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Abstract

It is shown that, under a very comprehensive notion of single peakedness, an aggregation

rule on a bounded distributive lattice is strategy-proof on any rich domain of single peaked total

preorders if and only if it admits one of three distinct and mutually equivalent representations

by lattice-polynomials, namely whenever it can be represented as a generalized weak consensus

rule, a generalized weak sponsorship rule, or an iterated median rule.

The equivalence of individual and coalitional strategy-proofness that is known to hold for

single peaked domains in bounded linearly ordered sets and in �nite trees typically fails in

such an extended setting. A related impossibility result concerning non-trivial anonymous and

coalitionally strategy-proof aggregation rules is also obtained.
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1 Introduction

The present work considers strategy-proof aggregation rules on a very general class of single peaked

preference domains for a very comprehensive class of outcome spaces, i.e. bounded distributive

lattices, and shows that they all admit several equivalent polynomial closed-form characterizations

(this is the content of Theorem 1 below).1

Many decision problems involving several agents can be represented as elicitation-and-aggregation

tasks where the items to be elicited and aggregated are private information tokens of a suitably

speci�ed type. Usually, those tokens are alternative items in the relevant outcome space (e.g. scores,

1Polynomial closed-form representations of aggregation rules and their signi�cance are discussed below (see notes 7

and 20).
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grades, signals, preferences, judgments, databases, locations of a physical environment or nodes of

an abstract network), to be submitted by the agents. If the agents are in fact stakeholders and

entertain nonveri�able �preferential attitudes�on the items of the outcome space, then a reliable and

e¤ective decision protocol should be reputedly strategy-proof, i.e. immune to advantageous individual

manipulations through submission of false information. Furthermore, if the agents have access to

cheap communication facilities allowing them to coordinate their choices, then a reliable decision

protocol should also be reputedly coalitionally strategy-proof, namely immune to jointly advantageous

manipulations on the part of coalitions of voters. Thus, the agents�preferences on the outcome space

are clearly involved in the process, but most decision protocols typically require that agents only

provide information on their most preferred outcomes. Our paper focuses precisely on that kind of

protocol, namely aggregation rules as opposed to social choice functions.2 The reasons for such a

choice are further discussed in subsection 1.1 below.

As it happens, dictatorial and constant rules are two available families of (coalitionally) strategy-

proof aggregation rules for any domain of topped preference preorders, but they are of course scarcely

appealing due to their intrinsic systematic biases and the resulting massive loss of information they

bring about. Unfortunately, the well-known Gibbard-Satterthwaite theorem implies that if the do-

main of admissible preferences includes every possible linear order on the outcome space and the

range of a strategy-proof aggregation rule includes at least three alternatives, then that aggregation

rule is a dictatorial rule.

However, it turns out that a much wider and interesting range of strategy-proof aggregation rules

is available for rich -i.e. suitably large- domains of single peaked3 preference preorders. Single peaked

preference preorders are preorders with a unique top element or maximum that arise in a natural

way whenever each agent�s representation of the outcome space is endowed with some �natural�

ternary betweenness relation establishing for any two outcomes x; y whether an arbitrary outcome z

lies between x and y or not. The most appropriate and �natural�interpretation of that betweeness

relation is the following: �outcome z lies between outcomes x and y�if and only if z is (commonly

regarded as) a �genuine compromise�between x and y. Namely, the betweenness relation is meant

to represent a shared structure of compromises between outcomes. Thus, single peaked preorders are

aptly described as those preorders with a unique best outcome that respect such betweenness relation

i.e. are consistent with the �compromise-structure�it represents.4

2Notice, however, that once the relevant preference domain is unambiguously speci�ed aggregation rules can also

be regarded as �top-only�social choice functions (see subsection 1.1 below for more details).
3�Single peakedness�will be used as a general non-technical term that admits of several speci�cations to be discussed

below.
4Thus, concerning the betweenness relation the present work follows the �classic�tradition that can be traced back

at least to Black (1948) and was largely taken for granted in the early social choice theoretic literature: the relevant

betweenness relation is required to be invariant across agents hence unique, modeling a representation of the outcome

space structure that is entirely shared by all the involved parties. Remarkable contributions which are on the contrary

consistent with an agent-dependent betweenness relation include Border and Jordan (1983), Bandelt and Barthélemy
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However, several speci�cations of betweenness and single peakedness are in fact available. The

speci�c notion of single peakedness we use in the present work -a quite general one, indeed- is described

and justi�ed in subsection 1.2 below.

1.1 Aggregation Rules and Social Choice Functions

It should be emphasized that aggregation rules are quite often encountered in the literature on

collective decision protocols under several labels (including �voting schemes�, �voting rules�, �social

choice rules�, �aggregators�, �consensus functions�), and in fact encompass Arrowian �social welfare

functions�as a special case, but are certainly not the most commonly used model in those works that

focus on strategy-proofness properties of decision mechanisms: social choice functions are. Thus, a

few clarifying comments on our modeling choice are in order here.

While social choice functions map pro�les of preference relations de�ned on the outcome-space

into outcomes, aggregation rules map outcome-pro�les into outcomes. Hence, when the outcome-

pro�le is �nite-dimensional (which is indeed the case in the present setting), the latter amount to

algebraic operations on the outcome space. Aggregation rules have been extensively studied in a few

remarkable and seminal attempts to extend the classic Arrowian framework (see e.g. Wilson (1975),

Rubinstein and Fishburn (1986), Monjardet (1990)), and are a focal model in the now burgeoning �eld

of judgment aggregation (see Endriss (2017) for a recent comprehensive survey). Moreover, outcome-

pro�les to be aggregated can be naturally regarded as lists of best options according to the agents�

preferences. Hence, aggregation rules qualify as a �natural�model for most voting mechanisms that,

in order to save on information communication and processing costs, typically ask participants to

communicate a unique choice among outcomes rather than a preference ranking of all outcomes. Of

course, the study of strategy-proofness properties of aggregation rules requires a previous speci�cation

of a preference domain: in that connection, single-peaked preferences provide -as mentioned above-

a very natural domain if agents have unique optima and share a betweenness relation describing

compromises between outcomes.

Once the relevant preference domain has been speci�ed, an obvious one-to-one correspondence

between aggregation rules and �top-only�social choice functions (namely, those social choice functions

whose values only depend on pro�les of top outcomes) is established. As a result, it becomes tempting

to con�ate aggregation rules and �top-only�social choice functions since after all an aggregation rule

and the corresponding �top-only�social choice function compute the same function: this can be done,

hence the present work may also be regarded as a contribution to the study of �top-only�social choice

functions.

Nevertheless, it should be emphasized again that from the perspective of communication and

information-processing costs an aggregation rule is a protocol that provides an e¢ cient implementa-

(1984), Peters, van der Stel and Storcken (1992), Peremans, Peters, van der Stel and Storcken (1997), Chichilnisky and

Heal (1997), Bordes, La¤ond and Le Breton (2011).
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tion of the corresponding �top-only�social choice function.5 That is the main reason why the current

work resists the foregoing con�ation, and its results are presented in terms of aggregation rules (rather

than of their �top-only�social choice functions counterparts).6

1.2 Betweenness and single-peakedness in bounded distributive lattices

Generally speaking, single peaked preorders are those preorders with a unique best outcome that

respect -are consistent with- such betweenness relation. It should be emphasized that such a broad

description of single peakedness is in fact compatible with several distinct speci�cations of the domain

of single peaked preference relations.

At least two salient issues require further preliminary clari�cation, namely:

(a) what is to be meant by a �natural�ternary betweenness relation?

(b) what is precisely meant by �consistency of preferences with the relevant betweenness relations�?

Concerning the �rst or �betweenness-speci�cation� issue, several choices are available here: the

earliest works start from bounded linearly ordered sets (e.g. Black (1948), Moulin (1980)), while

some subsequent contributions move to �nite products of bounded linearly ordered sets (e.g. Barberà,

Gul and Stacchetti (1993)) and to �nite trees (Danilov (1994). A somewhat more general approach

is proposed by Nehring and Puppe (2007 (a),(b)) who start from a certain �property space� on a

�nite outcome set. Most recently that approach has been furtherly extended to in�nite outcome sets

by Anno (2014). An even more general approach starts from an arbitrary interval space (see e.g.

Vannucci (2016 (a)).

The present paper covers a sort of middle ground on �betweenness-speci�cation�, focussing on the

betweenness relation induced by a bounded distributive lattice.7 Indeed, distributive lattices are a very

common structure which generalize linearly ordered sets and share with trees the important property

of admitting a well-de�ned ternary median operation. Relevant examples of aggregation problems

5To be sure, one might perhaps object to that statement on the comparative informational e¢ ciency of aggregation

rules along the following lines. While �top-only� social choice functions impose a much heavier burden than the

corresponding aggregation rules in terms of communication complexity and information-processing costs, they also

elicit -if strategy-proof- a much larger amount of private information. Hence, the alleged superiority of aggregation

rules with respect to �top-only�social choice functions on informational e¢ ciency grounds is in fact disputable. This

objection, however, is moot. Indeed, strategy-proof �top-only� social choice functions, by de�nition, do not use such

supplementary amount of information to compute the �socially best choice�. Now, if the entire preference ranking

of each agent is socially relevant for reasons other than computation of the �socially best choice� then presumably

the corresponding aggregate �social ranking�of alternatives is also socially relevant. Hence, arguably, the appropriate

outcome space should consist of the possible rankings of alternatives. But then, Arrowian social welfare functions (i.e.

a special class of aggregation rules) seem to be the most suitable model for that situation.
6Clearly enough, focussing on (strategy-proof) aggregation rules or �top-only� social choice functions amounts to

ignoring the class of (strategy-proof) non �top-only� social choice functions, and consequently raises the following

question: how signi�cant is that restriction? We shall have something to say on that issue in Section 4 below.
7A distributive lattice is a partially ordered set such that any two elements admit a least upper bound and a greatest

lower bound that mutually �distribute�on each other, i.e. interact much like set-theoretic union and intersection.
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having that structure include multipart grading in education and competitions, panel selection of

multidimensional poverty thresholds, behavioral preference aggregation.8 Take, for instance, multipart

grading processes: a particularly interesting example of that is judgement aggregation in a political

context when the assessment of candidates consists in the allocation of grades expressed in a common

language. In this case, we have a (bounded) linearly ordered set of grades �=(L;�), a (�nite)
population X of candidates to be evaluated, and a (�nite) population N of evaluators. Therefore,

the set of all possible gradings of X is LX , which admits the point-wise partial order 6 induced by

�. The resulting partially ordered set of complete gradings of candidates is then a product of linearly
ordered sets, i.e. X =(LX ;6), which is a typical instance of a bounded distributive lattice. Hence,
the natural betweenness relation is the one induced by the lattice of possible gradings.

This is indeed the formal setting recently proposed by Balinski and Laraki (2010) in order to

advance their case for majority judgment. Alternative applications of the very same set-up could

consist of aggregating grades achieved by a population of students in di¤erent subjects, assessments

of wines according to several alternative graded criteria, or the graded performances of participants

in a multi-trial competition.

In this particular setting, a proper de�nition of single-peakedness should arguably require (i)

respect for betweenness whenever top-outcomes are concerned, while (ii) allowing for indi¤erence

among distinct non top-outcomes even if one of them is located between the other one and the

top-outcome.

This kind of single-peakedness is indeed covered in the present paper but it is typically not in the

extant literature.

Outcome spaces consisting of products of bounded linearly ordered sets have been widely studied in

the literature on strategy-proof aggregation rules and social choice functions for single-peaked domains

(see e.g. Barberà, Gul and Stacchetti (1993) and Nehring and Puppe (2007(a))). The present paper

provides a characterization in algebraic or polynomial closed form (to be shortly discussed below) of

all the aggregation rules for single-peaked preference domains on that kind of outcome space, under

a very general notion of single-peakedness.9

As explained below, that choice is largely dictated by the principal aim of the present paper,

namely generalizing or extending some characterizations of the strategy-proof aggregation rules on

�rich� single peaked preference domains that also provide a closed-form ( actually, an algebraic or

polynomial) description of such rules, along the lines of Moulin (1980), Danilov (1994) and a few

8A rather comprehensive list of possible applications is detailed in Annex 2.
9Previous contributions (e.g. Barbera, Gul and Stacchetti (1993) and Nehring and Puppe (2007a) provide higher-

order characterizations that are not in algebraic closed form and with reference to a specialized version of single-

peakedness, that is indeed a special case of our own notion. Earlier classic characterizations of strategic-proof rules in

algebraic closed form, such as Moulin (1980) and Danilov (1994), concern other, more specialized, outcome spaces as

discussed below.
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other scholars.10

Concerning the second or �consistency�issue we adopt a very broad notion denoted here as local

unimodality, namely the requirement that individual preference relations have a unique maximum

or top outcome and be such that an outcome located between the maximum and another distinct

outcome is invariably regarded as not worse than the latter. Indeed, local unimodality encompasses

the most widely used versions of single peakedness (see Remark 1 below).

