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Abstract

We study the incentive to cooperate in a society comprised of citizens and im-

migrants. The level of cooperation is governed by a steady state under population

dynamics, along with the behavior of individual citizens and immigrants. We provide

an equilibrium characterization, exhibiting a uniquely determined positive level of co-

operation in society. We then use this framework to study the impact of government

programs aimed at punishing immigrants who defect. When agents produce offspring,

we show that a consequence of such punishment is that, while the incentive for immi-

grants to defect decreases, there is an equilibrium substitution effect whereby citizens

realize an increased incentive to defect.
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1 Introduction

This paper explores theoretically the relationships between immigration and the eco-

nomic behavior of a country’s population. There is currently much debate over the

nature of the myriad effects and consequences of immigration. We are here especially

interested in showing, in the context of a simple model, how policies aimed at immi-

grants have the potential to influence the outcomes of existing citizens.

There is relatively little research measuring the net economic impacts of immigra-

tion.1 It is clear that there are multiple channels through which immigration affects

the economic outcomes of a country, but we will be mainly concerned with one partic-

ular dimension – how the incentives of citizens change in response to changes in the

level of immigration – and so the conclusions we draw should be interpreted with this

limitation in mind. Our framework is not rich enough to speak to the overall effects

of immigration policy. Of particular interest to the issue we study is the estimate of

Borjas (2003) that, among high school drop outs, the decrease in wage attributable to

immigration was 9 percent.2

We develop a framework that allows us to analyze immigration and behavior in an

equilibrium context. We imagine that each individual makes a binary choice between

cooperating and defecting, where payoffs are based on an underlying prisoners’ dilemma

stage game with one’s (endogenously determined) partners. While abstract, this choice

is meant to capture an individual’s general behavior regarding his participation in

society and his interactions with others. For example, one could view these actions

as entering the formal economy and generally obeying the laws of the land, or instead

entering the black market and conducting activities that are illegal or deemed to be

socially costly.

There are two channels through which individuals enter the economy: through

birth within the country and through immigration from abroad.3 Both kinds of agents

1Immigration increases labor supply allowing domestic resources that are complementary to labor to be

used more efficiently, increasing profits (see Hanson 2007 and Borjas 2003). On the other hand, the increased

labor supply pushes wages down, at least in some sectors. Immigration also lowers prices, raising real income

(see Cortes 2008).
2Immigrants also contribute to the tax base and demand costly services. According to Hanson (2007),

the net fiscal effect for the United States appears to be positive for high-skill immigrants, and negative for

low-skilled immigrants, at least in the short run, but existing data is not of sufficiently quality to measure

this precisely. Dustmann and Frattini (2014), studying the U.K., find generally net positive fiscal effects of

immigration, especially among recent immigrants. Dustmann et al. (2013) find, further, that there is a small

negative effect on immigration on low wages, but a positive effect on high wages.
3Consistent with, e.g., United States law, we assume that all individuals born in the country, whether to

citizens or to immigrants, become citizens.
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confront exactly the same choice at birth. However, the incentives that they face,

and therefore their optimal choices, may be different. The wedge in their incentives

is driven by two factors. The first factor is that an agent born within the country

inherits the social relationships of its parent. The value of these relationships is en-

dogenous and depends on the (optimal) manner in which relationships are managed

in the population. In equilibrium, it is the case that offspring of cooperators have

a richer set of relationships than offspring of defectors, and we think of this fact as

capturing differential inheritance of social (or “network”) capital due to the behavior

of the parents.

The second factor is the possibility that the government may expend resources to

monitor and punish immigrants who defect. This is, in fact, the policy instrument

on which we focus, and we assume that punishment takes the form of expulsion. Our

main goal is to analyze the impacts of such a policy. We do not model the costs of

enforcing the policy, so one cannot draw welfare conclusions directly from our analysis,

but, rather, our goal is to understand the policy’s impact on behavior. Our results

may be summarized as follows.

First, we characterize the existence of a non-trivial equilibrium, in which either all

agents cooperate, or agents mix in such a way that many, but not all, agents cooperate.

The coexistence of cooperative and defective behaviors is descriptive of some sys-

tems, at least in a stylized sense. For instance, according to the U.S. Department of

Justice, in 2013 there were 23.2 violent crime and 131.4 property crime victimizations

per 1000 individuals.4 That is, criminal activity is certainly present, but it involves a

minority of people. One can also think in terms of online commerce, in which there

can be an incentive to cheat one’s trading partner, but business is still conducted, with

the general expectation of honest transactions, despite occasional infractions.5

The intuition that guides the equilihbrium characterization is that there is a “nat-

ural” level of cooperation controlled by parameters. A key aspect of behavior is that

the only way to accumulate relationships over time is through cooperation. If the co-

operation level is higher than this natural level, then it becomes tempting to defect,

even at the cost of retaining relationships. If the cooperation level is lower, then, as

cooperators are relatively scarce, defectors cannot meet enough cooperators to obtain

high payoffs; instead it becomes optimal to cooperate so as to gradually accumulate

relationships.

Our main result is to characterize the impact of expelling immigrants who defect.

4This data is from http://www.bjs.gov/content/pub/pdf/cv13.pdf, accessed October 9, 2014.
5For example, the FBI reports 262,813 consumer internet fraud complaints for 2013, out of many millions

of transactions. See the Internet Crime Complaint Center, which is run jointly by the FBI and the National

White Collar Crime Center, at http://www.ic3.gov/media/annualreport/2013_IC3Report.pdf.

3

http://www.bjs.gov/content/pub/pdf/cv13.pdf
http://www.ic3.gov/media/annualreport/2013_IC3Report.pdf


Increasing the intensity of this policy decreases the defection rate, as may be expected.

However, there is an equilibrium effect of this policy whereby the incentives for citizens

to defect increase at the institution of the policy. This arises because as immigrants

shift towards cooperation, defecting becomes more tempting for citizens, as the change

in immigrants’ behavior drives cooperation above the natural level. In our model,

offspring born to defectors optimally defect in the presence of the expulsion policy.

A crucial mechanism that generates this effect is that of inheritance. In equilibrium,

cooperators maintain valuable relationships. When they die, any offspring inherit this

social capital and, as mentioned, this has an important bearing on their incentives and

consequently their behavior. Specifically, it arises endogenously that offspring tend to

adopt the same behavior as their parents.

Finally, we enrich the model by allowing for heterogeneity in preferences. While

such a formulation is certainly more realistic, our main motivation for studying this

extension is to argue that the conclusion that expelling immigrants has negative con-

sequences for a fraction of citizens is robust. In particular, this result takes a natural

form in that the effect of more intense expulsion on citizens’ behavior is smooth, rather

than having a discontinuous effect when it is first initiated.

We interpret this latter result in light of the debate on immigration policy alluded

to above. It is true in our model that the overall impact of harsher immigration policy

is to improve aggregate behavior in the economy. However, this effect is smaller than

would be predicted if one failed to account for equilibrium effects. In particular the net

impact on the defection rate is diminished by a substitution effect whereby more citizens

find it optimal to defect as immigrants shift to cooperating. This result suggests that

if one is interested in decreasing the returns to defection, more effective policies target

the payoff parameters of the prisoners’ dilemma that governs interactions, rather than

on the punishment of immigrants. In this sense, while we do not attempt to study

optimal policies, we argue that certain classes of policies are unlikely to be optimal in

a more general analysis.

The rest of the paper proceeds as follows. Section 2 discusses the academic literature

on which we build. Section 3 presents the framework, including our model of population

dynamics and our specification of utility functions for agents. Section 4 characterizes

equilibria for a baseline case where there is no inheritance and when the government

makes no attempt to expel immigrants. Section 5 presents our main results regarding

the impact of immigration policy. Section 6 concludes and offers thoughts on how

our model and results might be extended to remedy some of the shortcomings of our

analysis. Robustness of some assumptions are discussed in Appendix A, while proofs

are collected in Appendix B, and a simulation exercise is discussed in Appendix C.
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2 Our contribution

The fact that we model the social choices facing agents through a base game of the

prisoners’ dilemma variety relates our work to the large literature that seeks to explain

pro-social behavior through repeated interactions. This question dates at least to

Fudenberg and Maskin (1986) who formalized the folk theorem.

Many researchers have by now been motivated by the empirical observation that

cooperative behavior is widespread even in situations where punishment schemes are

limited.6 Our work is different from this strand of literature for several important rea-

sons. Principally, we assume that agents make once-per-lifetime decisions about their

behavior, which shuts down the possibility of non-stationary punishments. Instead,

punishment comes through the threat to sever links, which brings us in touch with

studies that focus on voluntary separation.7 Recent contributions to this line of work,

that focus explicitly on the role of separation of partners, are Izquierdo et al. (2010,

2014).8

Even though our setting has the features of endogenous termination of relationships

and anonymity, our work bears little in common with this literature by virtue of the fact

that our interactions take place through an endogenous network in which, importantly,

individuals typically manage multiple relationships concurrently, rather than having a

single partner at any given moment of time. Fosco and Mengel (2011) study imitation

dynamics in an evolving network, showing, as do we, that cooperation and defection

coexist. As a result, the central tradeoff for our agents is that cooperation allows for

the gradual accumulation of many profitable relationships, whereas defection results in

a series of more profitable, yet transient relationships.

