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Chapter 1

Introdution

In reent years, yberseurity is gaining more and more importane. Cryptog-

raphy is used in numerous appliations, suh as authentiation and enryption of

data in ommuniations, aess ontrol to restrited or proteted areas, eletroni

payments [1�3℄. It is safe to assume that the presene of ryptographi systems in

future tehnologies will beome inreasingly pervasive, leading to a greater demand

for energy e�ieny, hardware reliability, integration, portability and seurity.

However, this pervasiveness introdues new hallenges, suh as the implementa-

tion of ryptographi primitives with improved performane in terms of timing, hip

area, power and omputational resoure onsumption, addressing the inreasing de-

mand of low-omplexity hardware devies, like systems for the Internet of Things

(IoT). In response to this limitation, lightweight ryptography omes into play -

a branh of ryptography that provides tailor-made solutions for resoure-limited

devies.

One of the fundamental lasses of ryptographi hardware primitives is rep-

resented by Random Number Generators (RNGs), that is, systems that provide

sequenes of binary symbols that are deemed unpreditable [4℄.

The iruits and systems that implement RNGs an be divided into two ate-

gories, namely Pseudo Random Number Generators (PRNGs) and True Random

Number Generators (TRNGs).

PRNGs are deterministi and eventually periodi �nite state mahines, apable

of generating sequenes that appear to be random. In other words, a PRNG is a

devie that generates and repeats a �nite random sequene, saved in memory or

generated by alulation.

A TRNG, on the other hand, is a devie that generates random numbers based

on stohasti physial proesses. Typially, a hardware TRNG onsists of a mixed-

signal iruit that is lassi�ed aording to the stohasti proess on whih it is

based. Spei�ally, the most ommonly used soures of randomness are [5℄:

• haoti iruits;

• high jitter osillators;

• iruits that measure other stohasti proesses.
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CHAPTER 1. INTRODUCTION

A haoti iruit is an analog or mixed-signal iruit in whih urrents and voltages

vary over time aording to systems of nonlinear di�erential equations [6℄. The time

evolution of these urrents and voltages an be understood as the evolution of the

state of a haoti nonlinear dynamial system.

Jitter an instead be de�ned as the deviation of the output signal of an osillator

from its true periodiity, due to eletroni noise, whih auses unertainty in its

transition times [7℄.

Other possible stohasti proesses that a TRNG an use may involve radioative

deay, photon detetion, or eletroni noise in semiondutor devies [8�15℄.

TRNGs presented in the literature are typially designed in the form of Appli-

ation Spei� Integrated Ciruits (ASICs). On the other hand, in reent years

an inreasing number of researhers are investigating the design of TRNGs in Pro-

grammable Logi Devies (PLDs) [16�25℄. A PLD o�ers, ompared to an ASIC,

lear advantages in terms of ost and versatility. At the same time, however, there

is urrently a widespread lak of trust in these PLD-based arhitetures, starting

from spei� ryptographi weaknesses found in well known solutions based on Ring

Osillators [26�28℄.

In this work we propose a novel lass of iruits suitable for being implemented

in digital devies, as PLDs, as a valid alternative to traditional solutions proposed

in literature to generate random bits.

1.1 Thesis Organization

In the next hapters a new lass of nonlinear iruits based on digital hardware

is introdued that an be used as entropy soures for TRNGs implemented in PLDs,

named Digital Nonlinear Osillators (DNOs).

More in detail:

• Chapter 2 provides the de�nition of Digital Nonlinear Osillator, supported

by notable examples apable of demonstrating experimentally how di�erent

iruit topologies referable to this lass an express signi�antly di�erent per-

formane;

• Chapter 3 introdues the analysis methods needed to evaluate the performane

of a Digital Nonlinear Osillator, thus establishing an approah for the design

od DNO-based TRNGs;

• Chapter 4 proposes a iruit topology usable as a high performane entropy

soure;

• Chapter 5 desribes an algorithmi proedure, suitable for being implemented

in low-omplexity PLDs, aiming to selet, within a given set of random binary

soures, the one with highest entropy.
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Chapter 2

Digital Nonlinear Osillators

In this hapter we introdue a novel lass of iruits that an be used to design

entropy soures for True Random Number Generation, alled Digital Nonlinear

Osillators (DNOs). DNOs onstitute nonlinear dynamial systems apable of

supporting omplex dynamis in the time-ontinuous domain, although they

are based on purely digital hardware. By virtue of this harateristi, these

iruits are suitable for their implementation on Programmable Logi Devies.

Fousing on the analysis of Digital Nonlinear Osillators implemented in FP-

GAs, a preliminary omparison is proposed between three di�erent iruit

topologies belonging to the introdued lass, in order to demonstrate how

iruits of this type an have di�erent harateristis, depending on their dy-

namial behavior and hardware implementation.

2.1 De�nition

We open this hapter with an informal de�nition [29℄.

De�nition 2.1. A Digital Nonlinear Osillator (DNO) is a network of eletroni

iruits, originally designed to behave as digital logi gates, whih implements an

autonomous nonlinear dynamial system that exhibits omplex (periodi or haoti)

dynamis in the time-ontinuous domain.

Therefore, a DNO is a iruit apable of generating entropy on the basis of two

possible dynamial behaviors. In ase of haoti dynamis, the generated entropy

mainly depends on the dynamial harateristi of the implemented iruit topology.

Alternatively, the iruit ats as a periodi osillator, and the information generation

mehanism depends on the eletroni noise (e.g. ausing phase noise or jitter).

What links both the desribed ases is the nonlinearity of DNOs, whih depends

on the intrinsially nonlinear nature of the eletroni iruits neessary for the design

of digital logi gates present in the system. In fat, these iruits typially use

transistors as swithes, with the aim, on a `large signal' sale, of bringing the output
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CHAPTER 2. DIGITAL NONLINEAR OSCILLATORS

voltages to saturation towards ground or power supply voltages, representing binary

logi levels. As it is lari�ed in this thesis, DNOs an be understood as analog

systems implemented in digital devies.

2.2 DNO Design in Programmable Logi Devies

As antiipated by De�nition 2.1, a DNO is a dynamial system that an be

implemented using only digital hardware. By virtue of this harateristi, fousing

the design of this lass of iruits in Programmable Logi Devies (PLDs) is of

partiular interest.

In digital eletronis, a PLD is an integrated iruit whih at the time of man-

ufature is not on�gured to perform any spei� boolean operation and therefore,

before being able to use it, must be programmed (i.e. on�gured). This implies

that, using PLDs, di�erent logi iruits, although funtionally di�erent from eah

other, are implemented by programming the same hardware.

Without losing generality, we an refer to FPGAs, that are a speial lass of

PLDs [30℄.

Giving a simpli�ed desription, an FPGA an be seen as a 2D matrix of ells,

alled Con�gurable Logi Bloks (CLBs). A CLB is the fundamental logial resoure

for the implementation of sequential or ombinatorial iruits. Eah CLB onnets

with the others via a loal swith matrix, whih then allows to aess to the general

routing matrix.

Eah CLB inludes a de�ned number of slies, within whih there are pro-

grammable hardware elements for the implementation of the di�erent logi fun-

tions. The set of elements in a slie is referred to as Elementary Logi Blok (ELB).

An ELB basially inludes three elements:

• a Look-Up Table (LUT), that an be used to store truth tables of arbitrary

1-bit logi funtions;

• a �ip-�op, through whih it is possible to memorize the logi output state of

the funtion, for the implementation of synhronous gates;

• a multiplexer for the synhronous or asynhronous on�guration of the logi

port.

Using this generi struture, it is possible to program any logi funtion haraterized

by one output bit and a given number of input bits up to the maximum supported

by the ELB hardware, as shown in Fig. 2.1.

Based on this observation and realling De�nition 2.1, it is possible to state that,

in the ontext of the design of a DNO on PLDs, eah ELB represents a node of the

topology. In this sense, a DNO an be represented as an oriented graph whose nodes

are the ELBs and whose ars are the onnetions between the output and the inputs

of eah ELB, as shown in Fig. 2.2.

On the other hand, eah autonomous network of ELBs apable of supporting

periodi or haoti dynamis onstitutes a DNO. It is lear that a statement of this
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CHAPTER 2. DIGITAL NONLINEAR OSCILLATORS

type de�nes a broad family of iruits, as it does not limit the omplexity or size of

the onsidered networks.

In addition, it should also be noted that the performane of a DNO topology is

stritly dependent on the harateristis of the spei� hardware implementation.

This means that, to evaluate a DNO, it is not su�ient to de�ne the network topol-

ogy and the logial funtion performed by eah node, but it is neessary to analyze

also the e�ets introdued by the use of a spei� tehnology for the implementation

of the iruit, inluding logi gates and routing elements.

2.3 Example Cases: from Ring Osillator to Cus-

tom DNOs

In this setion, three notable examples of DNOs haraterized by the same num-

ber of nodes are provided. These examples, that onstitute networks of di�erent

omplexity, are used to show how di�erent DNOs an be haraterized by partiu-

larly di�erent performane from a dynamial behavior point of view, and therefore

from their entropy.

The DNOs taken into onsideration, shown in Fig. 2.3, are:

• a Ring Osillator;

• a Galois Ring Osillator;

• a ustom DNO topology.

The three topologies are all omposed of seven ELBs, plus an eighth node

(ELB#8) used for the uniform sampling of the output signal, in order to gener-

ate a random sequene of bits.

