined by the output voltages of all nodes), g : RY — R is the column
vector of the DC analog transfer functions of each node of the DNO, F € RV*V is
a diagonal matrix whose diagonal elements are the reciprocals of the time constants
defined by the RC' cells of each node.

The fixed points of this system are the values of v, for which the following
condition holds:

9(v,) = v,. (3.13)

Assuming that g is smooth and differentiable, the stability of the fixed points can
be evaluated by studying the real part of the eigenvalues A of the Jacobian matrix
J = (6851, g}i, ce %) calculated at the fixed points themselves.

The use of this model requires providing a description of the DC transfer func-
tions of the DNO nodes. Obviously, the quality of this description influences the
accuracy of the obtained result. Without losing generality with respect to the pre-
sented approach, our choice was to build the transfer functions based on the ana-

lytical composition of parametrized normalized sigmoids such as:

1

R e

(3.14)
where z € [0,1] C R, a € R\{0} and b € (0,1) C R. On the basis of the sign of a,
it is possible to represent through the sigmoid the transfer function associated with
an inverter or a digital buffer, as shown in Fig. 3.7.

In a practical application, through an appropriate choice of a and b, the sigmoids
can be used for the nonlinear fitting of the DC transfer functions of real logic gates,
as shown in Fig. 3.8, where the DC transfer function of a NOT gate is modeled as
follows:

vo(v;) = NOT(v;) =~ ¢(vi,a,b), a> 0. (3.15)

We defined the sigmoid in (3.14) as normalized, as its domain and codomain are
equivalent to those of a DC transfer function of CMOS digital circuits with 1 V
power supply.

More complex logic functions than an inverter or a digital buffer can be obtained
by combining sigmoids. For example, a two-inputs XOR gate can be represented
using the following analytical model in 2D, as shown in Fig. 3.9:

Uo(Vi1, Vi2) = XOR(v1, v59) =
= ¢(vi1, a1, b1)P(viz, az, ba) + ¢(vi1, ag, bs)p(via, ag, bs), (3.16)

ar,as <0, ag,a3 > 0.
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Figure 3.7: Sigmoids computed according to (3.14) setting a = £40 and b = 0.5.
a > 0 provides the primitive model for an inverter, while a < 0 provides the primitive
model for a digital buffer.

3.3.1 Example: Analysis and Optimized Design of a DNO
Sub-Circuit Primitive

To provide a practical example of the application of the simplified dynamical
model, we refer to the Galois Ring Oscillators proposed by Goli¢. As already ex-
plained in Subsection 2.3.2, a Galois Ring Oscillator consists of an array of N > 1
digital gates combined with multiple feedbacks, as shown in Fig. 3.10.

Regardless of the complexity of the topology, a Galois Ring Oscillator always
terminates with a feedback loop having the structure represented in Fig. 3.11.

This sub-circuit, consisting of a first node that implements a two-inputs logic
function and a cascade of k nodes with one input, acts as a trigger for the dynamics
of the entire topology. For this reason, it is interesting to understand what are the
minimum necessary conditions to make it start to oscillate.

More in detail, without loss of generality, suppose, with reference to Fig. 3.11,
that the block f defines a XOR function and that the blocks fi ;, 7 >= 0, define
digital buffers, from now on called DEL blocks, as shown in Fig. 3.12.

In this case, the purpose of applying the model is to understand the minimum
number of DEL blocks that must be inserted in the feedback loop to trigger its
oscillation. We build the model by applying (3.12) and (3.14), assuming |a| = a >
10,56 =10.5 and 1/RC = 1.

We divide the study by assuming the independent input signal x equal to 0 V
and equal to 1 V. Limiting ourselves to these two situations and indicating with v;
the feedback input signal, the transfer function of the XOR gate can be expressed
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Figure 3.8: The DC transfer function of a CMOS inverter (UMC 180nm technology,
1.8V) and the fitting model (3.15), with a ~ 36.81, b ~ 0.43.
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0 o

Figure 3.9: The sigmoid model of a two-inputs transfer function z = XOR(z,y)
defined according to (3.16) for a =~ 36.81, b ~ 0.43.
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Figure 3.10: A low-complexity DNO topology, derived from the Galois Ring Oscil-
lators proposed by Goli¢ [24, 36].
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Figure 3.11: Feedback loop sub-network terminating any Galois Ring Oscillator,
architecture, such as the one shown in Fig. 3.10.
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Figure 3.12: The simplified models to investigate the fixed points stability, for differ-
ent implementations of the system shown in Fig. 3.11. With respect to the generic
system of Fig. 3.11, it was assumed that the block f; defines a XOR function and
that the blocks f ;, 7 >= 0, define digital buffers.
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as follows: .

