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Abstract

Exfoliation syndrome (XFS) is the commonest known risk factor for secondary glaucoma and a 

significant cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A have 

been previously associated with XFS. To further elucidate the genetic basis of XFS, we collected a 

global sample of XFS cases to refine the association at LOXL1, which previously showed 

inconsistent results between populations, and to identify new variants associated with XFS. We 

identified a rare, protective allele at LOXL1 (p.407Phe, OR = 25, P =2.9 × 10−14) through deep 

resequencing of XFS cases and controls from 9 countries. This variant results in increased cellular 

adhesion strength compared to the wild-type (p.407Tyr) allele. A genome-wide association study 

(GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries 

identified seven genome-wide significant loci (P < 5 × 10−8). Index variants at the new loci map to 

chromosomes 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 
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(near SEMA6A). These findings provide biological insights into the pathology of XFS, and 

highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.

Exfoliation syndrome (XFS) is an age-related systemic disorder involving the extracellular 

matrix (ECM). It is characterized by the excessive production and progressive accumulation 

of an abnormal extracellular material in various tissues1. Manifesting most conspicuously in 

the eye, XFS is the commonest cause of secondary glaucoma world-wide2 and is also a 

prognostic factor for progression of open-angle glaucoma3. This disease is common in many 

populations, with an estimated 60–70 million patients affected4–7. Exfoliation glaucoma 

(XFG) has a worse prognosis than other major types of glaucoma, and it is often resistant to 

intraocular pressure-lowering medical treatment, more often necessitating laser and surgical 

intervention3,8. Cumulatively, XFS/XFG is a significant cause of blindness globally.

The strong pattern of familial aggregation for XFS indicates a significant genetic 

contribution to disease pathology9,10 and LOXL1, a gene coding for lysyl oxidase homolog 

1, was the first genetic locus reported to be associated with this disease11. Despite the 

overwhelming strength of the genetic association seen at polymorphisms mapping to 

LOXL1, the results are inconsistent due to risk alleles being ‘flipped’ in certain 

populations12,13. Such stark allele reversals imply that the genetic architecture underlying 

XFS disease biology is complex and worthy of further study.

Recently, CACNA1A was identified as the second locus associated with XFS14. Realizing 

that large and inclusive international collaborative efforts are essential in providing new 

biological leads in complex disease pathogenesis15–20, we report here a world-wide 

collaborative XFS study aimed at further understanding the genetic basis of the disorder. 

Firstly, due to the allele reversals seen at LOXL1 common polymorphisms led by rs3825942 

G>A (p.153Gly>Asp) and to a lesser extent, rs1048661 T>G (p.

141Leu>Arg)12,21–28(Supplementary Figure 1), we aimed to refine the LOXL1 genetic 

landscape by performing deep sequencing of the entire gene in 5,570 XFS and XFG cases 

and 6,279 controls from 9 countries (Supplementary Table 1). The previously reported 

CACNA1A locus was also sequenced to assess if rare non-synonymous amino acid 

substitutions within the gene could provide further insights 29–31. In our effort to identify 

additional genetic variants associated with XFS, we also conduct an expanded genome-wide 

association study (GWAS) of 13,838 cases and 110,275 controls from countries across six 

continents (Supplementary Table 2, Supplementary Figures 2 and 3).

Results

A LOXL1 rare missense variant protects against XFS.

We conducted deep re-sequencing of the entire LOXL1 and CACNA1A loci (see Methods) 

in 5,570 XFS cases and 6,279 controls. This sequencing effort confirmed previously 

reported strong allele reversals at key LOXL1 common variants and also at recently reported 

non-coding variants (Supplementary Tables 3, 4 and 5)13,21,23.

We first analyzed the sequencing data to find unifying consistent common variants 

associated with XFS across ethnic groups that could have been missed by previous efforts. 

Aung et al. Page 2

Nat Genet. Author manuscript; available in PMC 2019 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Single variant analysis showed that for all common variants polymorphic across all 

collections studied, rs3825942 G>A (encoding for LOXL1 p.153Gly>Asp) remains the most 

significantly associated variant (Pfixed-effects = 4.14 × 10−62), but with very high 

heterogeneity across study groups (Prandom effects = 0.0039). No LOXL1 common variant 

was consistently associated across all collections, and no LOXL1 common variant surpassed 

genome-wide significance on random effects analysis (Supplementary Table 6). 

Conditioning for allele dosage at rs3825942 G>A abolished all residual evidence of 

association across the collections (Supplementary Table 6). The commonly reported 

rs1048661 T>G (p.141Leu>Arg) polymorphism was not significant in the meta-analysis of 

sequencing data either before (P=0.25) or after (P=0.53) conditioning for rs3825942 G>A 

(Pfor heterogeneity < 1×10−10; l2 = 98.3%). Recognizing that single variant analysis could have 

missed a consistent LOXL1 haplotypic association which is unreversed across populations, 

we followed up our search by phasing haplotypes of 57 SNPs across the entire LOXL1 
sequenced locus in 20-SNP sliding windows. All analyzed haplotypes showed reversal of 

effect across the locus, with no exceptions (Supplementary Dataset 1). It is thus unlikely that 

we may have missed an “unflipped” common variant which shows consistent association 

with XFS across our world-wide sample.

The re-sequencing of LOXL1 revealed a total of 63 unique non-synonymous variants across 

the nine countries studied (Supplementary Table 7 and Supplementary Figure 4). Due to the 

limited insights shown by all the reversed LOXL1 common haplotypes, we next evaluated 

the hypothesis that rare alleles collectively within LOXL1 (MAF<1%) could contribute to 

XFS risk. We observed a broad enrichment of rare LOXL1 non-synonymous variants in the 

normal controls compared to the XFS patients (OR = 0.46, P = 4.2 × 10−7; Table 1). As the 

vast majority of non-synonymous variants do not exert functional effects31–34, we performed 

a second test restricting the analysis to aggregate only rare, non-synonymous variants 

conservatively predicted to be deleterious by all five functional effect prediction algorithms 

(SIFT, Polyphen 2-HumDiv, LRT score, MutationTaster, and Condel)33. In so doing, we 

observed a substantially larger protective effect size conferred by rare variant burden (OR = 

0.18, P = 4.23 × 10−11; Table 2). This protective burden of alleles conservatively predicted to 

affect LOXL1 function remained significant even after accounting for co-segregation at the 

sentinel rs3825942 G>A SNP (Supplementary Table 8).

One of the rare, non-synonymous variants, rs201011613 A>T encoding for LOXL1 p.

407Tyr>Phe, showed genome-wide significance on single-variant analysis. This variant was 

conservatively predicted by all five protein functional predictive algorithms to affect LOXL1 

function, and is found exclusively in the Japanese (Table 3,Supplementary Figure 4a and 4b, 

Supplementary Table 7). The rare rs201011613-T (LOXL1 p.407Phe) allele was observed in 

only 2 XFS cases (N= 3,909, 0.026%) but was observed in 68 out of 5,338 (0.64%) age- and 

hospital-matched controls (N=5,338, 0.64%) with no eye disorders (Table 3), conferring a 

25-fold resistance to XFS (PFisher’s exact =2.9 × 10−14). We examined the individuals 

carrying the rare p.407Phe allele who had also undergone genome-wide genotyping for 

evidence of population substructure, but found no evidence that these carriers clustered 

along the major axes of population stratification (Supplementary Figure 5)35,36.
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We next examined the haplotype background for all 37 p.407Phe allele carrying Japanese 

individuals who underwent sequencing for the LOXL1 locus (Table 3), and found that in 35 

of the 37 individuals p.407Phe segregated with the common rs3825942-A (p.153Asp) 

haplotype. As previously discussed, this common rs3825942-A haplotype was associated 

with protection against XFS in Japan but conferred susceptibility to XFS in Black Africans 

and was thus only nominally significant in the meta-analysis of all collections which 

underwent resequencing for LOXL1 (Prandom effects = 0.0039; Supplementary Table 3).