The most closely related analysis is Immorlica et al. (2010, 2013), on whose match-

ing model we build.9 That paper studies equilibrium cooperation in a homogeneous

6Dall’Asta et al. (2012) study, in a general network topology, the conditions for clusters of sustained

cooperation. When instead connections are not fixed, Kandori (1992) demonstrates that cooperation can

be sustained by use of community enforcement strategies. Further, while that construction relies on public

histories, Kandori (1992) and Ellison (1994) demonstrate that cooperation is still possible under anonymity

if players use contagion strategies, and Vega-Redondo (2006) introduces a local information passing to obtain

a similar result.
7See Kranton (1996), Ghosh and Ray (1996), Datta (1996), Watson (1999, 2002), and Fujiwara-Greve

and Okuno-Fujiwara (2009).
8A related idea is that cooperation can be sustained via ostracism, whereby an defector’s behavior can

spread through her local network, resulting in punishment. See Ali and Miller (2013) and Jackson et al.

(2012).
9The earlier paper is a short and preliminary version of the working paper. While we add to this framework

in several ways, we also make one simplification, which is that link formation is unilateral.
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population and so cannot speak to our questions of interest, all of which relate to

the difference between immigrants and citizens. Since our model introduces hetero-

geneity in the population, our steady state derivation is significantly more complex.

Equilibrium computations are also complicated by the fact that there are different in-

centives for different agents that must be accounted for. We also introduce the notion

of inheritance which, as it turns out, is essential for uncovering the effects of immigra-

tion, and immigration policy, on equilibrium outcomes. The main results of Immorlica

et al. (2013) demonstrate existence of equilibrium and characterize some of its basic

properties. Here, since our objective is to understand the consequences of punish-

ing immigrants, our main results concern certain comparative statics of equilibrium

behaviors in the population (Propositions 3, 4 and 5). In particular, the results on

how citizens’ behavior changes in response to the punishment of immigrants has no

counterpart in Immorlica et al. (2013).

We also contribute to the economic literature investigating the impact of immi-

gration. On this, and for additional references, see the surveys of Borjas (1994) and

Hanson (2010), the books Borjas (2008) and Borjas (2014), as well as the references

in the Introduction. The consensus emerging from this literature is that immigration,

even when it is illegal, has relatively small net impact on the economy, but it is likely

to be a positive impact. Nonetheless, it almost certainly has a negative effect on those

in the lower socio-economic tier, i.e., those competing for low-skill, low-wage jobs.

This literature, while of clear importance, has not for the most part investigated

the effect of illegal immigration on incentives.10 One exception is Kemnitz and Mayr

(2012) which studies, in part, the effect of punishing illegal immigrants on the rate

of immigration. In our model, the inflow of immigrants is exogenous, allowing us to

focus instead on the effects of punishment on citizens’ incentives. Mastrobuoni and

Pinotti (2014) estimate a very different model on behavior and immigration in which

citizenship and immigration status is linked to the criminal behavior.

Finally our paper makes a connection to the economic literature on identity. See

Akerlof and Kranton (2000) for a review of this work. There is a relationship between

our model and the idea of cultural transmission in the identity literature, present in all

the papers surveyed by Bisin and Verdier (2012). In those models, there is a concern for

children’s welfare that is imposed on parents, or otherwise there is an exogenous element

by which parents care about their children’s actions. Through various mechanisms, this

results in the transmission of traits and, by extension, culture, from one generation to

the next, so that children tend to have similar traits as their parents. In our paper

10There is a literature discussing the effects of policy on the level and kinds of immigration where the

origin annd destination countries are explicitly modeled; on this see, e.g., Djajić (1987) and Levine (1999).
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there is a similar outcome whereby children take similar actions as their parents. In

our model this transmission happens endogenously, deriving from the inheritance of

relationships, which we think of as social capital or network capital, as discussed in the

empirical work of Shenk et al. (2010), from the parent.

3 The framework

We build a model of a nation’s evolving population in which agents cooperate or defect,

seeking to maximize lifetime exepcted payoffs. We study equilibrium behavior under a

steady state of the population dynamics. Studying comparative statics of the steady

state equilibrium allows us to analyze the potential consequences of a policy aimed at

influencing the incentives of immigrants.

There is a single society, that evolves in discrete time, t, modeled as a continuum

mass of individuals St. At every moment of time the elements of St are the nodes of a

directed network gt = (St,Kt). Kt ⊂ St × St are the directed links of this network. A

link (i, j) ∈ Kt, is called an out-link for i and an in-link for j. An agent’s out-degree

(in-degree) at time t is said to be the number of his out-links (in-links) at time t.

A link (i, j) ∈ Kt represents the play of a prisoner’s dilemma between i and j at

time t, given by

C D

C 1, 1 −b, 1 + a

D 1 + a, −b 0, 0

,

with a, b > 0 and a− b < 1. Notice that the game is fully symmetric. The orientation

of the link plays a role only in the evolution of Kt, described below. The evolution of

gt over time depends on several factors, including exogenous stochastic events as well

as strategic choices of the individuals.

3.1 Population dynamics: agents

Let us first focus on the evolution of St. At each period there is a fixed inflow, of

mass η, of agents, referred to as immigrants. There is also an endogenous mass of

offspring of existing nodes that enter at each period, called citizens. Every entering

agent chooses at birth to be a cooperator or a defector, which determines his behavior

in the prisoners’ dilemma interactions. This decision is taken only once and commits

an agent to that behavior for the duration of its life.11 Given that an agent either

11Under certain conditions one can show that an agent would never have an incentive to revise his ac-

tion. This implies that, in this case, the equilibrium we describe survives an extension to the case of no
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cooperates for his life or defects for his life, there is no role for punishments in the

traditional repeated game sense using non-stationary strategies. Instead, incentives

are provided through how links are maintained, as we will describe below.

Agents are partitioned according to how they entered the network and on the choice

they make. Specifically, there are three classes, with each node belonging to exactly

one class: Cooperators, including both citizens and immigrants (Ct), Immigrant defec-

tors (It) and Citizen defectors (Dt). Thus, St = Ct ∪ It ∪ Dt. As will be clear below,

agents will generally have different incentives depending on whether they enter (i) as

an immigrant, (ii) as an offspring of a defector, or (iii) as an offspring of a cooperator.

Accordingly, we introduce notation to describe the behavior of entering agents as fol-

lows. Let the probability with which an entering agent at time t chooses to cooperate

be denoted pI,t for an immigrant, pD,t for an offspring of a (immigrant or citizen) de-

fector, and pC,t for the offspring of a cooperator. Agents choose to be defectors with

the complementary probabilities.12

Agents exit the system either through death or through expulsion of immigrant

defectors. A proportion (1 − δ) of agents die at every period, independently of their

behavior and immigration status. A proportion µ of dying agents have a single off-

spring. A proportion ν of immigrant defectors are expelled at every period.13 Figure

1 summarizes the dynamics by representing the flows of agents through the system

across classes.

3.2 Population dynamics: links

Turning now to the links, Kt evolves in the following way. First, whenever an agent

exits the system, either through death (without an offspring) or expulsion, all links

incident to that agent are removed. An offspring, on the other hand, inherits the

in– and out–links of its parent. After the prisoners’ dilemma are played, every agent

unilaterally severs a subset of its in- and out-links of its choice. All links for which

neither of the two incident nodes die (including, potentially, the replacement of a parent

with its offspring), nor choose to sever the link, survive to the next period.

commitment, in which an agent is free to use an arbitrary non-stationary strategy. On this see Appendix A.
12One could, e.g., apply a purification argument through a small amount of heterogeneity in preferences

in order to generically obtain strict preferences. See Section 5.3.
13The important aspect of punishment is that it is a cost imposed specifically on immigrants. If the

punishment were temporary such as, e.g., prison, then the population dynamics would have to be adjusted

to account for reentry.
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In Out 1-pI 

pI 

η 

(1-δ)(1-μ) 

(1-δ)(1-μ) 

(1-δ)(1-μ)+δν 

(1-δ)·μ·pD 
(1-δ)·μ·pD 

(1-δ)·μ·(1-pD) 

D: Citizen Defectors 

C: Cooperators 

I:  

Immigrants 

Defectors 

Figure 1: Representation of population dynamics.

We assume that every agent has a budget of k out-links that he maintains.14 Any

agent who, through the loss of links at the previous period, or because it is new in

the population, has fewer than k out-links, searches and re-matches the remaining out-

links with new partners chosen uniformly at random from the entire population. Notice

that out-degrees k are therefore homogeneous, while in-degrees generally vary. What

is qualitatively important for our results are that (i) there is a bound on the number

of links an agent can expect to maintain, and (ii) it takes time to build up a network

of partners, which comes through the fact that in–links are obtained only gradually

through the search of other nodes. Similar results could be obtained for specifications

with these properties, even if the graph was undirected.

Let us now be more precise about the timing that determines the transition from

gt−1 to gt at each period.

(a) The set of offspring (defined from the previous period, see item (g) below) enter

and are added to St−1. Each offspring born to a defector decides with probability

14One can imagine that links are costly, and it is the link initiator who pays the cost, with a budget that

allows for k out-links to sponsor.
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pD,t ∈ [0, 1] to be a cooperator; otherwise it becomes a defector. In the same way

each offspring born to a cooperator decides with probability pC,t ∈ [0, 1] to be a

cooperatorr; otherwise it becomes a defector.

