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Chapter 1

Introdu
tion

In re
ent years, 
yberse
urity is gaining more and more importan
e. Cryptog-

raphy is used in numerous appli
ations, su
h as authenti
ation and en
ryption of

data in 
ommuni
ations, a

ess 
ontrol to restri
ted or prote
ted areas, ele
troni


payments [1�3℄. It is safe to assume that the presen
e of 
ryptographi
 systems in

future te
hnologies will be
ome in
reasingly pervasive, leading to a greater demand

for energy e�
ien
y, hardware reliability, integration, portability and se
urity.

However, this pervasiveness introdu
es new 
hallenges, su
h as the implementa-

tion of 
ryptographi
 primitives with improved performan
e in terms of timing, 
hip

area, power and 
omputational resour
e 
onsumption, addressing the in
reasing de-

mand of low-
omplexity hardware devi
es, like systems for the Internet of Things

(IoT). In response to this limitation, lightweight 
ryptography 
omes into play -

a bran
h of 
ryptography that provides tailor-made solutions for resour
e-limited

devi
es.

One of the fundamental 
lasses of 
ryptographi
 hardware primitives is rep-

resented by Random Number Generators (RNGs), that is, systems that provide

sequen
es of binary symbols that are deemed unpredi
table [4℄.

The 
ir
uits and systems that implement RNGs 
an be divided into two 
ate-

gories, namely Pseudo Random Number Generators (PRNGs) and True Random

Number Generators (TRNGs).

PRNGs are deterministi
 and eventually periodi
 �nite state ma
hines, 
apable

of generating sequen
es that appear to be random. In other words, a PRNG is a

devi
e that generates and repeats a �nite random sequen
e, saved in memory or

generated by 
al
ulation.

A TRNG, on the other hand, is a devi
e that generates random numbers based

on sto
hasti
 physi
al pro
esses. Typi
ally, a hardware TRNG 
onsists of a mixed-

signal 
ir
uit that is 
lassi�ed a

ording to the sto
hasti
 pro
ess on whi
h it is

based. Spe
i�
ally, the most 
ommonly used sour
es of randomness are [5℄:

• 
haoti
 
ir
uits;

• high jitter os
illators;

• 
ir
uits that measure other sto
hasti
 pro
esses.

1



CHAPTER 1. INTRODUCTION

A 
haoti
 
ir
uit is an analog or mixed-signal 
ir
uit in whi
h 
urrents and voltages

vary over time a

ording to systems of nonlinear di�erential equations [6℄. The time

evolution of these 
urrents and voltages 
an be understood as the evolution of the

state of a 
haoti
 nonlinear dynami
al system.

Jitter 
an instead be de�ned as the deviation of the output signal of an os
illator

from its true periodi
ity, due to ele
troni
 noise, whi
h 
auses un
ertainty in its

transition times [7℄.

Other possible sto
hasti
 pro
esses that a TRNG 
an use may involve radioa
tive

de
ay, photon dete
tion, or ele
troni
 noise in semi
ondu
tor devi
es [8�15℄.

TRNGs presented in the literature are typi
ally designed in the form of Appli-


ation Spe
i�
 Integrated Cir
uits (ASICs). On the other hand, in re
ent years

an in
reasing number of resear
hers are investigating the design of TRNGs in Pro-

grammable Logi
 Devi
es (PLDs) [16�25℄. A PLD o�ers, 
ompared to an ASIC,


lear advantages in terms of 
ost and versatility. At the same time, however, there

is 
urrently a widespread la
k of trust in these PLD-based ar
hite
tures, starting

from spe
i�
 
ryptographi
 weaknesses found in well known solutions based on Ring

Os
illators [26�28℄.

In this work we propose a novel 
lass of 
ir
uits suitable for being implemented

in digital devi
es, as PLDs, as a valid alternative to traditional solutions proposed

in literature to generate random bits.

1.1 Thesis Organization

In the next 
hapters a new 
lass of nonlinear 
ir
uits based on digital hardware

is introdu
ed that 
an be used as entropy sour
es for TRNGs implemented in PLDs,

named Digital Nonlinear Os
illators (DNOs).

More in detail:

• Chapter 2 provides the de�nition of Digital Nonlinear Os
illator, supported

by notable examples 
apable of demonstrating experimentally how di�erent


ir
uit topologies referable to this 
lass 
an express signi�
antly di�erent per-

forman
e;

• Chapter 3 introdu
es the analysis methods needed to evaluate the performan
e

of a Digital Nonlinear Os
illator, thus establishing an approa
h for the design

od DNO-based TRNGs;

• Chapter 4 proposes a 
ir
uit topology usable as a high performan
e entropy

sour
e;

• Chapter 5 des
ribes an algorithmi
 pro
edure, suitable for being implemented

in low-
omplexity PLDs, aiming to sele
t, within a given set of random binary

sour
es, the one with highest entropy.

2



Chapter 2

Digital Nonlinear Os
illators

In this 
hapter we introdu
e a novel 
lass of 
ir
uits that 
an be used to design

entropy sour
es for True Random Number Generation, 
alled Digital Nonlinear

Os
illators (DNOs). DNOs 
onstitute nonlinear dynami
al systems 
apable of

supporting 
omplex dynami
s in the time-
ontinuous domain, although they

are based on purely digital hardware. By virtue of this 
hara
teristi
, these


ir
uits are suitable for their implementation on Programmable Logi
 Devi
es.

Fo
using on the analysis of Digital Nonlinear Os
illators implemented in FP-

GAs, a preliminary 
omparison is proposed between three di�erent 
ir
uit

topologies belonging to the introdu
ed 
lass, in order to demonstrate how


ir
uits of this type 
an have di�erent 
hara
teristi
s, depending on their dy-

nami
al behavior and hardware implementation.

2.1 De�nition

We open this 
hapter with an informal de�nition [29℄.

De�nition 2.1. A Digital Nonlinear Os
illator (DNO) is a network of ele
troni



ir
uits, originally designed to behave as digital logi
 gates, whi
h implements an

autonomous nonlinear dynami
al system that exhibits 
omplex (periodi
 or 
haoti
)

dynami
s in the time-
ontinuous domain.

Therefore, a DNO is a 
ir
uit 
apable of generating entropy on the basis of two

possible dynami
al behaviors. In 
ase of 
haoti
 dynami
s, the generated entropy

mainly depends on the dynami
al 
hara
teristi
 of the implemented 
ir
uit topology.

Alternatively, the 
ir
uit a
ts as a periodi
 os
illator, and the information generation

me
hanism depends on the ele
troni
 noise (e.g. 
ausing phase noise or jitter).

What links both the des
ribed 
ases is the nonlinearity of DNOs, whi
h depends

on the intrinsi
ally nonlinear nature of the ele
troni
 
ir
uits ne
essary for the design

of digital logi
 gates present in the system. In fa
t, these 
ir
uits typi
ally use

transistors as swit
hes, with the aim, on a `large signal' s
ale, of bringing the output

3



CHAPTER 2. DIGITAL NONLINEAR OSCILLATORS

voltages to saturation towards ground or power supply voltages, representing binary

logi
 levels. As it is 
lari�ed in this thesis, DNOs 
an be understood as analog

systems implemented in digital devi
es.

2.2 DNO Design in Programmable Logi
 Devi
es

As anti
ipated by De�nition 2.1, a DNO is a dynami
al system that 
an be

implemented using only digital hardware. By virtue of this 
hara
teristi
, fo
using

the design of this 
lass of 
ir
uits in Programmable Logi
 Devi
es (PLDs) is of

parti
ular interest.

In digital ele
troni
s, a PLD is an integrated 
ir
uit whi
h at the time of man-

ufa
ture is not 
on�gured to perform any spe
i�
 boolean operation and therefore,

before being able to use it, must be programmed (i.e. 
on�gured). This implies

that, using PLDs, di�erent logi
 
ir
uits, although fun
tionally di�erent from ea
h

other, are implemented by programming the same hardware.

Without losing generality, we 
an refer to FPGAs, that are a spe
ial 
lass of

PLDs [30℄.

Giving a simpli�ed des
ription, an FPGA 
an be seen as a 2D matrix of 
ells,


alled Con�gurable Logi
 Blo
ks (CLBs). A CLB is the fundamental logi
al resour
e

for the implementation of sequential or 
ombinatorial 
ir
uits. Ea
h CLB 
onne
ts

with the others via a lo
al swit
h matrix, whi
h then allows to a

ess to the general

routing matrix.

Ea
h CLB in
ludes a de�ned number of sli
es, within whi
h there are pro-

grammable hardware elements for the implementation of the di�erent logi
 fun
-

tions. The set of elements in a sli
e is referred to as Elementary Logi
 Blo
k (ELB).

An ELB basi
ally in
ludes three elements:

• a Look-Up Table (LUT), that 
an be used to store truth tables of arbitrary

1-bit logi
 fun
tions;

• a �ip-�op, through whi
h it is possible to memorize the logi
 output state of

the fun
tion, for the implementation of syn
hronous gates;

• a multiplexer for the syn
hronous or asyn
hronous 
on�guration of the logi


port.

Using this generi
 stru
ture, it is possible to program any logi
 fun
tion 
hara
terized

by one output bit and a given number of input bits up to the maximum supported

by the ELB hardware, as shown in Fig. 2.1.

Based on this observation and re
alling De�nition 2.1, it is possible to state that,

in the 
ontext of the design of a DNO on PLDs, ea
h ELB represents a node of the

topology. In this sense, a DNO 
an be represented as an oriented graph whose nodes

are the ELBs and whose ar
s are the 
onne
tions between the output and the inputs

of ea
h ELB, as shown in Fig. 2.2.

On the other hand, ea
h autonomous network of ELBs 
apable of supporting

periodi
 or 
haoti
 dynami
s 
onstitutes a DNO. It is 
lear that a statement of this

4
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Figure 2.1: Simpli�ed stru
ture of an FPGA 
on�gurable Elementary Logi
 Blo
k

(ELB), representing the set of elements required to implement a logi
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nodes DNO designed in FPGAs. The graph nodes are the FPGA ELBs, while the
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s are the 
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tions between the output and the inputs of ea
h ELB.
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CHAPTER 2. DIGITAL NONLINEAR OSCILLATORS

type de�nes a broad family of 
ir
uits, as it does not limit the 
omplexity or size of

the 
onsidered networks.

In addition, it should also be noted that the performan
e of a DNO topology is

stri
tly dependent on the 
hara
teristi
s of the spe
i�
 hardware implementation.

This means that, to evaluate a DNO, it is not su�
ient to de�ne the network topol-

ogy and the logi
al fun
tion performed by ea
h node, but it is ne
essary to analyze

also the e�e
ts introdu
ed by the use of a spe
i�
 te
hnology for the implementation

of the 
ir
uit, in
luding logi
 gates and routing elements.

2.3 Example Cases: from Ring Os
illator to Cus-

tom DNOs

In this se
tion, three notable examples of DNOs 
hara
terized by the same num-

ber of nodes are provided. These examples, that 
onstitute networks of di�erent


omplexity, are used to show how di�erent DNOs 
an be 
hara
terized by parti
u-

larly di�erent performan
e from a dynami
al behavior point of view, and therefore

from their entropy.