2.3.1 Ring Osillator

The Ring Osillator is a iruit omposed by an odd number of NOT gates

losed in a loop. Its output osillates between two voltage levels with a frequeny

f
RO

whih depends on the propagation time τp of a NOT gate and on the number

N of inverters in the hain:

f
RO

≈ 1

2τpN
. (2.1)

The random omponent linked to this struture resides in the jitter to whih the

osillator is subjeted.

The Ring Osillator is a well known topology in the ontext of entropy soures

based on digital osillators [31�35℄, with ontrollable and repeatable dynamial har-

ateristis; for this reason, in this setion it plays the role of referene benhmark

for the other two topologies.
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Figure 2.3: Three di�erent DNO topologies. The three topologies have the same

number of nodes, but they onstitute networks of di�erent omplexity thanks to the

routing between nodes.

2.3.2 Galois Ring Osillator

The Galois Ring Osillator was proposed by Goli¢ in 2006 [36℄.

Inspired by Ring Osillators and Linear Feedbak Shift Registers (LFSRs), Goli¢

disussed two topologies based on loops of inverters ombined with XOR gates. The

proposed strutures have the appearane of LFSRs but, instead of registers, have

inverters used as delay elements. Goli¢ proposed two topologies, alled Fibonai

Ring Osillator and Galois Ring Osillator. The di�erene between the two lies in

the fat that in the Fibonai topology a single feedbak network ontrols the �rst

node of the loop, while in the Galois topology the feedbak signals are distributed

over multiple nodes, similarly to the Fibonai or Galois topologies of LFSRs.

Goli¢ investigated these strutures as synhronous �nite state mahines, identi-

fying theoretial onditions suh to have no �xed points or to maximize the period

of osillation. From the perspetive of DNOs, what is missing in the Goli¢ approah

is an assessment of the dynamial behavior of the physial iruit.

To investigate the weight of this aspet, it an be useful to analyze the dynamial

behavior of the signals involved in the Galois Ring Osillator shown in Fig. 2.4 by

means of numerial transient simulations.

Taking as a referene the UMC 180 nm tehnology, we designed the LUT stru-

ture shown in Fig. 2.1 at the CMOS transistor level in Cadene Virtuoso, as shown

in Fig. 2.5. Using the LUTs we built the iruit orresponding to the Galois Ring

Osillator topology and we arried out simulation ampaigns, subjeting the iruit
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Figure 2.4: A possible 7-nodes Goli¢ system. The topology de�nes a Galois Ring Os-

illator. ELB#7 output serves as feedbak signal, distributed over the ELBs#[2,6℄.

ELB#7 output is also the output signal, uniformly sampled by ELB#8.

to additive white noise.

What emerges from the simulations, summarized in Fig. 2.6, is that the os-

illator an exhibit limit yles with a relatively short duration, in disagreement

with what Goli¢ theorized. Furthermore, the iruit also appears to be quite robust

to perturbations, as its periodi behavior remains reognizable even in presene of

unrealisti high noise levels.

2.3.3 Custom DNO Topology

The third system analyzed in this setion onsists of an original DNO topology,

obtained by ombining a Ring Osillator with loop strutures omposed of digital

delays and XOR gates, as shown in Fig. 2.7. The digital delays are marked in

the �gure by a speial symbol, whih has the purpose of highlighting how, from an

analogial point of view, they onstitute signal reti�ers.

The onsidered topology is able to exhibit omplex dynamis, as an be observed

through simulations in Cadene Virtuoso based on the use of the LUTs built using

the CMOS UMC 180 nm tehnology (Fig. 2.5).

For example, onsider the transient simulations shown in Fig. 2.8, obtained by

foring the initial onditions of the ELBs#[4-7℄ to voltages (0,0,0,0) V.

Considering that the ELBs#[1-3℄ onstitute a Ring Osillator, we an exlude

the presene of stable �xed points for the entire struture. Fousing on the output

dynamis of ELBs#[4-7℄, we observe that the �rst low-high transition of ELB#3

propagates in subsequent ELBs until it triggers the self-osillation of the loop om-

posed by ELB#7 (evidene mark A). This osillation is then transferred to ELB#4

and mixed with the signal from the Ring Osillator. All this an lead to the reation

of omplex periodi dynamis, depending on the ratio between the time onstants

of the two subsystems.

Bringing our attention to the evidene mark B, it is possible to notie the non-

linear behavior of the digital delays, as the high gain in eah stage tends to saturate

the input signals towards ground or power supply voltages.
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Figure 2.6: Cadene Virtuoso transient simulations of the Galois Ring Osillator

shown in Fig. 2.4, designed using the LUT referene struture shown in Fig. 2.5

(UMC 180nm CMOS tehnology). Case A: no additive noise; ase B: relevant addi-

tive noise; ase C: abnormal additive noise.
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Figure 2.7: 7-nodes system belonging to the new lass of proposed DNOs. The topol-

ogy ombines a 3-nodes Ring Osillator (ELBs#[1-3℄) with loop struture omposed

of digital delays (ELB#[5,6℄) and XOR gates (ELBs#[4,7℄). ELB#8 uniformly sam-

ples the output signal, seletable among the ELBs#[4-7℄.

2.3.4 Experimental Analysis

We implemented the three topologies on a Xilinx Artix 7 x7a35 FPGA to ana-

lyze the performane of the three DNOs from the point of view of generating random

numbers. The same hardware resoures were used for eah of them, to ensure a fair

omparison between the three implementations. To do this, manual ontrol of FPGA

resoures plae and route phases was applied. More spei� details regarding the

proedure by whih DNOs are implemented on FPGAs are provided in Setion 3.5.

The output signal of eah implementation was sampled at di�erent frequenies,

de�ned on a range between 100 kHz and 100 MHz. For eah sampling frequeny, one

million bits long sequenes were aquired, on whih analyzes were then performed

aimed at evaluate the level of randomness.

Sine the goal of this analysis was to ompare the performane of three di�erent

topologies, rather than evaluating the outome of standard statistial tests, suh as

NIST 800.22 [4℄, we adopted the following onventional metris:

• pattern distribution of subsequent generated bytes;

• average Shannon redundany;

• autoorrelation funtion;

• runs distribution;

• probability distribution of generated bytes.

In this way it is possible to ompare imperfet soures, avoiding the typial �satu-

rated to fail� results of standard high sensitivity ryptographi statistial tests.

Fig. 2.9 shows the pattern distributions of suessive generated bytes for the

three topologies, evaluated at di�erent frequenies. From the image, it an be seen

that the Ring Osillator loses the uniform pattern for frequenies higher than 100

kHz, the Galois Ring Osillator for frequenies higher than 500 kHz, the ustom

system maintains uniformity up to 5 MHz.

Fig. 2.10 shows the average Shannon redundany (de�ned as the omplement

the average Shannon entropy) for binary words up to 16 bits for the three systems,
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Figure 2.8: Cadene Virtuoso transient simulations of the ustom DNO topology

shown in Fig. 2.7, designed using the LUT referene struture shown in Fig. 2.1

(UMC 180 nm CMOS tehnology). The simulations are performed without additive

noise. Mark A highlights the propagation in the iruit of the �rst low-high transition

of ELB#3. Mark B highlights the nonlinear behavior of the digital delays.
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Figure 2.9: Pattern distributions of suessive generated bytes on the plane

(bn, bn+1), for the three onsidered DNOs, for di�erent sampling frequenies. Eah

olumn shows the distributions for a topology, sampled at frequenies going from

100 kHz (lower plots) to 50 MHz (upper plots).
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Figure 2.10: Average Shannon redundany for binary words up to 16 bits, for the

three systems, for di�erent sampling frequenies.

evaluated at di�erent frequenies. The ustom DNO has lower redundany than the

other two systems at all frequenies exept 100 kHz. In this ase, the entropy is

limited by a residual biasing of the mean value of the generated sequenes.

Fig. 2.11 shows the autoorrelation funtion of the binary sequenes evaluated

for the three systems up to a time lag equal to 40, at di�erent frequenies. The

gray dashed line represents the ideal level for time lags greater than 0, whih for an

ideal binary random soure should be 0.52 = 0.25. The red dashed line represents

the asymptoti value of the estimated autoorrelation funtion, equal to the square

of the mean value of the sequene. The ustom DNO ahieves the asymptoti

autoorrelation value muh faster that the other two DNOs, regardless of the sample

rate.

Fig. 2.12 shows the runs statistis, that are sequenes of onseutive equal bits,

evaluated for both 0s and 1s, up to runs of 6 bits, omparing the three systems at

di�erent sampling frequenies. The dashed gray line represents the ideal referene
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Figure 2.11: Autoorrelation funtion of the olleted binary streams up to the time

lag 40, for di�erent sampling frequenies. Gray-dashed line: ideal level for time lag

m > 0; red-dashed line: asymptoti value of the estimated autoorrelation funtion.
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level. The ustom DNO manages to approah the ideal level at all sampling fre-

quenies, unlike the Ring Osillator and the Galois Ring Osillator, whih instead

approah the ideal level only up to 500 kHz and 1 MHz, respetively.

Fig. 2.13 shows the probability distributions of the 8-bits symbols generated

by the three systems at the di�erent frequenies. The dashed red line represents

the ideal referene level, orresponding to a uniform distribution haraterized by

symbols with probability equal to 1/256. It is evident that the symbols generated

by the ustom DNO are distributed more evenly than the Ring Osillator and the

Galois Ring Osillator regardless of the sampling rate.

Summarizing the observed data, we an a�rm that the three systems are har-

aterized by di�erent performane. In partiular, the ustom DNO reahes levels of

randomness higher than the other two systems.

