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Abstract 

There is an urgent policy need for regional (subnational) estimates for assessing regional policies and programmes. Often 

regional indicators, in particular those concerning poverty and social exclusion, have to be derived from surveys with 

sample size and design determined primarily to serve estimation at the national level. In the specific context of EU-SILC 

surveys and the Headline Indicator at-risk-of-poverty or social exclusion (AROPE) and its components defined by European 

Commission, this paper aims to contribute to the methodology for constructing such indicators at the regional level. The 

main difficulty arises from the smallness of regional samples in national surveys. The paper focuses on two related issues: 

identifying procedures potentially useful for improving sampling precision of regional estimates; and improving the 

precision of sampling error estimates of regional statistics based on small but complex samples. In addition to some 

results presented for a large number of OECD countries, more detailed numerical illustration is provided for two countries 

(Austria and Spain) based on EU-SILC data. 

Keywords: poverty, small area estimation, region, SILC 

 

1. Introduction 

In the framework of Europe 2020 strategy of the European Commission, the EU-SILC Headline Indicator at-risk-

of-poverty or social exclusion (AROPE) and its components1 will be included in the budgeting of structural funds 

which are one of the main instruments for attaining EU and national policy targets. In this context, DG Regional 

Policy of the European Commission uses regional, i.e. sub-national, level data (NUTS 2, and exceptionally NUTS 

                                                            
1 EU Statistics on Income and Living Conditions (EU-SILC) is an EU survey aiming at collecting timely (every year) and 
comparable cross-sectional and longitudinal multidimensional micro data on income, poverty, social exclusion and living 
conditions. The headline indicator ‘people at risk of poverty or social exclusion’, consists of the three sub-indicators: 
monetary poverty, severe material deprivation, and very low work intensity. 

http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:At_risk_of_poverty_or_social_exclusion_(AROPE)
http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Monetary_poverty
http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Material_deprivation
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1 for a couple of big countries2) for the social headline indicators which complement GDP per capita, as 

recommended by the GDP and Beyond report. For the funding period 2014-2020 these indicators are being 

used for benchmarking and assessing the efficiency of regional policies and programmes. Therefore, there is an 

urgent policy need for regional estimates of social policy indicators. The focus has to be on reliably identifying 

regions with the highest proportion of poor or socially excluded people so as to be able to target policy 

measures accordingly. 

The paper aims to contribute to the methodology for constructing indicators of poverty and social exclusion at 

the regional (sub-national) level in EU countries.  

EU-SILC constitutes the main, practically the unique, data source for constructing AROPE and other indicators 

of poverty and social exclusion in the multi-country comparative context of the EU. However, EU-SILC, like most 

other complex population-based surveys, is primarily designed to be represented at the country (rather than at 

the subnational or regional) level. For one thing, in most countries sample sizes of the EU-SILC survey are too 

small for directly constructing reliable estimates at the regional level. Special methodologies are involved in 

producing reliable indicators at the regional level and in estimating the degree of reliability (sampling precision) 

of the indicators obtained. 

This methodological paper focuses on two related issues.  

The first objective is to identify procedures potentially useful for improving sampling precision of regional 

estimates, specifically the headline indicator AROPE and its components using EU-SILC data (Section 2). We 

identify the following three types of procedures, each with a couple of specific techniques which can help 

ameliorate the problem of small sample sizes of individual (annual EU-SILC) surveys and yield regional 

estimates with reduced sampling error: 

(1) Improved size, allocation and design of the sample 

 Increased total sample size and its disproportional allocation in favour of smaller regions 

 Taking regions as not only the reporting but also the design domains for the national sample 

(2) Improved estimates with techniques using auxiliary information 

 Small area (or domain) estimation (SAE) 

 Calibration 

(3) Adjusting the reporting requirements to be less demanding in certain respects. This involves averaging over 

time and/or space, such as: 

 Cumulation of data or estimates over time, such as over annual waves of a EU-SILC survey 

                                                            
2 NUTS (Nomenclature des unités territoriales statistiques) is a hierarchical system for dividing up the economic territory of 
the EU. 
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 Constructing fewer, larger reporting domains by grouping small regions. 

The second issue we focus on is the problem that, because the available sample sizes are small, sampling error 

tends not only to be high, but also estimates of sampling error tend to be complex and subject to high levels of 

variability. In Section 3 we discuss techniques which can help to improve the precision of sampling error 

estimates of statistics based on small but complex samples. We identify the following three problem areas, 

with a couple of specific aspects of each: 

(1) Practical variance estimation techniques suited for complex statistics from a complex sample of reasonably 

large size 

 Relative merits and limitations of different variance estimation procedures, including a comparison 

between linearization and repeated-replication techniques, in particular jackknife repeated replication 

(JRR) 

 Special issues involved in variance estimation of statistics based on cumulation of correlated samples, 

such as over annual waves of EU-SILC 

(2) Special variance estimation problems arising from limitations of the information provided in EU-SILC public-

use micro data files 

 Lack of information on sample structure in EU-SILC data sets available in the public domain 

 On the specification of sample structure variables for computation of sampling errors  

 Absence on information for the linking of units, i.e. of same households or persons, across survey 

waves in the publically available cross-sectional data sets (as distinct from EU-SILC longitudinal data 

sets where such linkage is possible) 

(3) Additional problems arising in applying the country-level variance estimation procedures to the regional 

level where generally sample sizes are much smaller  

 Decomposition of total variance into components: firstly, this involves decomposition into variance 

under (hypothetical) simple random sampling, and design effect accounting for the effect on variance 

of complexity (departures from simple random sampling) of the sample design; next, design effect 

itself can be decomposed according to the aspect of the design giving rise to it 

 Separation of components into two types: components which can be easily and directly estimated at 

the regional level despite the small sample sizes involved; and components which cannot be reliably 

estimated directly at the regional level but have to be derived ('ported') or even borrowed (copied) 

from the corresponding estimates from the bigger national sample. 



4 
 

This decomposition of the variance and design effect into components, as it will be described in Section 3.3, is 

necessary in order to obtain reasonable estimates of variance at regional level. Some component can be 

computed at the regional level, but others have to be inferred from aggregated or averaged results.  

