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Abstract

Due to high velocity, high frequency and the lack of warning signs, shallow landslides represent a major
hazardous factor in mountain regions. Moreover, increasing urbanisation and climate changes triggering
intense rainfall events make shallow landslides a source of widespread risk. The interest of the scientific
community in this process has grown in the last three decades with the aim to perform robust shallow
landslide hazard assessment at regional scale.

Generally, these slope failures involve relatively small volumes of material sliding along with a planar
shallow rupture surface. In the literature it is widely accepted that shallow landslides involve only slope
deposit (or colluvium) and the sliding surface correspond to the discontinuity between bedrock and the
overlying loose material. The fieldwork conducted in this thesis highlighted that often shallow landslides
involve also the weathered and fractured portion of bedrock. In this framework, the implementation of
shallow landslides susceptibility modelling should take into account the engineering geological properties
of slope deposits, as well as of the underlying bedrock. In this thesis a fieldwork-based method is
proposed to acquire, process and spatialize engineering geological properties of slope deposits and
bedrock. The aims of this thesis were to compile a new multi-temporal shallow landslide inventory,
characterize the engineering geological properties of slope deposits and bedrock, implement and compare
shallow landslide susceptibility modelling by means a physically-based and a data-driven methods and
explore the role of bedrock in shallow slope failures. The study area corresponds to a 242 km? portion of
the Garfagnana basin (Northern Apennines), a mountainous region where the elevation ranges between
150 and 2000 m a.s.l. characterized by an incised and rugged morphology with steep slopes (average 28°
degrees) and a mean annual rainfall between 1500 and 2500 mm/year. From a geological point of view,
the Garfagnana basin is a narrow intra-mountainous valley, interposed betweeen the Alpi Apuane
metamorphic complex to the east and the sedimentary northern Apennine’s ridge to the west.

The fieldwork and laboratory tasks carried out to map engineering geology characters of slope deposits
consisted on a set of hundreds of field sampling points, with the acquisition of depth to the bedrock,
geotechnical horizons, unit weight, as well as soil samples for lab analysis. The distribution of points was
chosen by observing that engineering geology properties of slope deposits depend on both bedrock
lithology and morphometric conditions. In order to obtain the map distribution of engineering geology
parameters, we implemented a spatial analysis by clustering morphometric variables stratified as a
function of bedrock lithological units. In order to investigate the engineering geology characteristics of
the bedrock, a field survey aimed to classify rock masses was conducted. For each survey site, 200-400
Schmidt hammer rebound measures, bedding and joint data, GSI (Geological Strenght Index) and
samples for laboratory analyses (unit weight and slake durability test) were collected. The field data were

processed and spatially analyzed by means uni-variate and multi-variate cluster analysis in order to



delineate domains with different bedrock geo-mechanical properties. The shallow landslide susceptibility
analysis was performed using both data-driven, Information Value, and physically-based, a modified
version of SHALSTAB model (PROBSS), methods.

The numerical modelling faced three issues: a) the comparison of PROBSS and Information value (IV)
in the prediction of shallow landslides involving SD; b) the training and cross-validation of IV models
using shallow landslides involving bedrock or not; ¢) implementation of a physically-based model to
predict involving bedrock shallow landslides. First of all, the results highlight that the field-based methods
proposed here to evaluate engineering geological properties of slope deposits and bedrock are adequate
for the implementation of regionalised physically-based susceptibility models.

The comparison between PROBSS and IV highlights that the simplification of shallow landslides adopted
by the infinite slope model which do not take into account the occurrence of a sliding surface located
below the slope deposits / bedrock discontinuity, may affect the performance of physically-based
susceptibility models. The accuracy of IV model is slightly better that PROBSS model. Having
implemented two data-driven susceptibility models using two different training datasets highlighted the
different characteristics that slope deposits and bedrock involving shallow landslides have, suggesting
and demonstrating that the latter occur in conditions that the physically based model cannot predict. By
placing the slip surface below the discontinuity between slope deposits and bedrock and providing shear
strength parameters compatible with a weathered and fractured rock material, satisfactory accuracy result

was obtained with PROBSS model.
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ACRONYMS AND SYMBOLS
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1.1 STRUCTURE OF THE THESIS

Geology, geomorphology, geological engineering and statistical analysis applied to shallow landslide
susceptibility assessment are the main topics of this thesis.

The thesis has a similar structure of a method-centric type scientific article, the core of this work lies in
the detailed description of data acquisition and processing methods for the implementation of shallow
landslide susceptibility models. The methodology is then applied to a study area whose results are
presented and discussed.

After a brief introduction describing the data available at the beginning of the PhD thesis, the state of
the art of knowledge, different approaches to assess landslide susceptibility and the objectives of this
work, an exhaustive chapter describing the phases of data acquisition in the field, their processing and
statistical analysis is presented. The study area in which the methodology was applied is identified and a
description of the geographical and geological characteristics is provided.

In the next chapter, the results of the data acquired are presented and implemented in shallow landslide
susceptibility models. Three different ways of approaching slope stability are described, analysed and
discussed.

Finally, a chapter dedicated to general discussions which integrates considerations, critical points and
strengths of the methodology, results and modelling is presented.

The thesis ends with a chapter of conclusions, appendices and bibliography.

13



1.2 STATE OF THE ART

1.2.1 Shallow landslides and slope deposits

A landslide is defined as the movement of a mass of rock, debris, or earth down a slope, under the
influence of gravity (Cruden, 1991). The classification of landslide was a challenging issue since geologists
and geotechnical engineers started to handle the problem. In the literature several landslide classification
systems exists, introduced by different experts as geologists, geomorphologists and engineers, but a
universal and comprehensive description of the phenomenon was firstly introduced by Sharpe (1938)
recognizing type of movement, material and movement velocity. This classification was then expanded
by Varnes (1958, 1978), then completed with velocity rates (Cruden and Varnes, 1996), making it the
most used classification at global scale (Figure 1-1). In a recent update (Hungr et al., 2014), the authors aim
was to introduce modifications reflecting recent advances in understanding landslide phenomena and the
materials and mechanisms involved. The starting point of the modifications is the 1978 version of the
classification (Varnes 1978), taking also into account concepts introduced by Cruden and Varnes (1996).
The most important features that the work of Hungr et alii (2014) have introduced is a more detailed
characterization of materials. The authors adopt a geotechnical material terminology, as it relates best to
the mechanical behaviour of the landslide, replacing the Varnes’s terms “debris” and “earth” with other
terms which describe the texture and composition (Figure 1-2). The resulting landslide classification is
represented in Figure 1-3 and was adopted in this thesis. As will be shown in the following paragraphs of
this thesis, this update resulted to be very suitable for the purpose of this work because some of the
information needed to accurately classified landslide was necessarily collected to implement the landslide
susceptibility models.

Even if in the paper of Hungr et alii (2014) a detailed description of a wide number of slope failures types
is provided, a widely accepted definition of shallow landslide is lacking. Nevertheless, the landslide type
which most closely resembles what is usually identified as a shallow landslide is the “gravel/sand/debris
slide”, defined as “S/iding of a mass of granular material on a shallow, planar surface parallel with the ground. Usnally,
the sliding mass is a veneer of colluvium, weathered soil, or pyroclastic deposits sliding over a stronger substrate” (Hungr
etal.,, 2014). Milledge et alii (2014) provide a quantitative analysis based on 6 landslide inventory, affirming
that shallow landslides: have a scar areas between 30 and 300 m® are generally longer than they are wide,
wider than they are deep with a slip surface that rarely extend beyond a few meters deep, and the majority
are between 0.1 and 1 m deep. In the definition of shallow landslide of Hungr et al. (2014), the sliding
mass is called “colluvium” or “weathered soil”. In this thesis we call slope deposits (SD) what in the
literature other authors call for example “colluvium”, “soil” or “regolith” (Goudie, 2004; Leopold and
Volkel, 2007; Scott and Pain, 2008; Miller and Juilleret, 2020). The definition adopted in this thesis

correspond to the definition proposed by Trefolini (2015), defining slope deposits as “a deposit obtained
14



from the actual or recent alteration and/or disruption of substratum and eventually the transport and
sedimentation along the hillslope by unchannelized flux or gravity-dominated processes, independently
of texture, structure, cementation and consistence”. Slope deposits are bounded below by an
unconformity which defines the border between them and the underlying bedrock. In this thesis, the
term “bedrock” is attributed to a material which may consist of a hard or weak rock, or even to a more
or less cemented sedimentary deposit, which maintain their structure and hardness, and formed in a
geological and morphoclimatic environment different from the current one (Figure 1-4).

Shallow landslides characteristics listed above make these slope processes suitable for modeling by means
the infinite slope method (Taylor, 1948), in which the slip surface corresponds to the bedrock-slope
deposits interface, working as a mechanical and hydraulic discontinuity. The role and, eventually, the
involvement of weathered and fractured bedrock in shallow landsliding has been pootly investigated
while, when dealing with deep-seated landslides or rockfalls, bedrock properties are deeply taken into
consideration. For this kind of slope failure, the degree of weathering, fracturing and bedding play a
fundamental role and are crucial information in order to obtain site specific susceptibility models (Grelle
et al., 2011; Jaboyedoff et al., 2011; Brideau and Roberts, 2014; Marchesini et al., 2015; Stead and Wolter,
2015; Huang et al., 2016). Instead, in regional data-driven landslide susceptibility modeling some bedrock-
related predisposing factors, such as distance from faults and layers bedding, are often taken into account
(Donati and Turrini, 2002; Guzzetti et al., 2008; Blahut et al., 2010; Goswami et al., 2011; Migon et al.,
2017). Nevertheless, in the literature the “typical” shallow landslide does not involve bedrock, for this
reason there is no interest on the investigation of bedrock properties during shallow landslide
susceptibility analysis. In light of what has been seen in the fieldwork carried out in this thesis, the author
does not exclude a priori involvement of bedrock and the role that the weathering and fracturing degree
has in the distribution of shallow landslides. In this work, involving bedrock shallow landslides (BRL) are
defined as landslides in which the sliding surface is located under the slope deposits/bedrock
discontinuity (Figure 1-5). Unlike the SD / bedrock interface, this surface is not tangible and defined by
an abrupt discontinuity, however it usually corresponds to a transition zone between bedrock with

different degrees of weathering and fracturing.
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Figure 1-1 A summary of Varnes’ 1978 classification system (from Hungr et alii, 2014)
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Figure 1-2 Landslide-forming material types (from Hungr et al., 2014)
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Figure 1-3 Summary of the Hungr (2014) version of the Varnes classification system (from Hungr et alii, 2014)
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Figure 1-4 A natural trench exposing slope deposits above the bedrock, divided by the unconformity (white dashed line).
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Figure 1-5 Simplified scheme of a typical shallow landslide and an involving bedrock shallow landslide

1.2.2 Landslide inventories

A landslide susceptibility analysis, regardless of which method is used to define it, cannot disregard a
landslide inventory. A landslide inventory (LI) is a record of landslides, combined with their attributes,
recognized in a particular area. These attributes should ideally provide information on the type of
landslide, date of occurrence or relative age, size, current state of activity, and causes. The method to be
used to prepare a landslide inventory should depends on purpose of the inventory, the extent of the study
area, the scale of the base maps and resolution of remote sensing images (Guzzetti et al., 2012). LIs have
usually been produced by using geomorphological field mapping and visual interpretation of aerial
photographs. Today, innovative techniques are rising including analysis of (very-high resolution) digital
elevation models (DEMs), interpretation and (semi-automated) analysis of satellite images (Drdgut and
Blaschke, 2006; Booth et al., 2009; Joyce et al., 2009; Guzzetti et al., 2012; Jaboyedoff et al., 2012; Martha
et al., 2012; Casagli et al., 2016; Z. Li et al., 2016; Disperati et al., 2016; Plank and Martinis, 2016; DeWitt
et al,, 2017). Depending on the purpose, the landslide inventory can be classified as historical, event,
seasonal or multi-temporal inventories. An historical inventory shows the cumulative effects of many
landslide events over a period of tens, hundreds or thousands of years. Instead, an event-based LI is

prepared following a well-defined trigger event (e. g., heavy rainfall, earthquake, snowmelt). Multi-
18



temporal and seasonal inventories are prepared investigating multiple sets of aerial or satellite images of
different dates. A seasonal inventory shows landsides triggered by single or multiple events during a single
season, or a few seasons, whereas multi-temporal inventories show landslides triggered by multiple events
over longer periods (Guzzetti et al., 2012).

Due to different methods, different scale of analysis and different purposes, for these reasons defining
the accuracy of a landslide inventory is not straightforward, and standards do not exist (Galli et al., 2008).
Several difficulties arise in building a good landslide database and many types of imprecision can affect
the database (Trigila et al., 2010; Guzzetti et al., 2012). For instance, common errors can be related to the
boundary and position of landslides (cartographic errors) or in discerning the source from the runout
area (interpretation errors). Furthermore, the use of different source of information (e.g. newspapers,
remote sensing and field surveys) can generate landslide records with different reliability (Trigila et al.,
2010).

An important feature to consider in order to characterize a landslide inventory is the landslide size
distribution (Malamud et al., 2004). In the literature it is widely accepted that whilst large landslides are
perceived to be the most hazardous, small landslides occur most frequently. For this reason, assess
landslide size distribution for a specific landslide event or to assess the completeness of a landslide
inventory is an important tool to evaluate landslide hazard and risk zoning (Malamud et al., 2004; Fell et
al., 2008; Corominas et al., 2014).

Several studies have proposed that the non-cumulative size-frequency distribution of landslides follows
a negative power-law relationship for medium to large landslides (Hovius et al., 1997; Pelletier, 1997; C.
P. Stark and Hovius, 2001; Ardizzone et al., 2002; Malamud et al., 2004). The non-cumulative frequency-
density of a landslide inventory is given by the number of landslides dN over the range of areas dA.
Probability density function (pdf) can be estimated normalizing the frequency-density to the total number

of landslides in the inventory:

Equation 1-1

where NCL is the non-cumulative number of landslides and AL the landslide area. To construct the pdf,
firstly divide the interval covered by the data values into sub-intervals (bins). The division may be linear
or logarithmic. Then count the number of landslides within each interval and normalized the number of
landslides to the width of the bin and to the total of landslides.

Once the pdf has been estimated, it is possible to fit a function for data distribution using the Double

Pareto distribution (Stark and Hovius, 2001) or Inverse Gamma (Malamud et al., 2004).
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Power-law relationship exponent estimation usually varies from « = 1.4 to « = 3.3 (Van Den Eeckhaut
et al., 2007). This scaling exponent may vary with underlying geology (Guzzetti et al., 2008; Frattini and
Crosta, 2013a; Hurst, Ellis, et al., 2013) or with the failure type (Brunetti et al., 2009; Hurst, Ellis, et al.,
2013). As previously noted, landslide size-distribution exhibit a negative power-law relationship for
medium to large events, meanwhile pdf shows a rollover to a positive power-law relationship for smaller
landslides. In the literature, there’s no agreement about the definition of the rollover. Some authors
defined the rollover as the modal value of pdf distribution (C. P. Stark and Hovius, 2001; Stark and
Guzzetti, 2009a; L. Li et al., 2016) while other authors consider the rollover approximately as the point
of departure of the data from the power-law (Guthrie and Evans, 2004; Guthrie et al., 2008). Regarding
physical meaning of rollover, three hypotheses have been proposed. The first is ascribed to the interplay
of cohesion and friction, stating that these parameters resist landsliding for small and large landslides
respectively (Pelletier, 1997; Guzzetti et al., 2002; Malamud et al., 2004; Stark and Guzzetti, 2009).
Alternatively it concerns the completeness of the inventory, because erosion, reworking of deposits and
fast vegetation regrowth may be responsible for the concealing of small and shallow landslides, resulting
in a under sampling of the landslide inventory (Brardinoni and Church, 2004). Another issue regards the
resolution and the scale of the remotely sensed data used to acquire landslides that may lead to the small
and shallow slope failures under sampling (Galli et al., 2008; Guzzetti et al., 2012). For the reason listed
above, the most likely to be incomplete are historical inventories, on the contrary, event-based are the
most complete.

The Italian Landslide Inventory (IFFI) Project was launched in 1999 with the aim of identifying and
mapping landslides throughout Italy on the basis of standardized criteria. This huge database is an
historical landslide inventory containing 620.808 slope failures covering an area of 23.700 km* (7,9 % of
Italian territory). In Trigila et alii (2010), the authors carried out an analysis of the IFFI database, despite
excellent results of accuracy, the frequency-magnitude distribution highlighted a rollover around 10000
m®, suggesting an underestimation of shallow and small landslide (Figure 1-6). However, high frequency,
high velocity rate and lack of predictive indicators, make shallow landslides source of hazard and risk. In
this thesis, by means visual interpretation of orthophoto maps, a new multi-temporal inventory of shallow

landslide triggered by intense rainfall was prepared for the study area.
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Figure 1-6 Magnitude-frequency distribution of the IFFI (from Trigila et al., 2010)

1.2.3 Shallow landslides susceptibility modelling

Landslide susceptibility is defined as a quantitative or qualitative assessment of the classification, volume
(or area), and spatial distribution of landslides which exist or potentially may occur in an area (Fell et al.,
2008). Landslide susceptibility modelling is a key tool to assess hazard and risk zoning of a slope failures
prone area. Itis the first step to accomplish and it is the starting point for a correct risk management and
design of mitigation works for the protection of public health and property.

Landslide susceptibility modelling can be developed at the site-specific or regional level. Site-specific
analyses are related to a specific landslide or a specific limited area, usually deep-seated landslides that
threaten man-made environments such as the stability analysis of a reservoir bank slope, slope stability
assessment related to specific facility, buildings or infrastructures such as railways, roads or pipelines. By
contrast, regional assessment is not generally motivated by the needs of man-made structures but is
mainly oriented to the evaluation of probability of occurrence of slope failures in a wide area. The
outcomes of regional assessment are fundamental tools in regional planning and can be followed by site-
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specific studies. A regional-scale study is mainly based on the evaluation of predisposing factors causing
slope instability such as geology, structural setting, land use and morphometric variables derived from
the DEM (e.g. slope steepness, curvatures, upslope contributing area, slope aspect and so on).

Regional landslide susceptibility assessment can be performed by means both a qualitative approach, with
knowledge driven methods, or with a quantitative approach, with data-driven (statistical) and physically-
based (deterministic) methods. Knowledge-driven or heuristic methods rely on the subjective judgment
of experts, landslide susceptibility map can be prepared by means geomorphological survey by expert
geomorphologists or created in the office as a derivative map of a geological/geomorphological map. In
knowledge-driven or heuristic methods, the method is direct, as the expert interprets the susceptibility of
the terrain directly in the field, based on the observed phenomena and the geomorphological/geological
setting. The data acquired in the field may be digitalized using a GIS software, without extensive
modelling. Knowledge-driven methods can also be applied indirectly using a GIS, by combining several
factor maps that are considered to be important for landslide occurrence. On the basis of his/her expert
knowledge on past landslide occurrences and their causal factors within a given area, an expert assigns
particular weights to certain combinations of factors (Corominas et al., 2014).

The concept behind data-drive methods is that the condition at which landslides occurred in the past,
will be similar to the condition at which landslides will occur in the future (Reichenbach et al., 2018).
Therefore, these methods consist on the combinations of predisposing factors that have conditioned
landslides in the past are evaluated statistically, obtaining a quantitative prediction for current non-
landslide-atfected areas with similar geological, topographical and land-cover conditions. Moreover, with
statistical methods is possible to use a large variety of input parameters (without limitation) and, at the
same time, do not require « priori knowledge of relationships between predisposing factors and slope
stability.

In the literature exists a lot of data-driven methods that can be grouped in: classical statistical (logistic
regression, discriminant analysis etc.), index-based (weigh of evidence, information value), machine
learning (fuzzy logic, support vector machines, forest trees), multi criteria decision analysis and neural
networks. Reichenbach el alii (2018) provide an extensive review on data-driven susceptibility methods
and on their evolution in the last decades. In this paper, the authors showed that although the advent of
new complex statistical techniques applied to landslide susceptibility is spreading, as well as the increased
availability of a wide range of classification tools in open source, classical statistics and index-based
methods are used in around 70% of the works published from 2010 to 2018 (Reichenbach et al., 2018).
An interesting reflection the authors do in their paper is that “the use of more complex classification
methods — a trend observed in the literature in the recent years — does not guarantee better susceptibility
models and sound terrain zonations necessarily. Rather, the opposite is true; the use of complex

modelling techniques requires a full understanding of the model constrains, not all of which may be
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obvious to a non-expert user.” This reflection should encourage in experimenting new techniques
comparing them with methods well established. The only two main drawbacks data-drive methods have,
are the requirement of a good landslide inventory and their inability to model a scenario that has not
happened yet. In Figure 1-7, a table extracted from the work of Corominas et alii (2014), which shows the

recommended data-driven methods.

Method References
Bivariate Likelihood ratio  Lee (2(M15)
statistcal model (LEM)
methods Information Yin and Yan ( [984)
vilue method
Weights of van Westen ( 1993), Bonham-
evidence Carter € 14994), Sozen and
modelling Doyuran (2004)
Favourability Chung and Fabbri {1993), Luzi
functions {1995)
Multivariate Discriminant Cuarrara (1983), Gorsevski et al.
statistical analysis {20000}
method Logistic Ohlmacher and Davis (2003),
regression Gorsevski et al. (2006a)
ANN Artilicial neural  Lee et al, (2004), Ermini ¢t al
networks (2005), Kanungo et al. (2006)

Figure 1-7 Recommended methods for data-driven landslide susceptibility (from Corominas et al., 2014)

Deterministic methods rely upon simplified, physically-based landslide modelling schemes to analyse the
stability/instability conditions, often using simple limit equilibrium model coupled with a hydrological
infiltration model. The infiltration model, such as TOPOG (O’Loughlin, 1986) and TOPMODEL
(Beven and Kirkby, 1979), simulates infiltration and groundwater flow processes and is used to evaluate
the pore pressure in the section under analysis. The slope stability model, such as the infinite slope model
(Taylor, 1948; Skempton and Delory, 1984), simulates the slope safety factor (FS) defined as the ratio of
stabilizing to destabilizing forces. In Table 1.1, some of the most used models in the literature are listed.
The parameters commonly used to perform a stability analysis are topographic (e.g. slope, upslope
contributing area), hydrogeological (e.g. hydraulic conductivity), geotechnical (e.g. cohesion, friction
angle, unit weight) and geological (depth).

The simplifications and assumptions of models adopted and the representation of slope deposits
geotechnical properties is a key problem in the use of physically based slope stability models (Cervi et al.,
2010; Corominas et al., 2014). Due to infinite slope model assumption that the sliding surface correspond
to the slope deposit/bedrock discontinuity, the slope deposit depth, defined as the depth from the surface

to a consolidated material (usually bedrock), plays a key role on the accuracy of regional susceptibility
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analysis. Soil thickness can be modelled using physically based methods that model rates of weathering,
denudation and accumulation(Dietrich et al., 1995; D’Odorico, 2000) or empirical methods that
determine correlations with topographical factors such as slope, or it can be predicted using geostatistical
methods (Tsai et al., 2001; Florinsky et al., 2002; Catani et al., 2007; Kuriakose, Devkota, et al., 2009; Kim
etal.,, 2016). Slope deposits geotechnical properties are generally affected by great uncertainty. This is due
to the cost associated with field surveys, laboratory tests and 7z situ tests, but also for the SD natural
variability, due to a complex geological evolution. Furthermore, the reliability of geotechnical properties
maps for slope deposits are also a source of uncertainty (van Westen et al., 2008). In order to consider
the above-mentioned uncertainty of input data, many authors have adopted a probabilistic approach
(Gorsevski et al., 2006; Liu and Wu, 2008; van Westen et al., 2008; Kuriakose, van Beek, et al., 2009; Park
et al., 2013; Raia et al., 2014). The probabilistic approach makes it possible to model the variability of
input parameters by means of probability distribution functions; as a result, the model response is
expressed by probability laws, which are for example, numerically obtained by means of Monte Catlo
sampling methods. Unlike data-driven methods, physically-based models are applicable to areas with
incomplete landslide inventories and permit making predictions based on different triggering factors such

as rainfall, land use change, earthquake and snowmelt.

Table 1.1 A few physically-based models available in the literature

Model name Reference

dSLAM Wu and Sidle 1995

SHALSTAB Dietrich et al. 1998

SINMAP Pack et al. 1998

SHETRAN Ewen et al. 2000

PROBSTAB van Beek 2002

TRIG-RS / TRIG-RS-P Baum et al. 2002; Raia et al. 2014
GEOtop-FS Simoni et al. 2008
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1.3 AIM OF THE THESIS

In the last decades, due to climatic changes and increasing frequency of intense rainfall events, studies
about landslide distribution and predisposing factors have experienced an extensive development
(Gariano and Guzzetti, 2016; Reichenbach et al., 2018). Many researchers have focused on landslide
susceptibility as well as hazard and risk zoning in order to provide tools to mitigate human and economic
losses (Fell et al., 2008; Corominas et al., 2014). Moreover, landslides are a major hazard causing human
and large economic losses worldwide and, in the last twenty years, an increasing trend of fatal landslides

in Burope has been observed (Figure 1-6, Haque et al. 2010).
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Figure 1-8 Spatial distribution of fatal (death, injury, and missing) landslides (from Haque et al. 2016)

Italy is the European country most affected by fatal landslides and in the recent past was hit by disastrous
landslide events occurred in Piemonte Region in 1994, in Versilia (Tuscany) in 1996, in Sarno and
Quindici (Campania Region) in 1998, in a large sector of Northern Italy in 2000, in Val Canale (Friuli
Venezia Giulia Region) in 2003, Messina (Sicily) in 2009 and in Ligutria/Northern Tuscany in 2014 (Trigila
et al., 2010; Giordan et al., 2017). The majority of these events share an intense rainfall triggering a great
number of shallow landslides evolved in more-or-less concentrated debris flows hitting densely populated
or man-modified areas. In this framework, shallow landslides distribution, characterization and
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susceptibility analyses are fundamental tasks in order to implement a reasonable spatial planning and
decrease hazard and risk.

However, the predictive capacity of a shallow landslide susceptibility model substantially depends in the
cases of the physically based models on the quality of the input data and on the quality of the landslide
inventory for data-driven models. One of the most important challenges for physically based models is
the accurate definition of geo-technical parameters of materials involved in the landsliding, consequently
the predictive ability of these methods is closely linked to the degree of detail with which they are
characterized. For this reason, physically based models are inadequate in cases where a small-scale
regionalized slope stability analysis is required (Corominas et alii, 2014; study area > 1000 km?).
Furthermore, since physically based models assume that the sliding surface is located at the interface
between the slope deposits and the underlying bedrock, determining the depth of this interface is also a
difficulty to be taken into consideration. Numerous studies highlight how the depth of the slide influences
the probability of a landslide occurring, in fact, with equal morphological and geo-technical conditions,
the deeper the sliding surface the more likely it is to fail. For this reason, having the availability or building
a map that describes the trend of the depth of the slope deposits/bedrock interface is a fundamental
input for a physically based susceptibility model. It is also true that considering slope deposits/bedrock
interface as the surface where sliding can occur is a simplification of reality. The fieldwork experience
gained in this thesis has highlighted that a large part of the shallow landslides has a sliding surface which
is located just below the slope deposits/bedrock interface, thus affecting the most supetficial portion of
the rock mass characterized by varying degrees of alteration and fracturing. Not considering the
possibility that a landslide could affect the bedrock inevitably leads to an underestimation of the
probability of a landslide occurring in certain areas. Taking this aspect into account also means knowing
the geo-mechanical characteristics of the rock mass that lies beneath the slope deposit, which will not be
the characteristic of an undisturbed or tunneled rock mass but rather are characteristics that depend on
the degree of weathering and fracturing of the first 1-3 meters below the interface with the slope deposit.
This is because as the depth increases, the mechanical characteristics of the rock masses increase, the
more supetficial portions always tend to have worse characteristics due to their proximity and / or direct
contact with the biosphere, atmosphere and hydrosphere.

Data-driven models, having a different approach than physically based models, i.e. the basic assumption
consists in the concept that new landslides should take place in the same conditions in which past
landslides took place, can have a greater predictive performance for landslides involving bedrock with
respect to deterministic models. The reason is that a physically based model should also include the
difficult task of geotechnical parameters characterization of the bedrock undergoing failure.

However, being the data-driven approach a black box model, if the occurrence and frequency of shallow

landslides involving bedrock is not known as an input information, they cannot discriminate between
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areas where landslides are more likely to involve either slope deposits only, or slope deposits and the

underlying bedrock.

As a consequence of what it is stated above, the aims of this PhD thesis are:

® To characterize shallow landslides identifying the differences between slope deposits landslides
and landslides also involving bedrock

* To define and apply a method to estimate the variability of geotechnical properties both for SD
and bedrock involved in shallow landslides

* To define and apply a method to spatialize the above properties at regional scale

® To explore the performance of both data-drive and physically based models for the assessment
of shallow landslide susceptibility also considering the involvement of bedrock in the failure
processes

® To discuss the role of bedrock for shallow landslides development
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2 METHODS - A NEW WAY TO APPROACH

SHALLOW LANDSLIDES AND

SUSCEPTIBILITY ASSESSMENT BY

MEANS WELL-ESTABLISHED TOOLS
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This chapter focuses on the methodological approach developed in this thesis. The workflow used in the
field to investigate and characterize the geotechnical properties of both slope deposits and bedrock, the
statistical methods adopted to process and spatialize field data for the evaluation of shallow landslides

susceptibility and the numerical models are presented.

2.1 WORKFLOW OF THE METHOD

In Figure 2-1, the flowchart summarizes the workflow proposed in this thesis in order to characterize slope
deposits (SD) and bedrock (BR) and their implementation in shallow landslide susceptibility assessment.
The input data needed in the initial phase of the work are tools that are now available for most of the
globe, namely a Digital Elevation Model (DEM), a geological map and orthophoto maps. As
demonstrated by the application and confirmed by the literature (Johnson and Johnston, 1995; Kithni
and Pfiftner, 2001; Chelli et al., 2010; Heckman and Rasmussen, 2011; Kirby and Whipple, 2012; Allen
et al.,, 2013; Hurst et al., 2013; Nsangou Ngapna et al., 2018; Bernard et al., 2019; Glaus et al., 2019), the
basic assumption on which this method is founded is that different lithologies have different response to
erosion, weathering and tectonic deformation giving, in turn, place to specific morphology and
geotechnical properties of materials. Therefore, the geological map (1:10000 scale) it is simplified by
grouping the formations on a lithological and stratigraphic basis (Bedrock Lithological Units, BLU).

The DEM is used to calculate morphometric variables which are a fundamental input data for both the
data driven and physically based modelling approaches, as well as, they are used to compute through
unsupervised classification (described in detail in the next chapter) morphometric units for each BLU.
Nevertheless, the whole method proposed and developed in this thesis could not be completed without
the compilation of a new shallow landslides inventory, obtained here through the visual interpretation of
orthophotos. With the aim of assessing the accuracy of the landslide inventory and collecting data both
in areas involved by landslides and in stable areas, the field work is controlled by the shallow landslide
distribution (data collection strategy details are described in the next chapter). During the field work,
both SD and BR properties are investigated. In the SD there may be an intrinsic variability of properties
(depth to the bedrock, texture, grain size, unit weight) depending on morphology and the underlying
BLU. Hence, field work site observations and laboratory analysis have been performed and analysed
according to morphometric units and BLU, and then a set of geotechnical parameters (SD depth, friction
angle, unit weight) have been assigned. An accuracy assessment is then performed for the SD depth map.
Finally, in order to regionally spatialize SD properties, the Engineering Geological SD map (SDEG map)
is obtained joining the geotechnical parameters to the raster of morphometric units of each BLU. The

last operation consists on the merging of SDEG maps of each BLU into a single map.
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In order to understand the role played by bedrock in shallow landslides, it is necessary to characterize
and verify the geo-mechanical properties of the surficial portion of rock masses. The workflow of the
field work consisted in analyzing rock mass outcrops ranging in size from a minimum of 4-5 meters up
to 20 meters, deeper less than 4 meters from the surface. The first phase of the rock mass analysis
consisted on the description of lithology, structure, layering and texture. The second phase of the field
work is aimed to the quantitative characterization of the outcrop, and involves three steps: Schmidt
hammer rebound value, discontinuities analysis and "Geological Strength Index” (GSI) estimation. In
order to explore the distribution of bedrock properties and variability, a descriptive statistical analysis is
performed. Then, to verify the presence of a spatial variability of bedrock properties at regional scale,
uni-variate and multi-variate cluster analysis are carried out (detailed description in the next chapter). As
well as for slope deposits, the regionalization of geotechnical parameters is executed assigning a range of
geotechnical parameters for each pre-defined Geo-mechanical Bedrock Unit (GMU). In this case, the
definition of Geo-mechanical Bedrock Units is not ruled by morphometric units but the spatial variability
of bedrock properties. If the spatial analysis identifies clusters with similar characteristics, on expert basis,
using tectonic features, drainage network and morphology, the GMUs are identified by mapping the
edges of the clusters. The shallow landslide susceptibility modelling is then performed by means both a
data driven and physically based models. The data driven approach is made up combining the landslide
inventory with morphometric variables, SD depth map and BLU. The physically based approach instead
is made up performing a Monte Carlo simulation of SD and BR properties. The output susceptibility

maps are then subjected to the accuracy assessment, compared and combined.
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2.2 DATA COLLECTION STRATEGY

Given the workflow described above, the planning of sampling is a key feature in order to have a
comprehensive framework of both SD and BR variability. Moreover, it is important to characterize not
only landslide areas, but also sites not yet characterized by slope instability. For this reason, the role of a
detailed landslide inventory is fundamental because the data collection strategy was based on performing
observation sites for the characterization of both the SD and BR inside, near and far from the previously
detected landslides (Figure 2-2). According to this strategy, the analysis of SD and BR was conducted both
in correspondence of the landslide scarp (inside) and in the surroundings of the landslides, usually within
50 meters (near). All the other site observations are considered as “far”.

Of course, sampling density is strictly related to the extension of the study area and frequency and spatial
distribution of landslides. On the basis of the extension of the study area chosen in this thesis (>200 km?)
and the landslide density resulted from the new shallow landslide inventory, the data collection lasted

about a year.

Figure 2-2 Schematic sketch representing the data collection strategy
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2.3 VISUAL INTERPRETATION OF ORTHOPHOTO MAPS

In this thesis, the visual interpretation of orthophoto maps was used to compile a new multi-temporal
shallow landslide inventory (LI) for the study area. By using this method, the older image (2000) is
considered as the basic image, that is, the initial stage of the territory, from which all the later images were
compared. The digital multitemporal visual interpretation was focused at identifying and delineating, as
polygonal features, small-scale shallow landslides occurred during the analyzed period. These slope
failures essentially triggered by intense rainfall events correspond to decameter-scale scars where either
the residual slope deposits or underlying bedrock crop out. The comparison of aerial images from
different epochs allowed us to identify abrupt local-scale variations in texture and tone/colout, sharp
interruption of vegetation and cultivated fields, disruption of linear patterns, and occurrence of U-shaped
elongated features (Figure 2-3). These clues have led to the hypothesis that these forms may be labelled as

landslides.

Orthophoto maps

Figure 2-3 Example of multi-temporal investigation of orthophoto maps and delineated landslide polygons

A visual topographic and land use analysis may help to confirm or deny the hypothesis.

Nevertheless, in addition to the delineation of polygons classified as landslides, areas displaying similar
features to those described above were also mapped as polygons and labelled as stable areas. In other
wortds, there are some instances, as well landslides, which differ from the neighbouring areas for texture,
tone and color, that are not necessarily landslides. The need to identify these sites and discriminate them
from the polygons classified as landslides is aimed at evaluating the quality of the work of visual
interpretation to recognize both unstable and stable areas. The quality was quantitatively evaluated by
means of sensitivity and specificity executing the accuracy assessment tasks. Polygons classified as “stable
areas” are subjected to validation such as polygons classified as landslides. In Figure 2-4 an example of

unstable (landslide) and stable areas is provided.
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Figure 2-4 Delineated polygons of a landslide area (blue line) and a stable area (violet line). The lack of vegetation, tone,
colour and shape are similar, but the violet polygon is inferred to represent a debris area

In this thesis, the polygonal Shape File (ESRI ArcGIS®) is accompanied by an attribute table and the
fields are briefly described below:

e The field YEAR_OUTL (numeric) indicates the oldest orthophoto where the shape is recognized
and has been delineated.

e The field GEO_LABEL (text) indicates the geological formation in which the landslides has
occurred.

e The fields ORTHO_xxxx (where xxxx is referred to the epoch of the orthophoto maps) are
numeric fields that indicate whether the form is visible (1) or not (0) in the orthophoto of the
respective acquisition period. Consequently, the oldest period of the ORTHO_xxxx field for
which the value is equal to 1 coincides with the value in the field YEAR_OUTL.

34



e The field UNCERT is a numeric field (1-3, certain-very uncertain) indicating the degree of
uncertainty of the delinated features, as qualitatively estimated by the interpreter. It describes how

confident the operator is that the delineated shape is a landslide.

e The field “POLY_TYP” (text) indicates if the polygon is classified as “landslide” or “stable area”

The visual interpretation of orthophoto maps has few limitations, but some of these needs to be
discussed. Even if aerial images are generally acquited during the spring/summer period, the acquisition
time may vary. At mid-day, the sun is closest to the zenith position, providing homogeneous lighting and
minimum shadowing. Nevertheless, when images are acquired during the morning, northern slopes are
shaded hindering the detection. More often, when solar lighting is nearly parallel to the ground surface,
in sites where vegetation is lacking (rock outcrops, e.g.) it is not possible to exclude the presence of a
landslide and vice versa. Another issue involving visual interpretation of orthophoto maps regards
identifying slow-moving landslides since recent aerial images have a spatial resolution that usually ranges
between 1 m to 0.2 m, which is the same order of magnitude of slow-moving landslides displacement
rate, defined as less than 1.6 m/year (IUGS-International Working Group, 1995; Cruden and Varnes,
1996). Due to the small size and shallow depth of rupture surface, the post-failure vegetation re-growth
is another issue occurring during visual interpretation of orthophoto maps (Rib and Liang, 1978). This
issue is well known especially in tropical and equatorial regions where vegetation may grows rapidly
obliterating the slope failure in a matter of months or seasons. Moreover, in the mid-latitude cultivated
areas, agricultural practices can easily cancel the morphological and land cover signature of landslides
(Guzzetti et al,, 2012).

Nevertheless, this problem occurs even when geomorphological field mapping is performed, or imagery
is processed by means of classification. Instead, using a very high spatial resolution digital elevation model
captured by LiIDAR sensors to map landslide may help to bypass the problem (Guzzetti et al., 2012).
Beyond the limits described above, interpretation of the aerial photographs remains the most common

method to recognize landslides, and to prepare landslide inventories (Guzzetti et al., 2012).
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2.4 ENGINEERING GEOLOGICAL CHARACTERIZATION OF

SLOPE DEPOSITS

2.4.1 Field survey data acquisition

2.4.1.1 Measuring the depth of slope deposits

The SD field survey was performed after the manual opening of digs until reaching either the bedrock
unconformity or getting as deep as possible under the ground surface. In fact, in some cases, it is not
possible to reach the bedrock due to the presence of roots or cobbles. In order to verify the identification
of the bedrock, the dig is repeatedly enlarged and cleaned using a trowel. By the field experience, a

common investigation depth limit is around 2 m.

&

Weathered and
fractured bedrock

Figure 2-5 Examples of a medium thick (a) and a thin (b) slope deposits. Pickaxe length 100 cm.
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2.4.1.2 Fabric and grain size estimation

Once the dig is completed or if a natural trench allows to conduct a detailed observation down to the
bedrock, the analysis of horizons is conducted. For each horizon, grain size and structure are evaluated.
To estimate the grain size distribution of clay, silt and sand the USDA procedure have been used (USDA,
1987; Figure 2-6). This method of soil texture classification is particularly well suited to field applications. It
requires answering a set of questions about the soil behaviour, which leads to an assessment of the
textural class. The classification process can be formulated as a flow chart, which is shown in Figure 2-6.
It is hence convenient to express the textural classes in terms of their fraction of sand, silt or clay on a
trilinear diagram Figure 2-7.

Since the USDA classification does not take into account the quantity of grains larger than two
millimetres, the visual scheme proposed by Terry and Chilingar (1955, Figure 2-8) has been used to assess
the percentage of gravel and blocks.

Another information collected is the fabric of the deposits. In sedimentology and pedology, a deposit or
a soil can be matrix-supported, grain-supported or variably clast- to matrix- supported (Terzaghi et al.,
1996; Blair and McPherson, 1999). Figure 2-9 shows the scheme proposed by Ricci Lucchi (1980) to assess

this property. An example of the two end-members is provided in Figure 2-10a-b.
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Figure 2-6 Flow chart for USDA soil classification (USDA, 1987)
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while B is a transition among them.
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2.4.2 Sampling and laboratory analysis

2.4.2.1 Grain size estimation and plasticity analysis

Remoulded samples are collected in order to evaluate grain size composition and Atterberg limits in the
laboratory. This information is useful to assign the deposits to USCS class (Unified Soil Classification
System - ASTM D2487-17, 2017). The USCS is a tool for classifying mineral and organo-mineral soils
for engineering purposes based on laboratory determination of particle-size characteristics, liquid limit,
and plasticity index. Generally, in accordance with Head and Epps (1980), the mass of soil to be sampled
to conduct the analysis is about 2 kg when the largest particle size of the soil is about 20 mm. Hence
gravel is estimated only through a field visual approach above mentioned. The laboratory particle size
analyses are catried out using wet sieves for coarse material (ASTM C136 / C136M-14, 2014), while for
the fine fraction (particle size <0.075 mm) the sedimentation process (ASTM D422-63 2007) is used. To
obtain the USCS class of the fine grained samples (<0.075 mm), the Atterberg limits must be defined

and plotted in the plasticity chart as shown in Figure 2-11.
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Figure 2-11 Plasticity chart used to determine USCS classes (ASTM D2487-17)

Coarse-grained slope deposits are classified basing on:
»  C, coefficient of uniformity, the ratio D60/D10, whete D60 and D10 ate the particle diameters
corresponding to 60 and 10 % finer on the cumulative particle-size distribution curve respectively,
»  C,, coefficient of curvature, the ratio (D30)*/(D10*D60), where D60, D30, and D10 are the
particle sizes corresponding to 60, 30, and 10 % finer on the cumulative particle-size distribution

curve, respectively.

In Figure 2-12, the classification chart to assess USCS class is shown.
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Figure 2-12 Soil classification chart according to ASTM D2487-17

2.4.2.2 Unit weight

When possible according to the particle size of deposits, samples were collected for the determination of
the unit weight. Slope deposits sampling took place in this case on non-disturbed material through the
manual insertion of a ring with a diameter of 53 mm and with a volume of 100 cm”: the ring is inserted
inside the deposits using a rubber mallet (Figure 2-13). This procedure was carried out within those
horizons where the coarse fraction is not very large thus allowing the insertion of the ring. The samples
have been protected in order to preserve the conditions of humidity in situ, after which they were weighed
in the laboratory: the volumetric water content was then determined 0 (0=Vw / Vr, where Wy and Vr
represent the volume of water and the total volume of the soil sample, respectively), natural unit weight
¥a (kN / m’) and dry unit weight ya (kN / m’), after drying of the sample at 110 ° C for 24 hours in the
oven (ASTM - D2937; BS 1377-2, 1990).
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Figure 2-13 The collection of undisturbed samples for unit weight determination

2.4.3 Classification of morphometric variables

The shape of ground surface influences the drainage network, transport of sediments, colluvium/slope
deposits production and affects the climate on local and regional scales. This is the reason of interest on
landform recognition and analysis by Earth sciences and neighbouring disciplines (Mokarram et al., 2015).
Landforms have a wide range of application domains, including geomorphological mapping, small scale
lithological mapping, landslide mapping, prediction of soil/colluvium/slope deposits at regional scale,
vegetation and land cover mapping and precision agriculture (MacMillan and Shary 2009; Evans 2012;
Mokarram et al. 2015; Mokarram and Sathyamoorthy 2018 and references therein).

The recognition of landforms was initially performed by heuristic interpretation of terrain, but the
increasing availability and resolution of Digital Elevation Models nowadays allows for much more
accurate, automated and objective representation of forms, including their boundaries (Wieczorek and
Migon, 2014), by means of digital classification.

Landform classification can be performed with different approaches; the choice depends on the criteria
used for classification, the number of variables, spatial scale of inquiry, resolution of input data, and
algorithms used in the procedure. GIS-based approaches generally use morphometric variables such as
slope steepness, aspect and profile/plan curvatures (Evans, 1972; Dikau, 1989; Guth, 1995; Wood, 1996;
Fisher et al., 2004).

Popular automated methods to landform classification are those which implement data mining, such as
the, fuzzy k-mean algorithm (Roberts et al., 1997; Burrough et al., 2000; Schmidt and Hewitt, 2004;
Summerell et al., 2005; Deng et al., 2006; Arrell et al., 2007; Benito-Calvo et al., 2009), k-median algorithm
(Wieczorek and Migon, 2014; Szyputa and Wieczorek, 2020), ISODATA algorithm (Niemann and

Howes, 1991; Irvin et al., 1997; Adediran et al., 2004; Liu and Tang, 2006; Zhong et al., 2009; Trefolini,
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2015), Self-Organizing maps (Zhang et al., 2009; Ehsani et al., 2010; Kohonen, 2012), Support Vector
Machine (SVM) (Stepinski et al., 2006) and combination between them (Brown et al., 1998; Iwahashi and
Pike, 2007; Viloria et al., 2016). Niemann and Howes (1991) proposed an unsupervised classification to
assess slope stability and risk assessment. The procedure consisted of creating groups by using the k-
mean cluster analysis for each variable independently, starting with slope gradient. After processing the
full dataset, they introduced upslope drainage area as a second variable. In the last step, profile and plan
curvatures were used to distinguish sub-groups within the previously created groups. The classification
procedure finally revealed 44 groups. In Irvin et alii (1997) the authors showed that the classification of
landforms using both the ISODATA and fuzzy k-mean methods can yield quick and useful results. The
difference between results obtained from the two algorithms is that in the ISODATA classification pixels
are assigned to only one landform group, while in the fuzzy classification each data point can have partial
membership in several groups.

An example of using a different unsupervised classification method was one by Brown et alii (1998) who
used maximum likelihood classification and neural network. Five morphometric variables were
considered as basic input data: elevation, slope gradient, local relative relief, local roughness and upslope
area. The support vector machine (SVM) is a group of theoretically superior machine learning algorithms
(Huang et al., 2002). It was developed to be competitive with the best available machine learning
algorithms in classifying high dimensional data sets (Mangai et al., 2010). For example, Stepinski et al.
(2006) used SVMs for a test site on Mars to produce the most accurate results as compared to other
conventional techniques of classifying topographic objects. Mangai et al. (2010) used SVMs to classify
landforms and to identify a wide variety of landforms in the subcontinent of India.

Beyond the algorithm chosen to conduct the landforms classification, Dikau (1989) claimed that an
accurate morphometric classification may be performed using four basic parameters obtained from a
DEM: slope, aspect, plan and profile curvatures. However, this set of basic parameters can be extended,
using variables such as roughness, relative height and topographic wetness index or upslope contributing
area (Brown et al., 1998; Burrough et al., 2000; Deng et al., 20006).

The unsupervised classification is the method used in this work in order to classify the terrain. This
clustering procedure allows to extract regions of contiguous pixels and is based on the analysis of a certain
number of continuous variables. This technique is often used for remote sensing image interpretation
(Abburu and Babu Golla, 2015) as well as for the geomorphological classification of landscapes using
DEM derivates (Irvin et al., 1997). The tool beyond the classification is the Iterative Self-organizing Data
Analysis ISODATA) technique (Tou and Gonzalez, 1974) which uses a maximume-likelihood decision
rule to calculate class means that are evenly distributed in the data space and then iteratively clusters the
remaining pixels, using minimum-distance techniques. Each iteration recalculates means and reclassifies

pixels with respect to the new means. This process continues until the number of pixels in each class
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changes by less than a selected pixel change threshold or until a specified maximum number of iterations
is reached (Melesse and Jordan, 2002). This kind of approach is suitable for the classification on
landforms starting from the DEM of an area in order to obtain clusters corresponding to the
Motrphometric Units. In this thesis, the term "Morphometric Unit" refers to spatial units with similar
morphometric characteristics. In the literature, terms such as "landforms", "terrain units" and
"homogenous units" are often used. As already stated, the assumption behind the Engineering Geological
SD map is that, within the same bedrock lithology area, each cluster corresponds to a landform or
Morphometric Unit. Therefore, the Engineering Geological SD map is then obtained assigning to
Morphometric Units a set of engineering geological parameters.

