
 

Dipartimento di Scienze fisiche, della Terra e dell’ambiente 

 

Dottorato in Scienze e tecnologie ambientali, geologiche e polari 

33° Ciclo 

Coordinatore: Prof. Simone Bastianoni 

 

 A NEW APPROACH TO ASSESS THE SUSCEPTIBILITY TO SHALLOW LANDSLIDES AT 

REGIONAL SCALE AS INFLUENCED BY BEDROCK GEO-MECHANICAL PROPERTIES 

Settore scientifico disciplinare: GEO/05 

 

 

Candidato 

D’Addario Enrico      

DSFTA, Università di Siena 

 

Tutore 

Prof. Aggr. Leonardo Disperati 

DSFTA, Università di Siena 

 

 

Co-tutore 

Josè Luis Zezerè 

IGOT, Universidad de Lisboa 

 

 

Anno accademico di conseguimento del titolo di Dottore di ricerca 

2019/2020 



2 
 

Università degli Studi di Siena 

Dottorato in Scienze e tecnologie ambientali, geologiche e polari 

33° Ciclo 

 

 

 

 

 

 

 

 

 

Data dell’esame finale 

22/04/2021 

 

Commissione giudicatrice 

Bateira Carlos Prof. Associado Univ. do Porto Departamento de Geografia cbateira@letras.up.pt 

Tejerina Juan Remondo Prof. Titular Univ. de Cantabria Departamento de Ciencias de la 
Tierra y Física de la Materia 
Condensada 

juan.remondo@unican.es 

Fantozzi Pier Lorenzo Prof. Associato Univ. di Siena Dipartimento di Scienze fisiche, della 
Terra e dell’ambiente 

pierlorenzo.fantozzi@unisi.it 

 

Supplenti 

Meisina  Claudia Prof. Ordinario Univ. di Pavia Dipartimento di Scienze della Terra e 
dell’ambiente 

claudia.meisina@unipv.it 

 

 

  

mailto:cbateira@letras.up.pt
mailto:juan.remondo@unican.es
mailto:pierlorenzo.fantozzi@unisi.it


3 
 

  



4 
 

Acknowledgements 

Before proceeding with the presentation of the thesis, I would like to dedicate a few lines to all those who have been close to 

me on this path of personal and professional growth. 

 

First of all, I would like to thank my tutor Prof. Leonardo Disperati, who has followed me and been available for every 

step of the process, starting from the initial planning of the PhD. 

 

I would also like to thank my co-tutor Prof. Josè Luis Zezerè and all the RISKam staff at the University of Lisbon for 

setting me at ease during my research period abroad. His advice and suggestions were fundamental to the development of the 

thesis. 

 

I would also like to thank my colleagues at the Geomatics Laboratory of the University of Siena, who were always available 

for mutual support and professional and personal exchange. 

 

I would like to thank my whole family for their constant moral support and patience, especially during the last year. 

 

To my friends, thanks to their light-heartedness and moments of fun that allowed me to "recharge" my battery. 

 

Finally, a special thanks goes to my partner Valina, for the beautiful moments and the encouragements and, especially, for 

putting up with me during the months of pandemic, the period in which I wrote my final paper. Thank you for listening to 

me and being there when I was lost, especially considering the difficult time we were going through.  

 

  



5 
 

Abstract _____________________________________________________________________ 9 

1 Introduction ______________________________________________________________ 12 

1.1 Structure of the thesis _____________________________________________________ 13 

1.2 State of the art __________________________________________________________ 14 

1.2.1 Shallow landslides and slope deposits _____________________________________ 14 

1.2.2 Landslide inventories __________________________________________________ 18 

1.2.3 Shallow landslides susceptibility modelling _________________________________ 21 

1.3 Aim of the thesis ________________________________________________________ 25 

2 Methods - A new way to approach shallow landslides and susceptibility assessment by 

means well-established tools _____________________________________________________ 28 

2.1 Workflow of the method __________________________________________________ 29 

2.2 Data collection strategy ____________________________________________________ 32 

2.3 Visual interpretation of orthophoto maps ______________________________________ 33 

2.4 Engineering geological characterization of Slope Deposits _________________________ 36 

2.4.1 Field survey data acquisition ____________________________________________ 36 

2.4.1.1 Depth of slope deposits ____________________________________________ 36 

2.4.1.2 Fabric and grain size estimation ______________________________________ 37 

2.4.2 Sampling and laboratory analysis _________________________________________ 41 

2.4.2.1 Grain size estimation and plasticity analysis _____________________________ 41 

2.4.2.2 Unit weight _____________________________________________________ 43 

2.4.3 Classification of morphometric variables ___________________________________ 44 

2.4.4 Slope Deposits Engineering Geological Map ________________________________ 46 

2.4.4.1 Slope deposits depth ______________________________________________ 47 

2.4.4.2 Shear strength parameters assessment _________________________________ 47 

2.4.4.3 Slope Deposits Engineering Geological Units ___________________________ 52 

2.5 Bedrock geomechanical characterization _______________________________________ 54 

2.5.1 Rock mass geo-mechanical survey ________________________________________ 54 

2.5.1.1 Schmidt hammer rebound value test __________________________________ 54 



6 
 

2.5.1.2 Normalization of SH rebound values __________________________________ 57 

2.5.1.3 Discontinuity analysis ______________________________________________ 59 

2.5.1.4 Geological Strength Index __________________________________________ 59 

2.5.2 Unit weight determination ______________________________________________ 62 

2.5.3 Cluster and Outlier Analysis (Anselin Local Moran's Index) ____________________ 63 

2.5.4 Multi-variate cluster analysis ____________________________________________ 64 

2.5.5 Determination of Uniaxial Compressive Strength ____________________________ 66 

2.5.6 Estimation of shear strength of a rock mass ________________________________ 70 

2.5.7 Bedrock Geo-mechanical Units Map ______________________________________ 76 

2.6 Shallow landslides susceptibility models _______________________________________ 77 

2.6.1 SHALSTAB and PROBSS _____________________________________________ 77 

2.6.2 Information Value ____________________________________________________ 80 

2.7 Accuracy assessment methods ______________________________________________ 81 

3 Study area ________________________________________________________________ 83 

3.1 Data available from the literature ____________________________________________ 84 

3.2 Geographic outline _______________________________________________________ 85 

3.3 Geological outline ________________________________________________________ 89 

4 Results - Processing and spatialization of data __________________________________ 94 

4.1 Landslide inventory ______________________________________________________ 95 

4.1.1 Landslide inventory accuracy assessment ___________________________________ 95 

4.1.2 General statistics of the landslide inventory _________________________________ 96 

4.1.3 Characterization of visited landslides ______________________________________ 98 

4.2 Engineering Geological characterization of Slope Deposits _______________________ 104 

4.2.1 Extraction of Morphometric units _______________________________________ 106 

4.2.2 Depth classes ______________________________________________________ 109 

4.2.2.1 Slope deposits depth maps _________________________________________ 112 

4.2.3 Grain size analysis ___________________________________________________ 126 

4.2.3.1 Laboratory results _______________________________________________ 126 



7 
 

4.2.3.2 Grain size field estimation results ____________________________________ 128 

4.2.4 Unit weight results __________________________________________________ 131 

4.2.5 Engineering Geological Map of Slope Deposits ____________________________ 131 

4.2.5.1 Friction angle of gravelly SD _______________________________________ 131 

4.2.5.2 Friction angle assessment using NAVFAC diagram ______________________ 133 

4.2.5.3 Engineering Geological Units parameters _____________________________ 134 

4.3 Bedrock Geo-mechanical characterization ____________________________________ 138 

4.3.1 Descriptive statistics of bedrock geo-mechanical properties ___________________ 140 

4.3.2 Uni-variate spatial cluster analysis of bedrock properties ______________________ 143 

4.3.3 Multi-variate cluster analysis ___________________________________________ 150 

4.3.4 Bedrock Geo-mechanical Units _________________________________________ 155 

5 Results - Shallow landslide susceptibility modeling _____________________________ 161 

5.1 Shallow landslide susceptibility analysis: a comparison between PROBSS and Information 

Value 162 

5.1.1 Shallow landslide inventory ____________________________________________ 162 

5.1.2 PROBSS input data __________________________________________________ 163 

5.1.3 Information value input data ___________________________________________ 163 

5.1.4 Susceptibility maps and accuracy assessment _______________________________ 166 

5.1.5 Discussion _________________________________________________________ 171 

5.2 Exploring differences between shallow landslides involving slope deposits and/or bedrock by 

means of Information Value method ______________________________________________ 174 

5.2.1 Information value input data and weighs determination ______________________ 175 

5.2.2 Susceptibility maps and accuracy assessment _______________________________ 176 

5.2.3 Discussion _________________________________________________________ 180 

5.3 Physically based modelling of shallow landslides involving bedrock _________________ 183 

5.3.1 PROBSS input data __________________________________________________ 185 

5.3.2 Susceptibility maps and accuracy assessment _______________________________ 187 

5.3.3 Discussion _________________________________________________________ 190 



8 
 

6 General discussion ________________________________________________________ 198 

6.1 Shallow landslide inventory________________________________________________ 199 

6.2 Slope deposits features at regional scale ______________________________________ 205 

6.3 Assessment of bedrock Geo-mechanical properties and regionalization ______________ 213 

6.4 Shallow landslides susceptibility modelling ____________________________________ 218 

7 Conclusions ______________________________________________________________ 223 

Appendix A ___________________________________________________________________ 227 

Appendix B ___________________________________________________________________ 229 

Appendix C ___________________________________________________________________ 251 

References ____________________________________________________________________ 258 

 

  



9 
 

Abstract 

Due to high velocity, high frequency and the lack of warning signs, shallow landslides represent a major 

hazardous factor in mountain regions. Moreover, increasing urbanisation and climate changes triggering 

intense rainfall events make shallow landslides a source of widespread risk. The interest of the scientific 

community in this process has grown in the last three decades with the aim to perform robust shallow 

landslide hazard assessment at regional scale.  

Generally, these slope failures involve relatively small volumes of material sliding along with a planar 

shallow rupture surface. In the literature it is widely accepted that shallow landslides involve only slope 

deposit (or colluvium) and the sliding surface correspond to the discontinuity between bedrock and the 

overlying loose material. The fieldwork conducted in this thesis highlighted that often shallow landslides 

involve also the weathered and fractured portion of bedrock. In this framework, the implementation of 

shallow landslides susceptibility modelling should take into account the engineering geological properties 

of slope deposits, as well as of the underlying bedrock. In this thesis a fieldwork-based method is 

proposed to acquire, process and spatialize engineering geological properties of slope deposits and 

bedrock. The aims of this thesis were to compile a new multi-temporal shallow landslide inventory, 

characterize the engineering geological properties of slope deposits and bedrock, implement and compare 

shallow landslide susceptibility modelling by means a physically-based and a data-driven methods and 

explore the role of bedrock in shallow slope failures. The study area corresponds to a 242 km2 portion of 

the Garfagnana basin (Northern Apennines), a mountainous region where the elevation ranges between 

150 and 2000 m a.s.l. characterized by an incised and rugged morphology with steep slopes (average 28° 

degrees) and a mean annual rainfall between 1500 and 2500 mm/year. From a geological point of view, 

the Garfagnana basin is a narrow intra-mountainous valley, interposed betweeen the Alpi Apuane 

metamorphic complex to the east and the sedimentary northern Apennine’s ridge to the west.  

The fieldwork and laboratory tasks carried out to map engineering geology characters of slope deposits 

consisted on a set of hundreds of field sampling points, with the acquisition of depth to the bedrock, 

geotechnical horizons, unit weight, as well as soil samples for lab analysis. The distribution of points was 

chosen by observing that engineering geology properties of slope deposits depend on both bedrock 

lithology and morphometric conditions. In order to obtain the map distribution of engineering geology 

parameters, we implemented a spatial analysis by clustering morphometric variables stratified as a 

function of bedrock lithological units. In order to investigate the engineering geology characteristics of 

the bedrock, a field survey aimed to classify rock masses was conducted. For each survey site, 200-400 

Schmidt hammer rebound measures, bedding and joint data, GSI (Geological Strenght Index) and 

samples for laboratory analyses (unit weight and slake durability test) were collected. The field data were 

processed and spatially analyzed by means uni-variate and multi-variate cluster analysis in order to 
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delineate domains with different bedrock geo-mechanical properties. The shallow landslide susceptibility 

analysis was performed using both data-driven, Information Value, and physically-based, a modified 

version of SHALSTAB model (PROBSS), methods.  

The numerical modelling faced three issues: a) the comparison of PROBSS and Information value (IV) 

in the prediction of shallow landslides involving SD; b) the training and cross-validation of IV models 

using shallow landslides involving bedrock or not; c) implementation of a physically-based model to 

predict involving bedrock shallow landslides. First of all, the results highlight that the field-based methods 

proposed here to evaluate engineering geological properties of slope deposits and bedrock are adequate 

for the implementation of regionalised physically-based susceptibility models.  

The comparison between PROBSS and IV highlights that the simplification of shallow landslides adopted 

by the infinite slope model which do not take into account the occurrence of a sliding surface located 

below the slope deposits / bedrock discontinuity, may affect the performance of physically-based 

susceptibility models. The accuracy of IV model is slightly better that PROBSS model. Having 

implemented two data-driven susceptibility models using two different training datasets highlighted the 

different characteristics that slope deposits and bedrock involving shallow landslides have, suggesting 

and demonstrating that the latter occur in conditions that the physically based model cannot predict. By 

placing the slip surface below the discontinuity between slope deposits and bedrock and providing shear 

strength parameters compatible with a weathered and fractured rock material, satisfactory accuracy result 

was obtained with PROBSS model.  

  



11 
 

ACRONYMS AND SYMBOLS 

%FS Percentage of SH low full-scale values  

 Friction angle 

BLU Bedrock Geological Units 

BMU Bedrock Geo-mechanical Units 

BR Bedrock 

BRL Landslides involving bedrock 

c’ Effective cohesion 

DEM Digital Elevation Model 

EGU Engineering Geological Units  

GSI Geological Strength Index 

IV Information value model 

Jv Joint Volume Count 

LI Landslide inventory 

NVS Not Visited landslides 

OLd / Ld Overall / landslide density  

PDF Probability density function 

R Schmidt Hammer rebound value 

Rh / Rv Normalized Schmidt Hammer rebound value 

SD Slope deposits 

SDd Slope deposits depth 

SDL Landslides involving slope deposits 

SH Schmidt Hammer 

PROBSS Modified Shalstab model 

UCS Uniaxial Compressive Strength 

VS Visited landslides 

 

  



12 
 

1 INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



13 
 

1.1 STRUCTURE OF THE THESIS 

Geology, geomorphology, geological engineering and statistical analysis applied to shallow landslide 

susceptibility assessment are the main topics of this thesis. 

The thesis has a similar structure of a method-centric type scientific article, the core of this work lies in 

the detailed description of data acquisition and processing methods for the implementation of shallow 

landslide susceptibility models. The methodology is then applied to a study area whose results are 

presented and discussed. 

After a brief introduction describing the data available at the beginning of the PhD thesis, the state of 

the art of knowledge, different approaches to assess landslide susceptibility and the objectives of this 

work, an exhaustive chapter describing the phases of data acquisition in the field, their processing and 

statistical analysis is presented. The study area in which the methodology was applied is identified and a 

description of the geographical and geological characteristics is provided.  

In the next chapter, the results of the data acquired are presented and implemented in shallow landslide 

susceptibility models. Three different ways of approaching slope stability are described, analysed and 

discussed. 

Finally, a chapter dedicated to general discussions which integrates considerations, critical points and 

strengths of the methodology, results and modelling is presented. 

The thesis ends with a chapter of conclusions, appendices and bibliography. 
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1.2 STATE OF THE ART 

1.2.1 Shallow landslides and slope deposits 

A landslide is defined as the movement of a mass of rock, debris, or earth down a slope, under the 

influence of gravity (Cruden, 1991). The classification of landslide was a challenging issue since geologists 

and geotechnical engineers started to handle the problem. In the literature several landslide classification 

systems exists, introduced by different experts as geologists, geomorphologists and engineers, but a 

universal  and comprehensive description of the phenomenon was firstly introduced by Sharpe (1938) 

recognizing type of movement, material and movement velocity. This classification was then expanded 

by Varnes (1958, 1978), then completed with velocity rates (Cruden and Varnes, 1996), making it the 

most used classification at global scale (Figure 1-1). In a recent update (Hungr et al., 2014), the authors aim 

was to introduce modifications reflecting recent advances in understanding landslide phenomena and the 

materials and mechanisms involved. The starting point of the modifications is the 1978 version of the 

classification (Varnes 1978), taking also into account concepts introduced by Cruden and Varnes (1996). 

The most important features that the work of Hungr et alii (2014) have introduced is a more detailed 

characterization of materials. The authors adopt a geotechnical material terminology, as it relates best to 

the mechanical behaviour of the landslide, replacing the Varnes’s terms “debris” and “earth” with other 

terms which describe the texture and composition (Figure 1-2). The resulting landslide classification is 

represented in Figure 1-3 and was adopted in this thesis. As will be shown in the following paragraphs of 

this thesis, this update resulted to be very suitable for the purpose of this work because some of the 

information needed to accurately classified landslide was necessarily collected to implement the landslide 

susceptibility models.  

Even if in the paper of Hungr et alii (2014) a detailed description of a wide number of slope failures types 

is provided, a widely accepted definition of shallow landslide is lacking. Nevertheless, the landslide type 

which most closely resembles what is usually identified as a shallow landslide is the “gravel/sand/debris 

slide”, defined as “Sliding of a mass of granular material on a shallow, planar surface parallel with the ground. Usually, 

the sliding mass is a veneer of colluvium, weathered soil, or pyroclastic deposits sliding over a stronger substrate” (Hungr 

et al., 2014). Milledge et alii (2014) provide a quantitative analysis based on 6 landslide inventory, affirming 

that shallow landslides: have a scar areas between 30 and 300 m2, are generally longer than they are wide, 

wider than they are deep with a slip surface that rarely extend beyond a few meters deep, and the majority 

are between 0.1 and 1 m deep. In the definition of shallow landslide of Hungr et al. (2014), the sliding 

mass is called “colluvium” or “weathered soil”. In this thesis we call slope deposits (SD) what in the 

literature other authors call for example “colluvium”, “soil” or “regolith” (Goudie, 2004; Leopold and 

Völkel, 2007; Scott and Pain, 2008; Miller and Juilleret, 2020). The definition adopted in this thesis 

correspond to the definition proposed by Trefolini (2015), defining slope deposits as “a deposit obtained 
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from the actual or recent alteration and/or disruption of substratum and eventually the transport and 

sedimentation along the hillslope by unchannelized flux or gravity-dominated processes, independently 

of texture, structure, cementation and consistence”. Slope deposits are bounded below by an 

unconformity which defines the border between them and the underlying bedrock. In this thesis, the 

term “bedrock” is attributed to a material which may consist of a hard or weak rock, or even to a more 

or less cemented sedimentary deposit, which maintain their structure and hardness, and formed in a 

geological and morphoclimatic environment different from the current one (Figure 1-4). 

Shallow landslides characteristics listed above make these slope processes suitable for modeling by means 

the infinite slope method (Taylor, 1948), in which the slip surface corresponds to the bedrock-slope 

deposits interface, working as a mechanical and hydraulic discontinuity. The role and, eventually, the 

involvement of weathered and fractured bedrock in shallow landsliding has been poorly investigated 

while, when dealing with deep-seated landslides or rockfalls, bedrock properties are deeply taken into 

consideration. For this kind of slope failure, the degree of weathering, fracturing and bedding play a 

fundamental role and are crucial information in order to obtain site specific susceptibility models (Grelle 

et al., 2011; Jaboyedoff et al., 2011; Brideau and Roberts, 2014; Marchesini et al., 2015; Stead and Wolter, 

2015; Huang et al., 2016). Instead, in regional data-driven landslide susceptibility modeling some bedrock-

related predisposing factors, such as distance from faults and layers bedding, are often taken into account 

(Donati and Turrini, 2002; Guzzetti et al., 2008; Blahut et al., 2010; Goswami et al., 2011; Migoń et al., 

2017). Nevertheless, in the literature the “typical” shallow landslide does not involve bedrock, for this 

reason there is no interest on the investigation of bedrock properties during shallow landslide 

susceptibility analysis. In light of what has been seen in the fieldwork carried out in this thesis, the author 

does not exclude a priori involvement of bedrock and the role that the weathering and fracturing degree 

has in the distribution of shallow landslides. In this work, involving bedrock shallow landslides (BRL) are 

defined as landslides in which the sliding surface is located under the slope deposits/bedrock 

discontinuity (Figure 1-5). Unlike the SD / bedrock interface, this surface is not tangible and defined by 

an abrupt discontinuity, however it usually corresponds to a transition zone between bedrock with 

different degrees of weathering and fracturing. 
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Figure 1-1 A summary of Varnes’ 1978 classification system (from Hungr et alii, 2014) 

 

 

Figure 1-2 Landslide-forming material types (from Hungr et al., 2014) 
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Figure 1-3 Summary of the Hungr (2014) version of the Varnes classification system (from Hungr et alii, 2014) 

 

Figure 1-4 A natural trench exposing slope deposits above the bedrock, divided by the unconformity (white dashed line). 
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Figure 1-5 Simplified scheme of a typical shallow landslide and an involving bedrock shallow landslide 

 

1.2.2 Landslide inventories 

A landslide susceptibility analysis, regardless of which method is used to define it, cannot disregard a 

landslide inventory. A landslide inventory (LI) is a record of landslides, combined with their attributes, 

recognized in a particular area. These attributes should ideally provide information on the type of 

landslide, date of occurrence or relative age, size, current state of activity, and causes. The method to be 

used to prepare a landslide inventory should depends on purpose of the inventory, the extent of the study 

area, the scale of the base maps and resolution of remote sensing images (Guzzetti et al., 2012). LIs have 

usually been produced by using geomorphological field mapping and visual interpretation of aerial 

photographs. Today, innovative techniques are rising including analysis of (very-high resolution) digital 

elevation models (DEMs), interpretation and (semi-automated) analysis of satellite images (Drǎguţ and 

Blaschke, 2006; Booth et al., 2009; Joyce et al., 2009; Guzzetti et al., 2012; Jaboyedoff et al., 2012; Martha 

et al., 2012; Casagli et al., 2016; Z. Li et al., 2016; Disperati et al., 2016; Plank and Martinis, 2016; DeWitt 

et al., 2017). Depending on the purpose, the landslide inventory can be classified as historical, event, 

seasonal or multi-temporal inventories. An historical inventory shows the cumulative effects of many 

landslide events over a period of tens, hundreds or thousands of years. Instead, an event-based LI is 

prepared following a well-defined trigger event (e. g., heavy rainfall, earthquake, snowmelt). Multi-
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temporal and seasonal inventories are prepared investigating multiple sets of aerial or satellite images of 

different dates. A seasonal inventory shows landsides triggered by single or multiple events during a single 

season, or a few seasons, whereas multi-temporal inventories show landslides triggered by multiple events 

over longer periods (Guzzetti et al., 2012).  

Due to different methods, different scale of analysis and different purposes, for these reasons defining 

the accuracy of a landslide inventory is not straightforward, and standards do not exist (Galli et al., 2008). 

Several difficulties arise in building a good landslide database and many types of imprecision can affect 

the database (Trigila et al., 2010; Guzzetti et al., 2012). For instance, common errors can be related to the 

boundary and position of landslides (cartographic errors) or in discerning the source from the runout 

area (interpretation errors). Furthermore, the use of different source of information (e.g. newspapers, 

remote sensing and field surveys) can generate landslide records with different reliability (Trigila et al., 

2010). 

An important feature to consider in order to characterize a landslide inventory is the landslide size 

distribution (Malamud et al., 2004). In the literature it is widely accepted that whilst large landslides are 

perceived to be the most hazardous, small landslides occur most frequently. For this reason, assess 

landslide size distribution for a specific landslide event or to assess the completeness of a landslide 

inventory is an important tool to evaluate landslide hazard and risk zoning (Malamud et al., 2004; Fell et 

al., 2008; Corominas et al., 2014). 

Several studies have proposed that the non-cumulative size-frequency distribution of landslides follows 

a negative power-law relationship for medium to large landslides (Hovius et al., 1997; Pelletier, 1997; C. 

P. Stark and Hovius, 2001; Ardizzone et al., 2002; Malamud et al., 2004).  The non-cumulative frequency-

density of a landslide inventory is given by the number of landslides dN over the range of areas dA. 

Probability density function (pdf) can be estimated normalizing the frequency-density to the total number 

of landslides in the inventory: 

Equation 1-1 

𝑝𝑑𝑓 =  
1

𝑁𝐶𝐿
 
𝛿𝑁𝐶𝐿

𝛿𝐴𝐿
 

 

where NCL is the non-cumulative number of landslides and AL the landslide area. To construct the pdf, 

firstly divide the interval covered by the data values into sub-intervals (bins). The division may be linear 

or logarithmic. Then count the number of landslides within each interval and normalized the number of 

landslides to the width of the bin and to the total of landslides.  

Once the pdf has been estimated, it is possible to fit a function for data distribution using the Double 

Pareto distribution (Stark and Hovius, 2001) or Inverse Gamma (Malamud et al., 2004). 
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Power-law relationship exponent estimation usually varies from α = 1.4 to α = 3.3 (Van Den Eeckhaut 

et al., 2007). This scaling exponent may vary with underlying geology (Guzzetti et al., 2008; Frattini and 

Crosta, 2013a; Hurst, Ellis, et al., 2013) or with the failure type (Brunetti et al., 2009; Hurst, Ellis, et al., 

2013). As previously noted, landslide size-distribution exhibit a negative power-law relationship for 

medium to large events, meanwhile pdf shows a rollover to a positive power-law relationship for smaller 

landslides. In the literature, there’s no agreement about the definition of the rollover. Some authors 

defined the rollover as the modal value of pdf distribution (C. P. Stark and Hovius, 2001; Stark and 

Guzzetti, 2009a; L. Li et al., 2016) while other authors consider the rollover approximately as the point 

of departure of the data from the power-law (Guthrie and Evans, 2004; Guthrie et al., 2008). Regarding 

physical meaning of rollover, three hypotheses have been proposed. The first is ascribed to the interplay 

of cohesion and friction, stating that these parameters resist landsliding for small and large landslides 

respectively (Pelletier, 1997; Guzzetti et al., 2002; Malamud et al., 2004; Stark and Guzzetti, 2009). 

Alternatively it concerns the completeness of the inventory, because erosion, reworking of deposits and 

fast vegetation regrowth may be responsible for the concealing of small and shallow landslides, resulting 

in a under sampling of the landslide inventory (Brardinoni and Church, 2004). Another issue regards the 

resolution and the scale of the remotely sensed data used to acquire landslides that may lead to the small 

and shallow slope failures under sampling (Galli et al., 2008; Guzzetti et al., 2012). For the reason listed 

above, the most likely to be incomplete are historical inventories, on the contrary, event-based are the 

most complete.  

The Italian Landslide Inventory (IFFI) Project was launched in 1999 with the aim of identifying and 

mapping landslides throughout Italy on the basis of standardized criteria. This huge database is an 

historical landslide inventory containing 620.808 slope failures covering an area of 23.700 km2 (7,9 % of 

Italian territory). In Trigila et alii (2010), the authors carried out an analysis of the IFFI database, despite 

excellent results of accuracy, the frequency-magnitude distribution highlighted a rollover around 10000 

m2, suggesting an underestimation of shallow and small landslide (Figure 1-6). However, high frequency, 

high velocity rate and lack of predictive indicators, make shallow landslides source of hazard and risk. In 

this thesis, by means visual interpretation of orthophoto maps, a new multi-temporal inventory of shallow 

landslide triggered by intense rainfall was prepared for the study area. 
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Figure 1-6 Magnitude-frequency distribution of the IFFI (from Trigila et al., 2010) 

 

1.2.3 Shallow landslides susceptibility modelling  

Landslide susceptibility is defined as a quantitative or qualitative assessment of the classification, volume 

(or area), and spatial distribution of landslides which exist or potentially may occur in an area (Fell et al., 

2008). Landslide susceptibility modelling is a key tool to assess hazard and risk zoning of a slope failures 

prone area. It is the first step to accomplish and it is the starting point for a correct risk management and 

design of mitigation works for the protection of public health and property.  

Landslide susceptibility modelling can be developed at the site-specific or regional level. Site-specific 

analyses are related to a specific landslide or a specific limited area, usually deep-seated landslides that 

threaten man-made environments such as the stability analysis of a reservoir bank slope, slope stability 

assessment related to specific facility, buildings or infrastructures such as railways, roads or pipelines. By 

contrast, regional assessment is not generally motivated by the needs of man-made structures but is 

mainly oriented to the evaluation of probability of occurrence of slope failures in a wide area. The 

outcomes of regional assessment are fundamental tools in regional planning and can be followed by site-
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specific studies. A regional-scale study is mainly based on the evaluation of predisposing factors causing 

slope instability such as geology, structural setting, land use and morphometric variables derived from 

the DEM (e.g. slope steepness, curvatures, upslope contributing area, slope aspect and so on). 

Regional landslide susceptibility assessment can be performed by means both a qualitative approach, with 

knowledge driven methods, or with a quantitative approach, with data-driven (statistical) and physically-

based (deterministic) methods. Knowledge-driven or heuristic methods rely on the subjective judgment 

of experts, landslide susceptibility map can be prepared by means geomorphological survey by expert 

geomorphologists or created in the office as a derivative map of a geological/geomorphological map. In 

knowledge-driven or heuristic methods, the method is direct, as the expert interprets the susceptibility of 

the terrain directly in the field, based on the observed phenomena and the geomorphological/geological 

setting. The data acquired in the field may be digitalized using a GIS software, without extensive 

modelling. Knowledge-driven methods can also be applied indirectly using a GIS, by combining several 

factor maps that are considered to be important for landslide occurrence. On the basis of his/her expert 

knowledge on past landslide occurrences and their causal factors within a given area, an expert assigns 

particular weights to certain combinations of factors (Corominas et al., 2014).  

The concept behind data-drive methods is that the condition at which landslides occurred in the past, 

will be similar to the condition at which landslides will occur in the future (Reichenbach et al., 2018). 

Therefore, these methods consist on the combinations of predisposing factors that have conditioned 

landslides in the past are evaluated statistically, obtaining a quantitative prediction for current non-

landslide-affected areas with similar geological, topographical and land-cover conditions. Moreover, with 

statistical methods is possible to use a large variety of input parameters (without limitation) and, at the 

same time, do not require a priori knowledge of relationships between predisposing factors and slope 

stability. 

In the literature exists a lot of data-driven methods that can be grouped in: classical statistical (logistic 

regression, discriminant analysis etc.), index-based (weigh of evidence, information value), machine 

learning (fuzzy logic, support vector machines, forest trees), multi criteria decision analysis and neural 

networks. Reichenbach el alii (2018) provide an extensive review on data-driven susceptibility methods 

and on their evolution in the last decades. In this paper, the authors showed that although the advent of 

new complex statistical techniques applied to landslide susceptibility is spreading, as well as the increased 

availability of a wide range of classification tools in open source, classical statistics and index-based 

methods are used in around 70% of the works published from 2010 to 2018 (Reichenbach et al., 2018). 

An interesting reflection the authors do in their paper is that “the use of more complex classification 

methods – a trend observed in the literature in the recent years – does not guarantee better susceptibility 

models and sound terrain zonations necessarily. Rather, the opposite is true; the use of complex 

modelling techniques requires a full understanding of the model constrains, not all of which may be 
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obvious to a non-expert user.” This reflection should encourage in experimenting new techniques 

comparing them with methods well established. The only two main drawbacks data-drive methods have, 

are the requirement of a good landslide inventory and their inability to model a scenario that has not 

happened yet. In Figure 1-7, a table extracted from the work of Corominas et alii (2014), which shows the 

recommended data-driven methods. 

 

 

Figure 1-7 Recommended methods for data-driven landslide susceptibility (from Corominas et al., 2014) 

 

Deterministic methods rely upon simplified, physically-based landslide modelling schemes to analyse the 

stability/instability conditions, often using simple limit equilibrium model coupled with a hydrological 

infiltration model. The infiltration model, such as TOPOG (O’Loughlin, 1986) and TOPMODEL 

(Beven and Kirkby, 1979), simulates infiltration and groundwater flow processes and is used to evaluate 

the pore pressure in the section under analysis. The slope stability model, such as the infinite slope model 

(Taylor, 1948; Skempton and Delory, 1984), simulates the slope safety factor (FS) defined as the ratio of 

stabilizing to destabilizing forces. In Table 1.1, some of the most used models in the literature are listed. 

The parameters commonly used to perform a stability analysis are topographic (e.g. slope, upslope 

contributing area), hydrogeological (e.g. hydraulic conductivity), geotechnical (e.g. cohesion, friction 

angle, unit weight) and geological (depth).  