Although the rare protective p.407Phe allele does not segregate with the common 

p.Arg141Leu polymorphism, functional biological testing would be needed to assess the 

relative impact of all three (at positions 141, 153, and 407) non-synonymous variants to 

LOXL1 function.

At the CACNA1A locus, a total of 200 unique rare, non-synonymous amino acid 

substitutions were observed in the coding frame of CACNA1A after re-sequencing in East 

Asians, Europeans, South Africa, and South Asians. In contrast to LOXL1, we did not 

observe any consistent evidence of association between rare variant burden at CACNA1A 
and susceptibility to exfoliation syndrome (Supplementary Table 9). This is not surprising, 

as only some common variant GWAS loci harbor additional rare variant burden37.

Biological relevance of LOXL1 p.Y407F.

XFS is characterized by excessive production and progressive accumulation of an abnormal 

fibrillar material, termed exfoliation material, containing ECM components such as elastin, 

fibrillin-1, and fibronectin localized to the surface of various cell types including lens 

epithelial cells1,38,39. LOXL1 has been reported to modulate ECM biogenesis by cross-

linking elastin and collagen in connective tissues40–42. We thus performed experiments 

assaying the effects of LOXL1 variants on ECM metabolism, with elastin, fibrillin-1, 

collagen type IV, and fibronectin as cellular biochemical readouts, and overall relative cell 

adhesion as a cellular physiological readout.

We assessed functional effects for the common, flipped p.Arg141Leu and p.Gly153Asp 

polymorphisms as well as the rare protective p.Tyr407Phe variant using four constructs 

carrying these three variants in naturally occurring haplotypes (Figure 1a). This 

experimental design also allowed for measurement of the effect of p.Tyr407Phe while 

conditioning for the effect of all p.Arg141Leu - p.Gly153Asp haplotype combinations. The 

ability to condition against and account for the effect of p.Gly153Asp is particularly 

important as the rare protective p.407Phe segregates with the p.153Asp allele. Using human 

lens epithelial cell (HLEC) 3D cell cultures that were transiently expressing the four 

haplotypes, we observed that the LOXL1 protein was secreted at detectable levels, and no 

significant difference in LOXL1 secretion could be observed between any of the four 

haplotypes (Supplementary Figure 6a).

In contrast, when we overexpressed the rare p.407Phe-carrying LOXL1–

141Arg-153Asp-407Phe (G-A-T) haplotype in HLEC cultures, we observed a dose-

dependent increase in elastin on Western blot (Supplementary Figure 6b), with the increase 

in elastin reiterated by 3D spheroid culture immunofluorescence analysis (Figure 1b). 
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Overexpression of this rare p.407Phe-carrying haplotype also resulted in a decrease in 

collagen IV (Figure 1c) and an increase in fibrillin-1 (Figure 1d) levels when compared to 

the other three haplotypes that included the wild-type p.407Tyr allele. This result suggests 

that the rare p.407Phe allele had an overall upregulating effect on ECM components such as 

elastin and fibrillin.

As the ECM is important for cellular adhesion, we next asked whether these observed in-

vitro functional biochemical effects of the rare LOXL1 p.407Phe allele on ECM components 

would translate to a physiological outcome affecting cell-cell adhesion. To this end, HLEC 

3D spheroids overexpressing the four haplotypes were analyzed for their relative cellular 

adhesion strength using the microelectrodes of the Roche xCelligence real-time cell analysis 

system. Using this previously described methodology, the change in cellular impedance 

readout is directly proportional to the quality of cell attachment43–45. We observed that the 

rare, protective LOXL1 p.407Phe-carrying G-A-T haplotype conferred a significant increase 

in cellular adhesion strength in comparison to the remaining three haplotypes carrying the 

wild-type p.407Tyr allele (P<0.01 for all comparisons; Figure 1e). We observed no 

significant difference in relative cellular adhesion strength when the remaining three 

haplotypes carrying p.407Tyr (but with different combinations of the p.Arg141Leu and 

p.Gly153Asp alleles) were compared to one another (Figure 1e), suggesting that the 

common p.Arg141Leu and p.Gly153Asp polymorphisms have no significant effect on the 

strength of cellular adhesion in this assay. To ensure that the increase in cell-cell adhesion 

was unique to the rare protective p.407Phe (rs201011613-T) allele, two additional haplotype 

constructs covering the G-G-T (LOXL1–141Arg-153Gly-407Phe) and T-G-T (LOXL1–

141Leu-153Gly- 407Phe) haplotypes were cloned. We retested all six haplotype constructs 

together for differences in cell-cell adhesion (Supplementary Figure 7), and continue to 

observe that the introduction of the rare protective p.407Phe (rs201011613-T) allele 

significantly increased physiological cell-cell adhesion regardless of background 

p.Arg141Leu and p.Gly153Asp alleles. In contrast, the haplotypes carrying the wild-type 

baseline p.407Tyr (rs201011613-A) allele had significantly lower cell-cell adhesion also 

regardless of the p.Arg141Leu and p.Gly153Asp alleles (P<1×10−4 for all comparisons; 

Supplementary Figure 7).

GWAS identifies five new loci associated with XFS

As XFS is a complex disease, we also sought to identify new genetic loci associated with 

this disorder. For the GWAS discovery stage, we directly genotyped a total of 9,035 XFS 

cases and 17,008 controls enrolled from 24 countries across six continents using the 

Illumina OmniExpress Beadarray (Supplementary Table 2). After quality checks, we were 

able to analyze 683,397 directly genotyped autosomal SNP markers for association with 

XFS disease status (Supplementary Dataset 2)(see Supplementary Note for full details).

The GWAS discovery meta-analysis revealed consistent and significant association (OR = 

1.17, P=2.97 × 10−10, l2 = 0%; Supplementary Figure 8) at a novel locus defined by SNP 

rs7329408 mapping to FLT1-POMP-SLC46A3 on chromosome 13. We also observed a clear 

excess of smaller-than-expected P-values at the tail end of the quantile-quantile distribution 

(P ≤ 1 × 10−4; Supplementary Figure 837,46,47), suggesting that there are additional loci to be 
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identified. We forwarded all markers showing P ≤ 1 × 10−4 in the GWAS discovery stage for 

further assessment in the replication stage (see Supplementary Table 10 for power 

calculations) comprising 4,803 XFS cases and 93,267 controls independently ascertained 

from 18 countries (Supplementary Table 2). SNPs at five distinct new loci showed consistent 

evidence of replication, and meta-analysis of all 13,838 cases and 110,275 controls from the 

GWAS and replication series revealed genome-wide significant association at the five loci 

(1.56 × 10−16 ≤ P ≤ 1.5 × 10−8, Table 4, Figure 2, and Supplementary Figure 9; see 

Supplementary Table 11 for ethno-geographical stratified analysis of the five new loci). 

