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Abstract: A new Thymus vulgaris L. solid essential oil (SEO) formulation composed of liquid EO linked to
solid excipients has been chemically analysed and evaluated for its intestinal spasmolytic and antispastic
effects in ex vivo ileum and colon of guinea pig and compared with liquid EO and excipients. Liquid
EO and solid linked EO were analysed by original capillary electrochromatography coupled to diode
array detection (CEC-DAD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS)
methodologies. The main bioactive constituents are thymol and carvacrol, with minor constituents
for a total of 12 selected analysed compounds. Liquid EO was the most effective in decreasing basal
contractility in ileum and colon; excipients addiction permitted normal contractility pattern in solid
linked EO SEO. In ileum and colon, the Thymus vulgaris L. solid formulation exerted the relaxant
activity on K*-depolarized intestinal smooth muscle as well as liquid EO. The solid essential oil exhibits
antimicrobial activity against different strains (Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas
aeruginosa, Escherichia coli, Salmonella Thyphimurium, Candida albicans) similarly to liquid oil, with activity
against pathogen, but not commensal strains (Bifidobacterium Breve, Lactobacillus Fermentum) in intestinal
homeostasis. Therefore, Thymus vulgaris L. solid essential oil formulation can be proposed as a possible
spasmolytic and antispastic tool in medicine.

Keywords: capillary electrochromatography; diarrhoea; intestinal contractility; L-type Calcium
channels; LC-MS/MS; solid based formulation

1. Introduction

In traditional medicine, humans have greatly benefited from plants and their secondary metabolites.
Plants have been used not only for their properties occasionally attributed to their secondary metabolites,
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but interest is also due to essential oils (EOs) diffused in or obtained from the surface of plant organs,
particularly their aerial parts—flowers and leaves. EOs are complex mixtures of chemical compounds
that have long been known and used as natural food preservatives, aromatic additives [1], in personal
care products, and in aromatherapy [2]. The interest of the scientific community in EOs has been
increasing, as their therapeutic properties have been gradually confirmed [1]. Among all the EOs used
in the therapeutic field, there is a growing commercial interest in the EO of Thymus vulgaris L. (common
thyme), now one of the 10 most widely traded EOs in the world. It is an aromatic and medicinal
plant. So far, 928 species of the Thymus genus have been identified in Europe, North Africa, Asia,
South America, and Australia [3]. Thymus EOs are mainly composed of terpenes, terpene alcohols,
esters, and phenolic derivatives. Among them, thymol and carvacrol present the highest interest.
The traditional and the therapeutic use, supported by in vitro studies, has shown that Thymus and its
derivatives present a wide biological spectrum—antioxidant [4,5], antibacterial [5,6], antifungal [7],
and muscle antispasmodic activities [8].

Thymus EOs have beneficial effects on neurodegenerative, cardiovascular, cancer, and inflammatory
diseases [9]; are traditionally used to treat respiratory tract problems [8]; and relieve gastrointestinal
spasm and digestion [3]. Therefore, Thymus and its EO are functional and promising in medicine [3].

In this paper, we have studied a peculiar formulation of Thymus vulgaris L. EO absorbed onto
a solid matrix of excipients (solid essential 0il—SEO) inserted into a capsule (operculum) for a potential
use in intestinal pathologies. The operculum was opened, and the solid liquid oil was obtained.
The rationale was to obtain information about the effect of this solid form of EO on intestinal contractility.
EO solid formulation, in fact, possessed many advantages, such as the ability to overcome patient
taste and smell distaste; to modulate EO release; to increase the stability of the active essential oil;
and to reduce volatility, toxicity, and interactions with the intestinal substances, thus improving patient
compliance and convenience. In addition, an original analytical methodology based on capillary
electrochromatography coupled to diode array detection (CEC-DAD) was developed for the separation
and determination of twelve selected constituents of Thymus vulgaris L. EO as a representative set
of bioactive compounds that can be correlated with the biological activities object of this study.
The target analytes were thymol, carvacrol, p-cymene, a-terpinene, y-terpinene, linalool, borneol,
B-cariophyllene, 3-myrcene, o-terpineol, 3-pinene, and limonene. After method validation with good
results in terms of linearity, precision and accuracy, this original strategy was applied for the analysis
of Thymus vulgaris L. EO and a derived formulation. In addition, thymol and carvacrol being among
the most abundant and characteristic bioactive constituents of Thymus EOs, an original method based
on liquid chromatography-tandem mass spectrometry (LC-MS/MS) was set up and validated in
order to accurately confirm thymol and carvacrol levels in the analysed samples and to demonstrate
the effectiveness of CEC-DAD analysis. Since the current focus on natural products is to develop
their formulation to improve bioavailability, pharmacokinetics, and to reduce adverse effects for
the treatment of various human diseases [10], the main components of the formulation (SEO, EO,
and excipients) were then evaluated for a potential use in intestinal pathologies, by assessing their
effects on spontaneous and induced contractility of guinea pig smooth muscle isolated gallbladder,
gastric fundus, ileum, and colon. Otilonium bromide (OB), an antispasmodic drug, has been considered
as a positive control. At the same time, potential antimicrobial activity of Thymus EO alone, SEO,
and excipients has been tested against some bacteria and fungi most commonly involved in the onset
and progression of gastrointestinal diseases.