(b) A set of mass η of new immigrants enter and are added to St−1. They are ex–ante

homogeneous. Each of them decides to cooperate with probability pI,t ∈ [0, 1];

otherwise it becomes a defector.

(c) Every entering agent, both immigrants and offspring, casts k out–links to agents

in the society. Similarly, all existing agents cast available out–links (k less the

number of out–links maintained from the previous period). All partners are

chosen uniformly at random.

(d) Payoffs are realized, and actions observed, from the play of the bilateral prisoners’

dilemma game, along every link.

(e) Every agent unilaterally severs any of its in– and out–links that it desires.

(f) A proportion (1 − δ) ∈ (0, 1) of St is randomly selected to die, independent of

which behavior the agent is taking, and whether the agent is an immigrant or

citizen.

(g) Of the agents who die, a proportion µ ∈ [0, 1] is randomly selected to generate

an offspring. The offspring inherits the network position of her parent, i.e., the

same set of in– and out–links in Kt. Every offspring is a citizen, whether or not

the parent was an immigrant.

(h) Finally, a proportion ν ∈ [0, 1] of surviving immigrant defectors is randomly

selected to be expelled (which is equivalent to death without an offspring).15

3.3 Steady state

We analyze a steady state of these dynamics in which the mass of each class is constant,

so that Ct = C, It = I, and Dt = D. We denote by q = |C|
|S| ∈ [0, 1] the corresponding

proportion of cooperators in society. Given the focus on steady state, we take the

behavior of entering agents to be constant over time, so that pC,t = pC , pI,t = pI , and

pD,t = pD. For the main analysis, we shall also set pC = 1, i.e. offspring of cooperators

15In principle, we could consider a different model in which the probability ν of being expelled is indepen-

dent from the probability δ of dying. This alternative assumption would change the probability of passing

from I to Out (refer to Figure 1) from (1 − δ)(1 − µ) + δν to (1 − δ)(1 − µ)(1 − ν) + ν, or equivalently, it

would change ν into (δ + µ− δµ)ν. In this sense, the alternative assumption simply results in a rescaling of

ν that depends on δ and µ.
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always choose to cooperate. In Appendix A we show that this is a weak assumption

and discuss its robustness.

We discuss below our notion of equilibrium that captures optimal choices in the

population. We now focus on the steady state implications that an arbitrary pair

(pI , pD) has on q.

Consider first the steady-state condition of fixed population size, i.e.,

η = (1− δ)(1− µ)|S|+ |I|δν,

which balances the inflow to society with the total outflow from society (see Figure 1).

Inflow is accounted for exclusively by immigration, since offspring merely replace a

dying node, whereas outflow occurs through death in the whole population, as well

as expulsion of immigrant defectors. We can write the size of the immigrant defector

population as

|I| = η(1− pI)
∞∑
t=0

(δ(1− ν))t = η
1− pI

1− δ(1− ν)
,

which expresses the subpopulation as its per-period inflow multiplied by the expected

lifetime of each agent. This allows us to determine |S| by substituting into the steady-

state condition:

|S| = η
1− δν 1−pI

1−δ(1−ν)

(1− δ)(1− µ)
= η

1− δ + pIδν

(1− δ)(1− µ)(1− δ + δν)
.

Observe that the size of the society in steady state does not depend on pD (or on pC

if we allowed it to vary), because those choices are made by citizens, and do not affect

their survival probabilities.

We next solve for the masses of C and D, which are given by the condition{
|I|(1− δ)µ(1− pD) = |D|

(
(1− δ)µpD + (1− δ)(1− µ)

)
η · pI + |I|(1− δ)µpD + |D|(1− δ)µpD = |C|(1− δ)(1− µ)

.

The first line above equates the total inflow to D with the total outflow from D, while

the second line equates total inflow to C with total outflow from C, where again Figure

1 summarizes the relevant flows. The solution is
|C| = 1

1−µ ·
1

1−µ(1−pD)

(
µ · pD|I|+ pI

1−µ(1−pD)
1−δ η

)
|D| = 1

1−µ ·
1

1−µ(1−pD) (µ(1− µ(1− pD)− pD)|I|)
.

We can now present the steady state proportion of cooperators in terms of exogenous

parameters and the cooperation probabilities (pI , pD) by simplifying |C||S| from the above

11



to obtain

q = 1− (1− δ)(1− µ)(1− pI)
(1− µ+ µpD)(1− δ + δνpI)

. (1)

Equation (1) is one of the main building blocks of our analysis. Let us discuss its

implications for how the steady state cooperation level varies with the parameters that

describe population dynamics. As a first check it may be noted that, as expected,

when µ = 1 and/or δ = 1 (so that C is absorbing, as a cooperator either lives forever

or else necessarily produces a cooperating offspring when dying) we obtain that q = 1

(in steady state, all agents cooperate). Next, note that the partial derivatives of q with

respect to pI , pD and ν are all weakly positive, meaning that the steady state level

of cooperation rises as entering nodes cooperate with higher probability (pI and pD)

or when immigrant defectors are removed more frequently (ν). Notice that pI and pD

are endogenous, and so will have to be determined from incentives below. Also, when

µ = 0 (no offspring) there is no effect of pD, since without offspring there is no role for

the choice of newborns. Finally, when ν = 0 (no expulsion) the effect of δ (death rate)

disappears, since in this case agents from each subpopulation die at the same rate, so

that while the death rate affects turnover, it does not affect the relative frequencies of

types of agents.

3.4 Solution concept

Equation (1) shows how q depends on the endogenous choices pI and pD through the

steady state conditions. In what follows we discuss how pI and pD are determined by

maximizing expected payoffs, which in turn depend on q, so that the equilibrium and

steady state conditions are interdependent in characterizing a steady state equilibrium.

There are two aspects to agents’ strategies: link management and the choice be-

tween cooperation and defection. Naturally, how best to manage links depends on the

behaviors of other agents, and, on the other hand, expected payoffs from cooperation

versus defection depend on the way one expects its links to evolve.

3.4.1 Optimal linking decisions

Recall that an agent observes the behavior of a given partner only after the first round

of interaction (see points (c) and (d) in Section 3.2). But then, given that each agent

makes a once-per-lifetime choice at birth between being a cooperator or a defector,

optimal linking decisions become simple to characterize, since the future play of a given

partner is perfectly predictable. In fact, this is one of the main benefits of studying

once-per-lifetime behavior, as otherwise optimal linking decisions would potentially be

extraordinarily complex.
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We introduce notation to describe how an agent manages its relationships with

others. Let an agent using behavior X maintain any given link with an agent using

behavior Y with probability σXY ∈ [0, 1] in each period, for X,Y ∈ {C,D}. That is,

such a link is severed by the agent with probability 1− σXY .16

We will argue that links between cooperators are always maintained, but links

involving a defector are always severed and re-matched. To this end consider first the

case of q ∈ (0, 1). There is a pathological possibility that cooperators sever links with

each other. That is, σCC = 0 is a best response to itself, since if other cooperators

are severing links, then a given cooperator will lose all such links independently of her

behavior. However, we require that agents overcome this basic coordination problem

by assuming that they do not use weakly dominated linking strategies.17 Once σCC = 0

is ruled out, it is immediate that cooperators have strict incentives to maintain links

with each other, whereas at least one agent involved in every other link has a strict

incentive to sever it.

Taking now q = 1, a cooperator is indifferent about how to manage his out-links:

he can always re-match with another cooperator. We argue that σCC = 1 is neverthe-

less the unique natural behavior in our model. First, if one desires robustness of the

linking strategy to small changes in q, then by the argument in the previous paragraph

cooperators should maintain links with each other. A separate rationale is that if we

incorporated a small search cost in the model, then maintaining a link to a cooper-

ator is strictly better than searching for a new cooperator (thus one may think that

cooperators maintaining links is a natural norm).

Finally, for completeness we note that when q = 0 there is a further case of in-

difference: a linked pair of defectors are indifferent about keeping/severing their link.

Notice, however, that for any linking strategy, payoffs to defecting are identically zero,

and so we choose to maintain the linking strategies described above for simplicity and

consistency.

We remark that the fact that the mutual defect stage game payoff is zero is thus not

without loss, as it equates the value of a (D,D) link with the value of no link. However,

it is straightforward to generalize our results to accommodate a general payoff term

from mutual defection, subject to constraints on optimal linking decisions remaining

unchanged.

We summarize this discussion with the following:

16In general, the linking strategy could depend arbitrarily on the agent’s complete history since birth. We

use the simpler formulation since optimal linking decisions are, in fact, quite simple in our context.
17This assumption is natural and ubiquitous in network formation models, following the seminal work of

Jackson and Wolinsky (1996).
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Observation 1 (Optimal link severance). It is essentially without loss of generality

to take σXD = 0 and σXC = 1, for X ∈ {C,D}. I.e., links with defectors are always

severed and links with cooperators are always maintained. Thus, it is (only) the links

involving mutual cooperation that survive across periods.

3.4.2 Optimal choice of cooperation versus defection

The derivation of payoffs in this subsection shares important elements with the devel-

opment in Immorlica et al. (2013).

We denote by δN = δ+(1−δ)µ the turnover rate among the network of cooperators.