These loci are FLT1-POMP-SLC46A3 rs7329408 (chromosome 13), TMEM136-
ARHGEF12 rs11827818 (chromosome 11) AGPAT1 rs3130283 (chromosome 6), RBMS3 
rs12490863 (chromosome 3), and SEMA6A rs10072088 (chromosome 5). Regional 

association maps showing the genomic organization of the five loci within a 1 Mb flanking 

region of the sentinel SNPs are appended as Supplementary Figure 10. We verified the 

genotyping at the sentinel SNPs for all five loci to be of good quality (Supplementary Figure 

11). We also confirm genome-wide significant association at the previously reported 

CACNA1A rs4926244 (Supplementary Table 12). Of the five new loci, only rs7329408 

showed a significant latitude gradient effect, with the odds ratio of the risk allele highest in 

polar regions and lowest in equatorial regions (Supplementary Note and Supplementary 

Table 13).

Biological insights from GWAS associated loci.

We annotated 33 genes mapping to or located closest (genomic region within a 150,000bp 

flanking region both 5’ and 3’ to the sentinel SNPs and SNP markers showing r2>0.5 with 

the sentinel SNPs (Supplementary Table 14), or as defined by credible set analysis37,48,49, 

see Methods) to the seven genome-wide significant loci. Except for AGPAT rs3130283 

which was located within the broad MHC locus on chromosome 6 which is well known for 

showing long range complex LD patterns, we observed that defining an ‘associated locus 

region’ either generically as ±150 Kb from the index variant, or as the region containing 

proxy SNPs with r2>0.5 with the index variant, all highlight the same genes (Supplementary 

Figure 10 and Supplementary Table 14). All credible sets for the 7 genome-wide significant 

loci were located within relatively narrow regions (<100,000 base-pairs), and within the 

region bound by the proxy SNPs showing r2>0.5 with the index variant (inclusive of the 

index variant; Supplementary Table 14).

We next assessed the potential biological contribution for each of the 33 genes using the 

following criteria: 1) genes expressed in anterior segment tissues such as the iris and ciliary 

body from publicly available databases50–54 . 2) Presence of relevant eye-related phenotypes 

in knockout mice. 3) cis-QTL genes55,56 . 4) Genes prioritized by text mining in Pubmed. 5) 

Genes showing pleiotropy with other forms of glaucoma. 6) Highlighted genes from 

unbiased genome-wide molecular pathway analysis. We summarize these additional 

information in Supplementary Table 15. A genome-wide search using publicly available 

databases57 revealed potential molecular interactions between several of the 33 genes 

located within the 7 genome-wide significant loci (Supplementary Table 15), suggesting that 

the significantly associated loci could be implicating broader yet undescribed disease 

biological pathways. A search of the UCSC genome browser revealed that none of the 7 
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genome-wide significant loci harbor any long non-coding RNA except for LOXL1 (which 

harbors LOXL1-AS1 in the opposite direction) and the FLT1-POMP-SLC46A3 locus 

(Supplementary Figure 12). Further interrogation using the INRICH (interval based 

enrichment analysis tool) software package58, designed for detecting enriched association 

signals of LD-independent genomic regions within biologically relevant gene sets did not 

reveal any statistically significant biological pathways highlighted by the 7 genome-wide 

significant loci (Supplementary Dataset 3).

We next studied the expression of genes associated with the 3 most significantly associated 

loci. These loci (and genes) were 13q12 (POMP, FLT1, SLC46A3), 11q23.3 (TMEM136, 
ARHGEF12), and 6p21 (AGPAT1). Expression for these 6 genes was tested in fresh ocular 

tissues obtained from human donor eyes with appropriate research consent (see Methods). 

For mRNA expression analyses, 41 normal eyes with no known ocular disease (mean age, 

77.1 ± 8.1 years; 20 female, 21 male) and 21 eyes with XFS (mean age, 80.1 ± 7.9 years; 11 

female, 10 male) were used. Messenger RNA (mRNA) expression of all 6 genes was 

detected at moderate levels in the panel of eye tissues analysed (Supplementary Figure 13). 

The highest expression levels were observed in tissues relevant for the synthesis of 

exfoliation material (iris, ciliary body) and for glaucoma pathophysiology (retina). 

Expression levels in these tissues did not significantly correlate with genotypes of the 

sentinel SNPs underlying the 3 loci (Supplementary Figure 14).

Comparing tissues from XFS and control eyes, mRNA expression levels of POMP and 

TMEM136 were significantly reduced by up to 41% in anterior segment tissues of XFS 

eyes, such as iris and ciliary body compared to age-matched control eyes (Supplementary 

Figure 15). These results in XFS-relevant tissues suggest that POMP (rather than FLT1 and 

SLC46A3 which are located nearby) is the likely disease gene in the chromosome 13 locus 

and that TMEM136 (rather than the neighbouring ARHGEF12) is the likely disease gene for 

the chromosome 11 locus.

POMP and TMEM136 protein expression was further analysed by Western blot and 

immunofluorescence microscopy. POMP, a proteasome maturation protein, was shown to be 

expressed in most ocular cell types by immunofluorescence (Figure 3). However, POMP 

protein expression was significantly reduced in iris (−45%) and ciliary body (−33%) 

specimens from XFS eyes compared to control eyes when investigated using Western blots 

(Figure 3G and Supplementary Figure 16) and using immunofluorescence microscopy 

(Figures 3H, 3J, and 3K, and Figures 3L, 3M, and 3N). These results are consistent with the 

differential mRNA expression shown in Supplementary Figure 15.

TMEM136, a transmembrane protein of unknown function, was primarily immunolocalized 

to vascular endothelial cells of blood vessels in eye tissues (Figure 4). Analysis of 

TMEM136 protein expression by Western blot and tissue from eyes with XFS showed 

significantly reduced expression levels in iris (−26%) and ciliary body (−32%) (Figure 4G 

and Supplementary Figure 17) compared to that observed in control eyes, also consistent 

with the differential mRNA expression analysis shown in Supplementary Figure 15. Similar 

findings showing reduced TMEM136 protein staining in epithelial and endothelial cells in 
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XFS eyes compared to controls eyes were also observed using immunofluorescence 

microscopy (Figures 4H, 4J, 4K, and Figures 4L, 4M, and 4N).

We then replicated the immunofluorescence microscopy findings in tissues from a further 3 

donor eyes with XFS and 3 matched controls using an independent batch of antibodies, co-

staining for LOXL1, POMP, and TMEM136. We confirmed reduced expression of POMP 

and TMEM136 in important ocular anterior segment structures in XFS eyes compared to 

controls, on both low magnification (Supplementary Figure 18) and higher magnification 

(Supplementary Figures 19 and 20).

Discussion

XFS is a disorder of aging involving the ECM, with LOXL1 hypothesized to play a central 

role in disease pathogenesis. As all common LOXL1 haplotypes detected by the 

resequencing effort showed reversal of genetic effect, their functional consequences remain 

in doubt. Even a recent study describing a region in intron 1 of LOXL1 and 5’ upstream of 

LOXL1-AS1 containing a promoter that influences LOXL1-AS1 expression showed that all 

strongly associated variants influencing the promoter activity of LOXL1-AS1 also have 

genome-wide significant reversal of genetic effect21. The common allele reversals at LOXL1 
are unlikely to be due to sampling differences within the same population in light of multiple 

replications confirming the reversal. It is also unlikely to be due to different LD structures 

across different populations due to the reversal occurring across all phased haplotypes along 

the broad LOXL1 locus (Supplementary Dataset 1) in the absence of gross differences in LD 

architecture (Supplementary Figure 21).