2. Materials and Methods

The Thymus vulgaris L. solid essential oil (SEO) formulation named Aromatoil® (manifactured
by Coima, Bastia (RA), Italy) used in this study was supplied by BIO-LOGICA, Via della Zecca 1,
40100, Bologna, Italy. The used essential oil has been obtained by steam distillation of the summit
flowers. The formulation was made by Thymus vulgaris L. EO absorbed to a solid matrix of excipients
(SEO) inserted into a capsule (operculum). The operculum was discharged, and the solid liquid
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oil SEO was obtained. Each operculum, contains summit flowers Thymus vulgaris L. essential oil
(0.6 mg) and 340.4 mg of excipients consisting of pregelatinized corn starch, soy lecithin, ascorbic
acid, calcium carbonate, levilite, vegetable magnesium stearate (Invention Patent Application N:
102018000007395—(10174439)).

2.1. Instrumental Analysis: CEC-DAD and LC-MS/MS

Chemicals and solutions. Analytical-grade standards of thymol [5-methyl-2-(propan-2-yl)phenol],
carvacrol [2-methyl-(propan-2-yl)phenol], p-cymene [l-methyl-4-(propan-2-yl)benzene], o-terpinene
[4-methyl-1-(1-methylethyl)-1,3-cyclohexadiene], Y-terpinene [4-methyl-1-(1-methylethyl)
-1,4-cyclohexadiene], linalool  (3,7-dimethyl-1,6-octadien-3-ol), = borneol (endo-1,7,7-trimethyl
-bicycle[2.2.1]heptan-2-ol), (3-cariophyllene {(1IRAE9S)-4,11,11-Trimethyl-8-methylidenebicyclo
[7.2.0lundec-4-ene}, [3-myrcene (7-methyl-3-methylene -octa-1,6-diene), a-terpineol
[2-(4-Methylcyclohex-3-en-1-yl)propan-2-ol], 3-pinene (6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptane),
limonene [1-methyl-4-(prop-1-en-2-yl)cyclohex-1-ene] and xylene (dimethylbenzene), used as the internal
standard (IS) for CEC-DAD, were obtained from Sigma Aldrich (St. Louis, MO, USA). MS-grade acetonitrile
(ACN) and methanol (MeOH), analytical-grade formic acid, and ammonium acetate were also purchased
from Sigma Aldrich, while ultrapure water (18.2 M()-cm) was obtained by means of a Milli-Q system from
Millipore (Burlington, MA, USA). Analyte and IS stock solutions (1 mg/mL) were prepared in MeOH
and stored at —20 °C, working solutions were prepared daily by dilution in the mobile phase of each system
and stored protected from light in amber glass vials.

2.1.1. Analytical Conditions

CEC-DAD analyses were carried out on a PCE capillary electrophoresis apparatus from Agilent
Technologies, equipped with a DAD operating at 210 nm. Fused silica capillary (32 cm total length x
100 um ID, 375 OD) was from Polymicro Technologies (Phoenix, AZ, US) and packed with LiChrospher
100 RP-18 endcapped particles (5 um particle size, 100 A pore size) from Merck-Millipore. The optimised
mobile phase was a mixture of 50 mM, pH 5.5 ammonium acetate solution and ACN (15/85, V/V),
while the capillary temperature was kept constant at 25 °C. Analyses were carried out applying a 30
kV voltage and 8 bar pressure at both ends of the capillary and samples were injected at the anodic
end of the capillary by applying a pressure of 5 bar for 30 s. LC-MS/MS analysis was exploited in order
to confirm quali-quantitative results obtained by CEC-DAD as regards major components thymol
and carvacrol. The LC-MS/MS analytical conditions developed ad-hoc for this research work are
described in Supporting Material (S1).

2.1.2. Sample Analysis

In order to be applied for the analysis of EO and formulations, both CEC-DAD and LC-MS/MS
methods were fully validated on analyte standard solutions, according to the main international
guidelines [11] in terms of linearity (including limit of detection, LOD and limit of quantitation, LOQ),
precision and accuracy. As regards EO analysis, a 100-pL aliquot was suitably diluted in the mobile
phase of both the instrumental systems, filtered through 0.2 um pore diameter nylon syringe filters
and injected in the two analytical systems described above. As regards formulations containing
Thymus EO, three capsules were individually weighed, their content was mixed, and an aliquot of
100 mg was extracted with 10 mL of mobile phase by vortex agitation for 30 s and ultrasonic bath for
15 min. The suspension was then centrifuged at 4500 RPM for 10 min, the supernatant was transferred
in autosampler vials and analysed by both CEC-DAD and LC-MS/MS. Compound quantitation was
obtained by integrating peak areas obtained from sample analysis and interpolation on the linearity
curve of each analyte. All analyses were carried out in triplicate by both CEC-DAD and LC-MS/MS on
a single batch of both EO and formulations. Quantitative results were then expressed as pg of analyte
for 100 pL of EO (% m/V) for Tymus vulgaris L. EO samples and as pug/cps for EO-based formulations.
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2.2. Ex Vivo Muscle Contractibility Evaluations

Male Guinea-pig (200-400 g) obtained from Charles River (Calco, Como, Italy) were used.
The animals were housed according to the ECC Council Directive regarding the protection of
animals used for experimental and other scientific purposes. The work was conducted according
to the guidelines set forth to EU Directive 2010/63/EU and to ARRIVE guidelines [12]. The protocol
was approved by the Institutional Ethics Committee of the University of Bologna (Protocol
PR 21.79.14) and transmitted to the Ministry of Health. Humane end points were followed
(https://www.humane-endpoints.info/en).