Section 4 illustrates application of the procedures discussed. Numerical results are presented using EU-SILC for 

Spain and Austria, using pooled data over four annual waves of the rotating panel in each case. The illustration 

is confined to only two among all the EU-SILC surveys because the objective is mainly to illustrate the 

methodology developed in this paper. The practical factor limiting the choice to these two particular countries 

is the availability in these cases of the necessary information on the sample structure, which is generally not 

available in the EU-SILC public-use data files. 

 

2. Techniques to ameliorate the problem of small sample sizes 

This section identifies three types of procedure, each with a couple specific techniques which can help 

ameliorate the problem of small sample sizes of individual (annual EU-SILC) surveys and yield regional 

estimates with reduced sampling error. 

2.1 Improved size, allocation and design of the sample 

(1) Increased total sample size and its disproportional allocation in favour of smaller regions 

A general increase of the overall sample size, retaining existing allocation, could be considered as a solution. 

The main limitation of this procedure is the increased cost and burden of the survey at the national level, and 

possible negative effect on overall data quality. The real difficulty is that in order to obtain adequate sample 

sizes for the smallest regions, the increase in overall sample size, while retaining proportionate allocation, is 

often too large to be a practical option. Of course, it may be a feasible option when the regional population 

sizes are not too diverse. 

An alternative is to re-allocate the sample among the regions. This could be done at regional, say NUTS2, level 

in two manners: redistribution the existing sample by reducing the sample size of larger regions and increasing 

that of the smaller regions; or just giving extra sample to smaller regions, without reducing that of larger 

regions. The first scheme does not increase overall data-collection cost, though there is a (usually) modest 

reduction in precision of national level estimates as a result of disproportionate allocation. The second scheme 

can marginally increase the precision of national level estimates, but the real gain is at the level of small 

regions. Of course, the overall data collection cost is increased, but the increase is normally much less than that 

with proportional increase in sample size throughout.  

(2) Taking regions as not only the sample selection but also the design domains for the national sample 

Estimation at the regional level is facilitated by selecting the sample independently within regions, i.e. by taking 

regions as sample selection domains for the national sample. This ensures that strata and primary sampling 
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units (PSUs) do not cut across regional boundaries. Stratification is performed within regions. In this way, strata 

do not cut across regions. This requirement is often not difficult to meet, because geographical stratification 

such as by regions is one of the most common stratification criteria used in national household surveys. The 

same would apply to PSUs, which are normally defined to lie within strata, and hence within regions as the 

sample selection domains. 

Sampling independently within regions makes it easier to allocate the sample size as desired. Another major 

advantage of independent regional samples is that it simplifies the construction of regional estimates – 

estimation of parameters as well as those of their sampling error. Commonly used variance estimation 

techniques (such as Taylor linearization, bootstrap, JRR) can be easily adapted for application at the regional 

level.  

In fact, it is highly desirable to go beyond independent selection of regional samples, and treat regions as 

sample design domains. All aspects of the sample structure – sampling stages and clustering, sampling units, 

stratification, selection method, sample allocation, etc. – can be varied across regions to take into account 

specific conditions and requirements. 

 

2.2 Improved estimates with techniques using auxiliary information 

(1) Small area (or domain) estimation (SAE): Empirical Best Linear Unbiased Predictor 

There is a wide variety of small area estimation (SAE) techniques available, and the field is rapidly expanding. 

The suitability and efficiency of a particular technique depends on the specific situation and on the nature of 

the statistical data available for the purpose. A standard reference on small area estimation methodology is 

Rao (2003). See also, among others, Gosh and Rao (1994) and Handerson (1950). It is, of course, not possible in 

this paper to develop and evaluate SAE models for diverse poverty and related indicators in the specific 

situation of individual EU countries. Among the various SAE techniques, the most used approach is the 

Empirical Best Linear Unbiased Predictor (EBLUP) estimator. 3 

The Empirical Best Linear Unbiased Predictor 

In the EBLUP methodology, an intensive and small-scale survey (such as, for instance, the SILC for EU countries) 

provides direct poverty-related information at the micro (unit) level; this information can be aggregated to 

areas such as NUTS regions where the survey contains an “adequate” number of sample units and the areas 

identifiers are available in the micro data. On the other side, correlates of poverty-related characteristics of the 

areas can come from aggregated statistics (such as censuses or other administrative sources). The two sources 

can be combined to produce composite estimates, provided that (i) the survey data contain information for the 

                                                            
3 Elbers, Lanjouw and Lanjouw (2003) developed an alternative approach, specifically aimed at ‘poverty 
mapping’. See an application in Neri, Ballini and Betti (2005). 
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identification of the area to which each unit belongs, and (ii) the aggregate data on the correlates are available 

for all the areas in the population of interest. The approach can be to apply area level random-effect models 

relating small area direct estimates to domain specific covariates, considering the random area effects as 

independent. The basic area-level model includes random area specific effects, and the area specific covariates, 

   (                ) , i = 1…m, are related to the target parameters θi (totals, means, proportion, etc.) as 

           , where zi are known positive constants, β is the regression parameters vector of dimension 

px1, νi are independent and identically distributed random variables with 0 mean and variance  ̂ 
 . The model 

assumes that the direct estimators  ̂   are available and design unbiased, in the form: 

 ̂       , where ei are independent sampling errors, with zero mean and known variance ψi. The BLUP 

estimator is a weighted average of the design-based estimator and the regression synthetic estimator 

 ̃    
      ̂           ̂, where       

        
   is a weight (or ‘shrinkage factor’) which assumes 

values in the range [0-1]. This parameter measures the uncertainty 2

v  in modelling θi in relation to the total 

uncertainty including the variance of the direct estimator i . The mean square error of the BLUP estimator 

depends on the variance parameter 2

v , which in practice is replaced by its estimator; hence the estimator 

obtained is called Empirical BLUP (EBLUP).  

Merits and limitations of EBLUP 

There are some serious limitations to the application of the SAE methodology described above in the context of 

regional estimation in EU-SILC. But let us first note some potential merits of the procedure (see Betti and 

Lemmi, 2013). SAE methods such as EBLUP make use of external data aggregated to NUTS2 (area level) only. R-

codes are available under projects funded by the EU 7th Framework program (such as SAMPLE, AMELIE, etc…); 

estimates could be performed every year, given that such external sources are available.  

There are three types of limitation to be faced. 