1.3 Main results

As a result of the foregoing three major modelling choices, the present work focusses on the aggre-

gation rules that are strategy-proof on an arbitrary rich -i.e. suitably �large�- domain of locally

unimodal total preorders11 on a bounded distributive lattice: the aim of the paper is to characterize

the entire class of such aggregation rules and represent them in algebraic closed form, along the lines

of the seminal works by Moulin (1980) and Danilov (1994) concerning respectively bounded linearly

ordered sets and �nite trees.

Several characterizations of the entire class of strategy-proof aggregation rules on any rich locally

unimodal domain are provided, generalizing or extending virtually all previously known results of

that kind. In particular, three distinct algebraic closed-form descriptions of such aggregation rules

are given in terms of certain lattice polynomials in both disjunctive and conjunctive normal form, and

of certain iterated lattice-median polynomials. As mentioned above, polynomials amount to e¢ cient

algorithms, so the outputs of polynomial rules are by de�nition �easily�computed. Moreover, distinct

if equivalent polynomial representations of the same strategy-proof aggregation rule allow a wider

perspective on the actually available strategy-proof protocols for any given decision problem. For

instance, disjunctive normal form polynomials include meets of the outcomes proposed by members

of a �xed coalition, and conjunctive normal form polynomials include joins of the outcomes proposed

by members of a �xed coalition. So we have two versions of collegial rules, and Theorem 1 entails

that are both strategy-proof. Similarly, the simple majority rule turns out to have three equivalent

representations as (i) the join of the meets or consensus-outcomes of all majority coalitions, (ii) the

meet of all the outcomes that are sponsored by members of some majority coalition, (iii) a suitably

iterated median between outcome-triples. Conceivably, each one of those equivalent representations

might be regarded as best suited for di¤erent decision problems. Quite remarkably, the simple ma-

10A closed-form expression admits �nitary operations and -if real numbers are involved-, a restricted class of functions

including logarithm, exponent, trigonometric functions: on the contrary, intrinsically in�nitary operators such as limits

and integrals are excluded. An algebraic (or, equivalently, polynomial) closed-form expression only admits �nitary

operations and is therefore highly convenient. Indeed, the values of an aggregation rule that has an algebraic closed-

form representation are easily computable (for any argument or pro�le) by executing a well-de�ned and uniform �nite

sequence of steps.
11Strictly speaking, our results hold for any rich domain of locally unimodal preorders that are complete on the range

of the aggregation rules taken into consideration.
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jority rule (that is well-known to be strategy-proof and coalitionally strategy-proof on both unimodal

and locally strictly unimodal domains in bounded linearly ordered sets) is con�rmed to belong to the

strategy-proof class even in the present wider setting. On the other hand, it will also be shown that in

a very large class of bounded distributive lattices that are not linearly ordered sets, and under minimal

neutrality12 requirements, no non-trivial anonymous aggregation rule is coalitionally strategy-proof on

the foregoing class of single-peaked domains. Our characterization results unify (generalizing or ex-

tending, and bringing together) several notions, approaches and results from the extant literature,

namely:

� The characterizations contributed by the present paper generalize Moulin�s original closed-
form characterization of strategy-proof aggregation rules on the full unimodal13 domain of total

preorders in bounded linearly ordered sets to any rich locally unimodal domain in any bounded

distributive lattice. Thus, we also obtain both a disjunctive normal form and a conjunctive

normal form lattice-polynomial14 representation of such rules. The latter is a generalized version

of the min-max representation produced by Moulin (1980) for the special case of bounded

linearly ordered sets.

� The disjunctive normal form lattice-polynomial representation mentioned above is in turn a

generalization of �latticial federation consensus functions�or, equivalently, of �generalized com-

mittee aggregation rules�as introduced respectively, and independently, by Monjardet (1990) in

his path-breaking contribution to (non-strategic) aggregation problems in (semi-)latticial struc-

tures, and by Barberà, Sonnenschein and Zhou (1991) and Barberà, Gul and Stacchetti (1993)

in their study of �top-only� strategy-proof social choice functions on a specialized rich single-

peaked (namely full locally strictly unimodal) domain in �nite Boolean distributive lattices and

in products of bounded linearly ordered sets, respectively (both of those outcome-structures

being of course special cases of bounded distributive lattices).

� As mentioned above, our characterization also highlights the equivalence of that lattice-polynomial
representation to another representation of strategy-proof aggregation rules on rich locally uni-

modal domains as iterated median polynomials, namely as �nite compositions of median, projec-

tion and constant operations. Our proof relies on the fact that such iterated median polynomials

can be conveniently represented as the behavior maps of certain median tree-automata acting on

suitably labelled trees by computing a sequence of values of a latticial median ternary operation.

Indeed, that tree-automata-theoretic representation essentially amounts to a streamlining and

12An aggregation rule is neutral with respect to a certain pair of outcomes when it treats them in an unbiased

manner.
13A single peaked domain of a certain type is said to be full if it includes all the single peaked preferences of that

type.
14A disjunctive normal form lattice-polynomial is a �nite sequence of disjunctions (i.e. joins) of �nite meets. Dually,

a conjunctive normal form lattice-polynomial is a �nite sequence of conjunctions (i.e. meets) of �nite joins.
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extension of the approach pioneered by Danilov (1994) in his remarkable representation of the

strategy-proof aggregation rules on unimodal domains of linear orders in �nite trees precisely

as �nite superpositions of median, projection and constant operations.15

� Finally, it is also proved that the equivalence between strategy-proofness and coalitional strategy-
proofness - that is known to hold for rich locally unimodal domains in bounded linearly ordered

sets and for unimodal domains of linear orders in �nite trees- fails for both unimodal and lo-

cally strictly unimodal domains in bounded distributive lattices that are not linearly ordered

sets,16 hence even in outcome spaces with a well-de�ned median operation (Theorem 2). An

impossibility theorem concerning coalitional strategy-proofness on rich unimodal or strict lo-

cally unimodal domains for anonymous voting rules satisfying very weak local sovereignty and

neutrality requirements (Theorem 3) is also provided.17 Thus, in particular, Theorem 3 implies

that the equivalence between strategy-proofness and coalitional strategy-proofness established

by Moulin (1980), Danilov (1994) for other structures endowed with a ternary median opera-

tion such as bounded linearly ordered sets and trees cannot be extended to arbitrary bounded

distributive lattices even for non-sovereign aggregation rules.18

The remainder of the paper is organized as follows. The next section introduces notation and

de�nitions. The main results of the paper are collected in Section 3. Section 4 is devoted to a detailed

discussion of some related literature and o¤ers some concluding remarks. Appendix 1 collects all the

proofs. Annex 1 includes a detailed presentation of the basic notions on tree automata alluded to in

the paper. Annex 2 provides a list of interesting examples of outcome spaces having the structure

of a bounded distributive lattice. Annex 3 illustrates the results with an example concerning the

Boolean square. Annex 4 is devoted to an extensive discussion of the related literature.

15As a matter of fact, such use of medians was foreshadowed in the representation of anonymous strategy-proof rules

via generalized extended medians due to Moulin (1980).
16Vannucci (2016) provides a general incidence-geometric argument to explain that equivalence-failure.
17An aggregation rule is said to be sovereign if it is onto.
18 It is indeed well-known that a multidimensional structure of the outcome space tends to undermine coalitional

strategy-proofness of sovereign aggregation rules even for single peaked domains. However, Danilov�s result as men-

tioned above implies that sovereign coalitionally strategy-proof aggregation rules do exist for locally unimodal domains

in �nite trees. Now, the order dimension of a �nite tree may be 2 or even 3 (see e.g. Trotter and Moore (1977); recall

that the order dimension of a partially ordered set (A;6) is the minimum number of linear orders on A whose inter-

section is 6) . So, multidimensionality cannot be the whole story underlying failure of coalitional strategy-proofness
for sovereign aggregation rules. In that connection, Theorem 2 provides some useful information because it implies

that coalitional strategy-proofness on a locally unimodal domain may fail for sovereign strategy-proof rules even in

the Boolean square 22 (with 2 =(f0; 1g ;�)), that has order dimension 2. Hence, Theorem 2 also entails that the key

point here is not just (multi)dimensionality of the outcome space: subtler, more speci�c details of its order-theoretic

structure also play a signi�cant role here as implied by Theorem 3 itself (see also Remark 5 in Section 3 for further

elaboration on that point).
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2 The model: notation and de�nitions

The focus of the present work is the class of strategy-proof aggregation rules on certain singled peaked

preference domains as de�ned on outcome spaces with a bounded distributive latticial structure. Ac-

cordingly, let us introduce one by one the main components of our model, and their basic structures.

I. The outcome space: bounded distributive lattices.

The outcome space is a distributive lattice X = (X;6), namely X is a set and 6 is a partial

order i.e. a re�exive, transitive and antisymmetric binary relation on X such that the following

conditions hold:19

(i) (General lattice properties) for any x; y 2 X both the least-upper-bound (l.u.b.) or join _ and
the greatest-lower-bound (g.l.b.) or meet ^ of x and y are well-de�ned binary operations on X. In
particular, notice that x _ y = y and x ^ y = x hold if and only if x 6 y;20

(ii) (Distributivity) for all x; y; z 2 X, x^ (y_ z) = (x^y)_ (x^ z) (or, equivalently, x_ (y^ z) =
(x _ y) ^ (x _ z)) hold.21

A (distributive) lattice X is said to be upper (lower) bounded if there exists > 2 X (? 2 X)
such that x 6 > (? 6 x ) for all x 2 X, and bounded -written X =(X;6;>;?) if it is both upper
bounded and lower bounded.22

Order �lters and several classes of �lters of distributive lattices will also be employed in the proof

of Claim 1 below and in the de�nition of some aggregation rules, and are therefore to be introduced

here. An order �lter of a distributive lattice X =(X;6) is a set Y � X such that for each x 2 X
if there exists y 2 Y with y 6 x then x 2 Y . An order �lter Y of X is a �lter if y ^ z 2 Y for all

y; z 2 Y . Moreover, a �lter Y of X is prime if for any y; z 2 X, if y _ z 2 Y then either y 2 Y or

z 2 Y .23

Bounded distributive lattices can be represented in a few equivalent ways in terms of some al-

ternative sets of algebraic operations. Any such set of algebraic operations characterizes distributive

lattices and speci�es a corresponding class of polynomials.24 Since the focus of the present work is

19For a thorough introduction to lattice theory see Davey and Priestley (1990).
20 It is well-known and easily checked that the joint and the meet thus de�ned satisfy associativity, commutativity,

idempotency and absorption, (see de�nitions in the text below). Notice that thanks to associativity of _ and ^ the
l.u.b and the g.l.b of any �nite Y � X are also well-de�ned and denoted by _Y and ^Y , respectively. If Y is in�nite,

_Y and ^Y may or may not be well-de�ned.
21A linear order is a partial order 6 such that [x 6 y or y 6 x] holds for all x; y 2 X. Notice that a linearly ordered

set, i.e. a partially ordered set (X;6) such that 6 is a linear order, does indeed satisfy the distributive identity above,

and is therefore a special instance of a distributive lattice.
22A bounded distributive lattice (X;6;?;>) is Boolean if for each x 2 X there exists a complement namely an

x0 2 X such that x _ x0 = > and x ^ x0 = ?.
23Dually, an order ideal of X is a subset Y � X such that for each x 2 X if there exists y 2 Y with x 6 y then

x 2 Y . An order ideal Y of X is an ideal if and y _ z 2 Y for all y; z 2 Y; and an ideal Y of X is prime if for any

y; z 2 X, if y ^ z then either y 2 Y or z 2 Y .
24Recall that the class of polynomial functions or polynomials of a certain algebra (or set endowed with a list of
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precisely on polynomial representations of the strategy-proof aggregation rules in bounded distributive

lattices, an explicit formulation of the relevant algebraic representations of distributive lattices is

absolutely required.

