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ABSTRACT 

 

This study presents a remote sensing methodology to 

detect floods with a change detection approach based on 

image differencing of several water-related indexes. The 

proposed methodology is expected to integrate the strengths 

of each individual index and considers the agreement level 

among outputs obtained by different indexes as an indicator 

of overall uncertainty.  

The analysis of data frequency distribution is used to 

obtain thresholds to implement data slicing and production of 

thematic maps. By considering different magnitudes of 

change, the proposed method is expected to be sensitive to 

detect different types of flood-related changes, including the 

detection of recent tracks of water presence. This is 

particularly interesting for those situations whenever it is 

impossible to obtain cloud-free satellite images immediately  

after a flood event, which is often the case given the 

limitations of optical sensors. 

The methodology has been applied to a fluvial flood event 

occurred in the surrounding of a natural lagoon in the Aveiro 

region (Portugal). Landsat 7 ETM+ and Landsat 8 OLI 

surface reflectance products  were used as inputs. Sentinel 1 

GRD data was used for comparison purposes. Results 

indicate an overall consistency, which allows us to expect the 

proposed method is replicable for other events and areas. 

 

1. INTRODUCTION 

 

Floods are amongst the most important weather-driven 

hazards, being capable of inducing multiple damages, 

including economic losses  and threatening of human lives . 

Floods may result from heavy or persistent rainfall, flooding 

by waterbodies, water table rise, snowmelt, or being 

originated from artificial sources [1]  

The definition flood, e.g. “temporary covering by water of 

land not normally covered by water” [2], conceptually 

implies occurrence of a certain type of change over time. 

                                                 
1 Thanks to the financial support of CESAM (UID/AMB/50017 - 

POCI-01-0145-FEDER-007638), FCT/MCTES (PIDDAC), the 

FEDER within the PT2020 Partnership Agreement and Compete 

2020. The PhD grant SFRH/BD/104663/2014 is also acknowledged. 

Digital change detection techniques based on remote sensing 

imagery are capable of providing both long-term and short-

term solutions [3]. Bi-temporal change detection analysis 

include several methods capable of dealing with short-term 

phenomena, such as floods. 

Univariate image differencing is the most widely applied 

amongst bi-temporal algorithms. It consists in subtracting 

spectral or transformed data (e.g. by means of water-related  

indexes), producing positive and negative values, depending 

on the type of change [3]. In theoretical and ideal conditions, 

no-change areas should result in zero values, however, in real 

conditions, this is not the case as effect of spatial and spectral 

co-registration errors, as well as natural time-dependent 

changes. One or more thresholds may be required to define 

two or more classes of change (density-slicing), which may 

provide hints about amounts and types of change. However, 

by quantifying absolute differences, this method is unable to 

specify directly the type of change. 

The main objective of this study is to provide a satellite 

remote sensing method to detect floods, integrating several 

water-related indexes in a change detection method. The 

method was developed to be applied to multispectral satellite 

data acquired from Landsat (LS) series. 

 

2. METHODOLOGY 

 

In Figure1, we illustrate the proposed methodology for flood 

areas detection, based on combining several Water-related 

Indexes (WrI) in a change detection approach. We considered 

the following WrI: the Normalized Difference Water Index 

(NDWI) [4]; the Modified Normalized Difference Water 

Index (MNDWI) [5]; the Automated Water Extraction Index 

(AWEI) (including ‘shadow’ and ‘ no shadow’ versions) [6];  

and the Tasseled Cap Wetness (TCW) [7].  
The methodology assumes that a certain area could have 

experienced a flood event within a certain time period. 