The simplifications and assumptions of models adopted and the representation of slope deposits 

geotechnical properties is a key problem in the use of physically based slope stability models (Cervi et al., 

2010; Corominas et al., 2014). Due to infinite slope model assumption that the sliding surface correspond 

to the slope deposit/bedrock discontinuity, the slope deposit depth, defined as the depth from the surface 

to a consolidated material (usually bedrock), plays a key role on the accuracy of regional susceptibility 
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analysis. Soil thickness can be modelled using physically based methods that model rates of weathering, 

denudation and accumulation(Dietrich et al., 1995; D’Odorico, 2000) or empirical methods that 

determine correlations with topographical factors such as slope, or it can be predicted using geostatistical 

methods (Tsai et al., 2001; Florinsky et al., 2002; Catani et al., 2007; Kuriakose, Devkota, et al., 2009; Kim 

et al., 2016). Slope deposits geotechnical properties are generally affected by great uncertainty. This is due 

to the cost associated with field surveys, laboratory tests and in situ tests, but also for the SD natural 

variability, due to a complex geological evolution. Furthermore, the reliability of geotechnical properties 

maps for slope deposits are also a source of uncertainty  (van Westen et al., 2008). In order to consider 

the above-mentioned uncertainty of input data, many authors have adopted a probabilistic approach 

(Gorsevski et al., 2006; Liu and Wu, 2008; van Westen et al., 2008; Kuriakose, van Beek, et al., 2009; Park 

et al., 2013; Raia et al., 2014). The probabilistic approach makes it possible to model the variability of 

input parameters by means of probability distribution functions; as a result, the model response is 

expressed by probability laws, which are for example, numerically obtained by means of Monte Carlo 

sampling methods. Unlike data-driven methods, physically-based models are applicable to areas with 

incomplete landslide inventories and permit making predictions based on different triggering factors such 

as rainfall, land use change, earthquake and snowmelt. 

 

Table 1.1 A few physically-based models available in the literature 

Model name Reference 

dSLAM Wu and Sidle 1995 

SHALSTAB Dietrich et al. 1998 

SINMAP Pack et al. 1998 

SHETRAN Ewen et al. 2000 

PROBSTAB van Beek 2002 

TRIG-RS / TRIG-RS-P Baum et al. 2002; Raia et al. 2014 

GEOtop-FS Simoni et al. 2008 
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1.3 AIM OF THE THESIS 

In the last decades, due to climatic changes and increasing frequency of intense rainfall events, studies 

about landslide distribution and predisposing factors have experienced an extensive development 

(Gariano and Guzzetti, 2016; Reichenbach et al., 2018). Many researchers have focused on landslide 

susceptibility as well as hazard and risk zoning in order to provide tools to mitigate human and economic 

losses (Fell et al., 2008; Corominas et al., 2014). Moreover, landslides are a major hazard causing human 

and large economic losses worldwide and,  in the last twenty years, an increasing trend of fatal landslides 

in Europe has been observed (Figure 1-6, Haque et al. 2016).  

 

 

Figure 1-8 Spatial distribution of fatal (death, injury, and missing) landslides (from Haque et al. 2016) 

 

Italy is the European country most affected by fatal landslides and in the recent past was hit by disastrous 

landslide events occurred in Piemonte Region in 1994, in Versilia (Tuscany) in 1996, in Sarno and 

Quindici (Campania Region) in 1998, in a large sector of Northern Italy in 2000, in Val Canale (Friuli 

Venezia Giulia Region) in 2003, Messina (Sicily) in 2009 and in Liguria/Northern Tuscany in 2014 (Trigila 

et al., 2010; Giordan et al., 2017). The majority of these events share an intense rainfall triggering a great 

number of shallow landslides evolved in more-or-less concentrated debris flows hitting densely populated 

or man-modified areas. In this framework, shallow landslides distribution, characterization and 
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susceptibility analyses are fundamental tasks in order to implement a reasonable spatial planning and 

decrease hazard and risk. 

However, the predictive capacity of a shallow landslide susceptibility model substantially depends in the 

cases of the physically based models on the quality of the input data and on the quality of the landslide 

inventory for data-driven models. One of the most important challenges for physically based models is 

the accurate definition of geo-technical parameters of materials involved in the landsliding, consequently 

the predictive ability of these methods is closely linked to the degree of detail with which they are 

characterized. For this reason, physically based models are inadequate in cases where a small-scale 

regionalized slope stability analysis is required (Corominas et alii, 2014; study area > 1000 km2). 

Furthermore, since physically based models assume that the sliding surface is located at the interface 

between the slope deposits and the underlying bedrock, determining the depth of this interface is also a 

difficulty to be taken into consideration. Numerous studies highlight how the depth of the slide influences 

the probability of a landslide occurring, in fact, with equal morphological and geo-technical conditions, 

the deeper the sliding surface the more likely it is to fail. For this reason, having the availability or building 

a map that describes the trend of the depth of the slope deposits/bedrock interface is a fundamental 

input for a physically based susceptibility model. It is also true that considering slope deposits/bedrock 

interface as the surface where sliding can occur is a simplification of reality. The fieldwork experience 

gained in this thesis has highlighted that a large part of the shallow landslides has a sliding surface which 

is located just below the slope deposits/bedrock interface, thus affecting the most superficial portion of 

the rock mass characterized by varying degrees of alteration and fracturing. Not considering the 

possibility that a landslide could affect the bedrock inevitably leads to an underestimation of the 

probability of a landslide occurring in certain areas. Taking this aspect into account also means knowing 

the geo-mechanical characteristics of the rock mass that lies beneath the slope deposit, which will not be 

the characteristic of an undisturbed or tunneled rock mass but rather are characteristics that depend on 

the degree of weathering and fracturing of the first 1-3 meters below the interface with the slope deposit. 

This is because as the depth increases, the mechanical characteristics of the rock masses increase, the 

more superficial portions always tend to have worse characteristics due to their proximity and / or direct 

contact with the biosphere, atmosphere and hydrosphere. 

Data-driven models, having a different approach than physically based models, i.e. the basic assumption 

consists in the concept that new landslides should take place in the same conditions in which past 

landslides took place, can have a greater predictive performance for landslides involving bedrock with 

respect to deterministic models. The reason is that a physically based model should also include the 

difficult task of geotechnical parameters characterization of the bedrock undergoing failure. 

However, being the data-driven approach a black box model, if the occurrence and frequency of shallow 

landslides involving bedrock is not known as an input information, they cannot discriminate between 
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areas where landslides are more likely to involve either slope deposits only, or slope deposits and the 

underlying bedrock. 

 

As a consequence of what it is stated above, the aims of this PhD thesis are: 

 

▪ To characterize shallow landslides identifying the differences between slope deposits landslides 

and landslides also involving bedrock 

▪ To define and apply a method to estimate the variability of geotechnical properties both for SD 

and bedrock involved in shallow landslides 

▪ To define and apply a method to spatialize the above properties at regional scale  

▪ To explore the performance of both data-drive and physically based models for the assessment 

of shallow landslide susceptibility also considering the involvement of bedrock in the failure 

processes 

▪ To discuss the role of bedrock for shallow landslides development 
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2 METHODS - A NEW WAY TO APPROACH 

SHALLOW LANDSLIDES AND 

SUSCEPTIBILITY ASSESSMENT BY 

MEANS WELL-ESTABLISHED TOOLS 
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This chapter focuses on the methodological approach developed in this thesis. The workflow used in the 

field to investigate and characterize the geotechnical properties of both slope deposits and bedrock, the 

statistical methods adopted to process and spatialize field data for the evaluation of shallow landslides 

susceptibility and the numerical models are presented. 

 

2.1 WORKFLOW OF THE METHOD 

In Figure 2-1, the flowchart summarizes the workflow proposed in this thesis in order to characterize slope 

deposits (SD) and bedrock (BR) and their implementation in shallow landslide susceptibility assessment. 

The input data needed in the initial phase of the work are tools that are now available for most of the 

globe, namely a Digital Elevation Model (DEM), a geological map and orthophoto maps. As 

demonstrated by the application and confirmed by the literature (Johnson and Johnston, 1995; Kühni 

and Pfiffner, 2001; Chelli et al., 2010; Heckman and Rasmussen, 2011; Kirby and Whipple, 2012; Allen 

et al., 2013; Hurst et al., 2013; Nsangou Ngapna et al., 2018; Bernard et al., 2019; Glaus et al., 2019), the 

basic assumption on which this method is founded is that different lithologies have different response to 

erosion, weathering and tectonic deformation giving, in turn, place to specific morphology and 

geotechnical properties of materials. Therefore, the geological map (1:10000 scale) it is simplified by 

grouping the formations on a lithological and stratigraphic basis (Bedrock Lithological Units, BLU).  

The DEM is used to calculate morphometric variables which are a fundamental input data for both the 

data driven and physically based modelling approaches, as well as, they are used to compute through 

unsupervised classification (described in detail in the next chapter) morphometric units for each BLU. 

Nevertheless, the whole method proposed and developed in this thesis could not be completed without 

the compilation of a new shallow landslides inventory, obtained here through the visual interpretation of 

orthophotos. With the aim of assessing the accuracy of the landslide inventory and collecting data both 

in areas involved by landslides and in stable areas, the field work is controlled by the shallow landslide 

distribution (data collection strategy details are described in the next chapter). During the field work, 

both SD and BR properties are investigated. In the SD there may be an intrinsic variability of properties 

(depth to the bedrock, texture, grain size, unit weight) depending on morphology and the underlying 

BLU. Hence, field work site observations and laboratory analysis have been performed and analysed 

according to morphometric units and BLU, and then a set of geotechnical parameters (SD depth, friction 

angle, unit weight) have been assigned. An accuracy assessment is then performed for the SD depth map. 

Finally, in order to regionally spatialize SD properties, the Engineering Geological SD map (SDEG map) 

is obtained joining the geotechnical parameters to the raster of morphometric units of each BLU. The 

last operation consists on the merging of SDEG maps of each BLU into a single map.  
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In order to understand the role played by bedrock in shallow landslides, it is necessary to characterize 

and verify the geo-mechanical properties of the surficial portion of rock masses. The workflow of the 

field work consisted in analyzing rock mass outcrops ranging in size from a minimum of 4-5 meters up 

to 20 meters, deeper less than 4 meters from the surface. The first phase of the rock mass analysis 

consisted on the description of lithology, structure, layering and texture. The second phase of the field 

work is aimed to the quantitative characterization of the outcrop, and involves three steps: Schmidt 

hammer rebound value, discontinuities analysis and "Geological Strength Index” (GSI) estimation. In 

order to explore the distribution of bedrock properties and variability, a descriptive statistical analysis is 

performed. Then, to verify the presence of a spatial variability of bedrock properties at regional scale, 

uni-variate and multi-variate cluster analysis are carried out (detailed description in the next chapter). As 

well as for slope deposits, the regionalization of geotechnical parameters is executed assigning a range of 

geotechnical parameters for each pre-defined Geo-mechanical Bedrock Unit (GMU). In this case, the 

definition of Geo-mechanical Bedrock Units is not ruled by morphometric units but the spatial variability 

of bedrock properties. If the spatial analysis identifies clusters with similar characteristics, on expert basis, 

using tectonic features, drainage network and morphology, the GMUs are identified by mapping the 

edges of the clusters. The shallow landslide susceptibility modelling is then performed by means both a 

data driven and physically based models. The data driven approach is made up combining the landslide 

inventory with morphometric variables, SD depth map and BLU. The physically based approach instead 

is made up performing a Monte Carlo simulation of SD and BR properties. The output susceptibility 

maps are then subjected to the accuracy assessment, compared and combined. 
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Figure 2-1 Workflow of the method proposed in this PhD thesis 
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2.2 DATA COLLECTION STRATEGY 

Given the workflow described above, the planning of sampling is a key feature in order to have a 

comprehensive framework of both SD and BR variability. Moreover, it is important to characterize not 

only landslide areas, but also sites not yet characterized by slope instability. For this reason, the role of a 

detailed landslide inventory is fundamental because the data collection strategy was based on performing 

observation sites for the characterization of both the SD and BR inside, near and far from the previously 

detected landslides (Figure 2-2). According to this strategy, the analysis of SD and BR was conducted both 

in correspondence of the landslide scarp (inside) and in the surroundings of the landslides, usually within 

50 meters (near). All the other site observations are considered as “far”.  

Of course, sampling density is strictly related to the extension of the study area and frequency and spatial 

distribution of landslides. On the basis of the extension of the study area chosen in this thesis (>200 km2) 

and the landslide density resulted from the new shallow landslide inventory, the data collection lasted 

about a year.  

 

 

Figure 2-2 Schematic sketch representing the data collection strategy 
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2.3 VISUAL INTERPRETATION OF ORTHOPHOTO MAPS  

In this thesis, the visual interpretation of orthophoto maps was used to compile a new multi-temporal 

shallow landslide inventory (LI) for the study area. By using this method, the older image (2000) is 

considered as the basic image, that is, the initial stage of the territory, from which all the later images were 

compared. The digital multitemporal visual interpretation was focused at identifying and delineating, as 

polygonal features, small-scale shallow landslides occurred during the analyzed period. These slope 

failures essentially triggered by intense rainfall events correspond to decameter-scale scars where either 

the residual slope deposits or underlying bedrock crop out. The comparison of aerial images from 

different epochs allowed us to identify abrupt local-scale variations in texture and tone/colour, sharp 

interruption of vegetation and cultivated fields, disruption of linear patterns, and occurrence of U-shaped 

elongated features (Figure 2-3). These clues have led to the hypothesis that these forms may be labelled as 

landslides.  

 

 

Figure 2-3 Example of multi-temporal investigation of orthophoto maps and delineated landslide polygons 

 

A visual topographic and land use analysis may help to confirm or deny the hypothesis. 

Nevertheless, in addition to the delineation of polygons classified as landslides, areas displaying similar 

features to those described above were also mapped as polygons and labelled as stable areas. In other 

words, there are some instances, as well landslides, which differ from the neighbouring areas for texture, 

tone and color, that are not necessarily landslides. The need to identify these sites and discriminate them 

from the polygons classified as landslides is aimed at evaluating the quality of the work of visual 

interpretation to recognize both unstable and stable areas. The quality was quantitatively evaluated by 

means of sensitivity and specificity executing the accuracy assessment tasks. Polygons classified as “stable 

areas” are subjected to validation such as polygons classified as landslides. In Figure 2-4 an example of 

unstable (landslide) and stable areas is provided.   

 

2010 2016Orthophoto maps
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Figure 2-4 Delineated polygons of a landslide area (blue line) and a stable area (violet line). The lack of vegetation, tone, 
colour and shape are similar, but the violet polygon is inferred to represent a debris area 

 

In this thesis, the polygonal Shape File (ESRI ArcGIS®) is accompanied by an attribute table and the 

fields are briefly described below:  

• The field YEAR_OUTL (numeric) indicates the oldest orthophoto where the shape is recognized 

and has been delineated.  

• The field GEO_LABEL (text) indicates the geological formation in which the landslides has 

occurred. 

• The fields ORTHO_xxxx (where xxxx is referred to the epoch of the orthophoto maps) are 

numeric fields that indicate whether the form is visible (1) or not (0) in the orthophoto of the 

respective acquisition period. Consequently, the oldest period of the ORTHO_xxxx field for 

which the value is equal to 1 coincides with the value in the field YEAR_OUTL.  
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• The field UNCERT is a numeric field (1-3, certain-very uncertain) indicating the degree of 

uncertainty of the delinated features, as qualitatively estimated by the interpreter. It describes how 

confident the operator is that the delineated shape is a landslide.  

• The field “POLY_TYP” (text) indicates if the polygon is classified as “landslide” or “stable area” 

 

The visual interpretation of orthophoto maps has few limitations, but some of these needs to be 

discussed. Even if aerial images are generally acquired during the spring/summer period, the acquisition 

time may vary. At mid-day, the sun is closest to the zenith position, providing homogeneous lighting and 

minimum shadowing. Nevertheless, when images are acquired during the morning, northern slopes are 

shaded hindering the detection. More often, when solar lighting is nearly parallel to the ground surface, 

in sites where vegetation is lacking (rock outcrops, e.g.) it is not possible to exclude the presence of a 

landslide and vice versa. Another issue involving visual interpretation of orthophoto maps regards 

identifying slow-moving landslides since recent aerial images have a spatial resolution that usually ranges 

between 1 m to 0.2 m, which is the same order of magnitude of slow-moving landslides displacement 

rate, defined as less than 1.6 m/year (IUGS-International Working Group, 1995; Cruden and Varnes, 

1996). Due to the small size and shallow depth of rupture surface, the post-failure vegetation re-growth 

is another issue occurring during visual interpretation of orthophoto maps (Rib and Liang, 1978). This 

issue is well known especially in tropical and equatorial regions where vegetation may grows rapidly 

obliterating the slope failure in a matter of months or seasons. Moreover, in the mid-latitude cultivated 

areas, agricultural practices can easily cancel the morphological and land cover signature of landslides 

(Guzzetti et al., 2012).  

Nevertheless, this problem occurs even when geomorphological field mapping is performed, or imagery 

is processed by means of classification. Instead, using a very high spatial resolution digital elevation model 

captured by LiDAR sensors to map landslide may help to bypass the problem (Guzzetti et al., 2012). 

Beyond the limits described above, interpretation of the aerial photographs remains the most common 

method to recognize landslides, and to prepare landslide inventories (Guzzetti et al., 2012). 
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2.4 ENGINEERING GEOLOGICAL CHARACTERIZATION OF 

SLOPE DEPOSITS 

2.4.1 Field survey data acquisition 

2.4.1.1 Measuring the depth of slope deposits 

The SD field survey was performed after the manual opening of digs until reaching either the bedrock 

unconformity or getting as deep as possible under the ground surface. In fact, in some cases, it is not 

possible to reach the bedrock due to the presence of roots or cobbles. In order to verify the identification 

of the bedrock, the dig is repeatedly enlarged and cleaned using a trowel. By the field experience, a 

common investigation depth limit is around 2 m.  

 

 

Figure 2-5 Examples of a medium thick (a) and a thin (b) slope deposits. Pickaxe length 100 cm. 

 

 

 

 

110 cm

Weathered and 

fractured bedrock

a b
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2.4.1.2 Fabric and grain size estimation 

Once the dig is completed or if a natural trench allows to conduct a detailed observation down to the 

bedrock, the analysis of horizons is conducted. For each horizon, grain size and structure are evaluated.  

To estimate the grain size distribution of clay, silt and sand the USDA procedure have been used (USDA, 

1987; Figure 2-6). This method of soil texture classification is particularly well suited to field applications.  It 

requires answering a set of questions about the soil behaviour, which leads to an assessment of the 

textural class.  The classification process can be formulated as a flow chart, which is shown in Figure 2-6. 

It is hence convenient to express the textural classes in terms of their fraction of sand, silt or clay on a 

trilinear diagram Figure 2-7.   

Since the USDA classification does not take into account the quantity of grains larger than two 

millimetres, the visual scheme proposed by Terry and Chilingar (1955, Figure 2-8) has been used to assess 

the percentage of gravel and blocks.  

Another information collected is the fabric of the deposits. In sedimentology and pedology, a deposit or 

a soil can be matrix-supported, grain-supported or variably clast- to matrix- supported (Terzaghi et al., 

1996; Blair and McPherson, 1999). Figure 2-9 shows the scheme proposed by Ricci Lucchi (1980) to assess 

this property. An example of the two end-members is provided in Figure 2-10a-b. 
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Figure 2-6  Flow chart for USDA soil classification (USDA, 1987) 
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Figure 2-7 Soil Textural Triangle, from USDA (USDA, 1987) 
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Figure 2-8 Visual estimation of coarse-grained particle size (Terry & Chilingar,1955) 

 

 

 

Figure 2-9 Structure analysis proposed by Ricci Lucchi (1980). A and C represent matrix- and clast- supported structure, 
while B is a transition among them. 
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Figure 2-10 a. Grain supported deposit. b. Matrix supported deposit. 

 

2.4.2 Sampling and laboratory analysis 

2.4.2.1 Grain size estimation and plasticity analysis 

Remoulded samples are collected in order to evaluate grain size composition and Atterberg limits in the 

laboratory. This information is useful to assign the deposits to USCS class (Unified Soil Classification 

System - ASTM D2487-17, 2017). The USCS is a tool for classifying mineral and organo-mineral soils 

for engineering purposes based on laboratory determination of particle-size characteristics, liquid limit, 

and plasticity index. Generally, in accordance with Head and Epps (1980), the mass of soil to be sampled 

to conduct the analysis is about 2 kg when the largest particle size of the soil is about 20 mm. Hence 

gravel is estimated only through a field visual approach above mentioned. The laboratory particle size 

analyses are carried out using wet sieves for coarse material (ASTM C136 / C136M-14, 2014), while for 

the fine fraction (particle size <0.075 mm) the sedimentation process (ASTM D422-63 2007) is used. To 

obtain the USCS class of the fine grained samples (<0.075 mm), the Atterberg limits must be defined 

and plotted in the plasticity chart  as shown in Figure 2-11. 

 

 

 

a b
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Figure 2-11 Plasticity chart used to determine USCS classes (ASTM D2487-17) 

 

Coarse-grained slope deposits are classified basing on: 

▪ Cu, coefficient of uniformity, the ratio D60/D10, where D60 and D10 are the particle diameters 

corresponding to 60 and 10 % finer on the cumulative particle-size distribution curve respectively,   

▪ Cc, coefficient of curvature, the ratio (D30)2/(D10*D60), where D60, D30, and D10 are the 

particle sizes corresponding to 60, 30, and 10 % finer on the cumulative particle-size distribution 

curve, respectively.  

 

In Figure 2-12, the classification chart to assess USCS class is shown.  
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Figure 2-12 Soil classification chart according to ASTM D2487-17 

 

2.4.2.2 Unit weight 

When possible according to the particle size of deposits, samples were collected for the determination of 

the unit weight. Slope deposits sampling took place in this case on non-disturbed material through the 

manual insertion of a ring with a diameter of 53 mm and with a volume of 100 cm3: the ring is inserted 

inside the deposits using a rubber mallet (Figure 2-13). This procedure was carried out within those 

horizons where the coarse fraction is not very large thus allowing the insertion of the ring. The samples 

have been protected in order to preserve the conditions of humidity in situ, after which they were weighed 

in the laboratory: the volumetric water content was then determined θ (θ=VW / VT, where WV and VT 

represent the volume of water and the total volume of the soil sample, respectively), natural unit weight 

γn (kN / m3) and dry unit weight γd (kN / m3), after drying of the sample at 110 ° C for 24 hours in the 

oven (ASTM - D2937; BS 1377-2, 1990).  
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Figure 2-13 The collection of undisturbed samples for unit weight determination 

 

2.4.3 Classification of morphometric variables 

The shape of ground surface influences the drainage network, transport of sediments, colluvium/slope 

deposits production and affects the climate on local and regional scales. This is the reason of interest on 

landform recognition and analysis by Earth sciences and neighbouring disciplines (Mokarram et al., 2015).  

Landforms have a wide range of application domains, including geomorphological mapping, small scale 

lithological mapping, landslide mapping, prediction of soil/colluvium/slope deposits at regional scale, 

vegetation and land cover mapping and precision agriculture (MacMillan and Shary 2009; Evans 2012; 

Mokarram et al. 2015; Mokarram and Sathyamoorthy 2018 and references therein). 

The recognition of landforms was initially performed by heuristic interpretation of terrain, but the 

increasing availability and resolution of Digital Elevation Models nowadays allows for much more 

accurate, automated and objective representation of forms, including their boundaries (Wieczorek and 

Migoń, 2014), by means of digital classification. 

Landform classification can be performed with different approaches; the choice depends on the criteria 

used for classification, the number of variables, spatial scale of inquiry, resolution of input data, and 

algorithms used in the procedure. GIS-based approaches generally use morphometric variables such as 

slope steepness, aspect and profile/plan curvatures (Evans, 1972; Dikau, 1989; Guth, 1995; Wood, 1996; 

Fisher et al., 2004).  

Popular automated methods to landform classification are those which implement data mining, such as 

the, fuzzy k-mean algorithm (Roberts et al., 1997; Burrough et al., 2000; Schmidt and Hewitt, 2004; 

Summerell et al., 2005; Deng et al., 2006; Arrell et al., 2007; Benito-Calvo et al., 2009), k-median algorithm 

(Wieczorek and Migoń, 2014; Szypuła and Wieczorek, 2020), ISODATA algorithm (Niemann and 

Howes, 1991; Irvin et al., 1997; Adediran et al., 2004; Liu and Tang, 2006; Zhong et al., 2009; Trefolini, 
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2015), Self-Organizing maps (Zhang et al., 2009; Ehsani et al., 2010; Kohonen, 2012), Support Vector 

Machine (SVM) (Stepinski et al., 2006) and combination between them (Brown et al., 1998; Iwahashi and 

Pike, 2007; Viloria et al., 2016). Niemann and Howes (1991) proposed an unsupervised classification to 

assess slope stability and risk assessment. The procedure consisted of creating groups by using the k-

mean cluster analysis for each variable independently, starting with slope gradient. After processing the 

full dataset, they introduced upslope drainage area as a second variable. In the last step, profile and plan 

curvatures were used to distinguish sub-groups within the previously created groups. The classification 

procedure finally revealed 44 groups. In Irvin et alii (1997) the authors showed that the classification of 

landforms using both the ISODATA and fuzzy k-mean methods can yield quick and useful results. The 

difference between results obtained from the two algorithms is that in the ISODATA classification pixels 

are assigned to only one landform group, while in the fuzzy classification each data point can have partial 

membership in several groups.  

An example of using a different unsupervised classification method was one by Brown et alii (1998) who 

used maximum likelihood classification and neural network. Five morphometric variables were 

considered as basic input data: elevation, slope gradient, local relative relief, local roughness and upslope 

area. The support vector machine (SVM) is a group of theoretically superior machine learning algorithms 

(Huang et al., 2002). It was developed to be competitive with the best available machine learning 

algorithms in classifying high dimensional data sets (Mangai et al., 2010). For example, Stepinski et al. 

(2006) used SVMs for a test site on Mars to produce the most accurate results as compared to other 

conventional techniques of classifying topographic objects. Mangai et al. (2010) used SVMs to classify 

landforms and to identify a wide variety of landforms in the subcontinent of India. 

Beyond the algorithm chosen to conduct the landforms classification, Dikau (1989) claimed that an 

accurate morphometric classification may be performed using four basic parameters obtained from a 

DEM: slope, aspect, plan and profile curvatures. However, this set of basic parameters can be extended, 

using variables such as roughness, relative height and topographic wetness index or upslope contributing 

area (Brown et al., 1998; Burrough et al., 2000; Deng et al., 2006). 

The unsupervised classification is the method used in this work in order to classify the terrain. This 

clustering procedure allows to extract regions of contiguous pixels and is based on the analysis of a certain 

number of continuous variables. This technique is often used for remote sensing image interpretation 

(Abburu and Babu Golla, 2015) as well as for the geomorphological classification of landscapes using 

DEM derivates (Irvin et al., 1997). The tool beyond the classification is the Iterative Self-organizing Data 

Analysis (ISODATA) technique (Tou and Gonzalez, 1974) which uses a maximum-likelihood decision 

rule to calculate class means that are evenly distributed in the data space and then iteratively clusters the 

remaining pixels, using minimum-distance techniques. Each iteration recalculates means and reclassifies 

pixels with respect to the new means. This process continues until the number of pixels in each class 
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changes by less than a selected pixel change threshold or until a specified maximum number of iterations 

is reached (Melesse and Jordan, 2002). This kind of approach is suitable for the classification on 

landforms starting from the DEM of an area in order to obtain clusters corresponding to the 

Morphometric Units. In this thesis, the term "Morphometric Unit" refers to spatial units with similar 

morphometric characteristics. In the literature, terms such as "landforms", "terrain units" and 

"homogenous units" are often used. As already stated, the assumption behind the Engineering Geological 

SD map is that, within the same bedrock lithology area, each cluster corresponds to a landform or 

Morphometric Unit. Therefore, the Engineering Geological SD map is then obtained assigning to 

Morphometric Units a set of engineering geological parameters. 

The Unsupervised Classification is implemented in ESRI ArcGIS™ as a tool which combines the 

functionalities of the Iso Cluster and Maximum Likelihood Classification tools. The number of clusters 

must be defined before running the code, the minimum value is two classes, while there is not a maximum 

value.  

The number of clusters for our purpose is ruled by the number of observations collected and the natural 

variability of the landscape in the subset of the study area under classification.  Classifying the landscape 

in too many morphometric units provides a detailed characterization, but the sample frequency needed 

to describe all unit may be insufficient. On the contrary, taking few classes would lead to a rough 

description of the landscape. 

A statistical method useful to determine the number of clusters to be used for the analysis, consists on 

the calculation of the Sum of Square Error (SSE) (Richards and Xiuping, 2006) assessing the data 

dispersion for each cluster for different clustering solutions. However, this method does not take into 

account the sampling density and the SSE results must be subjectivelly analyzed.  

In our experience, a classification based on 5 to 15 classes turned out to be a good compromise. 

The efficiency of clustering depends on some pre-processing procedures, like data stretching. A min-max 

stretching approach was implemented, as suggested by ESRI guidelines on Unsupervised Classification. 

 

2.4.4 Slope Deposits Engineering Geological Map 

For each BLU a Slope Deposits Engineering Geological Map is obtained by integrating field and 

laboratory results with morphometric units. According to the geographic position of observation sites, 

these results are grouped for each morphometric units. The statistical analysis of engineering geological 

properties is conducted at morphometric unit scale, in order to assign a dataset of slope deposits depth, 

USCS class and dry unit weight.  
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2.4.4.1 Slope deposits depth 

Likewise geo-technical parameters, the depth of SD (SDd) is a fundamental input parameter to assess 

shallow landslide susceptibility at regional scale using physically based models (Wu and Sidle, 1995; 

Dietrich et al., 1998; Segoni et al., 2012; D. W. Park et al., 2013; Disperati et al., 2018). Even if some 

authors have shown the influence of SD depth on determining both the uncertainty and reliability of 

susceptibility maps (Ho et al. 2012; Kuriakose et al. 2009; Meisina and Scarabelli 2007), this information 

is generally missing at the map scale, and authors assume a constant value for SDd when performing 

stability analyses (Dietrich et al., 1998; Guimaraes et al., 2003; Teixeira et al., 2015). 

In other studies, the SD depth maps are obtained as statistical relation with single or multiple 

morphometric variables (Dietrich et al., 1995; Kuriakose, Devkota, et al., 2009; Pelletier and Rasmussen, 

2009; Schulz et al., 2009; Tesfa et al., 2009; Lanni et al., 2012; Segoni et al., 2012), or by means physically 

based approach, focusing on the temporal evolution of the soil thickness or basing on the conservation 

of mass equation (Mudd and Furbish, 2004; Saco et al., 2006; Nicótina et al., 2011). Nevertheless, all 

authors agree that the spatial distribution of soil depth is controlled by complex interactions of many 

factors such as topography, parent material, climate, biological, chemical and physical processes, resulting 

in a difficult prediction due to its high spatial variability. Given the above general framework, the method 

used in this thesis is based on the concept that the slope deposits depth is related to lithology of the 

underlying bedrock and morphometric variables. The method here adopted is an improvement of the 

method developed by Trefolini, (2015), Trefolini et al., (2015), Venturini et al., (2016) and Disperati et 

al., (2018). 

In this PhD thesis, SD depth is represented by a system based on categorical depth classes instead of 

continuous representations, given the intrinsic local variability of SD depth.  As described in paragraph 

2.6.1, in the physically based model used for shallow landslides susceptibility assessment, the range of 

each class was used as input variability for depth executing the Monte Carlo simulation. 

The number of depth classes may depend on the number of field observations, the maximum depth value 

reached and the expected degree of detail. Moreover, the width of the classes may be constant or follow 

a different rule depending on depth. This, in turn depends on the number of field observations as well 

as the statistical distribution of SD depth values.  

Hence, a method to determine the number and the width of SD depth classes is to plot the cumulative 

frequency distribution of depth measures of the whole fieldwork dataset.  

 

2.4.4.2 Shear strength parameters assessment 

The cohesion c and friction angle  are the parameters used to describe shear strength parameters of SD 

by means of the Mohr-Coulomb shear strength criterion (Lambe and Whitman, 1991). 
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When working at specific site scale or in small study areas, the shear strength of soils can be estimated in 

laboratory by testing representative undisturbed samples to triaxial or direct shear tests. Moreover the 

same goal may be reached by performing in situ tests, such as penetrometric tests (Lambe and Whitman, 

1991; Lancellotta, 2001; Ameratunga et al., 2016). Although generally regarded as accurate and reliable, 

these procedures are costly, logistically complex and time consuming. Furthermore, collecting an 

undisturbed sample in non-cemented granular deposits is difficult, as it is almost impossible to perform 

on-site tests in predominantly gravelly materials. 

In this work, the workflow and the method described are addressed to study multi-scale areas wider than 

100 km2, so a large number of investigation sites is requested. For this reason, the estimation of shear 

strength parameters of slope deposits, as well as of bedrock that will be presented later, is assessed by 

means of empirical and experimental correlations. 

In this section relevant empirical correlations are discussed for both cohesive and granular slope deposits. 

The SD are materials made up of mixtures of granulometric fractions ranging from clays to gravels, 

passing through the sands. Furthermore, being SD formed in recent times outside the alluvial depositional 

areas they can be regarded as are normally consolidated without cementation. This implies also that 

cohesion of SD is apparent, depending on water content, matrix suction properties and type/density of 

vegetated root systems (Terzaghi and Peck, 1967; Terzaghi et al., 1996).  

Soil suction can vary among different soils, moreover, due to its dependence on water content, it also 

considerably varies over time. However, the soil suction is negligible when the soil is completely saturated. 

When performing stability analysis, the contribution of soil suction to the slope stability is neglected 

(Lambe and Whitman, 1991). 

The role of roots cohesion has been investigated during the last decades by several authors (Watson et 

al., 2000; Roering et al., 2003; Schwarz et al., 2010; Arnone et al., 2016; Marzini et al., 2019). 