XOR‘('T7 Ul')|z=p€{0,1} = 1+ eap(vi—O.S)’

(3.17)

where ¢ = —a and a; = «.
Let’s start our analysis from the simplest situation, in which the loop is composed
solely of the XOR gate (k = 0). For the notation of the signals, refer to Fig. 3.12.a.
The dynamical system is described by a single equation:

dv,
dt

g:R? — R is the XOR gate transfer function (3.17).
According to (3.13), the fixed points are the solutions of the equation:

B 1
- 1+ eap(vo—0.5)

= [g(ﬂf, Uo) - Uo]w- (318)

Vo

(3.19)

For z ~ 0 V, (3.18) has three solutions, namely vgp 4 = 0.5 V, v =~ 0 V, 190 ~ 1
V. For x ~ 1 V, (3.18) has one solution, namely v; 4 = 0.5 V.

To determine the stability of these fixed points, we calculate the Jacobian matrix
of the system, which in this case is limited to:

7 B o |dv, B apeap(”"*o'@
(.[L','UO) - a—vg % - _(1 + eap(vo—0.5))

The eigenvalues calculated on the fixed points are:

s — 1|y (3.20)

(3.21)

Having fixed o > 10, we observe that vy 4 is unstable (positive real eigenvalue),
while the other fixed points are all stable (negative real eigenvalues). This implies
that for x ~ 0 V the circuit has a bistable behavior, while if z ~ 1 V the circuit is
stable. In both cases, the system cannot support oscillations.

Let us now consider a loop composed of a XOR gate and a DEL block (k = 1,
Fig. 3.12.b).

The dynamical system is defined as follows:

{dz)l(t)l = [gl ('Ta U02) - Uol]w

(3.22)

dvea __

. [92(Vo1) — vo2]®)

g1 : R? — R is the transfer function of the XOR gate (3.17), while g, : R — R is the
transfer function of the DEL gate:
1

(3.23)
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v; indicates the input voltage of a generic DEL gate.
The fixed points of the system are the solutions of:

— _ 1
Vo1l = g1 (:L‘7 'UOZ) T 1teap(vo2—03)

Vo2 = G2 © 91(5157 Uoz) = ! ) (3'24)

o —
1+e a<1+eap(v02—05) 05)

For z ~ 0V, (3.24) has three solutions, namely vy 4 = (0.5;0.5) V, vo 5 =~ (0;0) V,
voc ~ (1;1) V. For x = 1V, (3.24) has a solution, that is v; 4 = (0.5;0.5) V.
In this case, the Jacobian matrix takes on 2x2 dimensions:

0 |:dv01j| 0 [dv01j|
J(x,’vo) = |:a%01 g22:| 8%02 [dzc)lf,g}:| =
0vo1 dt Vo2 dt
a,ep(V02—0-5) (325)
o [ _’lp - (1+eap(v0270.5))2 ]
- —a(v,1—0.5) .
(112*&(1}01170.5))21# _’lp

The eigenvalues associated with the generic fixed point (z*,v}) are the values of A
for which the determinant of the matrix J(z*,v}) — AI is zero:

det(J(z*,v}) — A\I) = 0. (3.26)

By doing the calculations, the following eigenvalues are obtained:

)\1,2(’00,A) = —(1 + Z)wu
)\1(’00 B) ~ 1),
’ 3.27
)\1 (UO,C) ~ _wa ( )
Ar2(va) = —(1 ij%)w

Similarly to the k = 0 case, all the fixed points are stable (eigenvalues with negative
real part), except for vy 4 which is unstable, as it has a positive real part eigenvalue.
Again, the circuit appears to be bistable for x ~ 0 V and stable for z ~ 1 V,
excluding the possibility of oscillation.

Since not even a DEL block is sufficient to trigger oscillations, we add an addi-
tional delay element (k = 2, Fig. 3.12.c).

Accordingly, the dynamical system is modified as follows:

dz—;l - [gl(xavofﬂ) - vol]'@z)
2 = [ga(von) — vt (3.28)
dvos

i = [g2(vo2) — V3]
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The fixed points of the system are the solutions of:

( _ _ 1
Vo1 = G1(T, Vo3) = 1o (v03—05)

Vo2 = g2 © 91(1’7 %3) = !

1+eia<1+eap(vlo$*0'5) 70‘5) (3 29)
Vo3 = G2 0 G2 © G1(T, Vp3) = 1 ' '

—a 1 —0.5

1
—a| ————————0.5
\ 14e 1+e (1+6“”(”03_0‘5) )

For = =~ 0, (3 9) has three solutions, namely vy 4 = (0.5;0.5;0.5) V, vy 5 ~ (0;0;0)
V,voc~(1;1;1) V.Forz =~ 1V, (329) has a solution, that is v1 4 = (05 0.5;0.5)
V.

In this case, the Jacobian matrix takes on 3x3 dimensions:
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Starting from (3.30), the following eigenvalues are obtained:

Ma(w.4) = —(= ;r : ijaf)@b, A3(vo,4) = (% — i,

A ~ —1,

)\12 ; = —z (3.31)
A12(v14) = (a g : ijaf)@b, A3(v14) = —(% + 1)2.

In this case it is observed that the unstable fixed points are vy 4 and v; 4, as they
are associated to eigenvalues with positive real part. Consequently, the circuit is
still bistable for x &~ 0 V, but it is unstable for x ~ 1 V. Similar results are obtained
for k > 2.