The animals were sacrificed by cervical dislocation. The organs studied were stomach, ileum,
proximal colon and gallbladder. Briefly, the organs were set up rapidly under a suitable resting tension
in 15 mL organ bath, containing appropriate physiological salt solution (PSS) consistently warmed
and buffered to pH 7.4 by saturation with 95% O,—5% CO, gas and used as previously described [13].

For detailed information about gastric fundus, ileum, proximal colon, and gallbladder, see
Supporting Material (S2).

2.2.1. Contractility Spontaneous

The tracing graphs of Spontaneous Contractions (SC) (g/min) of ileum, colon, gallbladder
and gastric fundus were continuously recorded with the LabChart Software (version 5.04, GraphPad
Software Inc., San Diego, CA, USA). After the equilibration period (about 30 min to 45 min according
to each tissue) cumulative-concentration curves (0.1, 0.5, 1, 5, 10 mg/mL) to samples were constructed.
Atthe end of each single dose, a 5 min stationary period was selected and, for each interval, the following
parameters were evaluated: mean contraction amplitude (MCA), calculated as the mean force value
(g); the force contractions standard deviations, considered as an index of the spontaneous contraction
variability (SCV); and basal spontaneous contraction activity (BSCA), calculated as the percentage
(%) variation of each mean force value (g) with respect the control. For details about spontaneous
contractions rates through a standard FFT analysis, see Supplementary Material S52.

In order to avoid errors due to the presence of artefacts, the period of analysis was chosen by
a skilled operator.

2.2.2. Contractility

The spasmolytic activity via action on L-type calcium channel was studied using ileum, colon,
and gallbladder contracted by high K*-concentration. Tension changes in smooth muscle relaxation
were recorded isometrically as previously described [14].

2.3. Antibacterial Activity

The antibacterial activity was performed against Gram™: Staphylococcus aureus (ATCC 25923
KS2), Streptococcus pyogenes (ATCC 19615), Bifidobacterium Breve (ATCC 15700), Lactobacillus
Fermentum (ATCC 9338); Gram: Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC
700728), Salmonella Thyphimurium (ATCC 14028); and fungus: Candida albicans (ATCC 14053). For
detailed information, see Supporting Material (S3).

2.4. Statistical Analysis

For in vitro studies on isolated organs, data are presented as described below. Spontaneous
contractility: the samples were added in a cumulative manner. Variation higher than 10% percent
variations of each range were considered statistically significant. On spontaneous contractility
experiments, data from concentration-response curves were analysed by GraphPad Prism® version
5.04, GraphPad Software Inc., San Diego, CA, USA [15,16]. Induced contractility: the spasmolytic
activity of samples was expressed as the percent inhibition of calcium-induced contraction on
K*-depolarized ileum, colon and gallbladder strips (smooth muscle activity) and presented as mean
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+ S.E.M. The potency of all samples defined as ICsy was evaluated from log concentration-response
curves (Probit analysis by Litchfield and Wilcoxon, n = 6-8) in the appropriate pharmacological
preparations [15-17]. Antibacterial activity: the minimal inhibitory concentrations (MICs) values were
determined by the microdilution method [18]. Data were evaluated using the IBM SPSS software
program (version 19; IBM SPSS Inc., IL, USA). All tested samples and control groups were compared
at the 95% confidence interval.

3. Results

3.1. Analytical Characterization

In order to effectively analyse the content of representative compounds in Thymus EO
and EO-based formulations, original CEC-DAD and LC-MS/MS methodologies were optimised
and fully validated. CEC-DAD was exploited to perform a qualitative and quantitative evaluation
of 12 compounds, while LC-MS/MS was used to accurately confirm the quantitative levels of thymol
and carvacrol in samples.

Both CEC-DAD and LC-MS/MS methods were fully validated in terms of linearity,
precision and accuracy. Method development and complete validation data are reported in
Supplementary Material 54. Briefly, method sensitivity was between 2 pg/mL and 5 pg/mL in terms of
limit of quantitation (LOQ) while linearity was deemed good (r? > 0.9991) over the 5-200 pg/mL range
for all the analytes. Method precision was also satisfactory, being the percentage relative standard
deviation (RSD%) always < 5.7%, while accuracy was > 85%.

Qualitative and quantitative results obtained from the analysis of Thymus EOs and derived
formulation, by applying CEC-DAD methodologies are reported in Table 1.

Table 1. Chemical composition of Thymus vulgaris L. essential oil and derived formulation.

Class Compound Thymus vulgaris L.EO  EO-Based Formulation

(1g/100 pL) (ug/cps)

p-Cymene 9.4 +0.6 41.8+65

Monoterpenes a-Terpinene 0.7+0.2 44+05
v-Terpinene 4.0+0.7 19.3+£1.0

[3-Myrcene 21+04 121+0.8

Limonene 04 +0.1 1.8+0.3

Bicyclic monoterpenes [-Pinene 1.1+02 43+06
Thymol 433+14 2102+ 5.6

Monoterpenols Carvacrol 20.7 +£2.3 9.7+74
Linalool 07+0.2 34+0.6

a-Terpineol 02+0.1 09+02

Bicyclic monoterpenols Borneol 1.3+04 6.4+0.7
Sesquiterpene lactones ~ (3-Cariophyllene 3.1+05 13.9+£1.0