(a) The first concern the lack of external data for the purpose of making SAEs. The methodology needs 

information from Census data, which are usually available every ten years in many countries. Often such 

external sources are not correlated sufficiently highly to the poverty measures under investigation. Also, most 

of the models assume the external data to be error-free, which is certainly not the case when the data come 

from large-scale field studies and surveys. 

(b) The methodology tends to be complex and require specialised knowledge and software. 

(c) The major concern in application to a multi-country undertaking such as EU-SILC is that the results may lack 

comparability. Generally, the procedures and application would have to be country-specific, and ensuring the 

application of common standards required for EU-SILC may be very difficult. 
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(2) Calibration 

Calibration is another methodology that is useful for increasing efficiency through sample reweighting. The 

idea is summarised from Ardilly (2015). 

Consider a sample s, the associated unbiased weights dk and an auxiliary set of variables Xk known for every 

unit in frame U, so that ∑       is known. The aim is to seek new weights wk as close as possible to dk, so that 

the following calibration equation is valid: 

∑    

   

 ∑   

   

 

To do this the distant function ∑           is used and minimised under the above constrain. 

The calibration result has two fundamental properties: the resulting calibrated estimator ∑         has no 

significative bias if the sample size is large. Calibrated estimator closely depends on the linear correlation 

between Xk and Yk ; if it is high we can expect a large decrease in the variance compared to the variance of the 

initial unbiased estimator ∑        . The method proposed by Ardilly marginalised the calibrated weights, to 

get calibrated weights for each region. The author notes that “the method is based essentially on: 1) the 

existence of ‘enough explanatory’ variables of the phenomena of interest and for which we can have regional 

margins; 2) the hypothesis that conditionally in these explanatory variables, the geography does not have 

impact anymore on the phenomenon of interest.” 

Calibration and weighting at the level of individual regions can improve the precision (reduced variance and/or 

reduced bias) of regional estimates. However, from the point of view of country-level estimation, the 

introduction of additional regional level calibration controls can be problematic. For instance, it may result in 

more extreme weights and hence an increased variance. More severe trimming of weights may have to be 

introduced to control this increase. Adding additional regional level constrains in the calibration process can 

even lead to non-convergence problems in the process itself. 

2.3 Adjusting the reporting requirements to be less demanding in certain respects 

This involves reducing the detail with which the results are reported: whether through cumulation (1) over 

time, and/or (2) over space. 

(1) Cumulation of data or estimates over time, such as over annual waves of a EU-SILC survey 

Cumulating data from consecutive waves of a panel survey is perhaps the most effective and tractable 

(practical) strategy for increasing the statistical precision of regional indicators. Below we briefly address some 

statistical aspects of the cumulation method for improving sampling precision of indicators for subnational 

regions (see also Verma et al., 2013). Two types of measure can be so constructed at the regional level by 

aggregating information on individual elementary units: average measures such as totals, means, rates and 

proportions constructed by aggregating or averaging individual values; and distributional measures, such as 
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measures of variation or dispersion among households and persons in the region. An important point to note is 

that, more than at the national level, many measures of averages can also serve as indicators of disparity and 

deprivation when seen in the regional context: the dispersion of regional means is of direct relevance in the 

identification of geographical disparity.  

Survey data such as from EU-SILC can be used in different forms or manners to construct regional indicators. 

When two or more data sources contain – for the same type of units such as households or persons – a set of 

variables measured in a comparable way, then the information may be pooled either (a) by combining 

estimates from the different sources, or (b) by pooling data at the micro level. Technical details and relative 

efficiencies of the procedures depend on the situation. The two approaches may give numerically identical 

results, or the one or the other may provide more accurate estimates; in certain cases, only one of the two 

approaches may be appropriate or feasible in any case. 

Here our concern is with pooling of different sources pertaining to the same population or largely overlapping 

and similar populations. In particular, the interest is in pooling over survey waves in a national survey in order 

to increase the precision of regional estimates. Estimates from samples from the same population are most 

efficiently pooled with weights in proportion to their variances (meaning, with similar designs, in direct 

proportion to their sample sizes). Alternatively, the samples may be pooled at the micro level, with unit 

weights inversely proportional to their probabilities of appearing in any of the samples. This latter procedure 

may be more efficient (e.g., O’Muircheataigh and Pedlow, 2002), but may be impossible to apply as it requires 

information, for every unit in the pooled sample, on its probability of selection into each of the samples 

irrespective of whether or not the unit actually appears in the particular sample (Wells, 1998). Another serious 

difficulty in pooling samples is that, in the presence of complex sampling designs, the structure of the resulting 

pooled sample can become too complex or even unknown to permit proper variance estimation. In any case, 

different waves of a survey like EU-SILC do not correspond to exactly the same population. The problem is akin 

to that of combining samples selected from multiple frames, for which it has been noted that micro level 

pooling is generally not the most efficient method (Lohr and Rao, 1996). For the above reasons, pooling of 

wave-specific estimates rather than of micro data sets is generally the appropriate approach to aggregation 

over time from surveys such as EU-SILC. 

Merits of the cumulation include the following: the implementation of cumulation with data such as EU-SILC 

data is quite easy to implement, especially for average measures; it is also possible to use it for distributional 

measures; the procedure has been already implemented in several EU and other countries. 
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The main limits of the cumulation are: yearly estimates of any variable would tend to be highly positively 

correlated, reducing the gain in precision from cumulation4. For instance, with a correlation of 0.8 between 

successive waves (and say 0.64 between two waves separated by one wave in-between), and a wave-to-wave 

sample overlap of 0.75 as in standard EU-SILC,5 the variance of an estimate cumulated over three years is 

reduced to roughly 0.60 of that with single year data, rather than to 0.33 in the case of independent samples6. 

 

(2) Constructing fewer, larger reporting domains by grouping small regions 

A grouping of regions could be applied in order to achieve more useful regional estimates. Estimates for a 

group are then used to represent the average conditions in the regions so grouped. As a rule, the procedure 

should be applied only to smallest regions, where essential and where separate reporting can be dispensed 

with, or is simply unachievable. For instance, this has been done in EU-SILC in Finland for the smallest region, 

which in fact is exceptionally small in population. This possibility is of course limited if there are many small 

regions so that the needed regional detail is largely lost as a result of grouping. Grouping of small regions, if 

permissible, does not require the overall sample size to be increased, and hence no extra sources are needed, 

but obviously, the disaggregation to full regional level is lost. 