The Unsupervised Classification is implemented in ESRI ArcGIS™ as a tool which combines the
functionalities of the Iso Cluster and Maximum Likelihood Classification tools. The number of clusters
must be defined before running the code, the minimum value is two classes, while there is not a maximum
value.

The number of clusters for our purpose is ruled by the number of observations collected and the natural
variability of the landscape in the subset of the study area under classification. Classifying the landscape
in too many morphometric units provides a detailed characterization, but the sample frequency needed
to describe all unit may be insufficient. On the contrary, taking few classes would lead to a rough
description of the landscape.

A statistical method useful to determine the number of clusters to be used for the analysis, consists on
the calculation of the Sum of Square Error (SSE) (Richards and Xiuping, 20006) assessing the data
dispersion for each cluster for different clustering solutions. However, this method does not take into
account the sampling density and the SSE results must be subjectivelly analyzed.

In our experience, a classification based on 5 to 15 classes turned out to be a good compromise.

The efficiency of clustering depends on some pre-processing procedures, like data stretching. A min-max

stretching approach was implemented, as suggested by ESRI guidelines on Unsupervised Classification.

2.4.4 Slope Deposits Engineering Geological Map

For each BLU a Slope Deposits Engineering Geological Map is obtained by integrating field and
laboratory results with morphometric units. According to the geographic position of observation sites,
these results are grouped for each morphometric units. The statistical analysis of engineering geological
properties is conducted at morphometric unit scale, in order to assign a dataset of slope deposits depth,

USCS class and dry unit weight.
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2.4.4.1 Slope deposits depth

Likewise geo-technical parameters, the depth of SD (SDd) is a fundamental input parameter to assess
shallow landslide susceptibility at regional scale using physically based models (Wu and Sidle, 1995;
Dietrich et al., 1998; Segoni et al., 2012; D. W. Park et al., 2013; Disperati et al., 2018). Even if some
authors have shown the influence of SD depth on determining both the uncertainty and reliability of
susceptibility maps (Ho et al. 2012; Kuriakose et al. 2009; Meisina and Scarabelli 2007), this information
is generally missing at the map scale, and authors assume a constant value for SDd when performing
stability analyses (Dietrich et al., 1998; Guimaraes et al., 2003; Teixeira et al., 2015).

In other studies, the SD depth maps are obtained as statistical relation with single or multiple
morphometric variables (Dietrich et al., 1995; Kuriakose, Devkota, et al., 2009; Pelletier and Rasmussen,
2009; Schulz et al., 2009; Tesfa et al., 2009; Lanni et al., 2012; Segoni et al., 2012), or by means physically
based approach, focusing on the temporal evolution of the soil thickness or basing on the conservation
of mass equation (Mudd and Furbish, 2004; Saco et al., 2006; Nicétina et al., 2011). Nevertheless, all
authors agree that the spatial distribution of soil depth is controlled by complex interactions of many
factors such as topography, parent material, climate, biological, chemical and physical processes, resulting
in a difficult prediction due to its high spatial variability. Given the above general framework, the method
used in this thesis is based on the concept that the slope deposits depth is related to lithology of the
underlying bedrock and morphometric variables. The method here adopted is an improvement of the
method developed by Trefolini, (2015), Trefolini et al., (2015), Venturini et al., (2016) and Disperati et
al.,, (2018).

In this PhD thesis, SD depth is represented by a system based on categorical depth classes instead of
continuous representations, given the intrinsic local variability of SD depth. As described in paragraph
2.6.1, in the physically based model used for shallow landslides susceptibility assessment, the range of
each class was used as input variability for depth executing the Monte Carlo simulation.

The number of depth classes may depend on the number of field observations, the maximum depth value
reached and the expected degree of detail. Moreover, the width of the classes may be constant or follow
a different rule depending on depth. This, in turn depends on the number of field observations as well
as the statistical distribution of SD depth values.

Hence, a method to determine the number and the width of SD depth classes is to plot the cumulative

frequency distribution of depth measures of the whole fieldwork dataset.

2.4.4.2 Shear strength parameters assessment

The cohesion ¢ and friction angle ¢ are the parameters used to describe sheat strength parameters of SD

by means of the Mohr-Coulomb shear strength criterion (Lambe and Whitman, 1991).
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When working at specific site scale or in small study areas, the shear strength of soils can be estimated in
laboratory by testing representative undisturbed samples to triaxial or direct shear tests. Moreover the
same goal may be reached by performing in situ tests, such as penetrometric tests (Lambe and Whitman,
1991; Lancellotta, 2001; Ameratunga et al., 2016). Although generally regarded as accurate and reliable,
these procedures are costly, logistically complex and time consuming. Furthermore, collecting an
undisturbed sample in non-cemented granular deposits is difficult, as it is almost impossible to perform
on-site tests in predominantly gravelly materials.

In this work, the workflow and the method described are addressed to study multi-scale areas wider than
100 km?, so a large number of investigation sites is requested. For this reason, the estimation of shear
strength parameters of slope deposits, as well as of bedrock that will be presented later, is assessed by
means of empirical and experimental correlations.

In this section relevant empirical correlations are discussed for both cohesive and granular slope deposits.
The SD are materials made up of mixtures of granulometric fractions ranging from clays to gravels,
passing through the sands. Furthermore, being SD formed in recent times outside the alluvial depositional
areas they can be regarded as are normally consolidated without cementation. This implies also that
cohesion of SD is apparent, depending on water content, matrix suction properties and type/density of
vegetated root systems (Terzaghi and Peck, 1967; Terzaghi et al., 1996).

Soil suction can vary among different soils, moreover, due to its dependence on water content, it also
considerably varies over time. However, the soil suction is negligible when the soil is completely saturated.
When performing stability analysis, the contribution of soil suction to the slope stability is neglected
(Lambe and Whitman, 1991).

The role of roots cohesion has been investigated during the last decades by several authors (Watson et
al., 2000; Roering et al., 2003; Schwarz et al., 2010; Arnone et al., 2016; Marzini et al., 2019).

Marzini et alii (2019) evaluated the stabilizing effects of root systems in shallow landslides. They conclude
that in certain conditions the root cohesion is a relevant parameter for shear strength, estimating a
maximum value of about 5 kPa. Moreover, they highlight that root reinforcement is exerted principally
in the main and lateral scarps, acting to a depth less than 1 m.

Due to the reasons mentioned above, one of the most effective ways to evaluate the cohesion of SDs is
to derive it by back-analysis while implementing physically based models. Initial effective cohesion values
can be assigned by referring to the literature; then, having available an inventory of landslides to validate
the model, depending on the accuracy results, the cohesion can be calibrated according to the stability
scenario obtained from the modelling (Disperati et al., 2018). In the case of SHALSTAB (Montgomery
and Dietrich, 1994; Montgomery et al., 1998), for example, unconditionally unstable areas (UU) are those
being unstable when piezometric surface does not develop. The occurrence of stable SD within the UU

areas is an obvious paradox. Consequently, in order to reduce the extent of UU areas, the expert can
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proceed to increase the effective cohesion value. Likewise, unconditionally stable areas (US) are areas
that are never susceptible to landslide. However, if landslides occur in those areas, there the effective
cohesion may be reduced until this issue is solved. After such an expert-driven process of back analysis,
the outcome cohesion values ranges, which depends on the integration of numerical stability model with

the landslide inventory, have to be compared with values known from the literature.

In Table 2.1, typical ¢' and ¢’ values according to Australian Standard - 4678 (2002) are reported.

Table 2.1 Typical ¢' and ¢’ values according to Australian Standard - 4678 (2002)

Soil parameters
B :

g

Soil c
group Typical soils in group (kPa) | (degrees)
Poor Soft and firm clay of medium to high plasticity; silty clays; loose | -5 17-25

B | variable clayey fills; loose sandy silts N N
Average | Suff sandy clays; gravelly clays; compact clayey sands and
sandy silts; compacted clay fills

0-10 | 26-32

Good Gravelly sands, compacted sands, controlled crushed sandstone 05 |32-37
and graveled fills, dense well graded sands

Very Weak weathered rock, controlled fills of road base, gravel and | 0-25 | 36-43

good recycled concrete

Regarding cohesive SD, the literature reports a clear evidence that increasing plasticity leads to a reduction
in the peak of friction angle. The increasing of plasticity is related to the increasing clay content, the latter
having low frictional resistance (Ameratunga et al., 2016). Sorensen and Okkels (2013) analysed an
extensive database of normally consolidated reconstituted and undisturbed natural clays from the Danish
Geotechnical Insititute, along with other data from the literature (Kenney, 1959; Bjerrum and Simons,
1960; Brooker and Ireland, 1965; Terzaghi et al., 1996) and proposed two correlations in order to estimate
the friction angle from plasticity index (Figure 2-14).

They suggested that for a cautious lower bound estimate, the friction angle can be estimated as:

Equation 2-1
¢ =39 —11logPI

Where PI is the plasticity index. Instead, the best estimate of the peak friction angle is given by:

Equation 2-2
$ =43 —10log PI
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Figure 2-14 Correlations between plasticity index and friction angle (from Sorensen and Okkels, 2013)

In general, the friction angle of a granular materials increases with the angularity of the grains, surface
roughness and relative density. Well graded granular materials usually have higher friction angle than
poorly graded ones. In Table 2.2, some representative friction angle values of sands and silts provided by
Terzaghi et al. (1967) are reported. In the work of Schmertmann et alii (1978), the friction angle of

granular soils was determined from triaxial compression tests and related to relative density, as shown in

Figure 2-15.
Table 2.2 Representative values of friction angle for sands and silts (Terzaghi et alii, 1967)
¢ (Degrees)
Soil Loose Dense
Sand, round grains, uniform . 34
Sand. angular grains, well graded 33 45
Sandy gravels 35 50
Silty sand 27-33 30-34
Inorganic silt 27-30 30-35
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Figure 2-15 Relations between friction angle and relative density according to Schmertmann et alii (1978)
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Figure 2-16 Relations between USCS class, unit weight and friction angle according to NAVFAC (1986)
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Figure 2-16 shows the friction angle determined from triaxial compression tests for different
granular soils without plastic fines. Here, the friction angle is related to the USCS class, relative density
and unit weight (NAVFAC, 1986). Since sampling for the grain size laboratory analysis as well as
determination of the unit weight are logistically feasible even at regional scale, in this work the angle of

friction was estimated using the diagram proposed by NAVFAC (1986).

2.4.4.3 Slope Deposits Engineering Geological Units

The Slope Deposits Engineering Geological Units map is a raster format file summarizing all the
geotechnical information for the implementation of the physically based model of shallow landslide
susceptibility. As previously described, each BLU was split into clusters on morphometric basis to which
a depth class, a range of friction angle and a range of dry unit weight are assigned. The depth class is
attributed on the basis of the frequency of field measurements, i.e. by crossing the depth measurements
acquired in situ with the morphometric units assigning the most frequently measured depth class. Since
laboratory results are not enough to adequately populate each morphometric unit, the approach that is
used involves also the grain size estimated in the field. Once from the laboratory analyses for each
observation site the USCS class has been determined, the statistical distribution at BLU scale is analysed,
in order to obtain a simplified classification consisting of the three most frequent USCS classes of gravels,
sand and fine. Even though this grouping process implies losing some detail, it allows to integrate the
laboratory data with the field data based on the USDA estimations and obtain a larger dataset. In fact,
for each grain size estimation performed on the field, one of the three classes are attributed according to
the percentages of gravel, sand and fine material.

From the laboratory results the range of variability of the friction angle INAVFAC) and dry unit weight
for each of the three simplified USCS classes are calculated.

At this point, having available the simplified USCS classes resulting from both the laboratory analyses
and those of the field estimates, these data are intersected with the morphometric classes, building a
matrix in which each column represents a morphometric unit and each row a simplified USCS class. This
table is populated by counting the frequency of occurrence of simplified USCS classes for each
morphometric unit coupling laboratory and field data. To obtain the friction angle and dry unit weight
values for each morphometric unit, a weighted average is made between the frequency of the simplified
USCS class and the range of variability of the parameters obtained from laboratory analyses.

An example of the attribute table of the EGU map is may be structured as follows (Table 2.3).
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Table 2.3 Example of attribute table of the EGU map

Depth class Depth class Friction Friction Dry Unit Dry Unit
EGU (min) (max) Angle (min) Angle (max) | weight (min) | weight (max)
1 30 60 28 30 1850 1920
2 90 120 27 31 1820 1980
n
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2.5 BEDROCK GEOMECHANICAL CHARACTERIZATION

2.5.1 Rock mass geo-mechanical survey

2.5.1.1 Schmidt hammer rebound value test

The Schmidt Hammer (SH), manufactured by Proceq in Zurich, Switzerland (S. Proceq, 1977), is one of
the most popular, portable and non/destructive tools for the determination of rock hardness. Since the
last century, this tool was correlated with the Uniaxial Compressive Strength (UCS) in order to obtain
easier, rapid and cheaper UCS value in respect to laboratory tests (Deere and Miller, 1966; Aufmuth,
1973; Bevetly et al., 1979; Haramy and DeMarco, 1985; Karaman et al., 2002; Aydin and Basu, 2005;
Karaman and Kesimal, 2015).

The apparatus consists of a spring-loaded piston which is released when a plunger is pressed against a
surface (Figure 2-17a-b). Here, the spring energy is transferred to the material through the impact of a
piston onto the plunger. The extent to which this energy is recovered depends on the hardness of the
material, which is expressed as a percentage of the maximum stretched length of the key spring before
the release of the piston to its length after the rebound (R) (Aydin and Basu, 2005). Part of the piston
energy is consumed by deformation within rock while the remain energy represents the impact
penetration resistance (the hardness) of the surface. The measurable hardness (R value) ranges between
10 and 100. When the rock is too weak, the instrument goes full scale without returning values, thus
censoring the values R<10. Basing on impact energy and therefore the different kind of material
(hardness) to be measured, there are two types of Schmidt Hammer, the L-type, with 0.735 Nm impact
energy, and N-type, 2.207 Nm. If most of the rocks to be investigated are not very hard rocks (UCS >
100 Mpa; ISRM, 2007), the L-type SH should be preferred, according to ASTM D5873-14.
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Figure 2-17 Schmidt Hammer. a. Working principles (from Adnan Aydin, 2008). b. Execution of the test in a natural
outcrop
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There are various Schmidt hammer measurements recording methods in the literature. Some existing
Schmidt hammer test procedures are listed in Table 2.4. Most authors have proposed test procedures based
on single impacts, while other authors have recommended test procedures based on repeated impacts at
a point. While some methods consider the average of the R upper values. In the work of Goktan and
Gunes (2005), who studied the correlation between the SH test procedures and the UCS of some rock
type obtained by laboratory tests, it was found that incorporating all the measured values rather than
selecting only the peak values gives a better representation of overall rock hardness and hence a better
prediction of the UCS, provided the outliers are statistically discarded. In detail, these authors performed
the test on tunnel faces using a Proceq N-type hammer. They applied a repeated impact method for each
point, collecting 15-20 impacts and discarding the lowest value only if it satisfied Chauvenet's critetion
and they compared this results with other 2 different test procedures selecting the peak rebound value
from continuous impacts at a point and discarding the rest. Their results showed that the SH test
procedures that are based on continuous impacts at a point provide more reliable and accurate predictions
of the UCS than those that are based on single impacts and they also suggest that incorporating all the
measurements at one point gives better results in predicting the UCS rather than using only the higher
values.

A similar approach has been used by Karaman and Kesimal (2015) in which they perform the
measurements with the SH on laboratory samples by proposing three different procedures for acquiring
the rebound values and comparing them with four of the procedures most used in the literature. The
statistical test results show that a strong relationship (R*> 0.9) was found between the rebound value and
the UCS value for all the procedures adopted. This means that, for analyzes conducted on rock specimens
in laboratory, different procedures can lead to negligible differences.

In Karaman et alii (2002), using a N-type Schmidt hammer and analyzing hard rocks, the authors
investigate the differences between the rebound values acquired in the field and in the laboratory on rock
specimens. The results show that the correlation between the measurements acquired in the field and
those acquired in laboratory has a correlation value close to or greater than 0.9. These authors, since a
slight discrepancy between the two tests exists, propose to use their correlation equation to correct the
rebound values if the test is performed in the field or laboratory.

Since the aim of the method proposed here is not to characterize a rock specimen or an intact portion of
the rock mass but the entire mass composed of more or less intact portions, as well as discontinuities, to
take into account natural variability of a rock outcrop, the testing strategy consisted on the design of a

grid, made up of 20 nodes arranged at a distance of about one metre from each other (Figure 2-18).
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Table 2.4 Some recommended Schmidt hammer test procedures (from Karaman and Kesimal, 2015)
Author Test procedure

ISRM (1978, 2007) Record 20 rebound values from single impacts separated by at least a plunger

diameter, and average the upper ten values

ASTM (2001) Record ten rebound values from single impacts separated by at least the diameter of
the piston, and discard readings differing from the average of ten readings by more

than seven units and determine the average of the remaining readings

USBR (1998) Ten readings at various locations on each sutrface. Discard the five lowest readings,

and average the highest five

Sumner and Nel (2002) Take 15 readings at different points and discard five great outliers to obtain a
mean value from the remaining ten values

Aydin (2009) 20 Rebound values should be recorded from single impacts separated by at least a
plunger diameter. The test may be stopped when any ten subsequent readings differ

only by four (corresponding to R repeatability range of £2)

Soiltest Inc. (1970) Record 15 rebound values from single impacts and average the highest ten. The

maximum deviation from the mean should be less than 2.5

Kazi and Al-Mansour (1980) Record at least 35 rebound readings, drop the ten lowest readings and average the

remaining 25

Goktan and Ayday (1993) Record 20 rebound values from single impacts separated by at least a
plunger diameter. Reject outlier values by using Chauvenet's criterion,

and average the remaining readings.

Katz et al. (2000) Perform 32—40 individual impacts and average the upper 50 %

Deere and Miller (1960) Record three readings along the length of an NX-size cote for each 45° rotation.
Average a total of 24 readings, disregarding the erroneous readings

Fowell and McFeath Smith Take the mean of the last five values from ten continuous impacts at a point.

(1976)

For each node, 20 SH single impact measures of R were acquired, following the procedure suggested by
Aydin (2009). Therefore, for each outcrop, about 400 measures of R distributed all over the outcrop were
acquired and reported in the database. Of course, when the outcrop was too small (4-5 meters), a smaller
number of nodes were tested, with 2 minimum of 12 nodes.

All the testing procedures listed in Table 2.4, reject the low full-scale values. When a rock is weak due to
its nature or weathering, the SH rebound values may be often lower than 10. Usually, these measures are
discarded, and this implies a general overestimation of the rock quality. In this work, if a rock mass
displays local weaknesses and the SH provides low full-scale rebound values, the % of measurements

R<10 is recorded. The motivation lies in the fact that by registering the number of times for each node
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in which SH goes to low full-scale, it is possible to identify local weakness zones with a worse mechanical

behaviour. In doing so, the tendency is to be prudential in determining the hardness of the rock mass.

Figure 2-18 An example of testing grid with 20 nodes

2.5.1.2 Normalization of SH rebound values

Rock surfaces in the field generally have a direction that is not vertical. Rebound values of the SH are
influenced by the gravitational force if the hammer has a non-horizontal impact direction. In this case,
rebound values should be normalized using the correction curves provided by the manufacturer.

Barton and Choubey (1977) proposed a correction chart for the L-type hammer based on data furnished
by the manufacturer. According to Kolaiti and Papadopoulos (1994) the corrections provided by the SH
manufacturers were derived empirically for a certain material with a relatively narrow range of mechanical
properties, and their application was limited to two or four impact directions. A new, more accurate
normalization method was proposed by Basu and Aydin (2004) where the authors verify its applicability
to a wider range of rocks.

The assumption of this method is that the square of the rebound velocity is proportional to the impact
energy. In the horizontal impact direction, energy released by the key spring is equal to the piston's kinetic

energy with which it is released onto the plunger:
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Equation 2-3
0.5kx12 = 0.5MV12
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Figure 2-19 a. Schmidt hammer impact direction. b. Normalization curves with reference to horizontal direction (Basu and
Aydin, 2004)
in which k is the key spring constant, x' the maximum stretch of the spring, M is mass of the piston and
Vi the velocity of the piston when it touches the plunger.
Likewise, the piston's kinetic energy at the instant rebound starts must be equal to the energy of the key

spring stretched by x, at maximum rebound position:

Equation 2-4
0.5kx2 = 0.5MV2

Combining the above equations, we have:

Equation 2-5
X2

R e
T x, %100
In Figure 2-19 the normalization curves referred to the horizontal direction are reported. Normalized

rebound values were used to calculate the average for each node (Ry), in turn used to calculate site (rock

mass) statistics (average, standard dev., median, quartiles, interquartile range,).
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2.5.1.3 Discontinuity analysis

The term discontinuity or joint is used widely in rock engineering to describe any measurable interruption
of a rock mass. It is often used to the exclusion of geologically more acceptable terms such as bedding,
lamination, fault and joint, in order to emphasize the importance of the existence of discontinuities in
controlling the engineering behavior of rock masses, rather than their genesis (Farmer, 1983).

The frequency, persistence and conditions of discontinuities affect directly the strength and stability of
rock mass (Hack, 1997). For this reason, the recognition and the recording of major discontinuity sets is
an important information to collect in the field. The main discontinuities that can be recognized in a rock
outcrop are layering or schistosity planes, joints and fractures, metric scale shear planes and faults. When
these structures are recognized in the rock mass under examination, through the use of a compass, the
orientation, inclination and spacing are measured.

Joints data are subsequently processed for the calculation of the Jv (Volumetric Joint Count), introduced
by Palmstrom (1982). The volumetric joint count is an estimate for the number of joints intersecting a

volume of 1 m® of rock mass. It is defined as number of joints per m? and is calculated as follows:

where S is the average spacing (m) of discontinuities.

2.5.1.4 Geological Strength Index

The strength of a jointed rock mass depends on the properties of the intact rock pieces, the freedom of
these pieces to slide and rotate under different stress conditions and the properties of discontinuities.
The freedom of pieces is controlled by their geometrical shape as well as the condition of the surfaces
separating the pieces. Angular rock pieces with clean, rough discontinuity surfaces will result in a much
stronger rock mass than one which contains rounded particles surrounded by weathered and altered
material (Hoek, 2000). In order to semi-quantitively classify rock masses the Geological Strength Index
(GSI) was used, introduced by Hoek (1994), Hoek et al. (1995) and Hoek and Brown (1997). It provides
a system for estimating the reduction in rock mass strength for different geological conditions as
identified by field observations (Figure 2-20).

The GSI started with a purely qualitative assessment of the rock mass properties (Hoek, 1994; Hoek and
Brown, 1997; Marinos and Hoek, 2000) and it was later modified and improved by many authors towards
a semi-quantitative classification (Marinos and Hoek, 2001; Cai et al., 2004, 2007; Hoek and Brown,

2019). When working with flysch and heterogenous rock masses, the revised GSI classification (Figure
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2-21) should be adopted (Marinos, 2019) together with original GSI chart (Figure 2-20). From the GSI
classification it is possible to obtain an index expressed as a range of values, which is defined by the
combination of the degree of jointing and/or the composition of the rock mass with the weathering

grade of the surface of discontinuities.
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GEOLOGICAL STRENGTH INDEX FOR
JOINTED ROCKS
From the lithology, structure and surface
conditions of the discontinuities, estimate
the average value of GSI. Do not try to
be too precise. Quoting a range from 33
to 37 is more realistic than stating that
G5l = 35. Note that the table does not
apply to structurally controlled failures.
Where weak planar structural planes are
present in an unfavourable orientation
with respect to the excavation face, these
will dominate the rock mass behaviour.
The shear strength of surfaces in rocks
that are prone to deterioration as a result
of changes in moisture content will be
reduced if water is present. When working
with rocks in the fair to very poor
categories, a shift to the right may be made
for wet conditions. Water pressure is dealt
with by effective stress analysis
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Figure 2-20 Geological Strength Index proposed by Marinos & Hoek (2000)
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Figure 2-21 The new, revised, geotechnical classification GSI system for tectonically disturbed heterogeneous rock masses,
such as flysch.

2.5.2 Unit weight determination

The last phase of rock mass field survey consists on the collection of rock samples for the unit weight
laboratory determination. In this work, the unit weight is determined using the Hydrostatic Weighing
method, according to ASTM - D2937.

The weight of the sample in air is compared to the weight of the sample immersed in a liquid of known
density (usually water). Generally, the sample is divided in about 10 fragments having mass not less than
50 g and minimum size not less than 10 times the maximum diameter of the rock grains constituents.
After weighing the sample in air, it is dried in an oven at 110°, in order to determine the dry unit weight.
Then, the sample surface is sealed with wax coating and then weighed in water. Each sample is divided
in 5 small blocks and for each block a series of 5 repeated weigh are performed in order to test

repeatability of the laboratory testing.
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2.5.3 Cluster and Outlier Analysis (Anselin Local Moran's Index)

Local Moran’s Index (LMI) is a local spatial autocorrelation statistics based on the Moran’s Index (Moran,
1948). It was developed by Anselin (1995) as a local indicator of spatial association. The Local Moran’s I
for each observation gives an indication of the extent of significant spatial clustering of similar values
around that observation; the sum of LMI for all observations is proportional to a global indicator of
spatial association (Global Moran’s Index). The Local Moran's Index estimates the similarity in x (the
variable to be spatialized) between observation 7 and observations j in the neighbourhood of 7 defined by

a matrix of weights »;. The statistics, provided by Anselin (1995), is calculated as:

Equation 2-6

Whete z; = x; — X

In essence, Equation 2-6 standardizes value x for observation 7 to determine if it is high or low relative to
the mean, and standardizes values of x for j to determine if the neighbourhood is high or low relative to
the mean. The standardization operates in a similar manner as a statistical z-score that compares
observations to the mean in order to determine the observations’ relative position within a distribution.
In the absence of such standardization, the resulting Moran’s I values would be disproportionately
influenced by extreme values of severity. Multiplying the standardized value x for observation 7 and the
neighbourhood ; produces a scalar Moran’s I value (Bone et al., 2013). A positive value for I indicates
that a feature has neighbouring features with similarly high or low attribute values; this feature is part of
a cluster. A negative value for I indicates that a feature has neighbouring features with dissimilar values;
this feature is an outlier. The output of the computation consists of four categories representing the
relationship between each point and its neighbours: Low/Low, High/Low, Low/High, and High/High.
The clusters are two, Low/Low and High/High, while High/Low and Low/High ate the outliers. Note
that not all Moran’s I values are significant: a test of significance is computed for each point to determine
if the spatial relationship is significant given a specified level of confidence, e.g. in the function
implemented in ArcGIS®, statistical significance is set at the 95 percent confidence level (Mitchell, 2005).
The output of this tool is a new output feature class with the following attributes for each feature in the
input feature class: local Moran's I index, z-score, p-value, and the COType (cluster/outlier type) (ESRI,

2013).
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In respect to bedrock properties, SD properties are often linked with morphometry (Florinsky et al.,
2002; Guimaraes et al., 2003; Seibert et al., 2007; Zhang et al., 2012). Nevertheless, bedrock properties
are not spatially constant, therefore it is useful to conduct an objective spatial analysis in order to verify
large regions with different bedrock properties.

The Anselin Local Moran's clustering method allows to spatially verify if each bedrock property display
a dispersed or a clustered pattern. In order to attribute spatially distributed geotechnical parameters, if a
variable does not show a spatial autocorrelation, this should be excluded from multivariate cluster analysis
(described in paragraph 2.5.4) as it is irrelevant. On the contrary, if the variables give a positive outcome
to spatial autocorrelation, these must be taken into account for multivariate analysis. If two or more
variables show an almost identical clustering in multivariate analysis, it would be necessary to exclude
them and keep only one. Finally, if no variable shows clustering, the geotechnical parameters can be the

same for the whole survey area.

2.5.4 Multi-variate cluster analysis

The multi-variate spatial cluster analysis can be performed using the Grouping Analysis tool implemented
in ESRI ArcGIS™, which groups features based on feature attributes and spatial constraints.

The theory of minimum spanning tree (Boruvka, 1926; Kruskal, 1956; Prim, 1957) is used in order to
split the dataset into clusters. A minimum spanning tree can be defined as a subset of edges connecting
vertices of a connectivity graph, in which the sum of the weights of the edges is the minimum possible.
Given a set of points in space, each vertex (v) is connected to the nearest vertices by edges (l), each edge
has a weight (or cost) which depends on how much the attribute of each vertex is dissimilar from the
adjacent one. The cosz d(i,j) between the edges 7 and /is the square of the Euclidean distance between the

attribute vectors x; and xj (Assungio et al., 20006):

Equation 2-7

a,j) = Z(xil - sz)z
=1

A minimum spanning tree (MST) is the resulting connectivity graph of the edges with minimum cost,
where the cost is measured as the sum of the dissimilarities over all the edges of the tree. In order to
obtain clusters, the MST must be split removing the edges with the maximum cost.

The ArcGIS™ tool Grouping Analysis is implemented in this way: suppose you want to split a dataset
into four spatially contiguous groups. The tool will create a minimum spanning tree reflecting both the
spatial structure of features and their associated analysis field values. The tool then determines the best

place to cut the tree to create two separate groupings. Next, it decides which one of the two resultant
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groups should be divided to yield the best three group solution. One of the two groups will be divided,
the other group remains intact. Finally, it determines which of the resultant three groupings should be
divided in order to provide the best four group solutions. For each step, the best solution is the one that
maximizes both within-group similarity and between-group difference (ESRI, 2016). In order to
constrain spatial relationships among features in the groups created, the Grouping Analysis tool allow to
specify a spatial constrain. In this thesis the K nearest neighbours spatial constrain was used. The
published method employed in Grouping Analysis is called SKATER (Spatial "K"luster Analysis by Tree
Edge Removal), proposed by Assuncgao et alii (2006).

The grouping effectiveness is measured using the Calinski-Harabasz pseudo F-statistic (Calinski and

Harabasz, 1974), which is a ratio reflecting within-group similarity and between-group difference:

Equation 2-8
R2
(nc — 1)
=
n—ng
Where
SST — SSE
R?=""_"—
SST

The SST represents between-group differences while SSE within group similarity, and these are

respectively expressed as:

Equation 2-9
Ne Ny Ny

SsT= ). > D (v -7’

x=1y=1k=1

Ne Ny Ny

SSE = Z Z Z(Vx’; —7k)?

x=1y=1k=1

Where

7 the number of features

7. the number of features in group x

7. the number of classes (groups)

#n, the number of variables used to group features

17,,* the value of the 4th variable of the yth feature in the xth group
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I7* the mean value of the Ath variable

1%, the mean value of the 4th variable in group x

The output of the Grouping Analysis tool is a new output feature class containing the fields used in the
analysis plus a new Integer field named SS_GROUP identifying which group each feature belongs to
(ESRI, 2016). A report file can be generated, in which statistical properties of clusters are described.

Using as input data the variables showing a uni-variate spatial clustering, this tool allows to identify groups
of investigation sites with similar geo-mechanical features (e.g. SH rebound value, GSI and Jv). In other
words, each cluster represents a domain, namely a Bedrock Geo-mechanical Unit (GMU), to which a set

of geotechnical parameters (friction angle and cohesion) will be assigned (Figure 2-22).

Multi-variate
cluster
Analysis

Figure 2-22 A visualization of ESRI’s Grouping Analysis Tool (ESRI ArcGIS documentation). The letter “v”” stands for
variable.

2.5.5 Determination of Uniaxial Compressive Strength

Since the 1960s, various authors have tried to use SH to quickly, easily and economically estimate the
uniaxial compressive strength (UCS) of rock masses, for different purposes (Deere and Miller, 1966;
Aufmuth, 1973; Bevetly et al., 1979; Haramy and DeMarco, 1985; Katz et al., 2000; Karaman et al., 2002;
Yasar and Erdogan, 2004; Aydin and Basu, 2005; Fener et al., 2005; Shalabi et al., 2007; Kili¢ and Teymen,
2008; Yilmaz, 2009a; Aydin, 2009; Moomivand, 2011; Mishra and Basu, 2013; Karaman and Kesimal,
2015; Armaghani et al., 2016; Hebib et al., 2017; Kong and Shang, 2018; Wang and Wan, 2019a). These

studies have correlated the rebound value with the UCS measured by laboratory tests on rock samples..
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The great advantage of using the SH to calculate the UCS of a rock mass is due to its easy and rapid
execution, and if measurements follow an acquisition scheme as described in the previous chapter, the
UCS statistics may describe the outcrop as a whole.

In fact, laboratory tests give accurate and acceptable results of the uniaxial compressive strength but are
sample-specific estimations for rock mass assessments. A rock mass is inhomogeneous and uniaxial
compressive strength of rock can vary at meter-scale (Moomivand, 2011): parameters such as mineral
composition, rock compaction, weathering, and tectonic are likely to have a major influence on the results
(Aydin, 2009; Hebib et al., 2017). Therefore, the measured uniaxial compressive strength of limited
number of specimens tested in the laboratory can’t describe the variability of UCS for all parts of in-situ
rock mass. The SH rebound test is a useful method of estimating the variability of rock mass strength
particularly in situations where large numbers of laboratory tests would be necessary.

In Table 2.5, a few R-UCS correlations from the literature are presented. This table includes the works
where the L-type Schmidt's hammer was used and the test was performed on various rock types or, for
the same lithology, different degrees of weathering. For other correlations, please consult Aydin and Basu
(2005), Karaman and Kesimal (2015) and Wang and Wan (2019), and references therein.

The relationships are expressed by power, exponential or linear functions. In a number of these functions,
rebound value (the main independent variable) is multiplied with dry density (introduced as a second
variable) in an effort to improve the correlations. For example, in Figure 2-23, using the correlation
proposed by Deere and Miller (1960), three synthetic exponential curves are calculated varying the dry
unit weight value. It is worth to note that unit weight influences the obtained value of UCS, increasing
SH rebound value, increase UCS variability for different unit weight.

All the proposed correlation listed in Table 2.5 are experimentally determined, except for the last one,
proposed by Wang and Wan (2019), where the authors collect laboratory data from 18 references and
apply a regression analysis in order to obtain the best fit curve. In Figure 2-24 the proposed correlation

listed in Table 2.5 are plotted.
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Table 2.5 Relations of rebound value with uniaxial compressive strength. UCS (uniaxial compressive strength, MPa); y (Unit
weight, gr/cm’). Hammer inclination: V, vertical; H, hotizontal. When the data is not specified, n.s. is written.

Validity range
References Tested Hammer Proposed correlations
rocks inclination UCS R
r/ R?
Deere and 28 AV UCS = 9.97 » e(0:02*R+y) 0.94 22-358 23-59
Miller (1966)
Aufmuth (1973) 25 n.s UCS = 0.33 % (R +y)-35 0.80 12-362 10-54
Beverly et al. 20 n.s UCS = 12.74 % ¢(0-02+R*y) n.s 38-218 n.s
(1979)
Aydin and Basu Granites H UCS = 1.45 % e(0:07*R) 0.92 6-196 20-65
(2005)
Torabi et al. Sedimentary A\ UCS = 0.046R? — 0.175R + 27.7 0.86 25-224 16-67
2011)
Moomivand 104 n.s UCS = 11.324 * ¢(0:0175:Rxy) 0.92 25-370 n.s
(2011)
Mishra and Schists, AV UCS = 2.38 x 0065k 0.87 20-180 25-65
Basu (2013) sandstones,
granites
Karaman and 47 AV UCS = 0.138 = R1743 0.91 8-215 10-64
Kesimal (2015)
Seleuk and 11 AV UCS = 0.007 = R%:443 0.92 5-120 10-43
Yabalak (2015)
Hebib et al 19 n.s UCS = 3.98 * ¢0-023*R+y 0.87 5-140 15-60
(2017) sedimentary
Wang and Wan | 18 references - ucs = (8861252i R) — 7038 0.6 n.s n.s
(2019) '
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Figure 2-23 Rebound value and UCS correlation varying the dry unit weight, according to Deere And Miller (1966)
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Figure 2-24 Bibliographic correlation curves for UCS prediction from rebound value.
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In this work, the correlation proposed by Deere and Miller (1966) have been used to calculate the UCS,

using the RV value, obtained averaging 400 measures and site-specific dry unit weight.

2.5.6 Estimation of shear strength of a rock mass

A widely used criterion to estimate rock mass strength is the non-linear Generalized Hoek—Brown (GHB)
failure criterion (Hoek et al., 2002) since it is able to estimate the shear strength of various types of intact
rock and rock masses (Priest, 2005). If the GHB criterion is used in conjunction with limit equilibrium
method for analyzing the slope stability, methods are required to determine the equivalent MC shear
strength parameters cohesion and angle of friction at the specified normal stress G, from the GHB
criterion (Shen et al., 2012).

The original non-linear- Hoek—Brown criterion (Hoek & Brown, 1980) has been widely used for rock

engineering for the past three decades, and it was renewed by Hoek et alii (2002), as:

Equation 2-10

— mp 03 a
o= o3+ oi(——+5s)
Cl

where 61and o3 are the major and minor principal stresses, O is the uniaxial compressive strength of the
intact rock mass and my, s and a are the Hoek—Brown input parameters which can be estimated from the

GSI for the rock mass, given by:

Equation 2-11
GSI—-100
mp = m;e28-14D

Equation 2-12
GSI-100
s = e 9-3D

Equation 2-13
=GSI =20

15 —e 3
6

in which mjis the Hoek—Brown constant for intact rock mass (Figure 2-25), D is the disturbance factor

e
a=0.5+

(Figure 2-26). In Figure 2-27 and Figure 2-28 the relationships between GSI, my, a and s are reported.
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Figure 2-25 Values of the constant mi for intact rock, by rock group. (from Marinos and Hoek 2001)
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Figure 2-28 Relationship between GSI, a and s. (from Cai et al. 2007)

The GHB criterion (Equation 2-10) can also be expressed in terms of normal stress G, and shear stress

T on the failure plane. Figure 2-29 gives a graphical representation of the HB criterion expressed by (a)
major and minor principal stresses and (b) normal and shear stresses. The equivalent MC shear strength
parameters can be calculated by locating the tangent of the HB envelope with the specified normal stress

O, as illustrated in Figure 2-29b. The MC criterion is expressed by the equation:

Equation 2-14
r=c'+ otang
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Figure 2-29 a. Major and minor principal stresses for the HB criterion. b. normal and shear stresses for the HB criterion

The Mohr-Coulomb shear strength T, for a given normal stress G , is found by substitution of these

values of ¢’ and ¢ into the equation (Hoek and Brown, 1997):

Equation 2-15
2c'cosg 1+sing

I+ . U
1—sing 1-—sing 3

o] =

According to the description above, friction angle and cohesion are calculated as follows:

Equation 2-16
6am, (s + myos,)* !

21+ a)(2+ a) + 6amy(s + myoy5,)% 1

-1

¢ = sin

Equation 2-17
O-ci[(1 + Za)s + (1 - a)mb O{%n] (5 +my O{%n)a_l

B 1+ a)(2+ a)/1+ (6amp(s + my,)* " 1/(1+ a)(2 + a)

!

Where 630 = G 3ma / O, and:

Equation 2-18

my ]a—l

[my + 4s — a(my, — 8s)] * 755

20+ a)(2+a)

a!cm = O¢i
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Equation 2-19

-0.91
OJSmax — 0 72 (Glcm>
Ocm YH

Cai et al. (2007) discussed about the calculation of equivalent residual strength parameters. Guidelines
given by the GSI system are for the estimation of the peak strength of jointed rock masses. In general,
rock masses, except when highly disturbed, exhibit strain-softening post-peak behaviour, the gradual loss
of load-bearing capacity of a material, so that the residual strength parameters are lower than the peak
parameters. The authors proposed a method to extend the GSI system for the estimation of a rock mass’s
residual strength. It is proposed to adjust the peak GSI to the residual GSI; value based on the two major
controlling factors in the GSI system, the residual block volume V.” and the residual joint condition factor
J+, comparing and validating the results with in-situ block shear test data from three large-scale cavern
construction sites and data from a back-analysis of rock slopes. The results obtained by Cai et al. (2007)
shows that the estimated residual strengths, calculated using the reduced residual GSI; value, are in good
agreement with field test or back-analyzed data.

The relation between peak GSI and residual GSI used to calculated residual strength parameters is then

provided:

Equation 2-20
GSL.. = GS]e~0-0134GSI
r

In this work, the equations reported above were implemented in a MATLAB™ code, also enabling to

perform a Monte Carlo simulation of the input parameters, such as, GSI, m;, D and o..
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2.5.7 Bedrock Geo-mechanical Units Map

A Bedrock Geo-Mechanical Units (BMU) is a portion of the study area where the semi-quantitative data
acquired in the field (Rv, GSI and Jv) have similar values of average and standard deviation, and therefore
a range of Mohr-Coulomb equivalent parameters, which are significantly different to other BMU.

The BMUs are defined taking into account the result of the multivariate clustering and the expert analysis
of the geological map. In practice, the clusters of observation sites are delineated following morphological
characteristics, such as the drainage network and basins watersheds, tectonic feature such as faults and
thrusts, and lithological characters.

Few works in the literature perform the regional spatialization of geo-mechanical characteristics of rock
masses by using geostatistical methods (Ferrari, 2013; Ferrari et al., 2014; Kaewkongkaew et al., 2015;
Pinheiro et al., 2016; Mammoliti, 2020). However, these methods ignore the major regional structures
due to tectonic activity, past and recent, and assume that there is a gradual transition to different
conditions.

The structure of the attribute table of the Bedrock Geo-mechanical Units Map implemented in this work
is quite similar to the EGU map presented in Table 2.3. In this case, the fields consist on: the id code of

the GMU, the range of friction angle and the effective cohesion.
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2.6 SHALLOW LANDSLIDES SUSCEPTIBILITY MODELS

Assessing shallow landslide susceptibility by using data driven or physically based methods may provide
different results due to the conceptually different approaches they are based on. The former is sustained
by the assumption that landslides tend to occur more likely in locations with predisposing factors similar
to those of areas where landslides occurred in the past, whereas the latter are based on the balancing
between destabilizing forces and soil/rock strengths. In the literature, comparing between different
methods to assess landslide susceptibility is not a new research topic when performed exclusively between
either different data-driven (Yilmaz, 2009b; Akgun, 2012; Francipane et al., 2014; Regmi et al., 2014;
Goetz et al.,, 2015; Pham et al., 2016; Zézere et al., 2017) or different physically based methods (Zizioli
et al., 2013; Teixeira et al., 2015; Formetta et al, 2016; Pradhan and Kim, 2016). Regarding the
comparison between the predictive capability of data driven and physically based methods, less works
exist (Carrara et al., 2008; Frattini et al., 2008; Cervi et al., 2010; Goetz et al., 2011). Some authors have
combined the results obtained by data driven and physically based approaches obtaining interesting
results (Chang and Chiang, 2009; Goetz et al., 2011; Oliveira et al., 2016). For this reasons, this thesis
compares and combines the susceptibility maps obtained by using a data driven and a physically based
method also introducing new insights about the relevance of bedrock geo-mechanical characterization,
slope deposits depth and geotechnical characterization, and the evaluation of their uncertainty and natural
variability by means of Monte Carlo simulation.

In this paragraph the theory behind landslide susceptibility models adopted in this thesis is provided.

2.6.1 SHALSTAB and PROBSS

The SHALSTAB model (Montgomery and Dietrich, 1994) is based on coupling a hydrological model to
a limit-equilibrium slope stability model to calculate the critical steady-state rainfall necessary to trigger
slope instability at any point in a landscape (Montgomery et al., 1998). The hydrological model consists
on the analysis of upslope contributing area (flow accumulation), soil transmissivity and local slope
(O’Loughlin, 1980), and is based on the assumption that water infiltrate still reaching a low conductivity

layer following topographically determined flow paths. Local wetness (W) is calculated as following:

Equation 2-21
Qa
W =
bTsin 8

Where O is the steady-state rainfall (m/day), « is the contributing area (m?), 4 is the cell size (m), T'is the
SD transmissivity (m*/day) and @ 1is the slope steepness (degrees). If the saturated conductivity is constant

with depth, the previous equation is simplified as:
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Equation 2-22

h
W= -
VA
Combining Equation 2-21 and Equation 2-22:
Equation 2-23
h Qa
z bTsin6

Where 4 is the saturated thickness of SD layer and g is SD depth.
The infinite slope stability model adopted by the authors do not consider arching and lateral root

reinforcement, for this reason the slope failure is expressed by the following limit equilibrium equation

(Skempton and Delory, 1984):

Equation 2-24
psgzsinfcosf = C' + [ps — (g) pw] gz cos? 0 tan ¢
Where
ps 1s the bulk density of slope deposit
g is gravitational acceleration
g 1s soil depth
C’is effective cohesion
Pw 1s water bulk density

@ is the friction angle

Combining Equation 2-23 and Equation 2-24, and rearranging in order to obtain the critical steady-state

rainfall (Q,) needed to trigger slope failure, the SHALSTAB model equation results to be:

Equation 2-25

T sin 6 C' Ds tan 6
cT Ta > +— (1 — )
/p |Pwgzcos?Otang  p, tan ¢
The SHALSTAB model provides other two scenatios, the Unconditional Stability (Unconditionally
Stable, US) and the Unconditional Instability (Unconditionally Unstable, UU). A slope is considered as
US when they are stable even when W = 1, this occur when the slope deposit layer reaches saturation

and water in excess develops run-off as overland flow. This scenario is described as:
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Unconditionally Stable disequation 1

4

Pw)
—— +(1- )¢
Psgz cos? 6 + ( Ds ane

tanf <
Instead, the UU scenario is a slope which is predicted to be unstable even without rainfall (W = 0). These
areas are probably rock outcrops, because the slope steepness is too high to allow sediment accumulation
(Montgomery et al., 1998). For this reason, a detailed and accurate slope deposit depth map is an

important tool to obtain reliable results by the SHALSTAB model. The UU is expressed as:

Unconditionally Unstable disequation 2

4

tan > ——+t
anf = psgzcoszt9+ an ¢

In this thesis the output susceptibility value is calculated pixel-by-pixel as the logarithm of the ratio
between Qcand T (transmissivity, m/day), as suggested by Montgomery et alii (1998). Moreovet, in pixels
with the Qc or log Qc/T is lower, these areas atre interpreted as more susceptible to shallow landsliding.
Conversely, where Qc or log Qc/T is higher, those areas are interpreted as more stable, as a less frequent
rainfall event would be required to cause instability (Montgomery and Dietrich, 1994). In order to
represent the effects of the natural variability and uncertainty of geotechnical parameters (pg, C’ and ¢)
as well as slope deposits depth (g), and US and UU disequations were implemented in MATLAB™ by
means a Monte-Carlo simulation (Binder et al., 1993). For each pixel;, for a large number n of iterations
(ex., n=10,000), sets of parameters are randomly selected from ranges of values defined according to
lithology, morphometric unit, field observations and laboratory analyses. As a first step, for the pixel; the
code verifies if either the US or UU inequalities are satisfied. When the sets of parameters satisty either
the US or UU more than 99% of the iterations, the pixel; is classified as US or UU, respectively. On the
contrary, when the same inequalities are satisfied less than the above-mentioned threshold, stability is
assumed to depend on the rainfall intensity (Q because a critical value Qc may be found causing to get
the limit equilibrium. Hence, the pixel; is classified as “Qc-dependent” and n values of the indicator of
shallow landslide susceptibility (log Qc/T) are iteratively calculated. Then, the statistical distribution of
this indicator is obtained for the dataset of the Qc-dependent pixels. Finally, the analysis of these
distributions allows to choose a fixed quantile (median) in order represent the spatial distribution of
shallow landslide susceptibility. In order to distinguish the original SHALSTAB model with the

probabilistic implementation proposed in this thesis, from now on we will refer to PROBSS.
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2.6.2 Information Value

The Information Value (IV, Yin and Yan 1988) is a bivariate statistical method which is based on the
assumption that future landslides tend to occur in sites with similar predisposing factors where past and
present landslides were already occurred. For this reason, a detailed, accurate and complete landslide
inventory is the most important input, which affects directly the model accuracy (Corominas et al., 2014).
Practically, the IV method consists on assigning to each class variable a weigh (IV;) depending on the

landslide density, it is expressed as:

Equation 2-26

where

Si: the number of pixels with landslides and the presence of variable X;

Ni: the number of pixels with variable X;

S: the total number of pixels with landslides

N: the total number of pixels

S/N is the a prioti probability. It is the probability for each pixel to have a landslide without considering
predisposing factors.