At this point we can conclude that a necessary condition for the structure rep-
resented in Fig. 3.11 to support oscillations is that the loop is composed of the
two-inputs function and at least two blocks with one input.

Example Application: Design of Ultra-Fast Oscillators in PLDs. When we
intend to design an oscillator in digital hardware, the simplest and compact solution
that we can use according to the state of the art is the Ring Oscillator [31-35].

As already indicated in Subsection 2.3.1, a Ring Oscillator consists of a loop of
N NOT gates, where N is an odd number greater than or equal to 3. This means

36



CHAPTER 3. INVESTIGATION AND IMPLEMENTATION METHODS

that, in the case of a PLD project, a Ring Oscillator must be composed by at least
three LUTs, each of which implements a NOT gate. Therefore, apparently three can
be considered the minimum number of programmable hardware resources needed to
build an oscillating circuit.

However, within a PLD the input and output pins of the LUTs are not directly
connected; being the device programmable, to build the connections between logic
gates, it is necessary to pass through active switch matrices. In addition to this,
the output signal of a LUT, before reaching these switch matrices, passes through
active digital elements that are part of the Elementary Logic Blocks described in
Section 2.2.

Together with the analysis of the simplified dynamical model presented in Sub-
section 3.3.1, these considerations on the hardware structure of a PLD suggests that
to design an oscillating circuit in a PLD is not necessary to use three or more LUTS,
but it may suffices to use just one LUT, allowing the routing circuitry to take the
role of the remaining stages.

To verify this assumption, we implemented the two topologies shown in Fig.
3.13 on a Xilinx Artix 7 xc7a35 FPGA, taking control of the synthesizer place and
route policies at the lowest level. Given the compactness of both topologies, we
expected to reach high oscillation frequencies (in the order of GHz). Since the I/O
FPGA pins were designed to operate at bit rates much lower than the expected
oscillation frequencies, they could not be used to extract signal out from the FPGA
for direct measurements. Rather, we 1-bit sampled the oscillators locally, exploiting
the registers in the Configurable Logic Blocks, adopting a sampling frequency of
100 MHz. The sampled bits were then collected in sequences of 1 million elements,
which were then used for the calculation of the Decorrelation Time, already defined
in Subsection 3.2.1.

In Fig. 3.14 the autocorrelation functions and the relative Decorrelation Times,
evaluated on a window of 2us with n fixed at 99.9%, are reported. From the figure
we can obtain two important information:

e both systems are oscillating circuits, characterized by vanishing autocorrela-
tion functions;

e the Decorrelation Time of the Ring Oscillator is double that of the oscillator
using a single LUT.

Together with the knowledge of the used hardware, the use of the simplified dy-
namical model allowed to determine optimization methods for the design of DNOs
(interpreting the oscillator with one LUT as a sub-element of a more complex DNO).
Studying the model, we identified specific conditions such as to guarantee the oscil-
lation of the signals and an increase in the oscillation frequency, to the benefit of
the generated information entropy per second.
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Figure 3.13: A schematic representation of the two compared systems: (a) a single
LUT feedback loop that should support oscillations in FPGAs according to the study
of the simplified dynamical model; (b) a three-nodes conventional Ring Oscillator.
Dashed DEL nodes result from the routing/configuration multiplexers present in the
Configurable Logic Block and the local Switch Matrices.
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Figure 3.14: The autocorrelation functions of the binary streams collected from the
oscillators shown in Fig. 3.13, performing the uniform sub-sampling of the oscillating
signal, with a sampling frequency of 100 MHz and a 1-bit A /D quantization strategy.
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3.4 Advanced Numerical Simulations

An extension of the studies performed on the simplified dynamical model relies
on the use of advanced numerical simulators.

The simplified dynamical model allows to investigate the minimum necessary
conditions that favor compatibility with complex dynamical behaviors for the DNO
topology under consideration. However, the model does not evaluate what the actual
behavior of a DNO implementation is, as it is based solely on the circuit topology
and does not take into account its hardware characteristics.

The main advantage of the simplified model is the possibility to provide a com-
plete analysis of the system, thanks to the low complexity of the resulting circuit.
However, a real DNO is affected by the presence of parasitic components, which
cause the resulting dynamical system to have an higher dimension with respect to
the system defined through the application of the simplified model; as a conse-
quence, the real system results, in general, too complex to be solved through direct
calculations.

For this purpose, it is necessary to resort to advanced numerical simulation tools,
which allow, still at a simplified level, to build the circuit based on real technologies
at the transistor level. In this way, we can evaluate its dynamics taking into account
not only its functional topology, but also the parasitic physical elements linked to
its implementation and its operation. Specifically, our goal is to understand what
could be the behavior of a certain topology in the case of its implementation on
FPGA.

In our analyzes, without loss of generality, we defined a simulation setup in
Cadence Virtuoso based on CMOS UMC 180 nm technology. Obviously, this setup
can be implemented in any simulation environment and referring to any technology.