The DNOs taken into 
onsideration, shown in Fig. 2.3, are:

• a Ring Os
illator;

• a Galois Ring Os
illator;

• a 
ustom DNO topology.

The three topologies are all 
omposed of seven ELBs, plus an eighth node

(ELB#8) used for the uniform sampling of the output signal, in order to gener-

ate a random sequen
e of bits.

2.3.1 Ring Os
illator

The Ring Os
illator is a 
ir
uit 
omposed by an odd number of NOT gates


losed in a loop. Its output os
illates between two voltage levels with a frequen
y

f
RO

whi
h depends on the propagation time τp of a NOT gate and on the number

N of inverters in the 
hain:

f
RO

≈ 1

2τpN
. (2.1)

The random 
omponent linked to this stru
ture resides in the jitter to whi
h the

os
illator is subje
ted.

The Ring Os
illator is a well known topology in the 
ontext of entropy sour
es

based on digital os
illators [31�35℄, with 
ontrollable and repeatable dynami
al 
har-

a
teristi
s; for this reason, in this se
tion it plays the role of referen
e ben
hmark

for the other two topologies.
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Figure 2.3: Three di�erent DNO topologies. The three topologies have the same

number of nodes, but they 
onstitute networks of di�erent 
omplexity thanks to the

routing between nodes.

2.3.2 Galois Ring Os
illator

The Galois Ring Os
illator was proposed by Goli¢ in 2006 [36℄.

Inspired by Ring Os
illators and Linear Feedba
k Shift Registers (LFSRs), Goli¢

dis
ussed two topologies based on loops of inverters 
ombined with XOR gates. The

proposed stru
tures have the appearan
e of LFSRs but, instead of registers, have

inverters used as delay elements. Goli¢ proposed two topologies, 
alled Fibona

i

Ring Os
illator and Galois Ring Os
illator. The di�eren
e between the two lies in

the fa
t that in the Fibona

i topology a single feedba
k network 
ontrols the �rst

node of the loop, while in the Galois topology the feedba
k signals are distributed

over multiple nodes, similarly to the Fibona

i or Galois topologies of LFSRs.

Goli¢ investigated these stru
tures as syn
hronous �nite state ma
hines, identi-

fying theoreti
al 
onditions su
h to have no �xed points or to maximize the period

of os
illation. From the perspe
tive of DNOs, what is missing in the Goli¢ approa
h

is an assessment of the dynami
al behavior of the physi
al 
ir
uit.

To investigate the weight of this aspe
t, it 
an be useful to analyze the dynami
al

behavior of the signals involved in the Galois Ring Os
illator shown in Fig. 2.4 by

means of numeri
al transient simulations.

Taking as a referen
e the UMC 180 nm te
hnology, we designed the LUT stru
-

ture shown in Fig. 2.1 at the CMOS transistor level in Caden
e Virtuoso, as shown

in Fig. 2.5. Using the LUTs we built the 
ir
uit 
orresponding to the Galois Ring

Os
illator topology and we 
arried out simulation 
ampaigns, subje
ting the 
ir
uit

7
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+ +

ELB #1 ELB #2 ELB #6ELB #3 ELB #4 ELB #5 ELB #7 ELB #8

CLK CLKEN

RND_OUT

ARND

D

Galois Ring Oscillator

(7 nodes)

Figure 2.4: A possible 7-nodes Goli¢ system. The topology de�nes a Galois Ring Os-


illator. ELB#7 output serves as feedba
k signal, distributed over the ELBs#[2,6℄.

ELB#7 output is also the output signal, uniformly sampled by ELB#8.

to additive white noise.

What emerges from the simulations, summarized in Fig. 2.6, is that the os-


illator 
an exhibit limit 
y
les with a relatively short duration, in disagreement

with what Goli¢ theorized. Furthermore, the 
ir
uit also appears to be quite robust

to perturbations, as its periodi
 behavior remains re
ognizable even in presen
e of

unrealisti
 high noise levels.

2.3.3 Custom DNO Topology

The third system analyzed in this se
tion 
onsists of an original DNO topology,

obtained by 
ombining a Ring Os
illator with loop stru
tures 
omposed of digital

delays and XOR gates, as shown in Fig. 2.7. The digital delays are marked in

the �gure by a spe
ial symbol, whi
h has the purpose of highlighting how, from an

analogi
al point of view, they 
onstitute signal re
ti�ers.

The 
onsidered topology is able to exhibit 
omplex dynami
s, as 
an be observed

through simulations in Caden
e Virtuoso based on the use of the LUTs built using

the CMOS UMC 180 nm te
hnology (Fig. 2.5).

For example, 
onsider the transient simulations shown in Fig. 2.8, obtained by

for
ing the initial 
onditions of the ELBs#[4-7℄ to voltages (0,0,0,0) V.

Considering that the ELBs#[1-3℄ 
onstitute a Ring Os
illator, we 
an ex
lude

the presen
e of stable �xed points for the entire stru
ture. Fo
using on the output

dynami
s of ELBs#[4-7℄, we observe that the �rst low-high transition of ELB#3

propagates in subsequent ELBs until it triggers the self-os
illation of the loop 
om-

posed by ELB#7 (eviden
e mark A). This os
illation is then transferred to ELB#4

and mixed with the signal from the Ring Os
illator. All this 
an lead to the 
reation

of 
omplex periodi
 dynami
s, depending on the ratio between the time 
onstants

of the two subsystems.

Bringing our attention to the eviden
e mark B, it is possible to noti
e the non-

linear behavior of the digital delays, as the high gain in ea
h stage tends to saturate

the input signals towards ground or power supply voltages.

8
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Figure 2.5: S
hemati
 representation of a 3-inputs Look-Up Table (LUT) and of

the 2-inputs multiplexers 
omposing the LUT, designed in Caden
e Virtuoso at

transistor level using the UMC 180 nm te
hnology.
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Figure 2.6: Caden
e Virtuoso transient simulations of the Galois Ring Os
illator

shown in Fig. 2.4, designed using the LUT referen
e stru
ture shown in Fig. 2.5

(UMC 180nm CMOS te
hnology). Case A: no additive noise; 
ase B: relevant addi-

tive noise; 
ase C: abnormal additive noise.
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Galois LFSRs (4 nodes) 
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Figure 2.7: 7-nodes system belonging to the new 
lass of proposed DNOs. The topol-

ogy 
ombines a 3-nodes Ring Os
illator (ELBs#[1-3℄) with loop stru
ture 
omposed

of digital delays (ELB#[5,6℄) and XOR gates (ELBs#[4,7℄). ELB#8 uniformly sam-

ples the output signal, sele
table among the ELBs#[4-7℄.

2.3.4 Experimental Analysis

We implemented the three topologies on a Xilinx Artix 7 x
7a35 FPGA to ana-

lyze the performan
e of the three DNOs from the point of view of generating random

numbers. The same hardware resour
es were used for ea
h of them, to ensure a fair


omparison between the three implementations. To do this, manual 
ontrol of FPGA

resour
es pla
e and route phases was applied. More spe
i�
 details regarding the

pro
edure by whi
h DNOs are implemented on FPGAs are provided in Se
tion 3.5.

The output signal of ea
h implementation was sampled at di�erent frequen
ies,

de�ned on a range between 100 kHz and 100 MHz. For ea
h sampling frequen
y, one

million bits long sequen
es were a
quired, on whi
h analyzes were then performed

aimed at evaluate the level of randomness.

Sin
e the goal of this analysis was to 
ompare the performan
e of three di�erent

topologies, rather than evaluating the out
ome of standard statisti
al tests, su
h as

NIST 800.22 [4℄, we adopted the following 
onventional metri
s:

• pattern distribution of subsequent generated bytes;

• average Shannon redundan
y;

• auto
orrelation fun
tion;

• runs distribution;

• probability distribution of generated bytes.

In this way it is possible to 
ompare imperfe
t sour
es, avoiding the typi
al �satu-

rated to fail� results of standard high sensitivity 
ryptographi
 statisti
al tests.

Fig. 2.9 shows the pattern distributions of su

essive generated bytes for the

three topologies, evaluated at di�erent frequen
ies. From the image, it 
an be seen

that the Ring Os
illator loses the uniform pattern for frequen
ies higher than 100

kHz, the Galois Ring Os
illator for frequen
ies higher than 500 kHz, the 
ustom

system maintains uniformity up to 5 MHz.

Fig. 2.10 shows the average Shannon redundan
y (de�ned as the 
omplement

the average Shannon entropy) for binary words up to 16 bits for the three systems,
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Figure 2.8: Caden
e Virtuoso transient simulations of the 
ustom DNO topology

shown in Fig. 2.7, designed using the LUT referen
e stru
ture shown in Fig. 2.1

(UMC 180 nm CMOS te
hnology). The simulations are performed without additive

noise. Mark A highlights the propagation in the 
ir
uit of the �rst low-high transition

of ELB#3. Mark B highlights the nonlinear behavior of the digital delays.
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Figure 2.9: Pattern distributions of su

essive generated bytes on the plane

(bn, bn+1), for the three 
onsidered DNOs, for di�erent sampling frequen
ies. Ea
h


olumn shows the distributions for a topology, sampled at frequen
ies going from

100 kHz (lower plots) to 50 MHz (upper plots).
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Figure 2.10: Average Shannon redundan
y for binary words up to 16 bits, for the

three systems, for di�erent sampling frequen
ies.

evaluated at di�erent frequen
ies. The 
ustom DNO has lower redundan
y than the

other two systems at all frequen
ies ex
ept 100 kHz. In this 
ase, the entropy is

limited by a residual biasing of the mean value of the generated sequen
es.

Fig. 2.11 shows the auto
orrelation fun
tion of the binary sequen
es evaluated

for the three systems up to a time lag equal to 40, at di�erent frequen
ies. The

gray dashed line represents the ideal level for time lags greater than 0, whi
h for an

ideal binary random sour
e should be 0.52 = 0.25. The red dashed line represents

the asymptoti
 value of the estimated auto
orrelation fun
tion, equal to the square

of the mean value of the sequen
e. The 
ustom DNO a
hieves the asymptoti


auto
orrelation value mu
h faster that the other two DNOs, regardless of the sample

rate.

Fig. 2.12 shows the runs statisti
s, that are sequen
es of 
onse
utive equal bits,

evaluated for both 0s and 1s, up to runs of 6 bits, 
omparing the three systems at

di�erent sampling frequen
ies. The dashed gray line represents the ideal referen
e
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Figure 2.11: Auto
orrelation fun
tion of the 
olle
ted binary streams up to the time

lag 40, for di�erent sampling frequen
ies. Gray-dashed line: ideal level for time lag

m > 0; red-dashed line: asymptoti
 value of the estimated auto
orrelation fun
tion.
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level. The 
ustom DNO manages to approa
h the ideal level at all sampling fre-

quen
ies, unlike the Ring Os
illator and the Galois Ring Os
illator, whi
h instead

approa
h the ideal level only up to 500 kHz and 1 MHz, respe
tively.

Fig. 2.13 shows the probability distributions of the 8-bits symbols generated

by the three systems at the di�erent frequen
ies. The dashed red line represents

the ideal referen
e level, 
orresponding to a uniform distribution 
hara
terized by

symbols with probability equal to 1/256. It is evident that the symbols generated

by the 
ustom DNO are distributed more evenly than the Ring Os
illator and the

Galois Ring Os
illator regardless of the sampling rate.