It is this probability with which a given cooperator either survives one more period,

or dies but is replaced by an offspring who inherits the same position in the network.

Naturally, when there is no inheritance (µ = 0), we have that δN = δ. Let noutXY (t)

denote the expected number of out-links from an age t agent using behavior X to

agents using behavior Y , for X,Y ∈ {C,D}, where the expectation is taken at the

time the agent is born.

The expected number of out–links from a cooperator to other cooperators is:

noutCC(t) = δN noutCC(t− 1) + q(k − δN noutCC(t− 1))

= kq + (1− q)δN noutCC(t− 1)

= k q
1− (δN (1− q))t+1

1− δN (1− q)
,

where the last equality is solved recursively setting noutCC(0) = k q. The first equality

reflects the fact that out-links to cooperators in a given period consist of surviving

maintained out-links from the previous period, as well as those new out-links that

happen to connect with a cooperator. Notice that this calculation, as well as the

subsequent ones, rely on Observation 1.

Clearly noutCD(t) = k − noutCC(t), noutDC(t) = kq and noutDD(t) = k(1− q).

The proportion of cooperators that have occupied their position in the network for

t periods is s(t) = (1− δN )δtN .18 Similarly, we denote the age distribution of defectors

by sD(t). We then have that the expected per-period inflow of links from cooperators

18By this we mean the number of periods for which the agent has either been alive, or has replaced a dying

parent, i.e., from the perspective of other agents, it is the number of periods for which the agent’s position

in the network has remained occupied.
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and defectors to a given agent are, respectively,

rC =
∞∑
t=0

q s(t) (k − δN noutCC(t− 1)) = k
q(1− δ2N )

1− δ2N (1− q)
,

rD = k

∞∑
t=0

(1− q) sD(t) = k(1− q) .

In each case, the aggregate mass of search being done by agents of a particular behavior

(cooperate or defect) is given by an expectation over age, given the behavior-dependent

age distribution, of the mass of agents of that age taking the particular behavior,

multiplied by the number of out-links such agents are expected to form in that period,

which comes from the above calculations on out-links. Notice that, in the case of

cooperators, the calculation is complicated by the fact that expected out-link search

varies non-trivially with age, whereas for defectors it is instead constant (and equal to

k).

The expected number of in–links from cooperators to an age-t cooperator is then

ninCC(t) = δN nincc(t− 1) + rC

= rC
1− δt+1

N

1− δN

= k
q(1 + δN )

1− δ2N (1− q)
(1− δt+1

N )

where the second line is solved explicitly setting ninCC(0) = rC . The evolution of

expected in-links is dictated by the fact that in each period, a cooperator expects

rC new in-links from cooperators, which are added to the surviving in-links from the

previous period. Note that, because of death, the number of expected in-links has a

finite upper bound.

Clearly ninCD(t) = ninDD(t) = rD and ninDC(t) = rC .

The expected stage payoff for a player that has age t is

πC(t) = 1 · (noutCC(t) + ninCC(t))− b · (noutCD(t) + ninCD(t)) ,

πD(t) = (1 + a) · (noutDC(t) + ninDC(t)) ,

where the above simply sum the stage game payoffs across the expected set of in- and

out-links an agent has with cooperators and defectors at age t.

Recall that there are three classes to which a node can belong: Cooperators, Immi-

grant defectors and Citizen defectors. The agent’s choice at birth, along with whether
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it entered the system as an offspring or an immigrant, determines the agent’s expected

lifetime payoffs, as follows:19

uC(q) =
∞∑
t=0

δtπC(t) (2)

uD(q) =

∞∑
t=0

δtπD(t) (3)

uI(q) =
∞∑
t=0

(δ(1− ν))tπD(t), (4)

where the distinction in the two roles of defecting derives from the fact that immigrants,

and only immigrants, face the possibility of being expelled. Notice here that δ plays

two roles: it affects population dynamics through the turnover rate independently of

preferences, and it also affects preferences for a given population dynamics.

Every entering agent chooses between cooperation and defection so as to maximize

its expected lifetime payoff. An immigrant thus compares uC(q) with uI(q), while a

citizen compares uC(q) with uD(q), potentially mixing in the case of indifference.

3.4.3 Steady state equilibrium and stability

We can now be precise and observe that, given exogenous parameters (δ, µ, ν), Equation

1 determines the steady state level of cooperation as a function of the strategic variables

(pI , pD), while, given preference parameters (a, b, δ), the optimizing behavior of entering

agents determines (pI , pD) as a function of q through Equations 2, 3 and 4. With this

in mind we now define the notion of equiliibrium as follows:

Definition 1 (Equilibrium concept). An equilibrium is a sixtuple (pI , pD, {σXY }X,Y ∈{C,D})
such that: (i) q(pI , pD) is a steady state; (ii) (pI , pD, {σXY }X,Y ∈{C,D}) are best re-

sponses given q, which requires

• σCC = σDC = 1 and σCD = σDD = 0, from Observation 1,

• if uC(q) > uD(q) then pD = 1, while if uC(q) < uD(q) then pD = 0, from

Equations 2 and 3,

• if uC(q) > uI(q) then pI = 1, while if uC(q) < uI(q) then pI = 0, from Equations

2 and 4.

19A new cooperator could enter as the offspring of a cooperator, in which case it inherits the parent’s

network of cooperators. The calculation below corresponds instead to the case of no inherited network (as

pertains to an immigrant or the offspring of a defector), as the former case is taken care of by the requirement

that pC = 1.
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All of our results concern equilibria in the sense of Definition 1. Thus it should

be emphasized that our analysis relies on an assumption that agents use stationary

strategies, form links according to a specific set of rules, and that society is in a steady

state. All of these requirements mean that, while we identify certain effects that may

arise in equilibrium, we cannot predict that those effects necessarily arise in society.

Some equilibria fail a basic stability requirement and, as such, are not compelling

solutions to the model. More specifically, applying a refinement proposed by Blonski

(1999), we desire a solution with the property that, if the cooperation level q is slightly

perturbed, then entering agents, using utility calculations based on the pertubed co-

operation level, make optimal decisions that send the cooperation level back towards

its original equilibrium value. It is equilibria that are stable in this sense that we seek

to characterize, and perform comparative statics on, in Sections 4 and 5.

We make this intuition precise in the following:

Definition 2 (Stable equilibrium). A stable equilibrium is an equilibrium (pI , pD, {σXY }X,Y ∈{C,D})
with associated steady state q such that there exists an ε > 0 for which the following

hold:

• If q < 1, then for every q′ ∈ (q, q + ε) and for every (p′I , p
′
D) that are (part of)

best responses at q′, Equation 1 produces q(p′I , p
′
D) < q′;

• If q > 0, then for every q′ ∈ (q − ε, q), the above inequality is reversed.

A few remarks are in order. Note first that optimal linking decisions, characterized

in Observation 1, are not affected by a perturbation of q. That is, even if perturbations

of linking decisions were incorporated into Definition 2, an agent’s best response would

still involve keeping links with coperators and severing links with defectors. For this

reason, our results would not change if we augmented the stability notion in this

fashion. Next, recall that if ν = 0, uD = uI and all defectors have the same expected

payoff, whereas if ν > 0 then uD > uI , so that it is impossible that both citizens

and immigrants are indifferent between cooperating and defecting. Recalling that,

from Equation 1, q is increasing in both pI and pD, this implies that for small enough

perturbations around an equilibrium, all agents will have strict preferences between

cooperating and defecting. Thus, for small enough ε, there is a unique q(p′I , p
′
D) that

the stability condition needs to consider.

Finally, this stability refinement is quite mild, in that it accounts for the direction

of the best response, ignoring the magnitude of the resulting change in q across periods.

In other words, there could in principle exist equilibria that satisfy Definition 2, but

such that following a small perturbation, the best response of entering agents will cause

a change that “overshoots” the original equilibrium, as could be the case e.g. when δN
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is small so that a large fraction of the population is born at each time step. However,

as we show below, non–trivial stable equilibria are in most cases unique, so that any

stronger notion of stability would either provide the same refinement, or it would leave

only the all-defect equilibrium.20 But since, in general, one may desire a stronger

stability concept, one can think of our results as characterizing a best-case outcome in

this sense.

4 Stable equilibria without inheritance or pun-

ishment

We can easily write equations (2) and (3) explicitly in the case where µ = ν = 0. We

have, in particular, that

uC =

(
k

1− δ

)(
2q − b(1− q)(1− δ2)

1− δ2(1− q)
− b(1− q)

)
, (5)

uD = uI =

(
k

1− δ

)(
(1 + a)q(1− δ2)

1− δ2(1− q)
+ (1 + a)q

)
. (6)

An equilibrium (Definition 1) is a probability of cooperation for each kind of en-

tering node, and an associated steady state, such that every entering agent makes an

optimal choice between defection and cooperation at birth, maintains links only with

cooperators, and the steady state is consistent with these optimal choices over time. A

stable equilibrium (Definition 2) is one in which, if the level of cooperation is perturbed

up (down), and optimal choices are re-computed at the new steady state, then the level

of cooperation will decrease (increase) as new agents enter. We now fully characterize

the set of stable equilibria.

Proposition 1. When µ = ν = 0, there is always a stable equilibrium at q = 0. There

is at most one other stable equilibrium, as follows.