 

3. Issues in estimating sampling error at the regional level 

This section discusses techniques which can help to improve the precision of sampling error estimates of 

regional statistics based on small but complex samples. First, it is useful to outline the basic variance estimation 

techniques suited for complex statistics from complex sample of reasonably large size. 

3.1 Practical variance estimation techniques 

(1) Relative merits and limitations of different variance estimation procedures 

A diversity of variance estimation approaches has been developed for computation of sampling errors for 

complex statistics arising from complex samples of households and persons with complex designs, both general 

and some very specific for particular applications. Among the former, for the ‘typical’ social surveys based on 

reasonably large samples but with complex designs, the applicability of at least two broad approaches is 

generally well-established in the literature. These are the approaches based on (a) Taylor linearization and (b) 

on resampling such as the Bootstrap, Balanced repeated replication (BRR) and Jackknife repeated replication 

(JRR). For details on the two methodologies as applied to poverty and inequality measures, Taylor linearization 

and JRR, see Verma and Betti (2011). As noted by the mentioned authors, the two methods tend to give similar 

                                                            
4 The cumulative measure is an average over the period of cumulation, and in this sense is not biased in itself. 
5 The design recommended by Eurostat has been developed and described in Verma and Betti (2006). 
6 The procedure for arriving at these figures has been described in Betti and Gagliardi (2017). 
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results and often the choice among them is dictated by practical considerations. Other recent contributions on 

variance estimation based on EU-SILC survey include Osier (2009), Osier et al. (2013), Goedemé (2013a, b). 

The following provides a comparison between linearization and repeated-replication techniques, in particular 

JRR. 

Linearization tends to be lighter in terms of the computational work involved, especially if the sample contains 

many PSUs. The main drawback of the linearization procedure is that different computational formulae have to 

be used for different types of statistics, the development of which can be complex and – what is more critical – 

may be intractable in some cases. Another complexity is the need for numerical evaluation of the slope at 

various points of the income distribution function. This can be problematic because of irregularities in the 

empirical income distribution based on sample survey data. 

The JRR procedure, by comparison, is considerably heavier in terms of the computational work involved, 

especially if the sample contains many PSUs, though this disadvantage is becoming less important given the 

rapid increase in computing power. In addition, care is needed in the application of the JRR method to non-

smooth statistics, such as the median or other quantiles of the income distribution, as it may not always 

provide a consistent variance estimator for such statistics. The same applies, but to a lesser degree, with regard 

to measures based on quantiles, such as the poverty rate defined with reference to the median income. For 

this reason, as well as to reduce computational work, the grouping of existing PSUs and strata is often needed 

to define new computational units. The relative advantages of the JRR method include the following. (1) The 

same variance estimation formula applies to different types of statistics. This permits the development of 

highly standardized software for its application. (2) The method can be extended to take into account the 

effect on variance of aspects such as imputation and weighting in the estimation process, insofar as those 

aspects can be repeated for each replication. (3) JRR methodology can be easily extended to longitudinal 

samples and to measures of change between different cross-sections. Once a common structure (PSUs and 

strata) is defined for all waves of a data set, the JRR can be used to estimate variance of any measure that 

incorporate measures from different waves. Incorporating such additional aspects into the variance estimation 

is generally much more complex, sometimes not possible, with the linearization technique. Extensions of the 

linearization method to deal with added complexity involved (longitudinal measures, aggregate measures of 

net changes and averages) are not available, but a replication-based approach such as the JRR may be 

extended more readily to deal with correlated samples. (4) Generally JRR procedure is well suited and stable to 

deal with cumulative measures such as Gini coefficient and percentile share ratios such as S80/S20. Finally, it 

should be noted that a very extensive use of JRR methodology is done at EU and OECD official level and also at 

single country level. 

Considering the above merits, the JRR provides an attractive methodology for the present purpose. 
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(2) Special issues involved in variance estimation of statistics based on cumulation of correlated samples 

This section addresses some issues concerning pooling over correlated samples, such as over annual waves of 

longitudinal component of a EU-SILC sample. Let us consider variance estimation under three-year cumulation. 

Consider that for each wave, a person’s poverty status (poor or non-poor) is determined based on the income 

distribution of that wave separately, and the proportion of poor at each wave is computed. These proportions 

are then averaged over a number of consecutive waves. The issue is to quantify the gain in sampling precision 

from such pooling, given that data from different waves of a rotational panel are highly correlated. For this 

purpose, the JRR variance estimation methodology is very convenient. In brief, for the purpose computing 

variance of estimates pooled over waves of a rotational panel, the JRR methodology can be easily extended on 

the following lines. The total sample of interest is formed by the union of all the cross-sectional samples being 

compared or aggregated. Using as basis the common structure of this total sample, a set of JRR replications is 

defined in the usual way. Each replication is formed such that when a unit is to be excluded in its construction, 

it is excluded simultaneously from every wave where the unit appears. For each replication, the required 

measure is constructed for each of the cross-sectional samples involved, and these measures are used to 

obtain the required averaged measure for the replication, from which variance is then estimated in the usual 

way. 

As an example, suppose we have a three consecutive year’s dataset. In order to estimate the average of the 

three years, we proceed as follows. 

[reformat the rest of the text to conform to the above paragraph format] 

 

We first construct a common structure of strata and PSUs from the union of the sample for the three waves 

and assign to this common structure new weights equal to the average of the weights of the three years: 

  
        

                          . 
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1 2 3
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A
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n
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For each year (t) and for each replication (k), we can estimate    
   

where t=1, 2, 3 and from this, the required 

statistic   
       

 ∑     
   

 ; that in our case is just   
       

    
   

   
   

   
   

   . 

The variance estimate of this measure can be easily estimated applying the usual JRR for variance estimation as 

if the statistic were a common cross-sectional measure. 

 

 

 

3.2 Special variance estimation problems arising from limitations of the information provided in EU-SILC 

public-use micro data files 

(1) Lack of information on sample structure in EU-SILC data sets available in the public domain 

Appropriate coding of the sample structure, in the survey micro-data and accompanying documentation, is an 

essential requirement for computing sampling errors taking into account the actual sample design. This is done 

through the definition of the sample structure. Information concerning the following three aspects must be 

available: 

(1)  Codes of the sample structure in the micro-data files. 