As can be seen, all 12 compounds included in the CEC-DAD method were successfully identified
and quantified in both samples. As regards confirmatory analysis performed by LC-MS/MS for
thymol and carvacrol, these provided quantitative results in good agreement with those obtained by
CEC-DAD, namely 43.5 + 0.3 ng/100 uL and 21.0 + 1.1 pg/100 pL for thymol and carvacrol in EO samples
respectively, and 213.3 + 3.4 ug/cps and 102.2 + 4.8 respectively for thymol and carvacrol in EO-based
formulations, thus proving the effectiveness of CEC-DAD analysis. The electrochromatogram obtained
from the analysis of a Thymus vulgaris L. essential oil sample under the optimised conditions is shown
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in Figure 1, while the LC-MS/MS chromatogram obtained from the analysis of a Thymus vulgaris L.
essential oil-based formulation sample is shown in Figure 2.

20 -

15

Abs (mAU)

5 10 15 20
Time (min)
Figure 1. Capillary electrochromatography coupled to diode array detection (CEC-DAD)
electrochromatogram obtained from the analysis of a Thymus vulgaris L. essential oil sample under
the optimised conditions: 1, borneol; 2, linalool; 3, a-terpineol; 4, thymol; 5, carvacrol; 6, p-cymene;
7, B-pinene; 8, a-terpinene; 9, p-myrcene; 10, 3-Cariophyllene; 11, y-terpinene; 12, limonene.

100
CH, 1 CHy
OH
*
§ OH 2
8 50
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Figure 2. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) chromatogram obtained
from the analysis of a Thymus vulgaris L. essential oil-based formulation sample under the optimised
conditions: 1, thymol; 2, carvacrol.

3.2. Ex Vivo Muscle Contractibility Evaluations

Liquid EO and SEO effects were studied on gastric fundus, ileum, colon, and gallbladder
contractility, on both spontaneous and induced contractility (K* 80 mM). In addition, the excipients
(Table 1) were also tested. The results were compared with antispasmodic and spasmolytic activity of
OB, taken as a positive reference drug [19]. A quantitative comparison between EO, SEO, and OB is
not possible, since OB is a single molecule, EO and SEO are a mixture of chemical compounds. Only
a qualitative comparison is possible, most important for a possible therapeutic use.
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3.2.1. Spontaneous Contractility

The variation of spontaneous contraction for isolated stomach, ileum, colon, and gallbladder
tissues was evaluated through concentration-response curves. For all tissues, the changes of basal
activity induced by these chemical compounds were evaluated and were expressed as BSMA, SC
and following the modification of frequency bands of interest in each tissue. For all tissues, the original
record tract was shown.

Ileum

Liquid EO has the highest effect and induces a decrease (by 40%) in ileal tone as early as
at 0.1 mg/mL concentration, up to a 44% at 10 mg/mL; SEO presents an effect concentration dependent,
with maximal activity of 48% at 10 mg/mL. Excipients have minimal effect: up to 15% at 10mg/mL
(Figure 3). At the maximal concentration, (10 mg/mL) EO and SEO effects are similar, although
the EO effective concentration is 500 times lower in SEO than in EO. The OB ICs, (5 x 1077 M)
on basal spontaneous contraction activity (BSCA) is close to the effects elicited by EO and SEO
at the maximal concentration.

A B

20- EO SEO -@ Excipients 20- @ OB
2 0 0.01 0.1 1 10 100 2 0 0.1 1 10 100 1000
E ' (mg/mL) E (ng/mL)
c c
2 k)
g ; g
£ -204 £ -204
S S
o o
2 2
£ 40- £ 40-
o o
2 2
g g
< <
a 2
» -60- » -60-
a a
© ©
o o

-80- -80-

Figure 3. Ileum: basal spontaneous contraction activity. Zero represents the basal tone and each point
is the percent variation from the baseline after cumulative addition of each dose. (A) Essential oil
(EO), solid essential oil (SEO), and excipients (mg/mL); numbers in brackets represent the effective EO
concentration (mg/mL) in SEO; (B) otilonium bromide (OB) (ng/mL), an antispasmodic drug, used as
a positive control. Each value (expressed as percent variation) is the mean + SEM; when the error bar is
not shown, it is covered by the point.

Spontaneous contraction greatly decreases for EO at the minimal concentration, it decreases
for SEO at the maximal concentration (10mg/mL), consistently for the lower dose of essential oil in
SEO; spontaneous contraction decreases slightly and minimally for excipients and OB, respectively.
Therefore, the excipients effect is compliant with essential oil.

Contractility decreases at the lowest concentration (0.1 mg/mL) for EO, while it remains almost
constant for SEO and drops with the maximum concentration (10 mg/mL), and variability decreases
at 10 mg/mL. MCA and variability progressively decrease up to the maximal concentration; mean
amplitude and variability progressively decrease for OB (Figure 4).
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Figure 4. Focus on experimental original recording of the concentration-response curve of EO and SEO,
excipients, and otilonium bromide (OB) on spontaneous ileum basal contractility. Spontaneous
contraction (SC); spontaneous contraction variability (SCV); mean contraction amplitude (MCA).