We built at the transistor level a library of simplified fundamental hardware
elements used for the construction of an asynchronous circuit in FPGA, i.e. Look-
Up Tables (LUTs) and multiplexers (MUXes) with various numbers of inputs. In
Figs. 3.15 and 3.16 are shown the schematics of a 2-inputs multiplexer and a 3-inputs
LUT.

The LUTs can be used to build any logic gate characterized by a number of
inputs less than or equal to the maximum number supported by the used LUT. For
example, in Fig. 3.17 the LUT of Fig. 3.16 is configured to implement a 3-inputs
XOR function.

The MUXes instead can be used to emulate the active programmable routing
elements by means of which the connections between the ports of the LUTSs are built
for the definition of the circuit. Fig. 3.18 shows an example of a DNO topology
composed of LUTs and routing elements based on the components just described.

The built circuits represent a still simplified version of a possible real imple-
mentation, but they allow to take into account in the evaluation of the dynamical
behavior of the signals aspects related to the physics of the device. It is impor-
tant to underline that the purpose of these simulations is not to investigate the real
behavior of the signals involved in the circuit dynamics, but to extend the anal-
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Figure 3.15: Schematic representation of a two-inputs multiplexer designed in Ca-
dence Virtuoso at transistor level using the UMC 180 nm technology.
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Figure 3.16: Schematic representation of a three-inputs Look-Up Table designed in
Cadence Virtuoso at transistor level using the UMC 180 nm technology, making use
of the two-inputs multiplexers whose schematic is shown in Fig. 3.15.
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Figure 3.17: Configuration of a three-inputs Look-Up Table (whose schematic is
shown in Fig. 3.16) to implement a XOR function in Cadence Virtuoso using the
UMC 180 nm technology.

43



CHAPTER 3. INVESTIGATION AND IMPLEMENTATION METHODS

Figure 3.18: Schematic representation of a DNO topology based on the LUTs and
the MUXes designed in Cadence Virtuoso at transistor level using the UMC 180 nm
technology. Each logic gate is designed by configuring a three-inputs LUT as the
one shown in Fig. 3.16.

ysis performed with the simplified dynamical model to higher dimension systems,
exploiting the advanced numerical simulators functionality. This is the reason for
which we designed our own components library, instead of using more rigorous and
reliable standard models, simulating digital circuits with analog simulators.

The DNOs are analyzed by means of transient simulations, carrying out simula-
tion campaigns based on noise injection or on Monte Carlo analysis. There are two
parameters on which Monte Carlo simulations operate:

e the nonlinear DC transfer functions of the logic gates and their parasitic ca-
pacitances, parametrized by means of the form factor of the PMOS transistors,
as can be observed in the schematic of the MUX in Fig. 3.15;

e the initial conditions of each node in the circuit, controlled by capacitors with
negligible capacity (magnitude order of the aF) whose voltages at instant ¢ = 0
of the simulation are parametrized; an example of such capacitors can be seen
in Fig. 3.16.

Other analyzes include the sensitivity evaluation with respect to temperature and
power supply fluctuations.
An application case of the above analyzes is presented in Chapter 4.
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3.5 FPGA Implementation Techniques

In this last section, we provide the implementation techniques we employed to
design DNOS in FPGAs.

In the course of the previous sections, various examples of DNOs were reported,
showing each time in practical terms the functioning or characteristics of the ad-
dressed issues. Each of these examples included the analysis of binary sequences
obtained by sampling implementations in FPGAs.

The FPGA implementation of a DNO represents the practical validation of the
observations and theoretical results found starting from the simplified dynamical
model and numerical simulations. For this reason, this passage cannot be carried
out freely, but must respect specific design rules, independent of the considered
topology.

These rules are intended to provide control over the FPGA hardware resources
through the use of device primitives. The argument presented here refers to designs
on Xilinx Artix 7 FPGAs made with the Vivado Design Suite in VHDL language,
but its value is general, as it can be easily adapted to any FPGA device.

3.5.1 Combinatorial Loops

Normally, in digital design, combinatorial loops should be avoided: a combinato-
rial loop consists of a feedback of logic elements without registers, which can create
logic race conditions or ruin the timing analysis in the synthesis and implementation
phases. For this reason, design tools typically generate Design Rule Check (DRC)
errors when such a loop is identified during synthesis.

A DNO topology, however, is by definition based on combinatorial loops. For
this reason, to implement a DNO, it is necessary to provide the design tool with
special directives to enable the synthesis of combinatorial loops required by the
designer. In Vivado, it is possible to reduce the severity of the compiler blocking
message, reducing the presence of a combinatorial loop from an error condition
to a simple warning condition. To do this, we need to add to the project a Tcl
(Tool command language) script containing the command set_property SEVERITY
{Warning} [get_drc_checks LUTLP-1].

3.5.2 Design of Elementary Logic Blocks

The logic resources in a Xilinx Artix 7 FPGA are organized in a matrix of
Configurable Logic Blocks (CLBs), each containing two slices, and each slice is
composed of four 6-inputs Look-Up Tables (LUTs) and eight storage items [30].
Each slice is identified by two values X and Y, which define its physical position
within the FPGA. Similarly, the LUTs in a slice are identified by four letters A, B,
c, D.