The most common algebraic formulation of all distributive lattices (either bounded or not) is

by far the one based on the join and meet operations: thus, a distributive lattice is a structure

X 0 = (X;_;^) where _ : X2 ! X and ^ : X2 ! X are two binary operations on X with the

following properties:

(Associativity) : (x _ y) _ z = x _ (y _ z) and (x ^ y) ^ z = x ^ (y ^ z) for all x; y; z 2 X;
(Commutativity): x _ y = y _ x and x ^ y = y ^ x for all x; y 2 X;
(Idempotency): x _ x = x and x ^ x = x for all x 2 X;
(Absorption): x _ (x ^ y) = x and x ^ (x _ y) = x for all x; y 2 X;
(Distributivity): x_(y^z) = (x_y)^(x_z) and x^(y_z) = (x^y)_(x^z) for all x; y; z 2 X.25

It is a remarkable fact that a ternary operation � : X3 ! X called median can be de�ned on any

bounded distributive lattice X 0 = (X;_;^) by the following rule:26 for all x; y; z 2 X,

�(x; y; z) = (x ^ y) _ (y ^ z) _ (x ^ z) = (x _ y) ^ (y _ z) ^ (x _ z).

The median � of a bounded distributive lattice X 0 is indeed characterized by the following prop-

erties:

(�1): �(x; x; y) = x for all x; y 2 X;
(�2): �(�(x; y; v); �(x; y; w); z) = �(�(v; w; z); x; y);

(�3): there exist 0; 1 2 X such that �(0; x; 1) = x for all x 2 X (clearly, if X 0 = (X;_;^;>;?),
then 1 = > and 0 = ? and, as it is easily checked, both x_ y = �(x; y;>) and x^ y = �(x; y;?) hold
for all x; y 2 X).
Therefore, a bounded distributive lattice can also be represented as an algebraic structure X 00 =

(X;�) with one ternary operation -the median �- that satis�es the three properties (�1),(�2),(�3)

listed above.

A ternary (latticial) betweenness relation BX =
�
(x; z; y) 2 X3 : x ^ y 6 z 6 x _ y

	
is de�ned

on a distributive lattice X = (X;6), and for any x; y 2 X, [x; y] = fz 2 X : x ^ y 6 z 6 x _ yg is the
operations de�ned over some �nite list of elements), is the smallest class of functions which includes the projections

(selections of a single argument out of any lists of arguments of a given operation) and is closed with respect to every

�nite composition of operations of the algebra. Hence, the values of a polynomial function are consistently computed

by performing a �nite and uniform sequence of elementary operations.
25The partial order structure on (X;6) induced by a distributive lattice (X;_;^) is de�ned as follows: for any

x; y 2 X, x 6 y if and only if y = x _ y or equivalenty x = x ^ y.
26The median of a bounded distributive lattice was �rst introduced by Birkho¤ and Kiss (1947) who also provided

a general characterization of that operation. The Birkho¤-Kiss axiom system for � was subsequently simpli�ed by

Sholander who established the characterization mentioned in the text, based upon �1, �2 and �3 (Sholander (1952)),

and provided a further characterization of the median of an arbitrary distributive lattice along the following lines

(Sholander (1954)).
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interval induced by x and y : therefore, for any x; y; z 2 X; z 2 [x; y] if and only if (x; z; y) 2 BX
(also written BX (x; z; y)), i.e. [x; y] = fz 2 X : BX (x; z; y)g = BX (x; :; y). In particular, a subset

Y � X is BX -convex if for any x; y; z 2 X, BX (x; y; z) and fx; zg � Y entail y 2 Y .27

A few remarkable basic properties of BX are listed under Claim 1 in Section 3 below.

It should be emphasized again that examples of interesting and relevant outcome spaces with a

bounded distributive latticial structure abound, ranging from locations on a bounded grid or discrete

ordered characteristic space to admissible gradings in learning or sport competitions, and feasible

committees or poverty thresholds.28

II. Preference domains: single peakedness.

Now, consider the set TX of all topped preorders on X (i.e. re�exive and transitive binary relations

having a unique maximum in X). For any <2 TX , top(<) denotes the unique maximum of <.29 For
any Y � X, < is Y -complete if for each y; y0 2 Y either y < y0 or y0 < y (or both), and total if

it is X-complete. For any x 2 X, UC(<; x) := fy 2 X : y < xg denotes the upper contour of < at

x. Single peaked (total) preorders are those topped total preorders that �respect�-i.e. are consistent

with- the betweenness relation BX . The relevant notion of BX -consistency, however, is amenable to

several distinct speci�cations: we shall use a very general one as de�ned below.

De�nition 1. Let X = (X;6) be a bounded distributive lattice. A topped preorder <2 TX
-with top outcome x�- is locally unimodal (with respect to BX ) if and only if, for each y; z 2 X,
z 2 BX (x�; :; y) implies that z < y. We denote by bUX the set of all locally unimodal preorders, and

by UX� TX set of all locally unimodal total preorders (with respect to BX ).

As mentioned above, the rationale underlying single peakedness as local unimodality may be

plainly described as follows: a locally unimodal preference preorder respects betweenness BX in

that it never regards an intermediate or compromise outcome between the top outcome and another

outcome as strictly worse than the latter.

Remark 1. It is worth noticing here that in the extant literature on single-peakedness two

alternative specialized versions of local unimodality are most typically used. One of them, that we

shall denote as unimodality, is a strengthening of local unimodality which consists in enlarging its

scope to an arbitrary triple x; y; z 2 X (no requirement that x be the top outcome): the classic

Moulin (1980) employs precisely that notion30 . The second one, that we shall denote as local strict

27The following analysis could be pursued by replacing entirely betweenness relations with intervals (see Vannucci

(2016) for such an approach in a more general setting).
28A more detailed list of examples is provided in Annex 2.
29We denote with � and � the asymmetric and symmetric components of <, respectively.
30To be sure, in bounded linear orders local unimodality and unimodality are equivalent. Thus, Moulin�s de�nition

of single peakedness in Moulin (1980) as reported below in the following note can also be taken as an early advocacy

of local unimodality. In any case, local unimodality quali�es as the natural extension of Moulin�s de�nition of single

peakedness to an arbitrary bounded distributive lattice.
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unimodality (but is often labelled -somewhat misleadingly- as �generalized single peakedness�), is

an alternative strengthening of local unimodality that consists in requiring that the intermediate z be

strictly preferred to y (i.e. that z � y rather than just z < y hold). We shall denote by U�X , SX the set
of all unimodal (locally strictly unimodal, respectively) total preorders with respect to BX . It is also

worth mentioning here that unimodal and locally strictly unimodal preferences are not always �rmly

distinguished as they should be. For instance, in a very interesting and widely cited paper Nehring

and Puppe (2007b, p.135) quote Moulin (1980) as a contribution on �generalized single peaked�(i.e.

locally strictly unimodal) preferences in the case of a line (but see also Barberà, Gul and Stacchetti

(1993) who identify single peakedness and locally strict unimodality, suggesting that this is precisely

the notion underlying Moulin�s work, and provide a characterization of strategy-proof rules on the

locally strictly unimodal domain in products of bounded intervals).31

We shall mostly focus on locally unimodal domains of preorders that satisfy a suitable richness

condition, as made precise by the following:

De�nition 4. A set DX � UX of locally unimodal total preorders (with respect to BX ) is

minimally rich if for any x 2 X there exists <2 DX such that top(<) = x and rich if, for any

x; y 2 X, there exists <2 DX such that top(<) = x and UC(<; y) = BX (x; :; y). Moreover, a rich set
DX � UX is strictly rich if there exists a rich set D

0

X � DX consisting of locally strictly unimodal
preorders.32

Thus, a locally unimodal domain DX is rich whenever for each pair of outcomes x; y there exists a

preference relation in DX having x as its top outcome and such that the subset of outcomes (weakly)

preferred to y is precisely the interval between x and y. It should be noticed here that for each

31 Indeed, Moulin�s de�nition, once reformulated in terms of preferences (as opposed to utilities, as in the original

Moulin (1980), p. 439) amounts to the following requirement: �If a is the top outcome or peak on the line (X;6) then
a � x < y if a < x 6 y or y 6 x < a.� Notice however that this condition is only consistent with unimodality as

opposed to locally strict unimodality. To see this just consider X = fa; x; yg with a < x < y, and total preorder <
such that a � x � y: by construction, < is certainly consistent with Moulin�s condition, and it is in fact unimodal

but not at all locally strictly unimodal (or �generalized single peaked�). Indeed, under the common �single peakedness�

label, Moulin (1980) and Danilov (1994) focus on unimodal preferences, while Barberà, Gul and Stacchetti (1993) and

Nehring and Puppe (2007) consider locally strictly unimodal preferences.

To be sure, Nehring and Puppe�s approach to single-peakedness via betweenness relations of �nite property spaces

(see Nehring and Puppe 2007(a), (b)) does provide a generalization of most notions of single-peakedness in the previous

literature. But such a generalization amounts to the de�nition of single-peakedness with respect to betweenness relations

other than the usual betweenness relations of linear orders, trees or distributive lattices. Nevertheless, when applied to

(bounded) distributive lattices, Nehring and Puppe�s notion of single-peakedness is incomparable to Moulin�s, hence it

is not a generalization of the latter.
32 In words, �richness� requires that for any pair of outcomes (x; y), there exists a locally unimodal preference such

that x is its top element and its upper contour at y consists precisely of the outcomes that lie between x and y, that

is essentially the standard richness condition used in the literature concerning single-peakedness (see e.g. Nehring

and Puppe (2007 (a), (b)). Notice that a set D of preference relations on X is sometimes said to be �minimally rich�

whenever it only satis�es property (i).
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x; y 2 X one such rich locally unimodal preorder <�x;y with three indi¤erence classes is easily de�ned
as follows: take fxg ; BX (x; :; y)n fxg ; and a subset of XnBX (x; :; y) to be the top, middle, and
bottom indi¤erence classes of <�x;y, respectively.

III. Aggregation rules and strategy-proofness.

Let N = f1; :::; ng denote the �nite population of agents and P(N) the set of all subsets of N
or coalitions: an aggregation rule for (N;X) is a function f : XN ! X. Hence, UNX denotes the

corresponding set of all N -pro�les (<i)i2N of locally unimodal total preorders or full locally unimodal
domain. Moreover, for any (<i)i2N 2 UNX , we denote by top((<i)i2N ) the corresponding pro�le of
maxima top(<i): Similarly, U�NX and SNX denote the corresponding full unimodal and full locally

strictly unimodal domains.

The following strategy-proofness properties of an aggregation rule will play a pivotal role in the

present analysis:

De�nition 5. For any i 2 N , let Di � UX be minimally rich. Then, an aggregation rule

f : XN ! X is (individually) strategy-proof on �i2NDi � UNX if and only if, for all xN 2 XN ,

i 2 N and x0i 2 X, and for all <i 2 Di, f(top(<i); xNnfig) <i f(x0i; xNnfig).

De�nition 6. For any i 2 N , let Di � UX be minimally rich. Then, an aggregation rule

f : XN ! X is coalitionally strategy-proof on �i2NDi � UNX if and only if for all xN 2 XN ,

C � N and x0C 2 XC , and for all < = (<j)j2N 2 �i2NDi such that top((<i)i2N ) = xN , there exists
i 2 C such that f(xN ) <i f(x0C ; xNnC).

Clearly, not all strategy-proof aggregation rule are otherwise appealing. As mentioned in the

Introduction, two notable classes of strategy-proof voting rules are the projections (or dictatorial

rules) �i : XN ! X, i 2 N where for all xN 2 xN , �i(xN ) = xi, and the constant rules fx :

XN ! X, x 2 X where for all xN 2 XN , fx(xN ) = x. In order to single out �nice�strategy-proof

rules we shall mainly rely on the following benchmark properties.