1. If a < δ2

2−δ2 , then there is a stable equilibrium at q = 1.

2. If a > δ2

1−δ2 , then there are no other stable equilibria.

3. If a ∈
(

δ2

2−δ2 ,
δ2

1−δ2

]
, then there is another stable equilibrium if and only if

b <
2(δ4 + a(2− 3δ2 + δ4))

(2− δ2)2
−

4
√
δ2(1− δ2)(a(2− δ2)− δ2)

(2− δ2)2
,

in which case 0 < q < 1.

20If our stable equilbrium was not unique, a stronger refinement could be useful but it would not alter the

comparative static results that we obtain.
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The proof of Proposition 1, and those of the following results, is in Appendix B.

The proof works by building a function V (q) that is proportional to uC(q)−uD(q) and

analyzing its properties. The interior equilibria thus occur at the zeros of V . Applying

stability in the sense of Definition 2, an interior equilibrium q∗ is stable if and only if

V ′(q∗) is negative, which implies that near q∗, uC(q) > uD(q) for q < q∗ and conversely

for q > q∗. See Figure 2 for illustrations of V to compare with the following discussion.

The technical reason for the uniqueness of a non-trivial stable equilibrium is con-

cavity of V (q) (which implies a unique zero where V is decreasing). Economically, this

concavity derives from two facts. First, defectors benefit at a nearly constant rate from

an increase in cooperation, since most of their payoff is dictated by the proportion of

cooperators they meet with their out-links, which is linear in q. Second, the marginal

returns for cooperators are decreasing in q. To see an intuition for this, note that

cooperators approach an asymptotic neighborhood of other cooperators over time, and

once they near this state early enough in their lives, further increases in cooperation

do little to improve their lifetime utility. So, we have argued that uD is nearly linear

and that uC is concave, which implies that V is concave. In other words, stability

requires that the marginal benefit from an increase in q is higher for a defector than

for a cooperator. If that is true at a given equilibrium q∗, then the utility of defection

can only increase relative to the utility of cooperation with all further increases in q

above q∗, ruling out the possibility of another (even unstable) equilibrium above q∗.

Having discussed uniqueness, we next note that the temptation for a cooperator

to defect is increasing in the stage game payoff a. This drives the conclusion that for

large enough a no cooperation can be sustained (part 2), while for small enough a,

full cooperation is a stable equilibrium (part 1). To gain an intuition for the bound

below which full cooperation is possible, consider the limiting case δ → 1, in which

case the condition reduces to a < 1. In this case, a cooperator has on average twice as

many links as a defector would have (a defector has essentially all out-links, whereas a

cooperator has, in addition, an equal number of in-links). Thus optimality of defection

requires double the per-link payoff as cooperation, i.e., that 1 +a > 2 · 1, which in turn

requires a > 1. The intermediate result of partial cooperation (part 3) requires not

only that a fall between the two bounds above, but also that b not be too large. This

final condition requires that a cooperator not suffer too much when meeting a defector,

which is necessary for cooperators to survive in the presence of defectors (interior q).

Observe that one implication of Proposition 1 is that, fixing a and b, as δ → 1, (i)

if a and b are large, then no cooperation is possible, (ii) if b is small, then there exists a

cooperative equilibrium, (iii) whether or not the cooperative equilibrium involves full

cooperation or only partial cooperation is determined by the value of a, and finally (iv)
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when the cooperative equilibrium exists, it is quite stable in the sense that the basin

of attraction expands to include all (arbitrarily low) cooperation levels.

Figure 2 depicts the possibilities for the qualitative shape of V . When there is a

unique zero of V on [0, 1], as in the top–left panel of Figure 2, then V (1) must be

positive, implying that uC > uD when all agents cooperate, i.e., full cooperation is an

equilibrium. Since uC is independent of a, while uD is increasing in a, V = uC − uD is

decreasing in a. Thus, this case obtains for a sufficiently small, noting that V (0) < 0

always, i.e., all-defection is always an equilibrium. When V has two zeros, as in the

top–right panel of Figure 2, only the larger equilibrium is stable, and we characterize

the range of parameters a and b for which this occurs, requiring an intermediate value of

a and a sufficiently small value of b. The bottom–right panel of Figure 2 illustrates part

1 of Proposition 1, in which a is large enough that there is no cooperative equilibrium.

Finally, the bottom–left panel of Figure 2 illustrates the stability regions in the (a, b)

plane, when δ = 0.9. Notice that the parameters from the other three panels are

depicted in this graph, with the corresponding implications for equilibrium properties.

The conditions on payoffs introduced in Section 3 (a, b > 0 and a − b < 1) can,

to some extent, be relaxed. In particular, they are important for justifying optimality

of the network dynamics that we analyze but, given the dynamics, the equilibrium

characterization of cooperating and defecting hold more generally.

To be more precise, b > 0 is used only in that it guarantees the optimality of a

cooperator severing an in–link from a defector, a > 0 ensures that q = 1 is not a trivial

equilibrium, and a−b < 1 ensures that mutual cooperation is efficient – otherwise there

can be more efficient arrangements involving CD links. See Figure 2 for a graphical

representation of these inequalities.

We remark that the analysis of equilibrium, as depicted in Figure 3, displays a

hysterisis effect. Consider parameters for which there exists a stable non-trivial equi-

librium, say a = 0.8, which also corresponds to the top right panel of Figure 2. Now

consider a change in parameters such that this equilibrium fails to exist, as is the case

in the bottom-right panel.21 In particular consider an increase in a, say to a = 1.0. The

outcome of the economy must now shift, discontinuously, to the unique equilibrium,

in which all players defect. Then, if the shock is temporary and parameters return to

their original values that support the non-trivial equilibrium, the economy cannot be

expected to leave the all–defect state, as it constitutes a stable equilibrium. In general,

whether the economy is in the all–defect state or in the non-trivial equilibrium, when

the latter exists, is, in part, determined by the historical path of the economy.

21Comparative statics are discussed in the next section. There we show, for example, that an increase in

either a or b would produce such a shift.
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a=0.6 a=0.8 

a=1 

a=0.6 

a=0.8 

a=1 

Figure 2: The function V (q) = uC − uD for δ = 0.9, b = 0.6, and a ∈ {0.6, 0.8, 1}. The zeros

correspond to equilibria, as well as the positive value for q = 1 in the upper-left panel. In

each panel, the larger equilibrium is stable. In the bottom–left panel, the regions of (a, b)

pairs that generate non-trivial equilibria are displayed for δ = 0.9 (lighter for stable ones

with q = 1 – where this region which is drawn as rectangular but extends to infinity for any

positive b – and darker for stable ones with 0 < q < 1.) , where the points corresponding

to the first three plots are depicted. The bottom–left plot is enlarged in Figure 4, showing

more details that are used in the proof of Proposition 1.
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Figure 3: Equilibrium correspondence as a function of a, when b = 0.6 and δ = 0.9. The

flat line at q = 0 corresponds to the all–defect equilibrium. The solid curve corresponds

to the stable non-trivial equilibrium, while the dashed curve corresponds to the unstable

equilibrium.

5 Expulsion of immigrants

We now present the findings on the policy instrument of targeting defecting immigrants

with the threat of expulsion from society, which constitute the main results of the

paper. First, increasing the expulsion rate increases the equilibrium level of cooperation

(Proposition 3). However, the cooperation rate among citizens is decreasing in the

expulsion rate (Proposition 4). This effect is strict and smooth when heterogeneity in

the population is accounted for (Proposition 5).

5.1 Payoffs, policy, and inheritance

We begin with a preliminary observation that extends the functional forms of utilities

to the case that accomodates inheritance and expulsion.

Lemma 2. In the general case, with ν > 0 and µ > 0, the following are true.

(i) uC is independent of a and ν, and linearly decreasing in b.

(ii) uD is independent of b and ν, and linearly increasing in a.

(iii) uI is independent of b, linearly increasing in a and decreasing in ν.

The proof is conceptually simple, as it is still possible to express uC , uD and uI

explicitly. In this way, even though the expressions are cumbersome, the above depen-

dencies are easy to check.
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We now show that the effects of changes to the payoff parameters produce the

intuitive results in equilibrium.

Proposition 3. If an interior stable equilibrium q∗ exists then:

(i) the marginal effects of an increase in parameters a and b on q∗ are negative, and

(ii) the marginal effect of an increase in ν on q∗ is positive.

The proposition focuses on interior equilibria, since comparative statics are trivial

otherwise. For the proof, as with Proposition 1, we consider a function V (q) that is

proportional to uC(q) − uI(q). Instead of deriving equilibria explicitly, we apply the

implicit function theorem, using the fact that in a stable equilibrium it must be that

V (q) is decreasing.22

The comparative statics with respect to δ are left out of our analysis. Apart from

the fact that it is technically more demanding, from an applied point of view, the

subjective discount factor modelled by δ is not a ready target of change in any policy.

5.2 Effect of immigrant expulsion on citizen behavior

While expulsion of immigrants incentivizes them to cooperate, there is an equilibrium

effect whereby the increased level of cooperation makes defection relatively more at-

tractive to citizens. In this sense, a policy of expulsion may increase the defection rate

among citizens.