Deep resequencing of LOXL1 enabled us to observe that the rare p.Tyr407Phe variant had a 

protective effect strong enough (ORfor resistance=25) to surpass genome-wide significance on 

its own. Although strong, the protection is not absolute, as the variant was observed in 2 

XFS patients. Both patients also carry a copy of the TMEM136 rs11827818-G risk allele, in 

keeping with XFS being a complex disease. Our experiments confirm a clear functional and 

physiological role for the rare p.407Phe allele, but less so for the common p.153Gly>Asp 

and p.141Leu>Arg polymorphisms.

The protective p.Tyr407Phe substitution is located in the evolutionarily conserved catalytic 

domain of LOXL159. Follow up biological experiments suggests that the protective effect 

may be a consequence of stabilization of the ECM due to increased elastin and fibrillin-1 

deposition. This notion is supported by histopathological observations demonstrating 

decreased elastic fiber formation and tissue stiffness as well as impaired cell adhesion in 

ocular tissues of patients with XFS60,61. We speculate that carrying the rare protective p.

407Tyr variant could maintain cellular integrity and render cells more resistant to 

environmental stressors which destabilize or disrupt the ECM. One limitation of this 

approach is that the biological mechanisms for p.Tyr407Phe were not tested at the RNA 

level, as there is a possibility that p.Tyr407Phe could affect RNA stability62–64.

The seven loci emerging from the GWAS study do not implicate a single pathogenesis 

pathway, supporting the hypothesis that XFS is a complex systemic disease of aging that can 

Aung et al. Page 8

Nat Genet. Author manuscript; available in PMC 2019 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



arise from genetic lesions in multiple pathways and different tissue types. For example, the 

marked downregulation of POMP (Figure 3), a ubiquitously expressed proteasome 

maturation protein in XFS tissues suggests a reduction of ubiquitin conjugating enzymes in 

XFS tissues65. Abnormalities in the closely related autophagy pathway have also been 

implicated in XFS66, a process that also involves ubiquitin-proteasome signaling67,68. 

TMEM136 expression was predominantly localized to vascular endothelia. Interestingly, a 

pronounced and early vasculopathy, partly involving XFS material deposits around ocular 

blood vessels (Figure 4) appears to play a significant role in XFS pathophysiology69,70.

In addition to POMP and TMEM136, in this study we also identified 3 other XFS 

susceptibility loci that map to: AGPAT1 in the class III MHC region (6p21), to RBMS3 
(3p24), and near SEMA6A (5q23). AGPAT1 has been identified as a susceptibility locus for 

Omega6 (n6) polyunsaturated fatty acids (PUFAs) levels in the CHARGE consortium, which 

may be related to cardiovascular risk in aging populations71. The MHC locus (where 

AGPAT1 resides) has also been reported to be involved in conditions such as Alzheimer’s 

and Parkinson’s disease72,73, which, like XFS, are age-related conditions. Although the 

biological roles of AGPAT1, RBMS3 and SEMA6A are not well understood, the consistent 

evidence of association at these loci thus opens up further avenues for research into XFS 

disease biology.

In summary we now show that a rare LOXL1 variant, p.Tyr407Phe, strongly protects against 

XFS, raising the possibility of potential pharmacological targeting of LOXL1 for therapeutic 

purposes29,74–76. In addition, we have identified 5 new XFS loci that implicate new 

biological pathways which could be important for disease pathogenesis.

Online methods

Patient collections

DNA and tissue samples from all patients with XFS and exfoliation glaucoma together with 

normal controls without XFS were obtained after informed written consent from each 

participant. All human samples were obtained in strict adherence to the tenets of the 

Declaration of Helsinki. Details for each XFS case control collection are appended in 

Supplementary Note.

Genotyping of samples

For the GWAS discovery stage performed in 24 countries (considered across 25 strata due to 

Russia contributing two distinct collections, one from St Petersburg and one from the 

Republic of Bashkortostan; Supplementary Table 2), genome-wide genotyping was 

undertaken using the Illumina OmniExpress Beadchip, as previously described14. To 

minimize bias between different genotyping arrays and platforms, all 9,035 XFS cases and 

17,008 controls for the GWAS discovery stage were genotyped using the Illumina 

OmniExpress array, ensuring that the primary discovery analysis used only directly 

genotyped SNP markers uniformly genotyped in cases and controls. The absence of 

imputation on primary discovery analysis means that issues due to imputation uncertainty 
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and insufficient information content for imputed SNPs with varying minor allele frequencies 

across the different ethnic groups is minimized77.

The replication stage included XFS collections from 18 countries (Supplementary Table 2). 

Details on the genotyping and analysis for the replication stage are appended in 

Supplementary Note.

Statistical analysis for the GWAS discovery stage

Stringent quality control checks were performed for each SNP marker and each individual 

sample. Our statistical analysis protocol for the GWAS discovery stage only included 

directly genotyped SNP markers genotyped by the Illumina OmniExpress bead array. We 

removed poorly performing SNP markers showing genotyping completion rates of <95%, as 

well as SNPs showing significant deviation from Hardy-Weinberg equilibrium (P < 1 × 10−6 

for deviation). SNPs with minor allele frequency of <1% were also removed from further 

GWAS discovery analysis. Each sample was similarly checked, and those with poor 

genotyping success rate (defined as genotyping completeness < 95%), showing excess 

heterozygosity defined as > 3 standard deviations from the mean78,79, and have outlying 

genetic ancestry (defined by more than six standard deviations from the mean on principal 

component analysis80) were excluded from further analysis.

We verified the biological relationships of all samples remaining after further exclusion of 

samples using the principle of variability in allele sharing. We used the PLINK software 

(See URLs) to derive information for identify-by-state status for each sample pair 

comparison. For each sample pair showing evidence of cryptic relatedness (IBD > 

0.1875)78, the sample with the lower genotyping completeness rate was removed from 

further analysis.

We performed principal component analysis to assess the degree of genetic stratification and 

population substructure for all samples which underwent genome-wide genotyping, as 

previously described80. Principal component analysis was performed for each country / site 

separately to remove samples with outlying ancestry from further analysis. Principal 

component scores were than calculated from a pruned set of unlinked markers (defined as 

pair-wise r2 < 0.1) for each country / site separately. These scores were used as covariates to 

adjust for residual population stratification. Principal component plots were executed using 

the R statistical program package (See URLs).

Association between SNP genotypes and XFS disease status was measured using logistic 

regression for each separate country strata before meta-analysis was conducted, as described 

elsewhere15,81,82. For the GWAS discovery stage, association analysis was additionally 

adjusted for the first three principal components of genetic stratification for sample 

collections to minimize residual population stratification. The genome-wide association 

summary statistics of all SNP markers from the GWAS are appended as Supplementary 

URLs
PLINK software, http://pngu.mgh.harvard.edu/~purcell/plink/; R statistical program package, https://www.r-project.org/; IMPUTE2 
software, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html; Power calculator for genetic association studies, http://
pngu.mgh.harvard.edu/~purcell/gpc/; Primer3 software, http://primer3.ut.ee.
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Dataset 2, available online. The genomic inflation estimate (λgc) was calculated using 

directly genotyped SNPs only, using the median regression test statistic, which is distributed 

in a chi- square manner83. λgc is listed for each individual GWAS discovery strata (and also 

pictured in Supplementary Figure 22) as well as for the GWAS meta-analysis 

(Supplementary Table 2). In line with well-described methodologies, results for the seven 

genome-wide significant loci have underwent double gc correction which corrects for 

genomic inflation first at the individual population strata and then once again during meta-

analysis84,85.