Si/Ni is the conditional probability. It is the probability to have a landslide given the presence of variable
Xi.

Negative IV; means that the presence of the variable is favourable to slope stability. Positive IV; indicates
a relevant relationship between the presence of the variable and landslide distribution; the higher the
score, the stronger the relationship (Yin and Yan, 1988). IVi equal zero means no clear relationship
between variable and landslide occurrence. In this thesis, the classes of each variable not containing any
landslide have a conditioned probability equal to lower IV; in the respective class.

The susceptibility map is then obtained by the sum of the I, of each variable present in each pixel:

Equation 2-27

m
i=1

where 7 is the number of variables and X ;is either O if the variable is not present in the pixel /, or 1 if

the variable is present.
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2.7 ACCURACY ASSESSMENT METHODS

The landslide inventory accuracy assessment was made using a binary classification test. Given a classifier
and an instance, there are four possible outcomes. If the instance is positive and it is classified as positive,
it is counted as a true positive; if it is classified as negative, it is counted as a false negative. If the instance
is negative and it is classified as negative, it is counted as a true negative; if it is classified as positive, it is
counted as a false positive. Given a classifier and a set of instances (the test set), a two-by-two confusion
matrix (also called a contingency table, Figure 2-30) can be constructed representing the dispositions of the

set of instances (Fawcett, 2000).

Actual

Actual Actual
positive negative

TP FP

Labelled
positive

FN TN

Labelled by classifier
Labelled
negative

Figure 2-30 Confusion matrix of binary classification (modified from Fawcett 2006)

In the context of visual interpretation of orthophoto maps, the binary classification test is executed for
polygons (instances) classified as shallow landslides or not, which are subsequently verified by field work,
allowing to evaluate the proportion classified polygons. Therefore, the binary classification of the
confusion matrix consists on:
® True positives (IP): polygons classified as landslides effectively corresponding to landslides in
the field;
® True negatives (ITN): polygons identifying features similar to landslides but classified as no
landslide areas effectively corresponding to stable areas in the field;

= TFalse positives (FP): polygons classified as landslides but actually corresponding to stable areas in

the field;
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* False negatives (FN): can be undetected/unclassified landslides, as well as polygons classified as

stable areas but actually corresponding to landslides in the field.

Sensitivity, specificity, precision and accuracy are statistical measures of the classification performance,

defined as:

. . . . . TP
Sensitivity or True Positive rate (TPR) = TP L FN
i fici T N j TNR) = ——
Specificity or True Negative rate ( ) TN + FP
Precision or Positive Predictive rate (PPR) = W

TP+TN
TP+TN + FP +FN

Accuracy (ACC) =

Also the accuracy of the SD depth map is evaluated. To this aim, the SD depth sites observations were
randomly split in training dataset (70%) and test dataset (30%). The accuracy assessment of the SD depth
maps is calculated for both the training and test dataset and is expressed in terms of success rate for
different steps of SD depth error. In other words, the frequency percentage of well classified observations
sites (success rate) is calculated. Then, the success rate is calculated assuming an incorrect classification
of one class step, then two and so on. Since in this thesis the depth of the SD is divided into classes with
constant amplitude, it is possible to evaluate what is the maximum error of depth (cm) between the
predicted and the measured.

The predictive capacity of susceptibility models was evaluated and compared by using the receiver-
operating characteristic (ROC) plot, introduced by Hanley and McNeil (1982). In the ROC plot, the
sensitivity (true positive rate, TPR) of the model is plotted against 1-specificity (true negatives rate, TNR):
sensitivity is the number of correctly predicted landslide cells (True Positives) over the total number of
predicted landslide cells (True Positives + False Negatives), whereas the specificity is the number of
correctly predicted non-landslides cells (TN, True Negatives) over the total number of predicted non-
landslides cells (FFalse Positives + True Negatives). The area-under-ROC (AUROC) is used to assess the
global accuracy statistics of the model. The value of AUROC varies between 0.5 (no improvement over
random assignment, represented by the diagonal straight line) and 1 (perfect discrimination). For each
landslide, if it consists of more than one cell, the cell with the highest susceptibility value was selected to
calculate the accuracy. Thus, a landslide consisting of both stable and unstable cells is considered unstable,
since it is sufficient that there is one unstable cell to consider the area unstable. Non-predicted landslides

are polygons consisting only of unstable cells.
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3 STUDY AREA
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Northern Tuscany is characterized by high landslide susceptibility due to geological, geomorphological
and climatic characteristics. This is one of the rainiest areas in the whole country due to the proximity of
Ligurian sea to the Northern Apennines ridges and, in the period 2008-2014, 45 intense rainfall events
were recorded (Lavorini et al., 2015). According to the authors, the concept of intense rainfall events is
strictly related with return period and therefore, is site specific. Nevertheless, in the study area were
classified as intense rainfall event a daily cumulative precipitation above 50 mm/day. In Figure 3-5 some
of the most severe rainfall events occurred in the study area in the period 2010-2016 are reported.

The Serchio tiver valley, the main basin in Northern Tuscany (1565 km?), was affected by intense rainfall
events triggering shallow landslides and causing victims in 2009, 2010 and 2014 (Giannecchini et al., 2012;
Giordan et al., 2017). In this thesis, an area of 242 km® including several Serchio sub-basins has been
selected in order to apply the methodology described in the previous chapter and to perform slope

stability analysis.

3.1 DATA AVAILABLE FROM THE LITERATURE

In Table 3.1 data available from the literature are listed. Geological information, the digital elevation model
and orthophotomaps are data that Tuscany Regional Authority makes available for free to the public

through the online portal “Geoscopio” (https://www.regione.toscana.it/-/geoscopio).

In order to collect homogeneous and detailed data from field observations, Microsoft Access Databases
were developed by Geomatica Lab of Department of Environmental, Physical and Earth Science,

University of Siena.

Table 3.1. Available data in the literature

Name Description Data type Source Resolution /
scale
Continuum Geologic database of Tuscany | Vector data. Esti | http://www502.regione.toscana.it/ | 1:10000 scale
Geologico della region. Shapefile geoscopio/ geologia html

Regione Toscana

observations

Database

DEM Digital elevation model. Raster float http:/ /wrww502.regione.toscana.it/ | Cell size: 10x10
wmstaster/com.rt.wms.RTmap/w
meters
ms?map=wmsmorfologia&map_re
solution=91&
Orthophoto maps | Aerial orthorectified images Raster http:/ /www502.regione.toscana.it/ | Cell size: from
geoscopio/ortofoto.html 02t 1m
Slope deposits | Database used to slope deposits | Microsoft Access | Lab. Geomatica, DSFTA UNISI
Database field observations Database
Bedrock Database | Database used to bedrock field | Microsoft Access | Lab. Geomatica, DSFTA UNISI
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https://www.regione.toscana.it/-/geoscopio

The aerial images used to detect landslides cover a period from 2000 to 2016: images acquired in 2000
and 2005 are panchromatic (pixel size 1 m), while 2007, 2009, 2010 and 2013 are multispectral visible -
near infrared (pixel size 0.5 m) images. The 2016 multispectral visible - near infrared images have instead

a higher resolution (pixel size 0.2 m).
3.2 GEOGRAPHIC OUTLINE

The study area of this thesis is located in Northern Tuscany, Central Italy. The area is included in the
upper part of the Serchio Valley, known also as Garfagnana valley, an intermountain basin which
develops with a NW-SE orientation and parallel to the Northern Apennines main ridges. Serchio river
hydrographic basin extends for 1565 km?, while the area investigated in this thesis is composed by 5 sub-
basins covering an extension of 242 km®* From North to the South the sub-basin included are: Cotfino,

Castiglione, Sillico, Ceserano and Turrite Secca.

Figure 3-1 Geographical outline of the study area. The red line is the border of the study area. Light blue lines are the stream
network. Dark blue dashed lines are watersheds. Grey-black line is the Tuscany-Emilia-Romagna border.

This area was chosen due to the wide variability from morphological and geological point of view. In
fact, this valley is located between two main ridges, the Apuan Alps in the south western part, and the
Northern Apennines in the North East. These two mountain ranges have a very different morphology,

mainly because their different lithology and tectonic evolution (see paragraph 3.3 for more details).
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The elevation ranges from 165 m a.s.l. of the valley bottom, close to the town of Gallicano, to the 1985
m a.s.l. of Monte Vecchio, located in the northern end of the area. To the SW, Apuan Alps ridges reach
an altitude of more than 1700 m a.s.l..

The average slope steepness is 27 degrees but is slightly different if considering separately the
hydrographic left and right of Serchio basin, displaying an average of 25 and 28 degrees respectively. The
low slope steepness (<15°) in the bottom of the valley is due to the widespread outcrop of continental
Villafranchian deposits and terraced alluvial deposits, whose low resistance to erosion led to the
formation of a sub-flat morphology interrupted by fluvial scarps of 25-45° of steepness. In the high
altitude area, the steepness is usually higher than 35° often reaching more than 70 degrees in slopes
where carbonate rocks crop out. The Figure 3-2 describes the distribution of land use in the study area,

which is dominated by the presence of woods.

Land use distribution of the study area

1% 2% 40,

4%

B Urban areas

B Rock outcrop

B Agricultural lands

@ Pastures and shrubs

B Woods

Figure 3-2 Pie chart of land use distribution (data from Corine Land Cover, 20006)

Due to the relative proximity to the Ligurian Sea (around 30 km) and Apuan Alps and Apennines ridge,
the area displays a wide variety of climate (Beck et al., 2018) and a high amount of rainfall (Maracchi et
al., 2005). In Figure 3-3a is presented a new Képpen-Geiger climate classification map (Beck et al., 2018)
with a resolution of 1 km® which highlights that in the study area the climate ranges from Mediterranean
(Csa and Csb) to Oceanic (Cfb) and Continental Humid or Cold (Dfb and Dfc) in the higher zones.

Moreover, the mean annual precipitation map (Figure 2-3, Maracchi et al. 2005) highlights that the study
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area is located where the rainfall rate is the highest in the region, ranging from 1500 mm/year to 2300
mm/year. In Figure 3-4 ate plotted the cumulative annual rainfalls for the period 2004-2019 of three rain

gauges located in the study area.
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Figure 3-3 a. Sample of Képpen-Geiger climate classification map for Italy (modified from Beck et al. 2018). b. Mean annual
precipitation in Tuscany (Maracchi et al., 2005).

Ponte di Campia rain gauge is in the bottom of the valley, close to Gallicano town, Campagrina rain
gauge is located at the top of Turrite Secca sub-basin while Casone di Profecchia rain gauge is at the top
of Castiglione sub-basin. In respect to the Serchio valley and Apennine chain, the Apuan region receives
more rain due to Atlantic humid air masses rising Apuan Alps slopes, condensing and triggering intense
rainstorms, mainly during autumn and spring (Giannecchini et al., 2012). In fact, this area was hit in the
last decades by several intense rainfall events causing victims, destruction of villages and interruption of

facilities in 1996, 1998, 2000, 2003, 2009, 2012 and 2014 (Giannecchini et al., 2016).
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Cumulative annual precipitation (2004-2019)
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Figure 3-4 Cumulative annual precipitation of three rain gauges in the study area.

Main intense rainfall events (2010-2016)
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Figute 3-5 Some intense rainfall events occurred in the study area between 2010 and 2016. a- 31/10/2010 - 01/11/2010; b-

25/10/2011; c- 26-27/10/2012; d- 20-21/10/2013; e- 17-19/01/2014; £- 05-06/11/2016.

88



3.3 GEOLOGICAL OUTLINE

The Serchio valley, known in the literature as Garfagnana graben, is an intramountainous extensional
basin forming part of the Northern Apennines orogenic complex (Elter et al., 1975). The Northern
Apennines are a fold-thrust belt originated during the Tertiary by the collision between the Apulia (or
Adriatic) microplate related to the African plate, and the Briangonnais microplate (Sardinia-Corsica
massif), related to the European plate (Carmignani et al., 2004). The collision led to the stacking of the
Ligurian and Sub-ligurian Units (Oceanic domain) above the Tuscan Units (Apulian domain), with a top-
to-the-East transport direction (Elter et al., 1975), occurred along a regional-scale floor thrust that runs
in the “Calcare Cavernoso” formation, a Norian dolomite formation with intercalated evaporite levels
(Carmignani et al., 2004). Emplacement of the Tuscan Nappe led to development of greenschists facies
metamorphism of the underlying Tuscan Units. Starting Early Miocene (Burdigalian), due to slab retreat,
the Apennine compressional front migrates eastward, so the tectonic regime changed from compressive
to extensional: the earlier Apenninic orogenic wedge is now affected by widespread exhumation and
extensional tectonics which led to the exhumation of the “Alpi Apuane Metamophic Complex” and the
formation of Garfagnana Graben (Carmignani et al., 1994). In Figure 3-6 is represented the tectonic sketch
map of the study area and surroundings. Apuan Alps are a tectonic window where Paleozoic basement
(Hercynian basement) covered by Mesozoic meta-limestones (“Apuane” and “Massa” units) crop out.
Apuan Alps are surrounded and covered by the sedimentary Tuscan nappe, overlaid by ophiolite-bearing
Ligurian and Subligurian units (Carmignani et al. 2000). In the study area these units develop towards the
East and outcrop in the Garfagnana graben and Northern Apennines. Hercynian basement rocks
experienced a pre-Alpine greenschist facies metamorphism and consist mostly on phyllites, schists and
quartzites. The “Apuane” and “Massa” Units experienced Alpine greenschists facies metamorphism
resulting mainly in marbles with subordinate calcschists, metasandstones and phyllites. Tuscan nappe is
made up of Mesozoic carbonates and Mesozoic—Cenozoic pelagic succession and is mainly represented
by the arenaceous turbidites of Macigno formation (MAC). Subligurian units is represented by Canetolo
unit, a calcareous marly turbiditic sequence, while Ligurian units consists of deep-sea oceanic sediments
including Jurassic ophiolites followed by thick sequences of late Cretaceous to middle Eocene calcareous,
“Ottone Flysch”. Finally, in the bottom of Serchio valley Villafranchian continental deposits crops out,

consisting mainly in weakly cemented fluvial deposits, with gravels, sands and shales.

89



- Qusternary deposlts
Glurisd cmpaurty
Alial degoais
Wairmacaisn Sspoetis

- Exterral Ligurkan domain

f I Canmenks Unn

Tescan rapps
- Tuscan metamanphio wnits
Apuaane Lin

Thrsts and inverse faults | B Masss U
WorTucano und

Transfer faults T B

WNormal feult

Figure 3-6 Tectonic sketch map of the study area and surroundings (modified from Continuum
Geologico della Regione Toscana)

In Figure 3-7 is represented the detailed geological map (scale 1:250.000), a geological cross-section and
the histogram of the extension (%) of geological formations. Macigno formation (MAC) is far long the
most extended formation in the area, it consists on layered arenites from decimeter to meter scale with
subordinate siltstones. In general, these rocks are often covered by sandy-gravel slope deposits and are
very prone to landsliding (D’Addario et al. 2018; Disperati et al. 2018). The cross-section highlights the
structure of the Garfagnana basin, bordered and dissected by extensional faults. To the SW, marbles of
the Apuane Metamorphic Complex are separated from the limestones of Tuscan Nappe by a low-angle
normal fault, the latter, the latter, dissected by normal faults merging to the North-East, quickly come in
contact with the Macigno Fm. at the bottom of the valley. The North-East sector is characterized by the
outcrops of MAC, which is in turn dissected by normal faults merging to the South-West, dividing the
formations in four “blocks”, at least. Di Naccio et alii (2013), integrating existing structural geology data
with new detailed geomorphic analyses of the fluvial network, established that most of these normal
faults are still active with an inferred throw rate ranging from 0.3 to 0.6 mm/year since late Quaternary.
Geology is one of the most important conditioning factor controlling the occurrence of landslides, and
lithology, which is strictly related to engineering properties of rock itself and the above slope deposits,
has a crucial relevance in landslide susceptibility and hazard assessment for each different landslide

mechanism (Corominas et al., 2014).
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Figure 3-7 Detailed geological map of the study area at the scale 1:250.000 (modified from Continuum
Geologico della Regione Toscana), geological cross-section (sample from Progetto CARG Foglio “Castelnuovo
Garfagnana”) and frequency distribution of geological formation extension (formation less than 1% are not plotted)

In data-driven landslide susceptibility models, lithology is almost always used as an input conditioning
factor (Goetz et al., 2011; Corominas et al., 2014; Zézere et al., 2017; Reichenbach et al., 2018) while in
physically based models may be used to assign to slope deposits a set of parameters which are assumed
to depend on the nature of the underlying bedrock (Cervi et al., 2010; Zizioli et al., 2013; Raia et al., 2014;
Teixeira et al., 2015; Oliveira et al., 2016; Ciurleo et al., 2017). In this thesis, lithology is an important
information which is used as a first order factor for geo-technical parameters, the morphometric analysis
and slope deposits depth estimation. For this reason the geological map was the starting dataset to extract
the “Bedrock Lithological Units” (BLU), which consist on grouping the formations with similar lithology

and stratigraphic relationship, as shown in Figure 3-8. In order to obtain the BLU map, the geological map
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of Tuscany Region (Continuun Geologico della Regione Toscana) was used. Figure 3-7 and Figure 3-8 seems
very similar to each other, but some formations, as Macigno Fm. (MAC) and Scaglia Toscana Fm. (STO),
are composed by several members that may be distinguished at local scale (1:10000). Both these
formations have members mainly composed by shales and matls, for this reason, in the BLU map have

been separated. Figure 3-9 shows the extension of Bedrock Lithological Units.

Bedrock Lithological Unit (BLU)
map
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[ 61 - Phyllites

[ 62 - Metarenites and quartzites

Figure 3-8 Bedrock Lithological Units (BLU) map.
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4 RESULTS - PROCESSING AND

SPATIALIZATION OF DATA
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4.1 LANDSLIDE INVENTORY

4.1.1 Landslide inventory accuracy assessment

Once the shallow landslide inventory was prepared, it was necessary to evaluate its accuracy in order to
define the quality and reliability of data collected by means visual interpretation. The procedure of
accuracy assessment is described in the paragraph 2.7.

In the study area, a total of 249 objects were detected, 196 classified as landslides while 53 classified as
stable areas (entities displaying features similar to landslides but classified as stable areas; see paragraph
2.3 for further description). To organize the field validation, objects in the nearby (<1000 meters) of
roads and trails were selected; nevertheless, due to reduced accessibility for slope steepness and/or
vegetation density, the test dataset consisted of about 56% of visited polygons. Out of a total of 139
visited polygons, 86 were classified as landslides while 53 were classified as stable areas. In addition,
further 13 landslides were detected during the field survey (false negatives, FN), mapped within the
topographic maps and subsequently stored in the landslide inventory database. In Table 4.1, results of the

accuracy assessment are summarized.

Table 4.1 Confusion matrix and statistical measures for accuray assessment

Field survey

Actual | Actual | TPR 0.84
positive | negative
T e
= &
| 23 68 18 86 TNR 0.75
i
I3 )
gl 23
5| 2§ 13 53 66 PPR 0.79
K= ® Q
o S
<
2
| col
= Bem g 71 152 ACC 0.80
sum

After the validation step, the final landslide inventory was obtained as a new polygon ESRI Shape File,

in which FPs landslides and TNs objects were excluded (Table 4.2).
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Table 4.2 Statistics of objects analysed in order to obtain the landslide inventory for this PhD thesis.

Total of delineated objects 249
Delineated landslide 196

Visited landslide objects 86

Visited stable areas objects (FN) 53
Misinterpreted landslides (FP) 18

New detected landslides during fieldwork (TN) 13
Post-validation final number of landslides 191

4.1.2 General statistics of the landslide inventory

In Figure 4-1, the landslide distribution map and general statistics of the landslide inventory are presented.
Out of a total of 191 landslides, 81 landslides were visited (blue dots) and most of all are accompanied
by the field sutrvey form. Due to the accessibility reasons because of vegetation density and/or
morphology, 110 landslides were not visited (red dots).

The top-left graph in Figure 4-1 describes the frequency distribution of landslides for each Bedrock
Geological Unit (BLU, see paragraph 3.3), expressed both in terms of absolute frequency and landslide
density (Ld, landslide per km?). The absolute number of landslides occurred in each BLU provides a first
information about relationships between lithology and landslide distribution, but the landslide density (#
/ km?) is the right index to quantify this spatial dependence. Considering a total of 191 landslides, the
overall landslide density (OLd) is about 0.8 landslide per square kilometer (study area extent 242 km?).
The BLU 11 recorded the highest number of landslides but has a Ld value of 0.8, more or less equal to
the OLd. In other BLUs, such as BLU 51 and, especially, BLU 23, corresponding to shales/marls and
limestones respectively, a higher landslide density is observed. Very few landslides were detected in
metamorphic rock areas (BLU 21, 22, 61 and 62). Even if the Ld is quite relevant, the small extent of
BLU 61 and 62 (2% and 3% of the study area) could lead to wrong results. Alluvial deposits (BLU 31)

with a total of 20 landslides, have a density value equivalent to the OLd value.
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Figure 4-1 Landslide distribution map and general statistics of the landslide inventory. a) frequency distribution of landslides
for bedrock lithological units expressed as frequency and density (#/km?). b) Landslide inventory map distinguishing
between visited and not visited landslide. ¢) Frequency distribution of landslides according to the delineation epoch of
orthophoto maps. d) Magnitude-frequency probability density function of the landslide inventory compiled in this PhD
thesis.
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The highest landslide frequency resulted from orthophoto maps acquired in 2009 and 2016. While the
peak of 2016 may be explained with the high quality of the images in respect to the other images, the
2009’s peak may be related to the intense rainfall events occurred between 2007 and 2009 (Giannecchini
et al,, 2016). Landslides detected in 2018 are those detected during field survey (False Negatives, FN), for
which the occurrence epoch is unknown. In fact, they can be either landslides occurred after 2016, or
they may be occurred earlier even though they are not recognizable in the orthophoto maps.

The magnitude-frequency probability density function of the landslide inventory is provided in Figure
4-1d. The model used to fit raw data is the Inverse Gamma distribution, proposed by Malamud et alii
(2004), resulting in an exponent of the inverse power low («) equal to 1.40 and a rollover occurring at 92
m?. Moreover, the median value of landslide area is 268 m? the maximum and the minimum are 13153

and 12 m’ respectively.

4.1.3 Characterization of visited landslides

A representative subset of 81 landslides underwent field analysis with collection of information following
the standard form provided in the Appendix A. Despite the inventory consists of shallow landslides, the
attention was focused about whether the landslide involved either the slope deposits (SD) only, or also
the weathered and fractured portion of the underlying bedrock (BR). In order to perform this
classification, the SD depth down to the bedrock was compared to the scarp height. When the scarp
height is equal or lower than the SD depth, the landslide involved only SD; in this case the slip surface
may correspond with the discontinuity between SD and bedrock. In the other cases, the landslide

involved also the bedrock (Figure 4-2).
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Figure 4-2 Examples of landslides involving either SD only (a, near La Foce) or the underlying bedrock (b, near Rontano).
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Figure 4-3 Analysis of material and movement types for visited landslides. a) Pie chart of material types. b) Histogram of
movement types (Hungr et al., 2014)

In Figure 4-3, according to the classification method described above, visited slope failures were labelled
on the basis of both the material and movement types (Hungr et alii, 2014).

Landslides involving bedrock are about the 60% of visited landslides, suggesting that the role of bedrock
in shallow landslides development and susceptibility modelling should be explored and taken into
account. The frequency distribution of landslide movement types shows that about half of the slope
failures are avalanche and planar slide. Nevertheless, separating the movement types on the basis of
material types, almost all the avalanches involved bedrock (BR), which is, together with planar slides, the
movement type with the highest frequency. Most of SDL are planar slides, and secondly, flowslides and
rotational slides, respectively. Some examples of landslides are shown in Figure 4-4. In Figure 4-5 the
distribution of slope deposits depth and scarp height is presented. The dashed line in the scatter plot
represents the condition in which the SD depth and the scarp height is the same. The dots plotted under
the bisector correspond to landslides whose slip surface is shallower than the SD depth, on the contrary,
the squares correspond to landslides with a slip surface deeper than SD depth. The boxplots represent
the distribution of the scarp height and SD depth measured in the field for SDL and BRL. This graph
suggests that BRL have a slip surface usually located between 140 cm to 210 cm, displaying an asymmettic
distribution with a median value at 190 cm. These landslides tend to occur where the SD depth is relatively
shallow, ranging from 40 cm to 105 cm. A different behaviour can be observed for SDL, whose slip
surface is located between 70 cm and 120 cm depth (median 95 cm), and rarely corresponding to the SD-
BR discontinuity. In fact, the measured SD depth of landslides involving only SD ranges between 100
cm to 170 cm. These results highlight two very important issues: a) shallow landslides often involve

bedrock and, b) the slip surface hardly correspond to the SD/BR discontinuity.
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Figure 4-4 Examples of some visited landslides recognized in the study area. a-Avalanche (BR, near Chiozza). b-Fall (BR,
near Castelnuovo Garfagnana). c-Planar slide (SD, near Piritano). d-Flowslide (SD, near Eglio)

101



Another important difference between SDL and BRL is the discard on the area involved in the failure.
As shown in Figure 4-6, landslides involving only SD are smaller than landslides involving bedrock. In the
scatter plot in Figure 4-6, length vs width of landslides is plotted. Even if the shape is similar, BRL are
usually wider and longer. In summary, these results suggest that usually BRL: have a deeper slip surface
in respect to SDL, occur where SD depth is less than 1 meter, involve a greater area and are both wider

and longer than SDL.
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Figure 4-5 Scatter plot of SD depth and scarp height for SDL and BRL (a). Boxplot comparing scarp height and SD depth
for SDL and BRL (b).
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4.2 ENGINEERING GEOLOGICAL CHARACTERIZATION OF

SLOPE DEPOSITS

A total of 413 observation sites have been visited during the fieldwork (Figure 4-7). The summary of
determinations carried out is detailed in Table 4.3. The distribution of investigations sites for BLU is
presented in Figure 4-8. Detailed investigation consisted on the digging using the pickaxe, with
measurements of depth as well as collection of data concerning layering, grain size estimation, and texture
analysis. Where possible, SD samples were collected. Otherwise, when the SD depth was relatively thin
ot the discontinuity between SD and BR was naturally exposed (e.g. road cuts), a quick investigation was
performed, by measuring the SD depth only. The small number of investigation sites in BLUs 21
(Marbles) and 22 (Schists) is due to the widespread bedrock outcrop that characterizes these lithologies.
Instead the small number of investigation sites within the BLU 61 (Phyllites) and 63 (Metarenites) is
related to the lack of roads crossing those BLU. Geotechnical parameters of the above mentioned BLLUs
were obtained by previous investigations recently conducted by Geomatica Lab (DSFTA, University of

Siena) in the framework of research projects executed in adjacent areas (Disperati et al., 2018).

Table 4.3 Summary of field investigations for the engineering geological characterization of SD

Observation sites 413
Detailed investigations (digging) 294
Quick investigations 119
Lab grain size test 125
Lab unit weight test 162
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Figure 4-7 Distribution of slope deposits investigation sites. Orange squares are observation conducted inside some visited
landslides, yellow conducted near visited landslides and green conducted far from landslides.
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Figure 4-8 Percentage frequency distribution of observation sites chosen for the analysis of slope deposits. The label refers
to BLU code.
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4.2.1 Extraction of Morphometric units

Morphometric Units were obtained by performing the classification of a set of morphometric variables
obtained by the DEM, as described in paragraph 2.4.3. The classification was performed independently
for each BLU. As a first step, slope steepness, curvatures (transversal and longitudinal) and contributing
area layers were obtained (Figure 4-9) by using different GIS tools like ESRI ARCGis, LandSerf and
Whitebox.

The number of morphometric clusters chosen for the classification may vary for different BLUs
considering: a sufficient number of observation sites for each BLU, BLU extension and the variability of
BLU morphology. As a consequence, for this PhD, the number of clusters ranges between 5 and 15. In
Figure 4-10 an example of the Morphometric Units map, obtained by unsupervised classification, is
provided. In the example 10 clusters were chosen in order to describe the morphology: the classes 10
and 9 identify channels and impluvious, while the classes 1 and 7 represent ridges, differentiated on the
basis of steepness and curvature; the classes 4 and 5 represent more or less straight steep slopes; 6 and 8
correspond to the highest portions of the slope with different degree of concavity and steepness; 2 and

3 clusters are located in the proximity of the drainage network representing low steep areas.
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Figure 4-9 Morphometric variables used to perform the ISODATA unsupervised classification aimed at obtaining the
Morphometric Unit map for each BLU of the study area.
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Figure 4-10 Example of the unsupetvised classification of morphomettic variables.
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4.2.2 Depth classes

In order to take into account SD depth uncertainty and variability, each pixel is assigned to a depth
categorical class depending on the morphometric features of the pixel itself and surrounding pixels. In
order to define the width of depth classes, the cumulative frequency of SD depth measurements of
detailed investigations (Figure 4-11) has been calculated. Therefore, analysing the cumulative frequency
curve in Figure 4-11, a range of 30 cm wide was suitable to split the SD depth in five classes where the
depth value was higher than 30 cm. The low frequency of data below 30 cm is due to the lack of detailed
investigations below this threshold, because when the SD depth is thinner than 30 cm it is difficult to
conduct a detailed investigation, but only quick investigation. The SD depth classification system adopted
in this thesis is a hierarchical system with homogeneous class size, based on quantitative and qualitative
classifiers which are: SD depth measure and SD areal frequency (Table 4.4). At level one, two group of SD
are identified: “thin” SD (class A) and “thick” SD (class B) which depth threshold is assumed to be 30
cm. The class “A”, depth lower than 30 cm, is split in two classes of second order: the Al, which is

mainly characterized by bedrock outcrop, and the A2, in which the SD cover prevails (Figure 4-12).
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Figure 4-11 Cumulative frequency distribution of SD depth obtained from detailed investigations

As described above, due to environmental factors, the SD depth can vary locally. For this reason, a
transition class between class “A” and “B” is introduced (A2B), in order to describe areas generally
attributable to A2 depth class, in which non mappable portion of SD with depth bigger than 30 cm occurs

(Figure 4-13). Thick SD, belonging to class “B”, are divided into five classes of homogeneous size (30 cm):
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B1, B2, B3, B4 and B5 (Figure 4-13, Figure 4-14, Figure 4-15). Fall into class B5 all SD that have a depth bigger

than 1.5 meters, because the tools used to open the digs make complex to manually reach higher depths.

Table 4.4 The slope deposits depth classification

Firat order group

A |:"'|‘J.] in" S0

B ("thick" 5D)

Depth class Description Depth range (m)
Al Contnuous or prevaling outcropping bedrock 0-0.1
Al Continnons or prevalmg 5D cover L1 -03
-HLs A2 with local not-mappable areas with depth =03 m 1 -0o
B1 Bedrock generally not euteropping, continens S0 cover (.3 - 0.6
B2 |Bediock generally not outcropping, continous SD) cover 0.6 - 0.9
B3 Bedrock generally not outeropping, continous 50 cover 09-1.2
Bedmock generally not outcropping, continons 51 cover 1.2-1.5
Bedrock generally not outcropping, continens 51 cover =1.5

Figure 4-12 SD depth class A1 and A2. Pickaxe length: 90 cm.
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Figure 4-14 SD depth class B2 and B3
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Figure 4-15 SD depth class B4 and B5. Pickaxe length: 90 cm.

4.2.2.1 Slope deposits depth maps

The slope deposits depth map (SDd) is obtained by intersecting the unsupervised classification of
morphometric units with field depth measurements, reclassified according to the previous paragraph.
Each morphometric unit was assigned to the most frequent depth class resulting by the observations sites
falling within the same unit.

This method is applied at BLU scale, and then all the maps are merged into a single raster file. However,
as can be seen from Figure 4-8, some BLU are not well-sampled either for logistical reasons or for the low
area covered by the BLU itself. SDd map of BLUs 21 and 22 (Marble and Schists respectively) and 31
(Weakly cemented continental deposits) has been obtained coupling field site observations with visual
interpretation of orthophoto maps. The land characterizing 21 and 22 BLUs has the greatest relief energy,
with the highest erosion rates due to heavy rainfall and, given its carbonatic nature, the development of
karst dynamics is widespread, making it predominantly without slope deposit and poor vegetation. BLUs
61 and 62 cover about 5% of the whole study area and are crossed by few roads making it difficult to
carry out exhaustive sampling. However, the research activities conducted by the Geomatica Lab of the
DSFTA (University of Siena) in previous years in adjacent study areas have been used to build the SDd
map in this study area. Below are shown the SD depth class assignation tables and related maps of BLUs
11, 23, 51, 61 and 62. Sites observations were randomly split in training dataset (70%) and test dataset

(30%). In the tables are reported the assignation statistics as well as the success rate (Table 4.5, Table 4.6,
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Table 4.7, Table 4.8, Table 4.9). The SDd map uncertainty is calculated for steps of SD depth errors of 29 cm
(Figure 4-16, Figure 4-20, Figure 4-23, Figure 4-25, Figure 4-27). In Figure 4-17, Figure 4-18, Figure 4-19, Figure 4-21,

Figure 4-22, Figure 4-24, Figure 4-26 and Figure 4-28 slope deposits depth map of each BLU are showed.

BLU 11 - Arenites

Table 4.5 Matrix of depth class data for BLU 11

Depth Morphometric Units
range (m)] _ Depth classes 1 2 3 4 5 6 7 g 9 10 11 2
0-0.1 Al
0.1-0.3 A2 8 5 8
0.1-0.6 A2B 2 1 1 1 1 2 3
0.3-0.6 B1 1 1 2 14 1 1 2
0.6-0.9 B2 4 2 4 11 2 2 4
0.9-1.2 B3 3 5 4 4 4 4 1
1.2-15 B4 1 3 2 12 4 2 6 2 2 2
>1.5 B5 1 6 1 2 2 2 4 1
Site observations total 4 10 13 19 28 27 11 16 13 12 6 4
Class A probability 0.5 0.9 0.0 0.1 0.0 0.2 0.1 0.1 0.8 0.0 0.0 0.0
Class B probability 0.5 0.1 1.0 0.9 1.0 0.8 0.9 0.9 0.2 1.0 1.0 1.0
Maximum frequency 2 8 4 14 12 11 4 6 8 4 4 2
Morph. Unit Success Rate 0.5 0.8 0.3 0.7 0.4 0.4 0.4 0.4 0.6 0.3 0.7 0.5
Assigned Depth class | INADBIN A2 B2 0 B3 [ A2 B3 [Bs 0 S

1.0

0.9 O Training dataset

0.8

B Test dataset

0.7

0.6

0.5

0.4

Accuracy

0.3

0.2

0.1

0.0

0-29 30-59 60-89 90-119 >120
SD depth uncertainty (cm)

Figure 4-16 Success and prediction rates of SDd map for BLU 11
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Figure 4-17 BLU11 slope deposits depth map.
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BLU 21 — Marbles

D_cp ih Elas a.g

Figure 4-18 BLU21 slope deposits depth map.
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BIL.U 22 — Schists
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Figure 4-19 BLU22 slope deposits depth map.
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BLU 23 — Limestones

Table 4.6 Matrix of depth class data for BLU 23

Accuracy

@ Training dataset

B Test dataset

0-29

Figure 4-20 Success and prediction rates of SDd map for BLU 23

30-59

60-89
SD depth uncertainty (cm)

90-119

>120

Depth Morphometric Units
range (m) Depth classes 1 2 3 4 5 6 7 8 9 10 11 12
0-0.1 Al 2
0.1-0.3 A2 5 4 1 1
0.1-0.6 A2B 2 1 4 1 1
03-06 B1 1 3 2 1 1
0.6-09 B2 6 2 2
09-12 B3 2 2 1 3 1
1.2-15 B4 1 2 2 1
>1.5 B5 1
Site observations total 4 10 13 19 28 27 11 16 13 12 6 4
Class A probability 0.5 0.9 0.0 0.1 0.0 0.2 0.1 0.1 0.8 0.0 0.0 0.0
Class B probabilit 0.5 0.1 1.0 0.9 1.0 0.8 0.9 0.9 0.2 1.0 1.0 1.0
Maximum frequency 2 8 4 14 12 11 4 6 8 4 4 2
Morph. Unit Success Rate 0.5 0.8 0.3 0.7 0.4 0.4 0.4 0.4 0.6 0.3 0.7 0.5
Assigned Depth class | GBI A2 B1 A2 Al B2 B3
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Figure 4-21 BLU23 slope deposits depth map.
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BLU 31 — Weakly cemented continental deposits

Figure 4-22 BLU31 slope deposits depth map.
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BLU 51 — Shales and matls

Table 4.7 Matrix of depth class data for BLU 51

Accuracy

1.0

09 O Training dataset

0.8

0.7

B Test dataset

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0-29 30-59 60-89 90-119
SD depth uncertainty (cm)

Figure 4-23 Success and prediction rates of SDd map for BLU 51

>120

Depth Morphometric Units
range (m) Depth classes 1 2 3 4 5 6 7 8 9 10
0-0.1 Al
0.1-03 A2 1 1 2
0.1-06 A2B 3 1 2 1 1 1
03-0.6 Bl 1 5 1 5 1 1
0.6-0.9 B2 1 1 4 2 1
09-12 B3 1 2 3 2
1.2-15 B4 1 3 1 1 1 1
>1.5 B5 1 1 1 4
Site observations total 28 27 11 16 13 12
Class A probability 0.0 0.2 0.1 0.1 0.8 0.0
Class B probability 1.0 0.8 0.9 0.9 0.2 1.0
Maximum frequency 12 11 4 6 8 4
Morph. Unit Success Rate 0.4 0.4 0.4
Assigned Depth class B2 B1 B3
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Depth Class

Figure 4-24 BLU51 slope deposits depth map.
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BLU 61 — Phyllites

Table 4.8 Matrix of depth class data for BLU 61

1.0

Depth Morphometric Units
range (m) Depth classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0-0.1 Al 1 1 1 5
0.1-03 A2 1 2 2 3 10 2 7 5 5
0.1-0.6 A2B 1 5 1 6 1 2 1
0.3-0.6 Bl 3 2 1 10 3
0.6-09 B2 9 9 1 2 1 2 1
09-1.2 B3 2 1 1 4 5
1.2-15 B4 5 3 2 1
>1.5 B5 2 2 2 4 2
Site observations total 8 13 13 5 8 13 12 14 19 5 8 10 8 6
Class A probability 0.1 0.2 0.0 0.0 0.1 02 0.7 0.8 0.5 0.0 1.0 0.7 0.9 1.0
Class B probabilit 0.9 0.8 1.0 1.0 0.9 0.8 0.3 0.2 0.5 1.0 0.0 0.3 0.1 0.0
Maximum frequency 5 9 9 4 3 4 5 10 10 5 7 5 5 5
Morph. Unit Success Rate 0.6 0.7 0.7 0.8 0.4 0.3 0.4 0.7 0.5 1.0 0.9 0.5 0.6 0.8
Assigned Depth class || B2 52 NS s RN A B1 B3 A2 GBI A2 A2

0.9

0.8

@ Training dataset

B Test dataset

0.7

0.6

0.5

0.4

Accuracy

0.3

0.2

0.1

0.0

15

Figure 4-25 Success and prediction rates of SDd map for BLU 61

45 75

105

SD depth uncertainty (cm)

135
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Kilomelars

Figure 4-26 BLUG1 slope deposits depth map.
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BLU 62 — Metarenites and quartzites

Table 4.9 Matrix of depth class data for BLU 62.

0-29

Figure 4-27 Success and prediction rates of SDd map for BLU 62

30-59

60-89
SD depth uncertainty (cm)

90-119

>120

Depth Morphomettic Units
range (m) Depth classes 1 2 3 4 5 6 7 8 9 10
0-0.1 Al
0.1-0.3 A2 1 2 3 26 3 1 5 7
0.1 -0.6 A2B 1 1 1 4 4 8 3
0.3 - 0.6 B1 3 2 3 11 3 4 6 1
0.6 -0.9 B2 5 3 1 7 1 3 1 3 5
09-1.2 B3 1 10 5 1 1 2
1.2-1.5 B4 5 1
>15 B5 1 1 2 1 3 1
Site observations total 10 16 17 15 34 23 6 9 27 10
Class A probability 0.1 0.1 0.2 0.2 0.9 0.3 0.2 0.6 0.6 0.3
Class B probability 0.9 0.9 0.8 0.8 0.1 0.7 0.8 0.4 0.4 0.7
Maximum frequency 5 10 5 7 26 11 3 5 8 5
Morph. Unit Success Rate 0.5 0.6 0.3 0.5 0.8 0.5 0.5 0.6 0.3 0.5
1.0
0.9 O Training dataset
0.8
B Test dataset
0.7
0.6
g 0.5
s 0
=
S 0.4
< .
0.3
0.2
0.1
0.0
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Figure 4-28 BLUG2 slope deposits depth map.
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4.2.3 Grain size analysis

The results of laboratory analyses and field grain size distribution estimation are presented in the next

paragraphs. Then, the comparison of results between the two dataset is described.

4.2.3.1 Laboratory results

For a total of 162 samples, grain size distribution and Atterberg limits were carried out by a private
certified geotechnical laboratory. Detailed laboratory results are listed in the Appendix B. In Figure 4-29
results are shown in the plasticity chart based on Atterberg limits. Table 4.10 and Figure 4-30 summarizes

the USCS class obtained for samples collected within each BLU.

Table 4.10 USCS class frequency for SD samples collected within each BLU. No samples have been collected in BLU 21.

Bedrock Lithological USCS class Total
Unit CL |CL-ML| ML SC |SCSM| SM |[SPSM| GC |GC-GM| GM |GP-GM| GW |samples
11 - Arenites 1 0 2 3 5 34 0 3 2 8 1 0 59
22 - Schists 0 0 0 0 0 1 0 0 1 0 0 0 2
23 - Limestones 1 1 3 4 0 6 0 2 0 4 0 0 21
31 - W.C. Deposits 0 0 1 0 0 2 1 1 0 0 0 0 5
51 - Shales and Marls 0 0 10 7 0 10 0 4 0 2 0 0 33
61 - Phyllites 0 0 5 1 1 6 0 0 0 15 1 1 30
62 - Metarenites 0 0 0 0 0 5 0 2 0 5 0 0 12
2 1 21 15 6 64 1 12 3 34 2 1
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Figure 4-29 Plasticity chart. Note: data for BLUG1 and 62 include 42 determinations obtained by a previous research project
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conducted in an adjacent area (Disperati el al., 2018).



USCS class distribution
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Figure 4-30 USCS class frequency for SD samples collected within each BLLU. 11- Arenites, 23-Limestones, 51-Shales and
Maztls, 61-Phyllites, 62-Metarenites. Note: data for BLUG61 and 62 include 42 determinations obtained by a previous research
project conducted in an adjacent area (Disperati el al., 2018).

4.2.3.2 Grain size field estimation results

In addition to the analysis of the particle size distribution carried out in the laboratory, the percentages
of gravel, sand, silt and clay (fine) were estimated for each observation site, as described in paragraph 2.4.
1. Since the field estimation is semi-quantitative, it is necessary to evaluate the accuracy of the estimation
by comparing field estimations with the laboratory results for those observation sites where both data
were collected.

In Figure 4-31 the grain size estimation conducted in the field is compared with the laboratory analyses.
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Figure 4-31 Comparison between grain size field estimation and laboratory analysis

The evaluation of the accuracy (Table 4.11) of the field grain size determinations was performed using the

Mean Bias Error method (Kato, 2016):

Equation 4-1

MBE =

Z?(fiddgr,sa,fi -

labgr,sa,fi)

n

Where campgas is the field estimation of gravel, sand and fines; lab, s is the laboratory analysis

according to USCS classification, n is the number of samples.
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Table 4.11 Mean Bias Error for grain size distribution

MBE (%)
Gravel Sand Fine
0 -6 6

130



4.2.4 Unit weight results

Table 4.12 summarizes the statistical results of unit weight determination for each BLU. A complete list of

laboratory results is provided in Appendix B.

Table 4.12 Summary of Unit Weight laboratory analysis

Dry Unit Weight
BLU Samples -

min max average |dev. stand.
11 90 10.5 17.6 13.7 1.8
22 2 12.4 12.7 12.5 0.2
23 20 11.7 16.3 13.3 1.4
31 7 11.3 16.0 14.1 1.8
51 31 111 16.7 13.5 1.2
61 9 11.0 15.9 12.7 1.7
62 10 10.5 16.7 12.6 1.9

4.2.5 Engineering Geological Map of Slope Deposits
4.2.5.1 Friction angle of gravelly SD

From the laboratory results the most represented USCS class is the GM among the gravels, which
correspond to a silty gravel. This USCS class is not included in the diagram shown in Figure 2-15, since in
this diagram the friction angle is obtained for cohesionless materials without plastic fines (NAVFAC,
1986). In order to assess the friction angle of the gravels occurring within the study area, a literature
review was performed (Holtz, 1961; Schmertmann, 1978; Bolton, 1986; NAVFAC, 19806; Fragaszy et al.,
1992; Fannin et al., 2005; Rollins et al., 2005; Kulhawy and Chen, 2007; Duncan et al., 2014; Ching et al.,
2017). The data presented in the above-mentioned studies were plotted in a scatter plot representing the
friction angle versus relative density, as this latter parameter is regarded as the most important to control
shear strength of gravels (Figure 4-32). Figure 4-33 reports the relative density and friction angle data for a
subset of samples from the above literature, having grain size characteristics (such as D50 and D60), dry
unit weight and confining stress similar to the slope deposits analysed in this study.

Figure 4-33 shows that the majority of data fall between the Schmertmann and NAVFAC — GP functions
and the distribution of points does not appear to depend on the USCS class. The regression functions
(black functions) obtained for each USCS class are each other sub-parallel and mostly overlap with the
NAVFAC - GW function. Therefore taking into account the results of the literature, it was assumed that
the NAVFAC — GW function reasonably can be used to describe the variation of friction angle as a

function of the relative density for the gravelly SD under study.
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Figure 4-33 Relative density - friction angle diagram taking into account only the data with geotechnical features similar to

the SD of this work.
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4.2.5.2 Friction angle assessment using NAVFAC diagram

According to the results reported in Table 4.10 and Figure 4-30, the functions of ML and SM were used to
estimate friction angle values from the NAVFAC diagram (Figure 2-15), because those are the most
frequent USCS classes for slope deposits mainly composed by fine and sand. Instead, for gravelly
materials, as mentioned above, the GW function was used. Due to the lack of enough samples, BLU 31
is not reported, while marbles, metacarbonates and limestones data were grouped together as well as for

phyllites and metarenites ( from Figure 4-34 to Figure 4-37).

" BLU 11

oML

Friction Angle (°)

120 130 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 220 230 2.40
Normalized Dry Density (mg/m3)

Figure 4-34 NAVFAC diagram for BLU 11

BLU 21, 22 and 23 o

40

351

Friction Angle (°)

30 1

251

1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 220 2.30 2.40
Normalized Dry Density (mg/m3)

Figure 4-35 NAVFAC diagram for BLU 21,22 and 23

133



Friction Angle (°)

20

T T T T T T T T T T T
1.20 1.30 1.40 1.50 1.60 170 1.80 1.90 2.00 2.10 220 2.30 2.40
Normalized Dry Density (mg/m3)

Figure 4-36 NAVFAC diagram for BLU 51
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Figure 4-37 NAVFAC diagram for BLU 61 and 62

4.2.5.3 Engineering Geological Units parameters

The SD properties assessed at BLU scale with the procedures described up to now have been obtained
exclusively from laboratory data. In order to carry out a regionalized study, it is essential to rely also on
tield grain size estimations, which being expeditious and cheaper, provide wider dataset. Recent literature
studies (Vos et al., 2016) have shown that the deviation between the field estimation and laboratory
analysis is in the order of 4 - 16%. The same authors pointed out that there is an intrinsic uncertainty
regarding the method by which the grain size fractions in the field are estimated (e.g. USDA Triangle):

for the same textural class the range of variability of the corresponding grain size fraction can vary in the
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order of 10—45%. Therefore, taking into account these uncertainties, an average bias of 6% (Table 4.11) is
considered acceptable, highlighting how the field grain size determinations proved to be quite reliable.
Hence, a simplified classification approach was adopted for the field estimations, following the USCS
guidelines, which can be described as follows:

* G gravelly SD (> 50% retained at 0.075 mm sieve), % gravel > % sand;
* S:sandy SD (> 50% at 0.075 mm sieve), % gravel = % sand;
* I fine grained SD (= 50% at 0.075 mm sieve).
Therefore, the association between USCS classes and the classification mentioned above is reported in

Table 4.13. In Figure 4-38 is reported the distribution of simplified USCS classes for the SD of each BLU
integrating field estimation and laboratory analysis is reported. The prevailing of gravels is due to the fact
that sampling gravelly rich SD for unit weight determination and grain size estimation laboratory analysis
is impossible with the tools used.