An aggregation rule f : XN ! X is anonymous if f((xj)j2N )) = f((x�(j))j2N )) for all xN 2 XN

and any permutation � of N ; idempotent or unanimity-respecting if f(xN ) = x for each xN 2
XN such that xi = x for all i 2 N ; and sovereign (or onto) if for all x 2 X there exists xN 2 XN

such that f(xN ) = x (it is well-known and easily checked that idempotence implies sovereignty by

de�nition, and is in turn implied by sovereignty under strategy-proofness).

As mentioned in the Introduction, the main objective of the present work is to characterize the

entire class of strategy-proof aggregation rules on single peaked domains, and to represent them in a

suitable algebraic closed form along the lines of previous results on (more specialized) single peaked

domains in linear orders due to Moulin (1980) or on (related but incomparable) single peaked domains

in �nite trees due to Danilov (1994).

The following condition on aggregation rules for distributive lattices requiring consistence of the
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aggregation rule and the latticial betweenness relation will play a crucial role in our main character-

ization result.

De�nition 7. Let X =(X;6) be a distributive lattice. An aggregation rule f : XN ! X is BX -

monotonic if and only if for all xN = (xj)j2N 2 XN , i 2 N and x0i 2 X: f(xN ) 2 [xi; f(x0i; xNnfig)],
i.e. BX (xi; f(xN ); f(x0i; xNnfig)).

Thus, an aggregation rule is BX -monotonic whenever the outcome that an agent obtains by

submitting a certain outcome x lies between x itself and the outcome that the agent would obtain by

submitting another outcome (for any �xed pro�le of proposals/submissions on the part of the other

agents). In other terms, f �respects�the betweenness relation BX .

Remark 2. As noticed above, two classes of strategy-proof aggregation rules are the projections

(or dictatorial rules) �i : XN ! X, i 2 N where for all xN 2 xN , �i(xN ) = xi, and the constant

rules fx : XN ! X, x 2 X where for all xN 2 XN , fx(xN ) = x. It is also easily checked that both

dictatorial and constant rules are BX -monotonic by Closure of BX as de�ned and proved in Claim

1 of Section 3 below.

Three classes of polynomial aggregation rules corresponding to the main algebraic presentations

-(X;_;^) and (X;�)- of bounded distributive lattices will be considered, namely generalized weak
committee rules, generalized weak sponsorship rules and iterated median rules. It will

be shown that those three classes are indeed equivalent and provide alternative algebraic closed-form

descriptions of the entire class of aggregation rules which are strategy-proof on rich single peaked

domains in an arbitrary bounded distributive lattice.

De�nition 8. A generalized committee in N is a set of coalitions C � P(N) such that T 2 C
if T � N and S � T for some S 2 C (a committee in N being a non-empty generalized committee in

N which does not include the empty coalition).33

De�nition 9. Let X =(X;6) be a bounded distributive lattice. A generalized weak consensus
rule is a function f : XN ! X such that, for some �xed family fzS : zS 2 XgS2P(N), and for all
xN 2 XN , f(xN ) = _S2P(N)((^i2Sxi) ^ zS).

A special case of generalized weak consensus rule is a generalized consensus rule, namely

a function f : XN ! X such that, for some �xed generalized committee C � P(N) and for all
xN 2 XN , f(xN ) = _S2C(^i2Sxi).
Dually, we have:

De�nition 10. Let X =(X;6) be a bounded distributive lattice. A generalized weak spon-
sorship rule is a function f : XN ! X such that, for some �xed family fzS : zS 2 XgS2P(N), and
for all xN 2 XN , f(xN ) = ^S2P(N)((_i2Sxi) _ zS).

A special case of a generalized weak sponsorship rule is a generalized sponsorship rule, namely
33Thus, a generalized committee is just an order �lter of the partially ordered set (P(N);�) of coalitions of N .
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a function f : XN ! X such that, for some �xed generalized committee C � P(N) and for all
xN 2 XN , f(xN ) = ^S2C(_i2Sxi).
Thus, a generalized consensus rule is an aggregation rule that selects the join of the consensus-

outcomes of the coalitions of a pre�xed set of �winning�coalitions.34 Dually, a generalized sponsorship

rule selects the meet of the joins of outcomes sponsored by some member of each coalition of a

pre�xed set of �winning�coalitions. A generalized weak consensus rule (generalized weak sponsorship

rule) works as a generalized consensus rule (generalized sponsorship rule) except for the fact that

every coalition is involved and it also admits characteristic and possibly non-trivial ceilings35 of

its admissible consensus-outcomes (�oors on the largest proposal sponsored by some its members).

Generalized consensus rules and generalized sponsorship rules correspond to the special case in which

the coalitions which do not belong to a certain �xed committee get the bottom element ? as their

ceiling (the top element > as their �oor). Notice that both generalized (weak) consensus rules and

generalized (weak) sponsorship rules are instances of closed-form -indeed algebraic- aggregation rules

since they are simple lattice polynomials involving the join and meet operations.36

A third class of polynomial rules that we shall denote as iterated median rules may be de�ned

starting from the algebraic representation of a (bounded) distributive lattice as a structure X 00 =

(X;�;>;?).
An iterated median rule f : XN ! X assigns to each outcome-pro�le xN 2 XN the output of

a certain nested sequence of medians �(:::�(�(u; xi; z); xi; �(u0; xi; z0)):::) starting with medians of

projections xi of xN , i = 1; :::; n and of the values of f at the 2n extremal pro�les yN 2 f>;?gN

following the instructions speci�ed by the non-terminal nodes of a �nite labelled tree. That is made

more precise by the following:

De�nition 11. (Iterated median rules) Let X = (X;6) be a bounded distributive lattice.
Then, an aggregation rule f : XN �! X is an iterated median rule if for all xN 2 XN ,

f(xN ) = �[

n�1�timesz }| {
�(:::�( f(?; :::;?;?); x1; f(?; :::;?;>)):::); xn;

n�1�timesz }| {
�(:::�( f(>; :::;>;?); x1; f(>; :::;>;>))):::)].

Thus, an aggregation rule f : XN �! X is an iterated median rule if at any pro�le xN its value

f(xN ) is a certain n-iterated median of the pro�le-projections xi, i 2 N , and of constants given by the
values of f at extremal pro�les zN 2 f?;>gN . To put it in another equivalent terms, iterated median
34 Indeed, any term ^i2Sxi can be regarded as the consensus of coalition S at pro�le xN in the following sense: if

one identi�es each outcome z with the set of the extensional properties Py = fu 2 X : u 6 yg with y 2 X, then ^i2Sxi
is precisely the outcome which satis�es the largest possible set of properties that are satis�ed by all the xi with i 2 S.
35A ceiling is non-trivial if it is not the top outcome > of X .
36Notice that generalized (weak) consensus rules can also be regarded as generalized max-min operators, and gener-

alized weak sponsoring rules as generalized min-max operators (as a matter of fact, the latter min-max representation

was used in the original characterization of strategy-proof aggregation rules on full single peaked domains in bounded

linearly ordered sets due to Moulin (1980): see also Monjardet (1990)).
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rules are parameterized by their values at the extremal pro�les. A detailed and general formulation of

the sequence of medians involved is best explained by regarding iterated median rules as the behavior

maps of certain tree automata (see Adámek and Trnková (1990) for a thorough treatment of tree

automata, and Annex 1 for all the relevant details).

The example below provides a very simple illustration of all of the above with n = 3.

Example 1. Let X = (X;6;>;?) be a bounded distributive lattice. An iterated median rule
f : X3 ! X for (f1; 2; 3g ; X) is de�ned as follows: for any x = (x1; x2; x3) 2 X3,

f(xN ) = �(�(�(f(?;?;?); x1; f(?;?;>)); x2; �(f(?;>;?); x1; f(?;>;>)));

x3; �(�(f(>;?;?); x1; f(>;?;>)); x2; �(f(>;>;?); x1; f(>;>;>)))).

The following diagram summarizes the workings of f :37

Figure 1

3 Results

We are now ready to state the main result of this paper establishing a few alternative characterizations

of strategy-proof aggregation rules on rich locally unimodal pro�les as: (a) the BX -monotonic rules,

(b) the generalized weak consensus rules, (c) the generalized weak sponsorship rules, (d) the iterated

median rules. To start with, we need to introduce a few basic properties of the betweenness relation

BX that will be widely used in the relevant proofs to follow. Such properties are collected under the

following:

Claim 1. Let X =(X;6) be a distributive lattice. Then, the latticial betweenness relation BX
satis�es the following conditions:

37We thank Mariateresa Ciommi for assistance in drawing the present �gure.

16



(i) Symmetry : for all x; y; z 2 X, if BX (x; z; y) then BX (y; z; x);
(ii) Closure (or Re�exivity): for all x; y 2 X; BX (x; x; y) and BX (x; y; y);
(iii) Idempotence: for all x; y 2 X, BX (x; y; x) only if y = x;
(iv) Convexity (or Transitivity): for all x; y; z; u; v 2 X, if BX (x; u; y); BX (x; v; y) and BX (u; z; v)

then BX (x; z; y);

(v) Antisymmetry : for all x; y; z 2 X, if BX (x; y; z) and BX (y; x; z) then x = y.
(vi) Separation: for all x; y; z 2 X, not BX (x; y; z) implies that y =2 H � fx; zg for some half-space

H of X , namely for some non-empty and BX -convex H � X such that X rH is also non-empty and

BX -convex.

(vii) Median-Equivalence: for all x; y; z 2 X, BX (x; z; y) if and only if �(x; z; y) = z.

Our characterization result relies on the following three lemmas.

The �rst lemma simply establishes the equivalence between BX -monotonicity with respect to

an arbitrary distributive lattice X and strategy-proofness of an aggregation rule f : XN ! X on

any rich locally unimodal domain �i2NDi � bUNX of f
�
XN

�
-complete preorders, where f

�
XN

�
=�

x 2 X : there exists xN 2 XN such that x = f (xN )
	
.

Lemma 1. Let X = (X;6) be a distributive lattice, f : XN ! X an aggregation rule for (N;X),

and �i2NDi � UNX a rich locally unimodal domain of f
�
XN

�
-total preorders. Then, the following

statements are equivalent:

(i) f is BX -monotonic;

(ii) f is strategy-proof on �i2NDi.

Remark 3. Lemma 1 above extends Lemma 1 of Danilov (1994) (concerning linear orders in a

�nite tree that are unimodal with respect to tree-betweenness since, as it is easily checked, the latter

satis�es the properties of BX required by our proof, namely Symmetry, Closure, Idempotence and

Convexity).

Observe that a restricted aggregation rule may be strategy-proof on its restricted unimodal domain

while being not monotonic (i.e. the implication from (ii) to (i) of the previous lemma does not hold in

general for restricted aggregation rules).38 It should also be noticed that Lemma 1 can be extended

to any rich locally unimodal domain of f
�
XN

�
-complete preorders.

The next lemma ensures that in an arbitrary distributive lattice the median operation as applied

to aggregation rules does preserve BX -monotonicity.

Lemma 2. Let X = (X;6) be a distributive lattice, and f : XN ! X, g : XN ! X, h : XN ! X

aggregation rules that are BX -monotonic. Then �(f; g; h) : XN ! X (where �(f; g; h)(xN ) =

�(f(xN ); g(xN ); h(xN )) for all xN 2 XN ) is also BX -monotonic.

Finally, the next lemma - that only concerns bounded distributive lattices - provides an iterated

median representation of all BX -monotonic aggregation rules hence - in view of Lemma 1 above - of

38A simple example is available from the authors upon request.
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all strategy-proof voting rules on the corresponding full unimodal domain.

Lemma 3. Let X = (X;6) be a bounded distributive lattice and f : XN ! X a BX -monotonic

aggregation rule. Then, f is an iterated median rule .

The main implications of the foregoing lemmas are indeed summarized by the following:

Theorem 1. Let X = (X;6) be a bounded distributive lattice, BX its latticial betweenness

relation, f : XN ! X an aggregation rule for (N;X), and Di � UX a rich domain of locally

unimodal f
�
XN

�
-complete preorders for each i 2 N . Then, the following statements are equivalent:

(i) f is BX -monotonic;

(ii) f is strategy-proof on �i2NDi;

(iii) f is an iterated median rule;

(iv) f is a generalized weak consensus rule;

(v) f is a generalized weak sponsorship rule.