Biomolecules 2020, 10, 860 9 of 22

Therefore, liquid essential oil has the highest power of decreasing the ileal contractility, since
the solid formulation presents 0.18% of essential oil rather than the liquid form. Excipients do not get
in the way of essential oil, but they act synergistically. Moreover, spontaneous contraction rates (FFT)
analysis showed that variability drops from the control to the first concentration and then remains
unchanged (on all frequencies) with a minimum for 10 mM concentrations (Supplementary Material S5).
OB maintains the ileal contraction, but in presence of a modest decrease of contraction amplitude
and low frequencies waves. Therefore, SEO profile seems similar to OB profile, since the decrease in
ileal tone seems associated to modest reduction in waves morphology (Supplementary Material S5).

Colon

Liquid EO reduces by 44% the ileal tone, independently on the dose; SEO decreases the tone
in a concentration dependent manner up to 50% at the highest dose. Excipients effect is much less
significant, as it reached the maximum of 20% at the highest concentration of 10 mg/mL. OB decreases
the tone, dose dependently up to 30% at 5 x 10~> M (Figure 5).

A B
EO SEO Excipient

20+ -@ Excipien 20- . OB
oy 001 0.1 1 10 100 oy 0.01 0.1 1 10 100
;0 5
< (mg/mL) < (ng/mL)
c c
2 o
g 20 £ 20
c c
o o
o o
3 3
3 -40- 3 -40-
2 2
ks K
2 1
@ -60- @ -60-
© ©
0 n
© ©
m m

-80- -80-

Figure 5. Basal spontaneous contraction activity (BSCA) in the colon. Zero represents the basal tone
and each point is the percent variation from the baseline after cumulative addition of each dose. (A) EO,
SEO and excipients (mg/mL); numbers in brackets represent the effective EO concentration (mg/mL) in
SEO. (B) Otilonium bromide (OB) (ug/mL), an antispasmodic drug, used as a positive control. Each
value (expressed as percent variation) is the mean + SEM; when the error bar is not shown, it is covered
by the point.

Spontaneous contraction is decreased severely by EO, less by SEO, even less by excipients,
and not by OB. Mean contraction amplitude is severely reduced by EO, with minimal variability;
it is progressively reduced by SEO, with reduced variability; and by excipients, reduced by OB only
at the highest concentration but without variability (Figure 6). In addition, the size of the bars in the FFT
are very high for the control and smaller but similar to each other for the different concentrations.
(Supplementary Material S6).

Excluding the control (for which the variability is very different), the contractility for SEO and OB
is similar.

The effect of SEO is similar in the two organs, liquid EO is the most effective in both the organs;
excipients decrease the effect of EO to the values of SEO. The SEO decrease in intestinal tone is 50%
both in the ileum and in the colon and is similar to OB in ileum.

Ileal and colonic contraction is maintained in presence of a reduction of the tone, although the SCV
is maintained more in the ileum than in colon, suggestive of a stronger effect on the colon.
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Figure 6. Focus on experimental original recording of the concentration-response curve of liquid EO

and SEO, excipients, and OB on spontaneous colon basal contractility. Spontaneous Contraction (SC);

spontaneous contraction variability (SCV); mean contraction amplitude (MCA). Absolute band powers

of control and after addition of each concentration observed in the same experiment.
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Gallbladder

Liquid EO and SEO decrease the BSCA independently on concentration at minimal value
(about 5%). Surprisingly, a dose-dependent effect is obtained by excipients, but without influence on
SEO values, that are similar to liquid EO (Figure 7).

20+ © EO SEO -@ Excipients
S
£ . 001 01 1 10 100
3 : 5 (mg/ml)
c
8
5
g .20
c
[«]
(8]
>
g
o '40"
2
s
c
3
B 60
[}
@
m
-80-

Figure 7. Basal spontaneous contraction activity elicited by free EO, SEO, and excipients in
the gallbladder. Zero represents the basal tone and each point is the percent variation from the baseline
after cumulative addition of each dose. Each value (expressed as percent variation) is the mean + SEM;
when the error bar is not shown, it is covered by the point.

Spontaneous contraction is constant, contractility slightly modified without variability of
spontaneous contractions, both for EO and for SEO. Excipients decrease contraction but not variability
of contractions; therefore, the effect of essential oil on gallbladder are very small (Figure 8). In addition,
the variability on FFT is observed only at higher concentrations (Supplementary Material S7).

CTR 0.1mg/mL 1mg/mL 10mg/mL
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sC ~ WWMMMW
1.20
1.10
_1.00
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MCA £ 0.80
+ T 0.70
£ 0.60
SCV 8 050
0.40
0.30 S = =
0.20 -
CTR 0.1 mg/mL 1 mg/mL 10 mg/mL

Figure 8. Cont.
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Figure 8. Focus on experimental original recording of the concentration-response curve of liquid EO,
SEO, and excipients on spontaneous gallbladder basal contractility. Spontaneous contraction (SC);
spontaneous contraction variability (SCV); mean contraction amplitude (MCA).

Gastric Fundus

Liquid EO and excipients induce a modest decrease in the gastric fundus tone. SEO progressively
decreases the gastric tone up to 70% at the highest studied dose (Figure 9).