In onlusion, the example shows, through informal methods of investigation,

that the DNOs onstitute a lass of entropy soures with very di�erent harateris-

tis, justifying the need to de�ne new methodologies for their analysis, aimed at the

onsious design of iruit solutions, apable of ahieving satisfatory performane

for ryptographi appliations.

2.4 Conlusion

We introdued the iruit lass of Digital Nonlinear Osillators (DNOs), i.e.

iruits that an be used as entropy soures for the design of True Random Number

Generators. DNOs are nonlinear dynamial systems apable of supporting omplex

dynamial behaviors in the time-ontinuous domain, although they are based on

purely digital hardware.

We explored the possibility of implementing suh iruits on Programmable Logi

Devies, with a partiular fous on their implementation on FPGAs. In this sense,

we analyzed the internal struture of a hip of this type, investigating the role of

their basi iruit elements in the design of DNOs.

Finally, we presented a omparison of the performane in terms of entropy gen-

eration of three notable topologies (Ring Osillator, Galois Ring Osillator and a

ustom topology), built using the same amount of hardware resoures for eah of

them, so as to be able to perform a omparison mainly related to their dynamial

harateristis.

From the omparison, it emerged that iruits with similar hardware omplexity

an o�er partiularly di�erent dynamial harateristis based on how the topology

is de�ned, thus justifying our interest in deepening the study of this lass of iruits

and in de�ning formalized methods for their design.
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Figure 2.12: Runs ourrenies for 0s and 1s up to 6 bits, for di�erent sampling

frequenies. Gray-dashed line: referene ideal level.
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Figure 2.13: Probability distribution for 8-bit words, for the three systems, for

di�erent sampling frequenies. Red-dashed line: referene ideal level.
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Chapter 3

Investigation Methods and

Implementation Tehniques

In this hapter we formalize a methodology for the analysis and design of

Digital Nonlinear Osillators based on the evaluation of their eletroni im-

plementation, their dynamial behavior and the information rate they an

generate. The presented methodology makes use of di�erent tools, suh as

�gures of merit, simpli�ed dynamial models, advaned numerial simulations

and experimental tests arried out through implementation on FPGA. Eah of

these tools is analyzed both in its theoretial premises and through explana-

tory examples.

3.1 DNO Analysis: a Need for Investigation Meth-

ods

In Chapter 2 we introdued the lass of iruits alled Digital Nonlinear Os-

illators (DNOs). The proposed arguments allow us to state that a DNO an be

understood in three possible ways:

• a DNO is an analog eletroni iruit built using digital hardware;

• a DNO is a omplex dynamial system apable of supporting periodi or

haoti dynamis;

• a DNO is a soure of entropy that an be used for the generation of random

numbers.

Obviously, physial implementation, dynamial behavior and generated entropy are

losely linked and interdependent aspets in DNOs.

For this reason, to formalize a methodology for the analysis and design of iruits

belonging to this lass, it is neessary to take into onsideration all three natures of
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the onsidered systems. From this derives a omplex approah to the study of DNOs,

whih requires the use of multiple tools to evaluate the performane from every point

of view. Spei�ally, the analysis methods and the implementation tehniques that

we employed in the ontext of this work an be framed as follows:

• �gures of merit for the evaluation of the statistial harateristis;

• simpli�ed dynamial models for the assessment of relevant aspets related to

system stability;

• iruit simulation of solutions based on CMOS tehnologies for more in-depth

dynamial evaluations;

• physial implementation of iruits in FPGA for the experimental validation

of the theorized and simulated behaviors.

In the next setions eah of these tools is analyzed, providing their theoretial

premises and some explanatory examples.

3.1.1 Referenes

The material presented in this hapter inludes results that have been published

in the following publiations:

• T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, V. Vignoli, and M. G. Bosque,

�Lightweight true random bit generators in plds: Figures of merit and perfor-

mane omparison,� in 2019 IEEE International Symposium on Ciruits and

Systems (ISCAS). IEEE, 2019, pp. 1-5 [37℄.

• T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, and V. Vignoli, �Analysis of

a iruit primitive for the reliable design of digital nonlinear osillators,� in

2019 15th Conferene on Ph. D Researh in Miroeletronis and Eletronis

(PRIME). IEEE, 2019, pp. 189-192 [38℄.

3.2 Figures of Merit

The �rst tools that we onsider are two �gures of merit for the omparative

evaluation of the statistial harateristis of DNOs.

A DNO is as a devie that an be used for the generation of random numbers.

To evaluate the quality of an objet of this type, the state of the art provides the

appliation of standard statistial tests [4, 39℄.

However, this approah onstitutes a poorly informative method regarding the

atual statistial harateristis of the iruit. In fat, the statistial tests are lim-

ited to providing an absolute pass/fail outome, whih only establishes whether the

onsidered system omplies with the minimum quality that agrees with the stan-

dard. Taking a set of systems apable of passing these tests, we are unable to
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determine whih of these systems are better or worse relying solely on the tests

outome. In addition to this, given a set of arbitrary tests, it is always possible to

identify an adequate invertible post-proessing algorithm apable of manipulating

the data generated by a system in order to make it pass the tests [5℄.

For this reason it is useful to introdue �gures of merit that allow to evaluate,

in the omparison between two or more soures, whih ones are apable of o�ering

better performane [37℄. Obviously this type of analysis has a omparative value

only, and is not intended to replae standard statistial tests, whih instead establish

in absolute terms whether a soure of entropy used in the generation of random

numbers is valid or not for a spei� appliation.

3.2.1 Deorrelation Time

The �rst �gure of merit we onsider is the Deorrelation Time. To provide a

de�nition of this �gure, we must �rst introdue some notations and de�nitions.

De�nition 3.1. Given an ergodi information soure that generates a binary se-

quene S = {si : i ∈ N}, we say that the soure has a vanishing statistial depen-

dene if for eah k-tuple of random variables {sj1, sj2, . . . , sjk : j ∈ N, k ∈ N, 0 ≤
j1 < j2 < · · · < jk} and for eah ε ∈ R

+
, an index m0 ∈ N exists suh that if

m ≥ m0 then |P (sjk+m|sj1, sj2, . . . , sjk)− P (sjk+m)| < ε, or more suintly:

lim
m→∞

P (sjk+m|sj1, sj2, . . . , sjk) = P (sjk+m) = P (s), (3.1)

where P is a measure of probability and P (A|B) = P (A∩B)/P (B) is the onditional
probability for two events A and B.

In general, De�nition 3.1 is valid for any iruit haraterized by free osillations

and a�eted by eletroni noise, uniformly sampled by adopting a 1-bit quantization

resolution [37℄.

Theorem 3.1. Given an ergodi information soure with vanishing statistial de-

pendene that generates a binary sequene S = {si : i ∈ N}, the limit of the auto-

orrelation funtion assoiated with the sequene RS(m) = E[sisi+m] for m→ ∞ is

equal to [P (s = 1)]2 = R2
S(0).

Proof. The autoorrelation funtion assoiated with the sequene S depends on the

expeted value of the symbols in the sequene and their ovariane:

RS(m) = E[sisi+m] = E[si]E[si+m]+Cov(si, si+m) = (E[s])2+Cov(si, si+m). (3.2)

The expeted value of a binary random variable is equal to the probability that the

variable has a value of 1:

E[s] = 0 · P (s = 0) + 1 · P (s = 1) = P (s = 1), (3.3)

and it is also equal to the autoorrelation funtion for m = 0. Sine the information

soure has a vanishing statistial dependene, aording to (3.1), for m → ∞ the
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two symbols si and si+m an be onsidered statistially independent. This implies

that the ovariane for m→ ∞ tends to 0. In onlusion, we have that:

lim
m→∞

RS(m) = [P (s = 1)]2 = R2
S(0). (3.4)

Let us now onsider a DNO whose output is sampled at a frequeny fs to aquire
a test sequene with �nite length of N bits.

The soure autoorrelation funtion RS(m) = E[sisi+m], with 0 ≤ m ≤ M ≤
N − 1 an be estimated using the following formula:

R̃S(m) =
1

N −m

N−1−m
∑

i=0

sisi+m. (3.5)

Assuming that the DNO is an ergodi soure with vanishing statistial depen-

dene, by Theorem 3.1 the autoorrelation funtion tends asymptotially to the

value R̃2
S(0). We then introdue the normalized autoorrelation funtion φS :

{0, 1, . . . ,M} → [0, 1] ⊂ R:

φS(m) =

∣

∣

∣

∣

∣

R̃S(m)− R̃2
S(0)

R̃S(0)− R̃2
S(0)

∣

∣

∣

∣

∣

. (3.6)

De�nition 3.2. Given a DNO that respets the ondition of an ergodi soure with

vanishing statistial dependene, sampled at frequeny fs to aquire an N-bits long

sequene S, the Deorrelation Time τS(M, η) assoiated to the sequene S on a

window of M + 1 ≤ N bits with energy ratio η, where η ∈ [0, 1] ⊂ R, is de�ned

as the minimum time neessary for the residual normalized energy assoiated to the

normalized autoorrelation funtion φS to be less than 1− η, that is:

τS(M, η) =
k
min

fs
[s℄, (3.7)

where:

k
min

= min
k≤M

∑k

m=0 φ
2
S(m)

∑M

m=0 φ
2
S(m)

≥ η. (3.8)

As shown in Fig. 3.1, the produt between fs and τS(M, η) de�nes the minimum

number of sampling periods to reah the energy ratio η estimated on the interval

[0,M ].