In Table 4.14 are reported the friction angle and dry unit weight resulted from the NAVFAC diagram at
BLU scale for each USCS/Simplified USCS class. The saturated soil unit weight has been calculated
considering a porosity range about 40%-50%. Then, the saturated density has been carried out adding 5
kN/m3 to the soil dry density. The minimum-maximum ranges wete assessed calculating the first and
the third quartile of the distributions. These ranges ate used to assess the parameters (¢ and vy,) at
Engineering Geological Unit (EGU) scale calculating the weighted average taking into account the
frequency of USCS simplified classes. Note that ML and GW friction angle and dry unit weight values
are constant for each BLU. While the ML are not very well represented in the study area, the low number
of GW laboratory analysis must be attributed to the difficulty in collecting the samples. In fact, for the
unit weight determination, the sampler is not able to penetrate and collect the specimen due to the rich
content of gravel, moreover to obtain an accurate grain size estimation in laboratory the minimum sample
weight must exceed 6 kg if the largest significant particle size have a diameter of about 75 mm. For the
reason listed above, the parameters attributed to fines and gravels are computed using all the samples

collected in all the BLLUs.
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Table 4.13 Association among USCS, simplified classification assumed for deposits which underwent field estimation only,
and NAVFAC function used for friction angle estimation.

USCS
(simplified) USCS NAVFAC

MH
CH
ML
CL
SC-SM
SC
SM
SW-SM
GC-GM
GC
GM
GP-GC
GP-GM
GW

Distribution of simplified USCS classes for the integrated dataset

36
] @ G (field)
2 B G (lab)
OS (field)
s L B S (lab)
OF (field)
E F (lab)
24
§ 20 | i ]
g —
Q
516 |
g
12 |
8 _— D
=
4 -
. = b=

1 21 22 23 31 51 61 62

Figure 4-38 Distribution of simplified USCS classes for BLU integrating field estimation and laboratory analysis
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Table 4.14 Friction angle and dry unit weight for BLU and relative EGU

Saturated
. . . . . .. Dty Unit Weight
Bedrock Lithologica Units and Uscs Simplified Friction ry Uni 3elg Unit Weight
Engineering Geological Units USCS Angle (°) (kN/m”) 3
(N/m’)
Min 26 12.8 17.8
ML F
Max 33 139 18.9
1 Min 27 133 18.3
SM S
EGU: 1101-1112 Max 33 15.2 20.2
Min 28 12.8 17.8
GW G
Max 33 15.4 20.4
Min 26 12.8 17.8
ML F
Max 33 13.9 18.9
21 Min 27 12.9 17.9
SM S
EGU: 2101-2110 Max 33 15.2 20.2
Min 28 12.8 17.8
GW G
Max 33 15.4 20.4
Min 26 12.8 17.8
ML F
Max 33 13.9 18.9
22 Min 27 12.9 17.9
SM S
EGU: 2201-2210 Max 33 15.2 20.2
Min 28 12.8 17.8
GW G
Max 33 15.4 20.4
Min 26 12.8 17.8
ML F
Max 33 13.9 18.9
23 Min 27 12.9 17.9
SM S
EGU: 2301-2312 Max 33 15.2 20.2
Min 28 12.8 17.8
GW G
Max 33 15.4 20.4
Min 26 12.8 17.8
ML F
Max 33 139 18.9
31 Min 27 129 17.9
SM S
EGU: 3101-3105 Max 33 15.1 20.1
Min 28 12.8 17.8
GW G
Max 33 15.4 20.4
Min 26 12.8 17.8
ML F
Max 33 139 18.9
51 Min 27 13.1 18.1
SM S
EGU: 5101-5110 Max 28 13.6 18.6
Min 28 12.8 17.8
GW G
Max 33 15.4 20.4
Min 26 12.8 17.8
ML F
Max 33 13.9 18.9
61 Min 28 12.6 17.6
SM S
EGU: 6101-6114 Max 29 14.1 19.1
Min 28 12.8 17.8
GW G
Max 33 15.4 20.4
Min 26 12.8 17.8
ML F
Max 33 13.9 18.9
62 Min 28 12.6 17.6
SM S
EGU: 6201-6210 Max 29 14.1 19.1
Min 28 12.8 17.8
GW G
Max 33 15.4 20.4
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4.3 BEDROCK GEO-MECHANICAL CHARACTERIZATION

The field survey of shallow landslides showed that about 60% of the visited landslides fractured and
weathered bedrock underlying the SD. In order to understand the role played by bedrock for shallow
landslides development one objective of this PhD research was to analyse and characterize the
engineering geological properties of the uppermost bedrock. Due to the wide spatial extent and continuity
as well as the high frequency of landslides involving this formation (Figure 3-12), the research focused the
attention on the analysis of the rock masses of the Macigno Formation. As described in paragraph 2.2, a
field survey was carried out following the same sampling strategy adopted for the slope deposits, that is,
bedrock analyses were conducted inside the landslides (INSIDE), near (NEAR) and in the areas not
involved by slope failures (FAR). For every 105 investigation sites, Schmidt hammer rebound values were
measured, along with orientation and spacing of the main discontinuities, and the "Geological Strength
Index” (GSI). In order to explore the distribution of bedrock properties and variability, a descriptive
statistical analysis have been performed (Figure 2-1).

In Figure 4-39 the distribution of investigation sites is shown. Orange squares correspond to investigation
sites conducted in correspondence of (INSIDE) visited landslides involving bedrock. Yellow squares
correspond to observation sites close (less than 250 meters, NEAR) to landslide (both SDL and BRL).
Finally, in order to analyse bedrock properties variability in the whole BLU 11, data from investigation

sites located at distance higher than 250 meters were conducted (FAR).
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Figure 4-39 Distribution of investigation sites for bedrock geo-mechanical characterization. Orange squares (INSIDE)
correspond to visited landslides involving bedrock.

MAC Macigno fm.
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4.3.1 Descriptive statistics of bedrock geo-mechanical properties

One of the aims of the field work was to investigate whether the bedrock geo-mechanical properties
change following spatial criteria which may be related to the occurrence of shallow landslides. In Figure
4-40 the boxplot of the distribution of geo-mechanical properties of bedrock, such as Schmidt Hammer
(SH) reboud value (Rv, average of 400 measurements), Joint volume density (Jv) and Geological Strength
Index (GSI). The diagrams show that geo-mechanical properties inside landslides are worse than NEAR
and FAR. The deviation is especially higher for Rv and Jv. These results suggest that bedrock quality may
have played a role for slope failures occurrence. The relations among these variables have been
investigated (Figure 4-41). Except the scatter plot of Rv vs GSI (Figure 4-41c) which highlights a correlation
between the two variables, the other diagrams display a more or less dispersed pattern. Figure 4-41a
compares the average and the standard deviation of Schmidt Hammer rebound value. It is worth noting
that the graph shows two different patterns, one dispersed, with relatively low values of Rv and high
variability of standard deviation, and one clustered, where the standard deviation is included mainly

between 4 and 6 with relatively higher Rv values in respect to the dispersed pattern.
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Figure 4-40 Boxplot distribution of geo-mechanical properties of bedrock inside, near and far from landslides.
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Figure 4-41 Scatter plot among bedrock geo-mechanical properties.




4.3.2 Uni-variate spatial cluster analysis of bedrock properties

In order to evaluate the spatial variability of bedrock geo-mechanical properties, a uni-variate cluster
analysis was performed by implementing the Local Moran’s Index algorithm, as described in paragraph
2.5.3. This tool allows to verify if the distribution of the analysed variable is spatially dispersed or
clustered, identifying two clusters, high values and low values, and the respective outliers. “Not
significant” values represent areas in which the variable is randomly distributed. The cluster analysis has
been performed for five variables: average SH rebound value (Rv), Rv standard deviation, percentage of
low full-scale rebound values, GSI and Jv. For each variable, the incremental spatial autocorrelation
analysis has been conducted in order to assess the minimum distance at which the clustering occurs.
Observation sites conducted inside landslides (INSIDE) were excluded from the analysis in order to
check the regional and local variability of bedrock properties outside the areas affected by slope
movements. The results of spatial autocorrelation and uni-variate cluster analysis are presented from
Figure 4-42 to Figure 4-47. For each analysis, a box plot is provided describing the distribution of the variable
within the clusters.

The uni-variate clustering display good performance when applied for Rv, Jv and GSI. In Figure 4-43, “Not
significant” observation sites separate the “High” and “Low” clusters, located in the northern and south-
eastern portion of the study area, respectively. The shape of the “Not Significant” data delineate an area
which is more or less subparallel to the main normal faults. A similar configuration is displayed by the
clustering applied to the GSI. In this case, the “High” cluster is reduced in number, increasing the “Not
Significant” data in the eastern portion of the study area (Figure 4-47). A very different configuration is
provided by the clustering applied to the Jv (Figure 4-46): the “High” cluster (representing heavy fractured
rock masses, hence low quality) has an elongated shape oriented S-NE, more or less perpendicular to the
main normal faults, while the “Low” cluster coincides with the "High" cluster of Rv and GSI. The uni-
variate cluster analysis applied to low full-scale rebound values (Figure 4-44, %FS) and standard deviation
of Rv (Figure 4-45) is characterized by a large amount of “Not Significant” data, meaning that those

variables have not a clear clustered pattern.
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Figure 4-42 Spatial Autocorrelation by Distance plots of the variables used to conduct the Cluster and Outlier Analysis. a-

SH rebound value. b- SH rebound value standard deviation. c- SH low full-scale rebound values. d- Joint Volume Density.

e- Geological Strength Index.
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Figure 4-43 Cluster and Outlier Analysis of Schmidt Hammer rebound value Rv
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Figure 4-44 Cluster and Outlier Analysis of Rv standard deviation
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Figure 4-45 Cluster and Outlier Analysis of the percentage of low full-scale rebound values
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Figure 4-46 Cluster and Outlier Analysis of Joint Volume Density
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Figure 4-47 Cluster and Outlier Analysis of Geological Strenght Index
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4.3.3 Multi-variate cluster analysis

Uni-variate clustering has shown that individual variables show a more or less pronounced spatial
clustering of the geo-mechanical properties of bedrock. In order to understand how these variables have
a dependency with each other and how the datasets of bedrock properties are spatially distributed, it was
necessary to perform a multi-variate cluster analysis. In summary, this analysis utilizes unsupervised
machine learning methods to determine natural groupings within the data. These classification methods
are considered unsupervised as they do not require a set of pre-defined classes to guide or train the
grouping of your data. Further description is provided in paragraph 2.5.4.

The analysis was performed for the following variables: Schmidt Hammer rebound value (Rv), Joint
volume density (Jv) and Geological Strength Index (GSI). After conducting several tests, the number of
neighbours considered in the analysis is 8. The number of output clusters to be obtained was assessed
computing the pseudo F-statistic plot (Figure 4-48). This diagram shows a sharp variation of the F-statistic
slope when the number of clusters is 4, which is the output of the analysis. The output resulting from
the multi-variate cluster analysis is presented in Figure 4-49. The four groups (clusters) resulted to be
spatially discriminated, except in the centre of the study area where groups 2,3 and 4 meet at a triple
point, enclosed between two normal faults. The group 1 is isolated from the others. This is likely due to
the fact that those data resulted to be "Not Significant" in the uni-variate cluster analysis.

Cluster statistics are reported in Figure 4-50 and Figure 4-51. In Figure 4-50 are reported the statistics either
for groups and variables. To enhance the reading of the results, the mean, maximum, and minimum
values for each group (dot and bars, respectively) of the variables involved (Rv, Jv, GSI) in the analysis
are plotted in box plots describing the distribution of those variables. At the bottom of Figure 4-51, the
statistics for each variable (Rv, Jv, GSI) are shown and plotted in the box plots (mean, min and max).
Figure 4-51 visually summarizes the characteristics of the groups. This parallel box plot shows the average
values of the groups for the variables involved. Group 2 appears to have the lowest average Jv, and the
highest GSI and Rv values, representing the sites where the rock mass quality is the best. Similar values
of GSI and Rv are reached by group 3, which however has the highest Jv, suggesting extensive fracturing
of the rock masses. Group 1, in addition to being "isolated" from the other groups, appeats to have
average values comparable to the total data distribution. Finally, group 4 has a mean Jv similar to the
median of the total data distribution, but has very low mean GSI and Rv. This is the cluster with the

worst geo-mechanical properties of the rock masses.
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Figure 4-51 Parallel box plot describing cluster statistics of the variables. The dots represent the mean values and the colours
represent the groups: blue, group 1; red, group 2; green, group 3; yellow, group 4.
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4.3.4 Bedrock Geo-mechanical Units

As described in the paragraph 2.5.7., BMUs were obtained from the expert-based delineation following
the results of multi-variate clustering taking into consideration tectonic lineaments, morphology and
drainage network. Figure 4-52 shows the results for the MAC formation area. The BMU 1 mainly covers
the southern region, spreading with a thin flap towards the north-west, where it borders with the BMU
2. As can be seen in the map, the contact between these BLU is marked by the occurrence of a set of
NW-SE trending faults steeply dipping towards SW. The literature suggests that these lineaments
correspond to the Pliocene-Pleistocene active normal faults of the Garfagnana graben (D1 Naccio et al.,
2013). Towards SE, this contact separates from the trace of the faults and continues more or less parallel
to the direction of the main valley. This section of the contact has been delineated by interpreting both
the hillshaded DEM and Google Earth images, which allowed to recognize an alighment of transverse
valleys to the main drainage network, all developing at about the same altitude, suggesting the possible
occurrence of further normal faults merging towards the southwest. The limit between BMU 2 and BMU
3 in the western part resumes the trace of the system of faults described above and then may be located
along the valley following the shape of one of the transversal valleys to the main Serchio river depression.
Obviously, this interpretation could be better detailed by increasing observation sites density in this sector
of the study area. BMU 4 reflects the portion of isolated Macigno located on the wall of a system of
normal faults merging to the northeast and completely develop to the right of he Serchio river.

The picture and data of Figure 4-53 refer to two representative examples of outcrops belonging to BMU 1
and BMU 2, respectively. The first is a very weathered and moderately fractured sandstone with
decimetric scale layers of siltstone. The arenaceous portion can be easily fragmented by the hammer, it
has an ocher color, which typically develops as the result of the chemical alteration. The other outcrop
at the bottom consists almost exclusively of very hard unweathered sandstones with a dark gray colour.
The average spacing of the joints is about 50 cm, with rough discontinuity surfaces.

Figure 4-54 shows the boxplots that describe the geo-mechanical properties of the BMUs. BMU 1,
developing in the southern and lower in elevation portion of the study area, is characterized by the worse
geo-mechanical parameters. The parameters of BMU 2, which covers the northern portion of the area,
where both the slope steepness and elevation are higher, constantly above those BMU3. BMU 4 has a
wide dispersion than the others. Probably the small number of observations collected in this area does
not allow to recognize the clustering phenomena of geo-mechanical parameters. This hypothesis is also
suggested by the high frequency of faults.

Finally, in Table 4.15 the equivalent Mohr-Coulomb parameters are summarized (see paragraph 2.5.6 for a
detailed description). The first two columns represent the mean and standard deviation of friction angle

and effective cohesion for each BMU. Starting from these two values, the maximum - minimum ranges
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assigned to the BMUs were calculated. These ranges were used to implement the probabilistic analysis of
susceptibility to shallow landslides involving bedrock, by means of a physically based approach.

In the Appendix C the input and output parameters for each field observation are listed.
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Figure 4-52 Geo-mechanical Bedrock Units (BMU). The colours of BMU reflects the colours resulted from the grouping
analysis. The boxes indicate the outcrops shown in Figure 4-53.
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Figure 4-53 Representative examples of two outcrops of BMU 1 ad BMU 2 and respective geo-mechanical parameters.
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Figure 4-54 Geo-mechanical parameters for Bedrock Geo-Mechanical Units obtained by the method proposed by Hoek &
Brown (2002), described in paragraph 2.5.6.
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Table 4.15 Mohr Coulomb equivalent parameters of Bedrock Geo-Mechanical Units

Bedrock Geo-machanical Units

1 2 3 4
Average 24.9 30.4 28.7 27.5

b ) Dev. St. 2.8 1.7 1.8 4.7
Max 26 31 30 30

Min 23 29 27 25
Average 25.9 36.2 32.7 31.0

¢ (KPa) Dev. St. 4.7 3.6 3.6 8.2
Max 28.3 37.9 34.5 34.5

Min 22.5 33.0 30.8 26.7
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5 RESULTS - SHALLOW LANDSLIDE

SUSCEPTIBILITY MODELING
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5.1 SHALLOW LANDSLIDE SUSCEPTIBILITY ANALYSIS: A
COMPARISON BETWEEN PROBSS AND INFORMATION

VALUE

One of the aims of this PhD thesis is to compare the results of different modelling approach to assess
shallow landslide susceptibility. In this paragraph, the susceptibility results obtained by using a modified
version of the SHALSTAB model (Montgomery and Dietrich, 1994), PROBSS, is compared with those

obtained by a well-known data-driven method, namely the Information Value (IV, Yin and Yan 1988).

5.1.1 Shallow landslide inventory

In shallow landslide susceptibility models, the landslide inventory is a fundamental tool for different
reasons. In physically based methods it is used to evaluate the accuracy of the outputs, while it is necessary
for statistical computations where, once split into training and test datasets, it is used as input as well as
tool to validate the results of the model. The inventory used in this PhD thesis work is described in
paragraph 4.1. Since it was not possible to check in the field the whole shallow landslides dataset, the
subdivision of the inventory into training and test datasets was not done randomly but on the basis of
visited landslides (VS) and not visited landslides (NVS). The NVS were used as training dataset for the
stability analysis conducted with the Information Value model, while VS were used as test datasets for
both models, the PROBSS and Information Value (IV).

Since VS are provided with data collected in the field, these landslides allowed to investigate in detail the
results of shallow landslides susceptibility modelling.

In Figure 5-1 the shallow landslide inventory is shown as classified into VS and NVS. Out of a total of 191
landslides, 81 landslides were visited and most of all are provided by the field data. Due to the
inaccessibility for vegetation density and/or morphology conditions, the remnants 110 landslides were

not visited.
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Figure 5-1 Landslide inventory map used to assess shallow landslide susceptibility

5.1.2 PROBSS input data

According to the equation and disequations presented in paragraph 2.6.1, PROBSS model requires a set
of topographic variables and geo-technical parameters as input data. Topographic variables are provided
by two raster files, the slope steepness (degtees) and the contributing area (m?). As described in paragraph
4.2.5, a set of geo-technical parameters is provided for each EGU (Engineering Geological Unit) and
synthetized in the Slope Deposits Engineering Geological Map, in which the ranges of friction angle,

effective cohesion, bulk density and slope deposits depth are stored.

5.1.3 Information value input data

The selection of the conditioning factors is one of the most important and difficult tasks for data-driven

landslide susceptibility analysis. Nevertheless, for each study area a specific set of factors, mostly
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depending on geographical and geomorphological contexts, may be recognized (Van Westen et al., 2003).
For this reason, determining which and how many conditioning factors are adequate for a specific
susceptibility analysis is difficult to assess. Reichenbach et al. (2018) provide an exhaustive review of
statistically based methods including the analysis of the most used predisposing factors. Moreover, van
Westen et al. (2008) provide an overview of environmental factors, and their relevance for landslide
susceptibility assessment considering the scale of analysis.

In this work the selection of predisposing factors was executed coupling expert knowledge and literature
review (Table 5.1 and Figure 5-2).

In Figure 5-3 the Information Value weighs for each class of the variables are shown, as calculated based

on the procedure described in paragraph 2.6.2.

Table 5.1 List of predisposing factors used for IV method

Predisposing factors Source / software Description
Bedrock Lithological Units This thesis
Elevation https:/ /www502.regione.toscana.it/geoscopio/ cartoteca.html | DEM 10x10m cell size

Topographic Position Index This thesis , Land Facet Corridor Designer (Jenness, 2006)

Slope steepness This thesis , ArcGIS v10.7 Derived from DEM
Slope over Area ratio This thesis , TauDEM (Tarboton, 1997)

Slope deposits depth This thesis

Profile Curvature This thesis ,Landserf v2.3

Transversal Curvature This thesis ,Landserf v2.3

Slope Aspect This thesis ,ArcGIS v10.7 Derived from DEM
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Figure 5-3 Weights for the input variables used to implement the Information value method

5.1.4 Susceptibility maps and accuracy assessment

The output returned by the two slope stability analyses have different meanings. The susceptibility value
of the Information Value model is given by the pixel by pixel sum of the weights attributed for each class.
As a consequence, the output susceptibility map is described by a range of values, when are negative
indicate very low or no susceptibility, while positive values indicate susceptible or very susceptible areas.
The physically-based model computes pixel by pixel the probability that in the is pixel satisfies the stability
conditions described by the functions in paragraph 2.6.2. If pixels have a 100% probability of being US
or UU, the logarithm of the ratio between the effective rainfall and SD transmissivity (log Qc/T) is not

calculated. Instead, when the probability is lower than 100%, the pixel-by-pixel distribution of the log
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Qc/T values is calculated. Since the model is implemented using a probabilistic approach through Monte
Catlo simulation (n=10000 runs), as output a log Qc/T pixel-by-pixel distribution is provided. The
median value of this distribution defines the final pixel-by-pixel log Qc/T value.
Given the units used for Qc (mm/day) and T (m*/day), is results Qc<T, hence log Qc/T<0. The smaller
the log Qc/T, the higher the susceptibility. On the contrary, a log Qc/T tending to 0 indicate low
susceptibility areas.
In Figure 5-4 and Figure 5-5 the shallow landslides susceptibility maps are shown.
In order to compare the susceptibility maps obtained from the two models, it is necessary to process the
raw data by classifying them according to a common criterion. As it is conceived, PROBSS model
immediately provides a class, represented by unconditionally stable areas (US). Being known the
percentage extension of the US areas in respect with the total extension of the study area, is it possible
to define the upper limit of the IV lowest susceptibility class (Stable Areas), by using the US percentage
as a percentile of the cumulative frequency distribution of IV values, obtained by ranking the IV data
from the lowest to the highest. The rest of the study area, not falling within either the IV susceptibility
class 1 (Stable Areas) or the US area, was further split into 4 classes of equal areal extension (%). In this
case, the US percentage is 64%, and thus the remaining 36% was divided into 4 classes.
The validation and the accuracy assessment of the two landslide susceptibility models is evaluated by
means receiver operating characteristic curve analysis, or simply ROC analysis (Hanley and McNeil, 1982;
Begueria, 2006; Fawcett, 2000).
To perform this analysis, the test dataset (Visited Landslides) is intersected with the grid of the
susceptibility map, resulting in four possible outcomes. If a computed unstable cell is inside the observed
landslide area, it is counted as true positive (TP); if it is outside the observed landslide area, it is counted
as false positive (FP). If a computed stable cell corresponds to an observed landslide cell, it is counted as
false negative (FIN); otherwise, it is classified as true negative (TIN). To perform the ROC analysis, two
quantities were calculated: sensitivity (True Positive Rate), defined as the ratio between TP and the sum
of TP and FN; and specificity (False Positive Rate), defined as the ratio between TN and the sum of TN
and FP. In the ROC plot, the sensitivity of the model is plotted against the 1-specificity. These values
indicate the ability of the model to correctly discriminate between positive and negative observations in
the validation sample. A high sensitivity indicates a high number of correct predictions, whereas a high
specificity indicates a low number of false positives. The area under the ROC curve (AUROC) can serve
as a global accuracy statistic for the model. This statistic ranges from 0.5 (random prediction, represented
by a diagonal straight line) to 1 (perfect prediction) and can be used for model comparisons (Cervi et al.,
2010; Zizioli et al., 2013; Oliveira et al., 2016). The ROC curves obtained for the two susceptibility models
are shown in Figure 5-6. The frequency distribution of test dataset (Visited Landslides) for each
susceptibility class is plotted in Figure 5-7. Note that the extension of susceptibility classes is 64% and 9%,
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respectively of Stable Areas (SA) and Low Susceptibility (LS), Medium Susceptibility (MS), High
Susceptibility (HS) and Very High Susceptibility (VHS).

PROBSS
model

Susceptibility Classes
N 1 - Stable Areas

I 2 - Low Susceptibility
13 - Medium Susceptibility
771 4 - High Susceptibility
I 5 - Very High Susceptibility

Kilometers

Figure 5-4 Shallow landslide susceptibility map computed by the PROBSS model. The susceptibility classes were obtained
by classifying the distribution of the median log Qc/T.
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INFORMATION VALUE
model

Susceptibility Classes
I 1 - Stable Areas

0 2 - Low Susceptibility
13- Medium Susceptibility
.14 - High Susceptibility

B 5 - Very High Susceptibility

Kiltomelers

Figure 5-5 Shallow landslide susceptibility map computed by Information Value.
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ROC curve comparison
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Figure 5-6 ROC plots and respectively AUROC values for the two different susceptibility models.
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Figure 5-7 Comparison of frequency distribution of VS landslides (test dataset) in susceptibility classes obtained by
physically- based and data driven modelling
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5.1.5 Discussion

The susceptibility maps shown in Figure 5-4 and Figure 5-5 are considerably different. Obviously, while the
map obtained from PROBSS is strictly correlated with topography, SD depth and geotechnical
parameters, the distribution of susceptibility classes in the map obtained from Information Value depends
mainly on the training dataset landslide distribution. The IV map abruptly discriminate between Stable
Areas and High and Very High susceptibility areas. This is reflected in the higher values of the AUROC,
which is remarkably high, and it is confirmed in Figure 5-7, where about 80% of slope failures occurred in
the classes with the higher probability of landsliding. On the contrary, about 30% of landslides occurred
in low susceptibility class and in stable areas of the PROSS model. This may be mainly due to different
reasons: geo-technical parameters such as internal friction angle or the cohesion or the dry density but
also the depth of the slope deposit, may not reflect the real site-specific conditions. It would therefore
be a problem related to the determination and regionalization of these parameters, which hardly may be
solved when assessing landslide susceptibility at regional scale. The second reason to consider is that the
reference model for evaluating slope stability is the infinite slope model, which is a rough representation
of a more complex process as the triggering of shallow landslides. Finally, concerning the space-time
distribution of pore pressure, the stability model implemented is a steady state model assuming that
rainfall infiltrates until reaching the SD-BR interface, then following topographically determined flow
paths (Montgomery et al., 1998). As a matter of fact, it is known that rainfall and infiltration are rarely
steady state process. Moreover, also water leakage occurs through the bedrock, especially as a
consequence of rock fracturing.

About input parameters, the probabilistic implementation of PROBSS by the Monte Carlo simulation
with a sampling size of 10000 iterations, should have limited uncertainty. Since the landslides used to
validate the models have been analysed during fieldwork, their characteristics may be analysed in order
to understand whether some specific conditions may imply a stability behaviour with relevant deviations
from the assumption of the infinite slope model. As described in the paragraph 4.1.3, for 60% of VS
landslides the sliding surface is located below the discontinuity between the slope deposit and the
bedrock. By assessing the accuracy of the physically based model results by using as test dataset made up
of landslides developed within the slope deposits or involving the bedrock, it is possible to evaluate the
model capability to predict one dataset rather than the other. As shown in Figure 5-8, although AUROC
values are never high as the case of the Information Value, it is possible to observe that the two different
curves provide different results, especially in the most relevant part of the ROC plot: for false positive
rate <10%, the deviation between the functions is almost 15% and locally gets to about 20%; for false
positive rate of 10-20%, the deviation is still about 10%. While, the lower slope of the final stretch

indicates a lower number of landslides in stable areas. This comparison suggests that the single-layer
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infinite slope model provides better results when SDL are taken into account as test dataset. At the same
time this model is less suitable to describe the spatial variability of susceptibility to shallow landslides
involving bedrock.
By analysing the distribution of the VS dataset (Figure 5-9), split into involving Bedrock landslides (BRL)
ot slope deposits landslides (SDL), it should be noted that:
® The accuracy for SDL (slope deposits landslides, dotted filling) is very good, both for PROBSS
and with IV (Information Value) models. In the latter, over 70% of landslides occur within the
high and very high susceptibility classes. The PROBSS model perform a bit worse, the 57% of
landslides occur in the higher susceptibility classes.
® The distribution of BRI (Bedrock involved landslides, Bricks filling) within the susceptibility
classes lead to very different results depending on the model used. About 30% of BRL, occur
either in the Stable Areas or the Low susceptibility areas modelled with PROBSS. Instead, the IV
performs very well, as a clear strong positive trend between landslide frequency and increasing
susceptibility is observed.
® The quite poor results of the physically based model obtained for BRL are not actually negative
results. In fact, they confirm that models based on the infinite slope are not well suitable to predict
shallow landslide susceptibility if these shallow landslides may develop their rupture surface below

the discontinuity between slope deposit and bedrock.
The high performance obtained by the IV model may be explained with its dependance on the training

dataset. For the IV model, the training dataset was represented by NVS landslides, therefore no

information is available about the materials involved.
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ROC curve comparison
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Figure 5-8 ROC plots and AUROC values obtained for the PROBSS model by using landslide test datasets either involving
the SD only, or the bedrock also.
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Figure 5-9 Frequency distribution of both SDL and BRL within the susceptibility classes obtained by both modelling
approaches.

173



5.2 EXPLORING DIFFERENCES BETWEEN SHALLOW
LANDSLIDES INVOLVING SLOPE DEPOSITS AND/OR
BEDROCK BY MEANS OF INFORMATION VALUE

METHOD

In the light of the results obtained in the previous section, to understand the differences between SDL
and BRL, two susceptibility maps were obtained using SD visited landslides, subsequently validated with
BR visited landslides, and vice versa. The aim of adopting this strategy is to verify that SDL and BRL
occur under different conditions, providing two susceptibility maps displaying a distinct distribution of
slope failures prone areas. To perform the slope stability analysis, the Information Value model is used
due to its dependency on the training dataset.

Figure 5-10 shows the landslide inventory map of visited landslides, discerning between slope deposit
landslides (SDL) and bedrock involving landslides (BRL).
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Figure 5-10 Landslide inventory map of visited landslides either involving SD or also the BR

5.2.1 Information value input data and weighs determination

In Table 5.2 the training and test datasets used to implement the Information Value models are described.
The same predisposing factors presented in paragraph 5.1.3. (Figure 5-2) were adopted to perform the

susceptibility analysis. In Figure 5-11 the weighs of the input variables are shown.

Table 5.2 Training and test datasets used to perform the susceptibility analysis with IV
Model name | Training dataset | Test dataset

SDL BRL
BRL SDL
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Figure 5-11 Information Value weighs for slope deposit landslides and bedrock involving landslides

5.2.2 Susceptibility maps and accuracy assessment

In Figure 5-12 and Figure 5-13 M1 and M2 susceptibility maps are presented. Figure 5-14 shows

the

ROC

curve resulted from the models, while in Figure 5-15 the distribution of landslides in susceptibility classes

is reported.

Susceptibility classes were defined according to the method described at paragraph 5.1.4, that is the 64%

of the study area is classified as stable, while the remaining is split into 4 classes of equal extension.
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Figure 5-12 Susceptibility map obtained from SDL as training dataset
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Figure 5-13 Susceptibility map obtained from BRL as training dataset
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Figure 5-14 ROC curves and AUROC values obtained from M1 and M2 slope stability analysis.
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Figure 5-15 Distribution of test landslides in susceptibility classes. The test dataset of M1 is represented by bedrock
involving landslides, while M2 test dataset is represented by slope deposit landslides
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5.2.3 Discussion

Although the landslides inventory consists of shallow landslides, it is evident both from the graphs
showing the weights of each class for each predisposing factors and the related susceptibility maps, that
the SDL and BRL tend to occur in different geological, geomorphological and morphometric conditions.
However, the AUROC values are high even if the training and test datasets are made up of landslides
with different characteristics. By analysing the distribution of landslides of the test dataset into
susceptibility classes, it is observed that in general more than 60% are included in the highest susceptibility
classes. Only a small amount of these, about 15% is included in the stable areas. It is possible to affirm
that the initial intent to discriminate through the data driven model the areas more predisposed to the
activation of landslides involving SD only or BR also was not achieved, given the results of accuracy and
distribution of landslides of the test dataset in the susceptibility classes. In fact, a lower AUROC values
as well as a random distribution of landslides in susceptibility classes was expected. At the cartographic
level, however, the maps are different (Figure 5-12 and Figure 5-13), as confirmed also by the different
weights assigned to the variables involved for the two different datasets (Figure 5-11).

In order to assess if landslides datasets and relative characteristics are different at cartographic scale, the
two susceptibility maps were overlapped. Combining the M1 and M2 susceptibility maps and calculating
the deviation among susceptibility classes (Figure 5-16) it is possible detect areas where M1 have higher
probability of landslide occurrence, and vice versa. The red coloured scale identifies pixels more prone
to activate bedrock involving landslides. On the contrary, blue coloured scale represent pixels where
slope deposit landslides tend to occur. The darker the colour tone, the greater the gap between the
susceptibility classes. Green areas represent Stable Areas shared between M1 and M2. Grey tones instead
are sites which display the same susceptibility class. The pie chart of Figure 5-17 describe the extension of
class variability among M1 and M2. The two maps show well-localized and defined differences: the
southwest portion involves an increase of susceptibility for BRLs, while in the northeast and east portion
appear to be more susceptible to SDL. From a quantitative point of view, the maps are the same for the
51% of the area, of which 5% corresponds to the same susceptibility class while the remaining 46% are
the stable areas shared by M1 and M2. In respect to the models presented in paragraph 5.1 where the
Stable Areas covered 64% of the study area, the decrease to 46% is probably the most interesting result
because almost 20% of the area, is now no longer stable. This highlights the importance to take into
consideration the possibility that shallow landslides are complex slope phenomena and not necessarily
consisting of loose material that characterizes the debris layer covering the slopes. Moving from one
susceptibility class to another with a gap of one or two positions may not significantly affect the general

susceptibility description of an area. On the contrary, changes of three or four classes suggest that sites
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not prone to develop SDL or BRL instead become high susceptibility areas for one or the other landslide

type.

INFORMATION VALUE
model - Combine

Same class

Kilometars

Figure 5-16 Combine between M1 and M2 susceptibility maps. In green the Stable Areas shared by the susceptibility maps
reported in Figure 5-12 and Figure 5-13. In grey are represented the areas which display the same susceptibility class. The
two-colour scales discriminate between areas susceptible to SDL (blue) or BRL (red) activation. The tone reflects the change
in susceptibility class.
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Figure 5-17 Pie chart representing the extent (%) of combined susceptibility classes. The legend description is provided in
Figure 5-16.
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5.3 PHYSICALLY BASED MODELLING OF SHALLOW

LANDSLIDES INVOLVING BEDROCK

In the paragraph 5.2 the differences between shallow landslides either involving only slope deposits or
also the bedrock were analysed by means of the IV model. The concept behind the Information Value
method, shared with all data-driven methods, is that past landslides are the key to predict the location of
future landslides. Hence, these models depend on the training dataset used to compute statistics, giving
a fundamental importance to the landslide inventory. Thanks to the information acquired in the field
within, close and far from landslides, it was possible to: a) identify landslides involving bedrock
(paragraph 4.1.3), and b) to estimate the geotechnical/geo-mechanical properties of both SD and the
uppermost bedrock units (paragraphs 4.2 and 4.3). These data allowed to perform a first physically based
model of shallow landslide susceptibility where the failure surface is assumed to correspond to the SD-
BR interface. This paragraph provides the results of a further physically based model where the failure
surface may be located within the bedrock. In this case, one issue to be faced is the rupture surface depth.
This kind of discontinuity is almost objectively recognizable in the field. While, different authors
(Salciarini et al., 2006; Catani et al., 2007; Zizioli et al., 2013; Kim et al., 2015), including the method
proposed in this work, correlate the SD depth with morphometric variables, the weathered and fractured
portion of bedrock generally does not define an horizon sharply passing to the underlying fresh bedrock.
This condition makes it problematic to define accurate criteria to spatialize the thickness of the
uppermost fractured and weathered bedrock.

Some reasons may control the development of this horizon, like the lithological nature (which influences
permeability, texture, mineralogy), tectonic evolution, exposure to weathering and climate, and the depth
of the surface deposit over the bedrock. The simplest but logical thing that can be done is to measure
the rupture surface of bedrock involving shallow landslides, assuming that the failure of the slope occurs
where there is the maximum impendency of bedrock properties.

The aim of this paragraph is to compute a slope stability analysis for shallow landslides involving bedrock
and compare it with the susceptibility analysis already performed to assess the probability of failure of
slope deposits, according to the infinite slope model. Then, in order to evaluate if the slope failure would
occur either in the SD or in the BR, the two maps are overlapped and combined. This analysis is applied
within the BLU 11, where the Macigno formation crops out, because most of the visited landslides fall
within this area (Figure 5-18). The bedrock properties, as well as spatial analysis and calculation of
equivalent Mohr-Coulomb parameters were carried out for this lithology. The depth of the rupture

surface of involving bedrock landslides was defined adding 2 meters to the SD depth map. This quantity
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reflects the median value of the scarp height exposing the bedrock within the visited landslides, as shown

in Figure 4-5.

MAC Macigno fm.

Landslide inventory
B BR landslides
® 5D landslides
A Notvisited landshdes

Figure 5-18 Visited landslides (BR and SD) and not visited landslides located within the BLU 11(Macigno Fm.)
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5.3.1 PROBSS input data

The implementation of the physically-based model for shallow landslide susceptibility assessment with a
sliding surface localized below the discontinuity between bedrock and slope deposits here proposed is
simple. As with the other models, PROBSS needs topographical inputs, such as slope and accumulation
area, a layer that describes the equivalent Mohr-Coulomb parameters of Geo-mechanical units and finally
a layer that identifies the depth at which the sliding can take place. In Figure 5-19 the Bedrock Geo-
mechanical Units with corresponding parameters are reported. The depth of the sliding surface was
obtained by adding to the depth map of the slope deposits constantly 2 m. This means that, for example,
if a given site falls into the depth class B1 (30-60 cm) of the slope deposits, the sliding surface is expected

to occur between 230 and 260 cm.
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Figure 5-19 Bedrock Geo-mechanical Units map and their corresponding Mohr-Coulomb parameters used for the

physically-based modelling.
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5.3.2 Susceptibility maps and accuracy assessment

The resulting susceptibility map for bedrock involved shallow landslides is shown in Figure 5-20. The 83%
of the study area resulted to be Unconditionally Stable (Stable Areas). The remaining 17%, equally split
in 4 susceptibility classes, is mainly confined to the Southern-western portion of the study area where the
BMUT1 is present. This is strictly related to the input geotechnical parameters which resulted from the
processing of field data and the expert-based subdivision in BMU. In order to verify the accuracy of this
results, the map is validated using as a test dataset both BR visited landslides and SD visited landslides.
As shown in Figure 5-21, the performance of the model is high for BRL (AUROC = 0.806), while it is lower
for SDL (AUROC = 0.75).
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Figure 5-20 Bedrock involved shallow landslides susceptibility map obtained from PROBSS model. The susceptibility
classes were obtained by classifying the disttibution of the median log Qc/T.
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Figure 5-21 ROC curves and AUROC values obtained from the two landslides datasets
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Figure 5-22 Distribution of BR and SDL in susceptibility classes.
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5.3.3 Discussion

The susceptibility map presented in Figure 5-20 is the first attempt to predict at regional scale the
probability of occurrence of shallow landslides that involve the fractured and weathered portion of rock
masses. The distribution of susceptibility is strongly influenced by the setting of Geo-Mechanical Bedrock
Units and related geotechnical parameters, which lead to abrupt gaps of susceptibility classes, between
the northern and the southern portions of the study area. According to the distribution of BR visited
landslides, the model here presented shows very good performance, as demonstrated by both the ROC
curve and the AUROC value (Figure 5-21). In Figure 5-22 the distribution of BR and SDL within the
different susceptibility classes is shown. The histogram suggests that: 16% of BRL, falling in Stable Areas,
are not predicted to fail by the model; nevertheless about 60% of BRL occurred in the highest
susceptibility classes (High and Very High). Even though the performance of the model in respect to the
SDL is quite weak, about 30% of SDL are located into the highest susceptibility classes. This suggests
that SDL and BRL may share some conditioning factors this kind of model is not able to control.
Moreover, a similar result is obtained in the paragraph 5.2, where the susceptibility assessment for the
two different datasets was performed by using the Information Value.

Figure 5-23 is a scatter plot of the median log Qc/T values of BRL and SDL obtained from the two
different physically based models. In the x-axis the median log Qc/T value resulted by the model in Figure
5-4, computed assuming a sliding surface corresponding to the slope deposit/bedrock discontinuity (SD
model) is reported. While, in the y-axis the median log Qc/T resulted from the model presented in this
paragraph, assuming a sliding sutface located beneath the slope deposit/bedrock discontinuity (BR
model), is reported. A landslide where the failure occurs in correspondence of the slope deposit/bedrock
discontinuity or above should have a higher susceptibility value in the SD model rather than in the BR
model, and vice versa. The susceptibility value increase in the bottom left corner, while the top right
represents Stable Areas (no log Qc/T computed), therefore a dot located in the x or in the y axis
correspond to a landslide occurred in an Unconditionally Stable site. The dots located in correspondence
of the bisector are landslides which obtain the same susceptibility value (median log Qc/T) whether the
sliding surface corresponds to the SD/BR discontinuity or is below it. The larger the dot distance from
the bisector, the greater the log Qc/'T deviation between the models. Itis expected the orange dots should
be located under the bisector, while the opposite for the blue dots. Even if the deviation between the
two models is not wide for some landslides, the majority of SDL are located over the bisector suggesting
that the SD model well predict these slope failures. Moreover, a significant number of SDL are predicted
as Stable in the BR model. Despite the BR model performed quite well, testified by orange dots having a
significantly higher log Qc/T deviation from the bisector than blue dots, there is a significant number of

BRL with a lower log Qc/T value in the SD model ot which are stable according to the BR model. Several
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explanations can be given for substrate landslides that fall in stable areas or that are more susceptible
according to the SD model. Among all, they may be sites where the depth map is not accurate, or, due
to the small extension of these shallow landslides, the DEM may not be enough effective in characterizing

the morphology of those locations.
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Figure 5-23 Comparison between median Log Qc/T of visited BR and SDL occutred in the Macigno Formation.
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Combining, overlapping and comparing both the susceptibility maps allow to spatially discriminate
between the areas where either one kind of landslide or the other is more probable to occur. In order to
compare and discriminate between areas where the landslides involve SD only or BR also, different
approaches can be proposed. Here, two different approaches are presented and discussed.

In the map presented in Figure 5-24, the combination of the two physically based susceptibility models is
provided intersecting the susceptibility classes of the two input maps. In this way, it is possible to highlight
the areas in which the deviation between the susceptibility classes of the models is present. In example,
a pixel classified in the low susceptibility class (2) in the SD model and in the very high susceptibility class
(5) in the BR model, is represented by a red tone, corresponding in the legend of Figure 5-24 to “BR +3”:
Note that the same result could be obtained if the pixel was classified as “Stable Area” (1) in the SD
model and in the high susceptibility class (4) in the BR model. With the green color are represented Stable
Areas shared by both models, while the grey describes sites which display the same susceptibility class,
regardless of the severity of the input class. Red/orange and blue tones describe the increase of

susceptibility class.
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Figure 5-24 Combination of the two susceptibility map. The input maps were classified in susceptibility classes and then
intersected. With red tones are represented pixels where the susceptibility class of the BR model map is higher. With blue
tones are represented pixels where the susceptibility class of the SD model is higher. Grey pixels represent areas where the

two models share the susceptibility class. In green, the stable area ate represented.
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Another more accurate approach can be followed. As introduced in paragraph 2.6.1, locations
characterized by lower log Qc/T are intetpreted as more susceptible to shallow landsliding. Instead,
locations with higher values of this indicator are interpreted as more stable, as less frequent rainfall events
would be required to cause instability (Montgomery and Dietrich, 1994). Consequently, in order to
compate two maps of (log Qc/T)sp and (log Qc/T)sr representing the pixel-based susceptibility to SDL

and BRL respectively, the following ratio may be used:

Equation 5-1

- _ log Qc/Tsp
sD/BR log Qc/Tpr

The condition rsp/sr) > 1 will indicate pixels with higher susceptibility to SDL than BR, the opposite for
the condition resp/sr) < 1. Nevertheless, the physically based model chosen in this PhD thesis to estimate
pixel-by-pixel log Qc/T was implemented with a probabilistic approach: first, ranges representing the
variability of input parameters were defined, then, for a large number n (ex., n=10,000) of iterations, sets
of parameter values were randomly selected from these ranges to obtain the frequency distribution of log
Qc/T, this latter representing the whole set of values which may trigger landsliding.

This output allowed us to perform a more advanced analysis about the type of landslides which are
expected to be triggered within the study area. Considering that lower values of log Qc/T correspond to
more frequent rainfall events, the lower percentiles (namely, the percentile 25 — p25) of the log Qc/T
frequency distribution were assumed to be more representative than the higher to perform the
comparison between susceptibilities to SDI. and BRL. These values were used to calculate rsp/sr> and
to select the most probable type of landslides, as above described.

Moreover, in order to obtain a comprehensive new map which describes the susceptibility for both SDL
and BRL, the minimum log Qc/T 25" percentile value of the two distributions was selected pixel-by-

pixel and merged in a unique output (Figure 5-25).
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Figure 5-25 Integration of SDL and BRL landslides susceptibility models. The susceptibility is expressed as the 25%
percentile of the log Qc/T distribution.
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The distributions of log Qc/T of the two susceptibility models were then used to calculate the normalized

overlap Ov between the ranges (p95 — p5), as defined in the following equation:

Equation 5-2

R—(d:+d
Ov = (”; ”95)*100

where dys and dyes are the absolute deviation between the 5" and 95" percentile values of log Qc/T
respectively, while R is the range between the minimum 5" percentile and the maximum 95" percentile
of the two distributions. An example of log Qc/T distributions and petrcentage of ovetlapping is provided
in Figure 5-26.

This approach has allowed to provide an estimate of the degree of discrimination between the two failure
type probabilities. Small values of Ov indicate pixels where the probability of the selected landslide type is
“clearly” higher than the other, while high values (up to 100%) indicate that the probabilities of SDL and BRL

are each other similar. Both the above information are represented together in Figure 5-27.
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Figure 5-26 Example of percentage of ovetlapping for log Qc/T distributions
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6 GENERAL DISCUSSION
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6.1 SHALLOW LANDSLIDE INVENTORY

In order to conduct shallow landslide susceptibility analyses, the availability of a landslide inventory, best
if providing accurate information on both the state of activity and the date of occurrence is a fundamental
tool for obtaining reliable results. The study area is located in the Tuscany Region which provides a
geological and geomorphological database including a landslide inventory, which was compiled by means
the regional geomorphological survey and post-event reports provided by local administration and
research institutions. The landslide database of the Tuscany Region is also an input for the IFFI project
(Figure 6-1, Inventario Fenomeni Franosi Italiani), a national scale project aimed at mapping all landslides
occurring in Italy. However, the Tuscan regional database of landslides mostly provides information on
the date of occurrence of the phenomena, the state of activity and the type of movement.

For this reason, when this PhD program was conceived, the first step was to compile a new multi-
temporal inventory of shallow landslides, mostly triggered by intense rainfall events (Figure 3-12) through
visual interpretation of orthophotos maps. The Tuscan Region, from the 2000s onwards, regularly
acquires (approximately every three years) these remote sensing data for the entire regional territory.
Although there are automatic and semi-automatic methods based on the analysis of satellite images or
digital terrain models, the multi-temporal visual interpretation of orthophotos was chosen as it is currently
to be one of the most widely used and accurate methods (Guzzetti et al., 2012). Furthermore, considering
that the aim was to map shallow landslides, this method is very effective especially in densely wooded
areas where landslides can be easily recognized thanks to abrupt local-scale variations in texture and tone
/ colot, sharp interruption of vegetation and cultivated fields, disruption of linear patterns, and
occurrence of U-shaped elongated features.