Meta-analysis was performed via the inverse-variance, fixed effects model using genomic 

control corrected summary results (adjusted odds ratios and standard errors) from each 

separate country /site. At no point in the analysis were samples pooled within or across 

continental groups for association analysis, as this measure does not appropriately account 

for population stratification. The meta-analysis method validates strong reversal at LOXL1 
(Supplementary Figure 23).

Statistical analysis for the replication stage.

SNPs showing association with XFS surpassing P≤1 × 10−4 in the GWAS discovery stage 

were brought forward to the replication stage, and analyzed in a manner similar to that 

performed for the discovery stage (Supplementary Note).

Genotype imputation

For the five newly identified genome-wide significant loci, we sought to improve on genetic 

resolution provided by the directly genotyped SNPs currently included on standard content 

GWAS arrays via imputation fine-mapping using samples and SNP markers passing strict 

quality control checks. This would also allow for better delineation of the credible sets 

underlying each of the five newly identified loci48. The imputation and phasing of genotypes 

were carried out using the IMPUTE2 software (See URLs) with reference panel constructed 

from cosmopolitan population haplotypes based on data obtained from 2535 individuals 

from 26 distinct populations around the world. This data is part of the 1000 Genomes project 

Phase 3 (Jun 2014) release, as described elsewhere. To minimize the effect of imputation 

uncertainty, we only included imputed genotypes with an information score of ≥0.95. Allele 

dosages were used for the imputed data association analyses with the software SNPTEST in 

order to average across imputation uncertainty.

Credible set analysis

Credible sets of SNPs were defined, as previously described, as the minimum number of 

genetic variants which account for >95% probability of driving each locus-specific 

association signal48,49. For the construction of credible sets, we included all genotyped 

variants with genotyping success rates of > 95 percent and minor allele frequency >1 

percent. Fine-mapping imputation variants were included using similar thresholds of minor 

allele frequency > 1 percent and imputation information content >0.95 to reduce the impact 

of imputation quality on the credible set analysis. For the fine-mapping imputation step, 

allele dosages were used for the imputed data association analyses with the software 

SNPTEST in order to average across imputation uncertainty.
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Statistical test for interaction with geographical latitude

Statistical tests for interaction between genetic markers and geographical latitude were 

undertaken for the five newly identified loci showing genome-wide significant association 

with XFS. The odds ratios and standard error for the odds ratio estimate for each SNP to be 

tested are assigned a latitude band for the country (or zone, whichever is more precise) 

where XFS cases and controls were drawn from (see Supplementary Table 2).

The odds ratios and standard error used in this test have already undergone PCA adjustment 

and genomic control correction during the GWAS analysis. We then conduct a trend test to 

assess whether the odds ratios for disease increases with increasing 10-degree increments of 

geographical latitude.

Mouse model phenotypes

For the 33 genes implicated by the 7 genome-wide significant SNPs on 7 distinct loci 

(Supplementary Table 15), we looked up the Mouse Genome Informatics publicly available 

database86. The output is manually checked and curated, with the relevant references 

detailing the mouse models appended as footnotes in Supplementary Table 15.

Deep sequencing of LOXL1 and CACNA1A

Deep sequencing was performed on a total of 5,570 XFS cases and 6,279 controls from 9 

countries (Supplementary Table 1). Both the LOXL1 and CACNA1A genetic loci (exons, 

introns, 5’ and 3’ flanking regions) spanning coordinates chr15:74,200,000 to 74,260,000 

and Chr19:13,307,000 to 13,745,000 were captured using the Roche Nimblegen SeqCap 

Easy probe kit. Enrichment and amplification of the libraries were then created using well-

described, routine laboratory techniques36. Sequencing was performed using 2×101 paired 

end reads using the Illumina Hi-Seq 2500 platform. We required that >95% of the samples 

to be covered at least 10X87. Mean coverage for sequencing across the samples was 

observed to be 60X.

For the analysis of LOXL1 p.Y407F, the initial 2,827 cases and 3,013 controls from Japan 

which underwent re-sequencing were enrolled from December 2007 to January 2015. A 

further 1,082 exfoliation syndrome cases and 2,325 controls from Japan were enrolled for 

the replication stage. These samples were collected between February 2015 and December 

2016 and did not undergo deep sequencing of the entire LOXL1 locus.

Read-mapping, variant detection and annotation.

All sequence reads in each individual were aligned to the human reference genome (hg19) 

using the Burrows-Wheeler Aligner software, which is well described36. Consensus 

genotypes were called using the GATK best practices guidelines. Only high quality variants 

assigned ‘PASS’ scores by variant quality score recalibration and individuals with variant 

genotype calling completeness >95% were brought forward for further statistical analysis.

Power calculations for genetic association study

Power calculations for the GWAS discovery and replication stages were performed on an 

additive genetic model using well described methods (See URLs), and is shown in 
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Supplementary Table 10. These power calculations take into account the asymmetric number 

of cases and controls, as is well reported in genetic association studies82,88.

Haplotype phasing for the LOXL1 locus

To ensure accurate phasing in order to reliably capture both common and rare haplotypes, 

we only included individuals with a genotype call completeness rate of 100% from both the 

sequencing and GWAS experiments. LOXL1 haplotypes were phased using the BEAGLE89 

and PLINK90 software packages, as previously described35.

Tissue specimens for analysis of the GWAS loci.

Human donor eyes used for corneal transplantation with appropriate research consent were 

obtained and processed within 15 hours after death. For RNA and DNA extractions, 21 

donor eyes with XFS (mean age, 80.1 ± 7.9 years; 11 female, 10 male) and 41 normal, 

healthy, age-matched control eyes (mean age, 77.1 ± 8.1 years; 20 female, 21 male) without 

any known ocular disease were used. Ocular tissues were prepared under a dissecting 

microscope and were snap frozen in liquid nitrogen. The presence of characteristic 

exfoliation material deposits was assessed by macroscopic inspection of anterior segment 

structures and confirmed by electron microscopic analysis of small tissue sectors.

For immunostaining experiments, ocular tissue samples obtained from 10 donor eyes with 

XFS (mean age, 78.7 ± 9.7 years; 6 female, 4 male) and 10 normal human donor eyes (mean 

age, 72.3 ± 11.6 years; 5 female, 5 male) were embedded in optimal cutting temperature 

compound and frozen in liquid nitrogen. DNA samples obtained from ocular tissues and 

cells were genotyped by Sanger sequencing (Supplementary Note).

Real-time PCR of human eye tissues

Ocular tissues were extracted using the Precellys 24 homogenizer and lysing kit together 

with the AllPrep DNA/RNA kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. This includes an on-column DNase I digestion step. First-strand cDNA 

synthesis from 0.5 μg of total RNA was performed with Superscript II reverse transcriptase 

(Invitrogen, Karlsruhe, Germany) in a 20 μl reaction volume. Quantitative real-time PCR 

was performed using the CFX Connect thermal cycler and software (Bio-Rad Laboratories, 

München, Germany). PCR reactions (25 μl) were run in duplicate and contained 2 μl of first-

strand cDNA, 0.4 μM each of upstream- and downstream-primer, and SsoFast EvaGreen 

Supermix (Bio-Rad). Exon-spanning primers (Eurofins Genomics, Ebersberg, Germany), 

designed using Primer 3 software (See URLs), and PCR conditions are appended in 

Supplementary Table 16. For normalization of gene expression levels, mRNA ratios relative 

to the house-keeping gene GAPDH were calculated by the comparative CT method (2 −ΔCT). 