3.2.2 Average Shannon Entropy

The seond �gure of merit to evaluate the performane of a DNO is the Average

Shannon Entropy.
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Figure 3.1: The vanishing autoorrelation funtion (a) of a DNO under test, sam-

pled uniformly with fs = 50MHz, and the orrespondent Deorrelation Time (here

normalized and represented as fs · τS(M, η)), as a funtion of η for M = 200 (b).
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Let us again onsider a DNO sampled at frequeny fs to generate a N-bits long

sequene. Suppose to ollet the generated bits grouping them into n-bits long

symbols, thus obtaining a sequene of ⌊N/n⌋ symbols.

By indiating with {Bi : i = 0, 1, . . . , 2n−1} the set of all possible n-bits symbols,

the probability of generating the i-th symbol an be estimated as follows:

P̃ (Bi) =
#Bi

⌊N/n⌋ , (3.9)

where#Bi is the number of ourrenes of the i-th symbol in the generated sequene.

De�nition 3.3. Given a DNO sampled at frequeny fs to generate a sequene of

N bits grouped in n-bits words, thus obtaining a sequene of ⌊N/n⌋ symbols, the

Average Shannon Entropy (ASE) is de�ned as:

ASE(n) = −1

n

2n−1
∑

i=0

P̃ (Bi) log2 P̃ (Bi) [bit/sym℄. (3.10)

The produt of the ASE and the sampling frequeny fs de�nes the average

amount of information per seond generated by the DNO.

3.2.3 Example: Comparison of three DNO Topologies

To show an example of appliation of the introdued �gures of merit, let's on-

sider the three topologies analyzed in Setion 2.3, shown again in Fig. 3.2.

The three DNOs were implemented in �ve Xilinx Artix 7 x7a35 FPGAs, de-

signing in eah hip and for eah DNO 16 osillators in di�erent positions (same

positions for eah analyzed topology), obtaining a total of 80 DNO instanes. The

di�erent topologies di�er in the LUTs thruth tables and routing, whereas using the

same amount of slies. Eah implementation was sampled at de�ned frequenies

ranging between 100 kHz and 100 MHz, olleting one million bits long sequenes

in any ase. Eah sequene was used to alulate both the Deorrelation Time and

the Average Shannon Entropy.

The Deorrelation Time was estimated by setting in (3.7) M = 200 and η =
0.999, properly seleting, among the hosen set of sampling frequenies, the highest

fs suh to experiene the adequate vanishing of the autoorrelation funtion in the

observation time window [0,M/fs]. The hoie of M and η in�uenes the result

of the estimate in absolute terms, but a reasonable hoie of parameters, based on

heuristi onsiderations, allowed for a reliable omparison of the systems under test.

Fig. 3.3 summarizes the obtained results, reporting the statistis of the Deor-

relation Times (average, minimum, maximum, 10

th

and 90

th

perentiles) for eah

of the �ve tested hips. It is evident that the three DNOs are haraterized by

signi�antly di�erent Deorrelation Times, although the implementations used the

same hardware resoures. It is also interesting to note that, taking a topology, the

average values of the Deorrelation Times are weakly variable between among the
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Figure 3.2: The di�erent DNO arhitetures onsidered for omparison aording to

the evaluation of their Deorrelation Times and Average Shannon Entropies.
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hips, suggesting that the Deorrelation Time is intrinsially related to the spei�

topology.

The Average Shannon Entropy was evaluated for symbols with a length between

1 and 16 bits. The obtained results are similar among the tested hips, regardless

of the sampling frequeny, therefore in Fig. 3.4 we report the results obtained for a

single FPGA by evaluating the ASE for 10-bits long symbols. Again, the �gure shows

the average, minimum, maximum, 10

th

and 90

th

perentiles of the ASE, omparing

the values for the di�erent sampling frequenies.

Putting together the results shown in Fig. 3.3 and Fig. 3.4, it is possible to �nd

a link between Deorrelation Time and Average Shannon Entropy: on average, the

shorter is the Deorrelation Time the higher is the ASE.

Fig. 3.4 also highlights how ASE and sampling frequeny are linked by a nonlin-

ear relationship, for whih a variation in the sampling frequeny involves a marginal

variation of the ASE. In this sense, the frequeny at whih we sample our soure

has a signi�ant weight in terms of the rate of generated information, as evidened

by the Average Shannon Entropy per seond (ASEpS) shown in Fig. 3.5.

3.3 Study of Simpli�ed Dynamial Models

Another method of analysis we employed to study Digital Nonlinear Osillators

is the study of DNOs simpli�ed dynamial models.

As already highlighted several times in the previous setions, a DNO is a network

omposed of iruits that in the digital domain implement logi funtions, but whih

in the analog domain are haraterized by DC nonlinear transfer funtions. From

the dynamis point of view, the parasiti omponents linked to the tehnology used

for the design of the iruits and to the onnetions between one iruit and another

determine not negligible signal propagation times, whih an trigger more or less

omplex dynamis at the DNO level.

Taking these harateristis into aount, we de�ned a simpli�ed model for the

desription of a DNO, having the purpose, given a ertain topology, to investigate

whih onditions favor ompatibility with omplex dynamis on the basis of the

stability of its �xed points [38℄. The model is designed to be used in a preliminary

analysis of the DNO, in whih it is not intended to evaluate the transient behavior

of the iruit. The observation of these aspets, in fat, requires more advaned

tools, suh as numerial simulators based on BSIM4 models.

Our proposal, shown in Fig. 3.6, foresees to represent eah node of a DNO with

a �rst order ell, omposed of a voltage ontrolled voltage generator that ontrols a

resistane-apaitane (RC) ell of the �rst order:

dvo
dt

=
g(vi)− vo

RC
. (3.11)

vo is the output voltage of the node, vi ∈ R
m
is a olumn vetor that ollets the

input voltages of the node, g : Rm → R is the DC analog transfer funtion of the

node.
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Similar results were obtained repeating the measurements on four other hips.
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By adopting this representation, a N-nodes DNO an be investigated by means

of the following nonlinear generalized dynamial system of order N :

dvo

dt
= F [g(vo)− vo] = G(vo). (3.12)

vo = {voi : i = 1, 2, . . . , N} ∈ R
N
is a olumn vetor representing the state of the

DNO (de�ned by the output voltages of all nodes), g : RN → R
N

is the olumn

vetor of the DC analog transfer funtions of eah node of the DNO, F ∈ R
N×N

is

a diagonal matrix whose diagonal elements are the reiproals of the time onstants

de�ned by the RC ells of eah node.

The �xed points of this system are the values of vo for whih the following

ondition holds:

g(vo) = vo. (3.13)

Assuming that g is smooth and di�erentiable, the stability of the �xed points an

be evaluated by studying the real part of the eigenvalues λ of the Jaobian matrix

J = ( ∂G
∂vo1

, ∂G
∂vo2

, . . . , ∂G
∂voN

) alulated at the �xed points themselves.

The use of this model requires providing a desription of the DC transfer fun-

tions of the DNO nodes. Obviously, the quality of this desription in�uenes the

auray of the obtained result. Without losing generality with respet to the pre-

sented approah, our hoie was to build the transfer funtions based on the ana-

lytial omposition of parametrized normalized sigmoids suh as:

φ(x, a, b) =
1

1 + ea(x−b)
, (3.14)

where x ∈ [0, 1] ⊂ R, a ∈ R\{0} and b ∈ (0, 1) ⊂ R. On the basis of the sign of a,
it is possible to represent through the sigmoid the transfer funtion assoiated with

an inverter or a digital bu�er, as shown in Fig. 3.7.

In a pratial appliation, through an appropriate hoie of a and b, the sigmoids

an be used for the nonlinear �tting of the DC transfer funtions of real logi gates,

as shown in Fig. 3.8, where the DC transfer funtion of a NOT gate is modeled as

follows:

v0(vi) = NOT(vi) ≈ φ(vi, a, b), a > 0. (3.15)

We de�ned the sigmoid in (3.14) as normalized, as its domain and odomain are

equivalent to those of a DC transfer funtion of CMOS digital iruits with 1 V

power supply.

More omplex logi funtions than an inverter or a digital bu�er an be obtained

by ombining sigmoids. For example, a two-inputs XOR gate an be represented

using the following analytial model in 2D, as shown in Fig. 3.9:

vo(vi1, vi2) = XOR(vi1, vi2) =

= φ(vi1, a1, b1)φ(vi2, a2, b2) + φ(vi1, a3, b3)φ(vi2, a4, b4),

a1, a4 < 0, a2, a3 > 0.

(3.16)
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Figure 3.7: Sigmoids omputed aording to (3.14) setting a = ±40 and b = 0.5.
a > 0 provides the primitive model for an inverter, while a < 0 provides the primitive

model for a digital bu�er.

3.3.1 Example: Analysis and Optimized Design of a DNO

Sub-Ciruit Primitive

To provide a pratial example of the appliation of the simpli�ed dynamial

model, we refer to the Galois Ring Osillators proposed by Goli¢. As already ex-

plained in Subsetion 2.3.2, a Galois Ring Osillator onsists of an array of N > 1
digital gates ombined with multiple feedbaks, as shown in Fig. 3.10.

Regardless of the omplexity of the topology, a Galois Ring Osillator always

terminates with a feedbak loop having the struture represented in Fig. 3.11.

This sub-iruit, onsisting of a �rst node that implements a two-inputs logi

funtion and a asade of k nodes with one input, ats as a trigger for the dynamis

of the entire topology. For this reason, it is interesting to understand what are the

minimum neessary onditions to make it start to osillate.

More in detail, without loss of generality, suppose, with referene to Fig. 3.11,

that the blok f2 de�nes a XOR funtion and that the bloks f1,j , j >= 0, de�ne
digital bu�ers, from now on alled DEL bloks, as shown in Fig. 3.12.