Fieldwork tasks in the landslide areas allowed to assess the accuracy of both remote recognition and
object delineation, as well as acquiring in situ data for the characterization of landslides and materials
involved.

The validation of the inventory led to visit about 56% of the interpreted objects obtaining an overall
accuracy of 0.8 with a True Positive Rate of 0.84. Out of 86 mapped polygons, 18 were found to be false
positives (objects erroneously mapped as landslides). In general, these misinterpreted entities were found
to be man-made excavations along the slopes, recent deforestation areas, and, rarely, outcrops of rock or
loose debris. About 13 landslides were recognized in the field only (False Negatives). Two reason may
be invoked to explain why these features were not identified from the images: either they were triggered
after the acquisition of the most recent orthophoto analyzed (2016), or they were located within shaded
areas. All the orthophoto maps analyzed were acquired in the same season and time interval, late spring
in the morning. This implies that the slopes exposed towards W-NW may be often not enough

illuminated to identify the scar of shallow landslides. Nevertheless, only 3 of the 13 landslides (False
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Negatives) are located in W-NW shadowed slopes. This suggests that probably the remaining 10
landslides could be occurred after 2016.
When dealing with shallow landslides, the time factor is important. Being these phenomena of modest
size and depth, in mid-latitude climate conditions the regrowth of vegetation can be fast so within few
years the landslide scar may be not recognizable neither remotely nor during fieldwork.
Since the orthophotos analyzed were acquired from 2003 onwards and the validation field survey was
carried out in 2018, it is interesting to discuss the conditions of vegetation regrowth in the visited
landslides. The Table 6.1 shows the frequency percentage of visited landslides classified as a function of
the time span between development and image acquisition, as well as the degree of vegetation regrowth.
It is interesting to note that about 50% of shallow landslides occurred more than 5 years before the
validation field survey are not easily accessible and recognizable. This highlights how important it is for
shallow landslides to conduct a multi-temporal interpretation of images acquired in epoch close to failure
time (best at 5 years or less) in order to mitigate the issue of obtaining an incomplete landslide inventory.
The magnitude-frequency function is often used to investigate the completeness of a landslide inventory,
to quantify the amount of slope failures expected after a given event and to estimate the role of landslides
in erosion processes (Malamud et al., 2004; Fell et al., 2008; Corominas et al., 2014). Several studies have
proposed that the non-cumulative size-frequency distribution of landslides follows a negative power-law
relationship for medium to large landslides (Hovius et al., 1997; Pelletier, 1997; C. Stark and Hovius,
2001; Ardizzone et al., 2002; Malamud et al., 2004). The non-cumulative frequency-density of a landslide
inventory is given by the number of landslides versus the range of area. The probability density function
(pdf) can be estimated normalizing the frequency-density to the total number of landslides of the
inventory. In the literature, power-law relationship exponent estimation varies from o« = 1.4 to « = 3.3
(Van Den Eeckhaut et al., 2007). This scaling exponent may vary with underlying geology (Guzzetti et
al., 2008; Frattini and Crosta, 2013b; Hurst et al., 2013) or with the failure type (Brunetti et al., 2009;
Hurst et al., 2013). The landslide size-distribution exhibits a negative power-law relationship for medium
to large events, meanwhile pdf shows a rollover to a positive power-law relationship for smaller
landslides. In the literature, there’s no agreement about the definition of the rollover. Some authors
defined the rollover as the modal value of pdf distribution (Stark and Hovius, 2001; Stark and Guzzetti,
2009b; Li et al., 2016) while other authors consider the rollover approximately as the point of departure
of the data from the power-law (Guthrie and Evans, 2004; Guthrie et al., 2008). Regarding the meaning
of rollover, three main hypotheses have been proposed. The first is ascribed to the interplay of cohesion
and friction, stating that these parameters counteract landsliding for small or large landslides respectively
(Pelletier, 1997; Guzzetti et al., 2002; Malamud et al., 2004; Stark and Guzzetti, 2009b). Alternatively,
erosion, reworking of deposits and fast vegetation regrowth may be responsible for the concealing of
small landslides, resulting in a under sampling of the landslide inventory (Brardinoni and Church, 2004).
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Another issue regards the spatial resolution and the scale of the remotely sensed data used to acquire
landslides data (Galli et al., 2008; Guzzetti et al., 2012). The landslide dimension at which rollover occurs
in historical inventories is located at larger sizes in respect to event-based inventories because small
landslide “disappears” faster in respect to larger landslides (Trigila et al., 2010; Guzzetti et al., 2012). For
the pdf of the shallow landslide inventory compiled in this work (reported in Figure 6-2), the power-law
relationship exponent resulted to be in agreement with the literature (« = 1.4) and the rollover was located
at ca 92 m*In the Figure 6-2 this pdf is plotted together with the pdf of the Tuscany Region inventory.
The latter is shifted to the right as it is most probably depleted for small landslides, thus demonstrating
that an adequate inventory is needed to model shallow landslides susceptibility. The roll over in the
function of the Tuscany Region is at ca 1025 m® while « is 1.2. Anyway, the inventory here proposed
cannot be considered completely representative, as it does not include slow moving and/or deep
landslides. Nevertheless, the pdf distribution of the multi-temporal inventory built during this PhD
research suggests: a) the rollover is a recurrent phenomenon depending on the scale of analysis, b) shallow
large landslides (area > 10* square meters) are lacking.

The distribution and frequency of shallow landslides (Figure 4-1) is closely linked to the lithological nature
of the bedrock on which they occur (Bedrock Lithological Unit, BLU), which influence the properties of
the involved materials, the morphology of slopes and the hydraulic conditions. For the whole study area,
the average density is 0.8 landslides/km’. The BLU which appears to have the greatest number of
landslides is BLU11 (Sandstones), while the one with the least number is BLU21 (Marbles). By
normalizing the frequency for the extension of the BLUs, it appears that the BLU with the highest
landslide density are BLU23 (Limestones) and BLU51 (Shales and Marls). BLU 62 (Metarenites) and 61
(Phyllites) show high density values however given both the small number of landslides and the small
extent, the data cannot be considered reliable. The meta-carbonates BLLUs (21 and 22) show the lowest
landslide density. This result is in good agreement with the common lack of slope deposits and the
excellent quality of the bedrock. The high density within BLLU 23 and BLU 51 may be explained with two
different reasons. Most of the landslides that occur in the BLU 23 involved bedrock (out of 15 landslides
visited, 13 involve the bedrock). Consequently, as highlighted by the results of physically based modelling
applied to bedrock landslides, it is reasonable to assume that the rocks under the contact with the slope
deposits have poor quality due to weathering and fracturing. BLU 51 is made up of shales and matls,
where an equal distribution of landslides either involving the bedrock or the slope deposit only are
observed. In the first case, since this rock mass have low permeability, the overlying slope deposits are
quickly saturated during intense rainfall events, triggering shallow landslides. Instead, involving bedrock
landslides may have been caused by the low shear strength of clayey and marly materials. BLU 31 consists
mainly of weakly cemented continental deposits, that are nowadays incised and eroded by the drainage
network, leading to the formation of very steep river embankments. It is reasonable to hypothesize that
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these landslides may be caused both by the steep morphology and bank erosion processes. Most of
landslides occurred in the BLU 11 (Sandstones) involved the bedrock. Given the large number of
landslides visited during fieldwork in this BLU, a modified physically based susceptibility model was

implemented for this area also including the topmost bedrock underlying the slope deposits.
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Figure 6-1 Landslides index map and landslide area-frequency distribution of the IFFI project (from Trigila et al. 2010).

Table 6.1 Vegetation regrowth degree in visited landslides according to the period of occurrence

Time elapsed between landslide occurrence and the

Vegetation degree of regrowth (% frequency) fieldwork

Over 10 years | Within 10 years | Within 5 years | Within 2 years

No vegetation regrowth, fresh scar 29 14 37 54
Poor vegetation regrowth, all.the landslide 17 36 £ 31
features easily recognizable
Wldespreafi vegetation regr.owth, scar4p and 33 83 21 15
accumulation body not easily recognizable
Completely regrowth of bush and trees, not 17 7 0 0
recognizable in the most recent images
Total 100 100 100 100
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Figure 6-2 Magnitude-frequency relations obtained for the LI compiled in this work and the Tuscan Region database

The field survey allowed to acquire also important information such as material involved, the movement
type and geometric features of shallow landslides. A very interesting finding was the high percentage
(about 60%) of landslides developing the sliding surface below the discontinuity between the slope
deposit and the bedrock. These observations were carried out on the main scarp, as well as on the lateral
scarps.

Planar rockslides and avalanches typically characterize involving bedrock landslides. According to the
definition of Hungr et alii (2014), rock planar slides consists on the sliding of a mass of rock on a planar
rupture surface, with little internal deformation. The slide head may be separating from stable rock along
a deep, vertical tension crack. This kind of landslides may evolve in a rock avalanche if the material
disintegrates during the run-out. Rock avalanche are phenomena characterized by the interaction among
rock fragments and water, which lead to a flow-like motion. For both these failure types bedrock
fracturing and weathering is a predisposing factor. Field evidences suggest that in bedrock landslides,
sub-vertical joint systems orthogonal to bedding, may play a fundamental role for the failure.

According to the classification proposed by Hungr et al. (2014), the majority of SDL are planar debris
slide, where an almost planar rupture surface develops parallel to the ground surface. Sometimes, debris

slides become flow-like after a short distance and transform into debris avalanches. Rotational slides are
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characterized by scarp height larger than 1.5 m. Granular flow-slide are present in the study area and
characterized mainly by gravelly and sandy SD lying above the Macigno formation.

Due to logistical and approaching problems, it was not possible to visit additional landslides and conduct
further detailed analyses. It is worth noting that these problems that led to visiting some landslides instead
of others could be a source of uncertainty in the data acquired in the field. However, even if the
distribution of the landslides visited is not random, the data obtained from the field survey are sufficiently

heterogeneous to exclude major errors.
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6.2 SLOPE DEPOSITS FEATURES AT REGIONAL SCALE

About 8 months were necessary to develop the Slope Deposits Engineering Geological Units map
(SDEG map), 4 months for the collection of data in the field, 2 for laboratory analyzes and 2 for data
processing. The method described here allowed to produce a fairly accurate map of the depth of the
slope deposits and to estimate their geotechnical parameters, on lithological and morphometric basis. It
is fair to note that although there are more advanced methods to estimate the depth (automatic drilling
machine, geophysical methods) and shear strength parameters of SD (shear tests), it is unlikely to think
of using those tools in a large area that has a mountainous and logistically complex morphology.
Furthermore, the costs would be enormous to reach an adequate amount of data to characterize an area
such as the one investigated in this work. The proposed method is spatially oriented to regionalize, which
can certainly be improved, has a limited cost, while the consumption of time and energy depends on the
geological and geomorphological variety of the survey sites. The uncertainty resulting from this procedure
is discussed below.

The depth of the slope deposits is a tricky quantity to estimate predict and its spatial variability can be of
the order of tens of centimeters moving tens of meters. For this reason, instead of mapping the SD depth
as a spatially continuous set of scalar values, a nomenclature of depth classes with constant amplitude
was chosen. Having set the width of the classes at 30 cm, the minimum expected uncertainty within each
class is = 15 cm. The accuracy of SD depth map proposed in this work ranges from 0.49 to 0.68, as
described in paragraph 4.2.2. If, on the other hand, a greater error is accepted, i.e. that the uncertainty
expected for each class is £ 45 cm and therefore the assigned class is the one immediately higher or lower,
the accuracy rises from a minimum of 0.77 to a maximum of 0.88. As a general results the SD depth map
highlight that depth increases moving from the ridges towards the valley floor, in accordance with the
theoretical models that describe the development of the SD along the slopes (Dietrich et al., 1995; Lu
and Godt, 2011).

The modelling of SD depth is fundamental task for landslide susceptibility analysis and several authors
proposed different approaches in the last decades (Salciarini et al., 2006; Segoni et al., 2012; Zizioli et al.,
2013; Kim et al., 2016; Cascini et al., 2017) to predict SD depth at regional scale. With the exception of
Kim et alii (2016), where the depth measurements of the slope deposits are interpolated with the kriging
method, the other authors model this parameter on a morphometric basis, using variables such as
elevation, slope, curvature, and so on. Results by Salciarini et alii (2006) show that errors between
predicted and modelled depth is often greater than one meter and may overcome 1.5 m (Figure 6-3). The
same deviation (Figure 6-4) is about 0.5 m with maximum values of about 1 m for the model adopted by
Zizioli et alii (2013). In two different study areas Segoni et alii (2012) obtained with the GIST model a

mean absolute error of 11 cm and 23 cm for the first and the second study area, respectively (Figure 6-5).
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The approach developed by Cascini at alii (2017) consists on the assignation of a depth range (with a
variable amplitude ranging from 0.5 m to 2 meters) combining thematic maps such as lithology, slope,
elevation, curvature and landslide mechanism. The 55% of the test dataset used to validate the depth map
resulted to have a deviation between measured and observed values equal or less than 0.3 m (Figure 6-6).
Finally, the mean absolute error resulted from the cross-validation of the SD depth map by Kim et alii
(2016) 1s 0.74 meters (Figure 6-7).

Given the results listed above, the method proposed in this work allow to obtain a map of slope deposits
depth reasonably accurate, especially considering the study area extension and the involvement of regions
characterized by pronounced geological and geomorphological variability. In this regard, for the approach
proposed in this PhD thesis, the main assumption is that different lithologies imply different landforms,
which in turn affect the distribution of SD depth. Carbonate, metacarbonate and phylladic rocks in fact
give rise within the study area to steep landforms characterized by very thin deposit depths, as the classes
with a depth of less than 90 cm prevail. Sandstone as well as shale and marl are covered by thicker slope
deposits which are often deeper than 120 cm in correspondence of large first order hollows and at the

foot of longer hillslopes.
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Figure 6-3 Relationships between soil thickness and slope values; data are modelled by using an exponential model
(from Salciarini et al. 20006)
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al. 2013)
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Figure 6-6 Results of depth discard betwen measured and observed data (Mv-Av) (from Cascini et alii, 2017)

Table 4 Table of differences necessary to verify the consistency criterion

Mv-Av (m) # points
+0.1 32 13
+0.2 32 13
+0.3 73 29
+0.4 48 19
+0.5 63 25
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Classification Measured IWSD  MBSD IBSD

WsD
a) Soil depth statistics Minimum L oo o 0013
{unit: m) Maximum 1.91 1916 240 233

Mean 0.97 .91 1.14 1.07
Standard 0.4467 04461 04941 04916
deviation

b} Cross validation MAE - 073 - 0,740
MSE 3.5] 4323

MWSD: measured weathered soil depth (m).

WSD: interpolated weathered soil depth (m ).
MBSD: measured surface to bedrock soil depth {m).
IBSD: interpolated surface to bedrock soil depth (m).

Figure 6-7 SD depth statistics and cross validation of the SD map proposed by Kim et alii (2010)

From the laboratory results of the grain size and plasticity properties, a correlation emerges between the
USCS class of SD and the lithological nature of the underlying bedrock. The sandstones (BLU11) are
almost exclusively characterized by SM deposits (silty sand), shales and marls tend to generate finer
deposits belonging to the ML, SM and SC (silt, silty sand and clayey sand, respectively) classes, the
metasedimentary rocks (Phyllites and Metarenites, BLU61 and BLUG2) have deposits of similar
composition (SM and GM, silty sand and silty gravel) although with varying proportions. The deposits
lying above the limestones of BLU 23 instead, have a wider variability: the USCS classes show the modal
value SM, but SC, GM and ML are also widespread.

Working at regional scale, further data than laboratory results are necessary in order to estimate the
variability of geotechnical parameters of slope deposits.

To this purpose, also results of field estimations were used. Figure 4-25 shows the scatter plots comparing
the grain size proportions resulting from the two datasets, and in Table 4.9 the Mean Bias Error for each
class is reported. As shown by the graphs the average error is the same and is ca 6%.

In the work of Vos et ali (2016) these authors observed that the uncertainty between the
tield and laboratory estimates due to the operator for sandy, silty and clayey fractions (according to limits
USDA), is respectively 4, 12 and 16%. Furthermore, these authors pointed out that an intrinsic
uncertainty affects the method used to estimate the grain size fractions in the field: the range of variability
for the same textural class in the USDA triangle is generally in the order of 10-45%. Therefore, taking
into account these issues, an average difference of = 6% between the field estimates and laboratory tests
may be considered a good result.

When integrating field and laboratory analysis datasets of grain size according to a simplified USCS
classification (Figure 4-38) a relevant outcome is the marked increase of gravel. When a slope deposit is
composed by more than 40% of coarse-grained particles (d>2 mm) both undisturbed and representative

sampling are tricky. Considering the simplified USCS classes: SD in the BLU 11 (sandstones) are
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essentially composed by gravels and sands (silty sands mainly), BLU 51 (shales and matrls) and 23
(limestones) display similar proportion among F-S-G, while BLU 61 and 62 (phyllites and metarenites)
are poor in sandy SD in respect to G and F. Finally, BLU 21, 22 and 31 are very little represented.

In order to collect SD parameters used to perform landslide susceptibility analysis a literature review was
conducted (Table 6.2) to compare them with the friction angles and saturated unit weights obtained by this
research (Table 4.14). About 40% of the papers listed in the table, implement the stability analysis by using
both shear strength parameters and unit weight acquired from the literature. Among the works where
SD properties were assessed by means of laboratory analysis, only the works of Chen and Zhang (2014)
and Cervi et al. (2010) are performed at regional scale, confirming that when working for large areas it is
too costly in terms of time and resources to conduct laboratory shear tests on a large amount of
representative samples. However, the results of saturated unit weight determinations of this research
(17.8-20.4 KN/m’) are in good agreement with those obtained by Zizioli et alii (2013), as well as the
friction angles (26.2°-33°). A good degtee of agreement there is observed with the data provided by Marin
and Mattos (2019), Meisina and Scarabelli (2007) and Salciarini et alii (2006). Since no direct laboratory
shear tests were carried out in this work, the effective cohesion values were estimated in back-analysis
starting from the input values shown in the Table 6.3. Initial ¢' data were assigned for each EGU based on
particle size distribution and USCS class. The calibration was performed at EGU scale taking into account
both the absolute susceptibility results obtained by PROBSS and the new inventory of shallow landslides
compiled in this work. The PROBSS model provides three different conditions: the Qc-dependent (Qcd),
the Unconditionally Stable (US) and Unconditionally Unstable (UU). Since PROBSS is a steady-state
model, in UU areas slope failure occurs even when the SD is dry (W = 0). These areas are probably rock
outcrops, where the slope steepness is too high to allow sediment accumulation (Montgomery et al. 1998).
Thanks to the SD depth map obtained in this research, bedrock outcrops and/or very thin SD depth
(<30cm) areas have a well-constrained distinction, decreasing the probability of misprediction occurring
when UU areas are widespread. Consequently, since the UU condition is a paradox, the first calibration
to be performed on the effective cohesion is to set its minimum value at BLU scale in order to minimize
the UU areas. The US zones are sites where there is no slope failure even when the W = 1, i.e. the water
table reaches the topographical surface. The maximum effective cohesion value is set at EGU scale in
order to minimize the number of landslides falling within the stable areas. By intersecting the levels of
US, EGU and landslides, the ¢’ maximum value is decreased in the EGUs in which slope failures have
occurred. A similar approach is performed in the Qc-dependent (Qcd), corresponding to those areas
which do not fulfil both the UU and US condition, maximizing the susceptibility value in EGUs were
landslides have occurred by decreasing the value of ¢ '. The procedure described above is iterative. To

quantify the role of effective cohesion for the estimation of the susceptibility to SD, two scenarios with
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constant c¢' values of 1 kPa and 10 kPa are respectively computed and compared with the output of the

model obtained after the calibration of ¢’ (Figure 6-8).

Table 6.2 Literature review of shear strenght and saturated unit weight values used as input parameters for regional
physically-based susceptibility modeling

Saturated i ; Stud
it Friction Angle (°) Effectlvl::Pcohesmn Source of areay
Reference . (kPa) SD
weight ter (km?)
(kN /m3) min max min max parameters
Teixeira et al. (2015) 13.7-15.7 31 35 2 23 back-analysis [ 1.2
Marin and Mattos (2019) | 19-19.5 | 225 30 7.9 15 lab teston | |
specimens
Meisina and Scarabelli 2007) | 19.5 18 35 0 0.23 labteston 1
specimens
Michel et al. (2014) 14-21 25 37 9 14 lab teston
specimens
Zizioli et al. (2013) 17.4-19.9 23 32 0 10 lab teston |,
specimens
Pradhan and Kim (2016) 16.5 356 | 356 2.14 214 | labteston 5
specimens
Chen and Zhang (2014) 21 31 42 2 6 labeston |y 0
specimens
Cervi et al. (2010) 20-24 10 35 0 10 labeston |5
specimens
Oliveira et al. (2017) 17.5-21 19 27 1 4 literature | 14
Salciarini et al. (2006) 18-19.5 18 34 0 10 literature 100
Carrara et al. (2008) 18 30 40 1 3 literature 300
Weidner et al. (2018) 15 30 35 1 4 literature | 375
Wang et al. (2020) 13-21 16.5 40 5 50 literature | 2%103

Table 6.3 Comparison among results of physically-based susceptibility models implemented with constant effective cohesion
values of either 1kPa or 10 kPa, or based on ¢’ calibration

Effective Cohesion US (%) QcS (%) UU (%)
min ‘ max ‘ median | Total area | Landslides | Total area | Landslides | Total area | Landslides
1 26.3 2.6 62.4 82.7 11.3 14.7
10 97.3 87.4 2.7 12.6 0 0
3.15 ‘ 6.27 ‘ 4.75 64.6 13.6 35.3 86.4 0.1 0.0
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Figure 6-8 Quantification of the role of effective cohesion for the estimation of susceptibility of SD. Effects of constant ¢'
values of 1 kPa and 10 kPa compared with the ¢’ range obtained by model calibration.
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6.3 ASSESSMENT OF BEDROCK GEO-MECHANICAL

PROPERTIES AND REGIONALIZATION

In the literature different methods for the classification of rock masses have been proposed. Among the
most used the Barton’s Q (Barton, 1976), RMR (Bieniawski, 1993), RMi (Palmstrem, 1996) and GSI
(Hoek, 1994; Marinos and Hoek, 2000) methods may be selected. All these methods were developed as
a response to the need to quantify the quality of rock masses for engineering purposes. Except for the
GSI, this is done mainly by integrating a set of "weights" derived from physical and engineering geological
characteristics, such as the lithological nature, the uniaxial compressive strength and the frequency,
weathering and persistence of discontinuities. Excepting for the GSI, the application of the rock mass
classifications listed above is time consuming and not feasible for regional scale rock mass quality
assessment. For this reason, in this work the GSI was preferred due to its fastness and versatility in
characterizing natural outcrops. This method was integrated with the analysis of the joints and the in-situ
acquisition of Schmidt hammer rebound (Rv) applied over the whole extension of the outcrops, by using
a regular grid consisting of twenty nodes where twenty rebounds are acquired. This approach allowed to
calculate an outcrop average rebound value Rv that was then used to empirically estimate the uniaxial
compressive strength (UCS) by means the empirical correlation proposed by Deere and Miller (1966),
chosen because reach the highest correlation index (0.94) and include the dry unit weight. The Deere &
Miller formula was obtained by measuring mainly hard rocks, for this reason the minimum R value
measured by the authors in their specimens is 23. The rebound values obtained in this work are
sometimes lower that this value, opening up the issue of the reliability of the empirical relationship to
calculate low UCS values. Among other empirical correlation available in the literature (Table 2.5), validity
range that are suitable for the purpose of this work are proposed by: Aufmuth (1973), Torabi et al. (2011),
Karaman and Kesimal (2015), Selcuk and Yabalak (2015) and Hebib et al. (2017). The empirical
correlation proposed by Aufmuth is the only one based on a linear equation and tends to overestimate
the value of UCS compared to other works. Hebib et al. (2017) conduct the analysis only in sedimentary
rocks. In the functions proposed by Torabi et al. (2011), Karaman and Kesimal (2015) and Sel¢uk and
Yabalak (2015) the dry unit weight is not considered. Regarding this issue, Aydin and Basu (2005) discuss
the usefulness of implementing in empirical correlations the dry unit weight affirming that where reliable
density measurements are available, they will likely correlate as well with the mechanical properties as the
Schmidt hammer test. The use of dry unit weight may help reducing the influence of surface deterioration
and/or small-scale variations (of asperities, minerals, cracks, etc), which could dominate Schmidt hammer
results of certain specimens. Since one of the objectives of this PhD thesis is to characterize the properties

of sub-surface rock masses at regional scale, the dry unit weight is useful for discriminating among rock
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masses of the same or different BLU but affected by different processes of micro-fracturing and

weathering.

In the literature, few works have been found aiming at spatialization of rock masses quality at regional
scale and they are based on geostatistical methods. Shokri et alii (2020) provide a review about spatial
correlation of measurements in rock mass. The authors report a summarizing table of semi-variogram
parameters (nugget, sill, range) of several case studies aiming to spatialize geotechnical properties such as
GSI, Schmidt Hammer rebound, UCS, RMR and so on. Mammoliti (2020) proposed an expeditious
method based on the systematic collection of fieldwork hardness measurements to describe the variability
of subsurface rock masses quality at the map scale. The spatialization of field data was performed by
using Bayesian Networks and morphometric variables. Nevertheless, in this thesis, the aim was to
recognize the existence of spatial domains (BMU) characterized by different geo-mechanical properties.
Hence, uni-variate and multi-variate clustering were used to highlight that, within the same geological
formation (the Macigno flysch, MAC), a clustered variability of rock mass properties occurs influencing
the distribution of shallow landslides. The expert-based delineation of BMUS is based on the assumption
that the geological evolution of the study area, together with meteoric weathering and erosion, played a
fundamental role in shaping the landscape and diversifying the geo-mechanical evolution of rock masses.
The biggest limitation of this approach is that the boundaries of the BMUs are abrupt and not always
defined by indisputable geological evidence.

The distribution of bedrock properties in the Macigno formation is characterized by the occurrence of a
low-quality cluster, located in the southern portion of the study area, in which Rv and GSI have the
lowest values. Higher Rv and GSI occur in the western and eastern portion (BMU3 and 4) displaying also
an increase of Jv, suggesting that while the BMUT1 is the most weathered, BMU3 and BMU4 are more
fractured. Finally, BMU2, located in the northern portion, has the lowest Jv and the highest Rv and GSI.
This clustering may be related to the structural setting of the study area. The Garfagnana valley is a
tectonically active narrow post-collisional basin (Carmignani et al., 2001) with a Late Quaternary throw
rates ranging from 0.4 to 0.6 mm/year (Di Naccio et al., 2013) bounded by two main sub-parallel ridges
less than 20 km far to each other. Both the ridges reach about 2000 m a.s.l. In the southwest mainly
consisted in green schists facies metamorphic rocks while in the north-east sedimentary flysch (Macigno
fm.) crops out from the bottom of the valley to the watershed (Figure 3-7). This morpho-structural setting
is due to regional systems of normal faults dissecting the Apennine’s chain. The geo-mechanical clusters,
recognized by integrating field surveys and spatial processing of measurements during this PhD research,
coupled with the tectonic information above-mentioned, allow to depict an interesting novel framework:
quality of the rock masses increases in correspondence of the footwall of major normal faults, while are

worst at the hanging wall, which today correspond to the bottom of the Garfagnana valley. This area
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corresponds more or less to the BMU1. These characters may be explained with both a slow erosion rate
and lower topographic elevation, which in turn imply faster weathering as well as slower bedrock erosion.
The Macigno sandstones is a rock used as building material and dimension stone since prehistoric times
and is still quarried in some areas of the northern Apennines. In Lezzerini et alii (2008), rock specimens
were sampled into two quarries located about 50 km away from the study area of this PhD thesis, to
uniaxial compression test. The UCS resulted to be 140 MPa. The UCS results obtained here by means
empirical correlations, provided maximum values of 70 MPa and minimum values of 15 MPa. Although
these data cannot be directly compared, it is worth to note that the geomechanical properties of the
subsurface units of this formation are spatially heterogeneous as a combined effect of regional tectonics
and weathering. As a consequence, the same formation may result as a source for dimension stone or
either the location for one of the most landslide prone areas in northern Apennines (Avanzi et al. 2010

and references there in; D’Addario et al. 2018).

As for the procedure here implemented to estimate the shear strength parameters of the bedrock, the
method proposed by Hoek and Brown (1997) to calculate Mohr-Coulomb equivalent parameters is
widely accepted and used in the literature (Sjoberg, 1997; Marinos and Hoek, 2001; Cai et al., 2004, 2007,
Priest, 2005; Tides and Ceryan, 2011; Shen et al., 2012; Berti et al., 2017; Vasarhelyi and Kovacs, 2017,
Wei et al., 2019). The method allows to estimate the internal friction angle and effective cohesion of rock
masses by using the uniaxial compressive strength (UCS), a frictional parameter (m;) and the GSI. In
general, rock masses exhibit post-peak strain-softening behaviour where the post-peak strength depends
on the resistance developed on the failure plane against further straining (Cai et al., 2007). In jointed rock
masses the failure occurs mainly depending on fractures orientation, degree of interlocking and surface
roughness. The current GSI system guidelines were developed for the estimation of the peak strength.
Cai et alii (2007) proposed a new method for the estimation of residual strength of rock masses reducing
the peak GSI to the residual GSI, based on in-situ block shear test data from three large scale cavern
construction sites and data from a back-analysis of rock slopes (Figure 6-9). Since the aim of this work is
to evaluate shear strength parameters of jointed rock masses affected by deformation due to slope
failures, the equivalent Mohr-Coulomb parameters were calculated using the residual GSI. In Table 6.4 the
shear strength parameters obtained with the Mohr-Coulomb failure criterion during this PhD research
are compared with other datasets from the literature. Except the work of Tiudes and Ceryan (2011), in

the other papers the parameters were calculated for slope analysis purposes.
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Figure 6-9 Degradation of the block volume and joint surface condition of a rock mass from peak to residual state ( from
Cai et alii, 2007)

Table 6.4 Shear strength parameters using Hoek-Brown criterion obtained in the literature

Ref U 1 Ger | gst ° ° ¢ ¢ Lithol P
eference " . itholo urpose
(MPa) 6 | ) (KPa) (KPa) gy p
Arenaceous Slope
Berti et al. (2017) 20 35 28-30 - 20-40 -
Flysch stability
Slope
Shen et al. (2012) 30 15 - 21-27 - 151-212 - Schist
stability
. Slope
This work 12-70 25-70 | 13-27 | 24-57 | 18-34 | 17-240 14-40 Sandstone
stability
Tudes and 290- Road cut
12-132 7-33 5-16 | 11-24 | 10-16 124-1896 Intrusive
Ceryan (2011) 3360
Slope
Wei et al. (2019) 30 5 - 24-38 - 12-41 - Sandstone
stability
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The residual shear strength parameters calculated in this thesis are quite similar to those used in the works
of Berti et al. (2017) and Wei et al. (2019). These authors once the friction angle and effective cohesion
were determined, computed a slope stability analysis using Finite Elements Method. Ca’ Mengoni
landslide modelled by Berti et alii (2017) is a deep-seated landslides more than 1 km long with a main
scarp of 70 meters and a sliding plane located in general 30 meters below the topographic surface. The
best accuracy was obtained with a combination of ¢ = 29° and ¢’ = 40 KPa.

Even if the landslide inventory of this work consists of shallow landslides with a main scarp located
always shallower than 4 meters, the shear strength parameters assigned to BMUs are reasonable and in

accordance with the literature.
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6.4 SHALLOW LANDSLIDES SUSCEPTIBILITY MODELLING

The aims of the susceptibility modelling were:
® To perform a physically-based regional susceptibility analysis for shallow landslide and calibrate
the input parameters in order to obtain accurate results in respect to the landslide inventory
* To compare the susceptibility distribution between the physically-based and the data-driven
method
* To compare the results of modelling SDL and BRL by using the Information Value

® To assess the susceptibility of involving bedrock landslides by means the physically based method

All the key objectives listed above are already discussed separately in chapter 5. Here, the discussion will
mainly concern the limits and merits of the models used, evidences and questions the models have
highlighted and hypothesis beyond landslides affecting the bedrock.

In respect to a data-driven approach, the complexity of physically-based models rely on parameterisation
that can be a tricky task because of the uncertainty of critical parameters such as the distribution of SD
depth, geotechnical and hydraulic properties. Further drawbacks of the physically based method are the
degree of simplification involved and the need for large amounts of reliable input data. Nevertheless,
being based on slope stability models, they follow a white-box approach where the involved physical
processes are recognized and modelled (Corominas et al., 2014).

The comparison between PROBSS and Information Value (IV) has the aim to highlight the differences
between two different approaches. In order to obtain satisfying results, the physically-based approach
required an extensive field data acquisition task and calibration of input geotechnical parameters. Instead,
a detailed landslide inventory and the spatial analysis of predisposing factors were necessary to perform
data driven susceptibility analysis.

A result that the physically based model showed, was to confirm that the method here proposed, even if
based on the simplified approach of both the infinite slope and the steady state hypothesis for the
evaluation of pore pressure, may provide accurate results if the input parameters are obtained by
integrating fieldwork observation and measurements, as well as, lab determinations. The approach here
presented for the realization of the slope deposits depth map, integrating the morphometric analysis with
field measurements, was found to be effective and is expected it could be in other contexts, also. The
engineering geological parameterization of materials, both the slope deposits and the rock masses,
provided results in line with the literature data where the strength parameters were mainly assessed from
direct laboratory tests. Obviously, apart the accuracy assessment performed for the susceptibility results

(chapter 5), a task for undisturbed samples collection and lab determinations of physical-mechanical
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parameters would allow to test also the reliability of the input parameter ranges mainly obtained by semi-
quantitative field estimations.

Using the IV model allowed to explore and analyse the role of predisposing factors for the development
shallow landslides either involving the slope deposits, or also the underlying bedrock. Because the data
driven models are sensitive to the input landslide dataset used to calculate the weights, it was possible to
compare and combine the susceptibility maps obtained using SDIL and BRL (Figure 5-16). In order to
discriminate sites where SDL and BRL tend to occur, the frequency distribution of some morphometric
variables and SD depth was analyzed in high susceptibility classes (Figure 6-10). From the histograms
below, it is evident that there are some predisposing factors that rule the location of sliding surfaces: the
slope failure with a rupture surface located below the SD/BR discontinuity (ted bars) occur in steeper

slopes, in thinner SD and in convex curvatures.
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Figure 6-10 Frequency distribution of some morphometric variables and SD depth in high susceptibility classes. The red
bars refer to bedrock landslides, blue bats to slope deposits landslides.
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The median measured scarp height of SD visited landslides is about 1 meter and is 2 meters for BRL
(Figure 4-5). The simplification of the infinite slope, where a failure surface parallel to the ground surface
develops at the bedrock-slope deposits discontinuity, quite often does not agree with the field observation
within the study area of this PhD thesis. In fact, the rupture surface frequently occurs within the slope
deposits, at least 0.2-0.5 meters above the bedrock interface. Moreover, a large percentage (about 60%0)
of the visited landslides developed a sliding surface located below the discontinuity between the slope
deposit and the bedrock. From the field observations (Figure 4-5)., most of the BRL occurred mainly where
the SD depth is below 1 meters, while the rupture surface is usually located at 2 meters depth, suggesting
that the fractured and weathered bedrock layer extended in depth for more than 1-1.2 meters under the
slope deposits/bedrock interface.

In his PhD thesis, Papasidero (2019) characterized the hydrological properties of the SD, focusing mainly
on field determinations of hydraulic conductivity (K) and its spatialization on regional scale. To reach
this objective, several (more than 700) hydraulic conductivity in situ tests (Ktests) were carried out in
Northern Tuscany, some of them located in the study area of this thesis.

For each borehole, different tests were performed at increasing depth, generally involving horizons 20-
30 cm thick. This method allowed to investigate the variation of K with depth within the slope deposits
(Figure 6-11).

A high negative correlation was observed between logK and the depth (R — Pearson = —0.79). Moreover,
when selecting only the Ktests performed downhole, that is in the deepest horizons, the decrease of logK

was observed with increasing SD depth (Figure 6-12).

H;L-E| : I Step 2 : Step -I [ovtal :

Figure 6-11 Hydraulic conductivity in situ test scheme (from Papasidero 2019)
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Figure 6-12 Measured K distribution for each horizon at site scale (left). Distribution of K measured at the bottom of the
boreholes (right, deepest horizons)

In summary, the conclusion that can be drawn is that the deepest SD horizons has the lowest
permeability, and since the depth of the deepest horizon varies with the depth of the slope deposits, it
can be stated that, as a general condition, a thin SD has a bottom permeability greater than a deep SD,
and the deviation of K is almost of two orders of magnitude.

According to what has been said so far, it is possible to hypothesize the scenarios that ruled the
development of shallow landslides that involve the bedrock or not (Figure 6-13). Where there is a thin
slope deposit, and the quality of bedrock is good, shallow landslides should develop with a rupture surface
parallel to the topographic surface and coinciding with the discontinuity between slope deposits and
bedrock. On the other hand, if the quality of the bedrock is low, the water infiltration proceeds vertically
until a hydraulic discontinuity is found which in this case should be localized in the bedrock, between the
weathered and fractured shallower portion and the underneath more intact portion. In this scenario the
failure surface is localized in the low-quality bedrock. Where there are thick (> 90 cm) slope deposits, the
quality of the bedrock plays a secondary role since the hydraulic discontinuity can be located in the
deepest portion of the SD. In this scenario, the landslide will have a rupture surface localized above the
discontinuity between slope deposits and bedrock. According to this hypothesis, the conditions that
should trigger landslides involving bedrock are less frequent, however in accordance with the modalities
of genesis and development of the slope deposits, where these are thicker the slope steepness may not

be enough to overcome the resistant forces to trigger landsliding.
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Figure 6-13 Landsliding scenarios according to SD depth and bedrock quality
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7 CONCLUSIONS

In the field of landslide susceptibility assessment different modelling approaches can be implemented
with different degrees of detail. Landsliding is a complex phenomenon and its modelling aimed at
predicting where these phenomena are most likely to occur is a tricky issue to perform. Moreover, for
both data-driven and physically-based models, paying adequate attention to the predisposing factors,
triggering factors, and input parameters is no less important. For these reasons these latter tasks represent
the focus of this PhD thesis which was organized in the following main topics: realization of a
multitemporal shallow landslide inventory, acquisition of new field and lab data about slope deposits and
sub-surface bedrock susceptible to shallow instability and regionalization of their engineering geological
parameters, comparison between data-driven and physically-based methods for landslide susceptibility
assessment and analysis of the role of bedrock for the development of shallow landslides.

The new multitemporal landslide inventory compiled by means of visual interpretation of orthophoto
maps allowed to detect recent (2003-2016) slope failures occurred in a portion of the Garfagnana basin.
The inventory represented the starting point to plan and implement a method based on integration of
field survey and laboratory analyses, aimed at investigating and constraining the materials involved in
landsliding from an engineering geological point of view. Field observations allowed us to highlight that
shallow landsliding processes depend on the depth of the slope deposits, as well as they involve the upper
portion of the underlying weathered and fractured bedrock.

For these reasons, fieldwork and laboratory analyses focused on the spatial distribution of depth of slope
deposits and weathered bedrock depth, as well as the characterization of their engineering geological

properties (namely, shear strength parameters and unit weight).

Shallow landslides inventory

® The overall accuracy of the multitemporal landslide inventory evaluated by means of field checks
resulted to be 0.80, while the true positive rate was 0.86.

* During the fieldwork, 81/191 landslides occurring within different Bedrock Lithological Units
(BLU) were visited and analyzed. The 40% of these slope failures involves the slope deposits only
(SDL), while the 60% involves also the weathered and fractured upper portion of the bedrock

® The two groups of landslides show further different characteristics: BRL are larger (median area
ca. 600 m* instead of 350 m?), have a deeper scarp height (about 2 m instead of 1 m) and generally

occur where slope deposits are thinner.
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Apart the above differences, all the landslides recognized can be considered as “shallow”,

according to the size and the shallow rupture surface.

Slope deposits

The results of this PhD research allowed to highlight that different bedrock lithology and
morphometric conditions represent the main parameters to predict the spatial variation of both
their depth and engineering geological parameters.

For each Bedrock Lithological Unit, a multivariate analysis of derivatives of the DEM, such as
slope steepness, flow accumulation, curvatures and elevation was performed in order to extract
sets of 5 - 15 morphometric units, or landforms.

Data about slope deposits were collected for a total of 413 field observation sites located inside,
near and far from landslides. Field investigation often consisted in the vertical hand digging by
the pickaxe, with measurement of soil depth as well as collection of data concerning layering,
grain size and texture. Slope deposits samples were collected in order to conduct lab test for the
estimation of unit weight and grain size distribution. When the slope deposits depth was relatively
thin, quick investigation was performed by measuring the SD depth.

The integrated analysis of field data, lab results and the morphometric units allowed us to obtain
the Engineering Geological map of the Slope Deposits, where a set of parameters, such as slope
deposit depth, friction angle, effective cohesion and unit weight are assigned to each Engineering
Geological Slope Deposits unit.

The hierarchical nomenclature adopted to describe the spatial distribution of slope deposits depth
consists of 2 first order classes and 8 second order classes. Thin slope deposits belong to the first
order group "A", while thick deposits belong to the group "B". The group “A” is made up of
three second order classes where the depth ranges between 0 cm and 30 cm. The group “B” is
made up of five second order classes, each one characterized by a constant depth interval of 30
cm. For each observation site the depth class was defined according to the field measurements.
Then, the most frequent depth class was assigned to each morphometric unit. The accuracy of
the SD depth map ranges from 0.49 to 0.68, with an expected uncertainty of £15 cm. With an
expected uncertainty of = 45 cm, the accuracy rises from a minimum of 0.77 to a maximum of
0.88. The accuracy and the uncertainty resulted by the method proposed in this PhD thesis are
similar or better to other methods proposed in the literature.

From lab tests of grain size distribution, plasticity and unit weight, integrated by field grain size
estimations, slope deposit samples were classified following the USCS nomenclature. Then, by
using literature empirical correlations integrating unit weight, relative density and USCS class, the

ranges for friction angle were estimated. These results are in good agreement with those obtained
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by direct shear tests reported in the literature. Instead, the effective cohesion was evaluated in

back analysis by calibrating the results of physically based modelling with the landslide inventory.

Bedrock

In order to characterize bedrock geo-mechanical properties, the same sampling strategy adopted
for the slope deposits was carried during field survey, that is, bedrock information was acquired
inside and near the landslides, as well as in the areas not affected by slope failures. For each one
of the 105 investigation sites, ca. 400 Schmidt hammer rebound values were acquired, along
with orientation and spacing of the main discontinuity sets, and the Geological Strength Index
(GSD).
The descriptive statistics of the above data highlighted that the quality of the sub-surface bedrock
is different when comparing among locations inside, near and far from landslides. In addition,
the uni-variate and multi-variate spatial analysis enabled to recognize that this heterogeneity
defines different spatial clusters. In general terms, this is an important outcome which is useful
to improve regionalized landslide assessment studies, because it shows that geo-mechanical
characters spatially vary identifying different Bedrock Geo-mechanical Units correlated with
geology, structural setting and the DEM.
According to the spatial clustering of field observations, the study area was split in 4 Bedrock
Geo-mechanical Units. To estimate the corresponding Mohr-Coulomb equivalent shear strength
parameters, the Hoek & Brown failure criterion integrated with the GSI was used. The output

parameters resulted to be in good agreement with the literature.

Shallow landslide susceptibility modelling

Regionalized susceptibility was estimated by both data-driven and physically based methods and
the results were compared.

The results of the data-driven susceptibility analysis, described in terms of both AUROC and
distribution of landslides within the susceptibility classes, showed that BRL and SDL should be
investigated and analysed separately. In order to accurately distinguish between these shallow
landslide types, remote sensing and morphometric analysis is generally not adequate, hence field
work continues to represent a fundamental task to obtain reliable regionalized susceptibility
analyses.

Even though detailed landslide inventories are in principle not mandatory to perform regionalized
susceptibility analyses by using physically based methods, these represent a fundamental tool in
otder to validate and critically analyse the modelling results. The first modelling tasks of this PhD
were performed assuming a rupture surface located in correspondence of the slope
deposits/bedrock interface, that is the typical infinite slope approach. The validation was
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performed by using all the visited landslides as a test dataset, hence without discriminating
between BRL and SDL. The AUROC value obtained from the physically based model compared
to the data driven model would have led to the first conclusion that black box models may be
preferred when applying numerical modelling at the regional scale, especially if no information
of the materials involved in the slope failure were available. Instead, by separately modelling BRL
and SDL, i.e. by performing numerical analyses based on either the slope deposits or the
subsurface bedrock parametrization, the accuracy of the output susceptibility maps are
significantly improved and result to be almost similar to those obtained by data driven methods.
® The results of this PhD thesis highlight the importance of the probabilistic approach when
performing stability analysis by using physically based methods. Both the natural variability and
the determination uncertainty of the input parameters, such as slope deposits depth and shear
strength may be reasonably represented by this approach. Namely, having available a distribution
of critical effective rainfall Qc values, enabled us to produce different scenarios of susceptibility,
e.g. different maps corresponding to different percentiles, and to infer various issues like:
estimating how relevant are uncertainties for the definition of the final susceptibility classes,
identifying the recurring characters of those areas where the uncertainty of the Qc estimations
are larger. In this PhD thesis, the probabilistic approach also allowed us for a smooth assessment
of the potential for the occurrence of either bedrock or deposit landslides (BRL or SDL).
Furthermore, as a further step, the frequency distribution of Qc could be integrated with the
rainfall intensity probability distribution at regional scale in order to obtain a landslide hazard
instead of susceptibility map. In this context, also the return period of rainfall events should be
taken into account, as well as the deviation between total and effective rainfall resulting from the

integrated effects of evapotranspiration, runoff and ground-soil storage processes.