Remark 4. It should be emphasized again that Theorem 1 generalizes Moulin�s characterization

of strategy-proof aggregation rules on (full) unimodal domains in bounded chains to rich locally uni-

modal domains in arbitrary bounded distributive lattices. Thus, it also o¤ers a direct extension to all

bounded distributive lattices of Moulin�s original min-max representation of strategy-proof aggrega-

tion rules. Moreover, the generalized weak consensus rules provide an explicit and slightly generalized

polynomial version of the alternative characterization via families of �left-coalition systems�on (full)

locally strictly unimodal domains in products of bounded chains due to Barberà, Gul and Stacchetti

(1993), which relies heavily on the product-structure of the underlying lattices. In particular, Theo-

rem 1 implies strategy-proofness of the simple majority rule on rich locally unimodal domains (with

an odd population of voters), since it can be quite easily shown that the former is BX -monotonic (see

e.g. Monjardet (1990) for a formal de�nition and study of the simple majority -or extended median-

rule in a semi-latticial framework). It follows that in an arbitrary bounded distributive lattice there

exist many nicely �inclusive�aggregation rules, including of course the simple majority rule which

jointly satis�es anonymity (i.e. symmetric treatment of voters), neutrality (i.e. symmetric treatment

of outcomes), unanimity (i.e. faithful respect of unanimity of votes) and strategy-proofness on any

rich locally unimodal domain. Notice that the class of single peaked domains used in our charac-

terizations is larger than the class of domains considered by both Nehring and Puppe (2007 (a),(b))

and Anno (2014). Thus, when it comes to bounded distributive lattices, our polynomial characteriza-

tions of strategy-proof aggregation rules have a strictly larger scope than the Nehring-Puppe-Anno

non-polynomial combinatorial (and higher-order) characterizations.

It can also be established, however, that strategy-proofness and coalitional strategy-proofness

of an aggregation rule are not equivalent on arbitrary rich locally unimodal domains in bounded

distributive lattices. This is made precise by the following:
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Theorem 2. Let X = (X;6) be a bounded distributive lattice. Then the following holds: if
jXj � 4 and X is not a linearly ordered set, then there exists a bounded sublattice Y = (Y;6Y ) of
X (with jY j � 4) and an aggregation rule f 0 : Y N ! Y that is strategy-proof on UNY and on SNY but

not coalitionally strategy-proof on UNY or on SNY .

Notice that if f : XN ! X is strategy-proof on UNX and jXj � 3 then f is also coalitionally

strategy-proof on UNX : that implication follows from a straightforward adaptation of the proof of

Theorem 1 of Barberà, Berga and Moreno (2010) to aggregation rules as combined with Proposition

1 of the same paper.

Moreover, as a further straightforward consequence of Theorem 2 (and of previously known re-

sults), we have the following:

Corollary 1. Let X = (X;6) be a bounded distributive lattice. Then the following statements
are equivalent:

(i) for each sublattice Y = (Y;6jY ) of X and each aggregation rule f : Y N ! Y , f is strategy-

proof on UNY (on SNY , respectively) if and only if it is also coalitionally strategy-proof on U
N
Y (on SNY ,

respectively);

(ii) X = (X;6) is a linearly ordered set.

Thus, we have here a remarkable characterization of bounded linearly ordered sets as the only

bounded distributive lattices where equivalence of individual and coalitional strategy-proofness of ag-

gregation rules on any rich unimodal or strict locally unimodal domains holds.

Indeed, the failure of equivalence between simple and coalitional strategy-proofness pointed out

by Theorem 2 is readily extended to an impossibility result concerning availability of non-trivial

(i.e. non-constant) anonymous and coalitionally strategy-proof aggregation rules for rich unimodal

domains and locally strictly unimodal domains in a very general class of bounded distributive lattices,

even if (full) sovereignty is dropped. In order to make it precise a few more de�nitions are needed.

A join irreducible element of a distributive lattice X = (X;6) is any j 2 X such that j 6= ^X
and for any Y � X if j = _Y then j 2 Y . The set of all join irreducible elements of X is denoted JX .

An atom of a lower bounded X is any 6-minimal x 2 Xn f?g, (i.e. x 2 X, x 6= ?, and there is no
y 2 Xn f?g such that y 6 x and y 6= x). The set of all atoms of X is denoted AX : clearly, AX � JX .
An aggregation rule f : XN ! X is (weakly) e¢ cient on preference domain DN

X � bUNX if and

only if for all (<j)j2N 2 DN
X and y 2 X, y =2 f((top(<j)j2N )) if there exists x 2 X such that x �j y

for all j 2 N ; locally join-irreducible-neutral on Y � X if f((� jk(xi))i2N ) = � jk(f((xi)i2N )) for

all xN 2 Y N and every pair of distinct joint irriducible elements j; k 2 JX \Y (where � jk : Y ! Y is

the elementary permutation of Y such that � jk(j) = k; � jk(k) = j and � jk(x) = x for any x 6= j; k);
locally unanimity-respecting on Y � X if f(yN ) = z for each yN 2 Y N such that yi = z for all

i 2 N ; locally sovereign on Y � X if for all z 2 Y there exists yN 2 Y N such that f(yN ) = z.
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Theorem 3. Let X = (X;6) be a bounded distributive lattice with at least two distinct atoms
x; z 2 X and Y = (Y;6Y ) the sublattice of X induced by the restriction of 6 to Y = f0; x; z; x _ zg.
Then, there is no anonymous aggregation rule f : XN ! X that is locally sovereign and locally

join-irreducible-neutral on Y , and coalitionally strategy-proof on UNX , or on SNX .

Thus, in sharp contrast to what happens in bounded linearly ordered sets, no minimally �nice�

anonymous and coalitionally strategy-proof aggregation rules are available on standard full unimodal

or locally strictly unimodal domains in bounded distributive lattices with at least two atoms, including

Boolean k-hypercubes with k > 1,39 even if the simple majority aggregation rule is well-de�ned, and

(weak) e¢ ciency or even (full) sovereignty are not required at all.

Remark 5. Clearly, Theorem 3 also holds for the Boolean square 22 (see note 33) whose order-

dimension is precisely 2.40 Notice, however, that Danilov (1994) (as discussed at length in the next

Section) implies the existence of anonymous and sovereign strategy-proof aggregation rules on full

unimodal domains in arbitrary �nite trees. Since there exist (planar) �nite trees of dimension 2

and 3 (see e.g. Trotter and Moore (1977)), it follows that multidimensionality cannot be the whole

story underlying failures of non-trivial coalitional strategy-proofness for aggregation rules. Theorem

3 suggests that what is key here is the existence of at least two atoms (hence of cycles of the covering

graph of the lattice, i.e. of the graph having the elements of the lattice as nodes, and connecting

two distinct elements if and only if one of them is larger than the other and no further element lies

between the two of them). To put it in other terms, Theorem 3 forcefully suggests that the source

of the problem that prevents the existence of non-trivial anonymous and coalitionally strategy-proof

aggregation rules on the relevant domains is (not multidimensionality as such, but) the incidence

geometry of the underlying ordered outcome space. That is in fact the case, as shown in detail by

Vannucci (2016).

4 Related literature and concluding remarks

The main result of the present work, namely Theorem 1, is an addition to a quite extensive and rich

literature on characterizations of strategy-proof mechanisms on single peaked domains.

In particular, Theorem 1 extends and uni�es several earlier results concerning characterizations

of strategy-proof decision protocols on di¤erent sorts of �large� single-peaked domains. The latter

include Moulin (1980), Barberà, Sonnenschein and Zhou (1991), Barberà, Gul and Stacchetti (1993),

Danilov (1994), Ching (1997), Nehring and Puppe (2007 (a) and (b)), Weymark (2011) and Anno

39A Boolean k-hypercube is a bounded distributive lattice 2k for some positive integer k > 1, where 2 is the linearly

ordered set (f0; 1g ;6), with 0 6 1 and 0 6= 1 (see also annex 3 for an detailed discussian of the Boolean 2-hypercube

or the Boolean square.
40Recall that the order-dimension of a partially ordered set (X;6) is the minimum number of linear orders on X

having 6 as their common intersection.
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(2014).

In order to compare the scope of Theorem 1 of the present work to characterizations provided in

earlier contributions, we should distinguish between the respective outcome sets, preference domains,

and characterization-type for strategy-proof decision protocols on single peaked domains.

Outcome sets. To begin with, the set-containment relationship between the class of outcome

spaces in our paper and in the other contributions (or outcome-set containment, denoted osc in the

table below) is to be considered. It should be noticed that most of the previous contributions concern

a class of outcome spaces that is a subclass (denoted (�) in the table below) of the class of bounded
distributive lattices. But there are a few exceptions covering a class of outcome spaces which is

containment-incomparable to (denoted (q) in the table below) or even -in a single case- wider than

(denoted (+) in the table below) the class of bounded distributive lattices (denoted respectively (q)

and (+) in the table below) .

Speci�cally, the classes of ordered outcome sets typically considered in the relevant literature

include: bounded linearly ordered sets, �nite products of bounded linearly ordered sets, �nite distribu-

tive lattices, bounded distributive lattices (denoted respectively BO, FPBO, FDL, BDL in the table

below).

Preference domains. As repeatedly mentioned above, several distinct single peaked domains con-

sisting of pro�les of total preference preorders on the relevant outcome space have been considered

in the literature, including: the full unimodal linear domain of i.e. the set of all pro�les of unimodal

linear (namely antisymmetric) total preference preorders (e.g. Danilov (1994)), the full unimodal

domain of i.e. the set of all pro�les of unimodal total preference preorders (e.g. Moulin (1980)), the

full locally strictly unimodal linear domain i.e. the set of all pro�les of locally strictly unimodal linear

total preference preorders (e.g. Barberà, Gul and Stacchetti (1993)), the full locally strictly unimodal

domain of i.e. the set of all pro�les of locally strictly unimodal total preference preorders (e.g. Ching

(1997), Weymark (2011)), or more generally any rich locally strictly unimodal linear domain i.e. any

rich set of pro�les of locally strictly unimodal linear total preference preorders (see e.g. Nehring and

Puppe (2007 (a),(b))), any rich locally strictly unimodal domain i.e. any rich set of pro�les of locally

strictly unimodal total preference preorders (see e.g. Anno (2014)), any rich locally unimodal domain

i.e. any rich set of pro�les of locally unimodal total preference preorders (this paper). The last

preference domain, consisting of an arbitrary rich locally unimodal domain (and denoted RLUD in

the table below), obviously encompasses all the previous ones (see Section 2.II above for the relevant

de�nitions).

Characterization-type. The emphasis of the present paper is on polynomial characterizations of

strategy-proof decision protocols on single peaked domains.Therefore, �rst and foremost, we distin-

guish between non-polynomial characterizations (denoted NPC in the table below) and polynomial

ones. The latter are partitioned into three subclasses:

(i) conjunctive normal forms or generalized sponsorship rules (denoted GmM -for Generalized
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minmax- in the table below);

(ii) disjunctive normal forms or generalized consensus rules (denoted GMm -for Generalized

maxmin- in the table below);

(iii) iterated medians or extended median rules (denoted ItMed in the table below).

The modi�er (A) (for anonymous) is appended to characterizations of the restricted class of

anonymous strategy-proof aggregation rules.

The following table summarizes the marginal contribution of our Theorem 1 with respect to such

previous characterization results as discussed above.