In this ase, the purpose of applying the model is to understand the minimum

number of DEL bloks that must be inserted in the feedbak loop to trigger its

osillation. We build the model by applying (3.12) and (3.14), assuming |a| = α >
10, b = 0.5 and 1/RC = ψ.

We divide the study by assuming the independent input signal x equal to 0 V

and equal to 1 V. Limiting ourselves to these two situations and indiating with vi
the feedbak input signal, the transfer funtion of the XOR gate an be expressed
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Figure 3.11: Feedbak loop sub-network terminating any Galois Ring Osillator,

arhiteture, suh as the one shown in Fig. 3.10.
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as follows:

XOR(x, vi)|x=p∈{0,1} =
1

1 + eap(vi−0.5)
, (3.17)

where a0 = −α and a1 = α.
Let's start our analysis from the simplest situation, in whih the loop is omposed

solely of the XOR gate (k = 0). For the notation of the signals, refer to Fig. 3.12.a.

The dynamial system is desribed by a single equation:

dvo
dt

= [g(x, vo)− vo]ψ. (3.18)

g : R2 → R is the XOR gate transfer funtion (3.17).

Aording to (3.13), the �xed points are the solutions of the equation:

vo =
1

1 + eap(vo−0.5)
. (3.19)

For x ≈ 0 V, (3.18) has three solutions, namely v0,A = 0.5 V, v0,B ≈ 0 V, v0,C ≈ 1
V. For x ≈ 1 V, (3.18) has one solution, namely v1,A = 0.5 V.

To determine the stability of these �xed points, we alulate the Jaobian matrix

of the system, whih in this ase is limited to:

J(x, vo) =
∂

∂vo

[

dvo
dt

]

=

[

− ape
ap(vo−0.5)

(1 + eap(vo−0.5))2
− 1

]

ψ. (3.20)

The eigenvalues alulated on the �xed points are:

λ1(v0,A) = J(0, v0,A) = (
α

4
− 1)ψ,

λ1(v0,B) = J(0, v0,B) ≈ −ψ,
λ1(v0,C) = J(0, v0,C) ≈ −ψ,
λ1(v1,A) = J(1, v1,A) = −(

α

4
+ 1)ψ.

(3.21)

Having �xed α > 10, we observe that v0,A is unstable (positive real eigenvalue),

while the other �xed points are all stable (negative real eigenvalues). This implies

that for x ≈ 0 V the iruit has a bistable behavior, while if x ≈ 1 V the iruit is

stable. In both ases, the system annot support osillations.

Let us now onsider a loop omposed of a XOR gate and a DEL blok (k = 1,
Fig. 3.12.b).

The dynamial system is de�ned as follows:

{

dvo1
dt

= [g1(x, vo2)− vo1]ψ
dvo2
dt

= [g2(vo1)− vo2]ψ
. (3.22)

g1 : R
2 → R is the transfer funtion of the XOR gate (3.17), while g2 : R → R is the

transfer funtion of the DEL gate:

DEL(vi) =
1

1 + e−α(vi−0.5)
. (3.23)
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vi indiates the input voltage of a generi DEL gate.

The �xed points of the system are the solutions of:







vo1 = g1(x, vo2) =
1

1+eap(vo2−0.5)

vo2 = g2 ◦ g1(x, vo2) = 1

1+e
−α

(

1

1+e
ap(vo2−0.5)

−0.5

)

. (3.24)

For x ≈ 0 V, (3.24) has three solutions, namely v0,A = (0.5; 0.5) V, v0,B ≈ (0; 0) V,
v0,C ≈ (1; 1) V. For x ≈ 1 V, (3.24) has a solution, that is v1,A = (0.5; 0.5) V.

In this ase, the Jaobian matrix takes on 2x2 dimensions:

J(x, vo) =

[

∂
∂vo1

[

dvo1
dt

]

∂
∂vo2

[

dvo1
dt

]

∂
∂vo1

[

dvo2
dt

]

∂
∂vo2

[

dvo2
dt

]

]

=

=

[

−ψ − ape
ap(vo2−0.5)

(1+eap(vo2−0.5))2
ψ

αe−α(vo1−0.5)

(1+e−α(vo1−0.5))2
ψ −ψ

]

.

(3.25)

The eigenvalues assoiated with the generi �xed point (x∗, v∗
o) are the values of λ

for whih the determinant of the matrix J(x∗, v∗
o)− λI is zero:

det(J(x∗, v∗
o)− λI) = 0. (3.26)

By doing the alulations, the following eigenvalues are obtained:

λ1,2(v0,A) = −(1 ± α

4
)ψ,

λ1(v0,B) ≈ −ψ,
λ1(v0,C) ≈ −ψ,
λ1,2(v1,A) = −(1 ± j

α

4
)ψ.

(3.27)

Similarly to the k = 0 ase, all the �xed points are stable (eigenvalues with negative

real part), exept for v0,A whih is unstable, as it has a positive real part eigenvalue.

Again, the iruit appears to be bistable for x ≈ 0 V and stable for x ≈ 1 V,

exluding the possibility of osillation.

Sine not even a DEL blok is su�ient to trigger osillations, we add an addi-

tional delay element (k = 2, Fig. 3.12.).
Aordingly, the dynamial system is modi�ed as follows:











dvo1
dt

= [g1(x, vo3)− vo1]ψ
dvo2
dt

= [g2(vo1)− vo2]ψ
dvo3
dt

= [g2(vo2)− vo3]ψ

. (3.28)
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The �xed points of the system are the solutions of:



































vo1 = g1(x, vo3) =
1

1+eap(vo3−0.5)

vo2 = g2 ◦ g1(x, vo3) = 1

1+e
−α

(

1

1+e
ap(vo3−0.5)

−0.5

)

vo3 = g2 ◦ g2 ◦ g1(x, vo3) = 1

1+e

−α













1

1+e

−α

(

1

1+e
ap(vo3−0.5)

−0.5

) −0.5













. (3.29)

For x ≈ 0, (3.29) has three solutions, namely v0,A = (0.5; 0.5; 0.5) V, v0,B ≈ (0; 0; 0)
V, v0,C ≈ (1; 1; 1) V. For x ≈ 1 V, (3.29) has a solution, that is v1,A = (0.5; 0.5; 0.5)
V.

In this ase, the Jaobian matrix takes on 3x3 dimensions:

J(x, vo) =
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(3.30)

Starting from (3.30), the following eigenvalues are obtained:

λ1,2(v0,A) = −(
α + 8

8
± j

α
√
3

8
)ψ, λ3(v0,A) = (

α

4
− 1)ψ,

λ1(v0,B) ≈ −ψ,
λ1(v0,C) ≈ −ψ,

λ1,2(v1,A) = (
α− 8

8
± j

α
√
3

8
)ψ, λ3(v1,A) = −(

α

4
+ 1)ψ.

(3.31)

In this ase it is observed that the unstable �xed points are v0,A and v1,A, as they

are assoiated to eigenvalues with positive real part. Consequently, the iruit is

still bistable for x ≈ 0 V, but it is unstable for x ≈ 1 V. Similar results are obtained

for k > 2.
At this point we an onlude that a neessary ondition for the struture rep-

resented in Fig. 3.11 to support osillations is that the loop is omposed of the

two-inputs funtion and at least two bloks with one input.

Example Appliation: Design of Ultra-Fast Osillators in PLDs. When we

intend to design an osillator in digital hardware, the simplest and ompat solution

that we an use aording to the state of the art is the Ring Osillator [31�35℄.

As already indiated in Subsetion 2.3.1, a Ring Osillator onsists of a loop of

N NOT gates, where N is an odd number greater than or equal to 3. This means
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that, in the ase of a PLD projet, a Ring Osillator must be omposed by at least

three LUTs, eah of whih implements a NOT gate. Therefore, apparently three an

be onsidered the minimum number of programmable hardware resoures needed to

build an osillating iruit.

However, within a PLD the input and output pins of the LUTs are not diretly

onneted; being the devie programmable, to build the onnetions between logi

gates, it is neessary to pass through ative swith matries. In addition to this,

the output signal of a LUT, before reahing these swith matries, passes through

ative digital elements that are part of the Elementary Logi Bloks desribed in

Setion 2.2.

Together with the analysis of the simpli�ed dynamial model presented in Sub-

setion 3.3.1, these onsiderations on the hardware struture of a PLD suggests that

to design an osillating iruit in a PLD is not neessary to use three or more LUTs,

but it may su�es to use just one LUT, allowing the routing iruitry to take the

role of the remaining stages.

To verify this assumption, we implemented the two topologies shown in Fig.

3.13 on a Xilinx Artix 7 x7a35 FPGA, taking ontrol of the synthesizer plae and

route poliies at the lowest level. Given the ompatness of both topologies, we

expeted to reah high osillation frequenies (in the order of GHz). Sine the I/O

FPGA pins were designed to operate at bit rates muh lower than the expeted

osillation frequenies, they ould not be used to extrat signal out from the FPGA

for diret measurements. Rather, we 1-bit sampled the osillators loally, exploiting

the registers in the Con�gurable Logi Bloks, adopting a sampling frequeny of

100 MHz. The sampled bits were then olleted in sequenes of 1 million elements,

whih were then used for the alulation of the Deorrelation Time, already de�ned

in Subsetion 3.2.1.