Summarizing the observed data, we 
an a�rm that the three systems are 
har-

a
terized by di�erent performan
e. In parti
ular, the 
ustom DNO rea
hes levels of

randomness higher than the other two systems.

In 
on
lusion, the example shows, through informal methods of investigation,

that the DNOs 
onstitute a 
lass of entropy sour
es with very di�erent 
hara
teris-

ti
s, justifying the need to de�ne new methodologies for their analysis, aimed at the


ons
ious design of 
ir
uit solutions, 
apable of a
hieving satisfa
tory performan
e

for 
ryptographi
 appli
ations.

2.4 Con
lusion

We introdu
ed the 
ir
uit 
lass of Digital Nonlinear Os
illators (DNOs), i.e.


ir
uits that 
an be used as entropy sour
es for the design of True Random Number

Generators. DNOs are nonlinear dynami
al systems 
apable of supporting 
omplex

dynami
al behaviors in the time-
ontinuous domain, although they are based on

purely digital hardware.

We explored the possibility of implementing su
h 
ir
uits on Programmable Logi


Devi
es, with a parti
ular fo
us on their implementation on FPGAs. In this sense,

we analyzed the internal stru
ture of a 
hip of this type, investigating the role of

their basi
 
ir
uit elements in the design of DNOs.

Finally, we presented a 
omparison of the performan
e in terms of entropy gen-

eration of three notable topologies (Ring Os
illator, Galois Ring Os
illator and a


ustom topology), built using the same amount of hardware resour
es for ea
h of

them, so as to be able to perform a 
omparison mainly related to their dynami
al


hara
teristi
s.

From the 
omparison, it emerged that 
ir
uits with similar hardware 
omplexity


an o�er parti
ularly di�erent dynami
al 
hara
teristi
s based on how the topology

is de�ned, thus justifying our interest in deepening the study of this 
lass of 
ir
uits

and in de�ning formalized methods for their design.
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Figure 2.12: Runs o

urren
ies for 0s and 1s up to 6 bits, for di�erent sampling

frequen
ies. Gray-dashed line: referen
e ideal level.
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Figure 2.13: Probability distribution for 8-bit words, for the three systems, for

di�erent sampling frequen
ies. Red-dashed line: referen
e ideal level.
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Chapter 3

Investigation Methods and

Implementation Te
hniques

In this 
hapter we formalize a methodology for the analysis and design of

Digital Nonlinear Os
illators based on the evaluation of their ele
troni
 im-

plementation, their dynami
al behavior and the information rate they 
an

generate. The presented methodology makes use of di�erent tools, su
h as

�gures of merit, simpli�ed dynami
al models, advan
ed numeri
al simulations

and experimental tests 
arried out through implementation on FPGA. Ea
h of

these tools is analyzed both in its theoreti
al premises and through explana-

tory examples.

3.1 DNO Analysis: a Need for Investigation Meth-

ods

In Chapter 2 we introdu
ed the 
lass of 
ir
uits 
alled Digital Nonlinear Os-


illators (DNOs). The proposed arguments allow us to state that a DNO 
an be

understood in three possible ways:

• a DNO is an analog ele
troni
 
ir
uit built using digital hardware;

• a DNO is a 
omplex dynami
al system 
apable of supporting periodi
 or


haoti
 dynami
s;

• a DNO is a sour
e of entropy that 
an be used for the generation of random

numbers.

Obviously, physi
al implementation, dynami
al behavior and generated entropy are


losely linked and interdependent aspe
ts in DNOs.

For this reason, to formalize a methodology for the analysis and design of 
ir
uits

belonging to this 
lass, it is ne
essary to take into 
onsideration all three natures of
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the 
onsidered systems. From this derives a 
omplex approa
h to the study of DNOs,

whi
h requires the use of multiple tools to evaluate the performan
e from every point

of view. Spe
i�
ally, the analysis methods and the implementation te
hniques that

we employed in the 
ontext of this work 
an be framed as follows:

• �gures of merit for the evaluation of the statisti
al 
hara
teristi
s;

• simpli�ed dynami
al models for the assessment of relevant aspe
ts related to

system stability;

• 
ir
uit simulation of solutions based on CMOS te
hnologies for more in-depth

dynami
al evaluations;

• physi
al implementation of 
ir
uits in FPGA for the experimental validation

of the theorized and simulated behaviors.

In the next se
tions ea
h of these tools is analyzed, providing their theoreti
al

premises and some explanatory examples.

3.1.1 Referen
es

The material presented in this 
hapter in
ludes results that have been published

in the following publi
ations:

• T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, V. Vignoli, and M. G. Bosque,

�Lightweight true random bit generators in plds: Figures of merit and perfor-

man
e 
omparison,� in 2019 IEEE International Symposium on Ciruits and

Systems (ISCAS). IEEE, 2019, pp. 1-5 [37℄.

• T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, and V. Vignoli, �Analysis of

a 
ir
uit primitive for the reliable design of digital nonlinear os
illators,� in

2019 15th Conferen
e on Ph. D Resear
h in Mi
roele
troni
s and Ele
troni
s

(PRIME). IEEE, 2019, pp. 189-192 [38℄.

3.2 Figures of Merit

The �rst tools that we 
onsider are two �gures of merit for the 
omparative

evaluation of the statisti
al 
hara
teristi
s of DNOs.

A DNO is as a devi
e that 
an be used for the generation of random numbers.

To evaluate the quality of an obje
t of this type, the state of the art provides the

appli
ation of standard statisti
al tests [4, 39℄.

However, this approa
h 
onstitutes a poorly informative method regarding the

a
tual statisti
al 
hara
teristi
s of the 
ir
uit. In fa
t, the statisti
al tests are lim-

ited to providing an absolute pass/fail out
ome, whi
h only establishes whether the


onsidered system 
omplies with the minimum quality that agrees with the stan-

dard. Taking a set of systems 
apable of passing these tests, we are unable to
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determine whi
h of these systems are better or worse relying solely on the tests

out
ome. In addition to this, given a set of arbitrary tests, it is always possible to

identify an adequate invertible post-pro
essing algorithm 
apable of manipulating

the data generated by a system in order to make it pass the tests [5℄.

For this reason it is useful to introdu
e �gures of merit that allow to evaluate,

in the 
omparison between two or more sour
es, whi
h ones are 
apable of o�ering

better performan
e [37℄. Obviously this type of analysis has a 
omparative value

only, and is not intended to repla
e standard statisti
al tests, whi
h instead establish

in absolute terms whether a sour
e of entropy used in the generation of random

numbers is valid or not for a spe
i�
 appli
ation.

3.2.1 De
orrelation Time

The �rst �gure of merit we 
onsider is the De
orrelation Time. To provide a

de�nition of this �gure, we must �rst introdu
e some notations and de�nitions.

De�nition 3.1. Given an ergodi
 information sour
e that generates a binary se-

quen
e S = {si : i ∈ N}, we say that the sour
e has a vanishing statisti
al depen-

den
e if for ea
h k-tuple of random variables {sj1, sj2, . . . , sjk : j ∈ N, k ∈ N, 0 ≤
j1 < j2 < · · · < jk} and for ea
h ε ∈ R

+
, an index m0 ∈ N exists su
h that if

m ≥ m0 then |P (sjk+m|sj1, sj2, . . . , sjk)− P (sjk+m)| < ε, or more su

intly:

lim
m→∞

P (sjk+m|sj1, sj2, . . . , sjk) = P (sjk+m) = P (s), (3.1)

where P is a measure of probability and P (A|B) = P (A∩B)/P (B) is the 
onditional
probability for two events A and B.

In general, De�nition 3.1 is valid for any 
ir
uit 
hara
terized by free os
illations

and a�e
ted by ele
troni
 noise, uniformly sampled by adopting a 1-bit quantization

resolution [37℄.

Theorem 3.1. Given an ergodi
 information sour
e with vanishing statisti
al de-

penden
e that generates a binary sequen
e S = {si : i ∈ N}, the limit of the auto-


orrelation fun
tion asso
iated with the sequen
e RS(m) = E[sisi+m] for m→ ∞ is

equal to [P (s = 1)]2 = R2
S(0).

Proof. The auto
orrelation fun
tion asso
iated with the sequen
e S depends on the

expe
ted value of the symbols in the sequen
e and their 
ovarian
e:

RS(m) = E[sisi+m] = E[si]E[si+m]+Cov(si, si+m) = (E[s])2+Cov(si, si+m). (3.2)

The expe
ted value of a binary random variable is equal to the probability that the

variable has a value of 1:

E[s] = 0 · P (s = 0) + 1 · P (s = 1) = P (s = 1), (3.3)

and it is also equal to the auto
orrelation fun
tion for m = 0. Sin
e the information

sour
e has a vanishing statisti
al dependen
e, a

ording to (3.1), for m → ∞ the
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two symbols si and si+m 
an be 
onsidered statisti
ally independent. This implies

that the 
ovarian
e for m→ ∞ tends to 0. In 
on
lusion, we have that:

lim
m→∞

RS(m) = [P (s = 1)]2 = R2
S(0). (3.4)

Let us now 
onsider a DNO whose output is sampled at a frequen
y fs to a
quire
a test sequen
e with �nite length of N bits.

The sour
e auto
orrelation fun
tion RS(m) = E[sisi+m], with 0 ≤ m ≤ M ≤
N − 1 
an be estimated using the following formula:

R̃S(m) =
1

N −m

N−1−m
∑

i=0

sisi+m. (3.5)

Assuming that the DNO is an ergodi
 sour
e with vanishing statisti
al depen-

den
e, by Theorem 3.1 the auto
orrelation fun
tion tends asymptoti
ally to the

value R̃2
S(0). We then introdu
e the normalized auto
orrelation fun
tion φS :

{0, 1, . . . ,M} → [0, 1] ⊂ R:

φS(m) =

∣

∣

∣

∣

∣

R̃S(m)− R̃2
S(0)

R̃S(0)− R̃2
S(0)

∣

∣

∣

∣

∣

. (3.6)

De�nition 3.2. Given a DNO that respe
ts the 
ondition of an ergodi
 sour
e with

vanishing statisti
al dependen
e, sampled at frequen
y fs to a
quire an N-bits long

sequen
e S, the De
orrelation Time τS(M, η) asso
iated to the sequen
e S on a

window of M + 1 ≤ N bits with energy ratio η, where η ∈ [0, 1] ⊂ R, is de�ned

as the minimum time ne
essary for the residual normalized energy asso
iated to the

normalized auto
orrelation fun
tion φS to be less than 1− η, that is:

τS(M, η) =
k
min

fs
[s℄, (3.7)

where:

k
min

= min
k≤M

∑k

m=0 φ
2
S(m)

∑M

m=0 φ
2
S(m)

≥ η. (3.8)

As shown in Fig. 3.1, the produ
t between fs and τS(M, η) de�nes the minimum

number of sampling periods to rea
h the energy ratio η estimated on the interval

[0,M ].

3.2.2 Average Shannon Entropy

The se
ond �gure of merit to evaluate the performan
e of a DNO is the Average

Shannon Entropy.