When ν > 0 it is clear that uD > uI . Thus, it must be that pD ≤ pI in equilibrium,

with at most one of them interior. The interesting case, in which the stable equilibrium

is interior, is when pD = 0 and 0 < pI < 1.23 Simplifying equation (1) accordingly, we

have

q = 1− (1− δ)(1− pI)
1− δ + δνpI

.

We now define the correspondence p∗D(ν; a, b, δ, µ) which, given all other parameters

of the model, maps ν into the set of values of pD that obtain in a stable non-trivial

equilibrium. The next result shows that p∗D(ν) is decreasing.

Proposition 4. Consider a set of parameters for which there is a stable equilibrium

with 0 < q∗ < 1 when ν = 0. Then p∗D(ν) is monotone decreasing.

We remark that the monotonicity of p∗D(ν) takes a simple form. In particular,

p∗D(0) = [0, p̄D] for some p̄D > 0, and p∗D(ν) = 0 for all ν > 0. In this case, the

22We do not prove uniqueness of non–trivial stable equilibria for this general case, although we have not

found numerical examples in which multiplicity arises.
23This follows from equation (1). If pI = 1 then q = 1. If pI = 0 then q = 0.
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equilibrium without expulsion generically involves a positive rate of cooperation among

citizens who are born to defectors. As soon as any policy of expulsion is implemented,

no matter how weak it may be, it drives the cooperation rate among these citizens

immediately to zero.

Under the hypotheses of Proposition 4 , when ν = 0 it is natural to take pD =

pI > 0, since immigrant defectors and citizen defectors can effectively be pooled into

one population. What the result demonstrates that, when immigrant defectors are

punished, behavior necessarily adjusts so that immigrant defectors remain indifferent

between cooperating and defecting, which immediately implies that offspring of de-

fectors strictly prefer to defect. The introduction of a wedge in incentives between

immigrants and citizens results in a discontinuous shift into defecting behavior for

citizens.

5.3 Heterogeneity across the agents

Proposition 4 describes a discontinuous effect of the expulsion policy on cooperation

among citizens. The discontinuity derives from the simplifying assumption in our model

that agents have identical preferences, so that a small change in incentives can shift

the behavior of a large mass of agents. We now show that allowing for heterogeneity

of payoffs smooths out this effect such that pD is uniquely determined, even at ν = 0

and, more importantly, it is strictly decreasing in ν.

To this end we augment the model by assuming that the temptation payoff, a,

is drawn from a continuous distribution Φ. Entering agents thus generically have

strict preferences between cooperating and defecting. An interior equilibrium is now

characterized by the system given by equation (1) and the two indifference conditions

uD(a) = uC , (7)

uI(a) = uC , (8)

where uD(a) and uI(a) express the expected utility that an agent with temptation

payoff a obtains by defecting, when she is, respectevily, a citizen or an immigrant.

Equations (7) and (8) can each be solved for a unique value of a, to yield thresholds

aD and aI , below which a citizen and an immigrant, respectively, strictly prefer to

cooperate and above which they strictly prefer to defect.24 These, in turn, generate the

probabilities of interest via pD = Φ(aD) and, similarly, pI = Φ(aI). It is straightforward

adopt Definitions 1 and 2 to this context, as follows.

24There is at most one solution for q > 0, which is the case of interest.
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Definition 3 (Interior stable equilibrium). An interior equilibrium is a sixtuple

(a∗I , a
∗
D, {σXY }X,Y ∈{C,D}) such that:

• σCC = σDC = 1 and σCD = σDD = 0, from Observation 1;

• q(pI , pD) is a steady state given pI = Φ(a∗I) and pD = Φ(a∗D);

• a∗I and a∗D satisfy Equations (7) and (8) given q.

Further, q is stable if there is an ε > 0 such that the following hold:

• If q < 1, then for every q′ ∈ (q, q+ε), and for every (a′I , a
′
D) that solves Equations

(7) and (8) given q′, the steady state q(Φ(a′I),Φ(a′D)) < q′;

• If q > 0, then for every q′ ∈ (q − ε, q), the above inequality is reversed.

It is easy to check that if the support of Φ contains only positive numbers, then the

autarky equilibrium with q = pI = pD = 0 is always an equilibrium. However, stable

non-trivial equilibria also exist, as can be shown through a purification argument á

la Harsanyi (1973), such that one can construct a sequence of pure strategy equilibria

that converge to the non-trivial stable equilibrium discussed in Section 4 at the limit

of vanishing heterogeneity. The following result studies those non-trivial stable equi-

libria and extends the comparative statics finding of Proposition 4 to the context with

preference heterogeneity.

Proposition 5. Consider a continuous distribution Φ, and fix parameters such that

there is an interior stable equilibrium for ν = 0. This characterizes a unique value of

p∗D(0). If this p∗D(0) > 0, then for any ν ≥ 0 we have that
dp∗D
dν < 0.

This result relies on the existence of an interior equilibrium, which depends on

the parameters of the model, including now the distribution Φ. Without punishment,

interiority requires two conditions. First, bmust be small enough to permit cooperation,

as in Proposition 1. Second, the support of Φ must, in a sense, be wide enough. This

latter condition is required because an interior equilibrium obtains when the indifferent

type ai falls in the interior of the support of Φ.

Finally, as is shown in the proof, when Φ puts more mass on the indifferent type

aD, so that there are more citizens who are nearly indifferent between cooperating and

defecting, the effect of increasing punishment on citizens’ cooperation rate is higher.

In Appendix C we run simulations that provide evidence for the quantitative effects of

this result.
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6 Conclusion

We have developed a model to study specific aspects of how the flow of immigration

influences a nation’s economy. We have paid particular attention to the incentive effects

of punishing immigrants who defect on their partners. Our main result is that a policy

of expelling such immigrants is not likely to be an optimal, or even desirable, policy

instrument. This conclusion derives from an intuition brought out in our analysis: the

fact that behaviors in society balance the incentives between cooperation and defection.

That is, there is a sense in which there is a natural (equilibrium) level of cooperation.

Thus, if the number of defectors is reduced by expelling some of them, then there arises

a tendency for others to shift behaviors and recover a balance near the original level

of cooperation.

The suggestion of this effect is perhaps more general: if a policy changes the in-

centives of only a subset of the population, then its efficacy may be mitigated by a

substitution effect through which other individuals change behaviors so as to restore

the natural level of cooperation as dictated by the payoffs and parameters of society.

Instead, a more efficient approach may involve a policy that changes the incentives of

all individuals, regardless of their status (as immigrants or otherwise). In the specific

context of our model, this could take the form, e.g., of reducing the penalty of meeting

defectors (b in the analysis) by providing insurance against being transgressed upon.

We stress that, even though the model suggests the suboptimality of certain classes

of policies, it is not possible to conduct an optimal policy analysis – or even a welfare

analysis – with this approach. First, the model is perhaps too stylized to make such

a question directly policy-relevant. Second, it would necessarily require one to take a

stance on the relative costs of different policies, which brings the analysis outside the

scope of what we consider. Fruitful extensions of this work may involve (i) explicitly

modeling the costs of an expulsion policy, as well as the costs of other policies, (ii)

extending the modeling of behavior to account for other stage games or the possibility

of non-stationary behavior, and (iii) understanding incentives outside of steady states.
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Appendix A Commitment to behavior and in-

heritance of cooperation

We have assumed in the analysis above that the offspring of a cooperator chooses to

cooperate, i.e., that pC = 1. The intuition is that the original incentive for the parent to

cooperate derives specifically from the expectation of accumulating relationships with

other cooperators. As this valuable network of relationships – the impetus to cooperate

in the first place – is inherited by the offspring, it is natural that the offspring cooperates

as well. However, there exist special situations under which the offspring may instead

prefer to defect. We are concerned in this section with arguing that such situations

can be safely ruled out without affecting the force of the argument in the main text.

To this end we show that under a certain mildly restrictive condition, every offspring

of a cooperator prefers to cooperate.

We introduce the following condition, borrowed from Immorlica et al. (2013), in

the form appropriate for our analysis.

Definition A. We say that the value of social ties is positive at a steady state level

of cooperation q if
1 + b

1 + a
≥ 1− (1− q)δ2.

Definition A characterizes the situations for which the accumulation of links with

cooperators tilts incentives in favor of cooperation, with the implication that if an

agent is willing to cooperate at birth, then it is also willing to cooperate at any later

period. To see this, notice that in order for cooperation to always be sequentially

rational, it is sufficient (and actually necessary) that the marginal gain to meeting a

cooperator instead of a defector is bigger when cooperating ( 1+b
1−δ2(1−q)) compared to

when defecting (1 + a).

Notice that the value of social ties depends both on the payoff parameters a and b

and also on the endogenously determined level of cooperation q∗. Thus in general one

has to compute the equilibrium outcome before determining whether or not the value

of social ties is positive at the equilibrium corresponding to a given set of parameters.

Notwithstanding this observation, notice that there is a simple sufficient condition on

payoffs to ensure that that the value of social ties is positive. Namely, it is enough that

b ≥ a, which is simply to say that the stage game payoffs are supermodular. With this

in mind we present:

Proposition A. If the value of social ties is positive at a non-trivial equilibrium

q∗ > 0, then it is optimal for every offspring of a cooperator to cooperate.
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Proof: The result follows from Theorem 2 in Immorlica et al. (2013).