In Fig. 3.14 the autoorrelation funtions and the relative Deorrelation Times,

evaluated on a window of 2µs with η �xed at 99.9%, are reported. From the �gure

we an obtain two important information:

• both systems are osillating iruits, haraterized by vanishing autoorrela-

tion funtions;

• the Deorrelation Time of the Ring Osillator is double that of the osillator

using a single LUT.

Together with the knowledge of the used hardware, the use of the simpli�ed dy-

namial model allowed to determine optimization methods for the design of DNOs

(interpreting the osillator with one LUT as a sub-element of a more omplex DNO).

Studying the model, we identi�ed spei� onditions suh as to guarantee the osil-

lation of the signals and an inrease in the osillation frequeny, to the bene�t of

the generated information entropy per seond.
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Figure 3.13: A shemati representation of the two ompared systems: (a) a single

LUT feedbak loop that should support osillations in FPGAs aording to the study

of the simpli�ed dynamial model; (b) a three-nodes onventional Ring Osillator.

Dashed DEL nodes result from the routing/on�guration multiplexers present in the

Con�gurable Logi Blok and the loal Swith Matries.
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Figure 3.14: The autoorrelation funtions of the binary streams olleted from the

osillators shown in Fig. 3.13, performing the uniform sub-sampling of the osillating

signal, with a sampling frequeny of 100 MHz and a 1-bit A/D quantization strategy.
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3.4 Advaned Numerial Simulations

An extension of the studies performed on the simpli�ed dynamial model relies

on the use of advaned numerial simulators.

The simpli�ed dynamial model allows to investigate the minimum neessary

onditions that favor ompatibility with omplex dynamial behaviors for the DNO

topology under onsideration. However, the model does not evaluate what the atual

behavior of a DNO implementation is, as it is based solely on the iruit topology

and does not take into aount its hardware harateristis.

The main advantage of the simpli�ed model is the possibility to provide a om-

plete analysis of the system, thanks to the low omplexity of the resulting iruit.

However, a real DNO is a�eted by the presene of parasiti omponents, whih

ause the resulting dynamial system to have an higher dimension with respet to

the system de�ned through the appliation of the simpli�ed model; as a onse-

quene, the real system results, in general, too omplex to be solved through diret

alulations.

For this purpose, it is neessary to resort to advaned numerial simulation tools,

whih allow, still at a simpli�ed level, to build the iruit based on real tehnologies

at the transistor level. In this way, we an evaluate its dynamis taking into aount

not only its funtional topology, but also the parasiti physial elements linked to

its implementation and its operation. Spei�ally, our goal is to understand what

ould be the behavior of a ertain topology in the ase of its implementation on

FPGA.

In our analyzes, without loss of generality, we de�ned a simulation setup in

Cadene Virtuoso based on CMOS UMC 180 nm tehnology. Obviously, this setup

an be implemented in any simulation environment and referring to any tehnology.

We built at the transistor level a library of simpli�ed fundamental hardware

elements used for the onstrution of an asynhronous iruit in FPGA, i.e. Look-

Up Tables (LUTs) and multiplexers (MUXes) with various numbers of inputs. In

Figs. 3.15 and 3.16 are shown the shematis of a 2-inputs multiplexer and a 3-inputs

LUT.

The LUTs an be used to build any logi gate haraterized by a number of

inputs less than or equal to the maximum number supported by the used LUT. For

example, in Fig. 3.17 the LUT of Fig. 3.16 is on�gured to implement a 3-inputs

XOR funtion.

The MUXes instead an be used to emulate the ative programmable routing

elements by means of whih the onnetions between the ports of the LUTs are built

for the de�nition of the iruit. Fig. 3.18 shows an example of a DNO topology

omposed of LUTs and routing elements based on the omponents just desribed.

The built iruits represent a still simpli�ed version of a possible real imple-

mentation, but they allow to take into aount in the evaluation of the dynamial

behavior of the signals aspets related to the physis of the devie. It is impor-

tant to underline that the purpose of these simulations is not to investigate the real

behavior of the signals involved in the iruit dynamis, but to extend the anal-
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Figure 3.15: Shemati representation of a two-inputs multiplexer designed in Ca-

dene Virtuoso at transistor level using the UMC 180 nm tehnology.
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Figure 3.16: Shemati representation of a three-inputs Look-Up Table designed in

Cadene Virtuoso at transistor level using the UMC 180 nm tehnology, making use

of the two-inputs multiplexers whose shemati is shown in Fig. 3.15.
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Figure 3.17: Con�guration of a three-inputs Look-Up Table (whose shemati is

shown in Fig. 3.16) to implement a XOR funtion in Cadene Virtuoso using the

UMC 180 nm tehnology.
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Figure 3.18: Shemati representation of a DNO topology based on the LUTs and

the MUXes designed in Cadene Virtuoso at transistor level using the UMC 180 nm

tehnology. Eah logi gate is designed by on�guring a three-inputs LUT as the

one shown in Fig. 3.16.

ysis performed with the simpli�ed dynamial model to higher dimension systems,

exploiting the advaned numerial simulators funtionality. This is the reason for

whih we designed our own omponents library, instead of using more rigorous and

reliable standard models, simulating digital iruits with analog simulators.

The DNOs are analyzed by means of transient simulations, arrying out simula-

tion ampaigns based on noise injetion or on Monte Carlo analysis. There are two

parameters on whih Monte Carlo simulations operate:

• the nonlinear DC transfer funtions of the logi gates and their parasiti a-

paitanes, parametrized by means of the form fator of the PMOS transistors,

as an be observed in the shemati of the MUX in Fig. 3.15;

• the initial onditions of eah node in the iruit, ontrolled by apaitors with

negligible apaity (magnitude order of the aF) whose voltages at instant t = 0
of the simulation are parametrized; an example of suh apaitors an be seen

in Fig. 3.16.

Other analyzes inlude the sensitivity evaluation with respet to temperature and

power supply �utuations.

An appliation ase of the above analyzes is presented in Chapter 4.
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3.5 FPGA Implementation Tehniques

In this last setion, we provide the implementation tehniques we employed to

design DNOS in FPGAs.

In the ourse of the previous setions, various examples of DNOs were reported,

showing eah time in pratial terms the funtioning or harateristis of the ad-

dressed issues. Eah of these examples inluded the analysis of binary sequenes

obtained by sampling implementations in FPGAs.

The FPGA implementation of a DNO represents the pratial validation of the

observations and theoretial results found starting from the simpli�ed dynamial

model and numerial simulations. For this reason, this passage annot be arried

out freely, but must respet spei� design rules, independent of the onsidered

topology.

These rules are intended to provide ontrol over the FPGA hardware resoures

through the use of devie primitives. The argument presented here refers to designs

on Xilinx Artix 7 FPGAs made with the Vivado Design Suite in VHDL language,

but its value is general, as it an be easily adapted to any FPGA devie.

3.5.1 Combinatorial Loops

Normally, in digital design, ombinatorial loops should be avoided: a ombinato-

rial loop onsists of a feedbak of logi elements without registers, whih an reate

logi rae onditions or ruin the timing analysis in the synthesis and implementation

phases. For this reason, design tools typially generate Design Rule Chek (DRC)

errors when suh a loop is identi�ed during synthesis.

A DNO topology, however, is by de�nition based on ombinatorial loops. For

this reason, to implement a DNO, it is neessary to provide the design tool with

speial diretives to enable the synthesis of ombinatorial loops required by the

designer. In Vivado, it is possible to redue the severity of the ompiler bloking

message, reduing the presene of a ombinatorial loop from an error ondition

to a simple warning ondition. To do this, we need to add to the projet a Tl

(Tool ommand language) sript ontaining the ommand set_property SEVERITY

{Warning} [get_dr_heks LUTLP-1℄.

3.5.2 Design of Elementary Logi Bloks

The logi resoures in a Xilinx Artix 7 FPGA are organized in a matrix of

Con�gurable Logi Bloks (CLBs), eah ontaining two slies, and eah slie is

omposed of four 6-inputs Look-Up Tables (LUTs) and eight storage items [30℄.

Eah slie is identi�ed by two values X and Y, whih de�ne its physial position

within the FPGA. Similarly, the LUTs in a slie are identi�ed by four letters A, B,

C, D.

From the implementation point of view, in Setion 2.2 we de�ned a DNO as a

network whose nodes onsist of prede�ned hardware strutures alled Elementary

Logi Bloks (ELBs). The logial funtionality of an ELB an be implemented
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity ELB1NOT is

port (

A : in std_logi;

NOT_A : out std_logi );

end ELB1NOT;

arhiteture Behavioral of ELB1NOT is

attribute DONT_TOUCH : string;

attribute KEEP_HIERARCHY : string;

attribute BEL : string;

attribute LOC : string;

attribute DONT_TOUCH of Behavioral : arhiteture is "yes";

attribute KEEP_HIERARCHY of Behavioral : arhiteture is "yes";

attribute DONT_TOUCH of NOTGate : label is "yes";

attribute KEEP_HIERARCHY of NOTGate : label is "yes";

attribute BEL of NOTGate : label is "A6LUT";

attribute LOC of NOTGate : label is "SLICE_X0Y0";

begin

NOTGate : LUT1

generi map (

INIT => "01" )

port map (

O => NOT_A ,

I0 => A );

end Behavioral;

Figure 3.19: VHDL ode for the low-level design of an ELB with a NOT boolean

funtionality. In this example, the solution uses the 6LUT primitive, resoure A, in

the slie loated at the oordinates X0Y0.

through a LUT. Sine a DNO is an asynhronous iruit, it does not require the use

of registers.

For larity of presentation, eah ELB an be assoiated with a VHDL entity.