Amplification specificity was checked using melt curve and sequence analyses using the 

Prism 3100 DNA-sequencer (Applied Biosystems, Foster City, CA).

Western blot analysis of human eye tissues

Total protein was extracted from iris and ciliary body tissues of 6 eyes with XFS and 6 

normal eyes using RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% 

DOC, 0.1% SDS). Protein concentrations were determined by the Micro-BCA protein assay 
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kit (Thermo Scientific). Proteins (10 μg per lane) were separated by 4–15% SDS-

polyacrylamide gel electrophoresis under reducing conditions (6% DTT) and transferred 

onto nitrocellulose membranes with the Trans-Blot Turbo transfer system (Bio-Rad). 

Membranes were blocked with SuperBlock T20 (Thermo Scientific) for 30 minutes and 

incubated for 1h at room temperature or overnight at 4°C with antibodies against POMP 

(Abcam) and TMEM136 (Abcam) diluted in PBST/10% SuperBlock T20. Equal loading 

was verified with mouse anti-human p- actin antibody (clone AC-15; Sigma-Aldrich) in 

PBST/10% SuperBlock T20. In negative control experiments, the primary antibody was 

replaced by PBST. Immunodetection was performed with a horseradish peroxidase-

conjugated secondary antibody in PBST/10% SuperBlock T20 and the Super Signal West 

Femto ECL kit (Thermo Scientific), and band intensity was analysed by computerized 

densitometry.

Immunohistochemistry of human eye tissues follow routine laboratory procedures, and are 

appended in Supplementary Note.

LOXL1 constructs

The full-length cDNA encoding LOXL1 was amplified using the primers shown in 

Supplementary Table 16. The restriction enzymes sites, EcoRI and Sa/I were added in a 

second amplification using a second set of primers (Supplementary Table 17). The LOXL1 

fragment (~1.7kb) was then subcloned into a HA- tagged pcipuro vector. Four haplotypes 

LOXL1-Arg141-Gly153-Tyr407 (G-G-A), LOXL1-Leu141-Gly153- Tyr407 (T-G-A), 

LOXL1-Arg141-Asp153-Tyr407 (G-A-A), and LOXL1-Arg141-Asp153-Phe407 (G-A-T) 

were generated and contained genetic variants in the following order; rs1048661 (G>T)-

rs3825942 (G>A)-rs201011613 (A>T). The first haplotype generated was LOXL1-Arg141-

Asp153-Tyr407 (G-A-A) and it served as the template plasmid for subsequent site-directed 

mutagenesis.

Targeted base-substitution was generated by site-directed mutagenesis using a PCR-based 

strategy with Transformer™ site-directed mutagenesis kit (Clontech) with respective 

oligonucleotide primer pairs (Supplementary Table 17) onto the LOXL1-Arg141-Asp153-

Tyr407 (G-A-A) haplotype. All accuracy of haplotypes constructed were confirmed by 

Sanger sequencing of the full length clone. All oligonucleotide primer pairs used to create 

the LOXL1 constructs are appended in Supplementary Table 17.

Nano luciferase secretion assay for LOXL1

The secretion assay for LOXL1 with respect to the four tested haplotypes LOXL1-Arg141-

Gly153-Tyr407 (G-G-A), LOXL1-Leu141-Gly153-Tyr407 (T-G-A), LOXL1-Arg141-

Asp153-Tyr407 (G-A-A), and LOXL1- Arg141-Asp153-Phe407 (G-A-T) were measured 

using the NanoLuc luciferase assay. More details for this assay are appended in 

Supplementary Note.

Details for Western blot analysis of the different hemagglutinin-tagged LOXL1 haplotypes 

on elastin, fibronectin, and collagen IV follow routine laboratory procedures, and are 

appended in Supplementary Note.
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Spheroid cultures

The human lens epithelial cell line (HLEC (B-3)) was obtained from the American Tissue 

Culture Collection (ATCC). The cells were maintained in Dulbecco’s modified Eagle’s 

medium supplemented with 20% fetal bovine serum (Sigma-Aldrich) and 2mM Glutamax 

(Invitrogen) at 37oC with 5% CO2, and passaged every 2–3 days in a 1:4 ratio. The cell line 

was tested for mycoplasma and was found to be negative.

Nucleofected HLECs were trypsinized 48 hours post-nucleofection and seeded in their 

growth media in low attachment 6-well plates with hydrophobic surfaces (Greiner Bio-One 

GmbH) at 300,000 cells per well. Cells were left to form spheroids and collected at 72 

hours. The spheroids were fixed with 4% paraformaldehyde for 10min at room temperature 

and stored at 4oC. Fixed spheroids were washed with PBST (0.1% Tween-20 in 1× PBS) and 

blocked in blocking buffer (3% BSA in PBS) for 1 hour at room temperature. They were 

subsequently incubated overnight at 4oC with the following primary antibodies: mouse or 

rabbit antibody to HA (1:100 dilution; sc-7392; sc-805; Santa Cruz), goat antibody to elastin 

(1:100 dilution; sc-17581; Santa Cruz), mouse antibody to fibrillin-1 (1:100 dilution; 

ab6328; Abcam), and rabbit antibody to collagen IV (1:100 dilution; ab6586; Abcam). All 

antibodies were diluted with the blocking buffer. After incubation with the primary antibody, 

the spheroids were washed three times with PBST and labeled with their respective 

secondary antibodies for 1 hour at room temperature. Secondary antibodies used were with 

FITC, Cy3 or AlexaFluor 647-conjugated anti-mouse, anti-rabbit, or anti-goat secondary 

antibody (1:300 dilution; Jackson Laboratories). The spheroids were stained with DAPI 

(1ug/mL) and mounted on microscope glass slides using a cytocentrifuge (Thermo Fisher 

Scientific Inc.) and FluorSave Reagent (Merck Millipore). Immunolabelled spheroids 

images were acquired at the Advanced Bioimaging Core at the Academia, Singapore Health 

Services with a Leica TCS SP8 confocal laser scanning platform, Z-planes were imaged in 

1μm steps. Analysis of spheroids was done on a maximal projection image of 5 Z-planes 

onto a single image. Heat map of respective immunofluorescent signals were generated 

relative to the minimum and maximum fluorescence intensity values of the same scale 

defined by the color range as indicated within the figures. Each experiment was repeated 

independently three times, with images also acquired independently three times.

Cell-cell adhesion assay

HLECs nucleofected with LOXL1-Arg141-Gly153-Tyr407 (G-G-A), LOXL1-Leu141-

Gly153-Tyr407 (T-G- A), LOXL1-Arg141-Asp153-Tyr407 (G-A-A), and LOXL1-Arg141-

Asp153-Phe407 (G-A-T) haplotype constructs were plated into 96-well plates designed for 

the xCELLigence RTCA SP instrument (ACEA Biosciences Inc) at a density of 120,000 

cells per well. The 96-well plates were incubated at 37°C with 5% CO2 and monitored on 

the xCELLigence RTCA SP system at 15-min intervals for the first 24 h and at 30-min 

intervals for the subsequent 48 h. The impedance data was extracted from the RTCA 

software and analyzed for differences in cell-cell adhesion between the different LOXL1 

haplotypes. Triplicates were performed for HLECs nucleofected with each haplotype to 

allow for robust statistical evaluation of the results obtained. The readings for each variant 

were normalized against their respective initial readings at the first time point, and the 

normalized readings were subsequently compared against the LOXL1-Arg141-Asp153-
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Phe407 (G-A-T) haplotype. The assay shown in Figure 1e was repeated four independent 

times, with the follow up independent experiment (shown in Supplementary Figure 7) 

repeated seven independent times.