For flooded areas, WrI variation develops between the epochs  

t1 and t2 (respectively prior and after the given flood event).  
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Figure 1 - Methodological scheme 

In theory, for change detection methods based on image 

differencing, no-change areas (Nc) are represented by zero 

digital values. Assuming the time span (t2 - t1) is reasonably 

short, Nc has to be the majority of the pixel image distribution 

corresponding to the modal range of the frequency 

distribution. In contrast, digital values different to zero 

represent change areas and they tend to be located toward 

both tails of the frequency distribution. If WrI differencing  

(ΔWrI) is applied we expect to locate flooded areas changes 

in only one of the tails, either positive for NDWI, MNDWI, 

TCW, AWEI, or negative for NDVI (in respect to the WrI 

here considered). The higher the distance from the modal 

ΔWrI value, the higher the magnitude of change, 

corresponding to a complete change of state from dry to 

flooded surface. If flooding causes only such kind of changes, 

this results in an ideal bi-modal distribution where the 

discrimination between Nc and flooded areas is 

unambiguous. In practice, flooding may involve areas 

characterized by different initial conditions (land cover, 

substrate properties, surface roughness and wetness, and their 

spatial distribution in respect to pixel size) along with 

different flooding conditions (water thickness and suspended 

materials, water surface roughness), which implies a 

continuous distribution of ΔWrI values between the Nc and 

change end-members. 

Moreover, when analyzing the frequency distribution one 

should also take into consideration the effect of spatial and 

spectral misregistration between input t1 and t2 imagery, 

those changes resulting from phenomena other than flooding 

and effective sensitivity of WrI to detect surface water. The 

main consequence of these conditions is that the real 

distribution of Nc is represented by a bell-shaped range of 

ΔWrI values located around zero. 

Given the above considerations and the fact that image 

differencing doesn’t allow to discriminate among the types of 

change, but only change signal and intensity, we assume to 

classify flooded area into the categories Low-Magnitude 

change (LMc) and High-Magnitude change (HMc) as a 

function of the ΔWrI value. This assumption requires for the 

definition of two thresholds, between Nc-LMc (TL) and 

LMc-HMc (TH) which are then used to apply density slicing 

to the multitemporal imagery. These thresholds could be 

defined either by using ground truth information or analyzing 

the frequency distribution of data, the latter approach being a 

key point of the proposed method, allowing us  to perform 

semi-automatic remote sensing procedures to extract flooded 

area from satellite imagery. We assume that these thresholds 

correspond to sudden variation of ΔWrI frequency. In the first 

case, the first order derivative of the function is a useful tool 

to define the thresholds which correspond to change of sign 

of the derivative function. In the other cases, the first 

derivative continuously gets closer to zero without reaching 

it, therefore we choose the ΔWrI where the second order 

derivative function reaches a local maximum. In practice, for 

a given scene differencing, the distribution of ΔWrI may 

follow both conditions , around either TL or TH. 

Depending on the availability of cloud-free optical satellite 

images, surface reflectance is used to determine each WrI for 

t1 and t2 (additional preprocessing steps may be required, e.g. 

geometric and radiometric calibrations, as well as 

cloud/shadow masking). After performing the ΔWrI 

calculation, by density slicing based on TL and TH, we obtain 

a stack of six different coeval thematic change maps . 

These different thematic maps represent changes caused by 

flooding according to each WrI specific sensitivity. Hence, 

the overall flood map integrating the information from each 

individual WrI is obtained by picking the absolute majority  

among the frequency of the classes Nc, LMc, HMc. 

Whenever the absolute majority does not occur, pixels are 

classified as ‘Mixed’. This means that the overall flood map 

directly provides an indication of pixel uncertainty, in which 

‘Mixed’ pixels have more uncertainty than those attributed to 

classes Nc, LMc, HMc. 

HMc should correspond to a complete change of state from 

dry lands to water surface. LMc is expected to represent 

pixels changing from dry to wet/saturated surfaces, as well as 

wet/saturated to water surfaces . Moreover, depending on the 

duration of the time span (t2 - t1), LMc may also correspond 

to those flooded areas that underwent drying/drainage 

processes after the flooding event. This is particularly  

interesting for those situations whenever it is impossible to 

obtain cloud-free satellite images immediately after a flood 

event, which is often the case given the limitations of optical 

sensors. Finally, the Nc areas will include permanent water 

bodies, continuously wet/saturated surfaces, as well as any 

other kind of permanently dry surfaces. 