Marzini et alii (2019) evaluated the stabilizing effects of root systems in shallow landslides. They conclude 

that in certain conditions the root cohesion is a relevant parameter for shear strength, estimating a 

maximum value of about 5 kPa. Moreover, they highlight that root reinforcement is exerted principally 

in the main and lateral scarps, acting to a depth less than 1 m.  

Due to the reasons mentioned above, one of the most effective ways to evaluate the cohesion of SDs is 

to derive it by back-analysis while implementing physically based models. Initial effective cohesion values 

can be assigned by referring to the literature; then, having available an inventory of landslides to validate 

the model, depending on the accuracy results, the cohesion can be calibrated according to the stability 

scenario obtained from the modelling (Disperati et al., 2018). In the case of SHALSTAB (Montgomery 

and Dietrich, 1994; Montgomery et al., 1998), for example, unconditionally unstable areas (UU) are those 

being unstable when piezometric surface does not develop. The occurrence of stable SD within the UU 

areas is an obvious paradox. Consequently, in order to reduce the extent of UU areas, the expert can 
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proceed to increase the effective cohesion value. Likewise, unconditionally stable areas (US) are areas 

that are never susceptible to landslide. However, if landslides occur in those areas, there the effective 

cohesion may be reduced until this issue is solved. After such an expert-driven process of back analysis, 

the outcome cohesion values ranges, which depends on the integration of numerical stability model with 

the landslide inventory, have to be compared with values known from the literature. 

In Table 2.1, typical c' and ’ values according to Australian Standard - 4678 (2002) are reported.  

 

Table 2.1 Typical c' and ’ values according to Australian Standard - 4678 (2002) 

 

 

Regarding cohesive SD, the literature reports a clear evidence that increasing plasticity leads to a reduction 

in the peak of friction angle. The increasing of plasticity is related to the increasing clay content, the latter 

having low frictional resistance (Ameratunga et al., 2016). Sorensen and Okkels (2013) analysed an 

extensive database of normally consolidated reconstituted and undisturbed natural clays from the Danish 

Geotechnical Insititute, along with other data from the literature (Kenney, 1959; Bjerrum and Simons, 

1960; Brooker and Ireland, 1965; Terzaghi et al., 1996) and proposed two correlations in order to estimate 

the friction angle from plasticity index (Figure 2-14).  

They suggested that for a cautious lower bound estimate, the friction angle can be estimated as: 

 

Equation 2-1 

 = 39 − 11 log 𝑃𝐼 

Where PI is the plasticity index. Instead, the best estimate of the peak friction angle is given by: 

 

Equation 2-2 

 = 43 − 10 log 𝑃𝐼 
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Figure 2-14 Correlations between plasticity index and friction angle (from Sorensen and Okkels, 2013) 

 

In general, the friction angle of a granular materials increases with the angularity of the grains, surface 

roughness and relative density. Well graded granular materials usually have higher friction angle than 

poorly graded ones. In Table 2.2, some representative friction angle values of sands and silts provided by 

Terzaghi et al. (1967) are reported. In the work of Schmertmann et alii (1978), the friction angle of 

granular soils was determined from triaxial compression tests and related to relative density, as shown in 

Figure 2-15. 

 

Table 2.2 Representative values of friction angle for sands and silts (Terzaghi et alii, 1967) 
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Figure 2-15 Relations between friction angle and relative density according to Schmertmann et alii (1978) 

 

 

Figure 2-16 Relations between USCS class, unit weight and friction angle according to NAVFAC (1986) 
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Figure 2-16 shows the friction angle determined from triaxial compression tests for different 

granular soils without plastic fines. Here, the friction angle is related to the USCS class, relative density 

and unit weight (NAVFAC, 1986). Since sampling for the grain size laboratory analysis as well as 

determination of the unit weight are logistically feasible even at regional scale, in this work the angle of 

friction was estimated using the diagram proposed by NAVFAC (1986).  

 

2.4.4.3 Slope Deposits Engineering Geological Units 

The Slope Deposits Engineering Geological Units map is a raster format file summarizing all the 

geotechnical information for the implementation of the physically based model of shallow landslide 

susceptibility. As previously described, each BLU was split into clusters on morphometric basis to which 

a depth class, a range of friction angle and a range of dry unit weight are assigned. The depth class is 

attributed on the basis of the frequency of field measurements, i.e. by crossing the depth measurements 

acquired in situ with the morphometric units assigning the most frequently measured depth class. Since 

laboratory results are not enough to adequately populate each morphometric unit, the approach that is 

used involves also the grain size estimated in the field. Once from the laboratory analyses for each 

observation site the USCS class has been determined, the statistical distribution at BLU scale is analysed, 

in order to obtain a simplified classification consisting of the three most frequent USCS classes of gravels, 

sand and fine. Even though this grouping process implies losing some detail, it allows to integrate the 

laboratory data with the field data based on the USDA estimations and obtain a larger dataset. In fact, 

for each grain size estimation performed on the field, one of the three classes are attributed according to 

the percentages of gravel, sand and fine material. 

From the laboratory results the range of variability of the friction angle (NAVFAC) and dry unit weight 

for each of the three simplified USCS classes are calculated. 

At this point, having available the simplified USCS classes resulting from both the laboratory analyses 

and those of the field estimates, these data are intersected with the morphometric classes, building a 

matrix in which each column represents a morphometric unit and each row a simplified USCS class. This 

table is populated by counting the frequency of occurrence of simplified USCS classes for each 

morphometric unit coupling laboratory and field data. To obtain the friction angle and dry unit weight 

values for each morphometric unit, a weighted average is made between the frequency of the simplified 

USCS class and the range of variability of the parameters obtained from laboratory analyses. 

An example of the attribute table of the EGU map is may be structured as follows (Table 2.3). 
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Table 2.3 Example of attribute table of the EGU map 

EGU 
Depth class 

(min) 

Depth class 

(max) 

Friction 

Angle (min) 

Friction 

Angle (max) 

Dry Unit 

weight (min) 

Dry Unit 

weight (max) 

1 30 60 28 30 1850 1920 

2 90 120 27 31 1820 1980 

n … … … … …  
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2.5 BEDROCK GEOMECHANICAL CHARACTERIZATION 

2.5.1 Rock mass geo-mechanical survey  

2.5.1.1 Schmidt hammer rebound value test 

The Schmidt Hammer (SH), manufactured by Proceq in Zurich, Switzerland (S. Proceq, 1977), is one of 

the most popular, portable and non/destructive tools for the determination of rock hardness. Since the 

last century, this tool was correlated with the Uniaxial Compressive Strength (UCS) in order to obtain 

easier, rapid and cheaper UCS value in respect to laboratory tests (Deere and Miller, 1966; Aufmuth, 

1973; Beverly et al., 1979; Haramy and DeMarco, 1985; Karaman et al., 2002; Aydin and Basu, 2005; 

Karaman and Kesimal, 2015). 

The apparatus consists of a spring-loaded piston which is released when a plunger is pressed against a 

surface (Figure 2-17a-b). Here, the spring energy is transferred to the material through the impact of a 

piston onto the plunger. The extent to which this energy is recovered depends on the hardness of the 

material, which is expressed as a percentage of the maximum stretched length of the key spring before 

the release of the piston to its length after the rebound (R) (Aydin and Basu, 2005). Part of the piston 

energy is consumed by deformation within rock while the remain energy represents the impact 

penetration resistance (the hardness) of the surface. The measurable hardness (R value) ranges between 

10 and 100. When the rock is too weak, the instrument goes full scale without returning values, thus 

censoring the values R<10. Basing on impact energy and therefore the different kind of material 

(hardness) to be measured, there are two types of Schmidt Hammer, the L-type, with 0.735 Nm impact 

energy, and N-type, 2.207 Nm. If most of the rocks to be investigated are not very hard rocks (UCS > 

100 Mpa; ISRM, 2007), the L-type SH should be preferred, according to ASTM D5873-14.  

 

 

Figure 2-17 Schmidt Hammer. a. Working principles (from Adnan Aydin, 2008). b. Execution of the test in a natural 
outcrop 

 

ba
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There are various Schmidt hammer measurements recording methods in the literature. Some existing 

Schmidt hammer test procedures are listed in Table 2.4. Most authors have proposed test procedures based 

on single impacts, while other authors have recommended test procedures based on repeated impacts at 

a point. While some methods consider the average of the R upper values. In the work of Goktan and 

Gunes (2005), who studied the correlation between the SH test procedures and the UCS of some rock 

type obtained by laboratory tests, it was found that incorporating all the measured values rather than 

selecting only the peak values gives a better representation of overall rock hardness and hence a better 

prediction of the UCS, provided the outliers are statistically discarded. In detail, these authors performed 

the test on tunnel faces using a Proceq N-type hammer. They applied a repeated impact method for each 

point, collecting 15-20 impacts and discarding the lowest value only if it satisfied Chauvenet's criterion 

and they compared this results with other 2 different test procedures selecting the peak rebound value 

from continuous impacts at a point and discarding the rest. Their results showed that the SH test 

procedures that are based on continuous impacts at a point provide more reliable and accurate predictions 

of the UCS than those that are based on single impacts and they also suggest that incorporating all the 

measurements at one point gives better results in predicting the UCS rather than using only the higher 

values. 

A similar approach has been used by Karaman and Kesimal (2015) in which they perform the 

measurements with the SH on laboratory samples by proposing three different procedures for acquiring 

the rebound values and comparing them with four of the procedures most used in the literature. The 

statistical test results show that a strong relationship (R2> 0.9) was found between the rebound value and 

the UCS value for all the procedures adopted. This means that, for analyzes conducted on rock specimens 

in laboratory, different procedures can lead to negligible differences. 

In Karaman et alii (2002), using a N-type Schmidt hammer and analyzing hard rocks, the authors 

investigate the differences between the rebound values acquired in the field and in the laboratory on rock 

specimens. The results show that the correlation between the measurements acquired in the field and 

those acquired in laboratory has a correlation value close to or greater than 0.9. These authors, since a 

slight discrepancy between the two tests exists, propose to use their correlation equation to correct the 

rebound values if the test is performed in the field or laboratory. 

Since the aim of the method proposed here is not to characterize a rock specimen or an intact portion of 

the rock mass but the entire mass composed of more or less intact portions, as well as discontinuities, to 

take into account natural variability of a rock outcrop, the testing strategy consisted on the design of a 

grid, made up of 20 nodes arranged at a distance of about one metre from each other (Figure 2-18). 
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Table 2.4 Some recommended Schmidt hammer test procedures (from Karaman and Kesimal, 2015) 

Author Test procedure 

ISRM (1978, 2007) Record 20 rebound values from single impacts separated by at least a plunger 

diameter, and average the upper ten values 

ASTM (2001) Record ten rebound values from single impacts separated by at least the diameter of 

the piston, and discard readings differing from the average of ten readings by more 

than seven units and determine the average of the remaining readings 

USBR (1998) Ten readings at various locations on each surface. Discard the five lowest readings, 

and average the highest five 

Sumner and Nel (2002) Take 15 readings at different points and discard five great outliers to obtain a 
mean value from the remaining ten values 
 

Aydin (2009) 20 Rebound values should be recorded from single impacts separated by at least a 

plunger diameter. The test may be stopped when any ten subsequent readings differ 

only by four (corresponding to R repeatability range of ±2) 

Soiltest Inc. (1976) Record 15 rebound values from single impacts and average the highest ten. The 

maximum deviation from the mean should be less than 2.5 

Kazi and Al-Mansour (1980) Record at least 35 rebound readings, drop the ten lowest readings and average the 

remaining 25 

 

Goktan and Ayday (1993) Record 20 rebound values from single impacts separated by at least a 

plunger diameter. Reject outlier values by using Chauvenet's criterion, 

and average the remaining readings. 

Katz et al. (2000) Perform 32–40 individual impacts and average the upper 50 % 

Deere and Miller (1966) Record three readings along the length of an NX-size core for each 45° rotation. 
Average a total of 24 readings, disregarding the erroneous readings 
 

Fowell and McFeath Smith 
(1976) 

Take the mean of the last five values from ten continuous impacts at a point. 

 

 

For each node, 20 SH single impact measures of R were acquired, following the procedure suggested by 

Aydin (2009). Therefore, for each outcrop, about 400 measures of R distributed all over the outcrop were 

acquired and reported in the database. Of course, when the outcrop was too small (4-5 meters), a smaller 

number of nodes were tested, with a minimum of 12 nodes.  

All the testing procedures listed in Table 2.4, reject the low full-scale values. When a rock is weak due to 

its nature or weathering, the SH rebound values may be often lower than 10. Usually, these measures are 

discarded, and this implies a general overestimation of the rock quality. In this work, if a rock mass 

displays local weaknesses and the SH provides low full-scale rebound values, the % of measurements 

R<10 is recorded. The motivation lies in the fact that by registering the number of times for each node 
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in which SH goes to low full-scale, it is possible to identify local weakness zones with a worse mechanical 

behaviour. In doing so, the tendency is to be prudential in determining the hardness of the rock mass. 

 

 

Figure 2-18 An example of testing grid with 20 nodes  

 

2.5.1.2 Normalization of SH rebound values 

Rock surfaces in the field generally have a direction that is not vertical. Rebound values of the SH are 

influenced by the gravitational force if the hammer has a non-horizontal impact direction. In this case, 

rebound values should be normalized using the correction curves provided by the manufacturer. 

Barton and Choubey (1977) proposed a correction chart for the L-type hammer based on data furnished 

by the manufacturer. According to Kolaiti and Papadopoulos (1994) the corrections provided by the SH 

manufacturers were derived empirically for a certain material with a relatively narrow range of mechanical 

properties, and their application was limited to two or four impact directions. A new, more accurate 

normalization method was proposed by Basu and Aydin (2004) where the authors verify its applicability 

to a wider range of rocks. 

The assumption of this method is that the square of the rebound velocity is proportional to the impact 

energy. In the horizontal impact direction, energy released by the key spring is equal to the piston's kinetic 

energy with which it is released onto the plunger: 
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Equation 2-3 

 0.5𝑘𝑥1
2 = 0.5𝑀𝑉1

2 

 

 

Figure 2-19 a. Schmidt hammer impact direction. b. Normalization curves with reference to horizontal direction (Basu and 
Aydin, 2004) 

 

in which k is the key spring constant, x1 the maximum stretch of the spring, M is mass of the piston and 

V1 the velocity of the piston when it touches the plunger. 

Likewise, the piston's kinetic energy at the instant rebound starts must be equal to the energy of the key 

spring stretched by x2 at maximum rebound position: 

 

Equation 2-4 

0.5𝑘𝑥2
2 = 0.5𝑀𝑉2

2 

 

Combining the above equations, we have: 

 

Equation 2-5 

𝑅ℎ =  
𝑥2

𝑥1 ∗ 100
 

 

In Figure 2-19 the normalization curves referred to the horizontal direction are reported. Normalized 

rebound values were used to calculate the average for each node (𝑅𝑛
̅̅̅̅ ), in turn used to calculate site (rock 

mass) statistics (average, standard dev., median, quartiles, interquartile range,).  

 

a b
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2.5.1.3 Discontinuity analysis 

The term discontinuity or joint is used widely in rock engineering to describe any measurable interruption 

of a rock mass. It is often used to the exclusion of  geologically more acceptable terms such as bedding, 

lamination, fault and joint, in  order to  emphasize the importance of  the  existence of  discontinuities in  

controlling the engineering behavior of rock masses, rather than their genesis (Farmer, 1983). 

The frequency, persistence and conditions of discontinuities affect directly the strength and stability of 

rock mass (Hack, 1997). For this reason, the recognition and the recording of major discontinuity sets is 

an important information to collect in the field. The main discontinuities that can be recognized in a rock 

outcrop are layering or schistosity planes, joints and fractures, metric scale shear planes and faults. When 

these structures are recognized in the rock mass under examination, through the use of a compass, the 

orientation, inclination and spacing are measured. 

Joints data are subsequently processed for the calculation of the Jv (Volumetric Joint Count), introduced 

by Palmstrom (1982). The volumetric joint count is an estimate for the number of joints intersecting a 

volume of 1 m3 of rock mass. It is defined as number of joints per m3 and is calculated as follows: 

 

𝐽𝑣 =  
1

𝑆1
+ 

1

𝑆2
… +

1

𝑆𝑛
 

 

where S is the average spacing (m) of discontinuities. 

 

2.5.1.4 Geological Strength Index 

The strength of a jointed rock mass depends on the properties of the intact rock pieces, the freedom of 

these pieces to slide and rotate under different stress conditions and the properties of discontinuities. 

The freedom of pieces is controlled by their geometrical shape as well as the condition of the surfaces 

separating the pieces. Angular rock pieces with clean, rough discontinuity surfaces will result in a much 

stronger rock mass than one which contains rounded particles surrounded by weathered and altered 

material (Hoek, 2000). In order to semi-quantitively classify rock masses the Geological Strength Index 

(GSI) was used, introduced by Hoek (1994),  Hoek et al. (1995) and Hoek and Brown (1997). It provides 

a system for estimating the reduction in rock mass strength for different geological conditions as 

identified by field observations (Figure 2-20). 

The GSI started with a purely qualitative assessment of the rock mass properties  (Hoek, 1994; Hoek and 

Brown, 1997; Marinos and Hoek, 2000) and it was later modified and improved by many authors towards 

a semi-quantitative classification (Marinos and Hoek, 2001; Cai et al., 2004, 2007; Hoek and Brown, 

2019). When working with flysch and heterogenous rock masses, the revised GSI classification (Figure 
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2-21) should be adopted (Marinos, 2019) together with original GSI chart (Figure 2-20). From the GSI 

classification it is possible to obtain an index expressed as a range of values, which is defined by the 

combination of the degree of jointing and/or the composition of the rock mass with the weathering 

grade of the surface of discontinuities. 
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Figure 2-20 Geological Strength Index proposed by Marinos & Hoek (2000) 
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Figure 2-21 The new, revised, geotechnical classification GSI system for tectonically disturbed heterogeneous rock masses, 
such as flysch. 

 

2.5.2 Unit weight determination 

The last phase of rock mass field survey consists on the collection of rock samples for the unit weight 

laboratory determination. In this work, the unit weight is determined using the Hydrostatic Weighing 

method, according to ASTM - D2937. 

The weight of the sample in air is compared to the weight of the sample immersed in a liquid of known 

density (usually water). Generally, the sample is divided in about 10 fragments having mass not less than 

50 g and minimum size not less than 10 times the maximum diameter of the rock grains constituents. 

After weighing the sample in air, it is dried in an oven at 110°, in order to determine the dry unit weight. 

Then, the sample surface is sealed with wax coating and then weighed in water. Each sample is divided 

in 5 small blocks and for each block a series of 5 repeated weigh are performed in order to test 

repeatability of the laboratory testing. 
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2.5.3 Cluster and Outlier Analysis (Anselin Local Moran's Index)  

Local Moran’s Index (LMI) is a local spatial autocorrelation statistics based on the Moran’s Index (Moran, 

1948). It was developed by Anselin (1995) as a local indicator of spatial association. The Local Moran’s I 

for each observation gives an indication of the extent of significant spatial clustering of similar values 

around that observation; the sum of LMI for all observations is proportional to a global indicator of 

spatial association (Global Moran’s Index). The Local Moran's Index estimates the similarity in x  (the 

variable to be spatialized) between observation i and observations j in the neighbourhood of i defined by 

a matrix of weights wij. The statistics, provided by Anselin (1995), is calculated as: 

 

Equation 2-6 

𝐼𝑖 = [
𝑧𝑖

(
∑ 𝑧𝑖

2
𝑖
𝑛

)

] ∑ 𝑤𝑖𝑗 × 𝑧𝑗𝑗     

 

Where 𝑧𝑖 =  𝑥𝑖 − 𝑥̅ 

 

In essence, Equation 2-6 standardizes value x for observation i to determine if it is high or low relative to 

the mean, and standardizes values of x for j to determine if the neighbourhood is high or low relative to 

the mean. The standardization operates in a similar manner as a statistical z-score that compares 

observations to the mean in order to determine the observations’ relative position within a distribution. 

In the absence of such standardization, the resulting Moran’s I values would be disproportionately 

influenced by extreme values of severity. Multiplying the standardized value x for observation i and the 

neighbourhood j produces a scalar Moran’s I value (Bone et al., 2013). A positive value for I indicates 

that a feature has neighbouring features with similarly high or low attribute values; this feature is part of 

a cluster. A negative value for I indicates that a feature has neighbouring features with dissimilar values; 

this feature is an outlier.  The output of the computation consists of four categories representing the 

relationship between each point and its neighbours: Low/Low, High/Low, Low/High, and High/High. 

The clusters are two, Low/Low and High/High, while High/Low and Low/High are the outliers. Note 

that not all Moran’s I values are significant: a test of significance is computed for each point to determine 

if the spatial relationship is significant given a specified level of confidence, e.g. in the function 

implemented in ArcGIS®, statistical significance is set at the 95 percent confidence level (Mitchell, 2005).  

The output of this tool is a new output feature class with the following attributes for each feature in the 

input feature class: local Moran's I index, z-score, p-value, and the COType (cluster/outlier type) (ESRI, 

2013).   
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In respect to bedrock properties, SD properties are often linked with morphometry (Florinsky et al., 

2002; Guimaraes et al., 2003; Seibert et al., 2007; Zhang et al., 2012). Nevertheless, bedrock properties 

are not spatially constant, therefore it is useful to conduct an objective spatial analysis in order to verify 

large regions with different bedrock properties.  

The Anselin Local Moran's clustering method allows to spatially verify if each bedrock property display 

a dispersed or a clustered pattern. In order to attribute spatially distributed geotechnical parameters, if a 

variable does not show a spatial autocorrelation, this should be excluded from multivariate cluster analysis 

(described in paragraph 2.5.4) as it is irrelevant. On the contrary, if the variables give a positive outcome 

to spatial autocorrelation, these must be taken into account for multivariate analysis. If two or more 

variables show an almost identical clustering in multivariate analysis, it would be necessary to exclude 

them and keep only one. Finally, if no variable shows clustering, the geotechnical parameters can be the 

same for the whole survey area.  

 

2.5.4 Multi-variate cluster analysis   

The multi-variate spatial cluster analysis can be performed using the Grouping Analysis tool implemented 

in ESRI ArcGIS™, which groups features based on feature attributes and spatial constraints.  

The theory of minimum spanning tree (Boruvka, 1926; Kruskal, 1956; Prim, 1957) is used in order to 

split the dataset into clusters. A minimum spanning tree can be defined as a subset of edges connecting 

vertices of a connectivity graph, in which the sum of the weights of the edges is the minimum possible. 

Given a set of points in space, each vertex (v) is connected to the nearest vertices by edges (l), each edge 

has a weight (or cost) which depends on how much the attribute of each vertex is dissimilar from the 

adjacent one. The cost d(i,j) between the edges i and j is the square of the Euclidean distance between the 

attribute vectors xi and xj (Assunção et al., 2006): 

 

Equation 2-7 

𝑑(𝑖, 𝑗) =  ∑(𝑥𝑖𝑙 − 𝑥𝑗𝑙)
2

𝑛

𝑙=1

 

 

A minimum spanning tree (MST) is the resulting connectivity graph of the edges with minimum cost, 

where the cost is measured as the sum of the dissimilarities over all the edges of the tree. In order to 

obtain clusters, the MST must be split removing the edges with the maximum cost.  

The ArcGIS™ tool Grouping Analysis is implemented in this way: suppose you want to split a dataset 

into four spatially contiguous groups. The tool will create a minimum spanning tree reflecting both the 

spatial structure of features and their associated analysis field values. The tool then determines the best 

place to cut the tree to create two separate groupings. Next, it decides which one of the two resultant 

https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/how-grouping-analysis-works.htm#ESRI_SECTION1_0DDB93A2A36148A29E3CA2D19B3C6C64
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groups should be divided to yield the best three group solution. One of the two groups will be divided, 

the other group remains intact. Finally, it determines which of the resultant three groupings should be 

divided in order to provide the best four group solutions. For each step, the best solution is the one that 

maximizes both within-group similarity and between-group difference (ESRI, 2016). In order to 

constrain spatial relationships among features in the groups created, the Grouping Analysis tool allow to 

specify a spatial constrain. In this thesis the K nearest neighbours spatial constrain was used. The 

published method employed in Grouping Analysis  is called SKATER (Spatial "K"luster Analysis by Tree 

Edge Removal), proposed by Assunção et alii (2006). 

The grouping effectiveness is measured using the Calinski-Harabasz pseudo F-statistic (Caliński and 

Harabasz, 1974), which is a ratio reflecting within-group similarity and between-group difference: 

 

 Equation 2-8 

(
𝑅2

𝑛𝑐 − 1
)

(
1 − 𝑅2

𝑛 − 𝑛𝑐
)
 

Where  

𝑅2 =
𝑆𝑆𝑇 − 𝑆𝑆𝐸

𝑆𝑆𝑇
 

 

The SST represents between-group differences while SSE within group similarity, and these are 

respectively expressed as: 

 

Equation 2-9 

𝑆𝑆𝑇 =  ∑ ∑ ∑(𝑉𝑥𝑦
𝑘 − 𝑉̅𝑘)

2

𝑛𝑣

𝑘=1

𝑛𝑥

𝑦=1

𝑛𝑐

𝑥=1

 

 

𝑆𝑆𝐸 =  ∑ ∑ ∑(𝑉𝑥𝑦
𝑘 − 𝑉̅𝑡

𝑘)
2

𝑛𝑣

𝑘=1

𝑛𝑥

𝑦=1

𝑛𝑐

𝑥=1

 

 

Where 

n the number of features 

nx the number of features in group x 

nc the number of classes (groups) 

nv the number of variables used to group features 

Vxy
k the value of the kth variable of the yth feature in the xth group 



66 
 

Vk the mean value of the kth variable 

Vk
t the mean value of the kth variable in group x 

 

The output of the Grouping Analysis tool is a new output feature class containing the fields used in the 

analysis plus a new Integer field named SS_GROUP identifying which group each feature belongs to 

(ESRI, 2016). A report file can be generated, in which statistical properties of clusters are described.  

Using as input data the variables showing a uni-variate spatial clustering, this tool allows to identify groups 

of investigation sites with similar geo-mechanical features (e.g. SH rebound value, GSI and Jv). In other 

words, each cluster represents a domain, namely a Bedrock Geo-mechanical Unit (GMU), to which a set 

of geotechnical parameters (friction angle and cohesion) will be assigned (Figure 2-22).  

 

Figure 2-22 A visualization of ESRI’s Grouping Analysis Tool (ESRI ArcGIS documentation). The letter “v” stands for 
variable. 

 

2.5.5 Determination of Uniaxial Compressive Strength  

Since the 1960s, various authors have tried to use SH to quickly, easily and economically estimate the 

uniaxial compressive strength (UCS) of rock masses, for different purposes (Deere and Miller, 1966; 

Aufmuth, 1973; Beverly et al., 1979; Haramy and DeMarco, 1985; Katz et al., 2000; Karaman et al., 2002; 

Yaşar and Erdoǧan, 2004; Aydin and Basu, 2005; Fener et al., 2005; Shalabi et al., 2007; Kılıç and Teymen, 

2008; Yilmaz, 2009a; Aydin, 2009; Moomivand, 2011; Mishra and Basu, 2013; Karaman and Kesimal, 

2015; Armaghani et al., 2016; Hebib et al., 2017; Kong and Shang, 2018; Wang and Wan, 2019a). These 

studies have correlated the rebound value with the UCS measured by laboratory tests on rock samples.. 

Multi-variate

cluster

Analysis

(v1; v2;…vn)
GMU1

GMU2

GMU3
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The great advantage of using the SH to calculate the UCS of a rock mass is due to its easy and rapid 

execution, and if measurements follow an acquisition scheme as described in the previous chapter, the 

UCS statistics may describe the outcrop as a whole. 

In fact, laboratory tests give accurate and acceptable results of the uniaxial compressive strength but are 

sample-specific estimations for rock mass assessments. A rock mass is inhomogeneous and uniaxial 

compressive strength of rock can vary at meter-scale (Moomivand, 2011): parameters such as mineral 

composition, rock compaction, weathering, and tectonic are likely to have a major influence on the results 

(Aydin, 2009; Hebib et al., 2017). Therefore, the measured uniaxial compressive strength of limited 

number of specimens tested in the laboratory can´t describe the variability of UCS for all parts of in-situ 

rock mass. The SH rebound test is a useful method of estimating the variability of rock mass strength 

particularly in situations where large numbers of laboratory tests would be necessary. 

In Table 2.5, a few R-UCS correlations from the literature are presented. This table includes the works 

where the L-type Schmidt's hammer was used and the test was performed on various rock types or, for 

the same lithology, different degrees of weathering. For other correlations, please consult Aydin and Basu 

(2005), Karaman and Kesimal (2015) and Wang and Wan (2019), and references therein. 

The relationships are expressed by power, exponential or linear functions. In a number of these functions, 

rebound value (the main independent variable) is multiplied with dry density (introduced as a second 

variable) in an effort to improve the correlations. For example, in Figure 2-23, using the correlation 

proposed by Deere and Miller (1966), three synthetic exponential curves are calculated varying the dry 

unit weight value. It is worth to note that unit weight influences the obtained value of UCS, increasing 

SH rebound value, increase UCS variability for different unit weight.  

All the proposed correlation listed in Table 2.5 are experimentally determined, except for the last one, 

proposed by Wang and Wan (2019), where the authors collect laboratory data from 18 references and 

apply a regression analysis in order to obtain the best fit curve. In Figure 2-24 the proposed correlation 

listed in Table 2.5 are plotted.  
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Table 2.5 Relations of rebound value with uniaxial compressive strength. UCS (uniaxial compressive strength, MPa); γ (Unit 
weight, gr/cm3). Hammer inclination: V, vertical; H, horizontal. When the data is not specified, n.s. is written. 

References Tested 

rocks 

Hammer 

inclination 

Proposed correlations  

r / R2 

Validity range 

UCS  R 

Deere and 

Miller (1966) 

28 V 𝑈𝐶𝑆 = 9.97 ∗  𝑒(0.02∗𝑅∗𝛾) 0.94 22-358 23-59 

Aufmuth (1973) 25 n.s. 𝑈𝐶𝑆 = 0.33 ∗ (𝑅 ∗ 𝛾)1.35 0.80 12-362 10-54 

Beverly et al. 

(1979) 

20 n.s. 𝑈𝐶𝑆 = 12.74 ∗ 𝑒(0.02∗𝑅∗𝛾) n.s. 38-218 n.s. 

Aydin and Basu 

(2005) 

Granites H 𝑈𝐶𝑆 = 1.45 ∗ 𝑒(0.07∗𝑅) 0.92 6-196 20-65 

Torabi et al. 

(2011) 

Sedimentary V 𝑈𝐶𝑆 = 0.046𝑅2 − 0.175𝑅 + 27.7  0.86 25-224 16-67 

Moomivand 

(2011) 

104 n.s. 𝑈𝐶𝑆 = 11.324 ∗ 𝑒(0.0175∗𝑅∗𝛾) 0.92 25-370 n.s. 

Mishra and 

Basu (2013) 

Schists, 

sandstones, 

granites 

V 𝑈𝐶𝑆 = 2.38 ∗ 𝑒0.065∗𝑅 0.87 20-180 25-65 

Karaman and 

Kesimal (2015) 

47 V 𝑈𝐶𝑆 = 0.138 ∗ 𝑅1.743 0.91 8-215 10-64 

Selçuk and 

Yabalak (2015) 

11 V 𝑈𝐶𝑆 = 0.007 ∗ 𝑅2.443 0.92 5-120 10-43 

Hebib et al. 

(2017) 

19 

sedimentary 

n.s. 𝑈𝐶𝑆 = 3.98 ∗ 𝑒0.023∗𝑅∗𝛾 0.87 5-140 15-60 

Wang and Wan 

(2019) 

18 references - 𝑈𝐶𝑆 = (
6222

88.15 − 𝑅
) − 70.38 

0.6 n.s. n.s. 
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Figure 2-23 Rebound value and UCS correlation varying the dry unit weight, according to Deere And Miller (1966) 
correlation. 

 

 

Figure 2-24 Bibliographic correlation curves for UCS prediction from rebound value. 
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In this work, the correlation proposed by Deere and Miller (1966) have been used to calculate the UCS, 

using the 𝑅𝑣̅̅̅̅  value, obtained averaging 400 measures and site-specific dry unit weight. 

 

2.5.6 Estimation of shear strength of a rock mass  

A widely used criterion to estimate rock mass strength is the non-linear Generalized Hoek–Brown (GHB) 

failure criterion (Hoek et al., 2002) since it is able to estimate the shear strength of various types of intact 

rock and rock masses (Priest, 2005). If the GHB criterion is used in conjunction with limit equilibrium 

method for analyzing the slope stability, methods are required to determine the equivalent MC shear 

strength parameters cohesion and angle of friction at the specified normal stress n from the GHB 

criterion (Shen et al., 2012).  