Liquid EO, SEO, and excipients do not influence spontaneous contractility pattern in
a concentration dependent manner (Figure 10). The pattern of the contractions is regularly maintained.
EO tone remains constant and increases by 1 mg/ml concentration and then decreases. Compared to
the control, the variability drops but shows a slight increase to 10 mg/mL concentration compared to
the smaller ones (Figure 10). SEO tone gradually decreases; the variability increases for concentrations
greater than 1 mg/mL (Figure 10). Excipients tone drops (Figure 10); the variability is constant up to
1 mg/ml, and then it increases to 10 mg/mL (Figure 10). In all case regarding the FFT, low frequency
prevails (Supplementary Materials S8).
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Figure 9. Basal spontaneous contraction activity elicited by free EO, SEO, and excipients in the gastric
fundus. Zero represents the basal tone and each point is the percent variation from the baseline after
cumulative addition of each dose. Numbers in brackets represent the effective EO concentration
(mg/mL) in SEO. Each value (expressed as percent variation) is the mean + SEM; when the error bar is
not shown, it is covered by the point.
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Figure 10. Cont.
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Figure 10. Focus on experimental original recording of the concentration-response curve of liquid EO,
SEO and excipients on spontaneous gastric fundus basal contractility. Spontaneous contraction (SC);
spontaneous contraction variability (SCV); mean contraction amplitude (MCA).

3.2.2. Induced Contractility

Liquid EO, SEO, and excipients have been studied on intestinal segments depolarized by high
K* (80 mM) to evaluate its spasmolytic effects by affecting calcium movements through L-type
calcium channels.

Ileum and Colon

Liquid EO inhibition is independent on dose while on the contrary, SEO and excipients act
in dose-dependent manner and present overlapping curves. EO inhibited the activity by 77.4 +
0.2% already at the lowest concentration tested of 0.1 mg/mL. The same inhibition was attained
by SEO and excipients at 50-fold and 100-fold higher concentration, respectively. (Figure 11A).
The excipients, separately studied, have similar values of intrinsic activity: 72 + 1.9 but at five
times greater concentrations (Figure 11). The same trend is repeated in the colon (Figure 11C), with
the difference that the excipients, separately taken, have a maximum intrinsic activity at 5 mg/mL with
less potency (Table 2). OB taken as a positive control has higher spasmolytic potency on colon than
ileum (ICsg ileum 8.3 uM, colon 4.8 uM). Although it is not possible to make quantitative comparisons,
since otilonium is a single molecule and EO is a complex mixture of compounds, the activity profile of
is very similar, suggesting that they probably act on the same targets.
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Figure 11. Cumulative concentration-response curves of spasmolytic activity of Thymus vulgaris L. free

EO, SEO, and excipients and otilonium bromide (OB) against potassium chloride- (80 mM) induced

contraction on guinea pig ileum (panels A and B) and colon (panels C and D). Each point is the mean

+ SEM of four-six experiments. Where error bars are not shown these are covered by the point itself.

For a better comparison of the effects, numbers in brackets represent the effective EO concentration
(mg/mL) in SEO (panels A and C) or the amount of OB present in 1 mL (panels B and D).

Table 2. Relaxant activity of tested samples on K*-depolarized guinea pig intestinal smooth muscle.

Activity * Potency ”
Tissue Comp. M + SEM ICs 95% conf lim
Liquid EO 87 +1.6(1)
SEO 100 = 1.3 (5) 1.12 1.02-1.47
Ileum
Excip 72+19(5) 1.64 1.36-1.98
OB 90 + 3 (0.005) 0.0048 0.0040-0.0057
Liquid EO 85+ 1.9(0.5) 0.031 0.009-0.043
SEO 61+24(1) 0.70 0.57-0.85
Colon
Excip 95+ 1.7 (5) 1.33 0.99-1.48
OB 90 + 2.3 (0.02) 0.0019 0.0015-0.0025
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Table 2. Cont.

Activity ¢ Potency ®
Tissue Comp. M + SEM ICsp 95% conf lim
Liquid EO 84 +2.4(0.1) 0.048 0.035-0.055
SEO 77 £ 1.6 (10) 1.44 1.06-2.03
Gallbladder
Excip 38 +£2.6(1)
OB 10 £ 0.7 (0.02)

® Percent inhibition of calcium-induced contraction on K*-depolarized (80 mM) guinea pig ileum, colon,
and gallbladder. In parenthesis the indicated concentrations that give the maximum effect expressed as mg/mL.
b 1Cs, expressed as mg/mL, represent the concentration that inhibited 50% of the maximum contraction induced by
K* 80 mM and was calculated from concentration-response curves (probit analysis by Litchfield and Wilcoxon [17]
with n = 6-7).

Percent inhibition is independent on concentration for liquid EO and similar in the ileum
and colon. Excipients present a similar concentration-dependent decrease, overlapping SEO in both
organs, as the effect of excipients seems the same.

Gallbladder

The same study done on the gallbladder showed free EO and SEO action. The intrinsic activity is
84 + 2.4 (0.1 mg/mL) and 77 + 1.6 (10 mg/mL), respectively. As for potency, SEO is 30 times less potent
than liquid EO. The excipients have no intrinsic activity worthy of note like the reference compound
(Table 2). Interestingly, intrinsic spasmolytic activity of OB on gallbladder is negligible.

3.3. Antimicrobial Activity

In order to confirm the antibacterial activity of SEO, we have evaluated effects on some lines of
bacteria and fungi. Table 3 shows minimal inhibitory concentration (MIC) values. As can be seen,
the solid version maintains the bactericidal action against some pathogens taken as a reference while
the excipients are devoid of effects as already documented in literature [20].

Unlike cyprofloaxacin, taken as positive control, SEO and free EO did not show any effect on
Bifido and Lactobacillus. In addition, in negative control no growth inhibition was observed.

Table 3. Antimicrobial activity of tested samples.