Statistical procedures for biological analysis.

Statistical evaluation of expression differences between patients and controls was performed 

using SPSS v.20 software (IBM, Ehningen, Germany) with an unpaired two-tailed t test. P < 

0.05 was considered statistically significant. Data for adhesion and secretion assays were 

analyzed by an unpaired homoscedastic t test, and two-tailed P-values were calculated. We 

considered P < 0.05 as statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
LOXL1 p.Y407F regulates ECM synthesis and improves cellular adhesion.

(a) Schematic diagram of LOXL1 indicating the protein domain positions for the variants 

evaluated in this study.

b) Immunofluorescent staining of HA-tagged LOXL1 variants overexpressed in HLEC cells 

labelled with anti-HA for detection of overexpressed forms of LOXL1 (red) and elastin 

(green). Cell nuclei are stained in blue. The heat map for elastin indicates the intensity of 

elastin staining from red (increased expression) to purple (decreased expression).
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c) Immunofluorescent staining of HA-tagged LOXL1 variants overexpressed in HLEC cells 

labelled with anti-HA for detection of overexpressed forms of LOXL1 (red) and collagen IV 

(green). Cell nuclei are stained in blue.. The heat map for collagen IV indicates the intensity 

of collagen IV staining from red (increased expression) to purple (decreased expression).

d) Immunofluorescent staining of HA-tagged LOXL1 variants overexpressed in HLEC cells 

labelled with anti-HA for detection of overexpressed forms of LOXL1 (red) and fibrillin 1 

(green). Cell nuclei are stained in blue. The heat map for fibrillin 1 indicates the intensity of 

fibrillin 1 staining from red (increased expression) to purple (decreased expression).

e) Cumulative average of impedance values (as a surrogate for cellular adhesion strength) 

measured over 35h post nucleofection of HLECs overexpressing the four tested LOXL1 
haplotypes. Data represent mean ± s.e.m. of four independent experiments. ** represents 

P<0.01 when compared against the rare, protective LOXL1 p.407F-carrying G-A-T 

haplotype. The four haplotypes tested were LOXL1-(G-A-T), - (G-A-A), -(T-G-A) and -(G-

G-A). This experiment was further validated in Supplementary Figure 7.
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Figure 2. 
Manhattan plot of the results from the GWAS discovery plus replication meta-analysis 

comprising 13,620 XFS cases and 109,837 controls. Genetic markers are plotted according 

to chromosomal location on the horizontal axis and statistical significance on the vertical 

axis. SNP markers at seven independent loci surpass genome-wide significance (defined as 

P<5×10−8). They are LOXL1, CACNA1A, POMP, TMEM136, AGPAT1, SEMA6A and 

RBMS3.
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Figure 3. 
Expression of POMP protein in ocular tissues of normal human donor eyes and donor eyes 

with XFS, as determined by Western blotting and immunohistochemistry. 

Immunofluorescence labelling of normal eye tissues shows punctate POMP immune-

positivity (green fluorescence) in the cytoplasm of the corneal epithelium (A), the corneal 

endothelium (B), limbal epithelium and stromal cells (C), trabecular meshwork endothelium 

(D), ciliary epithelium (E), and retinal cell layers (F).
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Reduced POMP protein expression levels in iris and ciliary body tissues of XFS eyes 

compared to age matched controls are shown by Western blot analysis (G), and by 

immunofluorescence labelling of iridal (H,L) and ciliary epithelia (J,M) as well as vascular 

endothelia in the iris (K,N). Reduced staining intensity in XFS tissues is associated with 

LOXLI-positive exfoliation material accumulations (red immunofluorescence) on the 

surface of the iris pigment epithelium (L), ciliary epithelium (M) and iris blood vessel walls 

(N). Western blot (cropped images) and densitometry analysis shows reduced POMP protein 

expression in iris and ciliary body tissue lysates of XFS eyes compared to control eyes (G). 

Data are shown as the POMP/B-actin ratio (n=6 for each group; mean ± standard deviation; 

*P<0.01; **P<0.005); uncropped versions of all Western blots are shown in Supplementary 

Figure 16. (BV blood vessel, CE ciliary epithelium, CoE corneal epithelium, DM Descemet 

membrane, GCL retinal ganglion cell layer, INL inner nuclear layer, IPE iris pigment 

epithelium, LE limbal epithelium, ONL outer nuclear layer, SC Schlemm’s canal, ST 

stroma, TM trabecular meshwork; DAPI nuclear counterstain in blue; scale bars = 100 μm in 

C,D,F and 20 μm in A,B,E,H-N).
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Figure 4. 
Expression of TMEM136 protein in ocular tissues of normal human donor eyes and donor 

eyes with XFS, as determined by Western blotting and immunohistochemistry. 

Immunofluorescence labelling of normal eye tissues shows cytoplasmic TMEM136 

immunopositivity (green fluorescence) in limbal blood vessels (A), trabecular meshwork and 

Schlemm’s canal endothelium (B), walls of aqueous veins (arrows) (C), blood vessels of the 

iris (arrows) (D), blood vessels and epithelia of the ciliary body (E), and retinal blood 

vessels and cell layers (F).
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Reduced TMEM136 protein expression levels in iris and ciliary body tissues of XFS eyes 

compared to age matched controls are shown by Western blot analysis (G), and by 

immunofluorescence labelling of iridal (H,L) and ciliary epithelia (J,M) as well as vascular 

endothelia in the iris (K,N). Reduced staining intensity in XFS tissues is associated with 

LOXL1- positive exfoliation material accumulations (red immunofluorescence) on the 

surface of the iris pigment epithelium (L), ciliary epithelium (M) and iris blood vessel walls 

(N). Western blot (cropped images) and densitometry analysis shows reduced TMEM136 

protein (isoform 1 at 28 KD and isoform 3 at 31 KD) expression in iris and ciliary body 

tissue lysates of XFS eyes compared to control eyes (G). Data are shown as the 

TMEM136/B-actin ratio (mean ± standard deviation; n=6 for each group; *P<0.01; 

**P<0.005); uncropped versions of all Western blots are shown in Supplementary Figure 17. 

(AV aqueous vein, BV blood vessel, CE ciliary epithelium, DIL dilator muscle, GCL retinal 

ganglion cell layer, INL inner nuclear layer, IPE iris pigment epithelium, LE limbal 

epithelium, ONL outer nuclear layer, SC Schlemm’s canal, ST stroma, TM trabecular 

meshwork; DAPI nuclear counterstain in blue; scale bars = 200 μm in A, 100 μm in B-F and 

20 μm in H-N).
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Table 1

Association of all rare, non-synonymous variants at LOXL1 and risk of exfoliation syndrome. No additional 

filters by functional effect prediction algorithms were applied. Frequencies for rare variant carriers are given in 

percentages.