(2)  Detailed description of the sample design, for instance identifying features such as the presence of self-

representing units, systematic selection, etc. 

(3)  Information connecting the sample structure codes in the micro-data with descriptions of the particular 

sample design features, so as to be able to identify the design features applicable to particular units. 

Lack of information on the sample structure in survey data files is a long-standing and persistent problem in 

survey work. For EU-SILC, currently this information is not provided for all countries in the micro-data available 

to researchers. Presumably (and hopefully) it is available within each country for its own national survey. 

Indeed, the major problem in computing sampling errors for EU-SILC is the lack of sufficient information for this 

purpose. Actually the situation differs between the two versions of the dataset available for EU-SILC, namely 

the ‘cross-sectional dataset’ (providing separate information for each annual wave of the survey), and the 

‘longitudinal dataset’ (for panel of individuals covering two to four survey waves). In the EU-SILC longitudinal 

dataset we have the necessary information available to construct the common structure; however, information 

has not been included in the dataset to enable us to construct the common sample structure in the cross-

sectional case (households and individuals are not linkable in different years). The main variables necessary 

concern the identification of strata and PSUs. The variables corresponding to the stratification code have been 

suppressed in the publically available dataset. We have had to develop approximate procedures in order to 

overcome these limitations at least partially, and used them to produce useful estimates of sampling errors.  
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(2) On the specification of sample structure variables for computation of sampling errors  

For the type of sample designs involved in EU-SILC, and in the practical procedures for variance estimation 

used, generally all the necessary information about the sample structure can be provided, in addition to unit 

sample weights, in the form of two variables defined for each unit: the ‘computational stratum’ and 

‘computational PSU’ to which the unit belongs. Normally, we may expect the new variable ‘computational 

stratum’ to be related (and sometimes identical) to the explicit stratum in the survey; similarly concerning 

‘computational PSU’ and explicit PSU in the survey. However, very often the explicit variables reported in the 

survey require some redefinition before they can be used for the purpose of variance estimation. Practical 

variance estimation methods need to make some basic assumptions about the sample design: the sample 

selection is independent between strata; two or more primary selections units are drawn from each stratum; 

these primary selections units are drawn at random, independently and with replacement; and the number of 

primary selections units is large enough for valid use of the in the variance estimation equations. The 

computational strata and PSUs have to be defined to meet, or at least approximate, these requirements. 

In many practical situations, some aspects of sample structure need to be redefined to make variance 

computation possible, efficient and stable. This requires a sufficiently detailed description of the sampling 

design, and on how that description relates to stratum and PSU codes in the data – information which is often 

lacking. There are two major considerations involved in the redefinition of sample structure for the purpose of 

variance computation: 

(i) The first concerns ensuring that each stratum has at least two sample PSU’s – the minimum number 

required for the computation of variance.  

It may be necessary to regroup (‘collapse’) strata so as to ensure this. In samples selected systematically, for 

instance, the implied implicit stratification is often used to define explicit strata formed by pairing or otherwise 

grouping of PSU’s in the order of their selection from the systematic list, ensuring that each resulting 

computational stratum has at least two primary selections, assumed independent. A similar consideration 

applies to designs involving the selection of a single PSU per stratum. In addition, sometimes non-response can 

result in leaving fewer than two PSU’s in some strata. 

(ii) The second aspect concerns the aggregation of very small sample PSUs to construct larger and fewer 

computational units for variance estimation.  

In a procedure like the JRR, the number of replications is equal or at least similar to the number of PSU’s in the 

sample. In a large sample where elements (households, persons) have been selected directly, the number of 

replications which can be formed will be of the order of the sample size, normally running into thousands. This 

necessitates forming much fewer computational units, such as by creating ‘pseudo-cluster’ from random 

groupings of sample elements, and then randomly pairing of these ‘clusters’ to construct computational strata. 



14 
 

The above issue in fact arises in applying a procedure such as JRR in the case of any sample irrespective of its 

structure when we want to estimate not only variances but also design effects. The denominator of the design 

effect is variance under simple random sampling (SRS); that variance is estimated by assuming the sample to be 

SRS, which in turn necessitates forming fewer computational units from random regrouping of sample 

elements. 

Sometimes there are additional consideration for using groupings of strata and PSUs. For instance, such 

grouping can help in preserving confidentiality of individual units in public-release micro data. 

The above-mentioned problem arises more frequently and seriously when computing sampling errors for 

subclasses (subpopulations), especially for regions and other geographic subdivisions. The risk can be reduced 

by aggregating PSU’s and strata to create fewer, larger computational units. 

 

(3) Absence on information for the linking of units across cross-sectional samples 

We need to address a special problem in EU-SILC that there is no information for the linking of units, i.e. of 

same households or persons, across survey waves in the publically available cross-sectional data sets (as 

distinct from longitudinal data sets where such linkage is possible). 

Our proposed solution is to pass through the longitudinal dataset of EU-SILC to get an imputed measure of the 

correlation between the cross-sectional datasets. For example, if we want to produce estimates for the average 

of three years, we keep the longitudinal dataset for three years, say year 1, 2 and 3. We work separately with 

pairs of consecutive years, such as 1-2, 2-3 and 1-3. For each couple of years, the two datasets can be divided 

into three part: a) same individuals; b) same sample area, but different individuals; c) different individuals and 

different area. We have to work separately with each of these parts. 

For part a) of the sample, same individuals, we apply exactly the same procedure as applies to the cross-

sectional dataset and estimate: the variance of the first year V(Yt), the variance of the second year V(Yt+1) and 

the variance of their average  (
       

 
). From the relationship: 

 (
       

 
)  

 

 
                 √                   (2) 

we can derive the correlation  , estimated for the three pairs of years, being, respectively,    ,     and    . 

For the correlation between adjacent years, a more stable estimate is provided by taking the average of the 

two estimates,     
  

       

 
 where L stands for longitudinal. For two waves separated by a year, we have 

   
     .  
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For part b) of the sample, same area but different individuals, again we apply the same procedure as above and 

we get    
     

     
 , where A stands for Area level. We use their average    

   
     

     
 

 
 as a more stable 

estimate of the correlation at area level.7 

For part c) of the sample, no overlap even at area level, we can take correlation between years to be zero. 