22



CHAPTER 3. INVESTIGATION AND IMPLEMENTATION METHODS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

f s
 t

s(
2
0
0
, 
h

)

fs ts(200, 99.9%)

h

m

R
s(

m
)

~

(a)

(b)

ideal level for an

unbiased source

Figure 3.1: The vanishing auto
orrelation fun
tion (a) of a DNO under test, sam-

pled uniformly with fs = 50MHz, and the 
orrespondent De
orrelation Time (here

normalized and represented as fs · τS(M, η)), as a fun
tion of η for M = 200 (b).
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Let us again 
onsider a DNO sampled at frequen
y fs to generate a N-bits long

sequen
e. Suppose to 
olle
t the generated bits grouping them into n-bits long

symbols, thus obtaining a sequen
e of ⌊N/n⌋ symbols.

By indi
ating with {Bi : i = 0, 1, . . . , 2n−1} the set of all possible n-bits symbols,

the probability of generating the i-th symbol 
an be estimated as follows:

P̃ (Bi) =
#Bi

⌊N/n⌋ , (3.9)

where#Bi is the number of o

urren
es of the i-th symbol in the generated sequen
e.

De�nition 3.3. Given a DNO sampled at frequen
y fs to generate a sequen
e of

N bits grouped in n-bits words, thus obtaining a sequen
e of ⌊N/n⌋ symbols, the

Average Shannon Entropy (ASE) is de�ned as:

ASE(n) = −1

n

2n−1
∑

i=0

P̃ (Bi) log2 P̃ (Bi) [bit/sym℄. (3.10)

The produ
t of the ASE and the sampling frequen
y fs de�nes the average

amount of information per se
ond generated by the DNO.

3.2.3 Example: Comparison of three DNO Topologies

To show an example of appli
ation of the introdu
ed �gures of merit, let's 
on-

sider the three topologies analyzed in Se
tion 2.3, shown again in Fig. 3.2.

The three DNOs were implemented in �ve Xilinx Artix 7 x
7a35 FPGAs, de-

signing in ea
h 
hip and for ea
h DNO 16 os
illators in di�erent positions (same

positions for ea
h analyzed topology), obtaining a total of 80 DNO instan
es. The

di�erent topologies di�er in the LUTs thruth tables and routing, whereas using the

same amount of sli
es. Ea
h implementation was sampled at de�ned frequen
ies

ranging between 100 kHz and 100 MHz, 
olle
ting one million bits long sequen
es

in any 
ase. Ea
h sequen
e was used to 
al
ulate both the De
orrelation Time and

the Average Shannon Entropy.

The De
orrelation Time was estimated by setting in (3.7) M = 200 and η =
0.999, properly sele
ting, among the 
hosen set of sampling frequen
ies, the highest

fs su
h to experien
e the adequate vanishing of the auto
orrelation fun
tion in the

observation time window [0,M/fs]. The 
hoi
e of M and η in�uen
es the result

of the estimate in absolute terms, but a reasonable 
hoi
e of parameters, based on

heuristi
 
onsiderations, allowed for a reliable 
omparison of the systems under test.

Fig. 3.3 summarizes the obtained results, reporting the statisti
s of the De
or-

relation Times (average, minimum, maximum, 10

th

and 90

th

per
entiles) for ea
h

of the �ve tested 
hips. It is evident that the three DNOs are 
hara
terized by

signi�
antly di�erent De
orrelation Times, although the implementations used the

same hardware resour
es. It is also interesting to note that, taking a topology, the

average values of the De
orrelation Times are weakly variable between among the
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Figure 3.2: The di�erent DNO ar
hite
tures 
onsidered for 
omparison a

ording to

the evaluation of their De
orrelation Times and Average Shannon Entropies.
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Figure 3.3: De
orrelation Times of the three DNO topologies, evaluated for 80
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h topology, implemented on 5 Xilinx Artix 7 x
7a35 FPGAs. For
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h 
hip, the average, minimum, maximum, 10

th

and 90
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instan
es implemented on that 
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hips, suggesting that the De
orrelation Time is intrinsi
ally related to the spe
i�


topology.

The Average Shannon Entropy was evaluated for symbols with a length between

1 and 16 bits. The obtained results are similar among the tested 
hips, regardless

of the sampling frequen
y, therefore in Fig. 3.4 we report the results obtained for a

single FPGA by evaluating the ASE for 10-bits long symbols. Again, the �gure shows

the average, minimum, maximum, 10

th

and 90

th

per
entiles of the ASE, 
omparing

the values for the di�erent sampling frequen
ies.

Putting together the results shown in Fig. 3.3 and Fig. 3.4, it is possible to �nd

a link between De
orrelation Time and Average Shannon Entropy: on average, the

shorter is the De
orrelation Time the higher is the ASE.

Fig. 3.4 also highlights how ASE and sampling frequen
y are linked by a nonlin-

ear relationship, for whi
h a variation in the sampling frequen
y involves a marginal

variation of the ASE. In this sense, the frequen
y at whi
h we sample our sour
e

has a signi�
ant weight in terms of the rate of generated information, as eviden
ed

by the Average Shannon Entropy per se
ond (ASEpS) shown in Fig. 3.5.

3.3 Study of Simpli�ed Dynami
al Models

Another method of analysis we employed to study Digital Nonlinear Os
illators

is the study of DNOs simpli�ed dynami
al models.

As already highlighted several times in the previous se
tions, a DNO is a network


omposed of 
ir
uits that in the digital domain implement logi
 fun
tions, but whi
h

in the analog domain are 
hara
terized by DC nonlinear transfer fun
tions. From

the dynami
s point of view, the parasiti
 
omponents linked to the te
hnology used

for the design of the 
ir
uits and to the 
onne
tions between one 
ir
uit and another

determine not negligible signal propagation times, whi
h 
an trigger more or less


omplex dynami
s at the DNO level.

Taking these 
hara
teristi
s into a

ount, we de�ned a simpli�ed model for the

des
ription of a DNO, having the purpose, given a 
ertain topology, to investigate

whi
h 
onditions favor 
ompatibility with 
omplex dynami
s on the basis of the

stability of its �xed points [38℄. The model is designed to be used in a preliminary

analysis of the DNO, in whi
h it is not intended to evaluate the transient behavior

of the 
ir
uit. The observation of these aspe
ts, in fa
t, requires more advan
ed

tools, su
h as numeri
al simulators based on BSIM4 models.

Our proposal, shown in Fig. 3.6, foresees to represent ea
h node of a DNO with

a �rst order 
ell, 
omposed of a voltage 
ontrolled voltage generator that 
ontrols a

resistan
e-
apa
itan
e (RC) 
ell of the �rst order:

dvo
dt

=
g(vi)− vo

RC
. (3.11)

vo is the output voltage of the node, vi ∈ R
m
is a 
olumn ve
tor that 
olle
ts the

input voltages of the node, g : Rm → R is the DC analog transfer fun
tion of the

node.
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Figure 3.4: Average Shannon Entropies of the three DNO topologies for 10-bit

words a
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Similar results were obtained repeating the measurements on four other 
hips.
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Figure 3.6: A �rst-order simpli�ed nonlinear dynami
al model used to investigate

the DNOs �xed points and their stability. Ea
h node of a DNO is represented with

a �rst order 
ell, given by a voltage 
ontrolled voltage generator that 
ontrols a

resistan
e-
apa
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e (RC) 
ell of the �rst order.
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By adopting this representation, a N-nodes DNO 
an be investigated by means

of the following nonlinear generalized dynami
al system of order N :

dvo

dt
= F [g(vo)− vo] = G(vo). (3.12)

vo = {voi : i = 1, 2, . . . , N} ∈ R
N
is a 
olumn ve
tor representing the state of the

DNO (de�ned by the output voltages of all nodes), g : RN → R
N

is the 
olumn

ve
tor of the DC analog transfer fun
tions of ea
h node of the DNO, F ∈ R
N×N

is

a diagonal matrix whose diagonal elements are the re
ipro
als of the time 
onstants

de�ned by the RC 
ells of ea
h node.

The �xed points of this system are the values of vo for whi
h the following


ondition holds:

g(vo) = vo. (3.13)

Assuming that g is smooth and di�erentiable, the stability of the �xed points 
an

be evaluated by studying the real part of the eigenvalues λ of the Ja
obian matrix

J = ( ∂G
∂vo1

, ∂G
∂vo2

, . . . , ∂G
∂voN

) 
al
ulated at the �xed points themselves.

The use of this model requires providing a des
ription of the DC transfer fun
-

tions of the DNO nodes. Obviously, the quality of this des
ription in�uen
es the

a

ura
y of the obtained result. Without losing generality with respe
t to the pre-

sented approa
h, our 
hoi
e was to build the transfer fun
tions based on the ana-

lyti
al 
omposition of parametrized normalized sigmoids su
h as:

φ(x, a, b) =
1

1 + ea(x−b)
, (3.14)

where x ∈ [0, 1] ⊂ R, a ∈ R\{0} and b ∈ (0, 1) ⊂ R. On the basis of the sign of a,
it is possible to represent through the sigmoid the transfer fun
tion asso
iated with

an inverter or a digital bu�er, as shown in Fig. 3.7.

In a pra
ti
al appli
ation, through an appropriate 
hoi
e of a and b, the sigmoids


an be used for the nonlinear �tting of the DC transfer fun
tions of real logi
 gates,

as shown in Fig. 3.8, where the DC transfer fun
tion of a NOT gate is modeled as

follows:

v0(vi) = NOT(vi) ≈ φ(vi, a, b), a > 0. (3.15)

We de�ned the sigmoid in (3.14) as normalized, as its domain and 
odomain are

equivalent to those of a DC transfer fun
tion of CMOS digital 
ir
uits with 1 V

power supply.

More 
omplex logi
 fun
tions than an inverter or a digital bu�er 
an be obtained

by 
ombining sigmoids. For example, a two-inputs XOR gate 
an be represented

using the following analyti
al model in 2D, as shown in Fig. 3.9:

vo(vi1, vi2) = XOR(vi1, vi2) =

= φ(vi1, a1, b1)φ(vi2, a2, b2) + φ(vi1, a3, b3)φ(vi2, a4, b4),

a1, a4 < 0, a2, a3 > 0.

(3.16)
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ording to (3.14) setting a = ±40 and b = 0.5.
a > 0 provides the primitive model for an inverter, while a < 0 provides the primitive

model for a digital bu�er.

3.3.1 Example: Analysis and Optimized Design of a DNO

Sub-Cir
uit Primitive

To provide a pra
ti
al example of the appli
ation of the simpli�ed dynami
al

model, we refer to the Galois Ring Os
illators proposed by Goli¢. As already ex-

plained in Subse
tion 2.3.2, a Galois Ring Os
illator 
onsists of an array of N > 1
digital gates 
ombined with multiple feedba
ks, as shown in Fig. 3.10.

Regardless of the 
omplexity of the topology, a Galois Ring Os
illator always

terminates with a feedba
k loop having the stru
ture represented in Fig. 3.11.

This sub-
ir
uit, 
onsisting of a �rst node that implements a two-inputs logi


fun
tion and a 
as
ade of k nodes with one input, a
ts as a trigger for the dynami
s

of the entire topology. For this reason, it is interesting to understand what are the

minimum ne
essary 
onditions to make it start to os
illate.