In conclusion, this thesis represents a contribution toward the definition of general robust criteria and
methods for field data acquisition and processing, aimed at performing regional-scale susceptibility
analyses for shallow landslides, where the rupture surface may be located either in correspondence of the
slope deposit-bedrock discontinuity or within the weathered and fractured upper portion of underlying

rock masses.
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DATA: ID FRAMNA: RILEWVATORE:
FRESEMTEIMDB GIS osi ono ID D3: 10 LITEC:
LOCALITA': MUM_SEZ: RIF_CQORD:
GUCTA: MNORD: E3T:
FRANA
Material type Movement type (Hunar et al.. 2014)
o FALL o SLIDE
o ROCK o PLANAR
o TOPPLE o ROTATIOMAL
o SOIL f DEPOSIT f COLLUVILRM o FLOW
O SPREAD o FLOWSLIDE
o DEBRIS FLOW
o EARTH FLOW
o AVALAMCHE
Substrato Coinvolgimento o S [Compilars s non sseguibie DZELTEC]
N
Bedding: Descrizione:
Joints:
3l
morfometria scar. morfelogia scarp. Morfometria

altezza [m)

larghezza [m)

o reftiinea
o CuUna

o multipla
o irregolare

Dizliv corono-pieds [m):

Lungh. corona-

Larghezza (m)

piede (m):

Angolo sup. scivolamento [7);

EROSIONE IN ATTO

CAUSE

predisponenti

scatenanti

o ruscellam. diffuso

o fosso di erosions concenfrata
o calanchi

o arcsione di sponda

o approfondimento in alveo

o soliflusso

o reptozione

o litclogio

o morfoclogia

o assetto strutturale

o faglie e fratturazione
o alterazione

o uso delsucle

C eventi sismici

O erosicne al piede

O antropiche
O carico a monte

0 eventi metecrici O drenoggio
o estremi imgedite
o stagional O disboscamento

C sbancamento
{0

zone limitrofe alla frana

© seminato 0 poscalo fipologia bosco: stato vegetativo:
o frumento o vigna o faggio o naturale o antropice
o foraggio o arbustivo 0 cerro { quercia i
o altro ....... o aree incolte o castagni diametro fusto (cm):
o frutteto o urbonizzato 0 acacia /
© besco 0 conifere distanza media tra fust
o misto
(m):
area in frana NOTE
Grado rivegetazione: Tipologia rivegetazione:
o totalmente riveg. o erbacea
O agbbastanzo riveg. O arbustiva
© parzialm. iveg. © arborea
© assente diametro fusto (cm):
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Slope deposits grain size field estimation

ID Site ID sample Formation BLU Gravel Sand Fine USCS (simplified)
D41006 D41006GA MAC 11 25 51 24 S
D41010 D41010GA MAC 11 25 50 25 S
E41003 E41003GA MAC 11 25 34 41 S
E41009 E41009GA MAC 11 25 51 24 S
E41015 E41015GA MAC 11 30 32 38 S
E41019 E41019GA MAC 11 40 19 41 G
E41023 E41023GA MAC 11 30 34 36 S
E41024 E41024GA MAC 11 45 38 17 G
E41026 E41026GA MAC 11 15 55 30 S
E41033 E41033GA MAC 11 25 52 23 S
E41052 E41052GA MAC 11 35 43 22 S
E41086 E41086GA MAC 11 40 40 20 S
E41087 E41087GA MAC 11 50 34 16 G
E41089 E41089GA MAC 11 35 17 48 G
E41091 E41091GA MAC 11 45 25 30 G
E41092 E41092GA MAC 11 20 32 48 S
E41097 E41097GA MAC 11 40 16 44 G
E411006 E41106GA MAC 11 20 26 54 F
E41111 E41111GA MAC 11 15 37 48 S
E41124 E41124GA MAC 11 40 42 18 S
E41127 E41127GA MAC 11 40 42 18 S
E41145 E41145GA MAC 11 15 39 46 S
E41159 E41159GA MAC 11 20 42 38 S
E41169 E41169GA MAC 11 20 27 53 F
E41174 E41174GA MAC 11 25 32 43 S
E41190 E41190GA MAC 11 35 30 35 G
E41195 E41195GA MAC 11 40 27 33 G
E41210 E41210GA MAC 11 20 52 28 S
P41005 P41005GA MAC 11 25 34 41 S
P41005 P41005GB MAC 11 30 34 36 S
P41015 P41015GA MAC 11 5 30 65 F
P41018 P41018GA MAC 11 15 35 50 S
P41018 P41018GB MAC 11 40 26 34 G
P41023 P41023GA MAC 11 20 36 44 S
P41023 P41023GB MAC 11 20 35 45 S
P41025 P41025GA MAC 11 20 28 52 F
P41036 P41036GA MAC 11 35 30 35 G
P41040 P41040GA MAC 11 10 38 52 F
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P41040 P41040GB MAC 11 25 33 42 S
P41061 P41061GA MAC 11 10 55 35 S
P41062 P41062GA MAC 11 5 44 51 F
P41062 P41062GB MAC 11 5 44 51 F
P41069 P41069GA MAC 11 45 40 15 G
P41088 P41088GA MAC 11 40 26 34 G
P41098 P41098GA MAC 11 30 48 22 S
P41098 P41098GB MAC 11 30 47 23 S
P41101 P41101GA MAC 11 20 30 50 S
P41101 P41101GB MAC 11 25 28 47 S
P41106 P41106GA MAC 11 20 35 45 S
P41106 P41106GB MAC 11 20 36 44 S
P41107 P41107GA MAC 11 40 31 29 G
P41126 P41126GA MAC 11 25 24 51 F
P41127 P41127GA MAC 11 25 39 36 S
P41127 P41127GB MAC 11 25 37 38 S
P41129 P41129GA MAC 11 25 60 15 S
V41011 V41011GA MAC 11 20 23 57 F
V41016 V41016GA MAC 11 20 10 70 F
V41018 V41018GA MAC 11 40 28 32 G
V41028 V41028GA MAC 11 30 35 35 S
E41185 E41185GA SSR 22 20 33 47 S
141045 141045GA MCP 22 40 8 52 F
E41044 E41044GA STO3 23 25 35 40 S
E41069 E41069GA MAI 23 30 47 23 S
E41070 E41070GA MAI 23 45 38 17 G
E41072 E41072GA LIM 23 40 31 29 G
E41083 E41083GA LIM 23 30 33 37 S
E41084 E41084GA LIM 23 25 37 38 S
E41108 E41108GA STO3 23 30 10 60 F
E41113 E41113GA STO3 23 40 28 32 G
E41139 E41139GA MAI 23 20 36 44 S
141006 141006GA MAI 23 10 23 67 F
141008 141008GA LIM 23 15 20 65 F
141014 141014GA MAI 23 40 31 29 G
141057 141057GA LIM 23 20 22 58 F
1410061 141061GA CCA 23 50 13 37 G
141061 141061GB CCA 23 50 21 29 G
P41011 P41011GA MAI 23 10 42 48 S
P41011 P41011GB MAI 23 10 42 48 S
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P41124 P41124GA CCA 23 45 7 48 G
P41124 P41124GB CCA 23 15 23 62 F
V41006 V41006GA STO3 23 30 35 35 S
V41007 V41007GA STO3 23 30 38 32 S
E41078 E41078GA bnb 31 60 27 13 G
E41162 E41162GA VILc 31 20 53 27 S
E41163 E41163GA VILc 31 20 53 27 S
P41038 P41038GA VILa 31 15 27 58 F
P41066 P41066GA bna 31 25 61 14 S
E41042 E41042GA STO 51 30 25 45 G
E41046 E41046GA STO 51 10 22 68 F
E41071 E41071GA POD 51 25 38 37 S
E41077 E41077GA pv 51 40 44 16 S
E41098 E41098GA POD 51 20 25 55 F
E41099 E41099GA POD 51 30 19 51 F
E41100 E41100GA POD 51 20 21 59 F
E41101 E41101GA POD 51 10 25 65 F
E41102 E41102GA POD 51 20 20 60 F
E41103 E41103GA POD 51 20 24 56 F
E41105 E41105GA OMT 51 30 24 46 G
E41109 E41109GA STO 51 25 16 59 F
E41114 E41114GA STO 51 40 13 47 G
E41129 E41129GA POD 51 30 22 48 G
E41130 E41130GA POD 51 35 20 45 G
E41137 E41137GA POD 51 10 19 71 F
E41138 E41138GA POD 51 20 12 68 F
E41155 E41155GA MMA 51 40 27 33 G
E41156 E41156GA MMA 51 30 35 35 S
E41164 E41164GA bv 51 40 28 32 G
E41168 E41168GA bv 51 30 35 35 S
141004 141004GA POD 51 25 34 41 S
141025 141025GA POD 51 5 3 92 F
P41039 P41039GA STO 51 40 21 39 G
P41043 P41043GA POD 51 20 31 49 S
P41046 P41046GA POD 51 10 26 64 F
P41072 P41072GA STO 51 10 50 40 S
P41082 P41082GA STO 51 35 29 36 G
P41112 P41112GA POD 51 30 34 36 S
P41112 P41112GB POD 51 30 35 35 S
P41122 P41122GA POD 51 10 25 65 F
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P41123 P41123GA POD 51 30 18 52 F
V41001 V41001GA STO 51 25 25 50 F
E41136 E41136GA PSM 62 40 32 28 G
141030 141030GA PSM 62 20 23 57 F
141036 141036GA PSM 62 40 13 47 G
141036 141036GB PSM 62 40 13 47 G
141038 141038GA PSM 62 15 9 76 F
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Slope deposits grain size laboratory analysis

ID ID Silt (0,074 - Clay USCS
. sample Formation | BLU | Gravel | Sand | Fine 0,002 mm) (<0,002 simplified USCS
mm)

D41006 | D41006GA MAC 11 22 51 26 22 5 S SC-SM
D41010 | D41010GA MAC 11 19 60 20 17 4 S SM
E41003 | E41003GA MAC 11 27 37 36 30 6 S SM
E41009 | E41009GA MAC 11 23 36 41 33 8 S SC
E41015 | E41015GA MAC 11 29 43 28 24 4 S SC-SM
E41019 | E41019GA MAC 11 29 39 31 24 8 S SC-SM
E41023 | E41023GA MAC 11 31 42 27 21 6 S SM
E41024 | E41024GA MAC 11 49 37 14 11 3 G GM
E41026 | E41026GA MAC 11 19 36 45 36 9 S SC
E41033 | E41033GA MAC 11 32 47 20 17 3 S SM
E41052 | E41052GA MAC 11 28 36 36 28 8 S SM
E41086 | E41086GA MAC 11 36 43 21 18 2 S SM
E41087 | E41087GA MAC 11 42 38 20 17 3 G GC-GM
E41089 | E41089GA MAC 11 36 39 25 21 4 S SM
E41091 | E41091GA MAC 11 44 36 20 17 3 G GM
E41092 | E41092GA MAC 11 16 58 26 22 3 S SM
E41097 | E41097GA MAC 11 47 36 17 14 3 G GM
E41106 | E41106GA MAC 11 21 27 52 39 13 F ML
E41111 | E41111GA MAC 11 16 44 40 33 6 S SM
E41124 | E41124GA MAC 11 40 38 22 19 3 G GM
E41127 | E41127GA MAC 11 46 43 11 10 1 G GP-GM
E41145 | E41145GA MAC 11 16 41 44 37 7 S SM
E41159 | E41159GA MAC 11 41 35 23 18 5 G GM
E41169 | E41169GA MAC 11 26 38 35 29 6 S SM
E41174 | E41174GA MAC 11 30 47 23 21 2 S SM
E41190 | E41190GA MAC 11 32 47 21 18 3 S SM
E41195 | E41195GA MAC 11 37 43 20 17 3 S SM
E41210 | E41210GA MAC 11 13 51 37 31 6 S SM
P41005 | P41005GA MAC 11 33 34 33 24 9 S SC
P41005 | P41005GB MAC 11 27 51 22 17 5 S SM
P41015 | P41015GA MAC 11 4 32 63 50 14 F ML
P41018 | P41018GA MAC 11 11 50 39 32 7 S SM
P41018 | P41018GB MAC 11 38 38 24 20 4 G GC
P41023 | P41023GA MAC 11 17 38 44 33 11 S SM
P41023 | P41023GB MAC 11 29 34 37 26 11 S SM
P41025 | P41025GA MAC 11 26 23 51 33 18 F CL
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P41036 | P41036GA MAC 11 30 47 23 20 3 S SM
P41040 | P41040GA MAC 11 8 43 49 43 7 S SM
P41040 | P41040GB MAC 11 27 30 43 37 6 S SM
P41061 | P41061GA MAC 11 13 45 42 33 9 S SM
P41062 | P41062GA MAC 11 6 63 31 27 3 S SM
P41062 | P41062GB MAC 11 5 58 37 30 8 S SM
P41069 | P41069GA MAC 11 43 31 26 22 4 G GM
P41088 | P41088GA MAC 11 35 32 34 27 6 G GM
P41098 | P41098GA MAC 11 41 39 20 19 2 G GM
P41098 | P41098GB MAC 11 38 43 18 17 2 S SM
P41101 | P41101GA MAC 11 27 41 32 27 5 S SM
P41101 | P41101GB MAC 11 25 44 31 26 5 S SM
P41106 | P41106GA MAC 11 21 35 44 35 9 S SM
P41106 | P41106GB MAC 11 27 34 40 32 7 S SM
P41107 | P41107GA MAC 11 48 34 19 16 3 G GC
P41126 | P41126GA MAC 11 38 34 28 19 8 G GC
P41127 | P41127GA MAC 11 21 53 26 20 6 S SC-SM
P41127 | P41127GB MAC 11 22 44 34 28 6 S SC-SM
P41129 | P41129GA MAC 11 20 57 23 18 5 S SM
V41011 | V41011GA MAC 11 24 43 33 25 8 S SM
V41016 | V41016GA MAC 11 14 47 39 31 8 S SM
V41018 | V41018GA MAC 11 32 44 24 21 3 S SM
V41028 | V41028GA MAC 11 38 34 28 22 6 G GC-GM
E41185 | E41185GA SSR 22 24 41 35 30 5 S SM
141045 | I41045GA MCP 22 42 19 39 34 5 G GC-GM
E41044 | E41044GA STO3 23 23 42 35 24 11 S SC
E41069 | E41069GA MAI 23 21 31 48 33 15 S SC
E41070 | E41070GA MAI 23 37 30 34 22 11 G GC
E41072 | E41072GA LIM 23 36 35 29 19 9 G GM
E41083 | E41083GA LIM 23 27 35 37 26 11 S SM
E41084 | E41084GA LIM 23 24 27 49 36 14 S SM
E41108 | E41108GA STO3 23 24 30 46 25 21 S SM
E41113 | E41113GA STO3 23 42 28 30 21 8 G GC
E41139 | E41139GA MAI 23 18 47 35 32 3 S SM
141006 | I41006GA MAI 23 6 24 70 57 13 F ML
141008 | I41008GA LIM 23 16 20 64 51 12 F ML
141014 | I41014GA MAI 23 33 35 32 24 8 S SC
141057 | 141057GA LIM 23 22 27 50 43 7 F ML
141061 | I41061GA CCA 23 64 20 17 14 3 G GM
141061 | 141061GB CCA 23 55 32 13 12 2 G GM
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P41011 | P41011GA MAI 23 16 39 45 33 13 S SC
P41011 | P41011GB MAI 23 14 35 51 37 14 F CL
P41124 | P41124GA CCA 23 37 30 34 27 7 G GM
P41124 | P41124GB CCA 23 12 28 60 42 18 F CL-ML
V41006 | V41006GA STO3 23 28 37 35 26 9 S SM
V41007 | V41007GA STO3 23 37 40 22 15 7 S SM
E41078 | E41078GA bnb 31 45 18 37 28 9 G GC
E41162 | E41162GA VILc 31 18 40 42 36 6 S SM
E41163 | E41163GA VILc 31 22 47 31 27 4 S SM
P41038 | P41038GA VILa 31 16 33 50 42 8 F ML
P41066 | P41066GA bna 31 23 66 11 9 2 S SP-SM
E41042 | E41042GA STO 51 26 35 39 23 16 S SC
E41046 | E41046GA STO 51 10 43 47 33 14 S SC
E41071 | E41071GA POD 51 21 37 42 27 15 S SC
E41077 | E41077GA pv 51 43 41 15 11 4 G GC
E41098 | E41098GA POD 51 17 34 48 36 12 S SM
E41099 | E41099GA POD 51 29 15 56 41 15 F ML
E41100 | E41100GA POD 51 12 21 68 41 27 F ML
E41101 | E41101GA POD 51 17 19 64 42 22 F ML
E41102 | E41102GA POD 51 15 21 64 44 19 F ML
E41103 | E41103GA POD 51 22 25 53 35 18 F ML
E41105 | E41105GA OMT 51 28 21 51 37 14 F ML
E41109 | E41109GA STO 51 22 37 41 24 17 S SM
E41114 | E41114GA STO 51 36 37 27 21 6 S SM
E41129 | E41129GA POD 51 33 32 35 27 7 G GC
E41130 | E41130GA POD 51 33 26 41 32 9 G GM
E41137 | E41137GA POD 51 10 28 62 46 15 F ML
E41138 | E41138GA POD 51 19 16 65 48 17 F ML
E41155 | E41155GA MMA 51 38 40 22 14 8 S SC
E41156 | E41156GA MMA 51 37 41 22 18 4 S SM
E41164 | E41164GA bv 51 47 36 17 13 3 G GM
E41168 | E41168GA bv 51 33 41 26 21 6 S SM
141004 | I41004GA POD 51 13 48 39 32 7 S SC
141025 | I41025GA POD 51 3 16 81 58 23 F ML
P41039 | P41039GA STO 51 35 35 30 22 9 S SC
P41043 | P41043GA POD 51 31 25 44 31 13 G GC
P41046 | P41046GA POD 51 10 30 60 44 16 F ML
P41072 | P41072GA STO 51 21 66 13 11 2 S SM
P41082 | P41082GA STO 51 34 40 26 22 4 S SM
P41112 | P41112GA POD 51 35 35 30 23 7 S SM
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P41112 | P41112GB POD 51 35 31 34 24 10 G GC
P41122 | P41122GA POD 51 16 37 48 33 15 S SM
P41123 | P41123GA POD 51 25 37 37 28 9 S SC
V41001 | V41001GA STO 51 20 48 32 18 14 S SM
E41136 | E41136GA PSM 62 41 40 18 16 2 G GM
141030 | 141030GA PSM 62 29 39 32 23 8 S SM
141036 | 141036GA PSM 62 39 26 36 26 10 G GC
141036 | 141036GB PSM 62 36 26 37 25 12 G GC
141038 | 141038GA PSM 62 20 32 48 36 12 S SM
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1D 1D Formation | BLU Laboratory analysis

Site sample D10 | DI7 | D20 | D30 | D50 | D60 | Cu* | Cc**
D41006 | D41006GA MAC 11 0.009 | 0.026 | 0.032 | 0.092 | 0.248 | 0.511 57 1.835
D41010 | D41010GA MAC 11 0.009 | 0.038 | 0.071 | 0.141 | 0.295 | 0.402 42 5.246
E41003 | E41003GA MAC 11 0.005 | 0.022 | 0.021 | 0.040 | 0.201 | 0.628 124 0.498
E41009 | E41009GA MAC 11 0.003 | 0.007 | 0.009 | 0.025 | 0.102 | 0.220 81 1.017
E41015 | E41015GA MAC 11 0.010 | 0.025 | 0.032 | 0.083 | 0.324 | 1.294 133 0.543
E41019 | E41019GA MAC 11 0.005 | 0.020 | 0.025 | 0.061 | 0.305 | 1.663 314 0.419
E41023 | E41023GA MAC 11 0.006 | 0.022 | 0.032 | 0.092 | 0.740 | 2.521 404 0.539
E41024 | E41024GA MAC 11 0.027 | 0.096 | 0.136 | 0.307 | 3.744 | 12.179 | 448 0.284
E41026 | E41026GA MAC 11 0.002 | 0.007 | 0.012 | 0.026 | 0.097 | 0.197 82 1.470
E41033 | E41033GA MAC 11 0.021 | 0.046 | 0.074 | 0.192 | 0.716 | 2.177 102 0.792
E41052 | E41052GA MAC 11 0.003 | 0.009 | 0.015 | 0.028 | 0.195 | 0.407 121 0.588
E41086 | E41086GA MAC 11 0.020 | 0.054 | 0.069 | 0.172 | 1.368 | 3.679 182 0.399
E41087 | E41087GA MAC 11 0.022 | 0.048 | 0.074 | 0.194 | 1.608 | 5.727 | 260 0.297
E41089 | E41089GA MAC 11 0.009 | 0.024 | 0.040 | 0.127 | 0.794 | 3.089 348 0.585
E41091 | E41091GA MAC 11 0.021 | 0.049 | 0.076 | 0.187 | 1.878 | 7.560 | 360 0.221
E41092 | E41092GA MAC 11 0.012 | 0.037 | 0.059 | 0.095 | 0.243 | 0.382 33 2.032
E41097 | E41097GA MAC 11 0.021 | 0.078 | 0.103 | 0.232 | 2.959 | 12.845 | 600 0.196
E41106 | E41106GA MAC 11 0.001 | 0.004 | 0.005 | 0.016 | 0.061 | 0.140 120 1.510
E41111 | E41111GA MAC 11 0.004 | 0.014 | 0.023 | 0.033 | 0.147 | 0.243 67 1.251
E41124 | E41124GA MAC 11 0.022 | 0.035 | 0.057 | 0.172 | 1.794 | 4.700 | 217 0.290
E41127 | E41127GA MAC 11 0.057 | 0.123 | 0.157 | 0.298 | 2.684 | 9.258 161 0.167
E41145 | E41145GA MAC 11 0.003 | 0.008 | 0.009 | 0.021 | 0.112 | 0.237 69 0.564
E41159 | E41159GA MAC 11 0.007 | 0.024 | 0.040 | 0.340 | 3.061 | 5.100 | 764 3.387
E41169 | E41169GA MAC 11 0.005 | 0.013 | 0.024 | 0.049 | 0.214 | 0.472 103 1.098
E41174 | E41174GA MAC 11 0.023 | 0.034 | 0.059 | 0.127 | 0.417 | 1.098 48 0.637
E41190 | E41190GA MAC 11 0.022 | 0.040 | 0.069 | 0.133 | 0.401 | 1.687 77 0.479
E41195 | E41195GA MAC 11 0.016 | 0.046 | 0.072 | 0.168 | 0.718 | 3.139 191 0.548
E41210 | E41210GA MAC 11 0.005 | 0.018 | 0.023 | 0.037 | 0.134 | 0.185 38 1.497
P41005 | P41005GA MAC 11 0.003 | 0.009 | 0.020 | 0.047 | 0.465 | 1.799 521 0.351
P41005 | P41005GB MAC 11 0.017 | 0.035 | 0.058 | 0.147 | 0.567 | 1.407 84 0.918
P41015 | P41015GA MAC 11 0.001 | 0.004 | 0.005 | 0.009 | 0.028 | 0.057 57 1.337
P41018 | P41018GA MAC 11 0.005 | 0.018 | 0.023 | 0.037 | 0.131 | 0.227 43 1.158
P41018 | P41018GB MAC 11 0.011 | 0.026 | 0.040 | 0.128 | 0.647 | 3.184 | 289 0.467
P41023 | P41023GA MAC 11 0.001 | 0.008 | 0.010 | 0.025 | 0.096 | 0.231 172 2.062
P41023 | P41023GB MAC 11 0.001 | 0.008 | 0.010 | 0.032 | 0.236 | 0.402 | 301 1.945
P41025 | P41025GA MAC 11 0.001 | 0.001 | 0.004 | 0.010 | 0.065 | 0.260 | 260 0.355
P41036 | P41036GA MAC 11 0.010 | 0.031 | 0.047 | 0.132 | 0.378 | 0.784 78 2.223
P41040 | P41040GA MAC 11 0.004 | 0.009 | 0.010 | 0.027 | 0.078 | 0.170 40 1.030
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P41040 | P41040GB MAC 11 | 0.004 | 0.008 | 0.012 | 0.028 | 0.210 | 0.795 | 177 | 0.212
P41061 | P41061GA MAC 11 | 0.003 | 0.007 | 0.009 | 0.027 | 0.122 | 0.283 92 0.848
P41062 | P41062GA MAC 11 | 0.022 | 0.028 | 0.032 | 0.072 | 0.176 | 0.269 12 0.877
P41062 | P41062GB MAC 11 | 0.004 | 0.009 | 0.014 | 0.025 | 0.137 | 0.228 62 0.754
P41069 | P41069GA MAC 11 | 0.007 | 0.025 | 0.024 | 0.117 | 2.692 | 7.050 | 946 | 0.259
P41088 | P41088GA MAC 11 | 0.005 | 0.024 | 0.022 | 0.050 | 0.291 | 1.756 | 352 | 0.286
P41098 | P41098GA MAC 11 1 0.025 | 0.049 | 0.073 | 0.213 | 1.684 | 5.099 | 204 | 0.356
P41098 | P41098GB MAC 11 | 0.027 | 0.067 | 0.087 | 0.220 | 1.590 | 4.171 | 155 | 0.432
P41101 | P41101GA MAC 11 | 0.008 | 0.020 | 0.023 | 0.057 | 0.350 | 1.078 | 129 | 0.359
P41101 | P41101GB MAC 11 | 0.006 | 0.019 | 0.022 | 0.063 | 0.340 | 0.848 | 147 | 0.803
P41106 | P41106GA MAC 11 ] 0.003 | 0.007 | 0.012 | 0.028 | 0.141 | 0.379 | 143 | 0.753
P41106 | P41106GB MAC 11 | 0.004 | 0.009 | 0.019 | 0.031 | 0.243 | 0.850 | 190 | 0.253
P41107 | P41107GA MAC 11 ] 0.021 | 0.059 | 0.087 | 0.319 | 4.181 | 7.063 | 343 | 0.701
P41126 | P41126GA MAC 11 | 0.003 | 0.011 | 0.025 | 0.113 | 1.557 | 4.212 | 1404 | 1.007
P41127 | P41127GA MAC 11 | 0.006 | 0.024 | 0.029 | 0.097 | 0.329 | 0.707 | 124 | 2.312
P41127 | P41127GB MAC 11 | 0.006 | 0.023 | 0.021 | 0.054 | 0.222 | 0.481 81 1.033
P41129 | P41129GA MAC 11 | 0.007 | 0.022 | 0.038 | 0.123 | 0.365 | 0.796 | 109 | 2.590
V41011 | V41011GA MAC 11 | 0.003 | 0.008 | 0.011 | 0.042 | 0.249 | 0.755 | 226 | 0.697
V41016 | V41016GA MAC 11 | 0.003 | 0.008 | 0.010 | 0.023 | 0.146 | 0.229 80 0.818
V41018 | V41018GA MAC 11 | 0.021 | 0.048 | 0.063 | 0.116 | 0.436 | 1.494 72 0.436
V41028 | V41028GA MAC 11 1 0.005 | 0.024 | 0.026 | 0.088 | 0.592 | 3.338 | 668 | 0.460
E41185 | E41185GA SSR 22 | 0.005 | 0.008 | 0.011 | 0.037 | 0.653 | 1.674 | 314 | 0.155
141045 | 141045GA MCP 22 1 0.008 | 0.022 | 0.021 | 0.031 | 1.219 | 6.042 | 723 | 0.019
E41044 | E41044GA STO3 23 | 0.002 | 0.006 | 0.008 | 0.043 | 0.318 | 0.923 | 517 | 1.145
E41069 | E41069GA MAI 23 ] 0.001 | 0.003 | 0.005 | 0.012 | 0.100 | 0.462 | 462 | 0.306
E41070 | E41070GA MAI 23 ] 0.002 | 0.007 | 0.008 | 0.038 | 1.114 | 3.487 | 2238 | 0.263
E41072 | E41072GA LIM 23 | 0.003 | 0.010 | 0.023 | 0.101 | 1.570 | 3.740 | 1391 | 1.009
E41083 | E41083GA LIM 23 1 0.002 | 0.006 | 0.008 | 0.021 | 0.224 | 0.573 | 324 | 0.421
E41084 | E41084GA LIM 23 | 0.001 | 0.003 | 0.006 | 0.009 | 0.087 | 0.664 | 497 | 0.100
E41108 | E41108GA STO3 23 | 0.001 | 0.001 | 0.002 | 0.006 | 0.218 | 0.789 | 789 | 0.039
E41113 | E41113GA STO3 23 | 0.004 | 0.009 | 0.025 | 0.079 | 1.660 | 6.642 | 1878 | 0.265
E41139 | E41139GA MAI 23 | 0.010 | 0.020 | 0.023 | 0.041 | 0.332 | 0.728 76 0.238
141006 | I41006GA MAI 23 1 0.001 | 0.003 | 0.004 | 0.008 | 0.021 | 0.028 25 2.291
141008 | I41008GA LIM 23 | 0.002 | 0.004 | 0.005 | 0.010 | 0.022 | 0.035 23 2.057
141014 | I41014GA MAI 23 | 0.004 | 0.008 | 0.013 | 0.054 | 1.259 | 3.001 | 722 | 0.235
141057 | 141057GA LIM 23 ] 0.004 | 0.009 | 0.014 | 0.020 | 0.072 | 0.538 | 143 | 0.200
141061 | I41061GA CCA 23 |1 0.025 | 0.084 | 0.198 | 0.791 | 9.358 | 14.149 | 571 1.783
141061 | 141061GB CCA 23 1 0.030 | 0.213 | 0.394 | 1.780 | 6.341 | 9.400 | 318 | 11.400
P41011 | P41011GA MAI 23 | 0.001 | 0.004 | 0.006 | 0.022 | 0.120 | 0.315 | 284 | 1.397
P41011 | P41011GB MAI 23 | 0.001 | 0.004 | 0.005 | 0.011 | 0.061 | 0.229 | 229 | 0.542
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P41124 | P41124GA CCA 23 | 0.005 | 0.009 | 0.013 | 0.033 | 0.782 | 3.354 | 704 | 0.070
P41124 | P41124GB CCA 23 | 0.001 | 0.002 | 0.003 | 0.008 | 0.021 | 0.077 77 0.837
V41006 | V41006GA STO3 23 ] 0.003 | 0.007 | 0.008 | 0.039 | 0.211 | 0.458 | 136 | 0.971
V41007 | V41007GA STO3 23 | 0.006 | 0.025 | 0.037 | 0.156 | 0.830 | 3.616 | 612 | 1.144
E41078 | E41078GA bnb 31 | 0.003 | 0.009 | 0.014 | 0.036 | 2.387 | 27.143 | 9077 | 0.016
E41162 | E41162GA VILc 31 | 0.005 | 0.012 | 0.023 | 0.028 | 0.102 | 0.177 36 0.919
E41163 | E41163GA VILc 31 | 0.009 | 0.023 | 0.027 | 0.070 | 0.192 | 0.318 34 1.660
P41038 | P41038GA VILa 31 | 0.003 | 0.006 | 0.008 | 0.020 | 0.072 | 0.183 53 0.659
P41066 | P41066GA bna 31 | 0.038 | 0.167 | 0.224 | 0.427 | 0.882 | 1.423 37 3.327
E41042 | E41042GA STO 51 | 0.001 | 0.003 | 0.004 | 0.011 | 0.326 | 0.785 | 785 | 0.168
E41046 | E41046GA STO 51 | 0.001 | 0.004 | 0.006 | 0.025 | 0.096 | 0.227 | 199 | 2.396
E41071 | E41071GA POD 51 | 0.001 | 0.003 | 0.005 | 0.022 | 0.356 | 1.020 | 1020 | 0.470
E41077 | E41077GA pv 51 1 0.026 | 0.107 | 0.187 | 0.618 | 3.276 | 6.446 | 252 | 2.310
E41098 | E41098GA POD 51 | 0.002 | 0.004 | 0.005 | 0.008 | 0.120 | 0.631 | 407 | 0.060
E41099 | E41099GA POD 51 | 0.001 | 0.002 | 0.003 | 0.006 | 0.020 | 0.418 | 418 | 0.096
E41100 | E41100GA POD 51 | 0.001 | 0.001 | 0.001 | 0.003 | 0.010 | 0.022 22 0.473
E41101 | E41101GA POD 51 | 0.001 | 0.002 | 0.002 | 0.005 | 0.015 | 0.046 46 0.495
E41102 | E41102GA POD 51 | 0.001 | 0.002 | 0.002 | 0.006 | 0.023 | 0.051 51 0.623
E41103 | E41103GA POD 51 | 0.001 | 0.002 | 0.003 | 0.007 | 0.030 | 0.556 | 556 | 0.090
E41105 | E41105GA OMT 51 | 0.001 | 0.004 | 0.005 | 0.009 | 0.072 | 0.227 | 189 | 0.309
E41109 | E41109GA STO 51 | 0.001 | 0.002 | 0.003 | 0.008 | 0.530 | 1.330 | 1330 | 0.054
E41114 | E41114GA STO 51 | 0.005 | 0.011 | 0.025 | 0.119 | 1.174 | 3.297 | 716 | 0.940
E41129 | E41129GA POD 51 | 0.003 | 0.006 | 0.008 | 0.032 | 1.110 | 2.662 | 823 | 0.117
E41130 | E41130GA POD 51 | 0.003 | 0.005 | 0.007 | 0.022 | 0.619 | 2.327 | 847 | 0.077
E41137 | E41137GA POD 51 | 0.001 | 0.002 | 0.003 | 0.006 | 0.021 | 0.055 55 0.760
E41138 | E41138GA POD 51 | 0.001 | 0.002 | 0.003 | 0.006 | 0.019 | 0.026 26 1.230
E41155 | E41155GA MMA 51 | 0.005 | 0.024 | 0.037 | 0.246 | 1.793 | 4.161 | 764 | 2.664
E41156 | E41156GA MMA 51 ] 0.006 | 0.026 | 0.048 | 0.229 | 1.729 | 3.951 | 625 | 2.092
E41164 | E41164GA bv 51 | 0.018 | 0.076 | 0.143 | 0.610 | 4.051 | 7.580 | 429 | 2.776
E41168 | E41168GA bv 51 | 0.006 | 0.024 | 0.026 | 0.144 | 1.280 | 2.836 | 508 | 1.319
141004 | I41004GA POD 51 | 0.003 | 0.008 | 0.010 | 0.027 | 0.144 | 0.305 | 105 | 0.821
141025 | I41025GA POD 51 | 0.001 | 0.001 | 0.002 | 0.004 | 0.010 | 0.024 24 0.651
P41039 | P41039GA STO 51 | 0.003 | 0.014 | 0.020 | 0.073 | 0.502 | 1.991 | 667 | 0.892
P41043 | P41043GA POD 51 | 0.001 | 0.004 | 0.006 | 0.021 | 0.222 | 1.278 | 1061 | 0.299
P41046 | P41046GA POD 51 | 0.001 | 0.002 | 0.004 | 0.008 | 0.026 | 0.073 73 0.806
P41072 | P41072GA STO 51 1 0.032 | 0.159 | 0.225 | 0.510 | 1.507 | 2.177 68 3.727
P41082 | P41082GA STO 51 | 0.010 | 0.025 | 0.034 | 0.103 | 0.431 | 1.623 | 167 | 0.674
P41112 | P41112GA POD 51 | 0.006 | 0.022 | 0.020 | 0.074 | 1.429 | 3.337 | 603 | 0.300
P41112 | P41112GB POD 51 | 0.002 | 0.009 | 0.021 | 0.047 | 1.477 | 3.546 | 1620 | 0.282
P41122 | P41122GA POD 51 | 0.002 | 0.003 | 0.005 | 0.008 | 0.099 | 0.465 | 303 | 0.101
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P41123 | P41123GA POD 51 | 0.003 | 0.006 | 0.008 | 0.021 | 0.403 | 1.231 | 469 | 0.136
V41001 | V41001GA STO 51 | 0.001 | 0.004 | 0.007 | 0.034 | 0.823 | 1.516 | 1211 | 0.626
E41136 | E41136GA PSM 62 | 0.020 | 0.057 | 0.101 | 0.412 | 2.829 | 5.344 | 263 | 1.563
141030 | 141030GA PSM 62 | 0.004 | 0.009 | 0.019 | 0.053 | 0.972 | 1.987 | 444 | 0.313
141036 | I41036GA PSM 62 | 0.002 | 0.008 | 0.010 | 0.028 | 1.195 | 4.261 | 2084 | 0.092
141036 | 141036GB PSM 62 | 0.001 | 0.006 | 0.009 | 0.031 | 1.232 | 3.599 | 2819 | 0.209
141038 | 141038GA PSM 62 | 0.001 | 0.005 | 0.006 | 0.021 | 0.094 | 0.376 | 291 | 0.870
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Laboratory analysis

D ID Sample | Formation | BLU —

Site IP (%) | WL (%) | WP (%) | A | d (mm) | Gs
D41006 | D41006GA MAC 11 6 27 21 1.22 1.37 2.74
D41010 | D41010GA MAC 11 2 26 24 0.57 0.00 2.87
E41003 | E41003GA MAC 11 4 28 24 0.74 1.02 2.63
E41009 | E41009GA MAC 11 10 33 22 1.24 0.66 2.65
E41015 | E41015GA MAC 11 5 24 19 1.31 1.59 2.60
E41019 | E41019GA MAC 11 5 24 19 0.68 1.25 2.78
E41023 | E41023GA MAC 11 5 29 24 0.89 1.71 2.85
E41024 | E41024GA MAC 11 1 20 19 0.20 5.42 2.63
E41026 | E41026GA MAC 11 12 34 22 1.31 0.48 2.73
E41033 | E41033GA MAC 11 4 27 22 1.47 2.58 2.68
E41052 | E41052GA MAC 11 6 30 24 0.75 0.00 2.59
E41086 | E41086GA MAC 11 3 28 25 1.28 291 2.76
E41087 | E41087GA MAC 11 5 25 21 1.66 3.46 2.72
E41089 | E41089GA MAC 11 5 27 23 1.23 0.00 2.74
E41091 | E41091GA MAC 11 4 23 19 1.16 3.65 2.71
E41092 | E41092GA MAC 11 3 28 25 0.89 1.23 2.71
E41097 | E41097GA MAC 11 3 25 23 0.84 0.00 2.82
E41106 | E41106GA MAC 11 6 30 24 0.50 0.35 2.78
E41111 | E41111GA MAC 11 6 29 23 0.92 0.61 2,77
E41124 | E41124GA MAC 11 5 29 24 1.67 3.01 2.68
E41127 | E41127GA MAC 11 8 34 26 5.56 0.00 273
E41145 | E41145GA MAC 11 8 32 24 1.25 0.52 2.68
E41159 | E41159GA MAC 11 11 43 32 2.20 277 2.86
E41169 | E41169GA MAC 11 6 31 25 1.03 1.03 2.70
E41174 | E41174GA MAC 11 5 40 34 2.34 0.00 2.74
E41190 | E41190GA MAC 11 4 23 19 1.41 2.44 2.75
E41195 | E41195GA MAC 11 3 31 28 1.13 2.94 2.83
E41210 | E41210GA MAC 11 6 29 23 1.00 0.04 277
P41005 | P41005GA MAC 11 10 32 22 1.09 1.24 2.69
P41005 | P41005GB MAC 11 10 37 27 1.96 1.88 2.71
P41015 | P41015GA MAC 11 11 36 24 0.84 0.13 2.68
P41018 | P41018GA MAC 11 6 30 24 0.91 0.53 2.64
P41018 | P41018GB MAC 11 10 30 20 2.51 2.53 2.70
P41023 | P41023GA MAC 11 3 29 25 0.29 0.45 2.40
P41023 | P41023GB MAC 11 10 38 28 0.93 0.90 2.63
P41025 | P41025GA MAC 11 15 38 23 0.82 0.00 2.75
P41036 | P41036GA MAC 11 3 23 20 0.92 2.10 2.59
P41040 | P41040GA MAC 11 2 27 24 0.36 0.32 2.85
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P41040 | P41040GB MAC 11 2 26 25 0.23 0.75 2.71
P41061 | P41061GA MAC 11 2 25 23 0.21 0.48 2.66
P41062 | P41062GA MAC 11 1 26 25 0.15 0.74 2.58
P41062 | P41062GB MAC 11 1 24 23 0.19 0.46 2.58
P41069 | P41069GA MAC 11 2 30 28 0.48 2.70 2.57
P41088 | P41088GA MAC 11 4 26 22 0.67 1.42 2.54
P41098 | P41098GA MAC 11 1 35 34 0.37 3.44 2.65
P41098 | P41098GB MAC 11 1 34 33 0.48 3.43 2.80
P41101 | P41101GA MAC 11 3 31 28 0.55 1.24 2.62
P41101 | P41101GB MAC 11 1 28 27 0.28 1.22 2.72
P41106 | P41106GA MAC 11 6 38 32 0.67 0.55 2.77
P41106 | P41106GB MAC 11 3 31 27 0.48 0.82 2.82
P41107 | P41107GA MAC 11 8 29 21 277 4.37 2.68
P41126 | P41126GA MAC 11 8 29 21 0.92 1.87 2.80
P41127 | P41127GA MAC 11 4 23 18 0.65 1.24 2.72
P41127 | P41127GB MAC 11 5 26 21 0.90 0.96 2.64
P41129 | P41129GA MAC 11 3 24 21 0.04 1.47 2.64
V41011 | V41011GA MAC 11 5 29 24 0.64 0.98 2.72
V41016 | V41016GA MAC 11 5 26 22 0.58 0.56 2.72
V41018 | V41018GA MAC 11 2 20 18 0.77 212 248
V41028 | V41028GA MAC 11 5 25 20 0.77 0.00 277
E41185 | E41185GA SSR 22 4 37 33 0.88 0.00 2.83
141045 | 141045GA MCP 22 5 27 22 1.02 1.43 2.79
E41044 | E41044GA STO3 23 12 32 20 1.09 0.00 2.88
E41069 | E41069GA MAI 23 13 34 21 0.81 0.38 2.75
E41070 | E41070GA MAI 23 12 33 20 1.09 1.26 2.76
E41072 | E41072GA LIM 23 12 36 25 1.24 1.63 2.87
E41083 | E41083GA LIM 23 12 38 26 1.15 0.84 2.72
E41084 | E41084GA LIM 23 12 40 28 0.91 0.41 2.79
E41108 | E41108GA STO3 23 26 59 33 1.24 0.00 2.89
E41113 | E41113GA STO3 23 8 29 21 0.96 1.96 2.69
E41139 | E41139GA MAI 23 8 35 27 2.51 0.89 2.72
141006 | I41006GA MAI 23 9 33 24 0.67 0.10 2.65
141008 | I41008GA LIM 23 3 27 24 0.26 0.19 2.61
141014 | I41014GA MAI 23 12 35 23 1.59 0.00 2.76
141057 | 141057GA LIM 23 1 22 22 0.07 0.47 2.70
141061 | I41061GA CCA 23 6 29 23 1.98 7.81 2.80
141061 | 141061GB CCA 23 7 30 23 3.96 7.21 2.80
P41011 | P41011GA MAI 23 9 29 21 0.68 0.40 2.68
P41011 | P41011GB MAI 23 8 29 21 0.56 0.29 2.79
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P41124 | P41124GA CCA 23 5 30 25 0.75 1.44 2.73
P41124 | P41124GB CCA 23 6 25 19 0.34 0.16 2.84
V41006 | V41006GA STO3 23 4 23 19 0.43 1.00 2.59
V41007 | V41007GA STO3 23 3 23 20 0.37 2.37 2.73
E41078 | E41078GA bnb 31 12 31 19 1.32 1.57 2.82
E41162 | E41162GA VILc 31 6 29 23 1.03 0.61 2.77
E41163 | E41163GA VILc 31 3 25 22 0.82 1.16 2.74
P41038 | P41038GA VILa 31 8 33 25 1.00 0.37 273
P41066 | P41066GA bna 31 7 30 24 2.74 2.77 2.82
E41042 | E41042GA STO 51 18 44 26 1.12 0.00 2.57
E41046 | E41046GA STO 51 8 27 19 0.59 0.29 2.74
E41071 | E41071GA POD 51 14 36 22 0.91 0.49 2.80
E41077 | E41077GA pv 51 13 34 21 3.21 4.24 2.68
E41098 | E41098GA POD 51 15 41 26 1.25 0.00 2.68
E41099 | E41099GA POD 51 15 50 34 0.99 0.00 2.82
E41100 | E41100GA POD 51 14 42 28 0.51 0.00 2.86
E41101 | E41101GA POD 51 15 46 32 0.67 0.00 2.78
E41102 | E41102GA POD 51 15 44 28 0.78 0.14 2.82
E41103 | E41103GA POD 51 14 41 27 0.81 0.29 2.85
E41105 | E41105GA OMT 51 9 33 24 0.68 0.45 2.60
E41109 | E41109GA STO 51 21 52 31 1.20 0.00 2.75
E41114 | E41114GA STO 51 11 37 26 1.70 0.00 2,77
E41129 | E41129GA POD 51 17 43 26 2.33 0.00 2.81
E41130 | E41130GA POD 51 21 55 34 2.30 0.00 2.66
E41137 | E41137GA POD 51 14 40 26 0.91 0.00 2.74
E41138 | E41138GA POD 51 14 39 26 0.83 0.00 2.76
E41155 | E41155GA MMA 51 11 32 21 1.45 0.00 2,77
E41156 | E41156GA MMA 51 8 43 34 1.98 0.00 2.82
E41164 | E41164GA bv 51 11 38 27 3.26 0.00 2,77
E41168 | E41168GA bv 51 6 38 32 1.03 1.84 2.76
141004 | I41004GA POD 51 7 26 19 1.00 0.56 2.76
141025 | I41025GA POD 51 13 39 26 0.56 0.04 2.80
P41039 | P41039GA STO 51 8 27 19 0.93 1.50 2.71
P41043 | P41043GA POD 51 14 37 23 1.09 0.65 2.80
P41046 | P41046GA POD 51 9 33 24 0.58 0.16 2.75
P41072 | P41072GA STO 51 7 35 28 3.37 2.55 2.71
P41082 | P41082GA STO 51 1 28 27 0.26 0.00 2.79
P41112 | P41112GA POD 51 8 31 23 1.19 1.60 277
P41112 | P41112GB POD 51 10 33 22 1.02 1.26 2.74
P41122 | P41122GA POD 51 10 39 29 0.68 0.33 2.65
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P41123 | P41123GA POD 51 9 30 21 0.98 0.82 2.62
V41001 | V41001GA STO 51 14 40 26 1.05 0.75 2.65
E41136 | E41136GA PSM 62 4 31 27 1.80 3.71 2.80
141030 | 141030GA PSM 62 8 37 29 0.97 1.20 2.68
141036 | I41036GA PSM 62 23 46 23 2.34 1.31 2.68
141036 | 141036GB PSM 62 11 33 22 0.94 1.06 2.79
141038 | 141038GA PSM 62 6 37 30 0.51 0.40 2.74
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Slope deposits unit weight laboratory analysis