From the implementation point of view, in Section 2.2 we defined a DNO as a
network whose nodes consist of predefined hardware structures called Elementary
Logic Blocks (ELBs). The logical functionality of an ELB can be implemented
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
library UNISIM;

use UNISIM.VComponents.all;

entity ELBI1NOT is
port (
A : in std_logic;
NOT_A : out std_logic );
end ELBI1NOT;

architecture Behavioral of ELBINOT is
attribute DONT_TOUCH : string;
attribute KEEP_HIERARCHY : string;
attribute BEL : string;
attribute LOC : string;
attribute DONT_TOUCH of Behavioral : architecture is "yes";
attribute KEEP_HIERARCHY of Behavioral : architecture is "yes";
attribute DONT_TOUCH of NOTGate : label is "yes";
attribute KEEP_HIERARCHY of NOTGate : label is "yes";
attribute BEL of NOTGate : label is "AG6LUT";
attribute LOC of NOTGate : label is "SLICE_XO0YO";
begin
NOTGate : LUT1
generic map (
INIT => "01" )
port map (
0 => NOT_A,
I0 => A );
end Behavioral;

Figure 3.19: VHDL code for the low-level design of an ELB with a NOT boolean
functionality. In this example, the solution uses the 6LUT primitive, resource A, in
the slice located at the coordinates X0YO.

through a LUT. Since a DNO is an asynchronous circuit, it does not require the use
of registers.

For clarity of presentation, each ELB can be associated with a VHDL entity.
As shown in Figs. 3.19, 3.20, where VHDL codes are reported to describe a NOT
function and a XOR function, the implementation of an ELB requires the use of
special directives to force the use of specific hardware resources within the chip [40],
and primitives of the device accessible through the invocation of the UNISIM library
from Xilinx (in the case of the examples LUT1 and LUT2). The logical operation
carried out by the LUT is described through the constant INIT, which contains the
corresponding truth table, as shown in Tabs. 3.1, 3.2.

46



CHAPTER 3. INVESTIGATION AND IMPLEMENTATION METHODS

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
library UNISIM;

use UNISIM.VComponents.all;

entity ELBBXOR2 is
port (
A : in std_logic;
B : in std_logic;
XOR_AB : out std_logic );
end ELB5X0R2;

architecture Behavioral of ELB5X0R2 is
attribute DONT_TOUCH : string;
attribute KEEP_HIERARCHY : string;
attribute BEL : string;
attribute LOC : string;
attribute DONT_TOUCH of Behavioral : architecture is "yes";
attribute KEEP_HIERARCHY of Behavioral : architecture is "yes";
attribute DONT_TOUCH of XORGate : label is "yes";
attribute KEEP_HIERARCHY of XORGate : label is "yes";
attribute BEL of X0ORGate : label is "AG6LUT";
attribute LOC of X0ORGate : label is "SLICE_X1YO0";
begin
X0RGate : LUT2
generic map (
INIT => "0110" )
port map (
0 => XOR_AB,
I0 => A,
I1 => B );
end Behavioral;

Figure 3.20: VHDL code for the low-level design of an ELB with a XOR boolean
functionality. In this example, the solution uses the 6LUT primitive, resource A, in
the slice located at the coordinates X1YO.

10 0
0 | INIT[0] — 1
1 | INIT[1] =0

Table 3.1: Truth table to implement a NOT gate by means of the LUT1 device
primitive generic INIT.

47



CHAPTER 3. INVESTIGATION AND IMPLEMENTATION METHODS

I1 10 0

0 0 | INIT[O] — O
0 1 |INIT[1] =1
1 0 |INIT[2] =1
1 1 |INIT[3] =0

Table 3.2: Truth table to implement a XOR gate by means of the LUT2 device
primitive generic INIT.

3.5.3 Synchronization Interface

To acquire bit sequences starting from the implemented DNO, it is necessary
to connect the output pin of the circuit to a synchronization interface, which can
be reduced to a single D flip-flop that simultaneously performs the 1-bit analog-to-
digital (A/D) conversion and the uniform sampling of the output signal.

To implement the flip-flop we use an FF device primitive, which consists of a D
type flip-flop with clock enable and synchronous reset, identified by the FDRE entity
accessible through the UNISIM library. Fig. 3.21 shows an example of the VHDL
code through which the synchronization interface is designed.

Again, it is important to have control over the placement of the resource on
the chip, so the VHDL code must also include special directives for this purpose.
While in the case of ELBs a selection of the position of the component in the chip is
made for reasons of dynamical characteristics of the implemented circuit, as regards
the synchronization interface it is necessary to manually select its position since it
participates in the timing analysis of the entire design, therefore some positions may
not respect the timing constraints.

3.5.4 Placing and Routing

In an FPGA, routing is constructed using programmable switches and connection
boxes according to a hierarchical architecture that offers local and global connectiv-
ity.