More in detail, without loss of generality, suppose, with referen
e to Fig. 3.11,

that the blo
k f2 de�nes a XOR fun
tion and that the blo
ks f1,j , j >= 0, de�ne
digital bu�ers, from now on 
alled DEL blo
ks, as shown in Fig. 3.12.

In this 
ase, the purpose of applying the model is to understand the minimum

number of DEL blo
ks that must be inserted in the feedba
k loop to trigger its

os
illation. We build the model by applying (3.12) and (3.14), assuming |a| = α >
10, b = 0.5 and 1/RC = ψ.

We divide the study by assuming the independent input signal x equal to 0 V

and equal to 1 V. Limiting ourselves to these two situations and indi
ating with vi
the feedba
k input signal, the transfer fun
tion of the XOR gate 
an be expressed

30



CHAPTER 3. INVESTIGATION AND IMPLEMENTATION METHODS

0.0
0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

vi / Vdd

v o
 /

 V
d

d
 

silicon

fitting

Figure 3.8: The DC transfer fun
tion of a CMOS inverter (UMC 180nm te
hnology,

1.8V) and the �tting model (3.15), with a ≈ 36.81, b ≈ 0.43.
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Figure 3.9: The sigmoid model of a two-inputs transfer fun
tion z = XOR(x, y)
de�ned a

ording to (3.16) for a ≈ 36.81, b ≈ 0.43.
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Figure 3.10: A low-
omplexity DNO topology, derived from the Galois Ring Os
il-

lators proposed by Goli¢ [24, 36℄.
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f2 f1, kf1, 1x
Figure 3.11: Feedba
k loop sub-network terminating any Galois Ring Os
illator,

ar
hite
ture, su
h as the one shown in Fig. 3.10.
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Figure 3.12: The simpli�ed models to investigate the �xed points stability, for di�er-

ent implementations of the system shown in Fig. 3.11. With respe
t to the generi


system of Fig. 3.11, it was assumed that the blo
k f2 de�nes a XOR fun
tion and

that the blo
ks f1,j, j >= 0, de�ne digital bu�ers.
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as follows:

XOR(x, vi)|x=p∈{0,1} =
1

1 + eap(vi−0.5)
, (3.17)

where a0 = −α and a1 = α.
Let's start our analysis from the simplest situation, in whi
h the loop is 
omposed

solely of the XOR gate (k = 0). For the notation of the signals, refer to Fig. 3.12.a.

The dynami
al system is des
ribed by a single equation:

dvo
dt

= [g(x, vo)− vo]ψ. (3.18)

g : R2 → R is the XOR gate transfer fun
tion (3.17).

A

ording to (3.13), the �xed points are the solutions of the equation:

vo =
1

1 + eap(vo−0.5)
. (3.19)

For x ≈ 0 V, (3.18) has three solutions, namely v0,A = 0.5 V, v0,B ≈ 0 V, v0,C ≈ 1
V. For x ≈ 1 V, (3.18) has one solution, namely v1,A = 0.5 V.

To determine the stability of these �xed points, we 
al
ulate the Ja
obian matrix

of the system, whi
h in this 
ase is limited to:

J(x, vo) =
∂

∂vo

[

dvo
dt

]

=

[

− ape
ap(vo−0.5)

(1 + eap(vo−0.5))2
− 1

]

ψ. (3.20)

The eigenvalues 
al
ulated on the �xed points are:

λ1(v0,A) = J(0, v0,A) = (
α

4
− 1)ψ,

λ1(v0,B) = J(0, v0,B) ≈ −ψ,
λ1(v0,C) = J(0, v0,C) ≈ −ψ,
λ1(v1,A) = J(1, v1,A) = −(

α

4
+ 1)ψ.

(3.21)

Having �xed α > 10, we observe that v0,A is unstable (positive real eigenvalue),

while the other �xed points are all stable (negative real eigenvalues). This implies

that for x ≈ 0 V the 
ir
uit has a bistable behavior, while if x ≈ 1 V the 
ir
uit is

stable. In both 
ases, the system 
annot support os
illations.

Let us now 
onsider a loop 
omposed of a XOR gate and a DEL blo
k (k = 1,
Fig. 3.12.b).

The dynami
al system is de�ned as follows:

{

dvo1
dt

= [g1(x, vo2)− vo1]ψ
dvo2
dt

= [g2(vo1)− vo2]ψ
. (3.22)

g1 : R
2 → R is the transfer fun
tion of the XOR gate (3.17), while g2 : R → R is the

transfer fun
tion of the DEL gate:

DEL(vi) =
1

1 + e−α(vi−0.5)
. (3.23)
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vi indi
ates the input voltage of a generi
 DEL gate.

The �xed points of the system are the solutions of:







vo1 = g1(x, vo2) =
1

1+eap(vo2−0.5)

vo2 = g2 ◦ g1(x, vo2) = 1

1+e
−α

(

1

1+e
ap(vo2−0.5)

−0.5

)

. (3.24)

For x ≈ 0 V, (3.24) has three solutions, namely v0,A = (0.5; 0.5) V, v0,B ≈ (0; 0) V,
v0,C ≈ (1; 1) V. For x ≈ 1 V, (3.24) has a solution, that is v1,A = (0.5; 0.5) V.

In this 
ase, the Ja
obian matrix takes on 2x2 dimensions:

J(x, vo) =

[

∂
∂vo1

[

dvo1
dt

]

∂
∂vo2

[

dvo1
dt

]

∂
∂vo1

[

dvo2
dt

]

∂
∂vo2

[

dvo2
dt

]

]

=

=

[

−ψ − ape
ap(vo2−0.5)

(1+eap(vo2−0.5))2
ψ

αe−α(vo1−0.5)

(1+e−α(vo1−0.5))2
ψ −ψ

]

.

(3.25)

The eigenvalues asso
iated with the generi
 �xed point (x∗, v∗
o) are the values of λ

for whi
h the determinant of the matrix J(x∗, v∗
o)− λI is zero:

det(J(x∗, v∗
o)− λI) = 0. (3.26)

By doing the 
al
ulations, the following eigenvalues are obtained:

λ1,2(v0,A) = −(1 ± α

4
)ψ,

λ1(v0,B) ≈ −ψ,
λ1(v0,C) ≈ −ψ,
λ1,2(v1,A) = −(1 ± j

α

4
)ψ.

(3.27)

Similarly to the k = 0 
ase, all the �xed points are stable (eigenvalues with negative

real part), ex
ept for v0,A whi
h is unstable, as it has a positive real part eigenvalue.

Again, the 
ir
uit appears to be bistable for x ≈ 0 V and stable for x ≈ 1 V,

ex
luding the possibility of os
illation.

Sin
e not even a DEL blo
k is su�
ient to trigger os
illations, we add an addi-

tional delay element (k = 2, Fig. 3.12.
).
A

ordingly, the dynami
al system is modi�ed as follows:











dvo1
dt

= [g1(x, vo3)− vo1]ψ
dvo2
dt

= [g2(vo1)− vo2]ψ
dvo3
dt

= [g2(vo2)− vo3]ψ

. (3.28)
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The �xed points of the system are the solutions of:



































vo1 = g1(x, vo3) =
1

1+eap(vo3−0.5)

vo2 = g2 ◦ g1(x, vo3) = 1

1+e
−α

(

1

1+e
ap(vo3−0.5)

−0.5

)

vo3 = g2 ◦ g2 ◦ g1(x, vo3) = 1

1+e

−α













1

1+e

−α

(

1

1+e
ap(vo3−0.5)

−0.5

) −0.5













. (3.29)

For x ≈ 0, (3.29) has three solutions, namely v0,A = (0.5; 0.5; 0.5) V, v0,B ≈ (0; 0; 0)
V, v0,C ≈ (1; 1; 1) V. For x ≈ 1 V, (3.29) has a solution, that is v1,A = (0.5; 0.5; 0.5)
V.

In this 
ase, the Ja
obian matrix takes on 3x3 dimensions:

J(x, vo) =





∂
∂vo1

[

dvo1
dt

]

∂
∂vo2

[

dvo1
dt

]

∂
∂vo3

[

dvo1
dt

]

∂
∂vo1

[

dvo2
dt

]

∂
∂vo2

[

dvo2
dt

]

∂
∂vo3

[

dvo2
dt

]

∂
∂vo1

[

dvo3
dt

]

∂
∂vo2

[

dvo3
dt

]

∂
∂vo3

[

dvo3
dt

]



 =

=









−ψ 0 − ape
ap(vo3−0.5)

(1+eap(vo3−0.5))2
ψ

αe−α(vo1−0.5)

(1+e−α(vo1−0.5))2
ψ −ψ 0

0 αe−α(vo2−0.5)

(1+e−α(vo2−0.5))2
ψ −ψ









.

(3.30)

Starting from (3.30), the following eigenvalues are obtained:

λ1,2(v0,A) = −(
α + 8

8
± j

α
√
3

8
)ψ, λ3(v0,A) = (

α

4
− 1)ψ,

λ1(v0,B) ≈ −ψ,
λ1(v0,C) ≈ −ψ,

λ1,2(v1,A) = (
α− 8

8
± j

α
√
3

8
)ψ, λ3(v1,A) = −(

α

4
+ 1)ψ.

(3.31)

In this 
ase it is observed that the unstable �xed points are v0,A and v1,A, as they

are asso
iated to eigenvalues with positive real part. Consequently, the 
ir
uit is

still bistable for x ≈ 0 V, but it is unstable for x ≈ 1 V. Similar results are obtained

for k > 2.
At this point we 
an 
on
lude that a ne
essary 
ondition for the stru
ture rep-

resented in Fig. 3.11 to support os
illations is that the loop is 
omposed of the

two-inputs fun
tion and at least two blo
ks with one input.

Example Appli
ation: Design of Ultra-Fast Os
illators in PLDs. When we

intend to design an os
illator in digital hardware, the simplest and 
ompa
t solution

that we 
an use a

ording to the state of the art is the Ring Os
illator [31�35℄.

As already indi
ated in Subse
tion 2.3.1, a Ring Os
illator 
onsists of a loop of

N NOT gates, where N is an odd number greater than or equal to 3. This means
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that, in the 
ase of a PLD proje
t, a Ring Os
illator must be 
omposed by at least

three LUTs, ea
h of whi
h implements a NOT gate. Therefore, apparently three 
an

be 
onsidered the minimum number of programmable hardware resour
es needed to

build an os
illating 
ir
uit.

However, within a PLD the input and output pins of the LUTs are not dire
tly


onne
ted; being the devi
e programmable, to build the 
onne
tions between logi


gates, it is ne
essary to pass through a
tive swit
h matri
es. In addition to this,

the output signal of a LUT, before rea
hing these swit
h matri
es, passes through

a
tive digital elements that are part of the Elementary Logi
 Blo
ks des
ribed in

Se
tion 2.2.

Together with the analysis of the simpli�ed dynami
al model presented in Sub-

se
tion 3.3.1, these 
onsiderations on the hardware stru
ture of a PLD suggests that

to design an os
illating 
ir
uit in a PLD is not ne
essary to use three or more LUTs,

but it may su�
es to use just one LUT, allowing the routing 
ir
uitry to take the

role of the remaining stages.

To verify this assumption, we implemented the two topologies shown in Fig.