P a p e r s / Fe a t u r e s osc BO FPBO FDL BDL RLUD NPCh GmM GMm ItMed

M ou l in ( 1 9 8 0 ) � yes 	 	 	 no no yes no yes(A)

C h in g ( 1 9 9 7 ) � yes 	 	 	 no yes yes yes yes

Weym a rk ( 2 0 1 1 ) � yes 	 	 	 no yes yes no yes(A)

D a n i lo v ( 1 9 9 4 ) q 	 	 	 	 no yes no� no� yes

B G S (1 9 9 3 ) � yes yes 	 	 no yes no no no

N P (2 0 0 7 ) q 	 	 yes 	 no yes no� no� no�

A n n o ( 2 0 1 4 ) + yes yes yes yes no yes no� no� no�

T h is P a p e r = yes yes yes yes yes yes yes yes yes

Legenda: 	 : class of outcomes spaces not covered by the paper assigned to this row ;
no� : the characterization is not provided in this paper ;

Concerning the equivalence of strategy-proofness and coalitional strategy-proofness on single

peaked domains, Theorems 2 and 3 contribute to a somewhat sparse but not negligible body of

literature which includes Moulin (1980), Barberà, Sonnenschein and Zhou (1991), Danilov (1994),

Nehring and Puppe (2007 (b)), Le Breton and Zaporozhets (2009), Barberà, Berga and Moreno

(2010), Vannucci (2016).

Indeed, Moulin (1980) establishes the equivalence of strategy-proofness and coalitional strategy-

proofness for all aggregation rules -and �top-only�social choice functions- on full unimodal domains.

In a similar vein, Danilov (1994) shows that strategy-proofness and coalitional strategy-proofness

of aggregation rules on the foregoing domain are equivalent properties for aggregation rules on the full

domain of all unimodal linear orders (i.e. antisymmetric total preorders) when the outcome set is the

vertex set of an undirected (�nite) tree. Extending a similar result obtained by Barberà, Sonnenschein

and Zhou (1991) for outcomes sets consisting of �nite Boolean distributive lattices, Nehring and Puppe

(2007 (b)) also prove that the only e¢ cient and strategy-proof �top-only�social choice functions on

rich domains of locally strictly unimodal pro�les of linear orders in �nite Boolean m-hypercubes

with m � 3 are almost dictatorial.41 It should also be mentioned that the main result in Nehring

41Namely, entrust a single player with veto power against any alternative of the pro�le of top outcomes, whenever the

latter includes just two distinct outcomes. Notice, however, that coalitional strategy-proofness on single-peaked total
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and Puppe (2007 (b)) does entail equivalence-failure for simple and coalitional strategy-proofness in

Boolean k-hypercubes for k � 3: Of course, in view of the characterization results summarized in

Table 1, such result implies lack of equivalence between individual and coalitional strategy-proofness

for arbitrary rich single peaked domains in bounded distributive lattices. But Nehring and Puppe�s

result concerns a domain of locally strictly unimodal linear orders that is distinct -and in fact disjoint

in the case of the Boolean square- from all rich domains of unimodal total preorders, which are on the

contrary covered by the present work. Moreover, it does not apply to rich locally strictly unimodal

domains on the Boolean square 22. By contrast, our Theorem 2 covers every rich locally unimodal

domain in both in�nite bounded distributive lattices and arbitrary Boolean hypercubes, including of

course 22.42

Barberá, Berga and Moreno (2010) address the general issue of equivalence between simple and

coalitional strategy-proofness and extends to locally strictly unimodal domains Moulin�s equivalence

between individual and coalitional strategy-proofness on unimodal domains in bounded linearly or-

dered sets (see also Le Breton and Zaporozhets (2009) on that equivalence-issue). Notice, incidentally,

that the Barberá-Berga-Moreno argument for such an equivalence result cannot be extended to arbi-

trary rich domains of locally unimodal total preorders even in bounded linear orders. An extensive

discussion of those issues is provided in a companion paper to the present work (see Vannucci (2016)).

Concerning the signi�cance of the exclusion of possible strategy-proof non �top-only�social choice

functions, it is well-known that any sovereign social choice function that is strategy-proof on appro-

priately rich locally strictly unimodal domains satis�es the �top-only�property (see e.g. Nehring and

Puppe (2007 (a) and Anno (2014)). Thus, nothing substantial is to be gained anyway by considering

social choice functions without the �top-only�property, at least on a large class of rich single peaked

domains, including the full domain of all locally unimodal preferences. For arbitrary rich locally uni-

modal domains, however, this is still an open issue (Chatterji and Sen (2011) o¤ers some potentially

relevant ideas to address it).

Finally, it should also be remarked that some results of the present paper can be reproduced in a

more general setting, e.g. in any median algebra (see Isbell (1980), Bandelt and Hedlíková (1983)).

But, to the best of the authors�knowledge, polynomial characterizations of strategy-proof aggregation

rules on single peaked domains in arbitrary median algebras are not yet available. This intriguing

open issue is however best left as a topic for future research.

5 Appendix 1: Proofs

Proof of Claim 1. (i) If BX (x; z; y) then x ^ y 6 z 6 x _ y . Since by de�nition x ^ y = y ^ x and
x _ y = y _ x it obviously follows y ^ x 6 z 6 y _ x hence BX (y; z; x) also holds.
preorders implies weak e¢ ciency (as opposed to e¢ ciency), and only provided that the aggregation rule is sovereign.
42We refer the interested reader to Annex 3 for further details.
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(ii) Since by de�nition x ^ y 6 x 6 x _ y and x ^ y 6 y 6 x _ y hold for any x; y 2 X, both
BX (x; x; y) and BX (x; y; y) hold.

(iii) If BX (x; y; x) then x = x ^ x 6 y 6 x _ x = x hence y = x.
(iv) If BX (x; u; y); BX (x; v; y) and BX (u; z; v) then x ^ y 6 u 6 x _ y , x ^ y 6 v 6 x _ y and

u^ v 6 z 6 u_ v. Thus, by de�nition of ^ and _, x^ y 6 u^ v 6 x_ y (that implies x^ y 6 z) and
x ^ y 6 u _ v 6 x _ y (that implies z 6 x _ y). It follows that BX (x; z; y) as required;
(v) If BX (x; y; z) and BX (y; x; z) then x ^ z 6 y 6 x _ z and y ^ z 6 x 6 y _ z hence

x = x _ (y ^ z) = (x ^ (y _ z)) _ (y ^ z) = (x ^ y) _ (x ^ z) _ (y ^ z) =
(x ^ y) _ (y ^ z) _ (x ^ z) = (y _ (x ^ z)) _ (x ^ z) = y _ (x ^ z) = y.
(vi) Let x; y; z 2 X be such that not BX (x; y; z) i.e. either y 
 x ^ z or y 
 x _ z (or both).
Then, it is well-known and easily checked that there exist a �lter F and an ideal I of X -hence,

by the Prime Ideal Theorem (see Davey, Priestley (1990)) a prime �lter F 0 and a prime ideal I 0 of

X with F � F 0, I � I 0 and F 0 \ I 0 = ?- such that either y 2 I 0 and fx; zg � F 0 or y 2 F 0 and
fx; zg � I 0. Then, the thesis follows from the well-known fact that the half spaces of a lattice X with

respect to BX are precisely its prime �lters and prime ideals (see e.g. van de Vel (1993)).

(vii) (see Birkho¤, Kiss (1947)). We give here an explicit proof just for the sake of completeness.

From distributivity of X it follows that (x^y)_(y^z)_(x^z) = ((x^y)_y)^((x^y)_z))_(x^z) =
(y ^ ((x ^ y) _ z))) _ (x ^ z) =
= (y _ (x ^ z)) ^ (((x ^ y) _ z))) _ (x ^ z)) =
= ((x ^ z) _ y) ^ ((x ^ y) _ z)) = (x _ y) ^ (z _ y) ^ (x _ z) ^ (y _ z) = (x _ y) ^ (y _ z) ^ (x _ z).
Thus, x ^ y 6 z 6 x _ y entails that (x ^ y) _ (y ^ z) _ (x ^ z) 6 z 6 (x _ y) ^ (y _ z) ^ (x _ z),

whence z = �(x; y; z) = (x ^ y) _ (y ^ z) _ (x ^ z) = (x _ y) ^ (y _ z) ^ (x _ z). Conversely, if
z = �(x; y; z) = (x^y)_ (y^ z)_ (x^ z) = (x_y)^ (y_ z)^ (x_ z) then clearly x^y 6 z 6 x_y. �

Proof of Lemma 1. (i) ) (ii) Let us assume that f : XN ! X is not BX -monotonic: thus,

there exist i 2 N , x0i 2 X and xN = (xi)i2N 2 XN such that (xi; f(xN ); f(x0i; xNrfig)) =2 BX . Thus,
by Closure of BX , xi 6= f(xN ) 6= f(x0i; xNrfig). Moreover, by Idempotence of BX (see Claim 1), for

each x; y 2 X : y 2 BX (x; :; x) if and only if y = x.
Next, consider an f [XN ]-complete preorder<�2 Di such that xi = top(<�) and UC(<; f(x0i; xNrfig)) =

BX (xi; :; f(x
0
i; xNrfig)). Such a preorder exists since Di is rich.

Now, by assumption f(xN ) 2 XnBX (xi; :; f(x0i; xNrfig)) while f(x0i; xNnfig) 2 BX (xi; :; f(x0i; xNnfig))
by Closure of BX , hence by construction and f [XN ]-completeness f(x0i; xNrfig) �� f(xN ). Finally,
posit (<j)j2N 2 �i2NDi such that xj = top(<j) for all j 2 N and <i=<�: then, f is not strategy-
proof on �i2NDi .

(ii)) (i) Conversely, let f be BX -monotonic. Next, consider any locally unimodal pro�le< = (<j
)j2N 2 �i2NDi and any i 2 N . By de�nition of BX -monotonicity f(top(<i); xNnfig) 2 BX (top(<i
); :; f(xi; xNnfig)) for all xNnfig 2 XNnfig and xi 2 X. But then, since clearly by de�nition top(<i
) <i f(top(<i); xNnfig), either f(top(<i); xNnfig) = top(<i) or f(top(<i); xNnfig) <i f(xi; xNnfig) by
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local unimodality of <i. Hence, f(top(<i); xNnfig) <i f(xi; xNnfig) in any case. It follows that f is
indeed strategy-proof on �i2NDi. �

Proof of Lemma 2. Take any xN 2 XN . By de�nition of BX -monotonicity, it su¢ ces to show

that for any i 2 N and x0i 2 X, �(f; g; h)(xN ) 2 [xi; �(f; g; h)(x0i; xNnfig)]. Indeed, by monotonicity
of f; g; h with respect to X , f(xN ) 2 [xi; f(x

0
i; xNnfig)], g(xN ) 2 [xi; g(x

0
i; xNnfig)], and h(xN ) 2

[xi; h(x
0
i; xNnfig)]. A change of variables is in order here for the sake of convenience, namely xf =

f(xN ), x0f = f(x
0
i; xNnfig), xg = g(xN ), x

0
g = g(x

0
i; xNnfig), xh = h(xN ), x

0
h = h(x

0
i; xNnfig), whence

�(f; g; h)(xN ) = �(xf ; xg; xh), and �(f; g; h)(x0i; xNnfig) = �(x
0
f ; x

0
g; x

0
h). Thus, xi^x0l 6 xl 6 xi_x0l,

l = f; g; h, by hypothesis, while the thesis amounts to xi ^ �(x0f ; x0g; x0h) 6 �(xf ; xg; xh) 6 xi _
�(x0f ; x

0
g; x

0
h). Now, �(x

0
f ; x

0
g; x

0
h) = (x

0
f ^ x0g) _ (x0g ^ x0h) _ (x0f ^ x0h) hence by distributivity and the

basic latticial identities we get:

xi ^ ((x0f ^ x0g) _ (x0g ^ x0h) _ (x0f ^ x0h)) =

= (xi ^ (x0f ^ x0g)) _ (xi ^ (x0g ^ x0h)) _ (xi ^ (x0f ^ x0h)) =

= ((xi ^ x0f ) ^ (xi ^ x0g)) _ ((xi ^ x0g) ^ (xi ^ x0h)) _ ((xi ^ x0f ) ^ (xi ^ x0h)).