The original non-linear- Hoek—Brown criterion (Hoek & Brown, 1980) has been widely used for rock 

engineering for the past three decades, and it was renewed by Hoek et alii (2002), as: 

 

Equation 2-10 

1 =  3 +  𝑐𝑖(
𝑚𝑏3

𝑐𝑖
+ 𝑠)𝑎 

 

where 1 and 3 are the major and minor principal stresses, ci is the uniaxial compressive strength of the 

intact rock mass and mb, s and a are the Hoek–Brown input parameters which can be estimated from the 

GSI for the rock mass, given by: 

 

Equation 2-11 

𝑚𝑏 =  𝑚𝑖𝑒
𝐺𝑆𝐼−100
28−14𝐷  

 
Equation 2-12 

𝑠 =  𝑒
𝐺𝑆𝐼−100

9−3𝐷  

 

Equation 2-13 

𝑎 = 0.5 +
𝑒

−𝐺𝑆𝐼
15 − 𝑒

−20
3

6
 

in which mi is the Hoek–Brown constant for intact rock mass (Figure 2-25), D is the disturbance factor 

(Figure 2-26). In Figure 2-27 and Figure 2-28 the relationships between GSI, mb, a and s are reported. 
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Figure 2-25 Values of the constant mi for intact rock, by rock group. (from Marinos and Hoek 2001) 
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Figure 2-26 Guidelines for estimating disturbance factor D due to stress relaxation and blasting damage. (from Hoek and 
Brown 2019) 
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Figure 2-27 Relationship between GSI and mb for different mi values. (from Cai et al. 2007) 

 

 

Figure 2-28 Relationship between GSI, a and s. (from Cai et al. 2007) 

 

 

The GHB criterion (Equation 2-10) can also be expressed in terms of normal stress n and shear stress 

 on the failure plane. Figure 2-29 gives a graphical representation of the HB criterion expressed by (a) 

major and minor principal stresses and (b) normal and shear stresses. The equivalent MC shear strength 

parameters can be calculated by locating the tangent of the HB envelope with the specified normal stress 

n, as illustrated in Figure 2-29b. The MC criterion is expressed by the equation: 

 

Equation 2-14 

 = 𝑐′ +   tan ′
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Figure 2-29 a. Major and minor principal stresses for the HB criterion. b. normal and shear stresses for the HB criterion 

 

The Mohr-Coulomb shear strength , for a given normal stress  , is found by substitution of these 

values of c’ and ’ into the equation (Hoek and Brown, 1997):  

 

Equation 2-15 

1
′ =  

2𝑐′ cos ′

1 − sin ′ +  
1 + sin ′

1 − sin ′ 3
′  

 

According to the description above, friction angle and cohesion are calculated as follows: 

 

Equation 2-16 

′  =  sin−1 [
6𝑎𝑚𝑏(𝑠 + 𝑚𝑏3𝑛

′ )𝑎−1

2(1 + 𝑎)(2 + 𝑎) +  6𝑎𝑚𝑏(𝑠 + 𝑚𝑏3𝑛
′ )𝑎−1

] 

 

Equation 2-17 

𝑐′ =  
𝑐𝑖[(1 + 2𝑎)𝑠 + (1 − 𝑎)𝑚𝑏3𝑛

′ ](𝑠 + 𝑚𝑏3𝑛
′ )𝑎−1

(1 + 𝑎)(2 + 𝑎)√1 + (6𝑎𝑚𝑏(𝑠 + 𝑚𝑏3𝑛
′ )𝑎−1/(1 + 𝑎)(2 + 𝑎)

 

Where ’
3n = ’

3max / ci , and: 

 

Equation 2-18 

𝑐𝑚
′ =  𝑐𝑖

[𝑚𝑏 + 4𝑠 − 𝑎(𝑚𝑏 − 8𝑠)] ∗ [
𝑚𝑏

4 + 𝑠]𝑎−1

2(1 + 𝑎)(2 + 𝑎)
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Equation 2-19 

3𝑚𝑎𝑥
′

𝑐𝑚
′

= 0.72 (
𝑐𝑚

′

𝛾𝐻
)

−0.91

 

 

 

Cai et al. (2007) discussed about the calculation of equivalent residual strength parameters. Guidelines 

given by the GSI system are for the estimation of the peak strength of jointed rock masses. In general, 

rock masses, except when highly disturbed, exhibit strain-softening post-peak behaviour, the gradual loss 

of load-bearing capacity of a material, so that the residual strength parameters are lower than the peak 

parameters. The authors proposed a method to extend the GSI system for the estimation of a rock mass’s 

residual strength. It is proposed to adjust the peak GSI to the residual GSIr value based on the two major 

controlling factors in the GSI system, the residual block volume Vr
b and the residual joint condition factor 

Jr
c, comparing and validating the results with in-situ block shear test data from three large-scale cavern 

construction sites and data from a back-analysis of rock slopes. The results obtained by Cai et al. (2007) 

shows that the estimated residual strengths, calculated using the reduced residual GSIr value, are in good 

agreement with field test or back-analyzed data.  

The relation between peak GSI and residual GSI used to calculated residual strength parameters is then 

provided: 

 

Equation 2-20 

𝐺𝑆𝐼𝑟 = 𝐺𝑆𝐼𝑒−0.0134𝐺𝑆𝐼 

 

 

In this work, the equations reported above were implemented in a MATLAB™ code, also enabling to 

perform a Monte Carlo simulation of the input parameters, such as, GSI, mi, D and ci.  
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2.5.7 Bedrock Geo-mechanical Units Map 

A Bedrock Geo-Mechanical Units (BMU) is a portion of the study area where the semi-quantitative data 

acquired in the field (Rv, GSI and Jv) have similar values of average and standard deviation, and therefore 

a range of Mohr-Coulomb equivalent parameters, which are significantly different to other BMU. 

The BMUs are defined taking into account the result of the multivariate clustering and the expert analysis 

of the geological map. In practice, the clusters of observation sites are delineated following morphological 

characteristics, such as the drainage network and basins watersheds, tectonic feature such as faults and 

thrusts, and lithological characters. 

Few works in the literature perform the regional spatialization of geo-mechanical characteristics of rock 

masses by using geostatistical methods (Ferrari, 2013; Ferrari et al., 2014; Kaewkongkaew et al., 2015; 

Pinheiro et al., 2016; Mammoliti, 2020). However, these methods ignore the major regional structures 

due to tectonic activity, past and recent, and assume that there is a gradual transition to different 

conditions.  

The structure of the attribute table of the Bedrock Geo-mechanical Units Map implemented in this work 

is quite similar to the EGU map presented in Table 2.3. In this case, the fields consist on: the id code of 

the GMU, the range of friction angle and the effective cohesion. 
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2.6 SHALLOW LANDSLIDES SUSCEPTIBILITY MODELS 

Assessing shallow landslide susceptibility by using data driven or physically based methods may provide 

different results due to the conceptually different approaches they are based on. The former is sustained 

by the assumption that landslides tend to occur more likely in locations with predisposing factors similar 

to those of areas where landslides occurred in the past, whereas the latter are based on the balancing 

between destabilizing forces and soil/rock strengths. In the literature, comparing between different 

methods to assess landslide susceptibility is not a new research topic when performed exclusively between 

either different data-driven (Yilmaz, 2009b; Akgun, 2012; Francipane et al., 2014; Regmi et al., 2014; 

Goetz et al., 2015; Pham et al., 2016; Zêzere et al., 2017) or different physically based methods (Zizioli 

et al., 2013; Teixeira et al., 2015; Formetta et al., 2016; Pradhan and Kim, 2016). Regarding the 

comparison between the predictive capability of  data driven and physically based methods, less works 

exist (Carrara et al., 2008; Frattini et al., 2008; Cervi et al., 2010; Goetz et al., 2011). Some authors have 

combined the results obtained by data driven and physically based approaches obtaining interesting 

results (Chang and Chiang, 2009; Goetz et al., 2011; Oliveira et al., 2016). For this reasons, this thesis 

compares and combines the susceptibility maps obtained by using a data driven and a physically based 

method also introducing new insights about the relevance of bedrock geo-mechanical characterization, 

slope deposits depth and geotechnical characterization, and the evaluation of their uncertainty and natural 

variability by means of Monte Carlo simulation. 

In this paragraph the theory behind landslide susceptibility models adopted in this thesis is provided. 

 

2.6.1  SHALSTAB and PROBSS 

The SHALSTAB model (Montgomery and Dietrich, 1994) is based on coupling a hydrological model to 

a limit-equilibrium slope stability model to calculate the critical steady-state rainfall necessary to trigger 

slope instability at any point in a landscape (Montgomery et al., 1998). The hydrological model consists 

on the analysis of upslope contributing area (flow accumulation), soil transmissivity and local slope 

(O’Loughlin, 1986), and is based on the assumption that water infiltrate still reaching a low conductivity 

layer following topographically determined flow paths. Local wetness (W) is calculated as following: 

 

Equation 2-21 

𝑊 =
𝑄𝑎

bTsin 𝜃 
 

 

Where Q is the steady-state rainfall (m/day), a is the contributing area (m2), b is the cell size (m), T is the 

SD transmissivity (m2/day) and θ is the slope steepness (degrees). If the saturated conductivity is constant 

with depth, the previous equation is simplified as: 
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Equation 2-22 

𝑊 =  
ℎ

𝑧
 

Combining Equation 2-21 and Equation 2-22: 

 

Equation 2-23 

ℎ

𝑧
=

𝑄𝑎

bTsin 𝜃 
 

Where h is the saturated thickness of SD layer and z is SD depth.  

The infinite slope stability model adopted by the authors do not consider arching and lateral root 

reinforcement, for this reason the slope failure is expressed by the following limit equilibrium equation 

(Skempton and Delory, 1984): 

 

Equation 2-24 

𝜌𝑠𝑔𝑧 sin 𝜃 cos 𝜃 = 𝐶′ +  [𝜌𝑠 −  (
ℎ

𝑧
) 𝜌𝑤] 𝑔𝑧 cos2 𝜃 tan 𝜑 

 

Where 

𝜌𝑠 is the bulk density of slope deposit 

g  is gravitational acceleration 

z is soil depth 

C’ is effective cohesion 

𝜌𝑤 is water bulk density 

𝜑 is the friction angle 

 

Combining Equation 2-23 and Equation 2-24, and rearranging in order to obtain the critical steady-state 

rainfall (Qc) needed to trigger slope failure, the SHALSTAB model equation results to be: 

 

Equation 2-25 

𝑄𝑐 =  
𝑇 sin 𝜃

𝑎
𝑏⁄

[
𝐶′

𝜌𝑤𝑔𝑧 cos2 𝜃 tan 𝜑
+

𝜌𝑠

𝜌𝑤
(1 −

tan 𝜃

tan 𝜑
)] 

The SHALSTAB model provides other two scenarios, the Unconditional Stability (Unconditionally 

Stable, US) and the Unconditional Instability (Unconditionally Unstable, UU). A slope is considered as 

US when they are stable even when W = 1, this occur when the slope deposit layer reaches saturation 

and water in excess develops run-off as overland flow. This scenario is described as: 
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Unconditionally Stable disequation 1 

tan 𝜃 <  
𝐶′

𝜌𝑠𝑔𝑧 cos2 𝜃
+ (1 −  

𝜌𝑤

𝜌𝑠
) tan 𝜑 

 

Instead, the UU scenario is a slope which is predicted to be unstable even without rainfall (W = 0). These  

areas are probably rock outcrops, because the slope steepness is too high to allow sediment accumulation 

(Montgomery et al., 1998). For this reason, a detailed and accurate slope deposit depth map is an 

important tool to obtain reliable results by the SHALSTAB model. The UU is expressed as: 

  

Unconditionally Unstable disequation 2 

 

tan 𝜃 ≥  
𝐶′

𝜌𝑠𝑔𝑧 cos2 𝜃
+ tan 𝜑 

 

In this thesis the output susceptibility value is calculated pixel-by-pixel as the logarithm of the ratio 

between Qc and T (transmissivity, m/day), as suggested by Montgomery et alii (1998). Moreover, in pixels 

with the Qc or log Qc/T is lower, these areas are interpreted as more susceptible to shallow landsliding. 

Conversely, where Qc or log Qc/T is higher, those areas are interpreted as more stable, as a less frequent 

rainfall event would be required to cause instability (Montgomery and Dietrich, 1994). In order to 

represent the effects of the natural variability and uncertainty of geotechnical parameters (𝜌𝑠, C’ and φ) 

as well as slope deposits depth (z), and US and UU disequations were implemented in MATLAB™ by 

means a Monte-Carlo simulation (Binder et al., 1993). For each pixeli, for a large number n of iterations 

(ex., n=10,000), sets of parameters are randomly selected from ranges of values defined according to 

lithology, morphometric unit, field observations and laboratory analyses. As a first step, for the pixeli the 

code verifies if either the US or UU inequalities are satisfied. When the sets of parameters satisfy either 

the US or UU more than 99% of the iterations, the pixeli is classified as US or UU, respectively. On the 

contrary, when the same inequalities are satisfied less than the above-mentioned threshold, stability is 

assumed to depend on the rainfall intensity Q because a critical value Qc may be found causing to get 

the limit equilibrium. Hence, the pixeli is classified as “Qc-dependent” and n values of the indicator of 

shallow landslide susceptibility (log Qc/T) are iteratively calculated. Then, the statistical distribution of 

this indicator is obtained for the dataset of the Qc-dependent pixels. Finally, the analysis of these 

distributions allows to choose a fixed quantile (median) in order represent the spatial distribution of 

shallow landslide susceptibility. In order to distinguish the original SHALSTAB model with the 

probabilistic implementation proposed in this thesis, from now on we will refer to PROBSS. 
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2.6.2 Information Value 

The Information Value (IV, Yin and Yan 1988) is a bivariate statistical method which is based on the 

assumption that future landslides tend to occur in sites with similar predisposing factors where past and 

present landslides were already occurred. For this reason, a detailed, accurate and complete landslide 

inventory is the most important input, which affects directly the model accuracy (Corominas et al., 2014). 

Practically, the IV method consists on assigning to each class variable a weigh (IV i) depending on the 

landslide density, it is expressed as: 

 

Equation 2-26 

𝐼𝑉𝑖 =  ln (

𝑆𝑖
𝑁𝑖

⁄

𝑆
𝑁⁄

) 

where 

 

Si: the number of pixels with landslides and the presence of variable Xi 

Ni: the number of pixels with variable Xi 

S: the total number of pixels with landslides  

N: the total number of pixels 

S/N is the a priori probability. It is the probability for each pixel to have a landslide without considering 

predisposing factors. 

Si/Ni is the conditional probability. It is the probability to have a landslide given the presence of variable 

Xi. 

 

Negative IVi means that the presence of the variable is favourable to slope stability. Positive IVi indicates 

a relevant relationship between the presence of the variable and landslide distribution; the higher the 

score, the stronger the relationship (Yin and Yan, 1988). IVi equal zero means no clear relationship 

between variable and landslide occurrence. In this thesis, the classes of each variable not containing any 

landslide have a conditioned probability equal to lower IVi in the respective class.  

The susceptibility map is then obtained by the sum of the IV i of each variable present in each pixel: 

 

Equation 2-27 

𝐼𝑉𝑗 =  ∑ 𝑋𝑗𝑖𝐼𝑉𝑖

𝑚

𝑖=1

 

where m is the number of variables and X ji is either 0 if the variable is not present in the pixel j, or 1 if 

the variable is present. 
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2.7 ACCURACY ASSESSMENT METHODS 

The landslide inventory accuracy assessment was made using a binary classification test.  Given a classifier 

and an instance, there are four possible outcomes. If the instance is positive and it is classified as positive, 

it is counted as a true positive; if it is classified as negative, it is counted as a false negative. If the instance 

is negative and it is classified as negative, it is counted as a true negative; if it is classified as positive, it is 

counted as a false positive. Given a classifier and a set of instances (the test set), a two-by-two confusion 

matrix (also called a contingency table, Figure 2-30) can be constructed representing the dispositions of the 

set of instances (Fawcett, 2006).  

 

 

Figure 2-30 Confusion matrix of binary classification (modified from Fawcett 2006) 

 

In the context of visual interpretation of orthophoto maps, the binary classification test is executed for 

polygons (instances) classified as shallow landslides or not, which are subsequently verified by field work, 

allowing to evaluate the proportion classified polygons. Therefore, the binary classification of the 

confusion matrix consists on: 

▪ True positives (TP): polygons classified as landslides effectively corresponding to landslides in 

the field; 

▪ True negatives (TN): polygons identifying features similar to landslides but classified as no 

landslide areas effectively corresponding to stable areas in the field; 

▪ False positives (FP): polygons classified as landslides but actually corresponding to stable areas in 

the field;  
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▪ False negatives (FN): can be undetected/unclassified landslides, as well as polygons classified as 

stable areas but actually corresponding to landslides in the field.  

 

Sensitivity, specificity, precision and accuracy are statistical measures of the classification performance, 

defined as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑇𝑃𝑅) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑜𝑟 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑇𝑁𝑅) =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑟 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑃𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Also the accuracy of the SD depth map is evaluated. To this aim, the SD depth sites observations were 

randomly split in training dataset (70%) and test dataset (30%). The accuracy assessment of the SD depth 

maps is calculated for both the training and test dataset and is expressed in terms of success rate for 

different steps of SD depth error. In other words, the frequency percentage of well classified observations 

sites (success rate) is calculated. Then, the success rate is calculated assuming an incorrect classification 

of one class step, then two and so on. Since in this thesis the depth of the SD is divided into classes with 

constant amplitude, it is possible to evaluate what is the maximum error of depth (cm) between the 

predicted and the measured.  

The predictive capacity of susceptibility models was evaluated and compared by using the receiver-

operating characteristic (ROC) plot, introduced by Hanley and McNeil (1982). In the ROC plot, the 

sensitivity (true positive rate, TPR) of the model is plotted against 1-specificity (true negatives rate, TNR): 

sensitivity is the number of correctly predicted landslide cells (True Positives) over the total number of 

predicted landslide cells (True Positives + False Negatives), whereas the specificity is the number of 

correctly predicted non-landslides cells (TN, True Negatives) over the total number of predicted non-

landslides cells (False Positives + True Negatives). The area-under-ROC (AUROC) is used to assess the 

global accuracy statistics of the model. The value of AUROC varies between 0.5 (no improvement over 

random assignment, represented by the diagonal straight line) and 1 (perfect discrimination). For each 

landslide, if it consists of more than one cell, the cell with the highest susceptibility value was selected to 

calculate the accuracy. Thus, a landslide consisting of both stable and unstable cells is considered unstable, 

since it is sufficient that there is one unstable cell to consider the area unstable. Non-predicted landslides 

are polygons consisting only of unstable cells. 
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3 STUDY AREA 
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Northern Tuscany is characterized by high landslide susceptibility due to geological, geomorphological 

and climatic characteristics. This is one of the rainiest areas in the whole country due to the proximity of 

Ligurian sea to the Northern Apennines ridges and, in the period 2008-2014, 45 intense rainfall events 

were recorded (Lavorini et al., 2015). According to the authors, the concept of intense rainfall events is 

strictly related with return period and therefore, is site specific. Nevertheless, in the study area were 

classified as intense rainfall event a daily cumulative precipitation above 50 mm/day. In Figure 3-5 some 

of the most severe rainfall events occurred in the study area in the period 2010-2016 are reported. 

The Serchio river valley, the main basin in Northern Tuscany (1565 km2), was affected by intense rainfall 

events triggering shallow landslides and causing victims in 2009, 2010 and 2014 (Giannecchini et al., 2012; 

Giordan et al., 2017). In this thesis, an area of 242 km2 including several Serchio sub-basins has been 

selected in order to apply the methodology described in the previous chapter and to perform slope 

stability analysis. 

 

3.1 DATA AVAILABLE FROM THE LITERATURE 

In Table 3.1 data available from the literature are listed. Geological information, the digital elevation model 

and orthophotomaps  are data that Tuscany Regional Authority makes available for free to the public 

through the online portal “Geoscopio” (https://www.regione.toscana.it/-/geoscopio). 

In order to collect homogeneous and detailed data from field observations, Microsoft Access Databases 

were developed by Geomatica Lab of Department of Environmental, Physical and Earth Science, 

University of Siena.  

 
Table 3.1. Available data in the literature 

Name Description Data type Source Resolution / 

scale 

Continuum 

Geologico della 

Regione Toscana 

Geologic database of Tuscany 

region.  

Vector data. Esri 

Shapefile 

http://www502.regione.toscana.it/

geoscopio/geologia.html 

1:10000 scale 

DEM Digital elevation model.  Raster float http://www502.regione.toscana.it/

wmsraster/com.rt.wms.RTmap/w

ms?map=wmsmorfologia&map_re

solution=91& 

Cell size: 10x10 

meters 

Orthophoto maps Aerial orthorectified images  Raster  http://www502.regione.toscana.it/

geoscopio/ortofoto.html 

Cell size: from 

0.2 to 1 m 

Slope deposits 

Database 

Database used to slope deposits 

field observations 

Microsoft Access 

Database 

Lab. Geomatica, DSFTA UNISI  

Bedrock Database Database used to bedrock field 

observations 

Microsoft Access 

Database 

Lab. Geomatica, DSFTA UNISI  

 

https://www.regione.toscana.it/-/geoscopio
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The aerial images used to detect landslides cover a period from 2000 to 2016: images acquired in 2000 

and 2005 are panchromatic (pixel size 1 m), while 2007, 2009, 2010 and 2013 are multispectral visible - 

near infrared (pixel size 0.5 m) images. The 2016 multispectral visible - near infrared images have instead 

a higher resolution (pixel size 0.2 m). 

3.2 GEOGRAPHIC OUTLINE 

The study area of this thesis is located in Northern Tuscany, Central Italy. The area is included in the 

upper part of the Serchio Valley, known also as Garfagnana valley, an intermountain basin which 

develops with a NW-SE orientation and parallel to the Northern Apennines main ridges. Serchio river 

hydrographic basin extends for 1565 km2, while the area investigated in this thesis is composed by 5 sub-

basins covering an extension of 242 km2. From North to the South the sub-basin included are: Corfino, 

Castiglione, Sillico, Ceserano and Tùrrite Secca.  

 

 

Figure 3-1 Geographical outline of the study area. The red line is the border of the study area. Light blue lines are the stream 
network. Dark blue dashed lines are watersheds. Grey-black line is the Tuscany-Emilia-Romagna border. 

 

This area was chosen due to the wide variability from morphological and geological point of view. In 

fact, this valley is located between two main ridges, the Apuan Alps in the south western part, and the 

Northern Apennines in the North East. These two mountain ranges have a very different morphology, 

mainly because their different lithology and tectonic evolution (see paragraph 3.3 for more details).  

m a.s.l. 
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The elevation ranges from 165 m a.s.l. of the valley bottom, close to the town of Gallicano, to the 1985 

m a.s.l. of Monte Vecchio, located in the northern end of the area. To the SW, Apuan Alps ridges reach 

an altitude of more than 1700 m a.s.l..   

The average slope steepness is 27 degrees but is slightly different if considering separately the 

hydrographic left and right of Serchio basin, displaying an average of 25 and 28 degrees respectively. The 

low slope steepness (<15°) in the bottom of the valley is due to the widespread outcrop of continental 

Villafranchian deposits and terraced alluvial deposits, whose low resistance to erosion led to the 

formation of a sub-flat morphology interrupted by fluvial scarps of 25-45° of steepness. In the high 

altitude area, the steepness is usually higher than 35°, often reaching more than 70 degrees in slopes 

where carbonate rocks crop out. The Figure 3-2 describes the distribution of land use in the study area, 

which is dominated by the presence of woods.  

 

 

Figure 3-2 Pie chart of land use distribution (data from Corine Land Cover, 2006) 

 

Due to the relative proximity to the Ligurian Sea (around 30 km) and Apuan Alps and Apennines ridge, 

the area displays a wide variety of climate (Beck et al., 2018) and a high amount of rainfall (Maracchi et 

al., 2005). In Figure 3-3a is presented a new Köppen-Geiger climate classification map (Beck et al., 2018) 

with a resolution of 1 km2 which highlights that in the study area the climate ranges from Mediterranean 

(Csa and Csb) to Oceanic (Cfb) and Continental Humid or Cold (Dfb and Dfc) in the higher zones. 

Moreover, the mean annual precipitation map (Figure 2-3, Maracchi et al. 2005) highlights that the study 
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area is located where the rainfall rate is the highest in the region, ranging from 1500 mm/year to 2300 

mm/year. In Figure 3-4 are plotted the cumulative annual rainfalls for the period 2004-2019 of three rain 

gauges located in the study area. 

 

 

Figure 3-3 a. Sample of Köppen-Geiger climate classification map for Italy (modified from Beck et al. 2018). b. Mean annual 
precipitation in Tuscany (Maracchi et al., 2005). 

 

Ponte di Campia rain gauge is in the bottom of the valley, close to Gallicano town, Campagrina rain 

gauge is located at the top of Tùrrite Secca sub-basin while Casone di Profecchia rain gauge is at the top 

of Castiglione sub-basin. In respect to the Serchio valley and Apennine chain, the Apuan region receives 

more rain due to Atlantic humid air masses rising Apuan Alps slopes, condensing and triggering intense 

rainstorms, mainly during autumn and spring (Giannecchini et al., 2012). In fact, this area was hit in the 

last decades by several intense rainfall events causing victims, destruction of villages and interruption of 

facilities in 1996, 1998, 2000, 2003, 2009, 2012 and 2014 (Giannecchini et al., 2016). 

Approximated location of the study area

b a
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Figure 3-4 Cumulative annual precipitation of three rain gauges in the study area. 

 

 

Figure 3-5 Some intense rainfall events occurred in the study area between 2010 and 2016. a- 31/10/2010 - 01/11/2010; b- 
25/10/2011; c- 26-27/10/2012; d- 20-21/10/2013; e- 17-19/01/2014; f- 05-06/11/2016. 
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3.3 GEOLOGICAL OUTLINE 

The Serchio valley, known in the literature as Garfagnana graben, is an intramountainous extensional 

basin forming part of the Northern Apennines orogenic complex (Elter et al., 1975). The Northern 

Apennines are a fold-thrust belt originated during the Tertiary by the collision between the Apulia (or 

Adriatic) microplate related to the African plate, and the Briançonnais microplate (Sardinia-Corsica 

massif), related to the European plate (Carmignani et al., 2004). The collision led to the stacking of the 

Ligurian and Sub-ligurian Units (Oceanic domain) above the Tuscan Units (Apulian domain), with a top-

to-the-East transport direction (Elter et al., 1975), occurred along a regional-scale floor thrust that runs 

in the “Calcare Cavernoso” formation, a Norian dolomite formation with intercalated evaporite levels 

(Carmignani et al., 2004). Emplacement of the Tuscan Nappe led to development of greenschists facies 

metamorphism of the underlying Tuscan Units. Starting Early Miocene (Burdigalian), due to slab retreat, 

the Apennine compressional front migrates eastward, so the tectonic regime changed from compressive 

to extensional: the earlier Apenninic orogenic wedge is now affected by widespread exhumation and 

extensional tectonics which led to the exhumation of the “Alpi Apuane Metamophic Complex” and the 

formation of Garfagnana Graben (Carmignani et al., 1994). In Figure 3-6 is represented the tectonic sketch 

map of the study area and surroundings. Apuan Alps are a tectonic window where Paleozoic basement 

(Hercynian basement) covered by Mesozoic meta-limestones (“Apuane” and “Massa” units) crop out. 

Apuan Alps are surrounded and covered by the sedimentary Tuscan nappe, overlaid by ophiolite-bearing 

Ligurian and Subligurian units (Carmignani et al. 2000). In the study area these units develop towards the 

East and outcrop in the Garfagnana graben and Northern Apennines. Hercynian basement rocks 

experienced a pre-Alpine greenschist facies metamorphism and consist mostly on phyllites, schists and 

quartzites. The “Apuane” and “Massa” Units experienced Alpine greenschists facies metamorphism 

resulting mainly in marbles with subordinate calcschists, metasandstones and phyllites. Tuscan nappe is 

made up of Mesozoic carbonates and Mesozoic–Cenozoic pelagic succession and is mainly represented 

by the arenaceous turbidites of Macigno formation (MAC). Subligurian units is represented by Canetolo 

unit, a calcareous marly turbiditic sequence, while Ligurian units consists of deep-sea oceanic sediments 

including Jurassic ophiolites followed by thick sequences of late Cretaceous to middle Eocene calcareous, 

“Ottone Flysch”. Finally, in the bottom of Serchio valley Villafranchian continental deposits crops out, 

consisting mainly in weakly cemented fluvial deposits, with gravels, sands and shales. 
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Figure 3-6 Tectonic sketch map of the study area and surroundings (modified from Continuum 
Geologico della Regione Toscana)  

 
In Figure 3-7 is represented the detailed geological map (scale 1:250.000), a geological cross-section and 

the histogram of the extension (%) of geological formations. Macigno formation (MAC) is far long the 

most extended formation in the area, it consists on layered arenites from decimeter to meter scale with 

subordinate siltstones. In general, these rocks are often covered by sandy-gravel slope deposits and are 

very prone to landsliding (D’Addario et al. 2018; Disperati et al. 2018). The cross-section highlights the 

structure of the Garfagnana basin, bordered and dissected by extensional faults. To the SW, marbles of 

the Apuane Metamorphic Complex are separated from the limestones of Tuscan Nappe by a low-angle 

normal fault, the latter, the latter, dissected by normal faults merging to the North-East, quickly come in 

contact with the Macigno Fm. at the bottom of the valley. The North-East sector is characterized by the 

outcrops of MAC, which is in turn dissected by normal faults merging to the South-West, dividing the 

formations in four “blocks”, at least. Di Naccio et alii (2013), integrating existing structural geology data 

with new detailed geomorphic analyses of the fluvial network, established that most of these normal 

faults are still active with an inferred throw rate ranging from 0.3 to 0.6 mm/year since late Quaternary.  

Geology is one of the most important conditioning factor controlling the occurrence of landslides, and 

lithology, which is strictly related to engineering properties of rock itself and the above slope deposits, 

has a crucial relevance in landslide susceptibility and hazard assessment for each different landslide 

mechanism (Corominas et al., 2014). 
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Figure 3-7 Detailed geological map of the study area at the scale 1:250.000 (modified from Continuum 
Geologico della Regione Toscana), geological cross-section (sample from Progetto CARG Foglio “Castelnuovo 

Garfagnana”) and frequency distribution of geological formation extension (formation less than 1% are not plotted) 

 

In data-driven landslide susceptibility models, lithology is almost always used as an input conditioning 

factor (Goetz et al., 2011; Corominas et al., 2014; Zêzere et al., 2017; Reichenbach et al., 2018) while in 

physically based models may be used to assign to slope deposits a set of parameters which are assumed 

to depend on the nature of the underlying bedrock (Cervi et al., 2010; Zizioli et al., 2013; Raia et al., 2014; 

Teixeira et al., 2015; Oliveira et al., 2016; Ciurleo et al., 2017). In this thesis, lithology is an important 

information which is used as a first order factor for geo-technical parameters, the morphometric analysis 

and slope deposits depth estimation. For this reason the geological map was the starting dataset to extract 

the “Bedrock Lithological Units” (BLU), which consist on grouping the formations with similar lithology 

and stratigraphic relationship, as shown in Figure 3-8. In order to obtain the BLU map, the geological map 
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of Tuscany Region (Continuun Geologico della Regione Toscana) was used. Figure 3-7 and Figure 3-8 seems 

very similar to each other, but some formations, as Macigno Fm. (MAC) and Scaglia Toscana Fm. (STO), 

are composed by several members that may be distinguished at local scale (1:10000). Both these 

formations have members mainly composed by shales and marls, for this reason, in the BLU map have 

been separated. Figure 3-9 shows the extension of Bedrock Lithological Units. 

 

 

Figure 3-8 Bedrock Lithological Units (BLU) map. 
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Figure 3-9 Extension of Bedrock Lithological Units (BLU) 
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4 RESULTS - PROCESSING AND 

SPATIALIZATION OF DATA  
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4.1 LANDSLIDE INVENTORY  

4.1.1 Landslide inventory accuracy assessment  

Once the shallow landslide inventory was prepared, it was necessary to evaluate its accuracy in order to 

define the quality and reliability of data collected by means visual interpretation. The procedure of 

accuracy assessment is described in the paragraph 2.7. 

In the study area, a total of 249 objects were detected, 196 classified as landslides while 53 classified as 

stable areas (entities displaying features similar to landslides but classified as stable areas; see paragraph 

2.3 for further description). To organize the field validation, objects in the nearby (<1000 meters) of 

roads and trails were selected; nevertheless, due to reduced accessibility for slope steepness and/or 

vegetation density, the test dataset consisted of about 56% of visited polygons. Out of a total of 139 

visited polygons, 86 were classified as landslides while 53 were classified as stable areas. In addition, 

further 13 landslides were detected during the field survey (false negatives, FN), mapped within the 

topographic maps and subsequently stored in the landslide inventory database. In Table 4.1, results of the 

accuracy assessment are summarized.  

 

Table 4.1 Confusion matrix and statistical measures for accuray assessment 

 

After the validation step, the final landslide inventory was obtained as a new polygon ESRI Shape File, 

in which FPs landslides and TNs objects were excluded (Table 4.2). 
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Table 4.2 Statistics of objects analysed in order to obtain the landslide inventory for this PhD thesis. 

 

 

4.1.2 General statistics of the landslide inventory 

In Figure 4-1, the landslide distribution map and general statistics of the landslide inventory are presented. 

Out of a total of 191 landslides, 81 landslides were visited (blue dots) and most of all are accompanied 

by the field survey form.  Due to the accessibility reasons because of vegetation density and/or 

morphology, 110 landslides were not visited (red dots).  

The top-left graph in Figure 4-1 describes the frequency distribution of landslides for each Bedrock 

Geological Unit (BLU, see paragraph 3.3), expressed both in terms of absolute frequency and landslide 

density (Ld, landslide per km2). The absolute number of landslides occurred in each BLU provides a first 

information about relationships between lithology and landslide distribution, but the landslide density (# 

/ km2) is the right index to quantify this spatial dependence. Considering a total of 191 landslides, the 

overall landslide density (OLd) is about 0.8 landslide per square kilometer (study area extent 242 km2). 