3.13 on a Xilinx Artix 7 x
7a35 FPGA, taking 
ontrol of the synthesizer pla
e and

route poli
ies at the lowest level. Given the 
ompa
tness of both topologies, we

expe
ted to rea
h high os
illation frequen
ies (in the order of GHz). Sin
e the I/O

FPGA pins were designed to operate at bit rates mu
h lower than the expe
ted

os
illation frequen
ies, they 
ould not be used to extra
t signal out from the FPGA

for dire
t measurements. Rather, we 1-bit sampled the os
illators lo
ally, exploiting

the registers in the Con�gurable Logi
 Blo
ks, adopting a sampling frequen
y of

100 MHz. The sampled bits were then 
olle
ted in sequen
es of 1 million elements,

whi
h were then used for the 
al
ulation of the De
orrelation Time, already de�ned

in Subse
tion 3.2.1.

In Fig. 3.14 the auto
orrelation fun
tions and the relative De
orrelation Times,

evaluated on a window of 2µs with η �xed at 99.9%, are reported. From the �gure

we 
an obtain two important information:

• both systems are os
illating 
ir
uits, 
hara
terized by vanishing auto
orrela-

tion fun
tions;

• the De
orrelation Time of the Ring Os
illator is double that of the os
illator

using a single LUT.

Together with the knowledge of the used hardware, the use of the simpli�ed dy-

nami
al model allowed to determine optimization methods for the design of DNOs

(interpreting the os
illator with one LUT as a sub-element of a more 
omplex DNO).

Studying the model, we identi�ed spe
i�
 
onditions su
h as to guarantee the os
il-

lation of the signals and an in
rease in the os
illation frequen
y, to the bene�t of

the generated information entropy per se
ond.
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Figure 3.13: A s
hemati
 representation of the two 
ompared systems: (a) a single

LUT feedba
k loop that should support os
illations in FPGAs a

ording to the study

of the simpli�ed dynami
al model; (b) a three-nodes 
onventional Ring Os
illator.

Dashed DEL nodes result from the routing/
on�guration multiplexers present in the

Con�gurable Logi
 Blo
k and the lo
al Swit
h Matri
es.

38



CHAPTER 3. INVESTIGATION AND IMPLEMENTATION METHODS

0 0.2 0.4 0.6 0.8 1 1.2

time t = m.tclk   [ms]

time t = m.tclk   [ms]

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

decorrelation time

decorrelation time

R
s 
( 

t 
)

R
s 
( 

t 
)

(a)

(b)

Figure 3.14: The auto
orrelation fun
tions of the binary streams 
olle
ted from the

os
illators shown in Fig. 3.13, performing the uniform sub-sampling of the os
illating

signal, with a sampling frequen
y of 100 MHz and a 1-bit A/D quantization strategy.
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3.4 Advan
ed Numeri
al Simulations

An extension of the studies performed on the simpli�ed dynami
al model relies

on the use of advan
ed numeri
al simulators.

The simpli�ed dynami
al model allows to investigate the minimum ne
essary


onditions that favor 
ompatibility with 
omplex dynami
al behaviors for the DNO

topology under 
onsideration. However, the model does not evaluate what the a
tual

behavior of a DNO implementation is, as it is based solely on the 
ir
uit topology

and does not take into a

ount its hardware 
hara
teristi
s.

The main advantage of the simpli�ed model is the possibility to provide a 
om-

plete analysis of the system, thanks to the low 
omplexity of the resulting 
ir
uit.

However, a real DNO is a�e
ted by the presen
e of parasiti
 
omponents, whi
h


ause the resulting dynami
al system to have an higher dimension with respe
t to

the system de�ned through the appli
ation of the simpli�ed model; as a 
onse-

quen
e, the real system results, in general, too 
omplex to be solved through dire
t


al
ulations.

For this purpose, it is ne
essary to resort to advan
ed numeri
al simulation tools,

whi
h allow, still at a simpli�ed level, to build the 
ir
uit based on real te
hnologies

at the transistor level. In this way, we 
an evaluate its dynami
s taking into a

ount

not only its fun
tional topology, but also the parasiti
 physi
al elements linked to

its implementation and its operation. Spe
i�
ally, our goal is to understand what


ould be the behavior of a 
ertain topology in the 
ase of its implementation on

FPGA.

In our analyzes, without loss of generality, we de�ned a simulation setup in

Caden
e Virtuoso based on CMOS UMC 180 nm te
hnology. Obviously, this setup


an be implemented in any simulation environment and referring to any te
hnology.

We built at the transistor level a library of simpli�ed fundamental hardware

elements used for the 
onstru
tion of an asyn
hronous 
ir
uit in FPGA, i.e. Look-

Up Tables (LUTs) and multiplexers (MUXes) with various numbers of inputs. In

Figs. 3.15 and 3.16 are shown the s
hemati
s of a 2-inputs multiplexer and a 3-inputs

LUT.

The LUTs 
an be used to build any logi
 gate 
hara
terized by a number of

inputs less than or equal to the maximum number supported by the used LUT. For

example, in Fig. 3.17 the LUT of Fig. 3.16 is 
on�gured to implement a 3-inputs

XOR fun
tion.

The MUXes instead 
an be used to emulate the a
tive programmable routing

elements by means of whi
h the 
onne
tions between the ports of the LUTs are built

for the de�nition of the 
ir
uit. Fig. 3.18 shows an example of a DNO topology


omposed of LUTs and routing elements based on the 
omponents just des
ribed.

The built 
ir
uits represent a still simpli�ed version of a possible real imple-

mentation, but they allow to take into a

ount in the evaluation of the dynami
al

behavior of the signals aspe
ts related to the physi
s of the devi
e. It is impor-

tant to underline that the purpose of these simulations is not to investigate the real

behavior of the signals involved in the 
ir
uit dynami
s, but to extend the anal-
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Figure 3.15: S
hemati
 representation of a two-inputs multiplexer designed in Ca-

den
e Virtuoso at transistor level using the UMC 180 nm te
hnology.

41



CHAPTER 3. INVESTIGATION AND IMPLEMENTATION METHODS

Figure 3.16: S
hemati
 representation of a three-inputs Look-Up Table designed in

Caden
e Virtuoso at transistor level using the UMC 180 nm te
hnology, making use

of the two-inputs multiplexers whose s
hemati
 is shown in Fig. 3.15.
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Figure 3.17: Con�guration of a three-inputs Look-Up Table (whose s
hemati
 is

shown in Fig. 3.16) to implement a XOR fun
tion in Caden
e Virtuoso using the

UMC 180 nm te
hnology.
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Figure 3.18: S
hemati
 representation of a DNO topology based on the LUTs and

the MUXes designed in Caden
e Virtuoso at transistor level using the UMC 180 nm

te
hnology. Ea
h logi
 gate is designed by 
on�guring a three-inputs LUT as the

one shown in Fig. 3.16.

ysis performed with the simpli�ed dynami
al model to higher dimension systems,

exploiting the advan
ed numeri
al simulators fun
tionality. This is the reason for

whi
h we designed our own 
omponents library, instead of using more rigorous and

reliable standard models, simulating digital 
ir
uits with analog simulators.

The DNOs are analyzed by means of transient simulations, 
arrying out simula-

tion 
ampaigns based on noise inje
tion or on Monte Carlo analysis. There are two

parameters on whi
h Monte Carlo simulations operate:

• the nonlinear DC transfer fun
tions of the logi
 gates and their parasiti
 
a-

pa
itan
es, parametrized by means of the form fa
tor of the PMOS transistors,

as 
an be observed in the s
hemati
 of the MUX in Fig. 3.15;

• the initial 
onditions of ea
h node in the 
ir
uit, 
ontrolled by 
apa
itors with

negligible 
apa
ity (magnitude order of the aF) whose voltages at instant t = 0
of the simulation are parametrized; an example of su
h 
apa
itors 
an be seen

in Fig. 3.16.

Other analyzes in
lude the sensitivity evaluation with respe
t to temperature and

power supply �u
tuations.

An appli
ation 
ase of the above analyzes is presented in Chapter 4.
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3.5 FPGA Implementation Te
hniques

In this last se
tion, we provide the implementation te
hniques we employed to

design DNOS in FPGAs.

In the 
ourse of the previous se
tions, various examples of DNOs were reported,

showing ea
h time in pra
ti
al terms the fun
tioning or 
hara
teristi
s of the ad-

dressed issues. Ea
h of these examples in
luded the analysis of binary sequen
es

obtained by sampling implementations in FPGAs.

The FPGA implementation of a DNO represents the pra
ti
al validation of the

observations and theoreti
al results found starting from the simpli�ed dynami
al

model and numeri
al simulations. For this reason, this passage 
annot be 
arried

out freely, but must respe
t spe
i�
 design rules, independent of the 
onsidered

topology.

These rules are intended to provide 
ontrol over the FPGA hardware resour
es

through the use of devi
e primitives. The argument presented here refers to designs

on Xilinx Artix 7 FPGAs made with the Vivado Design Suite in VHDL language,

but its value is general, as it 
an be easily adapted to any FPGA devi
e.

3.5.1 Combinatorial Loops

Normally, in digital design, 
ombinatorial loops should be avoided: a 
ombinato-

rial loop 
onsists of a feedba
k of logi
 elements without registers, whi
h 
an 
reate

logi
 ra
e 
onditions or ruin the timing analysis in the synthesis and implementation

phases. For this reason, design tools typi
ally generate Design Rule Che
k (DRC)

errors when su
h a loop is identi�ed during synthesis.

A DNO topology, however, is by de�nition based on 
ombinatorial loops. For

this reason, to implement a DNO, it is ne
essary to provide the design tool with

spe
ial dire
tives to enable the synthesis of 
ombinatorial loops required by the

designer. In Vivado, it is possible to redu
e the severity of the 
ompiler blo
king

message, redu
ing the presen
e of a 
ombinatorial loop from an error 
ondition

to a simple warning 
ondition. To do this, we need to add to the proje
t a T
l

(Tool 
ommand language) s
ript 
ontaining the 
ommand set_property SEVERITY

{Warning} [get_dr
_
he
ks LUTLP-1℄.

3.5.2 Design of Elementary Logi
 Blo
ks

The logi
 resour
es in a Xilinx Artix 7 FPGA are organized in a matrix of

Con�gurable Logi
 Blo
ks (CLBs), ea
h 
ontaining two sli
es, and ea
h sli
e is


omposed of four 6-inputs Look-Up Tables (LUTs) and eight storage items [30℄.

Ea
h sli
e is identi�ed by two values X and Y, whi
h de�ne its physi
al position

within the FPGA. Similarly, the LUTs in a sli
e are identi�ed by four letters A, B,

C, D.