They show that under the hypotheses of our proposition, the marginal value of a link

with a cooperator is maximized by perpetual cooperation. It is therefore sequentially

rational for a cooperating agent to continue cooperating at every history. Since our

agents make a one-time decision, an offspring of a cooperator is in the same position

of a corresponding agent in Immorlica et al. (2013) who has been cooperating for the

same duration as the offspring’s parent.

The result also shows that, when the value of social ties is positive, at no history

would an agent ever prefer to change behavior from cooperation to defection, or vice

versa. To see why, notice that since a cooperator could have an offspring at any period

with positive probability, if such an offspring always prefers to cooperate, then in the

event that the offspring was not born, but the parent was given an opportunity to

revise his strategy, his continuation payoffs are identical to the liftetime payoffs of the

hypothetical offspring.

Appendix B Proofs

Proof of Proposition 1 (page 18): The structure of equilibria can be derived from

the properties of the following function

V (q) ≡
(

1− δ
k

)
(uC − uD) =

2q − (1− δ2)f(q)

g(q)
− f(q),

obtained from (5) and (6) by setting f(q) ≡ (1 + a− b)q + b and g(q) ≡ 1− δ2(1− q).

We make the following observations. To summarize the argument, points (A) and

(B) characterize boundary equilibria, point (C) shows concavity of V (q), and the

remainder of the proof characterizes stable interior equilibria by noting that, given

the preceeding points, their existence is equivalent to a global maximum of V (q) that

occurs for 0 < q∗ < 1 and has V (q∗) > 0.

(A) V (0) = −2b is always negative.

(B) V (1) = δ2 − a(2− δ2) is nonnegative if and only if

a ≤ δ2

2− δ2
.

(C) Since g(q) > 0 for all δ < 1, the second derivative of V (q) has the same sign as

V ′′(q) · (g(q))3 = 2
(

2q − (1− δ2)f(q)
)

(g′)2 − 2g(q)g′(q)
(

2− (1− δ2)f ′(q)
)

= −2δ2(1− δ2)
(

1 + b+ δ2 − a(1− δ2)
)
, (a)
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which is always negative given that a < 1 + b, as we assume throughout.

(D) The first order condition, V ′(q) = 0, yields

q∗ = −(1− δ2)
δ2

±
√

(1− δ2)∆
δ2(1 + a− b)

, (b)

using ∆ = (1 + a− b)
(

1 + b+ δ2 − a(1− δ2)
)

. Four things should be noted:

(i) q∗ is defined in the real numbers if and only if ∆ ≥ 0.

(ii) Since − (1−δ2)
δ2

< 0, there is at most one q > 0 that satisfies the first order

condition. We will call q∗ just this positive-valued solution from (b), if it

exists.

(iii) Let ∆ ≥ 0. There exists q∗ ≥ 0 if and only if√
(1− δ2)∆
|1 + a− b|

≥ 1− δ2 ,

which is equivalent to

|1− a+ b+ δ2(1 + a)| ≥ (1− δ2)|1 + a− b| .

If 1 + a− b > 0, this is equivalent to

b ≥ 2

(
1 + a− 2 + a

2− δ2

)
≡ b(a, δ) ; (c)

otherwise we need the opposite inequality.

(iv) Let ∆ ≥ 0. There exists q∗ ≤ 1 if and only if√
(1− δ2)∆
|1 + a− b|

≤ 1 ,

which is equivalent to

(1− δ2)|1− a+ b+ δ2(1 + a)| ≤ |1 + a− b| .

If 1 + a− b > 0, this is equivalent to

b ≤ −δ2(1 + a) +
2(a+ δ2)

2− δ2
≡ b̄(a, δ) ; (d)

otherwise we need the opposite inequality.

(E) Let ∆ ≥ 0. We check the conditions under which both inequalities (c) and (d)

can be satisfied. We have that b(0, δ) = −2δ2
2−δ2 < 0 < δ4

2−δ2 = b̄(0, δ). Moreover

0 <
∂

∂a
b(a, δ) =

2− 2δ2

2− δ2
<

2− 2δ2 + δ4

2− δ2
=

∂

∂a
b̄(a, δ) , (e)
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which implies that for all a ≥ 0, b(a, δ) < b̄(a, δ). Thus if if 1 + a− b < 0, there is

no b for which q∗ ∈ [0, 1], while if 1 + a− b > 0, then there exists q∗ ∈ [0, 1] if and

only if b ∈
[
max{b(a, δ), 0}, b̄(a, δ)

]
, where this interval is always non–empty.25

(F) We have that, if ∆ ≥ 0, for a valid q∗ ∈ [0, 1],

V (q∗) = −b+
2

δ2
−

2
√

(1− δ2)∆
δ2

.

(G) If ∆ ≥ 0, then V (q∗) > 0 if and only if

√
∆ ≤ 2− bδ2

2
√

1− δ2
,

which is equivalent to requiring both that b < 2/δ2 and (taking squares it becomes

a second order polynomial in b)

b 6∈

(
b̃(a, δ)−

4
√
δ2(1− δ2)(a(2− δ2)− δ2)

(2− δ2)2
, b̃(a, δ) +

4
√
δ2(1− δ2)(a(2− δ2)− δ2)

(2− δ2)2

)
,(f)

where we have defined b̃(a, δ) ≡ 2(δ4+a(2−3δ2+δ4))
(2−δ2)2 .

Note that:

(i) This interval is defined if and only if a(2 − δ2) − δ2 ≥ 0, which is to say

a ≥ δ2

2−δ2 .

(ii) When a = δ2

2−δ2 , then the two endpoints of this interval reduce to b̃( δ2

2−δ2 , δ) =

b̄( δ2

2−δ2 , δ), where the latter is defined in (d).

(iii) ∂
∂a b̃(a, δ) <

∂
∂a b̄(a, δ), where the latter is computed in (e).

(iv) We always have 1 + a > b̃(a, δ) because b̃(0, δ) < 1 and ∂
∂a b̃(a, δ) < 1.

This means that, for a ≥ δ2

2−δ2 , condition 1 + a − b ≥ 0, together with both

conditions (d) and (f), are all satisfied whenever

b ≤ b̃(a, δ)−
4
√
δ2(1− δ2)(a(2− δ2)− δ2)

(2− δ2)2
. (g)

(H) There is no relevant solution for b above the upper bound in (f), which would

have the form b̃(a, δ) +
4
√
δ2(1−δ2)(a(2−δ2)−δ2)

(2−δ2)2 < b < b̄(a, δ). To see this, note that

setting b̄(a, δ) = b̃(a, δ) +
4
√
δ2(1−δ2)(a(2−δ2)−δ2)

(2−δ2)2 produces b =
2(−2+d2)

2

d6
> 2/δ2,

and so is excluded by the requirement above that b < 2/δ2.

25The case 1 + a − b < 0 could have been excluded immediately by noting that a − b < 1 implies

1 − a + b + δ2(1 + a) > 0, and then 1 + a − b < 0 would imply ∆ < 0. The advantage of our proof is that

we prove that the condition 1 + a− b < 0 must be excluded even without assuming that a− b < 1. We also

prove that when 1 + a− b > 0 and a− b < 1, then ∆ > 0.
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(I) Both b̃(a, δ)− 4
√
δ2(1−δ2)(a(2−δ2)−δ2)

(2−δ2)2 and b(a, δ) equal 0 if and only if a = δ2

1−δ2 .

Moreover, for every a > δ2

2−δ2 , and so in particular for a > δ2

1−δ2 we have that

∂

∂a

(
b̃(a, δ)−

4
√
δ2(1− δ2)(a(2− δ2)− δ2)

(2− δ2)2

)
<

∂

∂a
b̃(a, δ) <

∂

∂a
b(a, δ) .

This means three things:

(i) Condition (g) can never be satisfied together with condition (c), if a > δ2

1−δ2 .

(ii) Condition (c) is never binding, because whenever b(a, δ) is positive, it falls

inside the interval in (f).

(iii) So, the only lower bound that matters for b is that b ≥ a− 1.

This concludes the proof. A graphical representation of the curves defined in the proof

is given in Figure 4.

Proof of Lemma 2 (page 22): We compute (2)–(4) with δN = δ+ (1− δ)µ, to yield

uC =

(b+1)q
1−δ(1−q)(δ+µ−δµ)2 − b(2− q) +

q2(δ2(µ−1)−δµ−1)
(q+δ2−1)((q−1)(δ+µ−δµ)2+1)

+ q(δ+1)
(q+δ2−1)(δ(µ−1)−1)

1− δ
,(h)

uD =
(a+ 1)q

(
1 + 1−(δ+µ−δµ)2

1−(1−q)(δ+µ−δµ)2

)
1− δ

, (i)

uI =
(a+ 1)q

(
1 + 1−(δ+µ−δµ)2

1−(1−q)(δ+µ−δµ)2

)
1− δ(1− ν)

. (j)

The dependence of these three functions with respect to a, b and ν are evident. To see

that ∂uC
∂b < 0, note that q

1−δ(1−q)(δ+µ−δµ)2 < 2 − q for any 0 ≤ q < 1, 0 ≤ δ ≤ 1 and

0 ≤ µ ≤ 1, because q
1−δ(1−q)(δ+µ−δµ)2 is increasing in q, 2 − q is decreasing in q, and

they are equal when q = 1.