The BLU 11 recorded the highest number of landslides but has a Ld value of 0.8, more or less equal to 

the OLd. In other BLUs, such as BLU 51 and, especially, BLU 23, corresponding to shales/marls and 

limestones respectively, a higher landslide density is observed. Very few landslides were detected in 

metamorphic rock areas (BLU 21, 22, 61 and 62). Even if the Ld is quite relevant, the small extent of 

BLU 61 and 62 (2% and 3% of the study area) could lead to wrong results. Alluvial deposits (BLU 31) 

with a total of 20 landslides, have a density value equivalent to the OLd value. 
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Figure 4-1 Landslide distribution map and general statistics of the landslide inventory. a) frequency distribution of landslides 
for bedrock lithological units expressed as frequency and density (#/km2). b) Landslide inventory map distinguishing 
between visited and not visited landslide. c) Frequency distribution of landslides according to the delineation epoch of 

orthophoto maps. d) Magnitude-frequency probability density function of the landslide inventory compiled in this PhD 
thesis. 
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The highest landslide frequency resulted from orthophoto maps acquired in 2009 and 2016. While the 

peak of 2016 may be explained with the high quality of the images in respect to the other images, the 

2009’s peak may be related to the intense rainfall events occurred between 2007 and 2009 (Giannecchini 

et al., 2016). Landslides detected in 2018 are those detected during field survey (False Negatives, FN), for 

which the occurrence epoch is unknown. In fact, they can be either landslides occurred after 2016, or 

they may be occurred earlier even though they are not recognizable in the orthophoto maps.  

The magnitude-frequency probability density function of the landslide inventory is provided in Figure 

4-1d. The model used to fit raw data is the Inverse Gamma distribution, proposed by Malamud et alii 

(2004), resulting in an exponent of the inverse power low (α) equal to 1.40 and a rollover occurring at 92 

m2. Moreover, the median value of landslide area is 268 m2, the maximum and the minimum are 13153 

and 12 m2, respectively.  

 

4.1.3 Characterization of visited landslides 

A representative subset of 81 landslides underwent field analysis with collection of information following 

the standard form provided in the Appendix A. Despite the inventory consists of shallow landslides, the 

attention was focused about whether the landslide involved either the slope deposits (SD) only, or also 

the weathered and fractured portion of the underlying bedrock (BR). In order to perform this 

classification, the SD depth down to the bedrock was compared to the scarp height. When the scarp 

height is equal or lower than the SD depth, the landslide involved only SD; in this case the slip surface 

may correspond with the discontinuity between SD and bedrock. In the other cases, the landslide 

involved also the bedrock (Figure 4-2). 
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Figure 4-2 Examples of landslides involving either SD only (a, near La Foce) or the underlying bedrock (b, near Rontano). 
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Figure 4-3 Analysis of material and movement types for visited landslides. a) Pie chart of material types. b) Histogram of 
movement types (Hungr et al., 2014) 

 

In Figure 4-3, according to the classification method described above, visited slope failures were labelled 

on the basis of both the material and movement types (Hungr et alii, 2014).  

Landslides involving bedrock are about the 60% of visited landslides, suggesting that the role of bedrock 

in shallow landslides development and susceptibility modelling should be explored and taken into 

account. The frequency distribution of landslide movement types shows that about half of the slope 

failures are avalanche and planar slide. Nevertheless, separating the movement types on the basis of 

material types, almost all the avalanches involved bedrock (BR), which is, together with planar slides, the 

movement type with the highest frequency. Most of SDL are planar slides, and secondly, flowslides and 

rotational slides, respectively. Some examples of landslides are shown in Figure 4-4. In Figure 4-5 the 

distribution of slope deposits depth and scarp height is presented. The dashed line in the scatter plot 

represents the condition in which the SD depth and the scarp height is the same. The dots plotted under 

the bisector correspond to landslides whose slip surface is shallower than the SD depth, on the contrary, 

the squares correspond to landslides with a slip surface deeper than SD depth. The boxplots represent 

the distribution of the scarp height and SD depth measured in the field for SDL and BRL. This graph 

suggests that BRL have a slip surface usually located between 140 cm to 210 cm, displaying an asymmetric 

distribution with a median value at 190 cm. These landslides tend to occur where the SD depth is relatively 

shallow, ranging from 40 cm to 105 cm. A different behaviour can be observed for SDL, whose slip 

surface is located between 70 cm and 120 cm depth (median 95 cm), and rarely corresponding to the SD-

BR discontinuity. In fact, the measured SD depth of landslides involving only SD ranges between 100 

cm to 170 cm. These results highlight two very important issues: a) shallow landslides often involve 

bedrock and, b) the slip surface hardly correspond to the SD/BR discontinuity.  
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Figure 4-4 Examples of some visited landslides recognized in the study area. a-Avalanche (BR, near Chiozza). b-Fall (BR, 
near Castelnuovo Garfagnana). c-Planar slide (SD, near Piritano). d-Flowslide (SD, near Eglio) 
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Another important difference between SDL and BRL is the discard on the area involved in the failure. 

As shown in Figure 4-6, landslides involving only SD are smaller than landslides involving bedrock. In the 

scatter plot in Figure 4-6, length vs width of landslides is plotted. Even if the shape is similar, BRL are 

usually wider and longer. In summary, these results suggest that usually BRL: have a deeper slip surface 

in respect to SDL, occur where SD depth is less than 1 meter, involve a greater area and are both wider 

and longer than SDL.  

 

 

Figure 4-5 Scatter plot of SD depth and scarp height for SDL and BRL (a). Boxplot comparing scarp height and SD depth 
for SDL and BRL (b). 
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Figure 4-6 Boxplot of landslide area distribution (a) and scatter plot length vs width of landslides (b). 
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4.2 ENGINEERING GEOLOGICAL CHARACTERIZATION OF 

SLOPE DEPOSITS 

 

A total of 413 observation sites have been visited during the fieldwork (Figure 4-7). The summary of 

determinations carried out is detailed in Table 4.3. The distribution of investigations sites for BLU is 

presented in Figure 4-8. Detailed investigation consisted on the digging using the pickaxe, with 

measurements of depth as well as collection of data concerning layering, grain size estimation, and texture 

analysis. Where possible, SD samples were collected. Otherwise, when the SD depth was relatively thin 

or the discontinuity between SD and BR was naturally exposed (e.g. road cuts), a quick investigation was 

performed, by measuring the SD depth only. The small number of investigation sites in BLUs 21 

(Marbles) and 22 (Schists) is due to the widespread bedrock outcrop that characterizes these lithologies. 

Instead the small number of investigation sites within the BLU 61 (Phyllites) and 63 (Metarenites) is 

related to the lack of roads crossing those BLU. Geotechnical parameters of the above mentioned BLUs 

were obtained by previous investigations recently conducted by Geomatica Lab (DSFTA, University of 

Siena) in the framework of research projects executed in adjacent areas (Disperati et al., 2018). 

 

Table 4.3 Summary of field investigations for the engineering geological characterization of SD 

 

Observation sites 413

Detailed investigations (digging) 294

Quick investigations 119

Lab grain size test 125

Lab unit weight test 162
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Figure 4-7 Distribution of slope deposits investigation sites. Orange squares are observation conducted inside some visited 
landslides, yellow conducted near visited landslides and green conducted far from landslides. 

 

 

Figure 4-8 Percentage frequency distribution of observation sites chosen for the analysis of slope deposits. The label refers 
to BLU code. 
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4.2.1 Extraction of Morphometric units 

Morphometric Units were obtained by performing the classification of a set of morphometric variables 

obtained by the DEM, as described in paragraph 2.4.3. The classification was performed independently 

for each BLU. As a first step, slope steepness, curvatures (transversal and longitudinal) and contributing 

area layers were obtained (Figure 4-9) by using different GIS tools like ESRI ARCGis, LandSerf and 

Whitebox. 

The number of morphometric clusters chosen for the classification may vary for different BLUs 

considering: a sufficient number of observation sites for each BLU, BLU extension and the variability of 

BLU morphology. As a consequence, for this PhD, the number of clusters ranges between 5 and 15. In 

Figure 4-10 an example of the Morphometric Units map, obtained by unsupervised classification, is 

provided. In the example 10 clusters were chosen in order to describe the morphology: the classes 10 

and 9 identify channels and impluvious, while the classes 1 and 7 represent ridges, differentiated on the 

basis of steepness and curvature; the classes 4 and 5 represent more or less straight steep slopes; 6 and 8 

correspond to the highest portions of the slope with different degree of concavity and steepness; 2 and 

3 clusters are located in the proximity of the drainage network representing low steep areas.  
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Figure 4-9 Morphometric variables used to perform the ISODATA unsupervised classification aimed at obtaining the 
Morphometric Unit map for each BLU of the study area. 
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Figure 4-10 Example of the unsupervised classification of morphometric variables. 
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4.2.2 Depth classes 

In order to take into account SD depth uncertainty and variability, each pixel is assigned to a depth 

categorical class depending on the morphometric features of the pixel itself and surrounding pixels. In 

order to define the width of depth classes, the cumulative frequency of SD depth measurements of 

detailed investigations (Figure 4-11) has been calculated. Therefore, analysing the cumulative frequency 

curve in Figure 4-11, a range of 30 cm wide was suitable to split the SD depth in five classes where the 

depth value was higher than 30 cm. The low frequency of data below 30 cm is due to the lack of detailed 

investigations below this threshold, because when the SD depth is thinner than 30 cm it is difficult to 

conduct a detailed investigation, but only quick investigation. The SD depth classification system adopted 

in this thesis is a hierarchical system with homogeneous class size, based on quantitative and qualitative 

classifiers which are: SD depth measure and SD areal frequency (Table 4.4). At level one, two group of SD 

are identified: “thin” SD (class A) and “thick” SD (class B) which depth threshold is assumed to be 30 

cm. The class “A”, depth lower than 30 cm, is split in two classes of second order: the A1, which is 

mainly characterized by bedrock outcrop, and the A2, in which the SD cover prevails (Figure 4-12). 

 

Figure 4-11 Cumulative frequency distribution of SD depth obtained from detailed investigations 

 

As described above, due to environmental factors, the SD depth can vary locally. For this reason, a 

transition class between class “A” and “B” is introduced (A2B), in order to describe areas generally 

attributable to A2 depth class, in which non mappable portion of SD with depth bigger than 30 cm occurs 
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B1, B2, B3, B4 and B5 (Figure 4-13, Figure 4-14, Figure 4-15). Fall into class B5 all SD that have a depth bigger 

than 1.5 meters, because the tools used to open the digs make complex to manually reach higher depths.  

 

Table 4.4 The slope deposits depth classification 

 

 

 

Figure 4-12 SD depth class A1 and A2. Pickaxe length: 90 cm. 
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Figure 4-13 SD depth class A2B and B1. Pickaxe length: 90 cm.  

 

 

Figure 4-14 SD depth class B2 and B3 
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Figure 4-15 SD depth class B4 and B5. Pickaxe length: 90 cm. 

 

 

4.2.2.1 Slope deposits depth maps 

The slope deposits depth map (SDd) is obtained by intersecting the unsupervised classification of 

morphometric units with field depth measurements, reclassified according to the previous paragraph. 

Each morphometric unit was assigned to the most frequent depth class resulting by the observations sites 

falling within the same unit. 

This method is applied at BLU scale, and then all the maps are merged into a single raster file. However, 

as can be seen from Figure 4-8, some BLU are not well-sampled either for logistical reasons or for the low 

area covered by the BLU itself. SDd map of BLUs 21 and 22 (Marble and Schists respectively) and 31 

(Weakly cemented continental deposits) has been obtained coupling field site observations with visual 

interpretation of orthophoto maps. The land characterizing 21 and 22 BLUs has the greatest relief energy, 

with the highest erosion rates due to heavy rainfall and, given its carbonatic nature, the development of 

karst dynamics is widespread, making it predominantly without slope deposit and poor vegetation. BLUs 

61 and 62 cover about 5% of the whole study area and are crossed by few roads making it difficult to 

carry out exhaustive sampling. However, the research activities conducted by the Geomatica Lab of the 

DSFTA (University of Siena) in previous years in adjacent study areas have been used to build the SDd 

map in this study area. Below are shown the SD depth class assignation tables and related maps of BLUs 

11, 23, 51, 61 and 62. Sites observations were randomly split in training dataset (70%) and test dataset 

(30%). In the tables are reported the assignation statistics as well as the success rate (Table 4.5, Table 4.6, 

B4 B5
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Table 4.7, Table 4.8, Table 4.9). The SDd map uncertainty is calculated for steps of SD depth errors of 29 cm 

(Figure 4-16, Figure 4-20, Figure 4-23, Figure 4-25, Figure 4-27). In Figure 4-17, Figure 4-18, Figure 4-19, Figure 4-21, 

Figure 4-22, Figure 4-24, Figure 4-26 and Figure 4-28 slope deposits depth map of each BLU are showed. 

 

BLU 11 - Arenites 

Table 4.5 Matrix of depth class data for BLU 11 

 

 

 

Figure 4-16 Success and prediction rates of SDd map for BLU 11 
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Figure 4-17 BLU11 slope deposits depth map. 
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BLU 21 – Marbles 

 

 

Figure 4-18 BLU21 slope deposits depth map. 
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BLU 22 – Schists 

 

Figure 4-19 BLU22 slope deposits depth map. 
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BLU 23 – Limestones 

Table 4.6 Matrix of depth class data for BLU 23 

 

 

 

 

 

Figure 4-20 Success and prediction rates of SDd map for BLU 23 
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Figure 4-21 BLU23 slope deposits depth map. 
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BLU 31 – Weakly cemented continental deposits 

 

Figure 4-22 BLU31 slope deposits depth map. 
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BLU 51 – Shales and marls 

Table 4.7 Matrix of depth class data for BLU 51 

 

 

 

Figure 4-23 Success and prediction rates of SDd map for BLU 51 
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Figure 4-24 BLU51 slope deposits depth map. 
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BLU 61 – Phyllites 

Table 4.8 Matrix of depth class data for BLU 61 

 

 

 

Figure 4-25 Success and prediction rates of SDd map for BLU 61 
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Figure 4-26 BLU61 slope deposits depth map. 
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BLU 62 – Metarenites and quartzites 

Table 4.9 Matrix of depth class data for BLU 62. 

 

 

 

 

 

 

Figure 4-27 Success and prediction rates of SDd map for BLU 62 
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Maximum frequency 5 10 5 7 26 11 3 5 8 5

Morph. Unit Success Rate 0.5 0.6 0.3 0.5 0.8 0.5 0.5 0.6 0.3 0.5

Assigned Depth class B2 B3 B4 B2 A2 B1 B1 A2B A2B B2
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Figure 4-28 BLU62 slope deposits depth map. 
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4.2.3 Grain size analysis 

The results of laboratory analyses and field grain size distribution estimation are presented in the next 

paragraphs. Then, the comparison of results between the two dataset is described. 

 

4.2.3.1 Laboratory results 

For a total of 162 samples, grain size distribution and Atterberg limits were carried out by a private 

certified geotechnical laboratory. Detailed laboratory results are listed in the Appendix B. In Figure 4-29 

results are shown in the plasticity chart based on Atterberg limits. Table 4.10 and Figure 4-30 summarizes 

the USCS class obtained for samples collected within each BLU. 

 

Table 4.10 USCS class frequency for SD samples collected within each BLU. No samples have been collected in BLU 21. 

 

CL CL-ML ML SC SC-SM SM SP-SM GC GC-GM GM GP-GM GW

11 - Arenites 1 0 2 3 5 34 0 3 2 8 1 0 59

22 - Schists 0 0 0 0 0 1 0 0 1 0 0 0 2

23 - Limestones 1 1 3 4 0 6 0 2 0 4 0 0 21

31 - W.C. Deposits 0 0 1 0 0 2 1 1 0 0 0 0 5

51 - Shales and Marls 0 0 10 7 0 10 0 4 0 2 0 0 33

61 - Phyllites 0 0 5 1 1 6 0 0 0 15 1 1 30

62 - Metarenites 0 0 0 0 0 5 0 2 0 5 0 0 12

2 1 21 15 6 64 1 12 3 34 2 1

USCS classBedrock Lithological 

Unit

Total 

samples
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Figure 4-29 Plasticity chart. Note: data for BLU61 and 62 include 42 determinations obtained by a previous research project 
conducted in an adjacent area (Disperati el al., 2018). 
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Figure 4-30 USCS class frequency for SD samples collected within each BLU. 11- Arenites, 23-Limestones, 51-Shales and 
Marls, 61-Phyllites, 62-Metarenites. Note: data for BLU61 and 62 include 42 determinations obtained by a previous research 

project conducted in an adjacent area (Disperati el al., 2018). 
 

 

 

4.2.3.2 Grain size field estimation results 

In addition to the analysis of the particle size distribution carried out in the laboratory, the percentages 

of gravel, sand, silt and clay (fine) were estimated for each observation site, as described in paragraph 2.4. 

1. Since the field estimation is semi-quantitative, it is necessary to evaluate the accuracy of the estimation 

by comparing field estimations with the laboratory results for those observation sites where both data 

were collected.  

In Figure 4-31 the grain size estimation conducted in the field is compared with the laboratory analyses. 
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Figure 4-31 Comparison between grain size field estimation and laboratory analysis 

 

The evaluation of the accuracy (Table 4.11) of the field grain size determinations was performed using the 

Mean Bias Error method (Kato, 2016): 

 

Equation 4-1 

𝑀𝐵𝐸 =  
∑ (𝑓𝑖𝑒𝑙𝑑𝑔𝑟,𝑠𝑎,𝑓𝑖 − 𝑙𝑎𝑏𝑔𝑟,𝑠𝑎,𝑓𝑖) 𝑛

𝑖

𝑛
 

 

Where campgr,sa,fi is the field estimation of gravel, sand and fines; labgr,sa,fi is the laboratory analysis 

according to USCS classification, n is the number of samples. 
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Table 4.11 Mean Bias Error for grain size distribution 

MBE (%) 

Gravel Sand Fine 

0 -6 6 
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4.2.4 Unit weight results 

Table 4.12 summarizes the statistical results of unit weight determination for each BLU. A complete list of 

laboratory results is provided in Appendix B. 

 

Table 4.12 Summary of Unit Weight laboratory analysis 

 

 

 

4.2.5 Engineering Geological Map of Slope Deposits 

4.2.5.1 Friction angle of gravelly SD 

From the laboratory results the most represented USCS class is the GM among the gravels, which 

correspond to a silty gravel. This USCS class is not included in the diagram shown in Figure 2-15, since in 

this diagram the friction angle is obtained for cohesionless materials without plastic fines (NAVFAC, 

1986). In order to assess the friction angle of the gravels occurring within the study area, a literature 

review was performed (Holtz, 1961; Schmertmann, 1978; Bolton, 1986; NAVFAC, 1986; Fragaszy et al., 

1992; Fannin et al., 2005; Rollins et al., 2005; Kulhawy and Chen, 2007; Duncan et al., 2014; Ching et al., 

2017). The data presented in the above-mentioned studies were plotted in a scatter plot representing the 

friction angle versus relative density, as this latter parameter is regarded as the most important to control 

shear strength of gravels (Figure 4-32). Figure 4-33 reports the relative density and friction angle data for a 

subset of samples from the above literature, having grain size characteristics (such as D50 and D60), dry 

unit weight and confining stress similar to the slope deposits analysed in this study. 

Figure 4-33 shows that the majority of data fall between the Schmertmann and NAVFAC – GP functions 

and the distribution of points does not appear to depend on the USCS class. The regression functions 

(black functions) obtained for each USCS class are each other sub-parallel and mostly overlap with the 

NAVFAC - GW function. Therefore taking into account the results of the literature, it was assumed that 

the NAVFAC – GW function reasonably can be used to describe the variation of friction angle as a 

function of the relative density for the gravelly SD under study. 

 

min max average dev. stand.

11 90 10.5 17.6 13.7 1.8

22 2 12.4 12.7 12.5 0.2

23 20 11.7 16.3 13.3 1.4

31 7 11.3 16.0 14.1 1.8

51 31 11.1 16.7 13.5 1.2

61 9 11.0 15.9 12.7 1.7

62 10 10.5 16.7 12.6 1.9

BLU Samples
Dry Unit Weight
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Figure 4-32 Relative density - friction angle diagram resulted from literature review. 

 

 

 

Figure 4-33 Relative density - friction angle diagram taking into account only the data with geotechnical features similar to 
the SD of this work. 
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4.2.5.2 Friction angle assessment using NAVFAC diagram 

According to the results reported in Table 4.10 and Figure 4-30, the functions of ML and SM were used to 

estimate friction angle values from the NAVFAC diagram (Figure 2-15), because those are the most 

frequent USCS classes for slope deposits mainly composed by fine and sand. Instead, for gravelly 

materials, as mentioned above, the GW function was used. Due to the lack of enough samples, BLU 31 

is not reported, while marbles, metacarbonates and limestones data were grouped together as well as for 

phyllites and metarenites ( from Figure 4-34 to Figure 4-37).  

 

 

Figure 4-34 NAVFAC diagram for BLU 11 

 

 
Figure 4-35 NAVFAC diagram for BLU 21,22 and 23 
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Figure 4-36 NAVFAC diagram for BLU 51 

 

 

Figure 4-37 NAVFAC diagram for BLU 61 and 62 
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exclusively from laboratory data. In order to carry out a regionalized study, it is essential to rely also on 

field grain size estimations, which being expeditious and cheaper, provide wider dataset. Recent literature 

studies (Vos et al., 2016) have shown that the deviation between the field estimation and laboratory 

analysis is in the order of 4 - 16%. The same authors pointed out that there is an intrinsic uncertainty 

regarding the method by which the grain size fractions in the field are estimated (e.g. USDA Triangle): 
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order of 10–45%. Therefore, taking into account these uncertainties, an average bias of 6% (Table 4.11) is 

considered acceptable, highlighting how the field grain size determinations proved to be quite reliable. 

Hence, a simplified classification approach was adopted for the field estimations, following the USCS 

guidelines, which can be described as follows: 

▪ G:  gravelly SD (> 50% retained at 0.075 mm sieve), % gravel > % sand; 

▪ S: sandy SD (> 50% at 0.075 mm sieve), % gravel ≤ % sand; 

▪ F: fine grained SD (≤ 50% at 0.075 mm sieve). 

Therefore, the association between USCS classes and the classification mentioned above is reported in 

Table 4.13. In Figure 4-38 is reported the distribution of simplified USCS classes for the SD of each BLU 

integrating field estimation and laboratory analysis is reported. The prevailing of gravels is due to the fact 

that sampling gravelly rich SD for unit weight determination and grain size estimation laboratory analysis 

is impossible with the tools used.  

In Table 4.14 are reported the friction angle and dry unit weight resulted from the NAVFAC diagram at 

BLU scale for each USCS/Simplified USCS class. The saturated soil unit weight has been calculated 

considering a porosity range about 40%-50%. Then, the saturated density has been carried out adding 5 

kN/m3 to the soil dry density. The minimum-maximum ranges were assessed calculating the first and 

the third quartile of the distributions. These ranges are used to assess the parameters ( and γs) at 

Engineering Geological Unit (EGU) scale calculating the weighted average taking into account the 

frequency of USCS simplified classes. Note that ML and GW friction angle and dry unit weight values 

are constant for each BLU. While the ML are not very well represented in the study area, the low number 

of GW laboratory analysis must be attributed to the difficulty in collecting the samples. In fact, for the 

unit weight determination, the sampler is not able to penetrate and collect the specimen due to the rich 

content of gravel, moreover to obtain an accurate grain size estimation in laboratory the minimum sample 

weight must exceed 6 kg if the largest significant particle size have a diameter of about 75 mm. For the 

reason listed above, the parameters attributed to fines and gravels are computed using all the samples 

collected in all the BLUs.  

 

 

 

 

 

 

 

 

 

 

 

 



136 
 

 

 

 

Table 4.13 Association among USCS, simplified classification assumed for deposits which underwent field estimation only, 
and NAVFAC function used for friction angle estimation. 
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Figure 4-38 Distribution of simplified USCS classes for BLU integrating field estimation and laboratory analysis 
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Table 4.14 Friction angle and dry unit weight for BLU and relative EGU 

 

Min 26 12.8 17.8

Max 33 13.9 18.9

11 Min 27 13.3 18.3

EGU: 1101-1112 Max 33 15.2 20.2

Min 28 12.8 17.8

Max 33 15.4 20.4

Min 26 12.8 17.8

Max 33 13.9 18.9

21 Min 27 12.9 17.9

EGU: 2101-2110 Max 33 15.2 20.2

Min 28 12.8 17.8

Max 33 15.4 20.4

Min 26 12.8 17.8

Max 33 13.9 18.9

22 Min 27 12.9 17.9

EGU: 2201-2210 Max 33 15.2 20.2

Min 28 12.8 17.8

Max 33 15.4 20.4

Min 26 12.8 17.8

Max 33 13.9 18.9

23 Min 27 12.9 17.9

EGU: 2301-2312 Max 33 15.2 20.2

Min 28 12.8 17.8

Max 33 15.4 20.4

Min 26 12.8 17.8

Max 33 13.9 18.9

31 Min 27 12.9 17.9

EGU: 3101-3105 Max 33 15.1 20.1

Min 28 12.8 17.8

Max 33 15.4 20.4

Min 26 12.8 17.8

Max 33 13.9 18.9

51 Min 27 13.1 18.1

EGU: 5101-5110 Max 28 13.6 18.6

Min 28 12.8 17.8

Max 33 15.4 20.4

Min 26 12.8 17.8

Max 33 13.9 18.9

61 Min 28 12.6 17.6

EGU: 6101-6114 Max 29 14.1 19.1

Min 28 12.8 17.8

Max 33 15.4 20.4

Min 26 12.8 17.8

Max 33 13.9 18.9

62 Min 28 12.6 17.6

EGU: 6201-6210 Max 29 14.1 19.1

Min 28 12.8 17.8

Max 33 15.4 20.4
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4.3 BEDROCK GEO-MECHANICAL CHARACTERIZATION 

The field survey of shallow landslides showed that about 60% of the visited landslides fractured and 

weathered bedrock underlying the SD. In order to understand the role played by bedrock for shallow 

landslides development one objective of this PhD research was to analyse and characterize the 

engineering geological properties of the uppermost bedrock. Due to the wide spatial extent and continuity 

as well as the high frequency of landslides involving this formation (Figure 3-12), the research focused the 

attention on the analysis of the rock masses of the Macigno Formation. As described in paragraph 2.2, a 

field survey was carried out following the same sampling strategy adopted for the slope deposits, that is, 

bedrock analyses were conducted inside the landslides (INSIDE), near (NEAR) and in the areas not 

involved by slope failures (FAR). For every 105 investigation sites, Schmidt hammer rebound values were 

measured, along with orientation and spacing of the main discontinuities, and the "Geological Strength 

Index” (GSI). In order to explore the distribution of bedrock properties and variability, a descriptive 

statistical analysis have been performed (Figure 2-1).  

In Figure 4-39 the distribution of investigation sites is shown. Orange squares correspond to investigation 

sites conducted in correspondence of (INSIDE) visited landslides involving bedrock. Yellow squares 

correspond to observation sites close (less than 250 meters, NEAR) to landslide (both SDL and BRL). 

Finally, in order to analyse bedrock properties variability in the whole BLU 11, data from investigation 

sites located at distance higher than 250 meters were conducted (FAR). 
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Figure 4-39 Distribution of investigation sites for bedrock geo-mechanical characterization. Orange squares (INSIDE) 
correspond to visited landslides involving bedrock.  
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4.3.1 Descriptive statistics of bedrock geo-mechanical properties 

One of the aims of the field work was to investigate whether the bedrock geo-mechanical properties 

change following spatial criteria which may be related to the occurrence of shallow landslides. In Figure 

4-40 the boxplot of the distribution of geo-mechanical properties of bedrock, such as Schmidt Hammer 

(SH) reboud value (Rv, average of 400 measurements), Joint volume density (Jv) and Geological Strength 

Index (GSI). The diagrams show that geo-mechanical properties inside landslides are worse than NEAR 

and FAR. The deviation is especially higher for Rv and Jv. These results suggest that bedrock quality may 

have played a role for slope failures occurrence. The relations among these variables have been 

investigated (Figure 4-41). Except the scatter plot of Rv vs GSI (Figure 4-41c) which highlights a correlation 

between the two variables, the other diagrams display a more or less dispersed pattern. Figure 4-41a 

compares the average and the standard deviation of Schmidt Hammer rebound value. It is worth noting 

that the graph shows two different patterns, one dispersed, with relatively low values of Rv and high 

variability of standard deviation, and one clustered, where the standard deviation is included mainly 

between 4 and 6 with relatively higher Rv values in respect to the dispersed pattern.  
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Figure 4-40 Boxplot distribution of geo-mechanical properties of bedrock inside, near and far from landslides. 
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Figure 4-41 Scatter plot among bedrock geo-mechanical properties. 
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4.3.2 Uni-variate spatial cluster analysis of bedrock properties 

In order to evaluate the spatial variability of bedrock geo-mechanical properties, a uni-variate cluster 

analysis was performed by implementing the Local Moran’s Index algorithm, as described in paragraph 

2.5.3. This tool allows to verify if the distribution of the analysed variable is spatially dispersed or 

clustered, identifying two clusters, high values and low values, and the respective outliers. “Not 

significant” values represent areas in which the variable is randomly distributed. The cluster analysis has 

been performed for five variables: average SH rebound value (Rv), Rv standard deviation, percentage of 

low full-scale rebound values, GSI and Jv. For each variable, the incremental spatial autocorrelation 

analysis has been conducted in order to assess the minimum distance at which the clustering occurs. 

Observation sites conducted inside landslides (INSIDE) were excluded from the analysis in order to 

check the regional and local variability of bedrock properties outside the areas affected by slope 

movements. The results of spatial autocorrelation and uni-variate cluster analysis are presented from 

Figure 4-42 to Figure 4-47. For each analysis, a box plot is provided describing the distribution of the variable 

within the clusters. 

The uni-variate clustering display good performance when applied for Rv, Jv and GSI. In Figure 4-43, “Not 

significant” observation sites separate the “High” and “Low” clusters, located in the northern and south-

eastern portion of the study area, respectively. The shape of the “Not Significant” data delineate an area 

which is more or less subparallel to the main normal faults. A similar configuration is displayed by the 

clustering applied to the GSI. In this case, the “High” cluster is reduced in number, increasing the “Not 

Significant” data in the eastern portion of the study area (Figure 4-47). A very different configuration is 

provided by the clustering applied to the Jv (Figure 4-46): the “High” cluster (representing heavy fractured 

rock masses, hence low quality) has an elongated shape oriented S-NE, more or less perpendicular to the 

main normal faults, while the “Low” cluster coincides with the "High" cluster of Rv and GSI. The uni-

variate cluster analysis applied to low full-scale rebound values (Figure 4-44, %FS) and standard deviation 

of Rv (Figure 4-45) is characterized by a large amount of “Not Significant” data, meaning that those 

variables have not a clear clustered pattern. 
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Figure 4-42 Spatial Autocorrelation by Distance plots of the variables used to conduct the Cluster and Outlier Analysis. a- 
SH rebound value. b- SH rebound value standard deviation. c- SH low full-scale rebound values. d- Joint Volume Density. 

e- Geological Strength Index. 
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Figure 4-43 Cluster and Outlier Analysis of Schmidt Hammer rebound value Rv 

 

 

 

 

 

 

R
v



146 
 

 

Figure 4-44 Cluster and Outlier Analysis of Rv standard deviation 
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Figure 4-45 Cluster and Outlier Analysis of the percentage of low full-scale rebound values 
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Figure 4-46 Cluster and Outlier Analysis of Joint Volume Density 

Jv
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Figure 4-47 Cluster and Outlier Analysis of Geological Strenght Index 
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4.3.3 Multi-variate cluster analysis 

Uni-variate clustering has shown that individual variables show a more or less pronounced spatial 

clustering of the geo-mechanical properties of bedrock. In order to understand how these variables have 

a dependency with each other and how the datasets of bedrock properties are spatially distributed, it was 

necessary to perform a multi-variate cluster analysis. In summary, this analysis utilizes unsupervised 

machine learning methods to determine natural groupings within the data. These classification methods 

are considered unsupervised as they do not require a set of pre-defined classes to guide or train the 

grouping of your data. Further description is provided in paragraph 2.5.4. 

The analysis was performed for the following variables: Schmidt Hammer rebound value (Rv), Joint 

volume density (Jv) and Geological Strength Index (GSI). After conducting several tests, the number of 

neighbours considered in the analysis is 8. The number of output clusters to be obtained was assessed 

computing the pseudo F-statistic plot (Figure 4-48). This diagram shows a sharp variation of the F-statistic 

slope when the number of clusters is 4, which is the output of the analysis. The output resulting from 

the multi-variate cluster analysis is presented in Figure 4-49. The four groups (clusters) resulted to be 

spatially discriminated, except in the centre of the study area where groups 2,3 and 4 meet at a triple 

point, enclosed between two normal faults. The group 1 is isolated from the others. This is likely due to 

the fact that those data resulted to be "Not Significant" in the uni-variate cluster analysis. 

Cluster statistics are reported in Figure 4-50 and Figure 4-51. In Figure 4-50 are reported the statistics either 

for groups and variables. To enhance the reading of the results, the mean, maximum, and minimum 

values for each group (dot and bars, respectively) of the variables involved (Rv, Jv, GSI) in the analysis 

are plotted in box plots describing the distribution of those variables. At the bottom of Figure 4-51, the 

statistics for each variable (Rv, Jv, GSI) are shown and plotted in the box plots (mean, min and max). 