Once we arranged the ELBs in the desired positions, the connection between the
pins takes place according to policies left to the compiler. To minimize the impact
related to routing, it is advisable to concentrate the ELBs in a few slices, placing
them next to each other.

3.6 Conclusion

We introduced a set of tools that define a methodology for the analysis and design
of Digital Nonlinear Oscillators; these tools have the purpose of evaluating a Digital
Nonlinear Oscillator from different points of view, considering its characteristics
as an analog electronic circuit, as a complex dynamical system and as a source of
entropy.
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
library UNISIM;

use UNISIM.VComponents.all;

entity SYNC_INT is
port (
ANALOG_IN : in std_logic;
CLK : in std_logic;
RST : in std_logic;
RND_QUT : out std_logic );
end SYNC_INT;

architecture Behavioral of SYNC_INT is
attribute DONT_TOUCH : string;
attribute KEEP_HIERARCHY : string;
attribute BEL : string;
attribute LOC : string;
attribute DONT_TOUCH of Behavioral: architecture is "yes";
attribute KEEP_HIERARCHY of Behavioral: architecture is "yes";
attribute DONT_TOUCH of BitRegister : label is "yes";
attribute KEEP_HIERARCHY of BitRegister : label is "yes";
attribute BEL of BitRegister : label is "DFF";
attribute LOC of BitRegister : label is "SLICE_X1YO";
begin
BitRegister : FDRE
generic map (
INIT => ’0° )
port map (
Q => RND_OUT,

C => CLK,
CE => 217,
R => RST,

D => ANALOG_IN );
end Behavioral;

Figure 3.21: VHDL code for the low-level design of the D flip-flop used to perform
both 1-bit A/D conversion and uniform sampling of the output signal provided by
a DNO. In this example, the solution uses the FF primitive, resource D, in the slice
located at the coordinates X1YO.
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We defined two figures of merit (Decorrelation Time and Average Shannon En-
tropy) which allows to evaluate, in the comparison between two or more sources,
which one is capable of offering the best performance in terms of generated infor-
mation. The Decorrelation Time establishes what is the minimum sampling period
capable of guaranteeing decorrelation between consecutive symbols generated by a
DNO; the Average Shannon Entropy offers an estimate of the entropy generated by
the circuit.

An application example for these figures of merit was provided: we compared
three different DNO topologies (Ring Oscillator, Galois Ring Oscillator and a custom
topology) implementing them in 5 Xilinx Artix 7 FPGAs, acquiring sequences of
bit sampled at different frequencies, and evaluating their Decorrelation Times and
Average Shannon Entropies. We observed that the three DNOs are characterized
by different performance. We found a link between Decorrelation Time and Average
Shannon Entropy, as, on average, the shorter is the Decorrelation Time the higher is
the ASE. The analyzes also highlighted that Average Shannon Entropy and sampling
frequency are linked by a nonlinear relationship, for which a variation in the sampling
frequency involves a marginal variation of the ASE. In this sense, the frequency at
which we sample our source has a significant weight in terms of the rate of generated
information.

We introduced a simplified dynamical model for the description of a DNO having
the purpose to investigate the minimum necessary conditions that favor its compat-
ibility with complex dynamical behaviors, on the basis of the stability of its fixed
points. In the model, each node of the DNO is represented with a first order cell,
given by a voltage controlled voltage generator that controls a resistance-capacitance
cell of the first order.

The model was used to study the stability of a circuit primitive that is often
used within complete DNO topologies, evaluating the minimum complexity at the
dynamical system level that this primitive must possess in order to oscillate. The re-
sults obtained through the analysis based on the simplified model were then verified
by implementation on FPGA: we showed experimentally that it is possible to de-
sign an oscillating sub-circuit composed by a single Look-Up Table (LUT) feedback
loop. By comparing the designed subcircuit with a three-nodes Ring Oscillator, we
noticed that with a topology of this kind it is possible to reach dynamical speeds
higher than the DNO with minimum complexity that can be designed at a logical
level.

We showed the simulation setup built in Cadence Virtuoso in order to deepen
the dynamical behavior of the signals involved in a DNO. This setup makes use
of UMC 180 nm technology to replicate at transistor level, in a simplified form,
the fundamental hardware structures of an FPGA used in the design of a DNO,
i.e. LUTs for the design of logic gates and MUXes for the emulation of the active
routing elements. These structures are used to design the circuits to be analyzed,
which are then subjected to different types of simulations, such as noise injection
and Monte Carlo analysis.