Now we have all the information needed from the longitudinal dataset:     
 ,    

  and   . 

We can return to the cross-sectional datasets, three sets in our case, and estimate at national level the three 

variances V1(Y), V2(Y), V3(Y). The general expression for variance of measures of average and net change taking 

into account the correlation between waves is: 

   ∑        ∑   
        ∑      

  √      (  )         (3) 

with parameters ai=1/3 for the average measure.8 

The main problem is to estimate    
  between the correlated cross-sectional samples from the correlations for 

the three types of sample overlap, a), b) and c), defined above. The former can be taken as a weighted sum of 

the latter since it is a mixture of the three types of overlap. With reference to a particular pair of waves (i, j), 

we take:  

CS L L A A

adj 0ρ =w ρ +w ρ +w 0
        (4) 

(for simplicity, subscript i,j has been dropped in the above). 

The weights are determined by the following considerations: 

L A

0w +w +w =1
, since they define a weighted average; 

0

1
w =

4  from the structure of EU-SILC; 

c

LL

n

n
w 

 with nL is the sample size of the panel considered and nc is the larger of the samples of the two 

cross-sectional dataset considered. 

With the above-defined set of correlations and weights, the set of ρij in equation (3) are defined as follows: 

L L A A

12 adj 12 12ρ =(ρ w +ρ w )
, 

L L A A

23 adj 23 23ρ =(ρ w +ρ w )
, 

L L A A

13 13 13 13ρ =(ρ w +ρ w )
    

3.3 Additional problems arising in estimating variances at the regional level 

                                                            
7 The EU-SILC ‘longitudinal dataset’ is in fact more inclusive than covering only a fixed panel of individuals. It also covers all 
current household members of the panel individuals, and hence a changing set of persons in the same sample areas. This 

provides a basis for estimating   . 
8 For net change from year i to year (i+1), the corresponding coefficient would be ai=1, ai+1=-1. 
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Additional problems arise in applying the country-level variance estimation procedures to the regional level 

where generally sample sizes are much smaller. The approach involves two steps. We begin with 

decomposition of total variance into components. Firstly, this involves decomposition into variance under 

(hypothetical) simple random sampling and design effect accounting for the effect on variance of complexity 

(departures from simple random sampling) of the sample design, followed by decomposition of design effect 

itself according to the aspect of the design giving rise to it. The second step involves separation of components 

into two types: components which can be easily and directly estimated at the regional level despite the small 

sample sizes involved; and components which cannot be reliably estimated directly at the regional level but 

have to be derived ('ported') or even borrowed (copied) from the corresponding estimates from the bigger 

national sample or estimates averaged over regions. 

(1) Decomposition of total variance into components 

Variance estimates at regional level can be obtained directly by repeating the same procedure described above 

at regional level, or they can be constructed by borrowing some components from estimates from the national 

sample or estimates averaged over regions. Below we describe the second option. It involves decomposition of 

variance and design effects (see Verma et al., 2010).  

From Kish (1965), the design effect is the ratio of the variance under the given actual sample design (V), to the 

variance under a simple random sample of the same size (VSRS): d2=V/VSRS. This implies decomposition of 

variance into SRS variance and design effect: V=VSRS*d2. 

At country level (C) the total design effect can be decomposed as follows 

2( ) 2( ) 2( ) 2( ) 2( ) 2( )C C C C C C

W H D X Rd d d d d d      

( )C

Wd  is the effect of unequal sample weights, which we have termed as the “Kish factor”. It can be 

approximated in terms of coefficient of variation of the sample weights: ( )C

Wd 2

= (1+cv(w)2)
 

  
   

 is the effect of clustering of persons within households and the quantity ( )C

Hd 2 can be estimated as 

the weighted mean household size. 

( )C

Dd  is the effect of clustering of persons and households within dwellings. The effect of clustering of 

households within dwellings or addresses is absent ( Dd =1) when we have a direct sample households 

or persons, or when such units are selected directly within sample areas - as is the case in most of the 

EU-SILC surveys. This effect is present when the ultimate units are dwellings, some of which may 

contain multiple households, but the effect tends to be small (i.e. dD ~ 1.0) in so far as there is generally 

a one-to-one correspondence between addresses and households. 
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 is one of the components of the design effect and it is the effect of correlation between 

dependent samples of waves in a panel. It can be calculated as: 

 
 




ii

iiC

R
YVa

YaV
d

2

)(2           (6) 

This is a function of rohCS defined in equation (4): with similar variance across waves, d2(C)R=1+rohCS. 

We refer to rohCS as “Kish correlation” or synthetic correlation (Kish, 1965 and 1995); it represents the 

ratio of variance of correlated samples over variance as if the sample were independent.9 

Factor )(C

Xd  is the effect of multi-stage sampling, stratification and other design complexities, averaged 

over the three waves. It can be computed at the country level using the JRR procedure described 

above. 

(2) ‘Porting’ estimates of some variance components from the country level to regional level 

The next step is to separate variance components into two types: components which can be easily and directly 

estimated at the regional level despite the small sample sizes involved; and components which cannot be 

reliably estimated directly at the regional level but have to be derived ('ported') or even borrowed (copied) 

from the corresponding estimates from the bigger national sample. 

The main difficulty in moving from national to regional level is the reduced sample size. 

Our practical strategy in estimating variance and design effects at the regional level is to consider the different 

components involved (Verma et al., 2010): 

V=VSRS*d2(G); 2(G) 2(G) 2(G) 2(G) 2(G) 2(G)

W H D X Rd =d ×d ×d ×d ×d        (7) 

Quantities VSRS, dW, dH and dD do not depend on structure (especially clustering) of the sample, and can be 

normally estimated well from samples of elements (households or persons) at the regional level. With a 

national sample of several thousand units, for instance, most regional samples would contain hundreds of 

elements. The main difficulty arises with estimating quantities dR and dX directly and separately for each region. 

The reliability of the estimates depends on the structure of the sample, in particular on the number of sample 

PSUs available. This number may be small for individual regions: even when a national sample contains several 

hundred PSUs, most regional samples would contain merely tens of such units. 

Concerning dR
(G), with the common structure of the panel in all regions of a country, it is reasonable to take 

( ) ( )d dG C

R R , the value already estimated at the country level on the lines described in the preceding 

subsection. 