Microorganism Strain MIC * (mg/mL)
Liquid EO SEO Excipient Cyprofloaxacin
Gram™ bacteria
Staphylococcus aureus 0.28 >50 Inactive 0.005
Streptococcus pyogenes 0.004 2 Inactive 0.002
Bifidobacterium Breve Inactive Inactive Inactive 0.005
Lactobacillus Fermentum Inactive Inactive Inactive 0.005

Gram™ bacteria

Pseudomonas aeruginosa 0.0002 0.1 Inactive 0.0004
Escherichia coli 0.4 >50 Inactive 0.005
Salmonella Thyphimurium 0.33 >50 Inactive 0.005
Fungus
Candida albicans 0.0018 9 Inactive 0.005
10% DMSO Inactive Inactive Inactive Inactive

7 Minimal inhibition concentration (MIC) values.
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4. Discussion

The three pharmacologic agents currently indicated in the USA for treatment of irritable bowel
syndrome with diarrhea (IBS-D) are non-systemic antibiotic rifaximin, the mixed p- and k-opioid
receptor agonist/d-opioid antagonist eluxadoline, and the selective serotonin 5-HT3 antagonist
alosetron [21]. An acceptable initial therapy, especially for patients with mild disease, is lifestyle
modification and education. In this context, the antispasmodic and spasmolytic action of a drug
is used to treat excessive painful muscle contractility of the intestine [22]. However, loperamide,
which inhibits peristalsis and increases colonic transit time, is not helpful with abdominal pain [23],
and often more than a drug is necessary. The association of antispasmodic and antinociceptive activity
should be important. Moreover, the available synthetic antispasmodic and/or spasmolytic molecules
often present severe side effects, limiting treatment efficiency and patient compliance. Therefore,
the pharmaceutical industry is now searching for developing new drug candidates from plants rich
in essential oils [24]. EOs antioxidant, anti-inflammatory, and antitumoral effects are widely known,
together with their antinociceptive activities; they act on the digestive system [25] and improve
the digestion process by stimulating the olfactory nerve endings [26,27]. Their antispasmodic effect
has been less investigated, mainly for their difficult oral administration and their local aggression,
though they are used in worldwide medicine. Peppermint oil administered orally in an enteric coated
form [28,29], was efficacious in reducing global symptoms and pain in IBS [30].

With this view, we have evaluated the effect of a solid formulation of Thymus vulgaris L. EO, that
presents spasmolytic and nociceptive effects [31] on the modulation of guinea pig ileum and colon basal
and induced contractility, in order to have experimental evidences of its antispasmodic and spasmolytic
intestinal effect. The study of the contractility of gallbladder and gastric fundus has been done to rule
out the possibility of side effects.

In Thymus EO, mainly phenolic compounds containing hydrogen, carbon, and oxygen are
present. By applying the original CEC-DAD and LC-MS/MS methodologies developed ad hoc for
this study to Thymus EO and to an EO-based formulation, it was observed how the main bioactive
constituents of both considered samples are represented by thymol and carvacrol together with other
minor constituents for a total of 12 selected analysed compounds, among monoterpenes, bicyclic
monoterpenes, monoterpenols, bicyclic monoterpenols, and sesquiterpene lactones. Such results
are consistent with the literature on the subject [32,33], also considering that the type of cultivar,
the geographical area, and seasonality significantly influence the content of bioactive compounds in
Thymus essential oil composition and thus its chemotype [34,35]. Based on these results, the most
represented phytochemicals thymol and carvacrol are responsible for the modulation of contractility of
EO and SEO. However, the interactions of different phytochemicals present in the phytocomplex could
produce synergistic antispastic and spasmolytic effects observed in ex vivo experiments [36].

In the basal conditions, SEO, consisting in excipients associated to liquid EO, is less effective than
liquid EO in reducing the muscular tone in both the ileum and colon; its effects are dose-dependent
and comparable to OB. However, in the ileum, the association of the excipients to liquid EO permits
the maintenance of a normal pattern of waves that are abolished by liquid EO, consistently with
SCV results. Therefore, the solid based formulation can functionally be proposed as ileal antispastic.
In the colon, EO and SEO decrease the basal tone, and their effect is twice that of OB. The contractions
are almost abolished by EO and SEO, differently from OB, which maintains a normal contractility route.
The fact that EO and SEO possess comparable effects is surprising as it should be considered that in
SEO, which is given to humans, EO represents the 0.18 % w/w (i.e., 1 mg SEO contains 0.002 mg EO).
This suggest that EO, when administered with excipients, exert consistent effects also in the micromolar
range of concentration. Consistently, it has been reported [37] that a thyme extract possesses spasmolytic
activity both on trachea and intestinal smooth muscle due to thymol and carvacrol, as shown by
experiments with each molecule were tested separately. In that study, the activity was not directly
proportional to concentration, since the lower doses were the most active. This observation is in
agreement with the present data in which very low EO concentration are very active, especially when



Biomolecules 2020, 10, 860 18 of 22

considering that the thymol and carvacrol concentration in the solid form are comparable to those of
the above-described reported data [37]. Another possibility is that the phytocomplex and excipients
cooperate. As excipients per se are poorly active, we can speculate that their components strongly
potentiate the effects of EO; in the presence of excipients, in fact, a 500-fold lower EO amount elicits
effects comparable to EO per se.