However, by hypothesis, distributivity and the basic latticial identities again:

((xi ^ x0f ) ^ (xi ^ x0g)) _ ((xi ^ x0g) ^ (xi ^ x0h)) _ ((xi ^ x0f ) ^ (xi ^ x0h)) 6

6 (xf ^ xg) _ (xg ^ xh) _ (xf ^ xh) = �(xf ; xg; xh) 6

6 ((xi _ x0f ) ^ (xi _ x0g)) _ ((xi _ x0g) ^ (xi _ x0h)) _ ((xi _ x0f ) ^ (xi _ x0h)) =

= (xi _ (x0f ^ x0g)) _ (xi _ (x0g ^ x0h)) _ (xi _ (x0f ^ x0h)) =

= xi _ ((x0f ^ x0g) _ (x0g ^ x0h) _ (x0f ^ x0h)) = xi _ �(x0f ; x0g; x0h)

as required. �

Proof of Lemma 3. The proof is by induction on n, the cardinality of N . Let us consider �rst

the case n = 1, to establish that if f : X ! X is BX -monotonic, then f(x) = �(f(?); x; f(>)), for
any x 2 X. To begin with, observe that BX -monotonicity of f entails that f(?) 6 f(x) 6 f(>)
for each x 2 X, whence �(f(?); f(x); f(>)) = f(?) _ f(x) = f(x) for all x 2 X. Indeed, by BX -
monotonicity, BX (?; f(?); f(x)) and BX (>; f(>); f(x)) for all x 2 X i.e. -by Median-Equivalence

of BX - f(?) = �(?; f(?); f(x)) and f(>) = �(>; f(>); f(x)). Now, �(?; f(?); f(x)) = (?^f(?))_
(f(?)^f(x))_(?^f(x)) = f(?)^f(x), hence f(?)^f(x) = f(?), namely f(?) 6 f(x). Moreover,
�(>; f(>); f(x)) = (>^f(>))_ (f(>)^f(x))_ (>^f(x)) = f(>)_f(x), hence f(>)_f(x) = f(>),
namely f(x) 6 f(>). Next, observe that from BX -monotonicity of f and Median-Equivalence of BX

it follows that �(x; f(x); f(?)) = f(x) = �(x; f(x); f(>)). Thus f(x) = �(x; f(x); f(?)) =
= (x ^ f(x)) _ (f(x) ^ f(?)) _ (x ^ f(?)) =
= (x^ f(x))_ f(?) = (x_ f(?))^ (f(x)_ f(?)) = (x_ f(?))^ f(x) whence f(x) 6 (x_ f(?)).

It follows that f(x) = f(>) ^ f(x) 6 f(>) ^ (x _ f(?)). Moreover, f(x) = �(x; f(x); f(>)) =
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(x ^ f(x)) _ (f(x) ^ f(>)) _ (x ^ f(>)) = (x ^ f(x)) _ f(x) _ (x ^ f(>)) = f(x) _ (x ^ f(>))
whence (x ^ f(>)) 6 f(x). It follows that f(?) _ (x ^ f(>)) 6 f(?) _ f(x) = f(x).
Now, notice that �(f(?); x; f(>)) = (f(?)^x)_ (x^ f(>))_ (f(?)^ f(>)) = f(?)_ (x^ f(>)).
Furthermore, f(>)^(x_f(?)) = (f(>)^x)_(f(>)^f(?)) = f(?)_(x^f(>)) = �(f(?); x; f(>)):
It follows that, �(f(?); x; f(>)) = f(?)_(x^f(>)) 6 f(x) 6 f(>)^(x_f(?)) = �(f(?); x; f(>))

whence f(x) = �(f(?); x; f(>)) as required. Let us then assume that if f : XK ! X is BX -monotonic

and K = f1; :::; n� 1g, then for all xK 2 XK :

f(xK) = �[

n�2�timesz }| {
�(:::�( f(?; :::;?;?); x1; f(?; :::;?;>)):::); xn�1;

n�2�timesz }| {
�(:::�( f(?; :::;>;?); x1; f(?; :::;>;>))):::)].

Next, posit N = f1; :::; ng = K [ fng, consider f : XN ! X, and observe that the following fact

holds, and is easily checked:

(*) for all xN = (xi)i2N 2 XN and i 2 N , two functions fxNrfig : X ! X and fxi : X
Nrfig ! X

can be de�ned by the rules fxNrfig(z) = f((xNrfig; z)) for each z 2 Z, fxi(zNrfig) = f(xi; zNrfig) for
each zNrfig 2 XNrfig, and BX -monotonicity of f clearly entails that any such fxNrfigand fxi are also

BX -monotonic. Then, by the basic-inductive step fxNrfng(xn) = �(fxNrfng(?); xn; fxNrfng(>)) =
= �(f(xNrfng;?); xn; f(xNrfng;>)) = �(f?(xNrfng); xn; f>(xNrfng). Moreover, from the in-

ductive step as applied to f? : XK ! X and f> : XK ! X it follows that:

f?(xNrfng) = �[

n�2�timesz }| {
�(:::�( f?(?; :::;?;?); x1; f?(?; :::;?;>)):::);

xn�1;

n�2�timesz }| {
�(:::�( f?(?; :::;>;?); x1; f?(?; :::;>;>))):::)]

and

f>(xNrfng) = �[

n�2�timesz }| {
�(:::�( f>(?; :::;?;?); x1; f>(?; :::;?;>)):::);

xn�1;

n�2�timesz }| {
�(:::�( f>(?; :::;>;?); x1; f>(?; :::;>;>))):::)].

Therefore, for all xN 2 XN ,

f(xN ) = fxNrfng(xn) = �(fxNrfng(?); xn; fxNrfng(>)) = �(f?(xNrfng); xn; f>(xNrfng)) =

= �[

n�1�timesz }| {
�(:::�( f?(?; :::;?;?); x1; f?(?; :::;?;>)):::); xn�1;

n�1�timesz }| {
�(:::�( f?(?; :::;>;?); x1; f?(?; :::;>;>))):::)] =

= �[

n�1�timesz }| {
�(:::�( f(?; :::;?;?); x1; f(?; :::;?;>)):::); xn�1;

n�1�timesz }| {
�(:::�( f(?; :::;>;?); x1; f(?; :::;>;>))):::)]

and the thesis is established. �

Proof of Theorem 1. (i)() (ii) It follows from Lemma 1.

(i) =) (iii) Immediate from Lemma 3.

(iii) =) (i) It follows immediately from the de�nition of iterated median rule, from the obser-

vation that projections and constants induce BX -monotonic aggregation rules, and from Lemma

2.

(iii) =) (iv) Suppose f is an iterated median rule. Then, by de�nition, for all xN 2 XN
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f(xN ) = �[

n�1�timesz }| {
�(:::�( f(?; :::;?;?); x1; f(?; :::;?;>)):::); xn�1;

n�1�timesz }| {
�(:::�( f(?; :::;>;?); x1; f(?; :::;>;>))):::)].

Let us know proceed to a sequential elimination of occurrences of � in the right hand side of the

previous formula by substituting for each of them the corresponding �-value, in accordance with the

following clauses:

(a) each xi is marked with a su¢ x 0v0 (for �variable�) and rewritten as x
(v)
i , and each f(zN ) (with

zN 2 f?;>gN ) is marked with a su¢ x 0c0(for �constant�) and rewritten as f(zN )(c), in order to track
their �provenance�;

(b) no simpli�cation of composite terms involving terms marked with distinct su¢ xes is allowed

(e.g. even if x(v)i = f(zN )
(c), x(v)i ^ f(zN )(c) or x(v)i _ f(zN )(c) are not allowed to be rewritten as

x
(v)
i or f(zN )(c)).

In view of the identity �(x; y; z) = (x ^ y) _ (y ^ z) _ (x ^ z) which holds for each x; y; z 2 X,
where x _ y = �(x; y;>), x ^ y = �(x; y;?), it is easily checked that such a sequential elimina-
tion of ��s occurrences results in a disjunctive normal-form lattice-polynomial equation f(xN ) =

_mj=1((^i2Sj�Nx
(c)
i ) ^ yj) where yj = ^

hj
k=1f(z

k
N )

(c), with hj � 2n.
Notice that, by construction, yj 6 yj0 whenever Sj0 � Sj . Thus, collecting terms with the same

Sj = S � N , taking the join y�S of the corresponding yj�s for each S, and proceeding to some trivial
rearrangements of terms, one obtains f(xN ) = _S�N ((^i2S�Nxi)^y�S) hence f is indeed a generalized
weak consensus aggregation rule.

(iv)() (v) It follows immediately from the de�nitions and the identity (x^y)_(y^z)_(x^z) =
(x _ y) ^ (y _ z) ^ (x _ z).
(iv) =) (i) Let f : XN ! X be a generalized weak consensus aggregation rule i.e. there exists an

order �lter F of (P(N);�) such that f(xN ) = _S2F ((^i2Sxi)^ y�S) for all xN 2 XN . Then, observe

that -for any x; y 2 X- x ^ y = �(x; y;?) and x _ y = �(x; y;>). Hence by repeated application of
Lemma 2 it follows that f is BX -monotonic. �

Proof of Theorem 2. Let us assume without loss of generality that jXj = 4 and let X =

fa; b; c; dg and �X = f(x; x) : x 2 Xg. Next, de�ne 6��= f(a; b); (a; c); (a; d); (b; d); (c; d)g [�X . It
is easily checked that X �� = (X;6��) is the Boolean lattice 22 with a = >, d = ?. Now, de�ne the
family ff(x�)gx�2f?;>gN as follows: for all xNrf1;2g 2 f?;>g

Nnf1;2g

f(a; a; xNrf1;2g) = a; f(d; d; xNnf1;2g) = d; f(a; d; xNnf1;2g) = b; f(d; a; xNnf1;2g) = c.

Then, consider the nested sequence of medians that provides the run of the median tree-automaton

AI;�� as initialized with ballot pro�le xN and applied to the �nite (��; I)-tree T = T (xN ,ff(x�)gx�2f?;>gN )
with terminal nodes suitably labelled by projections of xN and elements of ff(x�)gx�2f?;>gN as de-
�ned above. A few simple if tedious calculations immediately establish that for all xNrf1;2g 2
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XNrf1;2g:

f(a; c; xNnf1;2g) = f(b; a; xNnf1;2g) = f(b; c; xNnf1;2g) = a;

f(b; b; xNnf1;2g) = f(a; b; xNnf1;2g) = f(b; d; xNnf1;2g) = b;

f(c; c; xNnf1;2g) = f(c; a; xNnf1;2g) = f(d; c; xNnf1;2g) = c;

f(c; d; xNnf1;2g) = f(d; c; xNnf1;2g) = f(c; b; xNnf1;2g) = d:

By construction, and in view of Lemma 3 above, f is BX�� - monotonic. Therefore, by Lemma 1, f

is also strategy-proof on UNX�� .

Now, take

< = f(a; b); (a; c); (a; d); (b; c); (b; d); (c; d); (d; c)g [�X ;

< 0
= f(d; b); (d; c); (d; a); (b; c); (b; a); (c; a); (a; c)g [�X :

First, observe that both < and <0are in UNX�� , i.e. are unimodal with respect to X ��: indeed,

top(<) = a, top(<0) = d and it is immediately seen that

BX (X; 6 ��) =

8<: (a; b; d); (a; c; d); (b; a; c); (b; d; c); (d; b; a);

(d; c; a); (c; a; b); (c; d; b)

9=; [
[
�
(x; y; z) 2 X3 : x = y or z = y

	
.

But then, since f(b; d); (c; d); (a; b); (d; c)g[�X is a subrelation of < and f(b; a); (c; a); (a; c); (d; c)g[
�X is a subrelation of <0, it follows that < and <0are also unimodal with respect to X ��. Now,

take any preference pro�le (<i)i2N such that <1=<0 and <2=<, hence top(<1) = d, top(<2) = a.