                                                            
9 There are alternative approaches; see for instance Tam (1984) or Berger (2004). 
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Concerning dX
(G), in many situations, depending on the relation between national and regional sample design, 

  
  can be reasonably defined as a function of already computed   

 , thus avoiding its re-estimation at the 

regional level. For instance, if the sample design in the region is the same or very similar to that for the country 

as a whole – which is quite often the case – we can take 2(G) 2(C)

X Xd =d . For models for other cases, see Verma et 

al. (2010); these models are essentially based on assumed identity or closeness of intra-class correlations 

between national and regional samples with similar designs. 

 

4. Application of the procedure in Austria and Spain 

The proposed procedure of variance estimation under three-year cumulation of SILC waves has been recently 

applied in a project funded by OECD (Piacentini, 2014). As shown in Table 1, poverty and inequality measures 

have been estimated at regional level in 28 OECD countries; in half of them the EU-SILC survey has been the 

main data source (countries in italic). The table lists the data sources used for the construction of indicators in 

OECD countries, and provides information on NUTS2 regions and minimum and maximum regional sample 

sizes. 

 and the described methodology has been implemented. Here results of the methodology are presented for 

two countries, Austria (AT) and Spain (ES) for three poverty and inequality measures: the at-risk-of poverty rate 

(ARPR) at 60% the national median income, the S80/S20 inequality index, and the Gini coefficient. The choice 

of these two countries has been determined by the fact that the necessary information on the sample 

structure was available to us only for those countries. 

 

Table 2 provides a summary of the precision of the estimates. The results are based on the variance estimation 

methodology described in this paper, produced with the collaboration of the present authors. The table covers 

countries and regions for which it was possible to produce estimates of the variance for the three indicators: 

poverty rate, Gini and S80/S20. The table shows the median size of the 95% confidence intervals, both in 

relative and absolute terms, of regional estimates. For example, column 2 ‘relative poverty with poverty line 

defined at 60% the national median’ shows that the difference between the upper and the lower bound of the 

confidence interval of the Australian estimates is 4.41 percentage points (as a median value across the 8 

regions). Given that the absolute value of the size of the confidence interval is affected by the absolute value of 

the indicator (countries with higher poverty rates have, ceteris paribus, larger confidence interval for the 

poverty rate estimate), column 1 (and also 3 and 5) are reported as a way to improve the comparability of this 

summary measure across countries. Even for these relative summary measures, the cross-country 
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comparability is possibly hampered by the fact that countries use different methodologies for calculating the 

confidence intervals. 

As expected, the confidence intervals tend to be larger in countries where regional samples are smaller, such as 

Germany where in median the upper and lower limits of the confidence interval of the relative poverty rate at 

60% the national median income are separated by 8.4 percentage points. For a similar annual sample size, the 

confidence intervals are smaller in Spain, where three-year averaged data were used, than in Italy, where the 

indicators refer to a single year. For the Gini index of disposable income, in around 7% of the regions the 

absolute size of the confidence interval (i.e. the difference between the upper and lower bound of the 

estimate) is higher than 10 percentage point; while for the poverty headcount based on the 60% the national 

median, the confidence interval is larger than 10 percentage points in around 10% of the regions. 

 

Production of the estimates covered in Tables 1 and 2 was made possible by the necessary information on 

sample structures provided under special arrangements for the above-mentioned OECD-funded project, thus 

bypassing some of the difficulties noted in Section 3.2. 

Table 3 presents more detailed results for individual regions. In contrast to the previous tables, the illustration 

in this table is confined to only two among all the EU-SILC surveys. The practical factor limiting the choice to 

these two particular countries is the general availability in these cases of the necessary information on the 

sample structure, which is not available in the EU-SILC public-use data files. In any case, this serves the current 

objective, which is mainly to illustrate the methodology developed in this paper. Numerical results are 

presented using EU-SILC for Spain and Austria, using pooled data over three annual waves of the rotating panel 

in each case, using the cumulation methodology detailed above. The table reports for the ‘Headcount 60% 

national poverty line for disposable income’, the point estimate and the lower and upper bound of its 95% 

confidence interval. Results are very good at national level, where the width of the confidence interval is only 

1.6 for Austria and 1.8 for Spain. At regional level results are more heterogeneous, with a median width of the 

confidence interval of 4.2 in Spain and 5.2 in Austria. The minimum values are 1.9 in Pais Vasco and 2.8 in 

Oberösterreich, while the maximum are 10.7 in Aragón and 9.6 in Burgenland.  

 

5. Concluding remarks 

This paper has demonstrated how reasonable estimates of sampling error may be produced even when the 

available sample sizes are relatively small and full information on the sample structure is lacking. For estimation 

at the regional (subnational) level, the main approach proposed is to “borrow” parameters estimated from the 

bigger national sample, in so far as such parameters can be considered “portable”. In particular, we have 

identified and used two parameters for this purpose: the intra-class correlation determined by clustering, 
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stratification and other features of the sample structure; and the synthetic correlation coefficient determined 

by correlations among samples of waves of the survey.10 

In conclusion we would like to emphasise a point of great practical concern. Assessment of sampling precision 

of the estimates, taking into account the actual structure of the sample on which the data are based, has an 

essential requirement: provision of codes describing the sample in the survey micro data itself, along with 

accompanying documentation describing the design and the code. Inadequate (or sometimes even absence of) 

information on sample structure in survey data files is a long-standing and persistent problem in estimation 

from sample surveys. Unfortunately, even outstanding and highly standardised multi-country surveys such as 

EU-SILC suffer from this sort of shortcomings, as demonstrated in the application in this paper. 
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Table 1. Data sources used for the sub-national indicators 

Country Data Source and year Regional level 

and number of 
regional units 

Households 

in regional 
samples 
(min. - 

max.) 
Australia 2009-10 Survey of Income and Housing (SIH) TL2, 8 regions 578 -3314 
Austria EU-SILC, 3 year averages for 2008-2009-2010 TL2, 8 regions 207 -1315 
Belgium EU-SILC, 2011 wave (2010 reference income) TL2, 3 regions 837 -3087 
Canada Survey of Labour and Income Dynamics, 2011 reference TL2, 10 regions 1766-18050 
Chile CASEN Survey, 2011 reference income TL2, 15 regions 1588-5779 
Czech Republic EU-SILC, 2011 wave (2010 reference income) TL2, 8 regions 871 -1441 