ID Site | Sample ID |BLU Natg;dc ii;mty Wi;ifilgﬁ; ) Dg/iif)lty Dryoljg;rzz)elght
D41006 | D41006WA | 11 1.45 14.24 1.39 13.60
D41010 | D41010WA | 11 1.55 15.16 1.37 13.47
D41013 | D41013WA | 11 1.62 15.86 1.43 13.98
E41000 | E41000WA | 11 1.83 18.00 1.54 15.14
E41001 | E41001WA | 11 1.56 15.32 1.25 12.23
E41003 | E4A1003WA | 11 1.81 17.73 1.48 14.48
E41006 | E41006WA | 11 1.93 18.97 1.62 15.86
E41009 | E41009WA | 11 1.78 17.45 1.48 14.48
E41010 | E41010WA | 11 2.07 20.29 1.80 17.65
E41011 | EA1011WA | 11 1.56 15.26 1.27 12.48
E41015 | E41015WA | 11 1.85 18.15 1.58 15.46
E41017 | E41017WA | 11 1.88 18.47 1.64 16.09
E41019 | E41019WA | 11 1.84 18.06 1.56 15.27
E41023 | E41023WA | 11 1.58 15.48 1.28 12.53
E41024 | E41024WA | 11 1.86 18.25 1.65 16.21
E41026 | E41026WA | 11 1.94 19.00 1.63 15.96
E41029 | E41020WA | 11 2.01 19.73 1.66 16.32
E41031 | E41031WA | 11 1.96 19.24 1.58 15.48
E41032 | E41032WA | 11 1.73 16.97 1.52 14.92
E41033 | E41033WA | 11 1.79 17.53 1.57 15.36
E41040 | E41040WA | 11 1.97 19.33 1.69 16.55
E41050 | E41050WA | 11 1.91 18.76 1.65 16.19
E41052 | E41052WA | 11 1.65 16.19 1.32 12.94
E41056 | E41056WA | 11 1.65 16.22 1.41 13.82
E41059 | E41059WA | 11 1.48 14.49 1.27 12.41
E41061 | E41061WA | 11 1.75 17.15 1.58 15.54
E41062 | E4A1062WA | 11 1.97 19.30 1.68 16.50
E41067 | E41067WA | 11 1.73 16.94 1.52 14.89
E41086 | E41086WA | 11 1.61 15.77 1.50 14.69
E41089 | E41080WA | 11 1.54 15.11 1.44 14.14
E41090 | E41090WA | 11 1.91 18.71 1.59 15.63
E41091 | E41091WA | 11 1.72 16.83 1.59 15.61
E41092 | E41092WA | 11 1.71 16.77 1.58 15.49
E41106 | EATI06WA | 11 1.47 14.37 1.35 13.24
E41110 | E4AT110WA | 11 1.57 15.44 1.45 14.19
E41111 | E4ATT11WA | 11 141 13.80 1.26 12.32
E41119 | E41119WA | 11 1.37 13.40 1.19 11.63
E41124 | EA1124WA | 11 1.78 17.47 1.59 15.61
E41145 | B41145WA | 11 1.43 13.99 1.20 11.81
E41159 | E41159WA | 11 1.23 12.02 0.95 9.32
E41179 | E41179WA | 11 1.12 10.99 0.87 8.50
E41186 | EA1186WA | 11 1.12 10.96 0.97 9.53
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E41190 | E41190WA | 11 1.45 14.19 1.39 13.67
E41195 | E41195WA | 11 1.28 12.53 1.11 10.93
E41210 | E41210WA | 11 1.43 14.03 1.32 12.94
141015 | 141015WA | 11 1.48 14.47 1.21 11.88
141040 | 141040WA | 11 1.29 12.63 1.10 10.74
P41001 | P41001WA | 11 1.58 15.54 1.20 11.77
P41002 | P41002WA | 11 1.65 16.16 1.33 13.05
P41005 | P41005WB | 11 1.39 13.62 1.07 10.54
P41005 | P41005WA | 11 1.66 16.28 1.32 12.92
P41012 | P41012WA | 11 1.73 17.01 1.40 13.72
P41015 | P41015WA | 11 1.51 14.79 1.15 11.24
P41016 | P41016WA | 11 1.52 14.87 1.15 11.23
P41018 | P41018WB | 11 1.79 17.56 1.58 15.46
P41018 | P41018WA | 11 1.83 17.92 1.52 14.94
P41019 | P41019WA | 11 1.65 16.17 1.31 12.82
P41019 | P41019WB | 11 1.66 16.26 1.31 12.85
P41020 | P41020WA | 11 1.67 16.40 1.37 13.47
P41021 | P41021WA | 11 1.77 17.37 1.39 13.61
P41021 | P41021WB | 11 1.85 18.12 1.48 14.53
P41022 | P41022WA | 11 1.34 13.16 1.09 10.70
P41023 | P41023WB | 11 1.50 14.68 1.13 11.04
P41023 | P41023WA | 11 1.55 15.25 1.24 12.21
P41025 | P41025WA | 11 1.82 17.87 1.48 14.50
P41032 | P41032WA | 11 1.47 14.38 1.15 11.32
P41036 | P41036WA | 11 1.75 17.13 1.52 14.92
P41040 | P41040WA | 11 1.39 13.65 1.14 11.22
P41040 | P41040WB | 11 1.58 15.48 1.28 12,51
P41057 | P41057WA | 11 1.51 14.85 1.30 12.71
P41061 | P41061WA | 11 1.67 16.38 1.37 13.43
P41061 | P41061WB | 11 1.98 19.44 1.66 16.31
P41062 | P41062WB | 11 1.69 16.58 1.37 13.40
P41062 | P41062WA | 11 1.75 17.18 1.49 14.57
P41069 | P41069WA | 11 1.63 15.95 1.34 13.10
P41088 | P41088WA | 11 1.55 15.17 1.28 12.60
P41098 | P41098WA | 11 1.21 11.82 0.96 9.42
P41098 | P41098WB | 11 1.40 13.76 1.23 12.02
P41101 | P41101WB | 11 1.49 14.64 1.20 11.75
P41101 | P41101WA | 11 1.51 14.84 1.19 11.70
P41106 | P41106WA | 11 1.42 13.97 1.12 10.97
P41106 | P41106WB | 11 1.43 14.03 1.19 11.66
P41107 | P41107WA | 11 1.35 13.20 1.16 11.40
P41126 | P41126WA | 11 1.52 14.93 1.36 13.32
P41127 | P41127WB | 11 1.44 14.09 1.32 12.96
P41127 | P41127WA | 11 1.46 14.36 1.38 13.49
P41129 | P41129WA | 11 1.57 15.42 1.51 14.78
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V41000 | V41000WA | 11 1.79 17.52 1.56 15.32
V41011 | V41011WA | 11 1.43 14.05 1.11 10.87
V41016 | V41016WA | 11 1.48 14.48 1.23 12.03
V41018 | V41018WA | 11 1.78 17.43 1.55 15.19
V41026 | V41026WA | 11 1.77 17.36 1.55 15.21
V41027 | V41027TWA | 11 1.85 18.17 1.55 15.21
V41028 | V41028WA | 11 1.91 18.71 1.66 16.31
E41180 | E41180WA | 22 1.33 13.03 1.27 12.41
E41185 | E41185WA | 22 1.18 11.62 1.11 10.86
141045 | 141045WA | 22 1.54 15.08 1.29 12.66
E41044 | E41044WA | 23 1.81 17.76 1.58 15.53
E41069 | E41069WA | 23 1.40 13.74 1.26 12.33
E41072 | E41072WA | 23 1.69 16.59 1.44 14.14
E41083 | E41083WA | 23 1.53 15.01 1.34 13.14
E41084 | E41084WA | 23 1.41 13.87 1.27 12.45
E41108 | E41108WA | 23 1.76 17.30 1.42 13.92
E41113 | E41113WA | 23 1.49 14.57 1.31 12.87
E41139 | E41139WA | 23 1.57 15.42 1.31 12.87
141006 | I41006WA | 23 1.63 16.03 1.33 13.07
141008 | I41008WA | 23 1.54 15.08 1.25 12.29
141014 | 141014WA | 23 1.34 13.19 1.19 11.70
141057 | 141057WA | 23 1.55 15.20 1.29 12.66
141061 | 141061WA | 23 1.37 13.44 1.25 12.30
P41011 | P41011WA | 23 1.73 16.99 1.41 13.88
P41030 | P41030WA | 23 1.48 14.55 1.21 11.87
P41031 | P41031WA | 23 1.59 15.60 1.29 12.62
P41124 | P41124WA | 23 1.41 13.83 1.21 11.89
P41124 | P41124WB | 23 1.74 17.10 1.51 14.77
V41006 | V4A1006WA | 23 1.86 18.26 1.66 16.28
V41007 | V41007WA | 23 1.91 18.74 1.65 16.21
E41038 | E41038WA | 31 1.94 19.05 1.63 16.02
E41043 | E41043WA | 31 1.75 17.13 1.58 15.51
E41079 | E41079WA | 31 1.65 16.20 1.43 14.01
E41162 | E41162WA | 31 1.52 14.90 1.49 14.65
E41199 | E41199WA | 31 1.33 13.08 1.26 12.33
P41038 | P41038WA | 31 1.43 14.03 1.15 11.26
P41066 | P41066WA | 31 1.82 17.88 1.55 15.23
D41003 | D41003WA | 51 1.54 15.10 1.28 12.51
D41005 | D41005WA | 51 1.53 15.04 1.38 13.52
E41042 | E41042WA | 51 1.88 18.49 1.48 14.52
E41046 | E41046WA | 51 1.87 18.36 1.62 15.89
E41071 | E41071WA | 51 1.04 16.13 1.41 13.81
E41098 | E41098WA | 51 1.50 14.70 1.36 13.38
E41099 | E41099WA | 51 1.49 14.66 1.33 13.04
E41101 | E41101WA | 51 1.68 16.45 1.41 13.82
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E41102 | E41102WA | 51 1.59 15.60 1.38 13.53
E41103 | E41103WA | 51 1.76 17.29 1.49 14.61
E41105 | E41105WA | 51 1.71 16.74 1.49 14.62
E41109 | E41109WA | 51 1.56 15.33 1.30 12.80
E41129 | E41129WA | 51 1.40 13.75 1.28 12.52
E41137 | E41137WA | 51 1.87 18.34 1.53 14.97
E41138 | E41138WA | 51 1.89 18.50 1.42 13.90
E41156 | E41156WA | 51 1.49 14.60 1.13 11.11
E41164 | E41164WA | 51 1.80 17.63 1.52 14.93
E41168 | E41168WA | 51 1.14 11.18 1.00 9.83
141004 | 141004WA | 51 1.69 16.54 1.43 14.01
141021 | 141021WA | 51 1.64 16.07 1.36 13.31
141025 | 141025WA | 51 1.77 17.35 1.39 13.63
P41039 | P41039WA | 51 1.92 18.86 1.70 16.68
P41043 | P41043WA | 51 1.75 17.16 1.50 14.75
P41046 | P41046WA | 51 1.78 17.42 1.46 14.29
P41072 | P41072WA | 51 1.53 15.00 1.32 12.99
P41082 | P41082WA | 51 1.42 13.91 1.15 11.28
P41112 | P41112WA | 51 1.43 14.07 1.25 12.27
P41112 | P41112WB | 51 1.57 15.36 1.34 13.18
P41122 | P41122WA | 51 1.36 13.37 1.19 11.70
P41123 | P41123WA | 51 1.44 14.11 1.31 12.82
V41001 | V41001WA | 51 1.50 14.72 1.28 12.55
V41003 | V41003WA | 51 1.55 15.17 1.31 12.87
C7001 | C7001WA | 61 1.60 15.65 1.23 12.06
C7008 | C7008WA | 61 1.54 15.12 1.12 10.97
U7446 | U7446WA | 61 1.20 11.80 1.05 10.30
U7466 | U7T466WA | 61 1.38 13.51 1.32 12.96
V4050 | V4050WA | 61 1.61 15.78 1.37 13.39
V4058 | V4058WA | 61 1.51 14.86 1.14 11.20
V4060 | V4060WA | 61 1.44 14.12 1.12 10.95
V4122 | V4122WA | 61 1.87 18.32 1.62 15.87
V4149 | V4149WA | 61 1.20 11.81 1.02 10.02
V4155 | V4155WA | 61 1.68 16.52 1.47 14.45
V4385 | V4385WA | 61 1.21 11.88 1.03 10.08
V4386 | V4386WA | 61 1.41 13.79 1.25 12.30
V4387 | V4387TWA | 61 1.19 11.66 1.03 10.12
V4388 | V4388WA | 61 1.20 11.74 1.09 10.66
E41132 | E41132WA | 62 1.11 10.85 0.90 8.79
E41136 | E41136WA | 62 1.57 15.43 1.40 13.77
141030 | 141030WA | 62 1.50 14.71 1.16 11.42
141036 | 141036WA | 62 1.70 16.70 1.45 14.25
141038 | 141038WA | 62 1.39 13.67 1.07 10.48
U7505 | U7505WA | 62 1.27 12.42 1.24 12.12
V4004 | V4004WA | 62 2.00 19.60 1.70 16.70
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V4013 | V4013WA | 62 1.66 16.24 1.31 12.82
V4015 | V4015WA | 62 1.42 13.92 1.09 10.73
V4017 | V4017TWA | 62 1.64 16.11 1.29 12.62
V4282 | VA4282WA | 62 1.34 13.12 1.11 10.86
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GSI residual Intact rock strenght (MPa) m;
ID Site Rv | GSI peak i . .

min max min max max | min
20120102 25 55 26 21 29 43 16.8 | 104
20120103 20 50 26 21 19 39 16.8 | 104
20120104 29 60 27 22 32 54 16.8 | 104
20120105 21 30 20 15 23 35 16.8 | 104
20120108 31 50 26 21 33 63 16.8 | 104
20120112 11 40 23 18 10 28 16.8 | 104
20120117 23 40 23 18 26 39 16.8 | 104
20120146 15 40 23 18 18 26 16.8 | 104
20120147 31 50 26 21 36 60 16.8 | 104
20120153 22 45 25 20 25 37 16.8 | 104
20120154 22 45 25 20 23 38 16.8 | 104
20120156 26 55 26 21 31 43 16.8 | 104
20120356 11 40 23 18 13 24 16.8 | 104
20120357 38 35 22 17 54 79 16.8 | 104
20170319 8 30 20 15 12 18 16.8 | 104
20170320 22 40 23 18 17 51 16.8 | 104
20170321 21 55 26 21 22 36 16.8 | 104
20170322 12 40 23 18 15 23 16.8 | 104
20170328 24 60 27 22 25 42 16.8 | 104
20170329 33 60 27 22 38 73 16.8 | 104
20170330 25 65 27 22 25 47 16.8 | 104
20170332 29 60 27 22 30 58 16.8 | 10.4
20170333 24 50 26 21 28 40 16.8 | 104
20170334 16 40 23 18 15 34 16.8 | 10.4
20170335 15 30 20 15 17 27 16.8 | 104
20170336 24 45 25 20 21 51 16.8 | 10.4
20170337 26 65 27 22 28 47 16.8 | 104
20182006 17 55 26 21 16 33 16.8 | 104
20182036 21 55 26 21 19 44 16.8 | 10.4
20182039 22 70 27 22 22 40 16.8 | 104
20182040 24 45 25 20 26 42 16.8 | 104
20182041 28 55 26 21 34 49 16.8 | 104
20182042 29 55 26 21 34 50 16.8 | 104
20182043 27 45 25 20 31 49 16.8 | 104
20182044 26 55 26 21 30 45 16.8 | 104
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20182045 21 35 22 17 23 34 16.8 | 104
20182046 9 25 18 13 14 17 16.8 | 104
20182047 20 35 22 17 20 36 16.8 | 10.4
20182048 10 30 20 15 14 20 16.8 | 104
20182050 16 40 23 18 15 33 16.8 | 10.4
20182051 24 55 26 21 24 47 16.8 | 104
20182052 15 35 22 17 16 26 16.8 | 10.4
20182055 9 30 20 15 14 18 16.8 | 104
20182056 19 45 25 20 21 33 16.8 | 104
20182057 21 45 25 20 22 37 16.8 | 10.4
20182058 15 45 25 20 17 28 16.8 | 104
20182059 20 40 23 18 21 34 16.8 | 10.4
20182060 15 65 27 22 13 34 16.8 | 104
201820064 18 40 23 18 21 30 16.8 | 10.4
20182065 17 40 23 18 18 29 16.8 | 104
20182066 24 40 23 18 26 40 16.8 | 104
20182067 19 45 25 20 18 36 16.8 | 10.4
20182068 21 45 25 20 22 36 16.8 | 104
20182069 19 50 26 21 21 32 16.8 | 10.4
20182070 22 35 22 17 20 47 16.8 | 104
20182071 21 60 27 22 24 35 16.8 | 10.4
20182072 26 35 22 17 28 49 16.8 | 104
20182073 22 40 23 18 24 37 16.8 | 104
20182075 21 45 25 20 21 37 16.8 | 10.4
20182076 23 50 26 21 23 42 16.8 | 104
20182077 20 55 26 21 20 36 16.8 | 10.4
20182078 17 30 20 15 16 33 16.8 | 104
20182079 21 65 27 22 23 37 16.8 | 10.4
20182081 17 40 23 18 17 31 16.8 | 104
20182082 21 40 23 18 22 37 16.8 | 104
20182083 19 40 23 18 20 32 16.8 | 10.4
20182084 17 40 23 18 17 33 16.8 | 104
20182085 27 65 27 22 30 50 16.8 | 104
20182086 25 50 26 21 27 44 16.8 | 104
20182087 22 40 23 18 21 42 16.8 | 104
20182088 17 50 26 21 18 30 16.8 | 104
20182089 27 60 27 22 29 52 16.8 | 104
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20182090 22 60 27 22 23 40 16.8 | 104
20182091 28 70 27 22 32 50 16.8 | 104
20182092 23 55 26 21 26 38 16.8 | 10.4
20182093 24 55 26 21 26 39 16.8 | 104
20182094 18 40 23 18 17 37 16.8 | 10.4
20182096 15 35 22 17 15 30 16.8 | 104
20182097 11 25 18 13 16 20 16.8 | 10.4
20182098 19 55 26 21 19 37 16.8 | 104
20182099 23 40 23 18 24 40 16.8 | 104
20182100 26 60 27 22 26 49 16.8 | 10.4
20182101 24 45 25 20 26 42 16.8 | 104
20182102 26 65 27 22 29 45 16.8 | 10.4
20182103 27 65 27 22 31 47 16.8 | 104
20182104 25 65 27 22 26 46 16.8 | 10.4
20182105 15 35 22 17 16 28 16.8 | 104
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ID Site | Rockmass strenght (MPa) | Friction angle (degrees) | Effective cohesion (KPa) | BMU
25thperc | median | 75thperc | 25thperc | median | 75thperc | 25thperc | median | 75th perc
20120102 | 0.8 0.9 1.0 28.8 30.2 315 35.6 33.1 38.3 1
20120103 | 0.6 0.7 0.8 26.4 28.0 29.6 314 28.7 34.2 1
20120104 | 1.0 1.1 1.3 30.4 31.9 333 39.4 36.5 42.5 1
20120105 | 0.4 0.5 0.6 21.8 23.2 24.5 22.6 20.7 24.7 4
20120108 | 1.0 1.2 1.4 29.9 31.5 33.1 38.6 354 41.7 1
20120112 | 0.3 0.4 0.5 21.7 23.5 25.1 23.4 20.8 26.1 1
20120117 | 0.6 0.7 0.8 25.5 26.9 28.3 29.1 26.8 31.5 4
20120146 | 0.4 0.5 0.5 23.1 24.4 25.7 24.8 23.0 27.0 4
20120147 | 1.0 1.2 1.3 30.0 315 33.0 38.6 35.7 41.6 2
20120153 | 0.6 0.7 0.8 26.3 27.7 29.0 30.6 28.3 33.1 2
20120154 | 0.6 0.7 0.8 26.2 27.6 28.9 30.4 28.1 32.9 2
20120156 | 0.8 0.9 1.0 29.0 30.4 31.7 36.0 33.5 38.7 2
20120356 | 0.3 0.4 0.5 21.9 23.3 24.7 23.2 21.3 25.3 4
20120357 | 1.1 1.3 1.4 28.8 30.3 31.8 35.5 32.6 38.6 3
20170319 | 0.2 0.3 0.3 18.1 19.4 20.6 17.3 15.8 19.0 4
20170320 | 0.6 0.7 0.9 25.1 27.2 29.0 29.7 26.3 33.0 4
20170321 | 0.6 0.7 0.8 27.2 28.7 30.1 32.6 30.3 35.2 2
20170322 | 0.4 0.4 0.5 22.2 23.5 24.7 23.4 21.6 254 4
20170328 | 0.8 0.9 1.0 28.7 30.1 31.6 35.6 33.0 38.3 2
20170329 | 1.2 1.5 1.7 32.1 33.7 35.2 43.7 40.2 47.4 2
20170330 | 0.8 1.0 1.1 29.4 30.9 32.4 37.3 34.3 40.3 2
20170332 | 1.0 1.2 1.3 30.4 32.0 33.6 39.7 36.5 43.1 2
20170333 | 0.7 0.8 0.9 27.8 29.2 30.5 334 31.1 36.0 3
20170334 | 0.4 0.5 0.6 23.4 25.0 26.7 25.9 23.4 28.6 4
20170335 | 0.3 0.4 0.4 20.2 21.5 22.8 20.2 18.5 22.2 4
20170336 | 0.7 0.8 1.0 26.8 28.7 30.3 32.5 29.2 35.7 1
20170337 | 0.9 1.0 1.1 29.7 31.2 32.6 37.9 35.2 40.9 1
20182006 | 0.5 0.6 0.7 259 27.5 29.0 30.4 27.8 33.2 3
20182036 | 0.7 0.8 1.0 27.4 29.2 30.9 33.7 30.5 36.9 4
20182039 | 0.7 0.8 1.0 28.5 30.0 31.5 354 32.7 38.3 4
20182040 | 0.7 0.8 0.9 26.9 28.3 29.7 31.8 29.4 34.4 2
20182041 | 0.9 1.0 1.2 29.8 31.2 32.5 37.7 35.0 40.6 2
20182042 | 0.9 1.1 1.2 29.8 313 32.6 37.9 35.2 40.8 2
20182043 | 0.8 0.9 1.0 27.9 29.4 30.8 34.0 313 36.7 3
20182044 | 0.8 0.9 1.1 29.1 30.5 31.8 36.2 33.6 39.0 3
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20182045 | 0.5 0.6 0.6 23.4 24.7 26.1 252 23.2 275 3
20182046 | 0.2 0.2 0.3 16.6 17.7 18.9 15.1 13.7 16.7 1
20182047 | 0.5 0.5 0.6 23.1 24.6 26.0 25.1 23.0 27.4 1
20182048 | 0.3 0.3 0.3 18.8 20.1 213 18.2 16.6 20.0 4
20182050 | 0.4 0.5 0.6 23.3 249 26.5 25.7 23.3 28.3 4
20182051 | 0.8 0.9 1.0 28.4 30.1 31.6 354 32.5 38.5 4
20182052 | 0.4 0.4 0.5 21.5 22.8 24.1 223 20.5 244 4
20182055 | 0.2 0.3 0.3 18.5 19.7 21.0 17.9 16.3 19.5 4
20182056 | 0.5 0.6 0.7 254 26.7 281 29.0 26.8 31.3 4
20182057 | 0.6 0.7 0.8 25.9 27.4 28.7 30.0 27.7 325 4
20182058 | 0.5 0.5 0.6 242 25.6 26.9 26.9 24.8 29.2 4
20182059 | 0.5 0.6 0.7 244 25.8 27.2 273 25.1 29.6 4
20182060 | 0.5 0.6 0.8 26.1 28.0 29.7 314 28.1 34.6 4
201820064 | 0.5 0.5 0.6 24.0 25.4 26.7 26.4 24.4 28.6 4
20182065 | 0.4 0.5 0.6 23.4 24.8 26.1 25.6 23.5 27.8 4
20182066 | 0.6 0.7 0.8 25.6 27.0 28.4 29.3 27.0 31.8 3
20182067 | 0.5 0.6 0.7 25.2 26.7 28.2 29.0 26.5 31.6 3
20182068 | 0.6 0.7 0.8 25.8 27.2 28.6 29.8 27.5 32.2 4
20182069 | 0.6 0.6 0.7 26.1 27.4 28.7 30.2 28.0 32.7 4
20182070 | 0.5 0.7 0.8 24.0 25.7 274 26.9 24.2 29.7 4
20182071 | 0.7 0.8 0.9 27.9 29.3 30.5 33.7 314 36.3 3
20182072 | 0.6 0.8 0.9 252 26.6 28.1 28.5 26.1 31.1 3
20182073 | 0.6 0.7 0.7 251 26.5 27.8 28.4 26.2 30.8 3
20182075 | 0.6 0.7 0.8 25.8 273 28.7 29.8 27.5 323 3
20182076 | 0.7 0.8 0.9 27.3 28.8 30.3 32.9 30.3 35.6 3
20182077 | 0.6 0.7 0.8 27.0 28.4 29.9 32.2 29.7 34.8 3
20182078 | 0.4 0.4 0.5 20.6 221 23.6 21.2 19.2 23.3 4
20182079 | 0.7 0.8 0.9 28.2 29.7 31.0 34.6 322 37.3 3
20182081 | 0.4 0.5 0.6 23.5 25.0 26.4 25.8 23.7 28.1 4
20182082 | 0.5 0.6 0.7 249 26.3 27.6 28.0 25.8 30.4 4
20182083 | 0.5 0.6 0.6 24.1 255 26.8 20.6 24.5 28.9 4
20182084 | 0.4 0.5 0.6 23.7 25.2 26.7 26.2 24.0 28.6 4
20182085 | 0.9 1.1 1.2 30.2 31.7 33.1 38.9 36.1 42.0 3
20182086 | 0.8 0.9 1.0 28.0 29.4 30.8 34.1 31.6 36.8 3
20182087 | 0.6 0.7 0.8 251 26.7 28.2 28.8 26.3 31.4 4
20182088 | 0.5 0.6 0.7 254 26.8 28.1 29.1 26.9 31.5 3
20182089 | 0.9 1.1 1.2 29.9 31.5 32.9 38.5 35.5 41.5 3
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20182090 | 0.7 0.8 0.9 282 29.7 31.1 34.7 32.1 37.4 3
20182091 | 1.0 1.1 1.2 30.6 32.0 33.4 39.7 36.9 42.7 3
20182092 | 0.7 0.8 0.9 28.0 29.4 30.7 33.9 31.5 36.5 3
20182093 | 0.7 0.8 0.9 281 29.5 30.8 34.1 31.7 36.8 3
20182094 | 0.5 0.6 0.7 24.0 25.7 27.3 27.0 24.5 29.6 4
20182096 | 0.4 0.4 0.5 21.7 23.2 247 23.0 20.9 25.1 4
20182097 | 0.2 0.3 0.3 17.3 18.5 19.8 16.0 14.6 17.7 4
20182098 | 0.6 0.7 0.8 26.9 28.4 299 32.2 29.5 34.9 3
20182099 | 0.6 0.7 0.8 254 26.8 282 29.0 26.7 31.4 3
20182100 | 0.8 1.0 1.1 29.4 30.9 324 37.3 34.3 40.3 2
20182101 | 0.7 0.8 0.9 26.9 28.3 29.7 31.8 294 34.4 2
20182102 | 0.9 1.0 1.1 29.7 31.1 325 37.7 35.0 40.5 2
20182103 | 0.9 1.0 1.2 30.1 31.5 32.8 38.5 35.8 41.4 2
20182104 | 0.8 1.0 1.1 29.4 30.9 324 37.3 34.5 40.2 2
20182105 | 0.4 0.4 0.5 21.7 23.1 24.4 22.8 20.9 24.8 4

257



REFERENCES

Abburu, S., & Babu Golla, S. (2015) - Satellite Image Classification Methods and Techniques: A Review.
International Journal of Computer Applications, 119(8), 20-25. doi: 10.5120/21088-3779.

Adediran, A. O., Parcharidis, 1., Poscolieri, M., & Pavlopoulos, K. (2004) - Computer-assisted
discrimination of morphological units on north-central Crete (Greece) by applying multivariate
statistics  to  local  relief  gradients. = Geomorphology,  58(1-4), 357-370.  doi:
10.1016/j.geomorph.2003.07.024.

Akgun, A. (2012) - A comparison of landslide susceptibility maps produced by logistic regression, multi-
criteria decision, and likelihood ratio methods: A case study at Izmir, Turkey. Landslides, 9(1), 93—
106. doi: 10.1007/s10346-011-0283-7.

Allen, G. H., Barnes, J. B., Pavelsky, T. M., & Kirby, E. (2013) - Lithologic and tectonic controls on
bedrock channel form at the northwest Himalayan front. Journal of Geophysical Research: Earth
Surface, 118(3), 1806-1825. doi: 10.1002/jgrf.20113.

Ameratunga, J., Sivakugan, N., & Das, B. M. (2016) - Correlations of Soil and Rock Properties in
Geotechnical Engineering, 1-228. Available at: http://www.springet.com/seties/13410.

Anselin, L. (1995) - Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93—
115. doi: 10.1111/j.1538-4632.1995.tb00338 x.

Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., & Reichenbach, P. (2002) - Impact of mapping
errors on the reliability of landslide hazard maps. Natural Hazards and Earth System Sciences, 2(1—
2), 3-14. doi: 10.5194/nhess-2-3-2002.

Armaghani, D. J., Tonnizam Mohamad, E., Momeni, E., Monjezi, M., & Sundaram Narayanasamy, M.
(2016) - Prediction of the strength and elasticity modulus of granite through an expert artificial
neural network. Arabian Journal of Geosciences, 9(1), 1-16. doi: 10.1007/s12517-015-2057-3.

Arnone, E., Caracciolo, D., Noto, L. V., Preti, ., & R. L. Bras (2016) - Modeling the hydrological and
mechanical effect of roots on shallow landslides. Journal of the American Water Resources
Association, 5(3), 2-2. doi: 10.1111/j.1752-1688.1969.tb04897 x.

Arrell, K. E., Fisher, P. F., Tate, N. J., & Bastin, L. (2007) - A fuzzy c-means classification of elevation
derivatives to extract the morphometric classification of landforms in Snowdonia, Wales.
Computers and Geosciences, 33(10), 1366—1381. doi: 10.1016/j.cageo.2007.05.005.

Assuncao, R. M., Neves, M. C., Camara, G., & Da Costa Freitas, C. (2000) - Efficient regionalization
techniques for socio-economic geographical units using minimum spanning trees. International
Journal of Geographical Information Science, 20(7), 797-811. doi: 10.1080/13658810600665111.

ASTM (2001) Standard test method for determination of rock hardness by rebound hammer method.

258



ASTM International.

ASTM - D2937 (no date) - Standard Test Method for Density of Soil in Place by the Drive-Cylinder
Method. Annual book of ASTM standards (7 pp.). ASTM International West Conshohocken, PA.

ASTM D5873-14 (no date) Determination of Rock Hardness by Rebound Hammer Method. Available
at: Www.astm.org,.

Aufmuth, R. E. (1973) A systematic determination of engineering criteria for rock.

Australian Standard (2002) Earth-retaining structures.

Avanzi, G. D. A., Duchi, S.; Galanti, Y., Giannecchini, R., & Lo Presti, D. (2010) - Geotechnical
characterization of the Macigno Fm. debris by dynamic penetration tests in the Serchio River basin
(Tuscany, Italy). Rendiconti Online Societa Geologica Italiana, 11(2), 579-580.

Aydin, A. (2009) - ISRM Suggested method for determination of the Schmidt hammer rebound hardness:
Revised version. International Journal of Rock Mechanics and Mining Sciences, 46(3), 627—634. doi:
10.1016/j.ijrmms.2008.01.020.

Aydin, A., & Basu, A. (2005) - The Schmidt hammer in rock material characterization. Engineering
Geology, 81(1), 1-14. doi: 10.1016/j.enggeo.2005.06.006.

Barton, N. (19706) - The shear strength of rock and rock joints. International Journal of Rock Mechanics
and Mining Sciences and, 13(9), 255-279. doi: 10.1016/0148-9062(76)90003-6.

Barton, N., & Choubey, V. (1977) - The shear strength of rock joints in theory and practice. Rock
Mechanics Felsmechanik Mécanique des Roches, 10(1-2), 1-54. doi: 10.1007/BF01261801.

Basu, A., & Aydin, A. (2004) - A method for normalization of Schmidt hammer rebound values, 41,
1211-1214. doi: 10.1016/j.ijrmms.2004.05.001.

Baum, R. L., Savage, W. Z., Godyt, J. W., & others (2002) - TRIGRS—a Fortran program for transient
rainfall infiltration and grid-based regional slope-stability analysis. US geological survey open-file
report, 424, 38.

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018) -
Present and future képpen-geiger climate classification maps at 1-km resolution. Scientific Data.
The Authot(s), 5, 1-12. doi: 10.1038/sdata.2018.214.

van Beek, L. P. H. (2002) Assessment of the influence of changes in land use and climate on landslide
activity in a Mediterranean environment. Nederlandse Geografische Studies.

Beguerfa, S. (2000) - Validation and evaluation of predictive models in hazard assessment and risk
management. Natural Hazards, 37(3), 315-329. doi: 10.1007/s11069-005-5182-6.

Benito-Calvo, A., Pérez-Gonzalez, A., Magri, O., & P. Meza (2009) - Assessing regional geodiversity: the
Iberian Peninsula. Earth Surface Processes and Landforms, 34(March), 1433-1445. doi:
10.1002/esp.1840.

Bernard, T., Sinclair, H. D., Gailleton, B., Mudd, S. M., & Ford, M. (2019) - Lithological control on the

259



post-orogenic topography and erosion history of the Pyrenees. Earth and Planetary Science Letters.
Elsevier B.V., 518, 53—66. doi: 10.1016/j.epsl.2019.04.034.

Berti, M., Bertello, L., Bernardi, A. R., & Caputo, G. (2017) - Back analysis of a large landslide in a flysch
rock mass. Landslides. Landslides, 14(6), 2041-2058. doi: 10.1007/s10346-017-0852-5.

Beven, K. J., & Kirkby, M. J. (1979) - A physically based, variable contributing area model of basin
hydrology. Hydrological Sciences Bulletin, 24(1), 43—69. doi: 10.1080/02626667909491834.

Beverly, B. E., Schoenwolf, D. A., & Brierly, G. S. (1979) - Correlations of rock index values with
engineering properties and the classification of intact rock. Federal Highway Administration,
Waschington DC, Technical Report, 228, 229.

Bieniawski, Z. T. (1993) - Classification of rock masses for engineering: the RMR system and future
trends. in Rock Testing and Site Characterization. Elsevier, 553—573.

Binder, K., Heermann, D., Roelofs, L., Mallinckrodt, A. J., & McKay, S. (1993) - Monte Carlo simulation
in statistical physics. Computers in Physics. American Institute of Physics, 7(2), 156—157.

Bjerrum, L., & Simons, N. E. (1960) - Comparison of shear strength characteristics of normally
consolidated clays, Norwegian Geotechnical Institute. Publication.

Blahut, J., van Westen, C. J., & Sterlacchini, S. (2010) - Analysis of landslide inventories for accurate
prediction of debris-flow source areas. Geomorphology. Elsevier B.V., 119(1-2), 36-51. doi:
10.1016/j.geomorph.2010.02.017.

Blair, T. C., & McPherson, J. G. (1999) - Grain-size and textural classification of coarse sedimentary
patticles. Journal of Sedimentary Research, 69(1), 6-19. doi: 10.2110/jst.69.6.

Bolton, M. D. (19806) - The strength and dilatancy of sands. Geotechnique. Thomas Telford Ltd, 36(1),
65-78.

Bone, C., Wulder, M. A., White, J. C., Robertson, C., & Nelson, T. A. (2013) - A GIS-based risk rating
of forest insect outbreaks using aerial overview surveys and the local Moran’s I statistic. Applied
Geography. Elsevier Ltd, 40, 161-170. doi: 10.1016/j.apgeog.2013.02.011.

Booth, A. M., Roering, J. J., & Perron, J. T. (2009) - Automated landslide mapping using spectral analysis
and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills,
Oregon. Geomorphology. Elsevier B.V., 109(3—4), 132-147. doi: 10.1016/j.geomorph.2009.02.027.

Boruvka, O. (1926) - O jistém problému minimaln{\’\i}m.

Brardinoni, F., & Church, M. (2004) - Representing the landslide magnitude-frequency relation: Capilano
River basin, British Columbia. Farth Surface Processes and Landforms, 29(1), 115-124. doi:
10.1002/esp.1029.

Brideau, M. A., & Roberts, N. J. (2014) Mass Movement in Bedrock. Landslide Hazards, Risks, and
Disasters. doi: 10.1016/B978-0-12-396452-6.00003-3.

Brooker, E. W., & Ireland, H. O. (1965) - Earth pressures at rest related to stress history. Canadian

260



geotechnical journal. NRC Research Press, 2(1), 1-15.

Brown, D. G., Lusch, D. P., & Duda, K. A. (1998) - Supervised classification of types of glaciated
landscapes using digital elevation data. Geomorphology, 21(3—4), 233-250. doi: 10.1016/s0169-
555x(97)00063-9.

Brunetti, M., Guzzetti, F., & Rossi, M. (2009) - Probability distributions of landslide volumes. Nonlinear
Processes in Geophysics, 16(2), 179-188. doi: 10.5194/npg-16-179-2009.

BS 1377-2 (1990) - Methods of test for soils for civil engineering purposes-Part 2: Classification tests.
London: UK: British Standard Institution.

Burrough, P. A., Van Gaans, P. F. M., & MacMillan, R. A. (2000) - High-resolution landform classification
using fuzzy k -means. Fuzzy Sets and Systems, 113(1), 37-52. doi: 10.1016/S0165-0114(99)00011-
1.

Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y., & Minami, M. (2004) - Estimation of rock mass deformation
modulus and strength of jointed hard rock masses using the GSI system. International Journal of
Rock Mechanics and Mining Sciences, 41(1), 3-19. doi: 10.1016/81365-1609(03)00025-X.

Cai, M., Kaiser, P. K., Tasaka, Y., & Minami, M. (2007) - Determination of residual strength parameters
of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining
Sciences, 44(2), 247-265. doi: 10.1016/].ijrmms.2006.07.005.

Calinski, T., & Harabasz, J. (1974) - Communications in Statistics - Theory and Methods.
Communications in Statistics, 3(1), 1-27. doi: 10.1080/03610927408827101.

Carmignani, L. . ., Conti, P., Cornamusini, G., & Meccheri, M. (2004) - THE INTERNAL NORTHERN
APENNINES , THE NORTHERN TYRRHENIAN SEA AND THE SARDINIA-CORSICA
BLOCK C ARMIGNANI L., CONTI P ., C ORNAMUSINI G ., M ECCHERI M .

Carmignani, L., Decandia, F. A., Fantozzi, P. L., Lazzarotto, A., Liotta, D., & Meccheri, M. (1994) -
Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics. Elsevier,
238(1-4), 295-315. doi: 10.1016/0040-1951(94)90061-2.

Carmignani, L., Decandia, F. A., Disperati, L., Fantozzi, P. L., Kligfield, R., Lazzarotto, A., Liotta, D., &
Meccheri, M. (2001) - Inner Northern Apennines. in Vai, G. B. and Martini, I. P. (eds) Anatomy of
an Orogen: the Apennines and Adjacent Mediterranean Basins. Dordrecht: Springer Netherlands,
197-213. doi: 10.1007/978-94-015-9829-3_14.

Carrara, A., Crosta, G., & Frattini, P. (2008) - Comparing models of debris-flow susceptibility in the
alpine environment. Geomorphology, 94(3—4), 353—378. doi: 10.1016/j.geomorph.2006.10.033.

Casagli, N., Cigna, F., Bianchini, S., Hélbling, D., Fureder, P., Righini, G., Del Conte, S., Friedl, B.,
Schneiderbauer, S., Iasio, C., Vlcko, J., Greif, V., Proske, H., Granica, K., Falco, S., Lozzi, S., Mora,
O., Arnaud, A., Novali, F., & Bianchi, M. (2016) - Landslide mapping and monitoring by using radar
and optical remote sensing: Examples from the EC-FP7 project SAFER. Remote Sensing

261



Applications: Society and Environment, 92-108. doi: 10.1016/j.rsase.2016.07.001.

Cascini, L., Ciutleo, M., & D1 Nocera, S. (2017) - Soil depth reconstruction for the assessment of the
susceptibility to shallow landslides in fine-grained slopes. Landslides. Landslides, 14(2), 459—471.
doi: 10.1007/s10346-016-0720-8.

Catani, F., Segoni, S., & Falorni, G. (2007) - Accurate basin scale soil depth modelling and its impact on
shallow landslides prediction. in Geophysical Research Abstracts, 10828.

Cervi, F., Berti, M., Borgatti, L., Ronchetti, F., Manenti, F., & Corsini, A. (2010) - Comparing predictive
capability of statistical and deterministic methods for landslide susceptibility mapping: A case study
in the northern Apennines (Reggio Emilia Province, Italy). Landslides, 7(4), 433—444. dot:
10.1007/s10346-010-0207-y.

Chang, K. T., & Chiang, S. H. (2009) - An integrated model for predicting rainfall-induced landslides.
Geomorphology. Elsevier B.V., 105(3—4), 366-373. doi: 10.1016/j.geomorph.2008.10.012.

Chelli, A., Pappalardo, M., Llopis, I. A., & Federici, P. R. (2010) - The relative influence of lithology and
weathering in shaping shore platforms along the coastline of the Gulf of La Spezia (NW Italy) as
revealed by rock strength. Geomorphology. Elsevier B.V. 118(1-2), 93-104. doi:
10.1016/j.geomorph.2009.12.011.

Chen, H. X, & Zhang, I.. M. (2014) - A physically-based distributed cell model for predicting regional
rainfall-induced shallow slope failures. Engineering Geology. Elsevier B.V., 176, 79-92. doi:
10.1016/j.enggeo.2014.04.011.

Ching, J., Lin, G.-H., Chen, J.-R., & Phoon, K.-K. (2017) - Transformation models for effective friction
angle and relative density calibrated based on generic database of coarse-grained soils. Canadian
Geotechnical Journal. NRC Research Press, 54(4), 481-501.

Ciutleo, M., Cascini, L., & Calvello, M. (2017) - A comparison of statistical and deterministic methods
for shallow landslide susceptibility zoning in clayey soils. Engineering Geology. Elsevier, 223(April),
71-81. doi: 10.1016/j.enggeo.2017.04.023.

Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., Catani, F., Van Den
Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani,
V., Hervas, J., & Smith, J. T. (2014) - Recommendations for the quantitative analysis of landslide
risk. Bulletin of Engineering Geology and the Environment, 73(2), 209-263. doi: 10.1007/s10064-
013-0538-8.

Cruden, D. M. (1991) - A simple definition of a landslide. Bulletin of the International Association of
Engineering Geology - Bulletin de I’Association Internationale de Géologie de I'Ingénieur, 43(1),
27-29. doi: 10.1007/BF02590167.

Cruden, David M., & Varnes, D. J. (1996) - Landslide types and processes. Special Report - National
Research Council, Transportation Research Board, 247 (January 1996), 36-75.

262



Cruden, David M, & Varnes, D. J. (1996) - Landslides, Investigation and Mitigation. Landslide types and
processes Bussines Office. Washington, DC Transportation Research Board. Washington DC,
USA, 36-75 p. Transportation research board special report, 247(February), 36—75.

D’Addario, E., Trefolini, E., Mammoliti, E., Papasidero, M., & Disperati, L. (2018) - A new shallow
landslides inventory for Southern Lunigiana ( Tuscany , Italy ) and analysis of predisposing factors.
Rend. Online Soc. Geol. It., 46, 149-154.

D’Odorico, P. (2000) - A possible bistable evolution of soil thickness. Journal of Geophysical Research:
Solid Earth. doi: 10.1029/2000jb900253.

Deere, D. U., & Miller, R. P. (1966) - Engineering classification and index properties for intact rock.
Report AWFL” FR—65416. Air Force Weapons Laboratory (WLDC) Kirtland Airforce base. New
Mexico.

Deng, Y. X., Wilson, J. P., & J. Sheng (2000) - Effects of Variable Attribute Weights on Landform
Classification. Earth Surface Processes and Landforms, 31, 1452-1462. doi: 10.1002/esp.1401.
DeWitt, J. D., Warner, T. A., Chirico, P. G., & Bergstresser, S. E. (2017) - Creating high-resolution bare-
earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated
deciduous forest using combinations of procedures designed for lidar point cloud filtering.
GIScience and  Remote Sensing. Taylor &  Francis, 54(4), 552-572. doi:

10.1080/15481603.2017.1295514.

Dietrich, W. E., Reiss, R., Hsu, M. -L, & Montgomery, D. R. (1995) - A process-based model for colluvial
soil depth and shallow landsliding using digital elevation data. Hydrological Processes. doi:
10.1002/hyp.3360090311.

Dietrich, W. E., Asua, R. R. de, Orr, J. C. B., & Trso, M. (1998) - A validation study of the shallow slope
stability model , SHALSTAB , in forested lands of Northern California by Department of Geology
and Geophysics University of California Berkeley , CA 94720 and Rafael Real de Asua Martin Trso
Stillwater Ecosystem , W. Land Use and Watersheds: Human Influence on Hydrology and
Geomorphology in Urban and Forest Areas, (June 1998), 59. doi: 10.1029/WS002p0195.

Dikau, R. (1989) - The application of a digital relief model to landform analysis in geomorphology. Three
dimensional applications in geographical information systems. Taylor & Francis London, 51-77.

Disperati, L., Gregori, ., Perna, M., Manetti, F., Lavorini, G., & Villoresi, C. (20106) - Bi-temporal change
analysis of satellite imagery to detect landslides triggered by intense rainfall events. Rend. Soc. Geol.
It. Rend. Soc. Geol. It., 39, 51-54.

Disperati, L., Trefolini, E., D’Addario, E., Mammoliti, E., Papasidero, Michele Pio Vacca, V., & Viti, F.
(2018) - Engineering geology characterization of slope deposits and physically-based assessment of
shallow landslide susceptibility ( Alpi. Geophysical Research Abstracts, 20, 19093.

Donati, L., & Turrini, M. C. (2002) - An objective method to rank the importance of the factors

263



predisposing to landslides with the GIS methodology: Application to an area of the Apennines
(Valnerina; Perugia, Italy). Engineering Geology, 63(3—4), 277-289. doi: 10.1016/S0013-
7952(01)00087-4.

Dragut, L., & Blaschke, T. (2006) - Automated classification of landform elements using object-based
image analysis. Geomorphology, 81(3—4), 330-344. doi: 10.1016/j.geomorph.2006.04.013.

Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014) Soil strength and slope stability. John Wiley &
Sons.

Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G., & Demoulin, A. (2007) - Characteristics
of the size distribution of recent and historical landslides in a populated hilly region. Earth and
Planetary Science Letters. Elsevier, 256(3—4), 588—603. doi: 10.1016/j.eps.2007.01.040.

Ehsani, A. H., Quiel, F., & Malekian, A. (2010) - Effect of SRTM resolution on morphometric feature
identification using neural network-self organizing map. Geolnformatica, 14(4), 405-424. doi:
10.1007/s10707-009-0085-4.

Elter, P., Giglia, G., Trevisan, L., & Tongiorgi, M. (1975) - TENSIONAL AND COMPRESSIONAL
AREAS IN THE RECENT (TORTONIAN TO PRESENT) EVOLUTION OF THE
NORTHERN APENNINES.

ESRI (2013) - How Cluster and Outlier Analysis (Anselin Local Moran’s I) works. Available at:
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics /h-how-cluster-and-outlier-
analysis-anselin-local-m.htm.

ESRI (2016) - How grouping analysis works. ArcGIS Pro| ArcGIS Deskt. http://pro. arcgis.
com/en/pro-app/tool-reference/spatial-statistics /how-grouping-analysis-works. htm. Accessed, 7.

Evans, I. S. (1972) - General geomorphometry, derivatives of altitude, and descriptive statistics. Spatial
analysis in geomorphology. Methuen, 17-90.

Evans, I. S. (2012) - Geomorphometry and landform mapping: What is a landform? Geomorphology.
Elsevier B.V., 137(1), 94-106. doi: 10.1016/j.geomorph.2010.09.029.

Ewen, B. J., Parkin, G., & O’Connell, P. E. (2000) - Shetran: D Istributed R Iver B Asin F Low M
Odeling S Ystem. Journal of Hydrologic Engineering, 5(JULY), 250-258.

Fannin, R. J., Eliadorani, A., & Wilkinson, J. M. T. (2005) - Shear strength of cohesionless soils at low
stress. Géotechnique. Thomas Telford Ltd, 55(6), 467—478.

Farmer, I. W. (1983) - Discontinuities in Rock Masses. in Engineering Behaviour of Rocks. Dordrecht:
Springer Netherlands, 143-167. doi: 10.1007/978-94-009-5978-1_6.

Fawcett, T. (2006) - An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. doi:
10.1016/j.patrec.2005.10.010.

Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008) - Guidelines for

landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology. Elsevier
264



B.V., 102(3-4), 85-98. doi: 10.1016/j.enggeo0.2008.03.022.

Fener, M., Kahraman, S., Bilgil, A., & Gunaydin, O. (2005) - A comparative evaluation of indirect
methods to estimate the compressive strength of rocks. Rock Mechanics and Rock Engineering,
38(4), 329-343. doi: 10.1007/s00603-005-0061-8.

Ferrari, F. (2013) - Rock Mass Characterization and Spatial Estimation of Geomechanical Properties
through Geostatistical Techniques, 233.

Ferrari, F., Apuani, T., & Giani, G. P. (2014) - Rock Mass Rating spatial estimation by geostatistical
analysis. International Journal of Rock Mechanics and Mining Sciences. Elsevier, 70, 162—176. doi:
10.1016/j.ijjrmms.2014.04.016.

Fisher, P., Wood, J., & Cheng, T. (2004) - Where is Helvellyn? Fuzziness of multi-scale landscape
morphometry. Transactions of the Institute of British Geographers, 29(1), 106-128. doi:
10.1111/;.0020-2754.2004.00117 x.

Florinsky, I. ., Eilers, R. ., Manning, G. ., & Fuller, L. . (2002) - Prediction of soil properties by digital
terrain modelling. Environmental Modelling & Software, 17(3), 295-311. doi: 10.1016/S1364-
8152(01)00067-6.

Formetta, G., Capparelli, G., & Versace, P. (2016) - Evaluating performance of simplified physically
based models for shallow landslide susceptibility. Hydrology and Earth System Sciences, 20(11),
4585-4603. doi: 10.5194/hess-20-4585-2016.

Fowell, R. J., & McFeath Smith, 1. (1976) - FACTORS INFLUENCING THE CUTTING
PERFORMANCE OF A SELECTIVE TUNNELLING MACHINE.

Fragaszy, R. J., Su, J., Siddiqi, F. H., & Ho, C. L. (1992) - Modeling strength of sandy gravel. Journal of
Geotechnical Engineering. American Society of Civil Engineers, 118(6), 920-935.

Francipane, A., Arnone, E., Lo Conti, F., Puglisi, C., & Noto, L. V. (2014) - A Comparison Between
Heuristic, Statistical, And Data-Driven Methods In Landslide Susceptibility Assessment: An
Application To The Briga And Giampilieri Catchments. 11° International Conference on
Hydroinformations, 9. Available at:
http://academicworks.cuny.edu/cc_conf_hic%0Ahttp://academicworks.cuny.edu/cc_conf_hic/
150.

Frattini, P., Crosta, G., Carrara, A., & Agliardi, F. (2008) - Assessment of rockfall susceptibility by
integrating statistical and physically-based approaches. Geomorphology, 94(3—4), 419-437. doi:
10.1016/j.geomorph.2006.10.037.