Figure 4-51 visually summarizes the characteristics of the groups. This parallel box plot shows the average 

values of the groups for the variables involved. Group 2 appears to have the lowest average Jv, and the 

highest GSI and Rv values, representing the sites where the rock mass quality is the best. Similar values 

of GSI and Rv are reached by group 3, which however has the highest Jv, suggesting extensive fracturing 

of the rock masses. Group 1, in addition to being "isolated" from the other groups, appears to have 

average values comparable to the total data distribution. Finally, group 4 has a mean Jv similar to the 

median of the total data distribution, but has very low mean GSI and Rv. This is the cluster with the 

worst geo-mechanical properties of the rock masses. 
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Figure 4-48 Pseudo-F statistic plot used to obtain the number of clusters. Even the peak is located in correspondence of 15 
groups, 4 clusters was chosen. 
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Figure 4-49 Multi-variate cluster analysis.  
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Figure 4-50 Clusters and variables statistics 
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Figure 4-51 Parallel box plot describing cluster statistics of the variables. The dots represent the mean values and the colours 
represent the groups: blue, group 1; red, group 2; green, group 3; yellow, group 4.  
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4.3.4 Bedrock Geo-mechanical Units 

As described in the paragraph 2.5.7., BMUs were obtained from the expert-based delineation following 

the results of multi-variate clustering taking into consideration tectonic lineaments, morphology and 

drainage network. Figure 4-52 shows the results for the MAC formation area. The BMU 1 mainly covers 

the southern region, spreading with a thin flap towards the north-west, where it borders with the BMU 

2. As can be seen in the map, the contact between these BLU is marked by the occurrence of a set of 

NW-SE trending faults steeply dipping towards SW. The literature suggests that these lineaments 

correspond to the Pliocene-Pleistocene active normal faults of the Garfagnana graben (Di Naccio et al., 

2013). Towards SE, this contact separates from the trace of the faults and continues more or less parallel 

to the direction of the main valley. This section of the contact has been delineated by interpreting both 

the hillshaded DEM and Google Earth images, which allowed to recognize an alignment of transverse 

valleys to the main drainage network, all developing at about the same altitude, suggesting the possible 

occurrence of further normal faults merging towards the southwest. The limit between BMU 2 and BMU 

3 in the western part resumes the trace of the system of faults described above and then may be located 

along the valley following the shape of one of the transversal valleys to the main Serchio river depression. 

Obviously, this interpretation could be better detailed by increasing observation sites density in this sector 

of the study area. BMU 4 reflects the portion of isolated Macigno located on the wall of a system of 

normal faults merging to the northeast and completely develop to the right of he Serchio river. 

The picture and data of Figure 4-53 refer to two representative examples of outcrops belonging to BMU 1 

and BMU 2, respectively. The first is a very weathered and moderately fractured sandstone with 

decimetric scale layers of siltstone. The arenaceous portion can be easily fragmented by the hammer, it 

has an ocher color, which typically develops as the result of the chemical alteration. The other outcrop 

at the bottom consists almost exclusively of very hard unweathered sandstones with a dark gray colour. 

The average spacing of the joints is about 50 cm, with rough discontinuity surfaces.  

Figure 4-54 shows the boxplots that describe the geo-mechanical properties of the BMUs. BMU 1, 

developing in the southern and lower in elevation portion of the study area, is characterized by the worse 

geo-mechanical parameters. The parameters of BMU 2, which covers the northern portion of the area, 

where both the slope steepness and elevation are higher, constantly above those BMU3. BMU 4 has a 

wide dispersion than the others. Probably the small number of observations collected in this area does 

not allow to recognize the clustering phenomena of geo-mechanical parameters. This hypothesis is also 

suggested by the high frequency of faults. 

Finally, in Table 4.15 the equivalent Mohr-Coulomb parameters are summarized (see paragraph 2.5.6 for a 

detailed description). The first two columns represent the mean and standard deviation of friction angle 

and effective cohesion for each BMU. Starting from these two values, the maximum - minimum ranges 
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assigned to the BMUs were calculated. These ranges were used to implement the probabilistic analysis of 

susceptibility to shallow landslides involving bedrock, by means of a physically based approach. 

In the Appendix C the input and output parameters for each field observation are listed. 
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Figure 4-52 Geo-mechanical Bedrock Units (BMU). The colours of BMU reflects the colours resulted from the grouping 
analysis. The boxes indicate the outcrops shown in Figure 4-53. 
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Figure 4-53 Representative examples of two outcrops of BMU 1 ad BMU 2 and respective geo-mechanical parameters. 
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Figure 4-54 Geo-mechanical parameters for Bedrock Geo-Mechanical Units obtained by the method proposed by Hoek & 
Brown (2002), described in paragraph 2.5.6. 
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Table 4.15 Mohr Coulomb equivalent parameters of Bedrock Geo-Mechanical Units 
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Average 24.9 30.4 28.7 27.5

Dev. St. 2.8 1.7 1.8 4.7

Max 26 31 30 30

Min 23 29 27 25

Average 25.9 36.2 32.7 31.0

Dev. St. 4.7 3.6 3.6 8.2

Max 28.3 37.9 34.5 34.5

Min 22.5 33.0 30.8 26.7
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5 RESULTS - SHALLOW LANDSLIDE 

SUSCEPTIBILITY MODELING 
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5.1 SHALLOW LANDSLIDE SUSCEPTIBILITY ANALYSIS: A 

COMPARISON BETWEEN PROBSS AND INFORMATION 

VALUE  

 

One of the aims of this PhD thesis is to compare the results of different modelling approach to assess 

shallow landslide susceptibility. In this paragraph, the susceptibility results obtained by using a modified 

version of the SHALSTAB model (Montgomery and Dietrich, 1994), PROBSS, is compared with those 

obtained by a well-known data-driven method, namely the Information Value (IV, Yin and Yan 1988). 

 

5.1.1 Shallow landslide inventory 

In shallow landslide susceptibility models, the landslide inventory is a fundamental tool for different 

reasons. In physically based methods it is used to evaluate the accuracy of the outputs, while it is necessary 

for statistical computations where, once split into training and test datasets, it is used as input as well as 

tool to validate the results of the model. The inventory used in this PhD thesis work is described in 

paragraph 4.1. Since it was not possible to check in the field the whole shallow landslides dataset, the 

subdivision of the inventory into training and test datasets was not done randomly but on the basis of 

visited landslides (VS) and not visited landslides (NVS). The NVS were used as training dataset for the 

stability analysis conducted with the Information Value model, while VS were used as test datasets for 

both models, the PROBSS and Information Value (IV). 

Since VS are provided with data collected in the field, these landslides allowed to investigate in detail the 

results of shallow landslides susceptibility modelling. 

In Figure 5-1 the shallow landslide inventory is shown as classified into VS and NVS. Out of a total of 191 

landslides, 81 landslides were visited and most of all are provided by the field data.  Due to the 

inaccessibility for vegetation density and/or morphology conditions, the remnants 110 landslides were 

not visited. 
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Figure 5-1 Landslide inventory map used to assess shallow landslide susceptibility 

 

5.1.2 PROBSS input data 

According to the equation and disequations presented in paragraph 2.6.1, PROBSS model requires a set 

of topographic variables and geo-technical parameters as input data. Topographic variables are provided 

by two raster files, the slope steepness (degrees) and the contributing area (m2). As described in paragraph 

4.2.5, a set of geo-technical parameters is provided for each EGU (Engineering Geological Unit) and 

synthetized in the Slope Deposits Engineering Geological Map, in which the ranges of friction angle, 

effective cohesion, bulk density and slope deposits depth are stored. 

 

5.1.3 Information value input data 

The selection of the conditioning factors is one of the most important and difficult tasks for data-driven 

landslide susceptibility analysis. Nevertheless, for each study area a specific set of factors, mostly 

Landslide

inventory

map
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depending on geographical and geomorphological contexts, may be recognized (Van Westen et al., 2003).  

For this reason, determining which and how many conditioning factors are adequate for a specific 

susceptibility analysis is difficult to assess. Reichenbach et al. (2018) provide an exhaustive review of 

statistically based methods including the analysis of the most used predisposing factors. Moreover, van 

Westen et al. (2008) provide an overview of environmental factors, and their relevance for landslide 

susceptibility assessment considering the scale of analysis.  

In this work the selection of predisposing factors was executed coupling expert knowledge and literature 

review (Table 5.1 and Figure 5-2).  

In Figure 5-3 the Information Value weighs for each class of the variables are shown, as calculated based 

on the procedure described in paragraph 2.6.2. 

 

Table 5.1 List of predisposing factors used for IV method 

Predisposing factors Source / software Description 

Bedrock Lithological Units This thesis  

Elevation  https://www502.regione.toscana.it/geoscopio/cartoteca.html DEM 10x10m cell size 

Topographic Position Index This thesis , Land Facet Corridor Designer (Jenness, 2006)  

Slope steepness This thesis , ArcGIS v10.7 Derived from DEM 

Slope over Area ratio This thesis , TauDEM (Tarboton, 1997)  

Slope deposits depth This thesis  

Profile Curvature This thesis ,Landserf v2.3  

Transversal Curvature This thesis ,Landserf v2.3  

Slope Aspect This thesis ,ArcGIS v10.7 Derived from DEM 
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Figure 5-2 Input variables for the Information value model 
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Figure 5-3 Weights for the input variables used to implement the Information value method 

 

5.1.4 Susceptibility maps and accuracy assessment 

The output returned by the two slope stability analyses have different meanings. The susceptibility value 

of the Information Value model is given by the pixel by pixel sum of the weights attributed for each class. 

As a consequence, the output susceptibility map is described by a range of values, when are negative 

indicate very low or no susceptibility, while positive values indicate susceptible or very susceptible areas. 

The physically-based model computes pixel by pixel the probability that in the ith pixel satisfies the stability 

conditions described by the functions in paragraph 2.6.2. If pixels have a 100% probability of being US 

or UU, the logarithm of the ratio between the effective rainfall and SD transmissivity (log Qc/T) is not 

calculated. Instead, when the probability is lower than 100%, the pixel-by-pixel distribution of the log 
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Qc/T values is calculated. Since the model is implemented using a probabilistic approach through Monte 

Carlo simulation (n=10000 runs), as output a log Qc/T pixel-by-pixel distribution is provided. The 

median value of this distribution defines the final pixel-by-pixel log Qc/T value. 

Given the units used for Qc (mm/day) and T (m2/day), is results Qc<T, hence log Qc/T<0. The smaller 

the log Qc/T, the higher the susceptibility. On the contrary, a log Qc/T tending to 0 indicate low 

susceptibility areas.  

In Figure 5-4 and Figure 5-5 the shallow landslides susceptibility maps are shown.  

In order to compare the susceptibility maps obtained from the two models, it is necessary to process the 

raw data by classifying them according to a common criterion. As it is conceived, PROBSS model 

immediately provides a class, represented by unconditionally stable areas (US). Being known the 

percentage extension of the US areas in respect with the total extension of the study area, is it possible 

to define the upper limit of the IV lowest susceptibility class (Stable Areas), by using the US percentage 

as a percentile of the cumulative frequency distribution of IV values, obtained by ranking the IV data 

from the lowest to the highest. The rest of the study area, not falling within either the IV susceptibility 

class 1 (Stable Areas) or the US area, was further split into 4 classes of equal areal extension (%). In this 

case, the US percentage is 64%, and thus the remaining 36% was divided into 4 classes. 

The validation and the accuracy assessment of the two landslide susceptibility models is evaluated by 

means receiver operating characteristic curve analysis, or simply ROC analysis (Hanley and McNeil, 1982; 

Beguería, 2006; Fawcett, 2006).  

To perform this analysis, the test dataset (Visited Landslides) is intersected with the grid of the 

susceptibility map, resulting in four possible outcomes. If a computed unstable cell is inside the observed 

landslide area, it is counted as true positive (TP); if it is outside the observed landslide area, it is counted 

as false positive (FP). If a computed stable cell corresponds to an observed landslide cell, it is counted as 

false negative (FN); otherwise, it is classified as true negative (TN). To perform the ROC analysis, two 

quantities were calculated: sensitivity (True Positive Rate), defined as the ratio between TP and the sum 

of TP and FN; and specificity (False Positive Rate), defined as the ratio between TN and the sum of TN 

and FP. In the ROC plot, the sensitivity of the model is plotted against the 1-specificity. These values 

indicate the ability of the model to correctly discriminate between positive and negative observations in 

the validation sample. A high sensitivity indicates a high number of correct predictions, whereas a high 

specificity indicates a low number of false positives. The area under the ROC curve (AUROC) can serve 

as a global accuracy statistic for the model. This statistic ranges from 0.5 (random prediction, represented 

by a diagonal straight line) to 1 (perfect prediction) and can be used for model comparisons (Cervi et al., 

2010; Zizioli et al., 2013; Oliveira et al., 2016). The ROC curves obtained for the two susceptibility models 

are shown in Figure 5-6. The frequency distribution of test dataset (Visited Landslides) for each 

susceptibility class is plotted in Figure 5-7. Note that the extension of susceptibility classes is 64% and 9%, 
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respectively of Stable Areas (SA) and Low Susceptibility (LS), Medium Susceptibility (MS), High 

Susceptibility (HS) and Very High Susceptibility (VHS). 

 

 

 
Figure 5-4 Shallow landslide susceptibility map computed by the PROBSS model. The susceptibility classes were obtained 

by classifying the distribution of the median log Qc/T. 
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model
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Figure 5-5 Shallow landslide susceptibility map computed by Information Value. 
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Figure 5-6 ROC plots and respectively AUROC values for the two different susceptibility models. 

 

Figure 5-7 Comparison of frequency distribution of VS landslides (test dataset) in susceptibility classes obtained by 
physically- based and data driven modelling 
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5.1.5 Discussion 

The susceptibility maps shown in Figure 5-4 and Figure 5-5 are considerably different. Obviously, while the 

map obtained from PROBSS is strictly correlated with topography, SD depth and geotechnical 

parameters, the distribution of susceptibility classes in the map obtained from Information Value depends 

mainly on the training dataset landslide distribution. The IV map abruptly discriminate between Stable 

Areas and High and Very High susceptibility areas. This is reflected in the higher values of the AUROC, 

which is remarkably high, and it is confirmed in Figure 5-7, where about 80% of slope failures occurred in 

the classes with the higher probability of landsliding. On the contrary, about 30% of landslides occurred 

in low susceptibility class and in stable areas of the PROSS model. This may be mainly due to different 

reasons: geo-technical parameters such as internal friction angle or the cohesion or the dry density but 

also the depth of the slope deposit, may not reflect the real site-specific conditions. It would therefore 

be a problem related to the determination and regionalization of these parameters, which hardly may be 

solved when assessing landslide susceptibility at regional scale. The second reason to consider is that the 

reference model for evaluating slope stability is the infinite slope model, which is a rough representation 

of a more complex process as the triggering of shallow landslides. Finally, concerning the space-time 

distribution of pore pressure, the stability model implemented is a steady state model assuming that 

rainfall infiltrates until reaching the SD-BR interface, then following topographically determined flow 

paths (Montgomery et al., 1998). As a matter of fact, it is known that rainfall and infiltration are rarely 

steady state process. Moreover, also water leakage occurs through the bedrock, especially as a 

consequence of rock fracturing. 

About input parameters, the probabilistic implementation of PROBSS by the Monte Carlo simulation 

with a sampling size of 10000 iterations, should have limited uncertainty. Since the landslides used to 

validate the models have been analysed during fieldwork, their characteristics may be analysed in order 

to understand whether some specific conditions may imply a stability behaviour with relevant deviations 

from the assumption of the infinite slope model. As described in the paragraph 4.1.3, for 60% of VS 

landslides the sliding surface is located below the discontinuity between the slope deposit and the 

bedrock. By assessing the accuracy of the physically based model results by using as test dataset made up 

of landslides developed within the slope deposits or involving the bedrock, it is possible to evaluate the 

model capability to predict one dataset rather than the other. As shown in Figure 5-8, although AUROC 

values are never high as the case of the Information Value, it is possible to observe that the two different 

curves provide different results, especially in the most relevant part of the ROC plot: for false positive 

rate <10%, the deviation between the functions is almost 15% and locally gets to about 20%; for false 

positive rate of 10-20%, the deviation is still about 10%. While, the lower slope of the final stretch 

indicates a lower number of landslides in stable areas. This comparison suggests that the single-layer 
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infinite slope model provides better results when SDL are taken into account as test dataset. At the same 

time this model is less suitable to describe the spatial variability of susceptibility to shallow landslides 

involving bedrock. 

By analysing the distribution of the VS dataset (Figure 5-9), split into involving Bedrock landslides (BRL) 

or slope deposits landslides (SDL), it should be noted that: 

▪ The accuracy for SDL (slope deposits landslides, dotted filling) is very good, both for PROBSS 

and with IV (Information Value) models. In the latter, over 70% of landslides occur within the 

high and very high susceptibility classes. The PROBSS model perform a bit worse, the 57% of 

landslides occur in the higher susceptibility classes.  

▪ The distribution of BRL (Bedrock involved landslides, Bricks filling) within the susceptibility 

classes lead to very different results depending on the model used. About 30% of BRL, occur 

either in the Stable Areas or the Low susceptibility areas modelled with PROBSS. Instead, the IV 

performs very well, as a clear strong positive trend between landslide frequency and increasing 

susceptibility is observed.  

▪ The quite poor results of the physically based model obtained for BRL are not actually negative 

results. In fact, they confirm that models based on the infinite slope are not well suitable to predict 

shallow landslide susceptibility if these shallow landslides may develop their rupture surface below 

the discontinuity between slope deposit and bedrock.  

 

The high performance obtained by the IV model may be explained with its dependance on the training 

dataset. For the IV model, the training dataset was represented by NVS landslides, therefore no 

information is available about the materials involved.  
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Figure 5-8 ROC plots and AUROC values obtained for the PROBSS model by using landslide test datasets either involving 
the SD only, or the bedrock also. 

 

 

 

Figure 5-9 Frequency distribution of both SDL and BRL within the susceptibility classes obtained by both modelling 
approaches. 
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5.2 EXPLORING DIFFERENCES BETWEEN SHALLOW 

LANDSLIDES INVOLVING SLOPE DEPOSITS AND/OR 

BEDROCK BY MEANS OF INFORMATION VALUE 

METHOD 

 

In the light of the results obtained in the previous section, to understand the differences between SDL 

and BRL, two susceptibility maps were obtained using SD visited landslides, subsequently validated with 

BR visited landslides, and vice versa. The aim of adopting this strategy is to verify that SDL and BRL 

occur under different conditions, providing two susceptibility maps displaying a distinct distribution of 

slope failures prone areas. To perform the slope stability analysis, the Information Value model is used 

due to its dependency on the training dataset. 

Figure 5-10 shows the landslide inventory map of visited landslides, discerning between slope deposit 

landslides (SDL) and bedrock involving landslides (BRL).  

 



175 
 

 

Figure 5-10 Landslide inventory map of visited landslides either involving SD or also the BR 

 

5.2.1 Information value input data and weighs determination 

In Table 5.2 the training and test datasets used to implement the Information Value models are described. 

The same predisposing factors presented in paragraph 5.1.3. (Figure 5-2) were adopted to perform the 

susceptibility analysis. In Figure 5-11 the weighs of the input variables are shown. 

 

Table 5.2 Training and test datasets used to perform the susceptibility analysis with IV 

Model name Training dataset Test dataset 

M1 SDL BRL 

M2 BRL SDL 

 

 

BRL 

SDL 
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Figure 5-11 Information Value weighs for slope deposit landslides and bedrock involving landslides 

 

5.2.2 Susceptibility maps and accuracy assessment 

In Figure 5-12 and Figure 5-13 M1 and M2 susceptibility maps are presented. Figure 5-14 shows the ROC 

curve resulted from the models, while in Figure 5-15 the distribution of landslides in susceptibility classes 

is reported. 

Susceptibility classes were defined according to the method described at paragraph 5.1.4, that is the 64% 

of the study area is classified as stable, while the remaining is split into 4 classes of equal extension.  
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Figure 5-12 Susceptibility map obtained from SDL as training dataset 
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Figure 5-13 Susceptibility map obtained from BRL as training dataset 

 

 

M2
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Figure 5-14 ROC curves and AUROC values obtained from M1 and M2 slope stability analysis. 

 

 

 

Figure 5-15 Distribution of test landslides in susceptibility classes. The test dataset of M1 is represented by bedrock 
involving landslides, while M2 test dataset is represented by slope deposit landslides 
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5.2.3 Discussion 

Although the landslides inventory consists of shallow landslides, it is evident both from the graphs 

showing the weights of each class for each predisposing factors and the related susceptibility maps, that 

the SDL and BRL tend to occur in different geological, geomorphological and morphometric conditions. 

However, the AUROC values are high even if the training and test datasets are made up of landslides 

with different characteristics. By analysing the distribution of landslides of the test dataset into 

susceptibility classes, it is observed that in general more than 60% are included in the highest susceptibility 

classes. Only a small amount of these, about 15% is included in the stable areas. It is possible to affirm 

that the initial intent to discriminate through the data driven model the areas more predisposed to the 

activation of landslides involving SD only or BR also was not achieved, given the results of accuracy and 

distribution of landslides of the test dataset in the susceptibility classes. In fact, a lower AUROC values 

as well as a random distribution of landslides in susceptibility classes was expected. At the cartographic 

level, however, the maps are different (Figure 5-12 and Figure 5-13), as confirmed also by the different 

weights assigned to the variables involved for the two different datasets (Figure 5-11).  

In order to assess if landslides datasets and relative characteristics are different at cartographic scale, the 

two susceptibility maps were overlapped. Combining the M1 and M2 susceptibility maps and calculating 

the deviation among susceptibility classes (Figure 5-16) it is possible detect areas where M1 have higher 

probability of landslide occurrence, and vice versa. The red coloured scale identifies pixels more prone 

to activate bedrock involving landslides. On the contrary, blue coloured scale represent pixels where 

slope deposit landslides tend to occur. The darker the colour tone, the greater the gap between the 

susceptibility classes. Green areas represent Stable Areas shared between M1 and M2. Grey tones instead 

are sites which display the same susceptibility class. The pie chart of Figure 5-17 describe the extension of 

class variability among M1 and M2. The two maps show well-localized and defined differences: the 

southwest portion involves an increase of susceptibility for BRLs, while in the northeast and east portion 

appear to be more susceptible to SDL. From a quantitative point of view, the maps are the same for the 

51% of the area, of which 5% corresponds to the same susceptibility class while the remaining 46% are 

the stable areas shared by M1 and M2. In respect to the models presented in paragraph 5.1 where the 

Stable Areas covered 64% of the study area, the decrease to 46% is probably the most interesting result 

because almost 20% of the area, is now no longer stable. This highlights the importance to take into 

consideration the possibility that shallow landslides are complex slope phenomena and not necessarily 

consisting of loose material that characterizes the debris layer covering the slopes. Moving from one 

susceptibility class to another with a gap of one or two positions may not significantly affect the general 

susceptibility description of an area. On the contrary, changes of three or four classes suggest that sites 
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not prone to develop SDL or BRL instead become high susceptibility areas for one or the other landslide 

type. 

 

 

Figure 5-16 Combine between M1 and M2 susceptibility maps. In green the Stable Areas shared by the susceptibility maps 
reported in Figure 5-12 and Figure 5-13. In grey are represented the areas which display the same susceptibility class. The 

two-colour scales discriminate between areas susceptible to SDL (blue) or BRL (red) activation. The tone reflects the change 
in susceptibility class. 
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Figure 5-17 Pie chart representing the extent (%) of combined susceptibility classes. The legend description is provided in 
Figure 5-16. 
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5.3 PHYSICALLY BASED MODELLING OF SHALLOW 

LANDSLIDES INVOLVING BEDROCK  

In the paragraph 5.2 the differences between shallow landslides either involving only slope deposits or 

also the bedrock were analysed by means of the IV model. The concept behind the Information Value 

method, shared with all data-driven methods, is that past landslides are the key to predict the location of 

future landslides. Hence, these models depend on the training dataset used to compute statistics, giving 

a fundamental importance to the landslide inventory. Thanks to the information acquired in the field 

within, close and far from landslides, it was possible to: a) identify landslides involving bedrock 

(paragraph 4.1.3), and b) to estimate the geotechnical/geo-mechanical properties of both SD and the 

uppermost bedrock units (paragraphs 4.2 and 4.3). These data allowed to perform a first physically based 

model of shallow landslide susceptibility where the failure surface is assumed to correspond to the SD-

BR interface. This paragraph provides the results of a further physically based model where the failure 

surface may be located within the bedrock. In this case, one issue to be faced is the rupture surface depth. 

This kind of discontinuity is almost objectively recognizable in the field. While, different authors 

(Salciarini et al., 2006; Catani et al., 2007; Zizioli et al., 2013; Kim et al., 2015), including the method 

proposed in this work, correlate the SD depth with morphometric variables, the weathered and fractured 

portion of bedrock generally does not define an horizon sharply passing to the underlying fresh bedrock. 

This condition makes it problematic to define accurate criteria to spatialize the thickness of the 

uppermost fractured and weathered bedrock. 

Some reasons may control the development of this horizon, like the lithological nature (which influences 

permeability, texture, mineralogy), tectonic evolution, exposure to weathering and climate, and the depth 

of the surface deposit over the bedrock. The simplest but logical thing that can be done is to measure 

the rupture surface of bedrock involving shallow landslides, assuming that the failure of the slope occurs 

where there is the maximum impendency of bedrock properties.  

The aim of this paragraph is to compute a slope stability analysis for shallow landslides involving bedrock 

and compare it with the susceptibility analysis already performed to assess the probability of failure of 

slope deposits, according to the infinite slope model. Then, in order to evaluate if the slope failure would 

occur either in the SD or in the BR, the two maps are overlapped and combined. This analysis is applied 

within the BLU 11, where the Macigno formation crops out, because most of the visited landslides fall 

within this area (Figure 5-18). The bedrock properties, as well as spatial analysis and calculation of 

equivalent Mohr-Coulomb parameters were carried out for this lithology. The depth of the rupture 

surface of involving bedrock landslides was defined adding 2 meters to the SD depth map. This quantity 
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reflects the median value of the scarp height exposing the bedrock within the visited landslides, as shown 

in Figure 4-5. 

 

Figure 5-18 Visited landslides (BR and SD) and not visited landslides located within the BLU 11(Macigno Fm.) 
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5.3.1 PROBSS input data 

The implementation of the physically-based model for shallow landslide susceptibility assessment with a 

sliding surface localized below the discontinuity between bedrock and slope deposits here proposed is 

simple. As with the other models, PROBSS needs topographical inputs, such as slope and accumulation 

area, a layer that describes the equivalent Mohr-Coulomb parameters of Geo-mechanical units and finally 

a layer that identifies the depth at which the sliding can take place. In Figure 5-19 the Bedrock Geo-

mechanical Units with corresponding parameters are reported. The depth of the sliding surface was 

obtained by adding to the depth map of the slope deposits constantly 2 m. This means that, for example, 

if a given site falls into the depth class B1 (30-60 cm) of the slope deposits, the sliding surface is expected 

to occur between 230 and 260 cm. 
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Figure 5-19 Bedrock Geo-mechanical Units map and their corresponding Mohr-Coulomb parameters used for the 
physically-based modelling. 
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5.3.2 Susceptibility maps and accuracy assessment 

The resulting susceptibility map for bedrock involved shallow landslides is shown in Figure 5-20. The 83% 

of the study area resulted to be Unconditionally Stable (Stable Areas). The remaining 17%, equally split 

in 4 susceptibility classes, is mainly confined to the Southern-western portion of the study area where the 

BMU1 is present. This is strictly related to the input geotechnical parameters which resulted from the 

processing of field data and the expert-based subdivision in BMU. In order to verify the accuracy of this 

results, the map is validated using as a test dataset both BR visited landslides and SD visited landslides. 

As shown in Figure 5-21, the performance of the model is high for BRL (AUROC = 0.86), while it is lower 

for SDL (AUROC = 0.75).  
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Figure 5-20 Bedrock involved shallow landslides susceptibility map obtained from PROBSS model. The susceptibility 
classes were obtained by classifying the distribution of the median log Qc/T. 
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Figure 5-21 ROC curves and AUROC values obtained from the two landslides datasets 

 

 

Figure 5-22 Distribution of BR and SDL in susceptibility classes. 
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5.3.3 Discussion 

The susceptibility map presented in Figure 5-20 is the first attempt to predict at regional scale the 

probability of occurrence of shallow landslides that involve the fractured and weathered portion of rock 

masses. The distribution of susceptibility is strongly influenced by the setting of Geo-Mechanical Bedrock 

Units and related geotechnical parameters, which lead to abrupt gaps of susceptibility classes, between 

the northern and the southern portions of the study area. According to the distribution of BR visited 

landslides, the model here presented shows very good performance, as demonstrated by both the ROC 

curve and the AUROC value (Figure 5-21). In Figure 5-22 the distribution of BR and SDL within the 

different susceptibility classes is shown. The histogram suggests that: 16% of BRL, falling in Stable Areas, 

are not predicted to fail by the model; nevertheless about 60% of BRL occurred in the highest 

susceptibility classes (High and Very High). Even though the performance of the model in respect to the 

SDL is quite weak, about 30% of SDL are located into the highest susceptibility classes. This suggests 

that SDL and BRL may share some conditioning factors this kind of model is not able to control. 

Moreover, a similar result is obtained in the paragraph 5.2, where the susceptibility assessment for the 

two different datasets was performed by using the Information Value.  

Figure 5-23 is a scatter plot of the median log Qc/T values of BRL and SDL obtained from the two 

different physically based models. In the x-axis the median log Qc/T value resulted by the model in Figure 

5-4, computed assuming a sliding surface corresponding to the slope deposit/bedrock discontinuity (SD 

model) is reported. While, in the y-axis the median log Qc/T resulted from the model presented in this 

paragraph, assuming a sliding surface located beneath the slope deposit/bedrock discontinuity (BR 

model), is reported. A landslide where the failure occurs in correspondence of the slope deposit/bedrock 

discontinuity or above should have a higher susceptibility value in the SD model rather than in the BR 

model, and vice versa. The susceptibility value increase in the bottom left corner, while the top right 

represents Stable Areas (no log Qc/T computed), therefore a dot located in the x or in the y axis 

correspond to a landslide occurred in an Unconditionally Stable site. The dots located in correspondence 

of the bisector are landslides which obtain the same susceptibility value (median log Qc/T) whether the 

sliding surface corresponds to the SD/BR discontinuity or is below it. The larger the dot distance from 

the bisector, the greater the log Qc/T deviation between the models. It is expected the orange dots should 

be located under the bisector, while the opposite for the blue dots. Even if the deviation between the 

two models is not wide for some landslides, the majority of SDL are located over the bisector suggesting 

that the SD model well predict these slope failures. Moreover, a significant number of SDL are predicted 

as Stable in the BR model. Despite the BR model performed quite well, testified by orange dots having a 

significantly higher log Qc/T deviation from the bisector than blue dots, there is a significant number of 

BRL with a lower log Qc/T value in the SD model or which are stable according to the BR model. Several 
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explanations can be given for substrate landslides that fall in stable areas or that are more susceptible 

according to the SD model. Among all, they may be sites where the depth map is not accurate, or, due 

to the small extension of these shallow landslides, the DEM may not be enough effective in characterizing 

the morphology of those locations. 

 

 

Figure 5-23 Comparison between median Log Qc/T of visited BR and SDL occurred in the Macigno Formation. 
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Combining, overlapping and comparing both the susceptibility maps allow to spatially discriminate 

between the areas where either one kind of landslide or the other is more probable to occur. In order to 

compare and discriminate between areas where the landslides involve SD only or BR also, different 

approaches can be proposed. Here, two different approaches are presented and discussed.  

In the map presented in Figure 5-24, the combination of the two physically based susceptibility models is 

provided intersecting the susceptibility classes of the two input maps. In this way, it is possible to highlight 

the areas in which the deviation between the susceptibility classes of the models is present. In example, 

a pixel classified in the low susceptibility class (2) in the SD model and in the very high susceptibility class 

(5) in the BR model, is represented by a red tone, corresponding in the legend of Figure 5-24 to “BR +3”: 

Note that the same result could be obtained if the pixel was classified as “Stable Area” (1) in the SD 

model and in the high susceptibility class (4) in the BR model. With the green color are represented Stable 

Areas shared by both models, while the grey describes sites which display the same susceptibility class, 

regardless of the severity of the input class. Red/orange and blue tones describe the increase of 

susceptibility class.  
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Figure 5-24 Combination of the two susceptibility map. The input maps were classified in susceptibility classes and then 
intersected. With red tones are represented pixels where the susceptibility class of the BR model map is higher. With blue 
tones are represented pixels where the susceptibility class of the SD model is higher. Grey pixels represent areas where the 
two models share the susceptibility class. In green, the stable area are represented. 
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Another more accurate approach can be followed. As introduced in paragraph 2.6.1, locations 

characterized by lower log Qc/T are interpreted as more susceptible to shallow landsliding. Instead, 

locations with higher values of this indicator are interpreted as more stable, as less frequent rainfall events 

would be required to cause instability (Montgomery and Dietrich, 1994). Consequently, in order to 

compare two maps of (log Qc/T)SD and (log Qc/T)BR representing the pixel-based susceptibility to SDL 

and BRL respectively, the following ratio may be used: 

 

Equation 5-1 

𝑟𝑆𝐷 𝐵𝑅⁄ =  
log 𝑄𝑐/𝑇𝑆𝐷

log 𝑄𝑐/𝑇𝐵𝑅
 

 

The condition r(SD/BR) > 1 will indicate pixels with higher susceptibility to SDL than BR, the opposite for 

the condition r(SD/BR) < 1. Nevertheless, the physically based model chosen in this PhD thesis to estimate 

pixel-by-pixel log Qc/T was implemented with a probabilistic approach: first, ranges representing the 

variability of input parameters were defined, then, for a large number n (ex., n=10,000) of iterations, sets 

of parameter values were randomly selected from these ranges to obtain the frequency distribution of log 

Qc/T, this latter representing the whole set of values which may trigger landsliding. 