Denmark Danish Law Model System 2010 TL2, 5 regions Register 
Finland EU-SILC, 2012 wave (2011 reference income) TL2, 4 regions 2298-2755 
France ERFS, 2010 reference income TL2, 21 regions 304 -8560 
Germany SOEP, 2011 wave (2010 reference income) TL2, 16 regions 66-1789 
Greece EU-SILC, 2011 wave (2010 reference income) TL2, 4 regions 706 -2288 

Hungary EU-SILC, 2011 wave (2010 reference income) NUTS1, 3 2932-5446 
Israel Integrated Income Survey, 2011 TL2, 7 regions 2181-12213 
Italy UDB IT-SILC, 2012 wave (2011 reference income) TL2, 21 regions 344 -2031 
Japan Comprehensive Survey of Living Conditions, 2009 TL2, 10 regions 729-3378 
Mexico Módulo de Condiciones Socioeconomicas, 2012 TL2, 32 regions 299 -2805 
Netherlands Income Panel Survey, 2010 TL2, 4 regions 9583-44587 
New Zealand Household economic survey, 2011 reference income TL2, 2 regions 1134-2402 

Norway Income Statistics for Household, 2011 reference income TL2, 7 regions Register 
Poland EU-SILC, 2011 wave (2010 reference income) NUTS1, 6 1294-2651 
Slovak Republic EU-SILC, 2011 wave (2010 reference income) TL2, 4 regions 611 -2099 
Slovenia EU-SILC, 2011 wave (2010 reference income) TL2, 2 regions 4380-4859 
Spain EU-SILC, 3 year averages for 2008-2009-2010 TL2, 19 regions 113-1558 

Sweden Income Distribution Survey, 2011 reference income TL2, 8 regions 630 -3778 
Switzerland EU-SILC, 2011 wave (2010 reference income) TL2, 7 regions 266-1856 
Turkey Turkish SILC, 2011 reference income NUTS1, 12 610 -2137 
United Kingdom Households Below Average Income, average for 2010- TL2, 12 regions 938-3842 
United States Current Population Survey, average for 2010-2012 TL2, 50 regions 2169-20056 

Source: Authors’ elaboration from Piacentini (2014). 

 

 

 

Table 2. Median size of confidence intervals for poverty and income distribution indicators 
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 Relative poverty defined at 

60% national median income  

Gini disposable income S80/S20 (quintile share ratio) 

disposable income 
Country Relative 

median 

confidence 

interval 

(1) 

Absolute 

median 

confidence 

interval 

(2) 

Relative 

median 

confidence 

interval 

(3) 

Absolute 

median 

confidence 

interval 

(4) 

Relative 

median 

confidence 

interval 

(5) 

Absolute 

median 

confidence 

interval 

(6) 
Australia 0.18 4.41 0.11 0.03 0.34 1.80 

Austria 0.42 5.17 0.16 0.04 0.23 0.86 

Belgium 0.22 4.41 0.14 0.05 0.17 0.61 

Chile 0.24 6.00 0.06 0.02 0.87 10.30 

Czech Republic 0.31 3.51 0.33 0.08 0.15 0.52 

Germany 0.42 8.45 0.17 0.04 0.22 0.88 

Spain 0.23 4.30 0.09 0.03 0.23 1.40 

Finland 0.21 3.39 0.08 0.02 0.11 0.40 

Greece 0.27 6.00 0.11 0.04 0.25 1.56 

Hungary 0.22 2.77 0.06 0.02 0.09 0.32 

Israel 0.08 2.20 0.00 0.00   
Italy 0.33 5.60 0.15 0.04 0.25 1.10 

Mexico 0.24 6.35     
Poland 0.23 4.43 0.09 0.03 0.15 0.73 

Slovak Republic 0.31 4.60 0.14 0.04 0.19 0.72 

Slovenia 0.17 2.57 0.11 0.03 0.09 0.31 

Switzerland 0.28 4.81 0.33 0.10 0.16 0.65 

Turkey 0.20 5.02 0.42 0.17 0.17 1.19 

United States 0.19 4.10 0.08 0.03 0.17 1.20 

Note: the relative median confidence interval is calculated as the median of the difference between the upper and lower 

bound of the 95% confidence interval of the indicator in each region, divided by the point estimate of the indicator. The 

absolute median confidence interval is the median absolute value of the difference between the upper and lower bound 

in each region. Source: Authors’ elaborations from Piacentini (2014).  

 

Table 3. Selected relative poverty indicators, percentages, forNUT2 regions of Austria and Spain: the point 
estimates (percentages) and the lower and upper bound of the 95% confidence interval 

  Headcount 60% national poverty line for disposable income 

  Point estimate Lower bound Upper bound 

Austria 13.8 13.0 14.6 

Burgenland 13.8 9.0 18.6 

Niederösterreich 10.8 9.2 12.3 

Wien 19.0 16.4 21.7 

Kärnten 18.6 14.3 23.0 

Steiermark 13.8 11.6 15.9 
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Oberösterreich 9.2 7.8 10.6 

Salzburg 11.7 9.1 14.2 

Tirol 10.9 8.6 13.1 

Vorarlberg 11.1 7.9 14.2 

Spain 22.0 21.1 22.9 

Galicia 18.4 16.8 20.1 

Asturias 10.3 9.0 11.7 

Cantabria 19.9 15.9 24.0 

País Vasco 11.0 10.1 11.9 

Navarra 9.5 8.3 10.7 

La Rioja 25.0 23.1 26.9 

Aragón 17.9 12.6 23.2 

Comunidad de Madrid 16.4 14.6 18.2 

Castilla y León 23.0 20.4 25.6 

Castilla-La Mancha 31.8 29.5 34.1 

Extremadura 35.2 30.6 39.7 

Cataluña 17.1 16.0 18.2 

Comunidad Valenciana  20.1 18.0 22.1 

Baleares 18.6 15.0 22.2 

Andalucía 32.0 30.1 33.8 

Región de Murcia 24.7 22.1 27.3 

Ciudad Autónoma de Ceuta 23.5 18.7 28.3 

Ciudad Autónoma de Melilla 31.8 28.8 34.7 

Canarias 32.0 29.9 34.1 

 

 

 