From the implementation point of view, in Se
tion 2.2 we de�ned a DNO as a

network whose nodes 
onsist of prede�ned hardware stru
tures 
alled Elementary

Logi
 Blo
ks (ELBs). The logi
al fun
tionality of an ELB 
an be implemented
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity ELB1NOT is

port (

A : in std_logi
;

NOT_A : out std_logi
 );

end ELB1NOT;

ar
hite
ture Behavioral of ELB1NOT is

attribute DONT_TOUCH : string;

attribute KEEP_HIERARCHY : string;

attribute BEL : string;

attribute LOC : string;

attribute DONT_TOUCH of Behavioral : ar
hite
ture is "yes";

attribute KEEP_HIERARCHY of Behavioral : ar
hite
ture is "yes";

attribute DONT_TOUCH of NOTGate : label is "yes";

attribute KEEP_HIERARCHY of NOTGate : label is "yes";

attribute BEL of NOTGate : label is "A6LUT";

attribute LOC of NOTGate : label is "SLICE_X0Y0";

begin

NOTGate : LUT1

generi
 map (

INIT => "01" )

port map (

O => NOT_A ,

I0 => A );

end Behavioral;

Figure 3.19: VHDL 
ode for the low-level design of an ELB with a NOT boolean

fun
tionality. In this example, the solution uses the 6LUT primitive, resour
e A, in

the sli
e lo
ated at the 
oordinates X0Y0.

through a LUT. Sin
e a DNO is an asyn
hronous 
ir
uit, it does not require the use

of registers.

For 
larity of presentation, ea
h ELB 
an be asso
iated with a VHDL entity.

As shown in Figs. 3.19, 3.20, where VHDL 
odes are reported to des
ribe a NOT

fun
tion and a XOR fun
tion, the implementation of an ELB requires the use of

spe
ial dire
tives to for
e the use of spe
i�
 hardware resour
es within the 
hip [40℄,

and primitives of the devi
e a

essible through the invo
ation of the UNISIM library

from Xilinx (in the 
ase of the examples LUT1 and LUT2). The logi
al operation


arried out by the LUT is des
ribed through the 
onstant INIT, whi
h 
ontains the


orresponding truth table, as shown in Tabs. 3.1, 3.2.
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity ELB5XOR2 is

port (

A : in std_logi
;

B : in std_logi
;

XOR_AB : out std_logi
 );

end ELB5XOR2;

ar
hite
ture Behavioral of ELB5XOR2 is

attribute DONT_TOUCH : string;

attribute KEEP_HIERARCHY : string;

attribute BEL : string;

attribute LOC : string;

attribute DONT_TOUCH of Behavioral : ar
hite
ture is "yes";

attribute KEEP_HIERARCHY of Behavioral : ar
hite
ture is "yes";

attribute DONT_TOUCH of XORGate : label is "yes";

attribute KEEP_HIERARCHY of XORGate : label is "yes";

attribute BEL of XORGate : label is "A6LUT";

attribute LOC of XORGate : label is "SLICE_X1Y0";

begin

XORGate : LUT2

generi
 map (

INIT => "0110" )

port map (

O => XOR_AB,

I0 => A,

I1 => B );

end Behavioral;

Figure 3.20: VHDL 
ode for the low-level design of an ELB with a XOR boolean

fun
tionality. In this example, the solution uses the 6LUT primitive, resour
e A, in

the sli
e lo
ated at the 
oordinates X1Y0.

I0 O

0 INIT[0℄ = 1

1 INIT[1℄ = 0

Table 3.1: Truth table to implement a NOT gate by means of the LUT1 devi
e

primitive generi
 INIT.
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I1 I0 O

0 0 INIT[0℄ = 0

0 1 INIT[1℄ = 1

1 0 INIT[2℄ = 1

1 1 INIT[3℄ = 0

Table 3.2: Truth table to implement a XOR gate by means of the LUT2 devi
e

primitive generi
 INIT.

3.5.3 Syn
hronization Interfa
e

To a
quire bit sequen
es starting from the implemented DNO, it is ne
essary

to 
onne
t the output pin of the 
ir
uit to a syn
hronization interfa
e, whi
h 
an

be redu
ed to a single D �ip-�op that simultaneously performs the 1-bit analog-to-

digital (A/D) 
onversion and the uniform sampling of the output signal.

To implement the �ip-�op we use an FF devi
e primitive, whi
h 
onsists of a D

type �ip-�op with 
lo
k enable and syn
hronous reset, identi�ed by the FDRE entity

a

essible through the UNISIM library. Fig. 3.21 shows an example of the VHDL


ode through whi
h the syn
hronization interfa
e is designed.

Again, it is important to have 
ontrol over the pla
ement of the resour
e on

the 
hip, so the VHDL 
ode must also in
lude spe
ial dire
tives for this purpose.

While in the 
ase of ELBs a sele
tion of the position of the 
omponent in the 
hip is

made for reasons of dynami
al 
hara
teristi
s of the implemented 
ir
uit, as regards

the syn
hronization interfa
e it is ne
essary to manually sele
t its position sin
e it

parti
ipates in the timing analysis of the entire design, therefore some positions may

not respe
t the timing 
onstraints.

3.5.4 Pla
ing and Routing

In an FPGA, routing is 
onstru
ted using programmable swit
hes and 
onne
tion

boxes a

ording to a hierar
hi
al ar
hite
ture that o�ers lo
al and global 
onne
tiv-

ity.

On
e we arranged the ELBs in the desired positions, the 
onne
tion between the

pins takes pla
e a

ording to poli
ies left to the 
ompiler. To minimize the impa
t

related to routing, it is advisable to 
on
entrate the ELBs in a few sli
es, pla
ing

them next to ea
h other.

3.6 Con
lusion

We introdu
ed a set of tools that de�ne a methodology for the analysis and design

of Digital Nonlinear Os
illators; these tools have the purpose of evaluating a Digital

Nonlinear Os
illator from di�erent points of view, 
onsidering its 
hara
teristi
s

as an analog ele
troni
 
ir
uit, as a 
omplex dynami
al system and as a sour
e of

entropy.
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity SYNC_INT is

port (

ANALOG_IN : in std_logi
;

CLK : in std_logi
;

RST : in std_logi
;

RND_OUT : out std_logi
 );

end SYNC_INT;

ar
hite
ture Behavioral of SYNC_INT is

attribute DONT_TOUCH : string;

attribute KEEP_HIERARCHY : string;

attribute BEL : string;

attribute LOC : string;

attribute DONT_TOUCH of Behavioral: ar
hite
ture is "yes";

attribute KEEP_HIERARCHY of Behavioral: ar
hite
ture is "yes";

attribute DONT_TOUCH of BitRegister : label is "yes";

attribute KEEP_HIERARCHY of BitRegister : label is "yes";

attribute BEL of BitRegister : label is "DFF";

attribute LOC of BitRegister : label is "SLICE_X1Y0";

begin

BitRegister : FDRE

generi
 map (

INIT => '0' )

port map (

Q => RND_OUT,

C => CLK ,

CE => '1',

R => RST ,

D => ANALOG_IN );

end Behavioral;

Figure 3.21: VHDL 
ode for the low-level design of the D �ip-�op used to perform

both 1-bit A/D 
onversion and uniform sampling of the output signal provided by

a DNO. In this example, the solution uses the FF primitive, resour
e D, in the sli
e

lo
ated at the 
oordinates X1Y0.
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We de�ned two �gures of merit (De
orrelation Time and Average Shannon En-

tropy) whi
h allows to evaluate, in the 
omparison between two or more sour
es,

whi
h one is 
apable of o�ering the best performan
e in terms of generated infor-

mation. The De
orrelation Time establishes what is the minimum sampling period


apable of guaranteeing de
orrelation between 
onse
utive symbols generated by a

DNO; the Average Shannon Entropy o�ers an estimate of the entropy generated by

the 
ir
uit.

An appli
ation example for these �gures of merit was provided: we 
ompared

three di�erent DNO topologies (Ring Os
illator, Galois Ring Os
illator and a 
ustom

topology) implementing them in 5 Xilinx Artix 7 FPGAs, a
quiring sequen
es of

bit sampled at di�erent frequen
ies, and evaluating their De
orrelation Times and

Average Shannon Entropies. We observed that the three DNOs are 
hara
terized

by di�erent performan
e. We found a link between De
orrelation Time and Average

Shannon Entropy, as, on average, the shorter is the De
orrelation Time the higher is

the ASE. The analyzes also highlighted that Average Shannon Entropy and sampling

frequen
y are linked by a nonlinear relationship, for whi
h a variation in the sampling

frequen
y involves a marginal variation of the ASE. In this sense, the frequen
y at

whi
h we sample our sour
e has a signi�
ant weight in terms of the rate of generated

information.

We introdu
ed a simpli�ed dynami
al model for the des
ription of a DNO having

the purpose to investigate the minimum ne
essary 
onditions that favor its 
ompat-

ibility with 
omplex dynami
al behaviors, on the basis of the stability of its �xed

points. In the model, ea
h node of the DNO is represented with a �rst order 
ell,

given by a voltage 
ontrolled voltage generator that 
ontrols a resistan
e-
apa
itan
e


ell of the �rst order.

The model was used to study the stability of a 
ir
uit primitive that is often

used within 
omplete DNO topologies, evaluating the minimum 
omplexity at the

dynami
al system level that this primitive must possess in order to os
illate. The re-

sults obtained through the analysis based on the simpli�ed model were then veri�ed

by implementation on FPGA: we showed experimentally that it is possible to de-

sign an os
illating sub-
ir
uit 
omposed by a single Look-Up Table (LUT) feedba
k

loop. By 
omparing the designed sub
ir
uit with a three-nodes Ring Os
illator, we

noti
ed that with a topology of this kind it is possible to rea
h dynami
al speeds

higher than the DNO with minimum 
omplexity that 
an be designed at a logi
al

level.

We showed the simulation setup built in Caden
e Virtuoso in order to deepen

the dynami
al behavior of the signals involved in a DNO. This setup makes use

of UMC 180 nm te
hnology to repli
ate at transistor level, in a simpli�ed form,

the fundamental hardware stru
tures of an FPGA used in the design of a DNO,

i.e. LUTs for the design of logi
 gates and MUXes for the emulation of the a
tive

routing elements. These stru
tures are used to design the 
ir
uits to be analyzed,

whi
h are then subje
ted to di�erent types of simulations, su
h as noise inje
tion

and Monte Carlo analysis.

Finally, we explained the design rules that must be applied when implementing
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DNOs on FPGAs, showing the syntax in VHDL language for their use. These rules

have the purpose of:

• allowing the synthesis of 
ombinatorial loops, normally not allowed as they


an 
reate logi
 ra
e 
onditions or ruin the timing analysis;

• using spe
i�
 low-level resour
es, su
h as Look-Up Tables and Flip-Flops,

whi
h must be expli
itly sele
ted by indi
ating their position within the 
hip;

• de�ning the overall layout of the 
ir
uit to partially 
ontrol the routing between

the output and input pins of the designed logi
 gates.
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Chapter 4

High Performan
e DNO

In this 
hapter we use the analysis and design methodologies of Digital Non-

linear Os
illators formalized in Chapter 3 to des
ribe the 
omplete work�ow

followed for the design of a novel DNO topology. This DNO is 
hara
terized

by 
haoti
 dynami
al behaviors, and is 
apable of a
hieving high performan
e

in terms of generated entropy, downstream of a redu
ed hardware 
omplexity

and high sampling frequen
ies. By exploiting the simpli�ed dynami
al model,

the advan
ed numeri
al simulations in Caden
e Virtuoso and the FPGA im-

plementation, the presented topology is extensively analyzed both from a the-

oreti
al point of view (notable 
ir
uit sub-elements that make up the topology,

bifur
ation diagrams, internal periodi
ities) and from an experimental point

of view (generated entropy, sour
e auto
orrelation, sensitivity to routing, tem-

perature sensitivity, appli
ation of standard statisti
al tests).