Then, for any xNrf1;2g 2 XNrf1;2g, both f(a; d; xNrf1;2g) �1 f(top(<1); top(<2); xNrf1;2g) and
f(a; d; xNrf1;2g) �2 f(top(<1); top(<2); xNnf1;2g): it follows that, again, coalition f1; 2g can manip-
ulate the outcome at (<i)i2N namely f is not coalitionally strategy-proof. Again, strategy-proofness
and failure of coalitional strategy-proofness of f on SNX�� follows from the very same argument, by

positing <1=<00 and <2=<000. �

Proof of Corollary 1. (i) =) (ii) It follows immediately from Theorem 2 (ii) above;

(ii) =) (i) For the case concerning UNY , the statement follows from a straightforward extension

and adaptation of the proof of Proposition 4 of Danilov (1994) concerning aggregation rules on

unimodal domains of linear orders in undirected �nite trees (details available from the authors upon

request), and is indeed already stated with a sketch of the proof in Moulin (1980). As far as SNY
is concerned, the statement follows e.g. from Theorem 2 and Proposition 3 of Barberá, Berga and

Moreno (2010). �

Proof of Theorem 3. Let us assume that on the contrary there exists an aggregation rule

f : XN ! X which is anonymous, locally JI-neutral on Y , locally sovereign on Y , and coalitionally

strategy-proof on UNX (on SNX , respectively). By Theorem 1, it follows that there exists an order �lter
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F of (P(N);�) such that f(xN ) = _S2F ((^i2Sxi) ^ y�S) for all xN 2 XN . To begin with, observe

that coalitional strategy-proofness and local sovereignty on Y jointly imply local idempotence on Y

(indeed, suppose there exists u 2 Y , u 6= f(uN ); of course, by local sovereignty there exists xN 2 XN

such that f(xN ) = u: But then f is coalitionally manipulable at any preference pro�le (<i)i2N 2 UNX
((<i)i2N 2 SNX , respectively) such that top(<i) = u for all i 2 N , a contradiction). Next, for

any u 2 Y denote by Su the set of all minimal coalitions T 2 F such that u 6 f(uT ; wNrT ) for all
wNrT 2 XNrT . By local idempotence of f on Y , Su 6= ?. By anonymity of f , jT j = jT 0j = nu for all
T; T 0 2 Su, and y�S = y�S0 = y�s for any S; S0 2 F such that jSj = jS0j = s. Moreover, since by Theorem
1 coalitional strategy-proofness entails in particular BX -monotonicity, it also follows -by de�nition

of BX -monotonicity- that for any i 2 N r T u = u ^ f(uT ; wNrT ) 6 f((uT[fig; wNr(T[fig)) 6
u _ f(uT ; wNrT ) whence, by repeated application of that argument u 6 f(uT

0
; wNrT

0
) for any

T 0 � N such that jT 0j � nu. Also, by local JI-neutrality on Y of f , nx = nz = q. Four cases are to

be distinguished according to the sign of (q � n=2) and the parity of n.
(�): Let us �rst suppose that q � n=2. Then, in order to address the unimodal case consider the

following triple of preference relations:

<�:= [x �� 0 �� x _ z �� z �� w for all w 2 X r Y ],

<��:= [z ��� 0 ��� x _ z ��� x ��� w for all w 2 X r Y ],

<���:= [0 ���� x ���� z ���� x _ z ���� w for all w 2 X r Y ].

Notice that by construction such preferences are unimodal with respect to X , i.e. f<�;<��;<���g �
UNX . Two subcases are distinguished according to the parity of n, namely

(i) n = 2k + 1 for some positive integer k, and (ii) n = 2k for some positive integer k.

If (�(i)) obtains then take preference pro�le <[O] = ((<�i )i2f1;:::;kg; (<��i )i2fk+1;:::;2kg;<���2k+1) and

compute f(yN ) = _S2F ((^i2Syi) ^ y�s ) where yN = top(<[O]) i.e. yi = x for all i 2 f1; :::; kg, yi = z
for all i 2 fk + 1; :::; 2ng, and y2k+1 = 0. By construction, f(yN ) is the l.u.b. of a nonempty family
T of terms belonging to some of the following jointly exhaustive, partially overlapping classes:

T1 = f^j2Jvj : J is a �nite set J and there exists j 2 J such that vj = 0g ;
T2 = f^j2Jvj : J is a �nite set J and there exist j; h 2 J such that vj = x and vh = zg ;
T3 = f^j2Jvj : J is a �nite set and there exists J 0 � J such that jJ 0j � q and vj = x for all j 2 J 0g ;
T4 = f^j2Jvj : J is a �nite set and there exists J 0 � J such that jJ 0j � q and vj = z for all j 2 J 0g.
Moreover, t = ^j2Jvj = 0 for all t 2 T1 [ T2 hence, by construction, T3 \ T 6= ? 6= T4 \ T . On

the other hand, t3 > x and t4 > z for any t3 2 T3 and t4 2 T4.
It follows that f(yN ) > x _ z. If (�(ii)) obtains then take preference pro�le <[E] = ((<�i

)i2f1;:::;kg; (<��i )i2fk+1;:::;2kg), and compute f(y0N ) = _S2F ((^i2Sy0i) ^ y�s ), where y0N = top(<[E])
i.e. y0i = x for all i 2 f1; :::; kg, and y0i = z for all i 2 fk + 1; :::; 2ng. Again, f(y0N ) is the l.u.b.
of a nonempty family T of terms belonging to some of the following jointly exhaustive, partially

overlapping classes:

T 01 = f^j2Jvj : J is a �nite set J and there exist j; h 2 J such that vj = x and vh = zg ;
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T 02 = f^j2Jvj : J is a �nite set and there exists J 0 � J such that jJ 0j � q and vj = x for all j 2 J 0g ;
T 03 = f^j2Jvj : J is a �nite set and there exists J 0 � J such that jJ 0j � q and vj = z for all j 2 J 0g.
Moreover, t = ^j2Jvj = 0 for all t 2 T 01 hence, by construction, T 02 \ T 6= ? 6= T 03 \ T . On the

other hand, t2 > x and t3 > z for any t2 2 T 02 and t3 2 T 03. It follows, again, that f(y0N ) > x _ z.
Now, take uN 2 XN with ui = 0 for all i 2 N : by local idempotence, f(uN ) = 0. Thus, if n = 2k+1,
f((ui = 0)i2Nrf2k+1g; y2k+1 = 0) = f(uN ) �i f(yN ) for all i 2 N r f2k + 1g. Similarly, if n = 2k;
then f(uN ) �i f(yN ) for all i 2 N . Hence, f is coalitionally manipulable at unimodal preference
pro�le <[O] (at unimodal preference pro�le <[E], respectively), a contradiction.
The locally strictly unimodal case can be addressed precisely by the same argument, provided

preference pro�le (<�;<��;<���) is replaced by any locally strictly unimodal preference pro�le (<0

;<00;<000) such that
<0:= [x �0 0 �0 x _ z �0 z � w for all w 2 X r Y ],

<00:= [z �00 0 �00 x _ z �00 x �00 w for all w 2 X r Y ],

<000:= [0 �000 x �000 z �000 x _ z �000 w for all w 2 X r Y ].

(�) Let us now assume that, on the contrary, q > (n=2). Then, consider the following triple of

preference relations:

<�:= [x �� x _ z �� 0 �� z �� w for all w 2 X r Y ],

<��:= [z ��� x _ z ��� 0 ��� x ��� w for all w 2 X r Y ],

<���:= [0 ���� x ���� z ���� x _ z ���� w for all w 2 X r Y ].

Notice that by construction such preferences are unimodal with respect to X , i.e. f<�;<��;<0g �
UX . Two subcases are distinguished again according to the parity of n, namely

(i) n = 2k + 1 for some positive integer k, and (ii) n = 2k for some positive integer k. If (�(i))

obtains, then take preference pro�le <�[O] = ((<�i )i2f1;:::;kg; (<��i )i2fk+1;:::;2kg;<���n ) and compute

f(wN ) = _S2F ((^i2Swi) ^ y�s ) where wN = top(<�[O]) i.e. wi = x for all i 2 f1; :::; kg, wi = z for

all i 2 fk + 1; :::; 2kg, and wn = 0. By construction, f(wN ) is the l.u.b. of a nonempty family T of

terms belonging to some of the following jointly exhaustive, partially overlapping classes:

T1 = f^j2Jvj : J is a �nite set J and there exists j 2 J such that v j = 0g ;
T2 = f^j2Jvj : J is a �nite set J and there exist j; h 2 J such that vj = x and vh = zg ;

T3 =

8<: ^j2Jvj : J is a �nite set and there exists
a nonempty J 0 � J such that jJ 0j � k < q and vj = x for all j 2 J 0

9=; ;
T4 =

8<: ^j2Jvj : J is a �nite set and there exists
a nonempty J 0 � J such that jJ 0j � k < q and vj = z for all j 2 J 0

9=;.
Notice that, again, t = ^j2Jvj = 0 for all t 2 T1[T2 . Moreover, by construction, t = ^j2Jvj < x

for all t 2 T3 and t = ^j2Jvj < z for all t 2 T4. Since both x and y are atoms of X , it follows that
t = ^j2Jvj = 0 for all t 2 T3[ T4 whence f(wN ) = 0.
If (�(ii)) obtains then take preference pro�le <�[E] = ((<�i )i2f1;:::;kg; (<��i )i2fk+1;:::;2k�1g;<���n ),

and compute f(w0N ) = _S2F ((^i2Sw0i) ^ y�s ), where w0N = top(<0[E]) i.e. w0i = x for all i 2 f1; :::; kg,
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w0i = z for all i 2 fk + 1; :::; 2k � 1g, and w0n = 0. Again, f(w0N ) is the l.u.b. of a nonempty family
T of terms belonging to some of the following jointly exhaustive, partially overlapping classes:

T 01 = f^j2Jvj : J is a �nite set J and there exists j 2 J such that v j = 0g ;

T 02 =

8<: ^j2Jvj : J is a �nite set J and there exist

j; h 2 J such that vj = x and vh = z

9=; ;
T 03 =

8<: ^j2Jvj : J is a �nite set and there exists
a nonempty J 0 � J such that jJ 0j < q and vj = x for all j 2 J 0

9=; ;
T 04 =

8<: ^j2Jvj : J is a �nite set and there exists
a nonempty J 0 � J such that jJ 0j < q and vj = z for all j 2 J 0

9=;.
Notice that t = ^j2Jvj = 0 for all t 2 T 01, and for all t 2 T 02 as well since x ^ z = 0. Moreover,

since f(w0N ) = _S2F ((^i2Sw0i) ^ y�s ), it also follows that t = ^j2Jvj < x for all t 2 T 03 \ T and

t = ^j2Jvj < z for all t 2 T 04 \ T . On the other hand, t2 > x and t3 > z for any t2 2 T 02

and t3 2 T 03. It follows, again, that f(w0N ) = 0. Now, take u0N 2 XN with u0i = x _ z for all
i 2 f1; :::; n� 1g = N r fng, and u0n = 0: By construction, f(u0N ) = _S2F ((^i2Su0i)^ y�s ) is the l.u.b.
of a nonempty family T of terms belonging to some of the following jointly exhaustive, partially

overlapping classes:

T 001 = f^j2Jvj : J is a �nite set J and there exists j 2 J such that v j = 0g ;

T 002 =

8<: ^j2Jvj : J is a �nite set and there exists
a nonempty J 0 � J such that jJ 0j < q and vj = x _ z for all j 2 J 0

9=; ;
T 003 =

8<: ^j2Jvj : J is a �nite set and there exists
J 0 � J such that jJ 0j � q and vj = x _ z for all j 2 J 0

9=;.
Observe that t = ^j2Jvj = 0 for all t 2 T 001 . Moreover, by de�nition of f and q, both y�s0 < x and

y�s0 < z for all s
0 < q, hence t = ^j2Jvj = 0 for all t 2 T 002 as well. Furthermore, T 003 \ T 6= ? and , by

de�nition of f and q, it must be the case that for all s � q, both x 6 y�s and z 6 y�s hold. Therefore,
x _ z 6 y�s . It follows that f(u0N ) = x _ z. Thus, if n = 2k + 1, f(u0N ) �i f(wN ) for all i 2 N r fng.
Similarly, if n = 2k; then f(u0N ) �i f(w0N ) for all i 2 N r fng. Hence, f is coalitionally manipulable
at unimodal preference pro�le <�[O] 2 UNX (at unimodal preference pro�le <�[E] 2 UNX , respectively), a
contradiction again, and the proof is complete. The locally strictly unimodal case can be addressed

precisely by the same argument, provided preference pro�le (<�;<��;<���) is replaced by any locally
strictly unimodal preference pro�le (<+;<++;<+++) such that
<+:= [x �+ x _ z �+ 0 �+ z �+ w for all w 2 X r Y ],

<++:= [z �++ x _ z �++ 0 �++ x �++ w for all w 2 X r Y ],

<+++:= [0 �+++ x �+++ z �+++ x _ z �+++ w for all w 2 X r Y ]. �
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