Proof of Proposition 3 (page 23): An interior equilibrium is given by the condition

that uC − uI = 0 and by equation (1). However, equation (1) does not depend on a

and b, and is only a relation between pD and pI given q. So, we can consider only the

implicit function uC − uI = 0, from equations (h) and (j).

The requirement for stability is that ∂uC
∂q < ∂uI

∂q , or equivalently ∂(uC−uI)
∂q < 0.

We have also from Lemma 2 that ∂uC
∂a = 0, ∂uC

∂b < 0, ∂uC
∂ν = 0, ∂uI

∂a > 0, ∂uI
∂b = 0 and

∂uI
∂ν < 0.

By the implicit function theorem:

dq∗

da
= −∂(uC − uI)/∂a

∂(uC − uI)/∂q
=

∂uI/∂a

∂(uC − uI)/∂q
< 0 ,

34



𝛿 = .9 
𝑏 

𝑎 
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𝑏  
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𝛿2

2 − 𝛿2 

𝑏 +
4 𝛿2(1−𝛿2)(𝑎 2−𝛿2 −𝛿2)

(2−𝛿2)2 
 

𝑏 −
4 𝛿2(1 − 𝛿2)(𝑎 2 − 𝛿2 − 𝛿2)

(2 − 𝛿2)2 
 

𝛿2

1 − 𝛿2 Interior stable 
equilibrium 
exists 

Full cooperation 
equilibrium 
exists 

Above this line V(q)  
is concave 

Note: all the straight continuous lines intersect in   a= - 
2+𝛿2

𝛿2   

Below this dashed line 
CC is no more efficient 

Figure 4: This is an enlargement of the bottom–left part of Figure 2, adding plots of the

curves used in the proof of Proposition 1
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dq∗

db
= −∂(uC − uI)/∂b

∂(uC − uI)/∂q
= − ∂uC/∂b

∂(uC − uI)/∂q
< 0 ,

and
dq∗

dν
= −∂(uC − uI)/∂ν

∂(uC − uI)/∂q
=

∂uI/∂ν

∂(uC − uI)/∂q
> 0 .

Proof of Proposition 4 (page 23): When ν = 0 equation (1) becomes simply

q = 1− (1− µ)(1− pI)
1− µ+ µpD

,

from which the explicit relation between pI and pD is linear:

pI = q − (1− q) µ

1− µ
pD .

Moreover, we have that offspring of defectors and immigrants face the same incentives.

By definition of interior equilibrium both 0 ≤ pD ≤ 1 and 0 < pI < 1 are admissible,

as long as 0 < q < 1. So, we allow for any couple of values (pD, pI) that give the same

value for q in equation (1), and pD can be any value between 0 (so that pI = q) and

min{ q
1−q

1−µ
µ , 1} (so that pI = max{0, q − (1− q) µ

1−µ}).
When ν > 0, still we need pI to be interior for q also to be, and then uD = uI from

equations (h) and (j). Then, considering also equation (j) that determines incentives

of the offspring of defectors, we must have pD = 0. In this case, solving equation (1),

we have that pI = (1−δ)q
(1−δ)+δν(1−q) .

Summing up, in an interior equilibrium characterized by a q that solves uD = uI , pD

can attain any value in the interval [0,min{1q + 1
µ − 1, 1}] when ν = 0, but must be 0

for ν > 0. This proves the statement.

Proof of Proposition 5 (page 25): From equations (h)–(j), it is possible to obtain

explicit unique solutions for aD and aI that solve respectively (7) and (8). Call them,

as functions of all the other parameters of the model, aD(b, q, µ, δ) and aI(b, q, µ, δ, ν).

We can then define as implicit functions the relations between pI , pD, and q:

pI − Φ (aI(b, q, µ, δ, ν)) = 0 , (k)

pD − Φ (aD(b, q, µ, δ)) = 0 , (l)

q − F (µ, δ, ν, pI , pD) = 0 , (m)

where the last equation is just a way of writing (1).

In this system the endogenous variables are q, pI and pD. If zero is outside the sup-

port of Φ we necessarily have the trivial solution (0, 0, 0). Any other set of solutions

characterizes an equilibrium of interest, and pD is uniquely determined by equation (l).
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We are interested in the sign of the derivative dpD
dν in a stable equilibrium. We refer

to the left-hand part of equation (k) as Eq.(k), and so on for the other two.

Consider first equation (j) and its implication on equation (k): From the assumption

of being in a stable equilibrium, now that aD is endogenous, if q rises it becomes more

profitable to play D, and then we would need a lower aD of indifference. In formulas,

this implies that ∂aD(b,q,µ,δ,ν)
∂q ≤ 0, where this inequality is strict when aD lies in the

support of Φ. With the same reasoning we have ∂aI(b,q,µ,δ,ν)
∂q ≤ 0 and ∂aD(b,q,µ,δ,ν)

∂ν ≥ 0.

Then, we apply the implicit function theorem (as a reference see e.g. the mathemat-

ical appendix of Mas-Colell et al. 1995) to compute the marginal effects of ν on the

endogenous variables:

Dν

 pI

pD

q

 = −


∂Eq.(k)
∂pI

∂Eq.(k)
∂pD

∂Eq.(k)
∂q

∂Eq.(l)
∂pI

∂Eq.(l)
∂pD

∂Eq.(l)
∂q

∂Eq.(m)
∂pI

∂Eq.(m)
∂pD

∂Eq.(m)
∂q


−1

Dν

 Eq.(k)

Eq.(l)

Eq.(m)

 . (n)

If we call ∆Iq ≡ Φ′ ∂aI(b,q,µ,δ,ν)∂q ≤ 0, ∆Dq ≡ Φ′ ∂aD(b,q,µ,δ)
∂q ≤ 0 (and this inequality is

strict when aD is in the support of Φ) and ∆Iν ≡ Φ′ ∂aI(b,q,µ,δ,ν)∂ν ≥ 0, we obtain that

(n) simplifies to

Dν

 pI

pD

q

 = −

 1 0 −∆Iq

0 1 −∆Dq

−∂F (µ,δ,ν,pI ,pD)
∂pI

−∂F (µ,δ,ν,pI ,pD)
∂pD

1


−1

Dν

 −∆Iν

0

−∂F (µ,δ,ν,pI ,pD)
∂ν



=
1

1−∆Iq · ∂F∂pI −∆Dq · ∂F∂pD

 . . . . . . . . .

−∆Dq · ∂F∂pI . . . −∆Dq

. . . . . . . . .

Dν

 −∆Iν

0

−∂F
∂ν

 .

In the last derivation we have used the fact that 1 0 α

0 1 β

γ δ 1


−1

=
1

1− αγ − βδ

 1− βδ αδ −α
βγ 1− αγ −β
−γ −δ 1

 ,

placing dots for all the elements that are not relevant for our purposes. We then have

dpD
dν

=
∆Dq

1−∆Iq · ∂F∂pI −∆Dq · ∂F∂pD

(
∆Iν ·

∂F

∂pI
+
∂F

∂ν

)
. (o)

This quantity is always non–positive as 1 − ∆Iq · ∂F∂pI − ∆Dq · ∂F∂pD ≥ 1, and ∂F
∂ν > 0.

Also, it becomes strictly decreasing when ∆Dq < 0, which happens when 0 < pD < 1.

Finally note that if pD = 1, then also pI = 1 and q = 1. So, for an interior equilibirum

with pD > 0, and ν ≥ 0, it is always the case that
dp∗D
dν < 0.
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Appendix C Simulations

Figure 5: Simulations based on Proposition 5, depicting the effects of ν on q, pI and pD, in

the stable equilibrium, changing ε of the uniform distribution U(a − ε, a + ε). Parameters

are δ = 0.9, a = 0.8, b = 0.6 and µ = 0.

In Section 5.3 we study how the equilibrium in an interior (mixed) equilibrium for

a homogeneous (with respect to parameters) population, extends to a pure strategy

equilibrium for a heterogeneous population. Proposition 5 provides qualitative answers

for the corresponding comparative statics, but we can assess the quantitative effect

directly. Looking at the proof of Proposition 5 (and in particular at equation (o) on

page 37) we see that the larger is the probability mass of Φ on aD – i.e. the derivative

of the cumulative distribution Φ′ computed at aD – the larger the effects of ν on pD.

We run a set of simple simulations in Matlab to exhibit the quantitative effects on pD,

that is the average behavior of the agents that are offspring of defectors, and on q,

the total level of cooperation.26 Figure 5 depicts the results for the case of a uniform

distribution U(a − ε, a + ε) for parameter a. To show that the uniform distribution,

which is the most natural to ensure that a ∈ [0, b+ 1] (this is the requirements of the

underlying game), is not a special case, we also run the same set of simulations under a

normal distribution N (a, s). In this case instead of ε we have a parameter s governing

26All the simulation codes are available at:

https://github.com/paolopin/CooperationPunishmentImmigration.
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Figure 6: Simulations based on Proposition 5, with a normal distribution N (a, s), depicting

the effects of ν on q, pI and pD, in the stable equilibrium, changing standard deviation s.

Parameters are δ = 0.9, a = 0.8, b = 0.6 and µ = 0.

the standard deviation (the standard deviation of the uniform distribution is ε√
3
), and

we obtain in Figure 6 a similar, but smoother, outcome.
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