This output allowed us to perform a more advanced analysis about the type of landslides which are 

expected to be triggered within the study area. Considering that lower values of log Qc/T correspond to 

more frequent rainfall events, the lower percentiles (namely, the percentile 25 – p25) of the log Qc/T 

frequency distribution were assumed to be more representative than the higher to perform the 

comparison between susceptibilities to SDL and BRL. These values were used to calculate r(SD/BR)
p25 and 

to select the most probable type of landslides, as above described. 

Moreover, in order to obtain a comprehensive new map which describes the susceptibility for both SDL 

and BRL, the minimum log Qc/T 25th percentile value of the two distributions was selected pixel-by-

pixel and merged in a unique output (Figure 5-25).  
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Figure 5-25 Integration of SDL and BRL landslides susceptibility models. The susceptibility is expressed as the 25th 
percentile of the log Qc/T distribution. 
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The distributions of log Qc/T of the two susceptibility models were then used to calculate the normalized 

overlap Ov between the ranges (p95 – p5), as defined in the following equation: 

 

Equation 5-2 

𝑂𝑣 =
𝑅 − (𝑑𝑝5 + 𝑑𝑝95)

𝑅
∗ 100 

where dp5 and dp95 are the absolute deviation between the 5th and 95th percentile values of log Qc/T 

respectively, while R is the range between the minimum 5th percentile and the maximum 95th percentile 

of the two distributions. An example of log Qc/T distributions and percentage of overlapping is provided 

in Figure 5-26. 

This approach has allowed to provide an estimate of the degree of discrimination between the two failure 

type probabilities. Small values of Ov indicate pixels where the probability of the selected landslide type is 

“clearly” higher than the other, while high values (up to 100%) indicate that the probabilities of SDL and BRL 

are each other similar. Both the above information are represented together in Figure 5-27.  

 

 

Figure 5-26 Example of percentage of overlapping for log Qc/T distributions 
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Figure 5-27 Map describing both the r(SD/BR) and Ov (%). 
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6 GENERAL DISCUSSION 
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6.1 SHALLOW LANDSLIDE INVENTORY  

In order to conduct shallow landslide susceptibility analyses, the availability of a landslide inventory, best 

if providing accurate information on both the state of activity and the date of occurrence is a fundamental 

tool for obtaining reliable results. The study area is located in the Tuscany Region which provides a 

geological and geomorphological database including a landslide inventory, which was compiled by means 

the regional geomorphological survey and post-event reports provided by local administration and 

research institutions. The landslide database of the Tuscany Region is also an input for the IFFI project 

(Figure 6-1, Inventario Fenomeni Franosi Italiani), a national scale project aimed at mapping all landslides 

occurring in Italy. However, the Tuscan regional database of landslides mostly provides information on 

the date of occurrence of the phenomena, the state of activity and the type of movement.  

For this reason, when this PhD program was conceived, the first step was to compile a new multi-

temporal inventory of shallow landslides, mostly triggered by intense rainfall events (Figure 3-12) through 

visual interpretation of orthophotos maps. The Tuscan Region, from the 2000s onwards, regularly 

acquires (approximately every three years) these remote sensing data for the entire regional territory. 

Although there are automatic and semi-automatic methods based on the analysis of satellite images or 

digital terrain models, the multi-temporal visual interpretation of orthophotos was chosen as it is currently 

to be one of the most widely used and accurate methods (Guzzetti et al., 2012). Furthermore, considering 

that the aim was to map shallow landslides, this method is very effective especially in densely wooded 

areas where landslides can be easily recognized thanks to abrupt local-scale variations in texture and tone 

/ color, sharp interruption of vegetation and cultivated fields, disruption of linear patterns, and 

occurrence of U-shaped elongated features. 

Fieldwork tasks in the landslide areas allowed to assess the accuracy of both remote recognition and 

object delineation, as well as acquiring in situ data for the characterization of landslides and materials 

involved.  

The validation of the inventory led to visit about 56% of the interpreted objects obtaining an overall 

accuracy of 0.8 with a True Positive Rate of 0.84. Out of 86 mapped polygons, 18 were found to be false 

positives (objects erroneously mapped as landslides). In general, these misinterpreted entities were found 

to be man-made excavations along the slopes, recent deforestation areas, and, rarely, outcrops of rock or 

loose debris. About 13 landslides were recognized in the field only (False Negatives). Two reason may 

be invoked to explain why these features were not identified from the images: either they were triggered 

after the acquisition of the most recent orthophoto analyzed (2016), or they were located within shaded 

areas. All the orthophoto maps analyzed were acquired in the same season and time interval, late spring 

in the morning. This implies that the slopes exposed towards W-NW may be often not enough 

illuminated to identify the scar of shallow landslides. Nevertheless, only 3 of the 13 landslides (False 
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Negatives) are located in W-NW shadowed slopes. This suggests that probably the remaining 10 

landslides could be occurred after 2016.  

When dealing with shallow landslides, the time factor is important. Being these phenomena of modest 

size and depth, in mid-latitude climate conditions the regrowth of vegetation can be fast so within few 

years the landslide scar may be not recognizable neither remotely nor during fieldwork.  

Since the orthophotos analyzed were acquired from 2003 onwards and the validation field survey was 

carried out in 2018, it is interesting to discuss the conditions of vegetation regrowth in the visited 

landslides. The Table 6.1 shows the frequency percentage of visited landslides classified as a function of 

the time span  between development and image acquisition, as well as the degree of vegetation regrowth. 

It is interesting to note that about 50% of shallow landslides occurred more than 5 years before the 

validation field survey are not easily accessible and recognizable. This highlights how important it is for 

shallow landslides to conduct a multi-temporal interpretation of images acquired in epoch close to failure 

time (best at 5 years or less) in order to mitigate the issue of obtaining an incomplete landslide inventory. 

The magnitude-frequency function is often used to investigate the completeness of a landslide inventory, 

to quantify the amount of slope failures expected after a given event and to estimate the role of landslides 

in erosion processes (Malamud et al., 2004; Fell et al., 2008; Corominas et al., 2014). Several studies have 

proposed that the non-cumulative size-frequency distribution of landslides follows a negative power-law 

relationship for medium to large landslides (Hovius et al., 1997; Pelletier, 1997; C. Stark and Hovius, 

2001; Ardizzone et al., 2002; Malamud et al., 2004). The non-cumulative frequency-density of a landslide 

inventory is given by the number of landslides versus the range of area. The probability density function 

(pdf) can be estimated normalizing the frequency-density to the total number of landslides of the 

inventory. In the literature, power-law relationship exponent estimation varies from α = 1.4 to α = 3.3 

(Van Den Eeckhaut et al., 2007). This scaling exponent may vary with underlying geology (Guzzetti et 

al., 2008; Frattini and Crosta, 2013b; Hurst et al., 2013) or with the failure type (Brunetti et al., 2009; 

Hurst et al., 2013). The landslide size-distribution exhibits a negative power-law relationship for medium 

to large events, meanwhile pdf shows a rollover to a positive power-law relationship for smaller 

landslides. In the literature, there’s no agreement about the definition of the rollover. Some authors 

defined the rollover as the modal value of pdf distribution (Stark and Hovius, 2001; Stark and Guzzetti, 

2009b; Li et al., 2016) while other authors consider the rollover approximately as the point of departure 

of the data from the power-law (Guthrie and Evans, 2004; Guthrie et al., 2008). Regarding the meaning 

of rollover, three main hypotheses have been proposed. The first is ascribed to the interplay of cohesion 

and friction, stating that these parameters counteract landsliding for small or large landslides respectively 

(Pelletier, 1997; Guzzetti et al., 2002; Malamud et al., 2004; Stark and Guzzetti, 2009b). Alternatively, 

erosion, reworking of deposits and fast vegetation regrowth may be responsible for the concealing of 

small landslides, resulting in a under sampling of the landslide inventory (Brardinoni and Church, 2004). 
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Another issue regards the spatial resolution and the scale of the remotely sensed data used to acquire 

landslides data (Galli et al., 2008; Guzzetti et al., 2012). The landslide dimension at which rollover occurs 

in historical inventories is located at larger sizes in respect to event-based inventories because small 

landslide “disappears” faster in respect to larger landslides (Trigila et al., 2010; Guzzetti et al., 2012). For 

the pdf of the shallow landslide inventory compiled in this work (reported in Figure 6-2), the power-law 

relationship exponent resulted to be in agreement with the literature (α = 1.4) and the rollover was located 

at ca 92 m2.In the Figure 6-2 this  pdf is plotted together with the pdf of the Tuscany Region inventory. 

The latter is shifted to the right as it is most probably depleted for small landslides, thus demonstrating 

that an adequate inventory is needed to model shallow landslides susceptibility. The roll over in the 

function of the Tuscany Region is at ca 1025 m2 while α is 1.2. Anyway, the inventory here proposed 

cannot be considered completely representative, as it does not include slow moving and/or deep 

landslides. Nevertheless, the pdf distribution of the multi-temporal inventory built during this PhD 

research suggests: a) the rollover is a recurrent phenomenon depending on the scale of analysis, b) shallow 

large landslides (area > 104 square meters) are lacking. 

The distribution and frequency of shallow landslides (Figure 4-1) is closely linked to the lithological nature 

of the bedrock on which they occur (Bedrock Lithological Unit, BLU), which influence the properties of 

the involved materials, the morphology of slopes and the hydraulic conditions. For the whole study area, 

the average density is 0.8 landslides/km2. The BLU which appears to have the greatest number of 

landslides is BLU11 (Sandstones), while the one with the least number is BLU21 (Marbles). By 

normalizing the frequency for the extension of the BLUs, it appears that the BLU with the highest 

landslide density are BLU23 (Limestones) and BLU51 (Shales and Marls). BLU 62 (Metarenites) and 61 

(Phyllites) show high density values however given both the small number of landslides and the small 

extent, the data cannot be considered reliable. The meta-carbonates BLUs (21 and 22) show the lowest 

landslide density. This result is in good agreement with the common lack of slope deposits and the 

excellent quality of the bedrock. The high density within BLU 23 and BLU 51 may be explained with two 

different reasons. Most of the landslides that occur in the BLU 23 involved bedrock (out of 15 landslides 

visited, 13 involve the bedrock). Consequently, as highlighted by the results of physically based modelling 

applied to bedrock landslides, it is reasonable to assume that the rocks under the contact with the slope 

deposits have poor quality due to weathering and fracturing. BLU 51 is made up of shales and marls, 

where an equal distribution of landslides either involving the bedrock or the slope deposit only are 

observed. In the first case, since this rock mass have low permeability, the overlying slope deposits are 

quickly saturated during intense rainfall events, triggering shallow landslides. Instead, involving bedrock 

landslides may have been caused by the low shear strength of clayey and marly materials. BLU 31 consists 

mainly of weakly cemented continental deposits, that are nowadays incised and eroded by the drainage 

network, leading to the formation of very steep river embankments. It is reasonable to hypothesize that 
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these landslides may be caused both by the steep morphology and bank erosion processes. Most of 

landslides occurred in the BLU 11 (Sandstones) involved the bedrock. Given the large number of 

landslides visited during fieldwork in this BLU, a modified physically based susceptibility model was 

implemented for this area also including the topmost bedrock underlying the slope deposits. 

 

 

Figure 6-1 Landslides index map and landslide area-frequency distribution of the IFFI project (from Trigila et al. 2010). 

 

Table 6.1 Vegetation regrowth degree in visited landslides according to the period of occurrence 

 

Over 10 years Within 10 years Within 5 years Within 2 years

No vegetation regrowth, fresh scar 29 14 37 54

Poor vegetation regrowth, all the landslide 

features easily recognizable
17 36 42 31

Widespread vegetation regrowth, scarp and 

accumulation body not easily recognizable 
38 43 21 15

Completely regrowth of bush and trees, not 

recognizable in the most recent images
17 7 0 0

Total 100 100 100 100

Time elapsed between landslide occurrence and the 

fieldwork
Vegetation degree of regrowth (% frequency)
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Figure 6-2 Magnitude-frequency relations obtained for the LI compiled in this work and the Tuscan Region database 

 

The field survey allowed to acquire also important information such as material involved, the movement 

type and geometric features of shallow landslides. A very interesting finding was the high percentage 

(about 60%) of landslides developing the sliding surface below the discontinuity between the slope 

deposit and the bedrock. These observations were carried out on the main scarp, as well as on the lateral 

scarps.  

Planar rockslides and avalanches typically characterize involving bedrock landslides. According to the 

definition of Hungr et alii (2014), rock planar slides consists on the sliding of a mass of rock on a planar 

rupture surface, with little internal deformation. The slide head may be separating from stable rock along 

a deep, vertical tension crack. This kind of landslides may evolve in a rock avalanche if the material 

disintegrates during the run-out. Rock avalanche are phenomena characterized by the interaction among 

rock fragments and water, which lead to a flow-like motion. For both these failure types bedrock 

fracturing and weathering is a predisposing factor. Field evidences suggest that in bedrock landslides, 

sub-vertical joint systems orthogonal to bedding, may play a fundamental role for the failure.  

According to the classification proposed by Hungr et al. (2014), the majority of SDL are planar debris 

slide, where an almost planar rupture surface develops parallel to the ground surface. Sometimes, debris 

slides become flow-like after a short distance and transform into debris avalanches. Rotational slides are 
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characterized by scarp height larger than 1.5 m. Granular flow-slide are present in the study area and 

characterized mainly by gravelly and sandy SD lying above the Macigno formation.  

Due to logistical and approaching problems, it was not possible to visit additional landslides and conduct 

further detailed analyses. It is worth noting that these problems that led to visiting some landslides instead 

of others could be a source of uncertainty in the data acquired in the field. However, even if the 

distribution of the landslides visited is not random, the data obtained from the field survey are sufficiently 

heterogeneous to exclude major errors. 
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6.2 SLOPE DEPOSITS FEATURES AT REGIONAL SCALE 

About 8 months were necessary to develop the Slope Deposits Engineering Geological Units map 

(SDEG map), 4 months for the collection of data in the field, 2 for laboratory analyzes and 2 for data 

processing. The method described here allowed to produce a fairly accurate map of the depth of the 

slope deposits and to estimate their geotechnical parameters, on lithological and morphometric basis. It 

is fair to note that although there are more advanced methods to estimate the depth (automatic drilling 

machine, geophysical methods)  and shear strength parameters of SD (shear tests), it is unlikely to think 

of using those tools in a large area that has a mountainous and logistically complex morphology. 

Furthermore, the costs would be enormous to reach an adequate amount of data to characterize an area 

such as the one investigated in this work. The proposed method is spatially oriented to regionalize, which 

can certainly be improved, has a limited cost, while the consumption of time and energy depends on the 

geological and geomorphological variety of the survey sites. The uncertainty resulting from this procedure 

is discussed below. 

The depth of the slope deposits is a tricky quantity to estimate predict and its spatial variability can be of 

the order of tens of centimeters moving tens of meters. For this reason, instead of mapping the SD depth 

as a spatially continuous set of scalar values, a nomenclature of depth classes with constant amplitude 

was chosen. Having set the width of the classes at 30 cm, the minimum expected uncertainty within each 

class is ± 15 cm. The accuracy of SD depth map proposed in this work ranges from 0.49 to 0.68, as 

described in paragraph 4.2.2. If, on the other hand, a greater error is accepted, i.e. that the uncertainty 

expected for each class is ± 45 cm and therefore the assigned class is the one immediately higher or lower, 

the accuracy rises from a minimum of 0.77 to a maximum of 0.88. As a general results the SD depth map 

highlight that depth increases moving from the ridges towards the valley floor, in accordance with the 

theoretical models that describe the development of the SD along the slopes (Dietrich et al., 1995; Lu 

and Godt, 2011).  

The modelling of SD depth is fundamental task for landslide susceptibility analysis and several authors 

proposed different approaches in the last decades (Salciarini et al., 2006; Segoni et al., 2012; Zizioli et al., 

2013; Kim et al., 2016; Cascini et al., 2017) to predict SD depth at regional scale. With the exception of 

Kim et alii (2016), where the depth measurements of the slope deposits are interpolated with the kriging 

method, the other authors model this parameter on a morphometric basis, using variables such as 

elevation, slope, curvature, and so on. Results by Salciarini et alii (2006) show that errors between 

predicted and modelled depth is often greater than one meter and may overcome 1.5 m (Figure 6-3). The 

same deviation (Figure 6-4) is about 0.5 m with maximum values of about 1 m for the model adopted by 

Zizioli et alii (2013). In two different study areas Segoni et alii (2012) obtained with the GIST model a 

mean absolute error of 11 cm and 23 cm for the first and the second study area, respectively (Figure 6-5). 
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The approach developed by Cascini at alii (2017) consists on the assignation of a depth range (with a 

variable amplitude ranging from 0.5 m to 2 meters) combining thematic maps such as lithology, slope, 

elevation, curvature and landslide mechanism. The 55% of the test dataset used to validate the depth map 

resulted to have a deviation between measured and observed values equal or less than 0.3 m (Figure 6-6). 

Finally, the mean absolute error resulted from the cross-validation of the SD depth map by Kim et alii 

(2016) is 0.74 meters (Figure 6-7).  

Given the results listed above, the method proposed in this work allow to obtain a map of slope deposits 

depth reasonably accurate, especially considering the study area extension and the involvement of regions 

characterized by pronounced geological and geomorphological variability. In this regard, for the approach 

proposed in this PhD thesis, the main assumption is that different lithologies imply different landforms, 

which in turn affect the distribution of SD depth. Carbonate, metacarbonate and phylladic rocks in fact 

give rise within the study area to steep landforms characterized by very thin deposit depths, as the classes 

with a depth of less than 90 cm prevail. Sandstone as well as shale and marl are covered by thicker slope 

deposits which are often deeper than 120 cm in correspondence of large first order hollows and at the 

foot of longer hillslopes. 

 

 

Figure 6-3 Relationships between soil thickness and slope values; data are modelled by using an exponential model 
(from Salciarini et al. 2006) 
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Figure 6-4 Scatter plot of soil thickness calculated by a topographic model and field measurements (from Zizioli et 
al. 2013) 
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Figure 6-5 Frequency-Error histogram and mean absolute error for the two study area of the model proposed by Segoni et 
alii (2012) 

 

 

 

Figure 6-6 Results of depth discard betwen measured and observed data (Mv-Av) (from Cascini et alii, 2017) 
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Figure 6-7 SD depth statistics and cross validation of the SD map proposed by Kim et alii (2016) 

 

From the laboratory results of the grain size and plasticity properties, a correlation emerges between the 

USCS class of SD and the lithological nature of the underlying bedrock. The sandstones (BLU11) are 

almost exclusively characterized by SM deposits (silty sand), shales and marls tend to generate finer 

deposits belonging to the ML, SM and SC (silt, silty sand and clayey sand, respectively) classes, the 

metasedimentary rocks (Phyllites and Metarenites, BLU61 and BLU62) have deposits of similar 

composition (SM and GM, silty sand and silty gravel) although with varying proportions. The deposits 

lying above the limestones of BLU 23 instead, have a wider variability: the USCS classes show the modal 

value SM, but SC, GM and ML are also widespread.  

Working at regional scale, further data than laboratory results are necessary in order to estimate the 

variability of geotechnical parameters of slope deposits. 

To this purpose, also results of field estimations were used. Figure 4-25 shows the scatter plots comparing 

the grain size proportions resulting from the two datasets, and in Table 4.9 the Mean Bias Error for each 

class is reported. As shown by the graphs the average error is the same and is ca 6%.  

In the work of Vos et alii (2016) these authors observed that the uncertainty between the 

field and laboratory estimates due to the operator for sandy, silty and clayey fractions (according to limits 

USDA), is respectively 4, 12 and 16%. Furthermore, these authors pointed out that an intrinsic 

uncertainty affects the method used to estimate the grain size fractions in the field: the range of variability 

for the same textural class in the USDA triangle is generally in the order of 10–45%. Therefore, taking 

into account these issues, an average difference of ≈ 6% between the field estimates and laboratory tests 

may be considered a good result. 

When integrating field and laboratory analysis datasets of grain size according to a simplified USCS 

classification (Figure 4-38) a relevant outcome is the marked increase of gravel. When a slope deposit is 

composed by more than 40% of coarse-grained particles (d>2 mm) both undisturbed and representative 

sampling are tricky. Considering the simplified USCS classes: SD in the BLU 11 (sandstones) are 
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essentially composed by gravels and sands (silty sands mainly), BLU 51 (shales and marls) and 23 

(limestones) display similar proportion among F-S-G, while BLU 61 and 62 (phyllites and metarenites) 

are poor in sandy SD in respect to G and F. Finally, BLU 21, 22 and 31 are very little represented.  

In order to collect SD parameters used to perform landslide susceptibility analysis a literature review was 

conducted (Table 6.2) to compare them with the friction angles and saturated unit weights obtained by this 

research (Table 4.14). About 40% of the papers listed in the table, implement the stability analysis by using 

both shear strength parameters and unit weight acquired from the literature. Among the works where 

SD properties were assessed by means of laboratory analysis, only the works of Chen and Zhang (2014) 

and Cervi et al. (2010) are performed at regional scale, confirming that when working for large areas it is 

too costly in terms of time and resources to conduct laboratory shear tests on a large amount of 

representative samples. However, the results of saturated unit weight determinations of this research 

(17.8-20.4 KN/m3) are in good agreement with those obtained by Zizioli et alii (2013), as well as the 

friction angles (26.2°-33°). A good degree of agreement there is observed with the data provided by Marin 

and Mattos (2019), Meisina and Scarabelli (2007) and Salciarini et alii (2006). Since no direct laboratory 

shear tests were carried out in this work, the effective cohesion values were estimated in back-analysis 

starting from the input values shown in the Table 6.3. Initial c' data were assigned for each EGU based on 

particle size distribution and USCS class. The calibration was performed at EGU scale taking into account 

both the absolute susceptibility results obtained by PROBSS and the new inventory of shallow landslides 

compiled in this work. The PROBSS model provides three different conditions: the Qc-dependent (Qcd), 

the Unconditionally Stable (US) and Unconditionally Unstable (UU). Since PROBSS is a steady-state 

model, in UU areas slope failure occurs even when the SD is dry (W = 0). These areas are probably rock 

outcrops, where the slope steepness is too high to allow sediment accumulation (Montgomery et al. 1998). 

Thanks to the SD depth map obtained in this research, bedrock outcrops and/or very thin SD depth 

(<30cm) areas have a well-constrained distinction, decreasing the probability of misprediction occurring 

when UU areas are widespread. Consequently, since the UU condition is a paradox, the first calibration 

to be performed on the effective cohesion is to set its minimum value at BLU scale in order to minimize 

the UU areas. The US zones are sites where there is no slope failure even when the W = 1, i.e. the water 

table reaches the topographical surface. The maximum effective cohesion value is set at EGU scale in 

order to minimize the number of landslides falling within the stable areas. By intersecting the levels of 

US, EGU and landslides, the c’ maximum value is decreased in the EGUs in which slope failures have 

occurred. A similar approach is performed in the Qc-dependent (Qcd), corresponding to those areas 

which do not fulfil both the UU and US condition, maximizing the susceptibility value in EGUs were 

landslides have occurred by decreasing the value of c '. The procedure described above is iterative. To 

quantify the role of effective cohesion for the estimation of the susceptibility to SD, two scenarios with 
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constant c' values of 1 kPa and 10 kPa are respectively computed and compared with the output of the 

model obtained after the calibration of c’ (Figure 6-8).  

 

Table 6.2 Literature review of shear strenght and saturated unit weight values used as input parameters for regional 
physically-based susceptibility modeling 

Reference 

Saturated 
unit 

weight 
(kN/m3) 

Friction Angle (°) 
Effective cohesion 

(kPa) 
Source of 

SD 
parameters 

Study 
area 

(km2) 
 min max min max 

Teixeira et al. (2015) 13.7-15.7 31 35 2 2.3 back-analysis 1.2 

Marin and Mattos (2019) 19-19.5 22.5 30 7.9 15 
lab test on 
specimens 

0.1 

Meisina and Scarabelli (2007) 19.5 18 35 0 0.23 
lab test on 
specimens 

5 

Michel et al. (2014) 14-21 25 37 9 14 
lab test on 
specimens 

16 

Zizioli et al. (2013) 17.4-19.9 23 32 0 10 
lab test on 
specimens 

26 

Pradhan and Kim (2016) 16.5 35.6 35.6 2.14 2.14 
lab test on 
specimens 

33 

Chen and Zhang (2014) 21 31 42 2 6 
lab test on 
specimens 

164 

Cervi et al. (2010) 20-24 10 35 0 10 
lab test on 
specimens 

450 

Oliveira et al. (2017) 17.5-21 19 27 1 4 literature 14 

Salciarini et al. (2006) 18-19.5 18 34 0 10 literature 100 

Carrara et al. (2008) 18 30 40 1 3 literature 300 

Weidner et al. (2018) 15 30 35 1 4 literature 375 

Wang et al. (2020) 13-21 16.5 40 5 50 literature 2*105 

 

Table 6.3 Comparison among results of physically-based susceptibility models implemented with constant effective cohesion 
values of either 1kPa or 10 kPa, or based on c’ calibration 

 

 

min max median Total area Landslides Total area Landslides Total area Landslides

26.3 2.6 62.4 82.7 11.3 14.7

97.3 87.4 2.7 12.6 0 0

3.15 6.27 4.75 64.6 13.6 35.3 86.4 0.1 0.0

10

US (%) QcS (%) UU (%)Effective Cohesion

1
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Figure 6-8 Quantification of the role of effective cohesion for the estimation of susceptibility of SD. Effects of constant c' 

values of 1 kPa and 10 kPa compared with the c’ range obtained by model calibration. 
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6.3 ASSESSMENT OF BEDROCK GEO-MECHANICAL 

PROPERTIES AND REGIONALIZATION  

In the literature different methods for the classification of rock masses have been proposed. Among the 

most used the Barton’s Q (Barton, 1976), RMR (Bieniawski, 1993), RMi (Palmstrøm, 1996) and GSI 

(Hoek, 1994; Marinos and Hoek, 2000) methods may be selected. All these methods were developed as 

a response to the need to quantify the quality of rock masses for engineering purposes. Except for the 

GSI, this is done mainly by integrating a set of "weights" derived from physical and engineering geological 

characteristics, such as the lithological nature, the uniaxial compressive strength and the frequency, 

weathering and persistence of discontinuities. Excepting for the GSI, the application of the rock mass 

classifications listed above is time consuming and not feasible for regional scale rock mass quality 

assessment. For this reason, in this work the GSI was preferred due to its fastness and versatility in 

characterizing natural outcrops. This method was integrated with the analysis of the joints and the in-situ 

acquisition of Schmidt hammer rebound (Rv) applied over the whole extension of the outcrops, by using 

a regular grid consisting of twenty nodes where twenty rebounds are acquired. This approach allowed to 

calculate an outcrop average rebound value Rv that was then used to empirically estimate the uniaxial 

compressive strength (UCS) by means the empirical correlation proposed by Deere and Miller (1966), 

chosen because reach the highest correlation index (0.94) and include the dry unit weight. The Deere & 

Miller formula was obtained by measuring mainly hard rocks, for this reason the minimum R value 

measured by the authors in their specimens is 23. The rebound values obtained in this work are 

sometimes lower that this value, opening up the issue of the reliability of the empirical relationship to 

calculate low UCS values. Among other empirical correlation available in the literature (Table 2.5), validity 

range that are suitable for the purpose of this work are proposed by: Aufmuth (1973), Torabi et al. (2011), 

Karaman and Kesimal (2015), Selçuk and Yabalak (2015) and Hebib et al. (2017). The empirical 

correlation proposed by Aufmuth is the only one based on a linear equation and tends to overestimate 

the value of UCS compared to other works. Hebib et al. (2017) conduct the analysis only in sedimentary 

rocks. In the functions proposed by Torabi et al. (2011), Karaman and  Kesimal (2015) and Selçuk and 

Yabalak (2015) the dry unit weight is not considered. Regarding this issue, Aydin and Basu (2005) discuss 

the usefulness of implementing in empirical correlations the dry unit weight affirming that where reliable 

density measurements are available, they will likely correlate as well with the mechanical properties as the 

Schmidt hammer test. The use of dry unit weight may help reducing the influence of surface deterioration 

and/or small-scale variations (of asperities, minerals, cracks, etc), which could dominate Schmidt hammer 

results of certain specimens. Since one of the objectives of this PhD thesis is to characterize the properties 

of sub-surface rock masses at regional scale, the dry unit weight is useful for discriminating among rock 
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masses of the same or different BLU but affected by different processes of micro-fracturing and 

weathering.  

 

In the literature, few works have been found aiming at spatialization of rock masses quality at regional 

scale and they are based on geostatistical methods. Shokri et alii (2020) provide a review about spatial 

correlation of measurements in rock mass. The authors report a summarizing table of semi-variogram 

parameters (nugget, sill, range) of several case studies aiming to spatialize geotechnical properties such as 

GSI, Schmidt Hammer rebound, UCS, RMR and so on. Mammoliti (2020) proposed an expeditious 

method based on the systematic collection of fieldwork hardness measurements to describe the variability 

of subsurface rock masses quality at the map scale. The spatialization of field data was performed by 

using Bayesian Networks and morphometric variables. Nevertheless, in this thesis, the aim was to 

recognize the existence of spatial domains (BMU) characterized by different geo-mechanical properties. 

Hence, uni-variate and multi-variate clustering were used to highlight that, within the same geological 

formation (the Macigno flysch, MAC), a clustered variability of rock mass properties occurs influencing 

the distribution of shallow landslides. The expert-based delineation of BMUs is based on the assumption 

that the geological evolution of the study area, together with meteoric weathering and erosion, played a 

fundamental role in shaping the landscape and diversifying the geo-mechanical evolution of rock masses. 

The biggest limitation of this approach is that the boundaries of the BMUs are abrupt and not always 

defined by indisputable geological evidence.  

The distribution of bedrock properties in the Macigno formation is characterized by the occurrence of a 

low-quality cluster, located in the southern portion of the study area, in which Rv and GSI have the 

lowest values. Higher Rv and GSI occur in the western and eastern portion (BMU3 and 4) displaying also 

an increase of Jv, suggesting that while the BMU1 is the most weathered, BMU3 and BMU4 are more 

fractured. Finally, BMU2, located in the northern portion, has the lowest Jv and the highest Rv and GSI. 

This clustering may be related to the structural setting of the study area. The Garfagnana valley is a 

tectonically active narrow post-collisional basin (Carmignani et al., 2001) with a Late Quaternary throw 

rates ranging from 0.4 to 0.6 mm/year (Di Naccio et al., 2013) bounded by two main sub-parallel ridges 

less than 20 km far to each other. Both the ridges reach about 2000 m a.s.l. In the southwest mainly 

consisted in green schists facies metamorphic rocks while in the north-east sedimentary flysch (Macigno 

fm.) crops out from the bottom of the valley to the watershed (Figure 3-7). This morpho-structural setting 

is due to regional systems of normal faults dissecting the Apennine’s chain. The geo-mechanical clusters, 

recognized by integrating field surveys and spatial processing of measurements during this PhD research, 

coupled with the tectonic information above-mentioned, allow to depict an interesting novel framework:  

quality of the rock masses increases in correspondence of the footwall of major normal faults, while are 

worst at the hanging wall, which today correspond to the bottom of the Garfagnana valley. This area 
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corresponds more or less to the BMU1. These characters may be explained with both a slow erosion rate 

and lower topographic elevation, which in turn imply faster weathering as well as slower bedrock erosion. 

The Macigno sandstones is a rock used as building material and dimension stone since prehistoric times 

and is still quarried in some areas of the northern Apennines. In Lezzerini et alii (2008), rock specimens 

were sampled into two quarries located about 50 km away from the study area of this PhD thesis, to 

uniaxial compression test. The UCS resulted to be 140 MPa. The UCS results obtained here by means 

empirical correlations, provided maximum values of 70 MPa and minimum values of 15 MPa. Although 

these data cannot be directly compared, it is worth to note that the geomechanical properties of the 

subsurface units of this formation are spatially heterogeneous as a combined effect of regional tectonics 

and weathering. As a consequence, the same formation may result as a source for dimension stone or 

either the location for one of the most landslide prone areas in northern Apennines (Avanzi et al. 2010 

and references there in; D’Addario et al. 2018). 

 

As for the procedure here implemented to estimate the shear strength parameters of the bedrock, the 

method proposed by Hoek and Brown (1997) to calculate Mohr-Coulomb equivalent parameters is 

widely accepted and used in the literature (Sjöberg, 1997; Marinos and Hoek, 2001; Cai et al., 2004, 2007; 

Priest, 2005; Tüdeş and Ceryan, 2011; Shen et al., 2012; Berti et al., 2017; Vásárhelyi and Kovács, 2017; 

Wei et al., 2019). The method allows to estimate the internal friction angle and effective cohesion of rock 

masses by using the uniaxial compressive strength (UCS), a frictional parameter (mi) and the GSI. In 

general, rock masses exhibit post-peak strain-softening behaviour where the post-peak strength depends 

on the resistance developed on the failure plane against further straining (Cai et al., 2007). In jointed rock 

masses the failure occurs mainly depending on fractures orientation, degree of interlocking and surface 

roughness. The current GSI system guidelines were developed for the estimation of the peak strength. 