Frattini, P., & Crosta, G. B. (2013a) - The role of material properties and landscape morphology on
landslide size distributions. Earth and Planetary Science Letters. Elsevier, 361, 310-319. doi:
10.1016/j.epsl.2012.10.029.

Frattini, P., & Crosta, G. B. (2013b) - The role of material properties and landscape morphology on

265



landslide size distributions. Earth and Planetary Science Letters. Elsevier, 361, 310-319. doi:
10.1016/j.epsl.2012.10.029.

Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., & Reichenbach, P. (2008) - Comparing landslide
inventory maps. Geomorphology. doi: 10.1016/j.geomorph.2006.09.023.

Gariano, S. L., & Guzzetti, F. (20106) - Landslides in a changing climate. Earth-Science Reviews. Elsevier,
162, 227-252. doi: 10.1016/j.earscirev.2016.08.011.

Giannecchini, R., Galant, Y., D’Amato Avanzi, G., & Barsanti, M. (2016) - Probabilistic rainfall
thresholds for triggering debris flows in a human-modified landscape. Geomorphology, 257, 94—
107. doi: 10.1016/j.geomorph.2015.12.012.

Giannecchini, R., Galanti, Y., & D’Amato Avanzi, G. (2012) - Critical rainfall thresholds for triggering
shallow landslides in the Serchio River Valley (Tuscany, Italy). Natural Hazards and Earth System
Science. doi: 10.5194/nhess-12-829-2012.

Giordan, D., Cignetti, M., Baldo, M., & Godone, D. (2017) - Relationship between man-made
environment and slope stability: the case of 2014 rainfall events in the terraced landscape of the
Liguria region (northwestern Italy). Geomatics, Natural Hazards and Risk. Taylor & Francis, 8(2),
1833-1852. doi: 10.1080/19475705.2017.1391129.

Glaus, G., Delunel, R., Stutenbecker, L., Ak¢ar, N., Christl, M., & Schlunegger, F. (2019) - Differential
erosion and sediment fluxes in the Landquart basin and possible relationships to lithology and
tectonic controls. Swiss Journal of Geosciences. Springer International Publishing, 112(2-3), 453—
473. doi: 10.1007/s00015-019-00344-3.

Goetz, J. N., Guthrie, R. H., & Brenning, A. (2011) - Integrating physical and empirical landslide
susceptibility models using generalized additive models. Geomorphology. Elsevier B.V., 129(3—4),
376-386. doi: 10.1016/j.geomorph.2011.03.001.

Goetz, J. N., Brenning, A., Petschko, H., & Leopold, P. (2015) - Evaluating machine learning and
statistical prediction techniques for landslide susceptibility modeling. Computers and Geosciences.
Elsevier, 81, 1-11. doi: 10.1016/j.cage0.2015.04.007.

Goktan, R. M., & Ayday, C. (1993) - A suggested improvement to the Schmidt rebound hardness ISRM
suggested method with particular reference to rock machineability. INTERNATIONAL
JOURNAL OF ROCK MECHANICS AND MINING & GEOMECHANICS ABSTRACTS,
30(3).

Gorsevski, P. V., Gessler, P. E., Boll, J., Elliot, W. J., & Foltz, R. B. (2000) - Spatially and temporally
distributed modeling of landslide susceptibility. Geomorphology, 80(3—4), 178-198. doi:
10.1016/j.geomorph.2006.02.011.

Goswami, R., Mitchell, N. C., & Brocklehurst, S. H. (2011) - Goswami et al., 2011, Distribution and
causes of landslides in the eastern Peloritani of NE Sicily and western Aspromonte of SW Calabria,

266



Italy.pdf, 111-122.

Goudie, A. S. (2004) Encyclopedia of Geomorphology. Routledge.

Grelle, G., Revellino, P., Donnarumma, A., & Guadagno, F. M. (2011) - Bedding control on landslides :
a methodological approach for computer-aided mapping analysis, 1395-1409. doi: 10.5194/nhess-
11-1395-2011.

Guimaraes, R. F., Montgomery, D. R., Greenberg, H. M., Fernandes, N. F., Gomes, R. A. T., & de
Carvalho Junior, O. A. (2003) - Parameterization of soil properties for a model of topographic
controls on shallow landsliding: Application to Rio de Janeiro. Engineering Geology, 69(1-2), 98—
108. doi: 10.1016/50013-7952(02)00263-6.

Guth, P. L. (1995) - Slope and aspects calculations on gridded digital elevation models: examples from a
geomorphometric  toolbox for personal computers. Zeitschrift fir Geomorphologie.
Supplementband, (101), 31-52.

Guthrie, R. H., & Evans, S. G. (2004) - Magnitude and frequency of landslides triggered by a storm event,
Loughborough Inlet, British Columbia. Natural Hazards and Earth System Science, 4(3), 475-483.
doi: 10.5194/nhess-4-475-2004.

Guthrie, R. H., Deadman, P. J., Cabrera, A. R, & Evans, S. G. (2008) - Exploring the magnitude—
frequency distribution: a cellular automata model for landslides. Landslides, 5(1), 151-159. dot:
10.1007/s10346-007-0104-1.

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012) - Landslide
inventory maps: New tools for an old problem. Earth-Science Reviews. Elsevier B.V., 112(1-2), 42—
66. doi: 10.1016/j.earscirev.2012.02.001.

Guzzetti, F., Malamud, B. D., Turcotte, D. L., & Reichenbach, P. (2002) - Power-law correlations of
landslide areas in central Italy. FEarth and Planetary Science Letters, 195(3—4), 169-183. doi:
10.1016/S0012-821X(01)00589-1.

Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., & Rossi, M. (2008) - Distribution
of landslides in the Upper Tiber River basin, central Italy. Geomorphology, 96(1-2), 105-122. doi:
10.1016/j.geomorph.2007.07.015.

Hack, R. (1997) - Rock mass strength by rock mass classification, (September), 346—356.

Hanley, J. A., & McNeil, B. J. (1982) - The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology, 143(1), 29-30.

Haque, U., Blum, P., da Silva, P. F., Andersen, P., Pilz, J., Chalov, S. R., Malet, J. P., Aufli¢, M. J., Andres,
N., Poyiadji, E., Lamas, P. C., Zhang, W., Peshevski, 1., Pétursson, H. G., Kurt, T., Dobrev, N.,
Garcia-Davalillo, J. C., Halkia, M., Ferti, S., Gaprindashvili, G., Engstrom, J., & Keellings, D. (2016)
- Fatal landslides in Europe. Landslides, 13(6), 1545-1554. doi: 10.1007/s10346-016-0689-3.

Haramy, K. Y., & DeMarco, M. J. (1985) - Use of the Schmidt hammer for rock and coal testing. in The
267



26th US Symposium on Rock Mechanics (USRMS).

Head, K. H., & Epps, R. J. (1980) Manual of soil laboratory testing. Pentech Press London.

Hebib, R., Belhai, D., & Alloul, B. (2017) - Estimation of uniaxial compressive strength of North Algeria
sedimentary rocks using density, porosity, and Schmidt hardness. Arabian Journal of Geosciences.
Arabian Journal of Geosciences, 10(17), 1-13. doi: 10.1007/s12517-017-3144-4.

Heckman, K., & Rasmussen, C. (2011) - Lithologic controls on regolith weathering and mass flux in
forested ecosystems of the southwestern USA. Geoderma. Elsevier B.V., 164(3—4), 99-111. dot:
10.1016/j.geoderma.2011.05.003.

Hoek, E. (1994) - Strength of rock and rock masse. NEWS JOURNAL OF INTERNATIONAL
SOCIETY FOR ROCK MECHANICS.

Hoek, E. (2000) - Practical Rock Engineering, (1), 341. doi: 10.1007/s13398-014-0173-7.2.

Hoek, E., & Brown, E. T. (1997) - Practical estimates of rock mass strength. International Journal of
Rock Mechanics and Mining Sciences, 34(8), 1165-1186. doi: 10.7873/date2014.002.

Hoek, E., & Brown, E. T. (2019) - The Hoek—Brown failure criterion and GSI — 2018 edition. Journal of
Rock Mechanics and Geotechnical Engineering. Elsevier Ltd, 11(3), 445-463. doi:
10.1016/j.jrmge.2018.08.001.

Hoek, E., Carranza-Torres, C., & Corkum, B. (2002) - Hoek-Brown failure criterion - 2002 Edition. Proc.
NARMS-TAC Conference, Toronto, 1, 267-273.

Hoek, E., Kaiser, P. K., & Bawden, W. F. (1995) - Support of underground excavations in hard rock.
Rotterdam, Netherlands: AA Balkema Publishers.

Holtz, W. G. (1961) Triaxial shear characteristics of clayey gravel soils. US Bureau of Reclamation.

Hovius, N., Stark, C. P., & Allen, P. A. (1997) - Sediment flux from a mountain belt derived by landslide
mapping. Geology, 25(3), 231-234. doi: 10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO;2.

Huang, C., Davis, L. S., & Townshend, J. R. G. (2002) - An assessment of support vector machines for
land cover classification. International Journal of Remote Sensing. Taylor & Francis, 23(4), 725—
749. doi: 10.1080/01431160110040323.

Huang, C., Byrne, T. B., Ouimet, W. B., Lin, C. W., Hu, J. C., Fei, L. Y., & Wang, Y. B. (2016) - Tectonic
foliations and the distribution of landslides in the southern Central Range, Taiwan. Tectonophysics.
Elsevier B.V., 692, 203-212. doi: 10.1016/j.tect0.2016.06.004.

Hungr, O., Leroueil, S., & Picarelli, L. (2014) - The Varnes classification of landslide types, an update.
Landslides, 11(2), 167-194. doi: 10.1007/s10346-013-0436-y.

Hurst, M. D., Ellis, M. A., Royse, K. R,, Lee, K. A., & Freeborough, K. (2013) - Controls on the
magnitude-frequency scaling of an inventory of secular landslides. Earth Surface Dynamics, 1(1),
67-78. doi: 10.5194/esurf-1-67-2013.

Hurst, M. D., Mudd, S. M., Yoo, K., Attal, M., & Walcott, R. (2013) - Influence of lithology on hillslope

268



morphology and response to tectonic forcing in the northern Sierra Nevada of California. Journal
of Geophysical Research: Earth Surface, 118(2), 832-851. doi: 10.1002/jgtf.20049.

Irvin, B. J., Ventura, S. J., & Slater, B. K. (1997) - Fuzzy and isodata classification of landform elements
from digital terrain data in Pleasant Valley, Wisconsin. Geoderma, 77(2—4), 137-154. doi:
10.1016/S0016-7061(97)00019-0.

ISRM (1978) - Suggested methods for determining hardness and abrasiveness of rocks. in.

ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring:
1974-2006. International Soc. for Rock Mechanics, Commission on Testing Methods.

TUGS-International Working Group (1995) - A suggested method for describing the rate of movement
of a landslide. Bulletin of the International Association of Engineering Geology, 52(1), 75-78. doi:
10.1007/BF02602683.

Iwahashi, J., & Pike, R. J. (2007) - Automated classifications of topography from DEMs by an
unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 86(3—
4), 409—440. doi: 10.1016/j.geomorph.2006.09.012.

Jaboyedoff, M., Crosta, G. B., & Stead, D. (2011) - Slope tectonics: a short introduction. Geological
Society, London, Special Publications, 351(1), 1-10. doi: 10.1144/sp351.1.

Jaboyedoff, M., Oppikofer, T., Abellan, A., Derron, M. H., Loye, A., Metzger, R., & Pedrazzini, A. (2012)
- Use of LIDAR in landslide investigations: A review. Natural Hazards, 61(1), 5-28. doi:
10.1007/s11069-010-9634-2.

Jenness, J. (20006) - Topographic Position Index (tpi_jen. avx) extension for ArcView 3. x, v. 1.3 a. Jenness
Enterprises.

Johnson, B. L., & Johnston, C. A. (1995) - Relationship of Lithology and Geomorphology to Erosion of
the Western Lake Superior Coast. Journal of Great Lakes Research, 21(1), 3-16. doi:
https://doi.org/10.1016/S0380-1330(95)71016-4.

Joyce, K. E., Belliss, S. E., Samsonov, S. V., McNelill, S. J., & Glassey, P. J. (2009) - A review of the status
of satellite remote sensing and image processing techniques for mapping natural hazards and
disasters. Progress in Physical Geography. SAGE PublicationsSage UK: London, England, 33(2),
183-207. doi: 10.1177/0309133309339563.

Kaewkongkaew, K., Phien-wej, N., & Kham-ai, D. (2015) - Prediction of rock mass along tunnels by
geostatistics. KSCE Journal of Civil Engineering, 19(1), 81-90. doi: 10.1007/s12205-014-0505-3.

Karaman, K., & Kesimal, A. (2015) - A comparative study of Schmidt hammer test methods for
estimating the uniaxial compressive strength of rocks. Bulletin of Engineering Geology and the
Environment. Springer Berlin Heidelberg, 74(2), 507-520. doi: 10.1007 /s10064-014-0617-5.

Karaman, S., Fener, M., & Gunaydin, O. (2002) - Predicting the Schmidt hammer values of in-situ intact

rock from core sample values. International Journal of Rock Mechanics and Mining Sciences, 39(3),

269



395-399. doi: 10.1016/S1365-1609(02)00028-X.

Kato, T. (2016) - Prediction of photovoltaic power generation output and network operation. in
Integration of Distributed Energy Resources in Power Systems. Elsevier, 77—108.

Katz, O., Reches, Z., & Roegiers, J.-C. (2000) - Evaluation of mechanical rock properties using a Schmidt
Hammer. International Journal of Rock Mechanics and Mining Sciences, 37, 723—728.

Kazi, A., & Al-Mansour, Z. R. (1980) - Empirical relationship between Los Angeles abrasion and Schmidt
hammer strength tests with application to aggregates around Jeddah. Quarterly Journal of
Engineering Geology and Hydrogeology. Geological Society of London, 13(1), 45-52.

Kenney, T. C. (1959) - Geotechnical properties of glacial lake clays. Journal of the Soil Mechanics and
Foundations Division, 84(3), 67-79.

Kim, M. S., Onda, Y., Uchida, T., & Kim, J. K. (2016) - Effects of soil depth and subsurface flow along
the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope.
Geomorphology. Elsevier B.V., 271, 40-54. doi: 10.1016/j.geomorph.2016.07.031.

Kim, M. S., Onda, Y., Kim, J. K., & Kim, S. W. (2015) - Effect of topography and soil parameterisation
representing soil thicknesses on shallow landslide modelling. Quaternary International. Elsevier Ltd,
384, 91-106. doi: 10.1016/j.quaint.2015.03.057.

Kirby, E., & Whipple, K. X. (2012) - Expression of active tectonics in erosional landscapes. Journal of
Structural Geology. Elsevier Ltd, 44, 54-75. doi: 10.1016/j.jsg.2012.07.009.

Kilig, A., & Teymen, A. (2008) - Determination of mechanical properties of rocks using simple methods.
Bulletin of Engineering Geology and the Environment, 67(2), 237-244. doi: 10.1007/s10064-008-
0128-3.

Kohonen, T. (2012) Self-organizing maps. Springer Science & Business Media.

Kolaiti, E., & Papadopoulos, Z. (1994) - Evaluation of Schmidt rebound hammer testing: a critical
approach. International Journal of Rock Mechanics and Mining Sciences & Geomechanics
Abstracts, 31(4), 182. doi: 10.1016/0148-9062(94)90970-9.

Kong, F., & Shang, J. (2018) - A Validation Study for the Estimation of Uniaxial Compressive Strength
Based on Index Tests. Rock Mechanics and Rock Engineering. Springer Vienna, 51(7), 2289-2297.
doi: 10.1007/s00603-018-1462-9.

Kruskal, J. B. (1956) - On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society. JSTOR, 7(1), 48-50.

Kihni, A., & Pfiffner, O. A. (2001) - The relief of the Swiss Alps and adjacent areas and its relation to
lithology and structure: Topographic analysis from a 250-m DEM. Geomorphology, 41(4), 285—
307. doi: 10.1016/S0169-555X(01)00060-5.

Kulhawy, F. H., & Chen, J.-R. (2007) - Discussion of ‘Drilled Shaft Side Friction in Gravelly Soils’ by
Kyle M. Rollins, Robert J. Clayton, Rodney C. Mikesell, and Bradford C. Blaise. Journal of

270



Geotechnical and Geoenvironmental Engineering. American Society of Civil Engineers, 133(10),
1325-1328.

Kuriakose, S. L., van Beek, L. P. H., & van Westen, C. J. (2009) - Parameterizing a physically based
shallow landslide model in a data poor region. Earth Surface Processes and Landforms, 34(6), 867—
881. doi: 10.1002/esp.1794.

Kuriakose, S. L., Devkota, S., Rossiter, D. G., & Jetten, V. G. (2009) - Prediction of soil depth using
environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala,
India. Catena. Elsevier B.V., 79(1), 27-38. doi: 10.1016/j.catena.2009.05.005.

Lambe, T. W., & Whitman, R. V (1991) Soil mechanics. John Wiley & Sons.

Lancellotta, R. (2001) Geotecnica. Zanichelli.

Lanni, C., Borga, M., Rigon, R., & Tarolli, P. (2012) - Modelling shallow landslide susceptibility by means
of a subsurface flow path connectivity index and estimates of soil depth spatial distribution.
Hydrology and Earth System Sciences, 16(11), 3959-3971. doi: 10.5194/hess-16-3959-2012.

Lavorini, G., Villoresi, C., Bottai, L., Perna, M., Manetti, F., Capecchi, V., Betti, G., Bartolini, G., Crisci,
A., & Corongiu, M. (2015) - Analisi dei dissesti associati ad alcuni fenomeni di precipitazione intensa
in Toscana attraverso I’analisi di immagini satellitari multi-spettrali. Il Geologo, n.98/2015.

Leopold, M., & Volkel, J. (2007) - Colluvium: Definition, differentiation, and possible suitability for
reconstructing Holocene climate data. Quaternary International, 162-163, 133-140. doi:
10.1016/j.quaint.2006.10.030.

Lezzerini, M., Franzini, M., Di Battistini, G., & Zucchi, D. (2008) - The «macigno» sandstone from
Matraia and Pian di Lanzola quarties (nort h-western Tuscany, Italy ). A comparison of physical and
mechanical properties. Atti della Societa Toscana di Scienze Naturali, Memorie Serie A, 113, 71-79.

Li, L., Lan, H., & Wu, Y. (2016) - How sample size can effect landslide size distribution.
Geoenvironmental Disasters. Geoenvironmental Disasters, 3(1), 18. doi: 10.1186/s40677-016-
0052-y.

Li, Z., Shi, W., Myint, S. W., Lu, P., & Wang, Q. (20106) - Semi-automated landslide inventory mapping
from bitemporal aerial photographs using change detection and level set method. Remote Sensing
of Environment. Elsevier Inc., 175, 215-230. doi: 10.1016/j.rse.2016.01.003.

Liu, A., & Tang, G. (2006) - DEM based auto-classification of Chinese landform. Geo-Information
Science, 4.

Liu, C. N., & Wu, C. C. (2008) - Mapping susceptibility of rainfall-triggered shallow landslides using a
probabilistic approach. Environmental Geology, 55(4), 907-915. doi: 10.1007/s00254-007-1042-x.

Lu, N., & Godt, J. W. (2011) Hillslope hydrology and stability. Hillslope Hydrology and Stability.
Cambridge University Press. doi: 10.1017/CB0O9781139108164.

MacMillan, R. A., & Shary, P. A. (2009) - Landforms and landform elements in geomorphometry.

271



Developments in Soil Science, 33(C), 227-254. doi: 10.1016/S0166-2481(08)00009-3.

Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004) - Landslide inventories and their
statistical properties. Earth Surface Processes and Landforms, 29(6), 687-711. doi:
10.1002/esp.1064.

Mammoliti, E. (2020) A new approach for engineering geological mapping of subsurface rock masses by
means of fieldwork-based rebound hardness indexes and non-parametric Bayesian networks.
University of Siena.

Mangai, U. G., Samanta, S., Das, S., & Chowdhury, P. R. (2010) - The Institution of Electronics and
Telecommunication Engineers A Survey of Decision Fusion and Feature Fusion Strategies for
Pattern Classification, 27(4). Available at: www.ietejournals.org.

Maracchi, G., Genesio, L., Magno, R., Ferrari, R., Crisci, A., & Bottai, L. (2005) - I diagrammi del clima
in Toscana. Programma Interreg lii B-Medocc-Asse, 4.

Marchesini, I., Santangelo, M., Guzzetti, F., Cardinali, M., & Bucci, F. (2015) - Modeling Morpho-
Structural Settings Exploiting Bedding Data Obtained Through the Interpretation of Stereoscopic
Aerial Photographs. Geotechnical Safety and Risk V, 797-802. doi: 10.3233/978-1-61499-580-7-
797.

Marin, R. J., & Mattos, A. J. (2019) - Physically-based landslide susceptibility analysis using Monte Carlo
simulation in a tropical mountain basin. Georisk. Taylor & Francis, 0(0), 1-14. doi:
10.1080/17499518.2019.1633582.

Marinos, P., & Hoek, E. (2000) - GSI: a geologically friendly tool for rock mass strength estimation. in
ISRM international symposium.

Marinos, P., & Hoek, E. (2001) - Estimating the geotechnical properties of heterogeneous rock masses
such as flysch. Bulletin of Engineering Geology and the Environment, 60(2), 85-92. doi:
10.1007/s100640000090.

Marinos, V. (2019) - A revised, geotechnical classification GSI system for tectonically disturbed
heterogeneous rock masses, such as flysch. Bulletin of Engineering Geology and the Environment.
Bulletin of Engineering Geology and the Environment, 78(2), 899-912. doi: 10.1007/s10064-017-
1151-z.

Martha, T. R., Kerle, N., van Westen, C. J., Jetten, V., & Vinod Kumar, K. (2012) - Object-oriented
analysis of multi-temporal panchromatic images for creation of historical landslide inventories.
ISPRS Journal of Photogrammetry and Remote Sensing. International Society for Photogrammetry
and Remote Sensing, Inc. ISPRS), 67(1), 105-119. doi: 10.1016/j.isprsjprs.2011.11.004.

Marzini, L., D’Addario, E., Disperati, L., & Chianucci, F. (2019) - Relationships between vegetation cover
characters and shallow landslides. in Geophysical Research Abstracts.

Meisina, C., & Scarabelli, S. (2007) - A comparative analysis of terrain stability models for predicting

272



shallow  landslides in  colluvial soils. ~ Geomorphology, 87(3), 207-223. dot:
10.1016/j.geomorph.2006.03.039.

Melesse, A. M., & Jordan, J. D. (2002) - A comparison of fuzzy vs. augmented-ISODATA classification
algorithms for cloud-shadow discrimination from Landsat images. Photogrammetric Engineering
and Remote Sensing, 68(9), 905-911.

Michel, G. P., Kobiyama, M., & Goerl, R. F. (2014) - Comparative analysis of SHALSTAB and SINMAP
for landslide susceptibility mapping in the Cunha River basin, southern Brazil. Journal of Soils and
Sediments, 14(7), 1266—1277. doi: 10.1007/s11368-014-0886-4.

Migon, P., Jancewicz, K., Rozycka, M., Duszynski, F., & Kasprzak, M. (2017) - Large-scale slope
remodelling by landslides — Geomorphic diversity and geological controls, Kamienne Mts., Central
Europe. Geomorphology, 289, 134-151. doi: 10.1016/j.geomorph.2016.09.037.

Milledge, D. G., Bellugi, D., McKean, J. A., Densmore, A. L., & Dietrich, W. E. (2014) - A
multidimensional stability model for predicting shallow landslide size and shape across landscapes.
Journal of Geophysical Research F: Earth Surface. doi: 10.1002/2014JF003135.

Miller, B. A., & Juilleret, J. (2020) - The colluvium and alluvium problem: Historical review and current
state of definitions. Earth-Science Reviews. Elsevier, 209(November 2019), 103316. doi:
10.1016/j.eatscirev.2020.103316.

Mishra, D. A., & Basu, A. (2013) - Estimation of uniaxial compressive strength of rock materials by index
tests using regression analysis and fuzzy inference system. Engineering Geology. Elsevier B.V., 160,
54—68. doi: 10.1016/j.engge0.2013.04.004.

Mitchell, A. (2005) - The ESRI Guide to GIS Analysis (Volume 2). Redlands. CA: Esri Press.
Mokarram, M., & Sathyamoorthy, D. (2018) - A review of landform classification methods. Spatial
Information Research. Springer Singapore, 26(6), 647—660. doi: 10.1007 /s41324-018-0209-8.
Mokarram, M., Seif, A., & Sathyamoorthy, D. (2015) - Landform classification via fuzzy classification of
morphometric parameters computed from digital elevation models: case study on Zagros

Mountains. Arabian Journal of Geosciences, 8(7), 4921-4937. doi: 10.1007/s12517-014-1556-y.

Montgomery, David R., & Dietrich, W. E. (1994) - A physically based model for the topographic control
on shallow landsliding. Water Resources Research, 30(4), 1153-1171. doi: 10.1029/93WR02979.

Montgomery, D R, & Dietrich, W. E. (1994) - A physically based model for the topographical control on
shallow landsliding. Water Resources Research, 30(4), 1153-1171. doi: 10.1029/93WR02979.

Montgomery, D. R., Sullivan, K., & Greenberg, H. M. (1998) - Regional test of a model for shallow
landsliding, 955(November 1997).

Moomivand, H. (2011) - Development of a New Method for Estimating the Indirect Uniaxial
Compressive Strength of Rock Using Schmidt Hammer. BHM Berg-und Hittenminnische
Monatshefte, 156(4), 142-146. doi: 10.1007/ s00501-011-0644-5.

273



Moran, P. A. P. (1948) - The interpretation of statistical maps. Journal of the Royal Statistical Society.
Series B (Methodological). JSTOR, 10(2), 243-251.

Mudd, S. M., & Furbish, D. J. (2004) - Influence of chemical denudation on hillslope morphology. Journal
of Geophysical Research: Earth Surface, 109(F2), n/a-n/a. doi: 10.1029/2003jf000087.

Di Naccio, D., Boncio, P., Brozzetti, IF., Pazzaglia, F. J., & Lavecchia, G. (2013) - Morphotectonic analysis
of the Lunigiana and Garfagnana grabens (northern Apennines, Italy): Implications for active
notrmal faulting. Geomorphology. Elsevier B.V,, 201 293-311. doi:
10.1016/j.geomorph.2013.07.003.

NAVFAC, D. M. (1986) Soil Mechanics, Design Manual.

Nicétina, L., Tarboton, D. G., Tesfa, T. K., & Rinaldo, A. (2011) - Hydrologic controls on equilibrium

soil depths. Water Resources Research, 47(4), 1-11. doi: 10.1029/2010WR009538.

b

Niemann, K. O., & Howes, D. E. (1991) - Applicability of digital terrain models for slope stability
assessment. ITC Journal, 1991-3, 127-137. Awvailable at:
https:/ /www.scopus.com/inward/record.uri?eid=2-s2.0-
0009563260&partnerID=40&md5=b2ba3f6da0eb56fc626d8deaac142842.

Nsangou Ngapna, M., Owona, S., Mvondo Owono, F., Mpesse, J. E., Youmen, D., Lissom, J., Mvondo
Ondoa, J., & Ekodeck, G. E. (2018) - Tectonics, lithology and climate controls of morphometric
parameters of the Edea - Eseka region (SW Cameroon, Central Africa): Implications on equatorial
rivers and landforms. Journal of African FEarth Sciences, 138, 219-232. doi:
10.1016/j.jafrearsci.2017.11.008.

O’Loughlin, E. M. (1986) - Prediction of Surface Saturation Zones in Natural Catchments by
Topographic Analysis. Water Resources, 22(5), 794—-804.

Oliveira, S. C., Zézere, J. L., Lajas, S., & Melo, R. (2016) - Combination of empirically-based and
physically-based methods to assess shallow slides susceptibility at the basin scale. Natural Hazards
and Earth System Sciences Discussions, (December), 1-37. doi: 10.5194/nhess-2016-381.

Oliveira, S. C., Zézere, J. L., Lajas, S., & Melo, R. (2017) - Combination of statistical and physically based
methods to assess shallow slide susceptibility at the basin scale. Natural Hazards and Earth System
Sciences, 17(7), 1091-1109. doi: 10.5194/nhess-17-1091-2017.

Pack, R. T ., Tarboton, D. G. ., & Goodwin, C. N. (1998) - The SINMAP Approach to Terrain Stability
Mapping. 8th Congress of the International Association of Engineering Geology, 8.

Palmstrom, A. (1982) - The volumetric joint count—a useful and simple measure of the degree of rock
mass jointing. in International Association of Engineering Geology. International congress. 4, 221—
228.

Palmstrom, A. (1996) - Characterizing rock masses by the RMi for use in practical rock engineering: Part
1: The development of the Rock Mass index (RMi). Tunnelling and underground space technology.

274



Elsevier, 11(2), 175-188.

b

Papasidero, M. P. (2019) Caratterizzazione , modellazione predittiva e studio della variabilita locale e
regionale delle proprieta idrologiche dei depositi di versante. University of Siena.

Park, D. W., Nikhil, N. V., & Lee, S. R. (2013) - Landslide and debris flow susceptibility zonation using
TRIGRS for the 2011 Seoul landslide event. Natural Hazards and Earth System Sciences, 13(11),
2833-2849. doi: 10.5194/nhess-13-2833-2013.

Park, H. J., Lee, J. H., & Woo, I. (2013) - Assessment of rainfall-induced shallow landslide susceptibility
using a GIS-based probabilistic approach. Engineering Geology. Elsevier B.V., 161, 1-15. doi:
10.1016/j.enggeo.2013.04.011.

Pelletier, J. D. (1997) - Scale-invariance of soil moisture variability and its implications for the frequency-
size distribution of landslides, 48. doi: 10.1016,/S0013-7952(97)00041-0.

Pelletier, J. D., & Rasmussen, C. (2009) - Geomorphically based predictive mapping of soil thickness in
upland watersheds. Water Resources Research, 45(9). doi: 10.1029/2008WR007319.

Pham, B. T., Pradhan, B., Tien Bui, D., Prakash, I., & Dholakia, M. B. (2016) - A comparative study of
different machine learning methods for landslide susceptibility assessment: A case study of
Uttarakhand area (India). Environmental Modelling and Software. Elsevier Ltd, 84, 240-250. doi:
10.1016/j.envsoft.2016.07.005.

Pinheiro, M., Vallejos, J., Miranda, T., & Emery, X. (20106) - Geostatistical simulation to map the spatial
heterogeneity of geomechanical parameters: A case study with rock mass rating. Engineering
Geology. Elsevier B.V., 205, 93-103. doi: 10.1016/j.engge0.2016.03.003.

Plank, S., & Martinis, S. (2016) - Landslide Mapping in Vegetated Areas Using Change Detection Based
on Optical and Polarimetric SAR Data. doi: 10.3390/1s8040307.

Pradhan, A. M. S., & Kim, Y. T. (2010) - Evaluation of a combined spatial multi-criteria evaluation model
and deterministic model for landslide susceptibility mapping. Catena. Elsevier B.V., 140, 125-139.
doi: 10.1016/j.catena.2016.01.022.

Priest, S. D. (2005) - Determination of shear strength and three-dimensional yield strength for the Hoek-
Brown criterion. Rock Mechanics and Rock Engineering, 38(4), 299-327. doi: 10.1007/s00603-005-
0056-5.

Prim, R. C. (1957) - Shortest connection networks and some generalizations. The Bell System Technical
Journal. Nokia Bell Labs, 36(6), 1389—-1401.

Raia, S., Alvioli, M., Rossi, M., Baum, R. L., Godt, ]J. W., & Guzzetti, F. (2014) - Improving predictive
power of physically based rainfall-induced shallow landslide models: A probabilistic approach.
Geoscientific Model Development, 7(2), 495-514. doi: 10.5194/gmd-7-495-2014.

Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., & Akgun,
A. (2014) - Application of frequency ratio, statistical index, and weights-of-evidence models and

275



their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of
Geosciences. Springer, 7(2), 725-742. doi: 10.1007/s12517-012-0807-z.

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018) - A review of statistically-
based landslide susceptibility models. Earth-Science Reviews. Elsevier, 180(March), 60-91. doi:
10.1016/j.eatscirev.2018.03.001.

Rib, H. T., & Liang, T. (1978) - Recognition and identification. Transportation Research Board Special
Report, (176).

Roberts, B. D. W., Dowling, T. I., & Walker, J. (1997) - FLAG : A Fuzzy Landscape Analysis GIS Method
for Dryland Salinity Assessment, (8), 1-23.

Roering, J. J., Schmidt, K. M., Stock, J. D., Dietrich, W. E., & Montgomery, D. R. (2003) - Shallow
landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range.

Rollins, K. M., Clayton, R. J., Mikesell, R. C., & Blaise, B. C. (2005) - Drilled shaft side friction in gravelly
soils. Journal of Geotechnical and Geoenvironmental Engineering. American Society of Civil
Engineers, 131(8), 987-1003.

Saco, P. M., Willgoose, G. R., & Hancock, G. R. (2000) - Spatial organization of soil depths using a
landform evolution model. Journal of Geophysical Research: Earth Surface, 111(2). doi:
10.1029/2005JF000351.

Salciarini, D., Godt, J. W., Savage, W. Z., Conversini, P., Baum, R. L., & Michael, J. A. (2006) - Modeling
regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central
Italy. Landslides, 3(3), 181-194. doi: 10.1007/s10346-006-0037-0.

Schmertmann, J. H. (1978) Guidelines for cone penetration test: performance and design.

Schmidyt, J., & Hewitt, A. (2004) - Fuzzy land element classification from DTMs based on geometry and
terrain position. Geoderma, 121(3—4), 243-256. doi: 10.1016/j.geoderma.2003.10.008.

Schulz, W. H., Lidke, D. J., & Godt, J. W. (2009) - Modeling the spatial distribution of landslide-prone
colluvium and shallow groundwater on hillslopes of Seattle, WA. Earth Surface Processes and
Landforms, 34(March), 123-141. doi: 10.1002/esp.

Schwarz, M., Preti, F., Giadrossich, F., Lehmann, P., & Or, D. (2010) - Quantifying the role of vegetation
in slope stability : A case study in Tuscany (Italy ), 36, 285-291. doi: 10.1016/j.ecoleng.2009.06.014.

Scott, K. M., & Pain, C. F. (2008) Regolith Science. Springer Netherlands.

Segoni, S., Rossi, G., & Catani, F. (2012) - Improving basin scale shallow landslide modelling using
reliable soil thickness maps. Natural Hazards, 61(1), 85-101. doi: 10.1007/s11069-011-9770-3.
Seibert, J., Stendahl, J., & Serensen, R. (2007) - Topographical influences on soil properties in boreal

forests. Geoderma, 141(1-2), 139—-148. doi: 10.1016/j.geoderma.2007.05.013.

Selcuk, L., & Yabalak, E. (2015) - Evaluation of the ratio between uniaxial compressive strength and

Schmidt hammer rebound number and its effectiveness in predicting rock strength. Nondestructive
276



Testing and Evaluation. Taylor & Francis, 30(1), 1-12. doi: 10.1080/10589759.2014.977789.

Shalabi, F. I., Cording, E. J., & Al-hattamleh, O. H. (2007) - Estimation of rock engineering properties
using hardness tests, 90, 138-147. doi: 10.1016/j.enggeo.2006.12.006.

Sharpe, C. F. S. (1938) - Landslides and Related Phenomena. Geografiska Annaler. Columbia University
Press, 20, 325. doi: 10.2307/520061.

Shen, J., Priest, S. D., & Karakus, M. (2012) - Determination of Mohr-Coulomb shear strength parameters
from generalized Hoek-Brown criterion for slope stability analysis. Rock Mechanics and Rock
Engineering, 45(1), 123—-129. doi: 10.1007/s00603-011-0184-z.

Shokri, S., Shademan, M., Rezvani, M., Javankhoshdel, S., Cami, B., & Yacoub, T. (2020) - A review study
about spatial correlation measurement in rock mass. Rock Mechanics for Natural Resources and
Infrastructure Development- Proceedings of the 14th International Congress on Rock Mechanics
and Rock Engineering, ISRM 2019, 360-366.

Simoni, S., Zanotti, F., Bertoldi, G., & Rigon, R. (2008) - Modelling the probability of occurrence of
shallow landslides and channelized debris flows using GEOtop-FS. Hydrological Processes. doi:
10.1002/hyp.6886.

Sjoberg, J. (1997) Estimating rock mass strength using the Hoek-Brown failure criterion and rock mass
classification - A review and application to the Aznalcollar open pit.

Skempton, A. W., & Delory, F. A. (1984) - Stability of Natural Slopes in London Clay. in Selected Papers
on Soil Mechanics, 70-73. doi: 10.1680/sposm.02050.0011.

Soiltest Inc. (1976) - Operating instructions--concrete test hammer. Soiltest Inc. Evanston, IL.

Sorensen, K. K., & Okkels, N. (2013) - Correlation between drained shear strength and plasticity index
of undisturbed overconsolidated clays. 18th International Conference on Soil Mechanics and
Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 1(1957),
423-428.

Stark, C., & Hovius, N. (2001) - The charaterization of landslide size distributions. Geophysical Research
Letters, 28(6), 1091-1094.

Stark, C. P., & Guzzetti, F. (2009a) - Landslide rupture and the probability distribution of mobilized
debris volumes. Journal of Geophysical Research: Earth Surface. Blackwell Publishing Ltd, 114(2),
1-16. doi: 10.1029/2008JF001008.

Stark, C. P., & Guzzetti, F. (2009b) - Landslide rupture and the probability distribution of mobilized
debris volumes. Journal of Geophysical Research: FEarth Surface, 114(2), 1-16. doi:
10.1029/2008JF001008.

Stark, C. P., & Hovius, N. (2001) - The characterization of landslide size distributions. Geophysical
Research Letters, 28(6), 1091-1094. doi: 10.1029/2000GL008527.

Stead, D., & Wolter, A. (2015) - A critical review of rock slope failure mechanisms: The importance of

277



structural  geology. Journal of Structural Geology. Elsevier Ltd, 74, 1-23. dot:
10.1016/j.jsg.2015.02.002.

Stepinski, T. F., Ghosh, S., & Vilalta, R. (2006) - Automatic Recognition of Landforms on Mars Using
Terrain Segmentation and Classification. in Todorovski, L., Lavra¢, N., and Jantke, K. P. (eds)
Discovery Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 255-266.

Summerell, G. K., Vaze, J., Tuteja, N. K., Grayson, R. B., Beale, G., & Dowling, T. I. (2005) - Delineating
the major landforms of catchments using an objective hydrological terrain analysis method. Water
Resources Research, 41(12), 1-12. doi: 10.1029/2005WR004013.

Sumner, P., & Nel, W. (2002) - The effect of rock moisture on Schmidt hammer rebound: Tests on rock
samples from Marion Island and South Africa. Earth Surface Processes and Landforms, 27(10),
1137-1142. doi: 10.1002/esp.402.

Szypula, B., & Wieczorek, M. (2020) - Geomorphometric relief classification with the k-median method
in the Silesian Upland, southern Poland. Frontiers of Earth Science, 152—170. doi: 10.1007/s11707-
019-0765-9.

Tarboton, D. G. (1997) - A new method for the determination of flow directions and upslope areas in
grid digital elevation models. Water Resoutces Research, 33(2), 309-319. doi: 10.1029/96WR03137.

Taylor, D. W. (1948) - Fundamentals of Soil Mechanics. Soil Science, 66(2), 161. doi: 10.1097 /00010694-
194808000-00008.

Teixeira, M., Bateira, C., Marques, F., & Vieira, B. (2015) - Physically based shallow translational landslide
susceptibility analysis in Tibo catchment, NW of Portugal. Landslides, 12(3), 455—468. doi:
10.1007/s10346-014-0494-9.

Terzaghi, K., & Peck, R. B. (1967) Soil Mechanics in Engineering Practice. John Wiley & Sons.

Terzaghi, K., Peck, R. B., & Mesri, G. (1996) Soil mechanics in engineering practice. John Wiley & Sons.

Tesfa, T. K., Tarboton, D. G., Chandler, D. G., & McNamara, J. P. (2009) - Modeling soil depth from
topogtraphic and land cover attributes. Water Resources Research. doi: 10.1029/2008WR007474.

Torabi, S., Ataei, M., & Javanshir, M. (2010) - Application of Schmidt rebound number for estimating
rock strength under specific geological conditions. Journal of Mining and Environment, 0(0), 1-8.
doi: 10.22044/jme.2011.9.

Tou, J. T., & Gonzalez, R. C. (1974) - Pattern recognition principles.

Trefolini, E. (2015) - Engineering geologic characterization of slope deposits for the assessment of
shallow landslides susceptibility. PhD dissertation.

Trefolini, E., Rindinella, A., & Disperati, L. (2015) - Cluster analysis applied to engineering geological
mapping, 34, 70-73.

Trigila, A., Iadanza, C., & Spizzichino, D. (2010) - Quality assessment of the Italian Landslide Inventory
using GIS processing. Landslides, 7(4), 455-470. doi: 10.1007/s10346-010-0213-0.

278



Tsai, C. C., Chen, Z.S., Duh, C. T., & Horng, F. W. (2001) - Prediction of soil depth using a soil-landscape
regression model: a case study on forest soils in southern Taiwan. Proceedings of the National
Science Council, Republic of China. Part B, Life sciences.

Ttudes, S., & Ceryan, N. (2011) - A comparative study on the estimation of shear strength of rock masses
using rock SSPC system and Hoek-Brown criterion. Gazi University Journal of Science, 24(4), 855—
8065.

USBR (1998) - Engineering Geology Field Manual. US Department of the Interior Bureau of
Reclamation 2 vols Washington, DC.

USDA (1987) - Soil mechanics level I. Module 3 - USDA textural soil classification study Guide. National
Employee Development Staff, Soil Conservation Service, United~....

Varnes, D. J. (1978) - Landslide Types and Processes. Highway Research Board Special Report.

Varnes J, D. (1958) - Landslide Types and Processes. Highway Research Board Special Report.

Visarhelyi, B., & Kovacs, D. (2017) - Empirical methods of calculating the mechanical parameters of the
rock mass. Periodica Polytechnica Civil Engineering, 61(1), 39-50. doi: 10.3311/PPci.10095.

Venturini, T., Trefolini, E., Patelli, E., Broggi, M., Tuliani, G., & Disperati, L. (2016) - Mapping slope
deposits depth by means of cluster analysis: A comparative assessment. Rend. Soc. Geol. It., 39, 47—
50. doi: 10.3301/RO1..2016.44.

Viloria, J. A., Viloria-Botello, A., Pineda, M. C., & Valera, A. (2016) - Digital modelling of landscape and
soil in a mountainous region: A neuro-fuzzy approach. Geomorphology. Elsevier B.V., 253, 199—
207. doi: 10.1016/j.geomorph.2015.10.007.

Vos, C., Don, A., Prietz, R., Heidkamp, A., & Freibauer, A. (20106) - Field-based soil-texture estimates
could replace laboratory analysis. Geoderma. Elsevier B.V. 267, 215-219. doi:
10.1016/j.geoderma.2015.12.022.

Wang, M., & Wan, W. (2019a) - A new empirical formula for evaluating uniaxial compressive strength
using the Schmidt hammer test. International Journal of Rock Mechanics and Mining Sciences.
Elsevier Ltd, 123(September), 104094. doi: 10.1016/j.ijrmms.2019.104094.

Wang, M., & Wan, W. (2019b) - A new empirical formula for evaluating uniaxial compressive strength
using the Schmidt hammer test. International Journal of Rock Mechanics and Mining Sciences,
123(July 2018). doi: 10.1016/j.ijrmms.2019.104094.

Wang, S., Zhang, K., van Beek, L. P. H., Tian, X., & Bogaard, T. A. (2020) - Physically-based landslide
prediction over a large region: Scaling low-resolution hydrological model results for high-resolution
slope stability assessment. Environmental Modelling and Software. Elsevier Ltd, 124(September
2019), 104607. doi: 10.1016/j.envsoft.2019.104607.

Watson, A., Phillips, C., & Marden, M. (2000) - Root strength, growth, and rates of decay: root
reinforcement changes of two tree species and their contribution to slope stability. The Supporting

279



Roots of Trees and Woody Plants: Form, Function and Physiology, 41-49. doi: 10.1007/978-94-
017-3469-1_4.

Wei, Y., Fu, W., & Ye, F. (2019) - Estimation of the equivalent Mohr—Coulomb parameters using the
Hoek—Brown criterion and its application in slope analysis. European Journal of Environmental
and Civil Engineering. Taylor & Francis, 0(0), 1-19. doi: 10.1080/19648189.2018.1538904.

Weidner, L., Oommen, T., Escobar-Wolf, R., Sajinkumar, K. S., & Samuel, R. A. (2018) - Regional-scale
back-analysis using TRIGRS: an approach to advance landslide hazard modeling and prediction in
sparse data regions. Landslides. Landslides, 15(12), 2343-2356. doi: 10.1007/s10346-018-1044-7.

van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008) - Spatial data for landslide susceptibility,
hazard, and vulnerability assessment: An overview. Engineering Geology, 112-131. doi:
10.1016/j.enggeo.2008.03.010.

Van Westen, C. J., Rengers, N., & Soeters, R. (2003) - Use of Geomorphological expert knowledge in
indirect landslide hazard assessment. Natural Hazards, 30, 399—419.

Wieczorek, M., & Migon, P. (2014) - Automatic relief classification versus expert and field based landform
classification for the medium-altitude mountain range, the Sudetes, SW Poland. Geomorphology,
2006, 133-146. doi: 10.1016/j.geomorph.2013.10.005.

Wood, J. (1996) - Scale-based characterisation of digital elevation models. Innovations in GIS. Taylor
and Francis London, 3, 163-175.

Wu, W., & Sidle, R. C. (1995) - A Distributed Slope Stability Model for Steep Forested Basins. Water
Resources Research, 31(8), 2097-2110. doi: 10.1029/95WR01136.

Yasat, E., & Erdogan, Y. (2004) - Estimation of rock physicomechanical properties using hardness
methods. Engineering Geology, 71(3—4), 281-288. doi: 10.1016/S0013-7952(03)00141-8.

Yilmaz, I. (2009a) - A new testing method for indirect determination of the unconfined compressive
strength of rocks. International Journal of Rock Mechanics and Mining Sciences, 46(8), 1349—-1357.
doi: 10.1016/j.ijrmms.2009.04.009.

Yilmaz, I. (2009b) - Landslide susceptibility mapping using frequency ratio, logistic regression, artificial
neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers
and Geosciences, 35(6), 1125-1138. doi: 10.1016/j.cageo.2008.08.007.

Yin, K. L., & Yan, T. Z. (1988) - Statistical prediction models for instability of metamorphosed rocks. in
International symposium on landslides. 5, 1269-1272.

Zézere, J. L., Pereira, S., Melo, R., Oliveira, S. C., & Garcia, R. A. C. (2017) - Mapping landslide
susceptibility using data-driven methods. Science of the Total Environment. Elsevier B.V., 589,
250-267. doi: 10.1016/j.scitotenv.2017.02.188.

Zhang, L., Scholz, M., Mustafa, A., & Harrington, R. (2009) - Application of the self-organizing map as

a prediction tool for an integrated constructed wetland agroecosystem treating agricultural runoff.

280



Bioresource Technology. Elsevier Ltd, 100(2), 559-565. doi: 10.1016/j.biortech.2008.06.042.

Zhang, S., Huang, Y., Shen, C,, Ye, H., & Du, Y. (2012) - Spatial prediction of soil organic matter using
terrain indices and categorical variables as auxiliary information. Geoderma. Elsevier B.V., 171-172,
35-43. doi: 10.1016/j.geoderma.2011.07.012.

Zhong, T., Cang, X., Li, R., & Tang, G. (2009) - Landform classification based on hillslope units from
DEMs. in Asian Conference on Remote Sensing (ACRS) proceedings.

Zizioli, D., Meisina, C., Valentino, R., & Montrasio, L. (2013) - Comparison between different approaches
to modeling shallow landslide susceptibility: A case history in Oltrepo Pavese, Northern Italy.
Natural Hazards and Earth System Sciences, 13(3), 559-573. doi: 10.5194/nhess-13-559-2013.

281



		2021-04-11T17:33:03+0200
	D'ADDARIO ENRICO