4.1 Chaos in Fully Digital Hardware

In Chapter 3 we de�ned the tools needed to analyze the 
hara
teristi
s and

performan
e of a DNO. In the 
ourse of this 
hapter, a pra
ti
al example of how

these tools 
ould be used in order to design a DNO from s
rat
h is shown.

Starting from a theoreti
al analysis of the dynami
s of the proposed topology

and subsequently evaluating the 
hara
teristi
s resulting from its implementation, a

DNO is proposed 
hara
terized by 
omplex dynami
al behaviors (in
luding 
haos),


apable of a
hieving high performan
e in terms of generated entropy, downstream

of a redu
ed hardware 
omplexity and high sampling frequen
ies [41�43℄.

4.1.1 Referen
es

The material presented in this 
hapter in
ludes results that have been published

in the following publi
ations:
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f2 f1, kf1, 1x
Figure 4.1: The sub-network analyzed in Subse
tion 3.3.1, 
onsisting of a feedba
k

loop 
omposed of a gate with two inputs (one of feedba
k and the other independent)

and a 
as
ade of gates with one input.

• T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and V. Vignoli,

�Chaos in fully digital 
ir
uits: A novel approa
h to the design of entropy

sour
es,� in 2020 IEEE International Symposium on Cir
uits and Systems

(ISCAS). IEEE, 2020, pp. 1-5 [41℄;

• T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and V. Vignoli,

�A new 
lass of 
haoti
 sour
es in programmable logi
 devi
es,� in 2020 IEEE

International Workshop on Metrology for Industry 4.0 & IoT. IEEE, 2020, pp.

6-10 [42℄;

• T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and V. Vignoli, �A

new 
lass of digital 
ir
uits for the design of entropy sour
es in programmable

logi
,� IEEE Transa
tions on Cir
uits and Systems I: Regular Papers, vol. 67,

no. 7, pp. 2419-2430, 2020 [43℄.

4.2 Topology

The �rst step in designing a DNO is 
hoosing the topology.

In Subse
tion 3.3.1 we analyzed the dynami
al 
hara
teristi
s of a sub-
ir
uit


onsisting of a feedba
k loop 
omposed of a gate with two inputs (one of feedba
k

and the other independent) and a 
as
ade of gates with one input, whi
h we report

in Fig. 4.1.

By sele
ting a XOR logi
 fun
tion for the two-inputs gate and a digital delay

(DEL) for the one-input gates, we observed that su
h sub
ir
uit supports os
illa-

tions, provided the one-input gates 
as
ade is 
omposed by at least two elements

and that the independent input of the XOR is �xed at a logi
 1, while with a logi


0 it assumes a bistable behavior.

Repeating the 
al
ulations by repla
ing the XOR with a NXOR, a 
omplemen-

tary result is obtained (we do not report the 
al
ulations as the pro
edure is equiv-

alent to the one already presented in Subse
tion 3.3.1): the sub-
ir
uit supports
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os
illations provided it has a 
as
ade of at least two DEL gates and that the inde-

pendent input of the NXOR is set at a logi
 0, and is bistable when the independent

input is for
ed to a logi
 1.

Assuming to 
onne
t two 
on�gurations of these types together by short 
ir
uit-

ing the independent inputs, and to inje
t a periodi
 digital signal in them (e.g. the

output of a Ring Os
illator), we expe
t therefore to see the two sub-
ir
uits os
illate

at alternate moments, with the sub-
ir
uit that is not os
illating that maintains the

last rea
hed logi
 state.

Combining the inje
ted periodi
 digital signal with the output signals of the two

loops and a
ting on the periods of these three signals, it is reasonable to think that

this pro
ess of swit
hing the os
illations on and o� gives rise to 
omplex dynami
s.

This assumption arises from the fa
t that the dynami
s of 
oupled os
illators

is studied sin
e 
enturies, starting from the well known syn
hronization of weakly


oupled me
hani
al pendulums. This phenomenon is known as phase-lo
king, and is

generally present in dissipative systems with 
ompeting frequen
ies. Depending on

both the system parameters and the 
oupling strength, di�erent kind of dynami
s


an be observed, ranging from periodi
-lo
ked, quasi-periodi
 (i.e., the ratio between

the two os
illator frequen
ies is irrational) and 
haoti
. To have a 
haoti
 dynami
s,

a fundamental role is played by the nonlinear nature of both the os
illators and the


oupling between them [44�48℄.

A spe
ial 
ase of 
oupled os
illators is obtained when an autonomous dynami
al

system x is used to generate a driving signal ex
iting a se
ond dynami
al system y.

In this situation, referring to a wide theoreti
al framework, the overall system 
an

be des
ribed by the generi
 system of nonlinear di�erential equations

{

ẋ = f(x)

ẏ = g(x,y)
, (4.1)

being x : R → R
N ,y : R → R

M
real-valued fun
tions of time t, and f , g nonlinear

smooth real-valued fun
tions of x and y, respe
tively. If ẋ = f(x) and ẏ = g(0,y)
de�ne two periodi
 dynami
al systems, we may 
all y in (4.1) the for
ed os
illator,

being x the for
ing periodi
 driver.

A

ording to the just presented 
onsiderations, we elaborated the topology shown

in Fig. 4.2, where the ELBs#[1-3℄ have the task of generating the periodi
 inje
ted

signal, while the loops 
omposed respe
tively of ELBs#[5-7℄ and ELBs#[8-10℄ are

the previously analyzed sub-
ir
uits. ELB#4 is the 
ombination element of the

output signals of the three loops and ELB#11 plays the role of a 1-bit quantization

A/D 
onverter of the 
ir
uit output signal.

4.3 Dynami
al Analysis

Having established the topology, the next step is to investigate if 
onditions that

favor 
ompatibility of the topology with 
omplex dynami
s exist. To do this, we

have to resort to the simpli�ed dynami
al model des
ribed in Se
tion 3.3.
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RND_OUT

CLK

CLKEN

ELB#1

ELB#2

ELB#3

ELB#4 ELB#11

ELB#8ELB#10

ELB#9

ELB#6 ELB#5

ELB#7

Figure 4.2: The analyzed DNO topology, 
hara
terized by an independent loop

generating an ex
itation signal, 
ontrolling the dynami
s of the sub-
ir
uit loops

having the stru
ture analyzed in Subse
tion 3.3.1.
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xor D
x1 x2 x3

y1 y2 y3

f(t)

D

xor D D

xor z

Figure 4.3: A simpli�ed model to investigate the 
ore DNO sub-network implement-

ing the non-autonomous dynami
al system (4.2).

Observing the topology in Fig. 4.2, we note that it 
an be divided in two parts:

the ELBs#[1-3℄ 
onstitute a stru
ture that is totally independent from the rest,

having the purpose of ex
iting the remaining part of the network. Therefore, at a

�rst approximation it is possible to de
ide to ignore the subnetwork given by the

ELBs#[1-3℄, repla
ing it with an ex
itation wave generator.

Applying this simpli�
ation and imposing that the loop given by the ELBs#[5-

7℄ is the sub-
ir
uit 
omposed by one NXOR and two DELs, the loop given by

the ELBs#[8-10℄ is the sub-
ir
uit 
omposed by one XOR and two DELs, and the

ELB#4 
ombines the output signals of the two loops with the ex
itation signal by

means of a XOR operation, the resulting simpli�ed dynami
al model looks as shown

in Fig. 4.3.

This 
ir
uit de�nes a non-autonomous nonlinear dynami
al system, whi
h oper-

ates in a normalized phase spa
e de�ned on the domain [0, 1]7 ⊂ R
7
, that is:



















































dx1

dt
= α1[XOR2(x3, z)− x1]

dx2

dt
= α2[DEL(x1)− x2]

dx3

dt
= α3[DEL(x2)− x3]

dy1
dt

= β1[NXOR2(y3, z)− y1]
dy2
dt

= β2[DEL(y1)− y2]
dy3
dt

= β3[DEL(y2)− y3]
dz
dt

= γ[XOR3(x3, φ(t), y3)− z]

. (4.2)

αi, βi, γ ∈ R
+, i = 1, 2, 3 are positive parametri
 
onstants that des
ribe the re
ipro-


als of the RC time 
onstants asso
iated with ea
h node of the 
ir
uit, φ : R → [0, 1]
is the arbitrary signal of ex
itation, DEL : R → [0, 1], XOR2 : R

2 → [0, 1],
NXOR2 : R2 → [0, 1], XOR3 : R3 → [0, 1] are the fun
tions that �t the DC analog
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transfer fun
tions of the respe
tive logi
 gates, de�ned as analyti
 
ombinations of

the sigmoids of the form:

σ(x, a, b) =
1

1 + ea(x−b)
, (4.3)

where a, b ∈ R.

We limit a and b on the intervals a > 20 and 0.3 < b < 0.7, and de�ne, for i ∈ N,

the fundamental transfer fun
tions of re
ti�
ation and inversion as follows:

xi(vi) = xi =
1

1 + e−a(vi−b)
, (4.4)

xi(vi) = xi =
1

1 + ea(vi−b)
. (4.5)

(4.4-4.5) 
an be used to express the transfer fun
tions indi
ated above:

DEL(vi) = xi,

XOR2(vi, vj) = xixj + xixj ,

NXOR2(vi, vj) = xixj + xixj ,

XOR3(vi, vj , vk) = (xixj + xixj)xk + (xixj + xixj)xk.

(4.6)

4.3.1 System Analysis: Turned-O� Ex
itation

If the ex
itation of the 
ir
uit in Fig. 4.3 is turned o� (φ(t) = 0), the dynami
al

behavior of the system (4.2) depends on the parameters αi, βi, γ, a, b, i = 1, 2, 3.
Assuming that the parameters assume non-pathologi
al values, i.e. that αi, βi

and γ are de�ned on similar order of magnitudes, the resulting autonomous system

has a stable and globally attra
tive limit 
y
le. In other words, the autonomous

simpli�ed 
ir
uit obtained by swit
hing o� φ(t) belongs to the DNO family.

Fig. 4.4 shows the results of exhaustive simulations of the system, obtained

by integrating (4.2) with standard numeri
al methods. The �gure shows how the

system is stable to parametri
 perturbations (Fig. 4.4.a) and that the output signal

z is 
hara
terized by regular os
illations (Fig. 4.4.b).

4.3.2 System Analysis: Periodi
 Ex
itation

If the ex
itation of the 
ir
uit in Fig. 4.3 is turned on, the system (4.2) des
ribes

a for
ed nonlinear os
illator [45�48℄.

To 
arry out an analysis that in
ludes the parametri
 spa
e, taking into a

ount

the problem dimensions, it is not possible to adopt an analyti
al approa
h with re-

spe
t to the system (4.2), therefore it is ne
essary to resort to numeri
al investigation

methods.

To perform these analyzes, we redu
ed the 
omplexity of the problem, assuming

αi = βi = γ = ξ > 0 in (4.2) and a = 30 and b = 0.5 in (4.4). For the ex
itation

signal, we used an adapted full-s
ale sinusoidal signal with frequen
y f0 = 1/T0:

φ(t) =
1

2
(1 + sin(2πf0t)). (4.7)
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