Finally, we explained the design rules that must be applied when implementing
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DNOs on FPGAs, showing the syntax in VHDL language for their use. These rules
have the purpose of:

e allowing the synthesis of combinatorial loops, normally not allowed as they
can create logic race conditions or ruin the timing analysis;

e using specific low-level resources, such as Look-Up Tables and Flip-Flops,
which must be explicitly selected by indicating their position within the chip;

e defining the overall layout of the circuit to partially control the routing between
the output and input pins of the designed logic gates.
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Chapter 4
High Performance DNO

In this chapter we use the analysis and design methodologies of Digital Non-
linear Oscillators formalized in Chapter 3 to describe the complete workflow
followed for the design of a novel DNO topology. This DNO is characterized
by chaotic dynamical behaviors, and is capable of achieving high performance
in terms of generated entropy, downstream of a reduced hardware complexity
and high sampling frequencies. By exploiting the simplified dynamical model,
the advanced numerical simulations in Cadence Virtuoso and the FPGA im-
plementation, the presented topology is extensively analyzed both from a the-
oretical point of view (notable circuit sub-elements that make up the topology,
bifurcation diagrams, internal periodicities) and from an experimental point
of view (generated entropy, source autocorrelation, sensitivity to routing, tem-
perature sensitivity, application of standard statistical tests).

4.1 Chaos in Fully Digital Hardware

In Chapter 3 we defined the tools needed to analyze the characteristics and
performance of a DNO. In the course of this chapter, a practical example of how
these tools could be used in order to design a DNO from scratch is shown.

Starting from a theoretical analysis of the dynamics of the proposed topology
and subsequently evaluating the characteristics resulting from its implementation, a
DNO is proposed characterized by complex dynamical behaviors (including chaos),
capable of achieving high performance in terms of generated entropy, downstream
of a reduced hardware complexity and high sampling frequencies [41-43].

4.1.1 References

The material presented in this chapter includes results that have been published
in the following publications:
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L1

Figure 4.1: The sub-network analyzed in Subsection 3.3.1, consisting of a feedback
loop composed of a gate with two inputs (one of feedback and the other independent)
and a cascade of gates with one input.
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e T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and V. Vignoli,
“Chaos in fully digital circuits: A novel approach to the design of entropy

sources,” in 2020 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2020, pp. 1-5 [41];

e T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and V. Vignoli,
“A new class of chaotic sources in programmable logic devices,” in 2020 IEEE
International Workshop on Metrology for Industry 4.0 & IoT. IEEE, 2020, pp.
6-10 [42];

e T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and V. Vignoli, “A
new class of digital circuits for the design of entropy sources in programmable
logic,” IEEFE Transactions on Circuits and Systems I: Reqular Papers, vol. 67,
no. 7, pp. 2419-2430, 2020 [43].

4.2 Topology

The first step in designing a DNO is choosing the topology.

In Subsection 3.3.1 we analyzed the dynamical characteristics of a sub-circuit
consisting of a feedback loop composed of a gate with two inputs (one of feedback
and the other independent) and a cascade of gates with one input, which we report
in Fig. 4.1.

By selecting a XOR logic function for the two-inputs gate and a digital delay
(DEL) for the one-input gates, we observed that such subcircuit supports oscilla-
tions, provided the one-input gates cascade is composed by at least two elements
and that the independent input of the XOR is fixed at a logic 1, while with a logic
0 it assumes a bistable behavior.

Repeating the calculations by replacing the XOR with a NXOR, a complemen-
tary result is obtained (we do not report the calculations as the procedure is equiv-
alent to the one already presented in Subsection 3.3.1): the sub-circuit supports
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oscillations provided it has a cascade of at least two DEL gates and that the inde-
pendent input of the NXOR is set at a logic 0, and is bistable when the independent
input is forced to a logic 1.

Assuming to connect two configurations of these types together by short circuit-
ing the independent inputs, and to inject a periodic digital signal in them (e.g. the
output of a Ring Oscillator), we expect therefore to see the two sub-circuits oscillate
at alternate moments, with the sub-circuit that is not oscillating that maintains the
last reached logic state.

Combining the injected periodic digital signal with the output signals of the two
loops and acting on the periods of these three signals, it is reasonable to think that
this process of switching the oscillations on and off gives rise to complex dynamics.

This assumption arises from the fact that the dynamics of coupled oscillators
is studied since centuries, starting from the well known synchronization of weakly
coupled mechanical pendulums. This phenomenon is known as phase-locking, and is
generally present in dissipative systems with competing frequencies. Depending on
both the system parameters and the coupling strength, different kind of dynamics
can be observed, ranging from periodic-locked, quasi-periodic (i.e., the ratio between
the two oscillator frequencies is irrational) and chaotic. To have a chaotic dynamics,
a fundamental role is played by the nonlinear nature of both the oscillators and the
coupling between them [44-48].

A special case of coupled oscillators is obtained when an autonomous dynamical
system x is used to generate a driving signal exciting a second dynamical system y.
In this situation, referring to a wide theoretical framework, the overall system can
be described by the generic system of nonlinear differential equations

{X =fx) (4.1)

y = g(X7 Y)

being x : R — RY,y : R — RM real-valued functions of time ¢, and f, g nonlinear
smooth real-valued functions of x and y, respectively. If & = f(x) and y = g(0,y)
define two periodic dynamical systems, we may call y in (4.1) the forced oscillator,
being x the forcing periodic driver.