As shown in Figs. 3.19, 3.20, where VHDL odes are reported to desribe a NOT

funtion and a XOR funtion, the implementation of an ELB requires the use of

speial diretives to fore the use of spei� hardware resoures within the hip [40℄,

and primitives of the devie aessible through the invoation of the UNISIM library

from Xilinx (in the ase of the examples LUT1 and LUT2). The logial operation

arried out by the LUT is desribed through the onstant INIT, whih ontains the

orresponding truth table, as shown in Tabs. 3.1, 3.2.
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity ELB5XOR2 is

port (

A : in std_logi;

B : in std_logi;

XOR_AB : out std_logi );

end ELB5XOR2;

arhiteture Behavioral of ELB5XOR2 is

attribute DONT_TOUCH : string;

attribute KEEP_HIERARCHY : string;

attribute BEL : string;

attribute LOC : string;

attribute DONT_TOUCH of Behavioral : arhiteture is "yes";

attribute KEEP_HIERARCHY of Behavioral : arhiteture is "yes";

attribute DONT_TOUCH of XORGate : label is "yes";

attribute KEEP_HIERARCHY of XORGate : label is "yes";

attribute BEL of XORGate : label is "A6LUT";

attribute LOC of XORGate : label is "SLICE_X1Y0";

begin

XORGate : LUT2

generi map (

INIT => "0110" )

port map (

O => XOR_AB,

I0 => A,

I1 => B );

end Behavioral;

Figure 3.20: VHDL ode for the low-level design of an ELB with a XOR boolean

funtionality. In this example, the solution uses the 6LUT primitive, resoure A, in

the slie loated at the oordinates X1Y0.

I0 O

0 INIT[0℄ = 1

1 INIT[1℄ = 0

Table 3.1: Truth table to implement a NOT gate by means of the LUT1 devie

primitive generi INIT.
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I1 I0 O

0 0 INIT[0℄ = 0

0 1 INIT[1℄ = 1

1 0 INIT[2℄ = 1

1 1 INIT[3℄ = 0

Table 3.2: Truth table to implement a XOR gate by means of the LUT2 devie

primitive generi INIT.

3.5.3 Synhronization Interfae

To aquire bit sequenes starting from the implemented DNO, it is neessary

to onnet the output pin of the iruit to a synhronization interfae, whih an

be redued to a single D �ip-�op that simultaneously performs the 1-bit analog-to-

digital (A/D) onversion and the uniform sampling of the output signal.

To implement the �ip-�op we use an FF devie primitive, whih onsists of a D

type �ip-�op with lok enable and synhronous reset, identi�ed by the FDRE entity

aessible through the UNISIM library. Fig. 3.21 shows an example of the VHDL

ode through whih the synhronization interfae is designed.

Again, it is important to have ontrol over the plaement of the resoure on

the hip, so the VHDL ode must also inlude speial diretives for this purpose.

While in the ase of ELBs a seletion of the position of the omponent in the hip is

made for reasons of dynamial harateristis of the implemented iruit, as regards

the synhronization interfae it is neessary to manually selet its position sine it

partiipates in the timing analysis of the entire design, therefore some positions may

not respet the timing onstraints.

3.5.4 Plaing and Routing

In an FPGA, routing is onstruted using programmable swithes and onnetion

boxes aording to a hierarhial arhiteture that o�ers loal and global onnetiv-

ity.

One we arranged the ELBs in the desired positions, the onnetion between the

pins takes plae aording to poliies left to the ompiler. To minimize the impat

related to routing, it is advisable to onentrate the ELBs in a few slies, plaing

them next to eah other.

3.6 Conlusion

We introdued a set of tools that de�ne a methodology for the analysis and design

of Digital Nonlinear Osillators; these tools have the purpose of evaluating a Digital

Nonlinear Osillator from di�erent points of view, onsidering its harateristis

as an analog eletroni iruit, as a omplex dynamial system and as a soure of

entropy.
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity SYNC_INT is

port (

ANALOG_IN : in std_logi;

CLK : in std_logi;

RST : in std_logi;

RND_OUT : out std_logi );

end SYNC_INT;

arhiteture Behavioral of SYNC_INT is

attribute DONT_TOUCH : string;

attribute KEEP_HIERARCHY : string;

attribute BEL : string;

attribute LOC : string;

attribute DONT_TOUCH of Behavioral: arhiteture is "yes";

attribute KEEP_HIERARCHY of Behavioral: arhiteture is "yes";

attribute DONT_TOUCH of BitRegister : label is "yes";

attribute KEEP_HIERARCHY of BitRegister : label is "yes";

attribute BEL of BitRegister : label is "DFF";

attribute LOC of BitRegister : label is "SLICE_X1Y0";

begin

BitRegister : FDRE

generi map (

INIT => '0' )

port map (

Q => RND_OUT,

C => CLK ,

CE => '1',

R => RST ,

D => ANALOG_IN );

end Behavioral;

Figure 3.21: VHDL ode for the low-level design of the D �ip-�op used to perform

both 1-bit A/D onversion and uniform sampling of the output signal provided by

a DNO. In this example, the solution uses the FF primitive, resoure D, in the slie

loated at the oordinates X1Y0.
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We de�ned two �gures of merit (Deorrelation Time and Average Shannon En-

tropy) whih allows to evaluate, in the omparison between two or more soures,

whih one is apable of o�ering the best performane in terms of generated infor-

mation. The Deorrelation Time establishes what is the minimum sampling period

apable of guaranteeing deorrelation between onseutive symbols generated by a

DNO; the Average Shannon Entropy o�ers an estimate of the entropy generated by

the iruit.

An appliation example for these �gures of merit was provided: we ompared

three di�erent DNO topologies (Ring Osillator, Galois Ring Osillator and a ustom

topology) implementing them in 5 Xilinx Artix 7 FPGAs, aquiring sequenes of

bit sampled at di�erent frequenies, and evaluating their Deorrelation Times and

Average Shannon Entropies. We observed that the three DNOs are haraterized

by di�erent performane. We found a link between Deorrelation Time and Average

Shannon Entropy, as, on average, the shorter is the Deorrelation Time the higher is

the ASE. The analyzes also highlighted that Average Shannon Entropy and sampling

frequeny are linked by a nonlinear relationship, for whih a variation in the sampling

frequeny involves a marginal variation of the ASE. In this sense, the frequeny at

whih we sample our soure has a signi�ant weight in terms of the rate of generated

information.

We introdued a simpli�ed dynamial model for the desription of a DNO having

the purpose to investigate the minimum neessary onditions that favor its ompat-

ibility with omplex dynamial behaviors, on the basis of the stability of its �xed

points. In the model, eah node of the DNO is represented with a �rst order ell,

given by a voltage ontrolled voltage generator that ontrols a resistane-apaitane

ell of the �rst order.

The model was used to study the stability of a iruit primitive that is often

used within omplete DNO topologies, evaluating the minimum omplexity at the

dynamial system level that this primitive must possess in order to osillate. The re-

sults obtained through the analysis based on the simpli�ed model were then veri�ed

by implementation on FPGA: we showed experimentally that it is possible to de-

sign an osillating sub-iruit omposed by a single Look-Up Table (LUT) feedbak

loop. By omparing the designed subiruit with a three-nodes Ring Osillator, we

notied that with a topology of this kind it is possible to reah dynamial speeds

higher than the DNO with minimum omplexity that an be designed at a logial

level.

We showed the simulation setup built in Cadene Virtuoso in order to deepen

the dynamial behavior of the signals involved in a DNO. This setup makes use

of UMC 180 nm tehnology to repliate at transistor level, in a simpli�ed form,

the fundamental hardware strutures of an FPGA used in the design of a DNO,

i.e. LUTs for the design of logi gates and MUXes for the emulation of the ative

routing elements. These strutures are used to design the iruits to be analyzed,

whih are then subjeted to di�erent types of simulations, suh as noise injetion

and Monte Carlo analysis.

Finally, we explained the design rules that must be applied when implementing
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DNOs on FPGAs, showing the syntax in VHDL language for their use. These rules

have the purpose of:

• allowing the synthesis of ombinatorial loops, normally not allowed as they

an reate logi rae onditions or ruin the timing analysis;

• using spei� low-level resoures, suh as Look-Up Tables and Flip-Flops,

whih must be expliitly seleted by indiating their position within the hip;

• de�ning the overall layout of the iruit to partially ontrol the routing between

the output and input pins of the designed logi gates.
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Chapter 4

High Performane DNO

In this hapter we use the analysis and design methodologies of Digital Non-

linear Osillators formalized in Chapter 3 to desribe the omplete work�ow

followed for the design of a novel DNO topology. This DNO is haraterized

by haoti dynamial behaviors, and is apable of ahieving high performane

in terms of generated entropy, downstream of a redued hardware omplexity

and high sampling frequenies. By exploiting the simpli�ed dynamial model,

the advaned numerial simulations in Cadene Virtuoso and the FPGA im-

plementation, the presented topology is extensively analyzed both from a the-

oretial point of view (notable iruit sub-elements that make up the topology,

bifuration diagrams, internal periodiities) and from an experimental point

of view (generated entropy, soure autoorrelation, sensitivity to routing, tem-

perature sensitivity, appliation of standard statistial tests).

4.1 Chaos in Fully Digital Hardware

In Chapter 3 we de�ned the tools needed to analyze the harateristis and

performane of a DNO. In the ourse of this hapter, a pratial example of how

these tools ould be used in order to design a DNO from srath is shown.