 

3. RESULTS 

 

Herein, we provide results of the application of the proposed 

methodology to a flood event occurred in the Aveiro Region, 

located on the NW part of continental Portugal. All image 

processing tasks were performed with GRASS GIS (v7.2.2) 

and map compositions with QGIS (v2.18.15). 

According to meteorological databases , a maximum of 128.9 

mm of daily precipitation were registered in the study area for 

2016/02/13, corresponding a precipitation event with a return 

period of 16.4 years. 
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For t1, we considered the LS 8 OLI from 2016/02/05 and for 

t2 the LS 7 ETM+ from 2016/02/29 (SLC-off) (Level-2 

products obtained from https://earthexplorer.usgs.gov). 

Cloud/Cloud shadow masks were extracted from the 

‘pixel_qa’ band of each scene. Terrain shadows where 

extracted from shaded relief maps, using the SRTM 1 arc  sec 

DEM and azimuth and elevation (found in LS metadata). 

After determining each WrI (for t1 and t2) and the 

corresponding ΔWrI (t2-t1), we proceeded to the extraction  

of thresholds according to the proposed methodology.  

Figure 2, illustrates every ΔWrI coeval thematic map, along 

with the overall flood map. Moreover, considering the lack of 

ground truth data, for comparison purposes, we have also 

included water masks obtained from Sentinel-1A (S1A) GRD 

images from 2016/02/18 and 2016/03/01 (extracted from 

visual inspection of Sigma0 VV (dB) histograms). 

 

4. DISCUSSION 

 

In the present study, we were able to extract thresholds for 

every ΔWrI using the histogram frequency analysis. 

However, we found this task to be more straightforward for 

normalized indexes (i.e. NDWI, MNDWI and NDVI), when 

compared to non-normalized indexes (i.e. TCW and both 

versions of AWEI). For non-normalized WrI, smoothing of 

data (by means of mobile averages) was required to interpret 

first and second order derivatives of WrI. 

Considering the overall flood map, we verify a low 

occurrence of ‘Mixed’ pixels, which is an indicator of overall 

coherence between the different WrI coeval thematic maps, 

meaning low uncertainty. 

Despite the temporal proximity between t2 (LS7 from 

2016/02/29) and S1A (2016/03/01) scenes, the agreement 

between flooded areas (i.e. LMc + HMc) and the S1A water 

mask is only 37%.  Regarding the S1A scene closer to the 

event (2016/02/18), the agreement is higher, 47%. This 

confirms the sensitivity of the proposed method in detecting 

recent tracks of water from flood events, in particular for 

LMc. The overall low agreement levels could be related to 

the unavailability of S1A scenes obtained during the flood 

event (or immediately after).  Besides, it could also mean that 

the proposed method is overestimation flooded aras, or S1A 

could be underestimating them by not detecting wet/saturated 

areas which take place in the following days  after the flood 

event. 

 

5. CONCLUS ION 

 

The proposed methodology demonstrated capability of 

extracting flooded areas from optical satellite imagery  

obtained several days after a heavy precipitation event. 

The combination of multiple water-related index differencing  

resulted in overall coherence, suggesting low uncertainty.  
The overall flood map is consistent with water masks 

extracted from Sentinel-1A (S1A) scenes obtained several 

days after the event. However, low agreement levels suggest 

 

Figure 2 - ΔWrI coeval classifications and overall flood map for 

2016/02/13; Water masks obtained from S1A scenes, from 

2016/02/18 and 2016/03/01. 

either overestimation of flooded areas, or underestimation by 

S1A water masks. The proposed method is expected to be 

replicable for other events and study areas. 
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