Collection N cases N controls

Allele
burden
cases

Allele
burden
controls

Carrier
freq cases

Carrier
freq
controls Allele OR L95 U95 P

Japanese 2827 3013 34 100 1.20 3.32 0.36 0.24 0.53 8.03 × 10−8

Greece 355 1075 3 17 0.85 1.58 0.53 0.16 1.82 0.44

Italy 454 267 10 3 2.20 1.12 1.97 0.54 7.19 0.39

Russia 476 859 2 5 0.42 0.58 0.72 0.14 3.72 1

USA 212 161 2 2 0.94 1.24 0.76 0.11 5.41 1

Mexico 116 205 2 9 1.72 4.39 0.39 0.083 1.81 0.34

South Africa 95 250 1 21 1.05 8.40 0.12 0.016 0.90 0.014

India 648 263 12 8 1.85 3.04 0.61 0.25 1.49 0.32

Pakistan 383 186 7 4 1.83 2.15 0.85 0.25 2.92 0.76

Stratified meta-analysis for all sequenced collections 0.46 0.34 0.62 4.2 × 10−7
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Table 2

Association of rare, non-synonymous variants at LOXL1 and risk of exfoliation syndrome tagged as 

deleterious by five functional prediction algorithms (SIFT, Polyphen2-HumDiv, LRT score, MutationTaster, 

and CONDEL). Frequencies for rare variant carriers are given in percentages.

Collection N cases N controls

Allele
burden
cases

Allele
burden
controls

Carrier
freq cases

Carrier
freq
controls OR L95 U95 P

Japanese 2827 3013 11 85 0.39 2.82 0.14 0.073 0.26 3.49 × 10−13

Greece 355 1075 1 6 0.28 0.56 0.50 0.061 4.19 1

Italy 454 267 1 3 0.22 1.12 0.20 0.020 1.88 0.15

Russia 476 859 0 4 0 0.47 0 N/A N/A 0.56

USA 212 161 1 1 0.47 0.62 0.76 0.047 12.18 1

Mexico 116 205 0 0 0 0 0 NA NA 1

South Africa 95 250 0 2 0 0.80 0 NA NA 0.38

India 648 263 5 7 0.77 2.66 0.29 0.091 0.91 0.047

Pakistan 383 186 0 3 0 1.61 0 NA NA 0.035

Stratified meta-analysis for all sequenced collections 0.18 0.11 0.30 4.23 × 10−11

Meta-analysis excluding Russia, Mexico, South Africa, and Pakistan* 0.19 0.11 0.31 1.41 × 10−10

*
Excluding collections where allele zero in either cases or controls
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Table 3

Association between LOXL1 p.Y407F (rs201011613, A>T base change) and exfoliation syndrome.

p.Y407F N
cases

N
controls

Allele count 
in

cases (%)

Allele count
controls

Freq.
cases (%)

Freq.
controls

(%)
OR L95 U95 p

Japan sequencing 2827 3013 1 36 0.018 0.60 0.029 0.0040 0.21 8.3 × 10−10

Japan replication 1082 2325 1 32 0.046 0.69 0.067 0.0091 0.49 8.9 × 10−5

Japan Combined 3909 5338 2 68 0.026 0.64 0.040 0.0098 0.16 2.9 × 10−14

European sequencing 1613 2567 0 0 0.0 0.0 - - - -

South Africa 
sequencing

95 250 0 0 0.0 0.0 - - - -

South Asia sequencing 1031 449 0 0 0.0 0.0 - - - -

This rare variant was found exclusively in the Japanese, and was not polymorphic in Europe, Africa, and South Asia. P-values are by Fisher’s exact 
test.
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Table 4

Summary of genetic associations for the five newly identified loci.

Association tests Heterogeneity 
tests

Chromosome
SNP

(effect/
reference)

Position Gene
locus

Stage OR L95 U95 P-value Phet I2 index

13 rs7329408 
(A/G)

29166671 FLT1 -
POMP

GWAS discovery 1.17 1.11 1.22 2.97 × 10−10 0.9 0.00%

Replication 
summary

1.18 1.11 1.25 9.63 × 10−8 0.17 23.20%

All data summary 1.17 1.13 1.22 1.56 × 10−16 0.62 0.00%

European 
Caucasian 

summary 
∥

1.22 1.15 1.29 7.82 × 10−12

Asian summary 1.13 1.07 1.19 1.61 × 10−5

11 rs11827818 
(G/A)

120198728 TMEM136 GWAS discovery 1.10 1.05 1.16 0.0001 0.10 28.10%

Replication 
summary

1.18 1.11 1.25 1.96 × 10−8 0.36 8.00%

All data summary 1.14 1.09 1.18 5.86 × 10−11 0.09 23.10%

European 
Caucasian 

summary 
∥

1.14 1.08 1.20 2.09 × 10−6

Asian summary 1.15 1.08 1.22 4.35 × 10−6

6 rs3130283 
(A/C)

32138545 AGPAT1 GWAS discovery 1.19 1.11 1.27 1.29 × 10−6 0.38 5.60%

Replication 
summary

1.15 1.07 1.24 0.00013 0.96 0.00%

All data summary 1.17 1.11 1.23 7.62 × 10−10 0.81 0.00%

European 
Caucasian 

summary 
∥

1.13 1.06 1.22 0.00034

Asian summary 1.24 1.14 1.34 2.27 10−7

3 rs12490863 
(A/G)

29907310 RBMS3 GWAS discovery 1.15 1.09 1.22 4.9 × 10−7 0.69 0.00%

Replication 
summary

1.12 1.04 1.20 0.002 0.13 26.50%

All data summary 1.14 1.09 1.19 7 × 10−9 0.23 12.50%

European 
Caucasian 

summary 
∥

1.19 1.11 1.27 1.64 × 10−6

Asian summary 1.12 1.05 1.20 0.00053

5 rs10072088 
(G/A)

116019417 SEMA6A GWAS discovery 0.89 0.85 0.94 2.3 × 10−5 0.85 0.00%

Replication 
summary

0.88 0.83 0.94 0.00017 0.10 36%

All data summary 0.89 0.85 0.93 1.5 × 10−8 0.66 0.00%
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Association tests Heterogeneity 
tests

Chromosome
SNP

(effect/
reference)

Position Gene
locus

Stage OR L95 U95 P-value Phet I2 index

European 
Caucasian 

summary 
∥

0.90 0.85 0.94 2.83 × 10−5

Asian summary 0.88 0.81 0.96 0.0024

∥
This summary includes 7,113 cases and 95,863 controls from North America, Northern-, Southern-, Eastern-, and CentralWestern Europe. This 

summary does not include Latin and South America.

Nat Genet. Author manuscript; available in PMC 2019 August 07.


	Abstract
	Results
	A LOXL1 rare missense variant protects against XFS.
	Biological relevance of LOXL1 p.Y407F.
	GWAS identifies five new loci associated with XFS
	Biological insights from GWAS associated loci.

	Discussion
	Online methods
	Patient collections
	Genotyping of samples
	Statistical analysis for the GWAS discovery stage
	Statistical analysis for the replication stage.
	Genotype imputation
	Credible set analysis
	Statistical test for interaction with geographical latitude
	Mouse model phenotypes
	Deep sequencing of LOXL1 and CACNA1A
	Read-mapping, variant detection and annotation.
	Power calculations for genetic association study
	Haplotype phasing for the LOXL1 locus
	Tissue specimens for analysis of the GWAS loci.
	Real-time PCR of human eye tissues
	Western blot analysis of human eye tissues
	LOXL1 constructs
	Nano luciferase secretion assay for LOXL1
	Spheroid cultures
	Cell-cell adhesion assay
	Statistical procedures for biological analysis.

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4