Starting from a theoretial analysis of the dynamis of the proposed topology

and subsequently evaluating the harateristis resulting from its implementation, a

DNO is proposed haraterized by omplex dynamial behaviors (inluding haos),

apable of ahieving high performane in terms of generated entropy, downstream

of a redued hardware omplexity and high sampling frequenies [41�43℄.

4.1.1 Referenes

The material presented in this hapter inludes results that have been published

in the following publiations:
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f2 f1, kf1, 1x
Figure 4.1: The sub-network analyzed in Subsetion 3.3.1, onsisting of a feedbak

loop omposed of a gate with two inputs (one of feedbak and the other independent)

and a asade of gates with one input.

• T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and V. Vignoli,

�Chaos in fully digital iruits: A novel approah to the design of entropy

soures,� in 2020 IEEE International Symposium on Ciruits and Systems

(ISCAS). IEEE, 2020, pp. 1-5 [41℄;

• T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and V. Vignoli,

�A new lass of haoti soures in programmable logi devies,� in 2020 IEEE

International Workshop on Metrology for Industry 4.0 & IoT. IEEE, 2020, pp.

6-10 [42℄;

• T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and V. Vignoli, �A

new lass of digital iruits for the design of entropy soures in programmable

logi,� IEEE Transations on Ciruits and Systems I: Regular Papers, vol. 67,

no. 7, pp. 2419-2430, 2020 [43℄.

4.2 Topology

The �rst step in designing a DNO is hoosing the topology.

In Subsetion 3.3.1 we analyzed the dynamial harateristis of a sub-iruit

onsisting of a feedbak loop omposed of a gate with two inputs (one of feedbak

and the other independent) and a asade of gates with one input, whih we report

in Fig. 4.1.

By seleting a XOR logi funtion for the two-inputs gate and a digital delay

(DEL) for the one-input gates, we observed that suh subiruit supports osilla-

tions, provided the one-input gates asade is omposed by at least two elements

and that the independent input of the XOR is �xed at a logi 1, while with a logi

0 it assumes a bistable behavior.

Repeating the alulations by replaing the XOR with a NXOR, a omplemen-

tary result is obtained (we do not report the alulations as the proedure is equiv-

alent to the one already presented in Subsetion 3.3.1): the sub-iruit supports
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osillations provided it has a asade of at least two DEL gates and that the inde-

pendent input of the NXOR is set at a logi 0, and is bistable when the independent

input is fored to a logi 1.

Assuming to onnet two on�gurations of these types together by short iruit-

ing the independent inputs, and to injet a periodi digital signal in them (e.g. the

output of a Ring Osillator), we expet therefore to see the two sub-iruits osillate

at alternate moments, with the sub-iruit that is not osillating that maintains the

last reahed logi state.

Combining the injeted periodi digital signal with the output signals of the two

loops and ating on the periods of these three signals, it is reasonable to think that

this proess of swithing the osillations on and o� gives rise to omplex dynamis.

This assumption arises from the fat that the dynamis of oupled osillators

is studied sine enturies, starting from the well known synhronization of weakly

oupled mehanial pendulums. This phenomenon is known as phase-loking, and is

generally present in dissipative systems with ompeting frequenies. Depending on

both the system parameters and the oupling strength, di�erent kind of dynamis

an be observed, ranging from periodi-loked, quasi-periodi (i.e., the ratio between

the two osillator frequenies is irrational) and haoti. To have a haoti dynamis,

a fundamental role is played by the nonlinear nature of both the osillators and the

oupling between them [44�48℄.

A speial ase of oupled osillators is obtained when an autonomous dynamial

system x is used to generate a driving signal exiting a seond dynamial system y.

In this situation, referring to a wide theoretial framework, the overall system an

be desribed by the generi system of nonlinear di�erential equations

{

ẋ = f(x)

ẏ = g(x,y)
, (4.1)

being x : R → R
N ,y : R → R

M
real-valued funtions of time t, and f , g nonlinear

smooth real-valued funtions of x and y, respetively. If ẋ = f(x) and ẏ = g(0,y)
de�ne two periodi dynamial systems, we may all y in (4.1) the fored osillator,

being x the foring periodi driver.

Aording to the just presented onsiderations, we elaborated the topology shown

in Fig. 4.2, where the ELBs#[1-3℄ have the task of generating the periodi injeted

signal, while the loops omposed respetively of ELBs#[5-7℄ and ELBs#[8-10℄ are

the previously analyzed sub-iruits. ELB#4 is the ombination element of the

output signals of the three loops and ELB#11 plays the role of a 1-bit quantization

A/D onverter of the iruit output signal.

4.3 Dynamial Analysis

Having established the topology, the next step is to investigate if onditions that

favor ompatibility of the topology with omplex dynamis exist. To do this, we

have to resort to the simpli�ed dynamial model desribed in Setion 3.3.
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RND_OUT

CLK

CLKEN

ELB#1

ELB#2

ELB#3

ELB#4 ELB#11

ELB#8ELB#10

ELB#9

ELB#6 ELB#5

ELB#7

Figure 4.2: The analyzed DNO topology, haraterized by an independent loop

generating an exitation signal, ontrolling the dynamis of the sub-iruit loops

having the struture analyzed in Subsetion 3.3.1.
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xor D
x1 x2 x3

y1 y2 y3

f(t)

D

xor D D

xor z

Figure 4.3: A simpli�ed model to investigate the ore DNO sub-network implement-

ing the non-autonomous dynamial system (4.2).

Observing the topology in Fig. 4.2, we note that it an be divided in two parts:

the ELBs#[1-3℄ onstitute a struture that is totally independent from the rest,

having the purpose of exiting the remaining part of the network. Therefore, at a

�rst approximation it is possible to deide to ignore the subnetwork given by the

ELBs#[1-3℄, replaing it with an exitation wave generator.

Applying this simpli�ation and imposing that the loop given by the ELBs#[5-

7℄ is the sub-iruit omposed by one NXOR and two DELs, the loop given by

the ELBs#[8-10℄ is the sub-iruit omposed by one XOR and two DELs, and the

ELB#4 ombines the output signals of the two loops with the exitation signal by

means of a XOR operation, the resulting simpli�ed dynamial model looks as shown

in Fig. 4.3.

This iruit de�nes a non-autonomous nonlinear dynamial system, whih oper-

ates in a normalized phase spae de�ned on the domain [0, 1]7 ⊂ R
7
, that is:



















































dx1

dt
= α1[XOR2(x3, z)− x1]

dx2

dt
= α2[DEL(x1)− x2]

dx3

dt
= α3[DEL(x2)− x3]

dy1
dt

= β1[NXOR2(y3, z)− y1]
dy2
dt

= β2[DEL(y1)− y2]
dy3
dt

= β3[DEL(y2)− y3]
dz
dt

= γ[XOR3(x3, φ(t), y3)− z]

. (4.2)

αi, βi, γ ∈ R
+, i = 1, 2, 3 are positive parametri onstants that desribe the reipro-

als of the RC time onstants assoiated with eah node of the iruit, φ : R → [0, 1]
is the arbitrary signal of exitation, DEL : R → [0, 1], XOR2 : R

2 → [0, 1],
NXOR2 : R2 → [0, 1], XOR3 : R3 → [0, 1] are the funtions that �t the DC analog
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transfer funtions of the respetive logi gates, de�ned as analyti ombinations of

the sigmoids of the form:

σ(x, a, b) =
1

1 + ea(x−b)
, (4.3)

where a, b ∈ R.

We limit a and b on the intervals a > 20 and 0.3 < b < 0.7, and de�ne, for i ∈ N,

the fundamental transfer funtions of reti�ation and inversion as follows:

xi(vi) = xi =
1

1 + e−a(vi−b)
, (4.4)

xi(vi) = xi =
1

1 + ea(vi−b)
. (4.5)

(4.4-4.5) an be used to express the transfer funtions indiated above:

DEL(vi) = xi,

XOR2(vi, vj) = xixj + xixj ,

NXOR2(vi, vj) = xixj + xixj ,

XOR3(vi, vj , vk) = (xixj + xixj)xk + (xixj + xixj)xk.

(4.6)

4.3.1 System Analysis: Turned-O� Exitation

If the exitation of the iruit in Fig. 4.3 is turned o� (φ(t) = 0), the dynamial

behavior of the system (4.2) depends on the parameters αi, βi, γ, a, b, i = 1, 2, 3.
Assuming that the parameters assume non-pathologial values, i.e. that αi, βi

and γ are de�ned on similar order of magnitudes, the resulting autonomous system

has a stable and globally attrative limit yle. In other words, the autonomous

simpli�ed iruit obtained by swithing o� φ(t) belongs to the DNO family.

Fig. 4.4 shows the results of exhaustive simulations of the system, obtained

by integrating (4.2) with standard numerial methods. The �gure shows how the

system is stable to parametri perturbations (Fig. 4.4.a) and that the output signal

z is haraterized by regular osillations (Fig. 4.4.b).

4.3.2 System Analysis: Periodi Exitation

If the exitation of the iruit in Fig. 4.3 is turned on, the system (4.2) desribes

a fored nonlinear osillator [45�48℄.

To arry out an analysis that inludes the parametri spae, taking into aount

the problem dimensions, it is not possible to adopt an analytial approah with re-

spet to the system (4.2), therefore it is neessary to resort to numerial investigation

methods.

To perform these analyzes, we redued the omplexity of the problem, assuming

αi = βi = γ = ξ > 0 in (4.2) and a = 30 and b = 0.5 in (4.4). For the exitation

signal, we used an adapted full-sale sinusoidal signal with frequeny f0 = 1/T0:

φ(t) =
1

2
(1 + sin(2πf0t)). (4.7)
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