The effect of essential oil seems stronger in the colon than in the ileum: this fact is important
because, in the ileum, the contractile activity is maintained, and the low frequency waves are present
also if the intestinal tone is reduced. The presence of the basal contraction rate pattern allows the mixing
of the internal luminal content that is specific of the small intestine and not typical of the colon. The areas
of alternate contraction and stretching present segmentation that may be particularly important in
securing mixing: a recent paper speculates that the timing of segmentation contractions is largely,
if not entirely, the result of slow wave activity in the intestinal smooth muscle coat [38]. In the colon,
the low frequency bands and the contractility pattern are really diminished leading to a low contractile
activity that associated to the decreased tone, may be helpful in colonic diarrheal syndrome.

Regarding the L-type calcium channels effects, in the ileum, liquid EO presents high activity
and high potency, SEO lower activity, and much lower potency than EO, probably due to excipients; in
the colon, liquid EO shows the same activity as in the colon, but SEO shows less activity than in the ileum,
and EO and SEO show half their respective potency than in the ileum. OB has the highest activity
and potency in the colon with respect to the ileum. The ability of SEO to block calcium-mediated events
in gastrointestinal smooth muscle would lead to a local reduction in ileal and intestinal muscle tone.

A possible direct modulation of the formulation on the L-type calcium channels on the self-excitable
cells of the ileum and colon opens an interesting set of potential targets for its activity. We can speculate,
in fact, that thyme oil affects indirectly the mechanisms which drive motility trough membrane receptors,
the activation of which is linked to the entry of calcium into the cell. Moreover, the possibility that
the phytocomplex could directly bind other receptors involved in gut motility, as already demonstrated
for the cholinergic receptor [36], cannot be ruled out. To the SEO, spasmolytic action also contributes
to monoterpenes, for which antispasmodic activity has already been shown [39]. In particular, in SEO,
there is an interesting amount of p-cymene (Table 1), to which the literature attributes antispasmodic
action through interaction with receptors directly involved in the control of motility such as cholinergic
ones [40].

In addition, we have studied gallbladder and gastric fundus contractility as off target districts.
EO and SEO do not modify the spontaneous basal contraction of gallbladder; on calcium induced
contractility, EO exerts a relaxant activity on gallbladder, but the solid formulation, although maintaining
a relaxant activity on ileum and colon, reduces the potency by four and two times on gallbladder with
respect to the ileum and colon (Table 2).

The antibacterial activity of essential oils has long been known [41] and seems to be linked to
the prevalent chemical chemotype, with phenols being the most active compounds. The scientific
community is in agreement that the actions of these natural phytocomplexes depend not only on
the compounds present in greater quantities but on the chemotype. Indeed, it is possible to find
very powerful actions [42,43] but also phytocomplexes with much lower antimicrobial action [44,45].
The Thymus oil used contains predominantly phenolic monoterpenes (Table 1) and maintains its
antibacterial action even in the solid form by selectively acting on pathogenic bacteria (Table 3). It is
interesting to underline how the formulation maintains action in line with liquid oil even if with
lower power. Both are without effects on commensal bacteria. This data is particularly interesting
for the importance of the microbiota in intestinal homeostasis [46] and particularly for the strong
action on Streptococcus pyogenes (gram™) and Pseudomonas aeruginosa (Gram™~). The same can be
said for Candida albicans (Table 3). Carvacrol and thymol, being hydrophobic, can interfere with
the lipid bilayer of cytoplasmic membranes of bacteria, bringing loss of integrity and increasing
its fluidity and permeability and leakage of cellular material such as ions [47]. Biologically active
molecules probably maintain the ability to pass the bacterial wall, enter the cytoplasm and perform
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their bactericidal action compromising the vital functions of the bacterium itself. This action is also
described in the literature for thymol which represents the prevalent compound [48] and for p-cymene,
which has been proven to possess interesting in vitro antimicrobial activity [40].

In conclusion, our work focuses mainly on spontaneous contractility by highlighting an interesting
activity profile of SEO. This is probably due to the direct action of the formulation on the L-type
calcium channels on the self-excitable cells of the ileum and colon. The possible modulation of L-type
calcium channels opens up an interesting set of potential targets for its activity. In conclusion, this
formulation probably modulates various nodes of the target network connected to diarrhoea owing to
spasmolytic and antispasmodic action on ileum and colon. The solid form allows systemic applications
and makes it possible for use in systemic diseases. In addition, the anti-tumour action of essential oil
demonstrated for some cell lines [49] can be an interesting added value.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/6/860/s1,
File S1. LC-MS/MS conditions; File S2. Details for in vitro studies; File S3. Details for antibacterial activity; File S4.
Analytical method development and validation; Table S1. CEC-DAD and LC-MS/MS method validation results;
Figure S5. Effects of EO, SEO, excipients, and OB on ileum spontaneous contraction rates (FFT). Absolute band
powers of control and after addition of each concentration observed in the same experiment (FFT); Figure S6.
Effects of EO, SEO, excipients, and OB on colon spontaneous contraction rates (FFT). Absolute band powers
of control and after addition of each concentration observed in the same experiment (FFT); Figure S7. Effects
of EO, SEO, excipients, and OB on gallbladder spontaneous contraction rates (FFT). Absolute band powers of
control and after addition of each concentration observed in the same experiment (FFT); Figure S8. Effects of EO,
SEO, excipients, and OB on gastric fundus spontaneous contraction rates (FFT). Absolute band powers of control
and after addition of each concentration observed in the same experiment (FFT); File S9. Supplementary references.
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