According to the just presented considerations, we elaborated the topology shown
in Fig. 4.2, where the ELBs#[1-3| have the task of generating the periodic injected
signal, while the loops composed respectively of ELBs#[5-7] and ELBs#[8-10| are
the previously analyzed sub-circuits. ELB#4 is the combination element of the
output signals of the three loops and ELB#11 plays the role of a 1-bit quantization
A/D converter of the circuit output signal.

4.3 Dynamical Analysis

Having established the topology, the next step is to investigate if conditions that
favor compatibility of the topology with complex dynamics exist. To do this, we
have to resort to the simplified dynamical model described in Section 3.3.
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ELB#9

ELB#10 I ELB#8

CLKEN

RND OUT

Figure 4.2: The analyzed DNO topology, characterized by an independent loop
generating an excitation signal, controlling the dynamics of the sub-circuit loops
having the structure analyzed in Subsection 3.3.1.
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Figure 4.3: A simplified model to investigate the core DNO sub-network implement-
ing the non-autonomous dynamical system (4.2).

Observing the topology in Fig. 4.2, we note that it can be divided in two parts:
the ELBs#[1-3| constitute a structure that is totally independent from the rest,
having the purpose of exciting the remaining part of the network. Therefore, at a
first approximation it is possible to decide to ignore the subnetwork given by the
ELBs#[1-3], replacing it with an excitation wave generator.

Applying this simplification and imposing that the loop given by the ELBs#|5-
7] is the sub-circuit composed by one NXOR and two DELs, the loop given by
the ELBs#[8-10] is the sub-circuit composed by one XOR and two DELs, and the
ELB#4 combines the output signals of the two loops with the excitation signal by
means of a XOR operation, the resulting simplified dynamical model looks as shown
in Fig. 4.3.

This circuit defines a non-autonomous nonlinear dynamical system, which oper-
ates in a normalized phase space defined on the domain [0,1]” C R”, that is:

;

1 — 0, [XOR2(w3, 2) — 1]
L2 = y[DEL(z1) — 9]
s = o3[DEL(,) — 3]
L1 — BIINXOR2(ys, 2) — ] - (4.2)
% = [DEL( ) yz]
d(?;zts =05 [DEL(?JZ) ys]
\ dt = v[XOR3(z3, ¢(t),y3) — 2]

a;, Bi,y € RT i =1,2,3 are positive parametric constants that describe the recipro-
cals of the RC' time constants associated with each node of the circuit, ¢ : R — [0, 1]
is the arbitrary signal of excitation, DEL : R — [0,1], XOR2 : R* — [0,1],
NXOR2 : R? — [0, 1], XOR3 : R® — [0, 1] are the functions that fit the DC analog
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transfer functions of the respective logic gates, defined as analytic combinations of

the sigmoids of the form:
1

1+ ea(z—b)’ (43)

o(x,a,b) =

where a,b € R.
We limit a and b on the intervals a > 20 and 0.3 < b < 0.7, and define, for i € N,
the fundamental transfer functions of rectification and inversion as follows:

1
$Z(UZ) =T, = m’ (44)
T =7, = ! 4.5
Ti(vi) =T = 11 ealvid) (4.5)
(4.4-4.5) can be used to express the transfer functions indicated above:
DEL(UZ) = Iy,
XOR2(v;,v;) = ,T; + T;x;,
(vi, v j j (4.6)

)
NXOR2(’U“ Uj) = I;Tj -+ fifj,
)

XOR3(UZ, Uj, Vi) = (SL’Z'SL’]' —+ Tifj)l’k —+ (l’ifj + flxj)fk

4.3.1 System Analysis: Turned-Off Excitation

If the excitation of the circuit in Fig. 4.3 is turned off (¢(t) = 0), the dynamical
behavior of the system (4.2) depends on the parameters «;, 5;, 7, a, b, i = 1,2, 3.

Assuming that the parameters assume non-pathological values, i.e. that «;, 5;
and v are defined on similar order of magnitudes, the resulting autonomous system
has a stable and globally attractive limit cycle. In other words, the autonomous
simplified circuit obtained by switching off ¢(¢) belongs to the DNO family.

Fig. 4.4 shows the results of exhaustive simulations of the system, obtained
by integrating (4.2) with standard numerical methods. The figure shows how the
system is stable to parametric perturbations (Fig. 4.4.a) and that the output signal
z is characterized by regular oscillations (Fig. 4.4.b).

4.3.2 System Analysis: Periodic Excitation

If the excitation of the circuit in Fig. 4.3 is turned on, the system (4.2) describes
a forced nonlinear oscillator [45-48|.

To carry out an analysis that includes the parametric space, taking into account
the problem dimensions, it is not possible to adopt an analytical approach with re-
spect to the system (4.2), therefore it is necessary to resort to numerical investigation
methods.

To perform these analyzes, we reduced the complexity of the problem, assuming
a;=pi=v=¢&>0in (4.2) and a = 30 and b = 0.5 in (4.4). For the excitation
signal, we used an adapted full-scale sinusoidal signal with frequency fy = 1/Tq:

6(t) = %(1 + sin(2r fot)). (4.7)
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