Cai et alii (2007) proposed a new method for the estimation of residual strength of rock masses reducing 

the peak GSI to the residual GSI, based on in-situ block shear test data from three large scale cavern 

construction sites and data from a back-analysis of rock slopes (Figure 6-9). Since the aim of this work is 

to evaluate shear strength parameters of jointed rock masses affected by deformation due to slope 

failures, the equivalent Mohr-Coulomb parameters were calculated using the residual GSI. In Table 6.4 the 

shear strength parameters obtained with the Mohr-Coulomb failure criterion during this PhD research 

are compared with other datasets from the literature. Except the work of Tüdeş and Ceryan (2011), in 

the other papers the parameters were calculated for slope analysis purposes.  
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Figure 6-9 Degradation of the block volume and joint surface condition of a rock mass from peak to residual state ( from 
Cai et alii, 2007) 

 

Table 6.4 Shear strength parameters using Hoek-Brown criterion obtained in the literature 

Reference 
UCS 

(MPa) 
GSI GSIr  (°) r (°) 

c’ 

(KPa) 

c’r  

(KPa) 
Lithology Purpose 

Berti et al. (2017) 20 35  28-30 - 20-40 - 
Arenaceous 

Flysch 

Slope 

stability 

Shen et al. (2012) 30 15 - 21-27 - 151-212 - Schist 
Slope 

stability 

This work 12-70 25-70 13-27 24-57 18-34 17-240 14-40 Sandstone 
Slope 

stability 

Tüdeş and 

Ceryan (2011) 
12-132 7-33 5-16 11-24 10-16 

290-

3360 
124-1896 Intrusive 

Road cut 

Wei et al. (2019) 30 5 - 24-38 - 12-41 - Sandstone 
Slope 

stability 
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The residual shear strength parameters calculated in this thesis are quite similar to those used in the works 

of Berti et al. (2017) and Wei et al. (2019). These authors once the friction angle and effective cohesion 

were determined, computed a slope stability analysis using Finite Elements Method. Ca’ Mengoni 

landslide modelled by Berti et alii (2017) is a deep-seated landslides more than 1 km long with a main 

scarp of 70 meters and a sliding plane located in general 30 meters below the topographic surface. The 

best accuracy was obtained with a combination of  = 29° and c’ = 40 KPa.  

Even if the landslide inventory of this work consists of shallow landslides with a main scarp located 

always shallower than 4 meters, the shear strength parameters assigned to BMUs are reasonable and in 

accordance with the literature.  
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6.4 SHALLOW LANDSLIDES SUSCEPTIBILITY MODELLING 

The aims of the susceptibility modelling were: 

▪ To perform a physically-based regional susceptibility analysis for shallow landslide and calibrate 

the input parameters in order to obtain accurate results in respect to the landslide inventory 

▪ To compare the susceptibility distribution between the physically-based and the data-driven 

method 

▪ To compare the results of modelling SDL and BRL by using the Information Value 

▪ To assess the susceptibility of involving bedrock landslides by means the physically based method 

 

All the key objectives listed above are already discussed separately in chapter 5. Here, the discussion will 

mainly concern the limits and merits of the models used, evidences and questions the models have 

highlighted and hypothesis beyond landslides affecting the bedrock. 

In respect to a data-driven approach, the complexity of physically-based models rely on parameterisation 

that can be a tricky task because of the uncertainty of critical parameters such as the distribution of SD 

depth, geotechnical and hydraulic properties. Further drawbacks of the physically based method are the 

degree of simplification involved and the need for large amounts of reliable input data. Nevertheless, 

being based on slope stability models, they follow a white-box approach where the involved physical 

processes are recognized and modelled (Corominas et al., 2014). 

The comparison between PROBSS and Information Value (IV) has the aim to highlight the differences 

between two different approaches. In order to obtain satisfying results, the physically-based approach 

required an extensive field data acquisition task and calibration of input geotechnical parameters. Instead, 

a detailed landslide inventory and the spatial analysis of predisposing factors were necessary to perform 

data driven susceptibility analysis.  

A result that the physically based model showed, was to confirm that the method here proposed, even if 

based on the simplified approach of both the infinite slope and the steady state hypothesis for the 

evaluation of pore pressure, may provide accurate results if the input parameters are obtained by 

integrating fieldwork observation and measurements, as well as, lab determinations. The approach here 

presented for the realization of the slope deposits depth map, integrating the morphometric analysis with 

field measurements, was found to be effective and is expected it could be in other contexts, also. The 

engineering geological parameterization of materials, both the slope deposits and the rock masses, 

provided results in line with the literature data where the strength parameters were mainly assessed from 

direct laboratory tests. Obviously, apart the accuracy assessment performed for the susceptibility results 

(chapter 5), a task for undisturbed samples collection and lab determinations of physical-mechanical 
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parameters would allow to test also the reliability of the input parameter ranges mainly obtained by semi-

quantitative field estimations. 

Using the IV model allowed to explore and analyse the role of predisposing factors for the development 

shallow landslides either involving the slope deposits, or also the underlying bedrock. Because the data 

driven models are sensitive to the input landslide dataset used to calculate the weights, it was possible to 

compare and combine the susceptibility maps obtained using SDL and BRL (Figure 5-16). In order to 

discriminate sites where SDL and BRL tend to occur, the frequency distribution of some morphometric 

variables and SD depth was analyzed in high susceptibility classes (Figure 6-10). From the histograms 

below, it is evident that there are some predisposing factors that rule the location of sliding surfaces: the 

slope failure with a rupture surface located below the SD/BR discontinuity (red bars) occur in steeper 

slopes, in thinner SD and in convex curvatures.  

 

 

Figure 6-10 Frequency distribution of some morphometric variables and SD depth in high susceptibility classes. The red 
bars refer to bedrock landslides, blue bars to slope deposits landslides. 
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The median measured scarp height of SD visited landslides is about 1 meter and is 2 meters for BRL 

(Figure 4-5). The simplification of the infinite slope, where a failure surface parallel to the ground surface 

develops at the bedrock-slope deposits discontinuity, quite often does not agree with the field observation 

within the study area of this PhD thesis. In fact, the rupture surface frequently occurs within the slope 

deposits, at least 0.2-0.5 meters above the bedrock interface. Moreover, a large percentage (about 60%) 

of the visited landslides developed a sliding surface located below the discontinuity between the slope 

deposit and the bedrock. From the field observations (Figure 4-5)., most of the BRL occurred mainly where 

the SD depth is below 1 meters, while the rupture surface is usually located at 2 meters depth, suggesting 

that the fractured and weathered bedrock layer extended in depth for more than 1-1.2 meters under the 

slope deposits/bedrock interface. 

In his PhD thesis, Papasidero (2019) characterized the hydrological properties of the SD, focusing mainly 

on field determinations of hydraulic conductivity (K) and its spatialization on regional scale. To reach 

this objective, several (more than 700) hydraulic conductivity in situ tests (Ktests) were carried out in 

Northern Tuscany, some of them located in the study area of this thesis.  

For each borehole, different tests were performed at increasing depth, generally involving horizons 20-

30 cm thick. This method allowed to investigate the variation of K with depth within the slope deposits 

(Figure 6-11).  

A high negative correlation was observed between logK and the depth (R – Pearson = – 0.79). Moreover, 

when selecting only the Ktests performed downhole, that is in the deepest horizons, the decrease of logK 

was observed with increasing SD depth (Figure 6-12).  

 
 

 

Figure 6-11 Hydraulic conductivity in situ test scheme (from Papasidero 2019) 
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Figure 6-12 Measured K distribution for each horizon at site scale (left). Distribution of K measured at the bottom of the 
boreholes (right, deepest horizons) 

 

In summary, the conclusion that can be drawn is that the deepest SD horizons has the lowest 

permeability, and since the depth of the deepest horizon varies with the depth of the slope deposits, it 

can be stated that, as a general condition, a thin SD has a bottom permeability greater than a deep SD, 

and the deviation of K is almost of two orders of magnitude.  

According to what has been said so far, it is possible to hypothesize the scenarios that ruled the 

development of shallow landslides that involve the bedrock or not (Figure 6-13). Where there is a thin 

slope deposit, and the quality of bedrock is good, shallow landslides should develop with a rupture surface 

parallel to the topographic surface and coinciding with the discontinuity between slope deposits and 

bedrock. On the other hand, if the quality of the bedrock is low, the water infiltration proceeds vertically 

until a hydraulic discontinuity is found which in this case should be localized in the bedrock, between the 

weathered and fractured shallower portion and the underneath more intact portion. In this scenario the 

failure surface is localized in the low-quality bedrock. Where there are thick (> 90 cm) slope deposits, the 

quality of the bedrock plays a secondary role since the hydraulic discontinuity can be located in the 

deepest portion of the SD. In this scenario, the landslide will have a rupture surface localized above the 

discontinuity between slope deposits and bedrock. According to this hypothesis, the conditions that 

should trigger landslides involving bedrock are less frequent, however in accordance with the modalities 

of genesis and development of the slope deposits, where these are thicker the slope steepness may not 

be enough to overcome the resistant forces to trigger landsliding. 
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Figure 6-13 Landsliding scenarios according to SD depth and bedrock quality 
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7 CONCLUSIONS 

In the field of landslide susceptibility assessment different modelling approaches can be implemented 

with different degrees of detail. Landsliding is a complex phenomenon and its modelling aimed at 

predicting where these phenomena are most likely to occur is a tricky issue to perform. Moreover, for 

both data-driven and physically-based models, paying adequate attention to the predisposing factors, 

triggering factors, and input parameters is no less important. For these reasons these latter tasks represent 

the focus of this PhD thesis which was organized in the following main topics: realization of a 

multitemporal shallow landslide inventory, acquisition of new field and lab data about slope deposits and 

sub-surface bedrock susceptible to shallow instability and regionalization of their engineering geological 

parameters, comparison between data-driven and physically-based methods for landslide susceptibility 

assessment and analysis of the role of bedrock for the development of shallow landslides.  

The new multitemporal landslide inventory compiled by means of visual interpretation of orthophoto 

maps allowed to detect recent (2003-2016) slope failures occurred in a portion of the Garfagnana basin. 

The inventory represented the starting point to plan and implement a method based on integration of 

field survey and laboratory analyses, aimed at investigating and constraining the materials involved in 

landsliding from an engineering geological point of view. Field observations allowed us to highlight that 

shallow landsliding processes depend on the depth of the slope deposits, as well as they involve the upper 

portion of the underlying weathered and fractured bedrock. 

For these reasons, fieldwork and laboratory analyses focused on the spatial distribution of depth of slope 

deposits and weathered bedrock depth, as well as the characterization of their engineering geological 

properties (namely, shear strength parameters and unit weight). 

 

Shallow landslides inventory 

▪ The overall accuracy of the multitemporal landslide inventory evaluated by means of field checks 

resulted to be 0.80, while the true positive rate was 0.86.  

▪ During the fieldwork, 81/191 landslides occurring within different Bedrock Lithological Units 

(BLU) were visited and analyzed. The 40% of these slope failures involves the slope deposits only 

(SDL), while the 60% involves also the weathered and fractured upper portion of the bedrock 

(BRL). 

▪ The two groups of landslides show further different characteristics: BRL are larger (median area 

ca. 600 m2 instead of 350 m2), have a deeper scarp height (about 2 m instead of 1 m) and generally 

occur where slope deposits are thinner.  
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▪ Apart the above differences, all the landslides recognized can be considered as “shallow”, 

according to the size and the shallow rupture surface.  

Slope deposits  

▪ The results of this PhD research allowed to highlight that different bedrock lithology and 

morphometric conditions represent the main parameters to predict the spatial variation of both 

their depth and engineering geological parameters.  

▪ For each Bedrock Lithological Unit, a multivariate analysis of derivatives of the DEM, such as 

slope steepness, flow accumulation, curvatures and elevation was performed in order to extract 

sets of 5 - 15 morphometric units, or landforms. 

▪ Data about slope deposits were collected for a total of 413 field observation sites located inside, 

near and far from landslides. Field investigation often consisted in the vertical hand digging by 

the pickaxe, with measurement of soil depth as well as collection of data concerning layering, 

grain size and texture. Slope deposits samples were collected in order to conduct lab test for the 

estimation of unit weight and grain size distribution. When the slope deposits depth was relatively 

thin, quick investigation was performed by measuring the SD depth.  

▪ The integrated analysis of field data, lab results and the morphometric units allowed us to obtain 

the Engineering Geological map of the Slope Deposits, where a set of parameters, such as slope 

deposit depth, friction angle, effective cohesion and unit weight are assigned to each Engineering 

Geological Slope Deposits unit. 

▪ The hierarchical nomenclature adopted to describe the spatial distribution of slope deposits depth 

consists of 2 first order classes and 8 second order classes. Thin slope deposits belong to the first 

order group "A", while thick deposits belong to the group "B". The group “A” is made up of 

three second order classes where the depth ranges between 0 cm and 30 cm. The group “B” is 

made up of five second order classes, each one characterized by a constant depth interval of 30 

cm. For each observation site the depth class was defined according to the field measurements. 

Then, the most frequent depth class was assigned to each morphometric unit. The accuracy of 

the SD depth map ranges from 0.49 to 0.68, with an expected uncertainty of ±15 cm. With an 

expected uncertainty of ± 45 cm, the accuracy rises from a minimum of 0.77 to a maximum of 

0.88. The accuracy and the uncertainty resulted by the method proposed in this PhD thesis are 

similar or better to other methods proposed in the literature. 

▪ From lab tests of grain size distribution, plasticity and unit weight, integrated by field grain size 

estimations, slope deposit samples were classified following the USCS nomenclature. Then, by 

using literature empirical correlations integrating unit weight, relative density and USCS class, the 

ranges for friction angle were estimated. These results are in good agreement with those obtained 
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by direct shear tests reported in the literature. Instead, the effective cohesion was evaluated in 

back analysis by calibrating the results of physically based modelling with the landslide inventory. 

Bedrock 

▪ In order to characterize bedrock geo-mechanical properties, the same sampling strategy adopted 

for the slope deposits was carried during field survey, that is, bedrock information was acquired 

inside and near the landslides, as well as in the areas not affected by slope failures. For each one 

of the 105 investigation sites, ca. 400 Schmidt hammer rebound values were acquired, along 

with orientation and spacing of the main discontinuity sets, and the Geological Strength Index 

(GSI).  

▪ The descriptive statistics of the above data highlighted that the quality of the sub-surface bedrock 

is different when comparing among locations inside, near and far from landslides. In addition, 

the uni-variate and multi-variate spatial analysis enabled to recognize that this heterogeneity 

defines different spatial clusters. In general terms, this is an important outcome which is useful 

to improve regionalized landslide assessment studies, because it shows that geo-mechanical 

characters spatially vary identifying different Bedrock Geo-mechanical Units correlated with 

geology, structural setting and the DEM.  

▪ According to the spatial clustering of field observations, the study area was split in 4 Bedrock 

Geo-mechanical Units. To estimate the corresponding Mohr-Coulomb equivalent shear strength 

parameters, the Hoek & Brown failure criterion integrated with the GSI was used. The output 

parameters resulted to be in good agreement with the literature. 

Shallow landslide susceptibility modelling 

▪ Regionalized susceptibility was estimated by both data-driven and physically based methods and 

the results were compared. 

▪ The results of the data-driven susceptibility analysis, described in terms of both AUROC and 

distribution of landslides within the susceptibility classes, showed that BRL and SDL should be 

investigated and analysed separately. In order to accurately distinguish between these shallow 

landslide types, remote sensing and morphometric analysis is generally not adequate, hence field 

work continues to represent a fundamental task to obtain reliable regionalized susceptibility 

analyses.  

▪ Even though detailed landslide inventories are in principle not mandatory to perform regionalized 

susceptibility analyses by using physically based methods, these represent a fundamental tool in 

order to validate and critically analyse the modelling results. The first modelling tasks of this PhD 

were performed assuming a rupture surface located in correspondence of the slope 

deposits/bedrock interface, that is the typical infinite slope approach. The validation was 
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performed by using all the visited landslides as a test dataset, hence without discriminating 

between BRL and SDL. The AUROC value obtained from the physically based model compared 

to the data driven model would have led to the first conclusion that black box models may be 

preferred when applying numerical modelling at the regional scale, especially if no information 

of the materials involved in the slope failure were available. Instead, by separately modelling BRL 

and SDL, i.e. by performing numerical analyses based on either the slope deposits or the 

subsurface bedrock parametrization, the accuracy of the output susceptibility maps are 

significantly improved and result to be almost similar to those obtained by data driven methods. 

▪ The results of this PhD thesis highlight the importance of the probabilistic approach when 

performing stability analysis by using physically based methods. Both the natural variability and 

the determination uncertainty of the input parameters, such as slope deposits depth and shear 

strength may be reasonably represented by this approach. Namely, having available a distribution 

of critical effective rainfall Qc values, enabled us to produce different scenarios of susceptibility, 

e.g. different maps corresponding to different percentiles, and to infer various issues like: 

estimating how relevant are uncertainties for the definition of the final susceptibility classes, 

identifying the recurring characters of those areas where the uncertainty of the Qc estimations 

are larger. In this PhD thesis, the probabilistic approach also allowed us for a smooth assessment 

of the potential for the occurrence of either bedrock or deposit landslides (BRL or SDL). 

Furthermore, as a further step, the frequency distribution of Qc could be integrated with the 

rainfall intensity probability distribution at regional scale in order to obtain a landslide hazard 

instead of susceptibility map. In this context, also the return period of rainfall events should be 

taken into account, as well as the deviation between total and effective rainfall resulting from the 

integrated effects of evapotranspiration, runoff and ground-soil storage processes. 

In conclusion, this thesis represents a contribution toward the definition of general robust criteria and 

methods for field data acquisition and processing, aimed at performing regional-scale susceptibility 

analyses for shallow landslides, where the rupture surface may be located either in correspondence of the 

slope deposit-bedrock discontinuity or within the weathered and fractured upper portion of underlying 

rock masses. 
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APPENDIX B 
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Slope deposits grain size field estimation  

ID Site ID sample Formation BLU Gravel Sand Fine USCS (simplified) 

D41006 D41006GA MAC 11 25 51 24 S 

D41010 D41010GA MAC 11 25 50 25 S 

E41003 E41003GA MAC 11 25 34 41 S 

E41009 E41009GA MAC 11 25 51 24 S 

E41015 E41015GA MAC 11 30 32 38 S 

E41019 E41019GA MAC 11 40 19 41 G 

E41023 E41023GA MAC 11 30 34 36 S 

E41024 E41024GA MAC 11 45 38 17 G 

E41026 E41026GA MAC 11 15 55 30 S 

E41033 E41033GA MAC 11 25 52 23 S 

E41052 E41052GA MAC 11 35 43 22 S 

E41086 E41086GA MAC 11 40 40 20 S 

E41087 E41087GA MAC 11 50 34 16 G 

E41089 E41089GA MAC 11 35 17 48 G 

E41091 E41091GA MAC 11 45 25 30 G 

E41092 E41092GA MAC 11 20 32 48 S 

E41097 E41097GA MAC 11 40 16 44 G 

E41106 E41106GA MAC 11 20 26 54 F 

E41111 E41111GA MAC 11 15 37 48 S 

E41124 E41124GA MAC 11 40 42 18 S 

E41127 E41127GA MAC 11 40 42 18 S 

E41145 E41145GA MAC 11 15 39 46 S 

E41159 E41159GA MAC 11 20 42 38 S 

E41169 E41169GA MAC 11 20 27 53 F 

E41174 E41174GA MAC 11 25 32 43 S 

E41190 E41190GA MAC 11 35 30 35 G 

E41195 E41195GA MAC 11 40 27 33 G 

E41210 E41210GA MAC 11 20 52 28 S 

P41005 P41005GA MAC 11 25 34 41 S 

P41005 P41005GB MAC 11 30 34 36 S 

P41015 P41015GA MAC 11 5 30 65 F 

P41018 P41018GA MAC 11 15 35 50 S 

P41018 P41018GB MAC 11 40 26 34 G 

P41023 P41023GA MAC 11 20 36 44 S 

P41023 P41023GB MAC 11 20 35 45 S 

P41025 P41025GA MAC 11 20 28 52 F 

P41036 P41036GA MAC 11 35 30 35 G 

P41040 P41040GA MAC 11 10 38 52 F 
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P41040 P41040GB MAC 11 25 33 42 S 

P41061 P41061GA MAC 11 10 55 35 S 

P41062 P41062GA MAC 11 5 44 51 F 

P41062 P41062GB MAC 11 5 44 51 F 

P41069 P41069GA MAC 11 45 40 15 G 

P41088 P41088GA MAC 11 40 26 34 G 

P41098 P41098GA MAC 11 30 48 22 S 

P41098 P41098GB MAC 11 30 47 23 S 

P41101 P41101GA MAC 11 20 30 50 S 

P41101 P41101GB MAC 11 25 28 47 S 

P41106 P41106GA MAC 11 20 35 45 S 

P41106 P41106GB MAC 11 20 36 44 S 

P41107 P41107GA MAC 11 40 31 29 G 

P41126 P41126GA MAC 11 25 24 51 F 

P41127 P41127GA MAC 11 25 39 36 S 

P41127 P41127GB MAC 11 25 37 38 S 

P41129 P41129GA MAC 11 25 60 15 S 

V41011 V41011GA MAC 11 20 23 57 F 

V41016 V41016GA MAC 11 20 10 70 F 

V41018 V41018GA MAC 11 40 28 32 G 

V41028 V41028GA MAC 11 30 35 35 S 

E41185 E41185GA SSR 22 20 33 47 S 

I41045 I41045GA MCP 22 40 8 52 F 

E41044 E41044GA STO3 23 25 35 40 S 

E41069 E41069GA MAI 23 30 47 23 S 

E41070 E41070GA MAI 23 45 38 17 G 

E41072 E41072GA LIM 23 40 31 29 G 

E41083 E41083GA LIM 23 30 33 37 S 

E41084 E41084GA LIM 23 25 37 38 S 

E41108 E41108GA STO3 23 30 10 60 F 

E41113 E41113GA STO3 23 40 28 32 G 

E41139 E41139GA MAI 23 20 36 44 S 

I41006 I41006GA MAI 23 10 23 67 F 

I41008 I41008GA LIM 23 15 20 65 F 

I41014 I41014GA MAI 23 40 31 29 G 

I41057 I41057GA LIM 23 20 22 58 F 

I41061 I41061GA CCA 23 50 13 37 G 

I41061 I41061GB CCA 23 50 21 29 G 

P41011 P41011GA MAI 23 10 42 48 S 

P41011 P41011GB MAI 23 10 42 48 S 
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P41124 P41124GA CCA 23 45 7 48 G 

P41124 P41124GB CCA 23 15 23 62 F 

V41006 V41006GA STO3 23 30 35 35 S 

V41007 V41007GA STO3 23 30 38 32 S 

E41078 E41078GA bnb 31 60 27 13 G 

E41162 E41162GA VILc 31 20 53 27 S 

E41163 E41163GA VILc 31 20 53 27 S 

P41038 P41038GA VILa 31 15 27 58 F 

P41066 P41066GA bna 31 25 61 14 S 

E41042 E41042GA STO 51 30 25 45 G 

E41046 E41046GA STO 51 10 22 68 F 

E41071 E41071GA POD 51 25 38 37 S 

E41077 E41077GA pv 51 40 44 16 S 

E41098 E41098GA POD 51 20 25 55 F 

E41099 E41099GA POD 51 30 19 51 F 

E41100 E41100GA POD 51 20 21 59 F 

E41101 E41101GA POD 51 10 25 65 F 

E41102 E41102GA POD 51 20 20 60 F 

E41103 E41103GA POD 51 20 24 56 F 

E41105 E41105GA OMT 51 30 24 46 G 

E41109 E41109GA STO 51 25 16 59 F 

E41114 E41114GA STO 51 40 13 47 G 

E41129 E41129GA POD 51 30 22 48 G 

E41130 E41130GA POD 51 35 20 45 G 

E41137 E41137GA POD 51 10 19 71 F 

E41138 E41138GA POD 51 20 12 68 F 

E41155 E41155GA MMA 51 40 27 33 G 

E41156 E41156GA MMA 51 30 35 35 S 

E41164 E41164GA bv 51 40 28 32 G 

E41168 E41168GA bv 51 30 35 35 S 

I41004 I41004GA POD 51 25 34 41 S 

I41025 I41025GA POD 51 5 3 92 F 

P41039 P41039GA STO 51 40 21 39 G 

P41043 P41043GA POD 51 20 31 49 S 

P41046 P41046GA POD 51 10 26 64 F 

P41072 P41072GA STO 51 10 50 40 S 

P41082 P41082GA STO 51 35 29 36 G 

P41112 P41112GA POD 51 30 34 36 S 

P41112 P41112GB POD 51 30 35 35 S 

P41122 P41122GA POD 51 10 25 65 F 
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P41123 P41123GA POD 51 30 18 52 F 

V41001 V41001GA STO 51 25 25 50 F 

E41136 E41136GA PSM 62 40 32 28 G 

I41030 I41030GA PSM 62 20 23 57 F 

I41036 I41036GA PSM 62 40 13 47 G 

I41036 I41036GB PSM 62 40 13 47 G 

I41038 I41038GA PSM 62 15 9 76 F 
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Slope deposits grain size laboratory analysis  

ID 

Site 

ID 

sample 
Formation BLU Gravel Sand Fine 

Silt (0,074 - 

0,002 mm) 

Clay 

(<0,002 

mm) 

USCS 

simplified 
USCS 

D41006 D41006GA MAC 11 22 51 26 22 5 S SC-SM 

D41010 D41010GA MAC 11 19 60 20 17 4 S SM 

E41003 E41003GA MAC 11 27 37 36 30 6 S SM 

E41009 E41009GA MAC 11 23 36 41 33 8 S SC 

E41015 E41015GA MAC 11 29 43 28 24 4 S SC-SM 

E41019 E41019GA MAC 11 29 39 31 24 8 S SC-SM 

E41023 E41023GA MAC 11 31 42 27 21 6 S SM 

E41024 E41024GA MAC 11 49 37 14 11 3 G GM 

E41026 E41026GA MAC 11 19 36 45 36 9 S SC 

E41033 E41033GA MAC 11 32 47 20 17 3 S SM 

E41052 E41052GA MAC 11 28 36 36 28 8 S SM 

E41086 E41086GA MAC 11 36 43 21 18 2 S SM 

E41087 E41087GA MAC 11 42 38 20 17 3 G GC-GM 

E41089 E41089GA MAC 11 36 39 25 21 4 S SM 

E41091 E41091GA MAC 11 44 36 20 17 3 G GM 

E41092 E41092GA MAC 11 16 58 26 22 3 S SM 

E41097 E41097GA MAC 11 47 36 17 14 3 G GM 

E41106 E41106GA MAC 11 21 27 52 39 13 F ML 

E41111 E41111GA MAC 11 16 44 40 33 6 S SM 

E41124 E41124GA MAC 11 40 38 22 19 3 G GM 

E41127 E41127GA MAC 11 46 43 11 10 1 G GP-GM 

E41145 E41145GA MAC 11 16 41 44 37 7 S SM 

E41159 E41159GA MAC 11 41 35 23 18 5 G GM 

E41169 E41169GA MAC 11 26 38 35 29 6 S SM 

E41174 E41174GA MAC 11 30 47 23 21 2 S SM 

E41190 E41190GA MAC 11 32 47 21 18 3 S SM 

E41195 E41195GA MAC 11 37 43 20 17 3 S SM 

E41210 E41210GA MAC 11 13 51 37 31 6 S SM 

P41005 P41005GA MAC 11 33 34 33 24 9 S SC 

P41005 P41005GB MAC 11 27 51 22 17 5 S SM 

P41015 P41015GA MAC 11 4 32 63 50 14 F ML 

P41018 P41018GA MAC 11 11 50 39 32 7 S SM 

P41018 P41018GB MAC 11 38 38 24 20 4 G GC 

P41023 P41023GA MAC 11 17 38 44 33 11 S SM 

P41023 P41023GB MAC 11 29 34 37 26 11 S SM 

P41025 P41025GA MAC 11 26 23 51 33 18 F CL 
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P41036 P41036GA MAC 11 30 47 23 20 3 S SM 

P41040 P41040GA MAC 11 8 43 49 43 7 S SM 

P41040 P41040GB MAC 11 27 30 43 37 6 S SM 

P41061 P41061GA MAC 11 13 45 42 33 9 S SM 

P41062 P41062GA MAC 11 6 63 31 27 3 S SM 

P41062 P41062GB MAC 11 5 58 37 30 8 S SM 

P41069 P41069GA MAC 11 43 31 26 22 4 G GM 

P41088 P41088GA MAC 11 35 32 34 27 6 G GM 

P41098 P41098GA MAC 11 41 39 20 19 2 G GM 

P41098 P41098GB MAC 11 38 43 18 17 2 S SM 

P41101 P41101GA MAC 11 27 41 32 27 5 S SM 

P41101 P41101GB MAC 11 25 44 31 26 5 S SM 

P41106 P41106GA MAC 11 21 35 44 35 9 S SM 

P41106 P41106GB MAC 11 27 34 40 32 7 S SM 

P41107 P41107GA MAC 11 48 34 19 16 3 G GC 

P41126 P41126GA MAC 11 38 34 28 19 8 G GC 

P41127 P41127GA MAC 11 21 53 26 20 6 S SC-SM 

P41127 P41127GB MAC 11 22 44 34 28 6 S SC-SM 

P41129 P41129GA MAC 11 20 57 23 18 5 S SM 

V41011 V41011GA MAC 11 24 43 33 25 8 S SM 

V41016 V41016GA MAC 11 14 47 39 31 8 S SM 

V41018 V41018GA MAC 11 32 44 24 21 3 S SM 

V41028 V41028GA MAC 11 38 34 28 22 6 G GC-GM 

E41185 E41185GA SSR 22 24 41 35 30 5 S SM 

I41045 I41045GA MCP 22 42 19 39 34 5 G GC-GM 

E41044 E41044GA STO3 23 23 42 35 24 11 S SC 

E41069 E41069GA MAI 23 21 31 48 33 15 S SC 

E41070 E41070GA MAI 23 37 30 34 22 11 G GC 

E41072 E41072GA LIM 23 36 35 29 19 9 G GM 

E41083 E41083GA LIM 23 27 35 37 26 11 S SM 

E41084 E41084GA LIM 23 24 27 49 36 14 S SM 

E41108 E41108GA STO3 23 24 30 46 25 21 S SM 

E41113 E41113GA STO3 23 42 28 30 21 8 G GC 

E41139 E41139GA MAI 23 18 47 35 32 3 S SM 

I41006 I41006GA MAI 23 6 24 70 57 13 F ML 

I41008 I41008GA LIM 23 16 20 64 51 12 F ML 

I41014 I41014GA MAI 23 33 35 32 24 8 S SC 

I41057 I41057GA LIM 23 22 27 50 43 7 F ML 

I41061 I41061GA CCA 23 64 20 17 14 3 G GM 

I41061 I41061GB CCA 23 55 32 13 12 2 G GM 
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P41011 P41011GA MAI 23 16 39 45 33 13 S SC 

P41011 P41011GB MAI 23 14 35 51 37 14 F CL 

P41124 P41124GA CCA 23 37 30 34 27 7 G GM 

P41124 P41124GB CCA 23 12 28 60 42 18 F CL-ML 

V41006 V41006GA STO3 23 28 37 35 26 9 S SM 

V41007 V41007GA STO3 23 37 40 22 15 7 S SM 

E41078 E41078GA bnb 31 45 18 37 28 9 G GC 

E41162 E41162GA VILc 31 18 40 42 36 6 S SM 

E41163 E41163GA VILc 31 22 47 31 27 4 S SM 

P41038 P41038GA VILa 31 16 33 50 42 8 F ML 

P41066 P41066GA bna 31 23 66 11 9 2 S SP-SM 

E41042 E41042GA STO 51 26 35 39 23 16 S SC 

E41046 E41046GA STO 51 10 43 47 33 14 S SC 

E41071 E41071GA POD 51 21 37 42 27 15 S SC 

E41077 E41077GA pv 51 43 41 15 11 4 G GC 

E41098 E41098GA POD 51 17 34 48 36 12 S SM 

E41099 E41099GA POD 51 29 15 56 41 15 F ML 

E41100 E41100GA POD 51 12 21 68 41 27 F ML 

E41101 E41101GA POD 51 17 19 64 42 22 F ML 

E41102 E41102GA POD 51 15 21 64 44 19 F ML 

E41103 E41103GA POD 51 22 25 53 35 18 F ML 

E41105 E41105GA OMT 51 28 21 51 37 14 F ML 

E41109 E41109GA STO 51 22 37 41 24 17 S SM 

E41114 E41114GA STO 51 36 37 27 21 6 S SM 

E41129 E41129GA POD 51 33 32 35 27 7 G GC 

E41130 E41130GA POD 51 33 26 41 32 9 G GM 

E41137 E41137GA POD 51 10 28 62 46 15 F ML 

E41138 E41138GA POD 51 19 16 65 48 17 F ML 

E41155 E41155GA MMA 51 38 40 22 14 8 S SC 

E41156 E41156GA MMA 51 37 41 22 18 4 S SM 

E41164 E41164GA bv 51 47 36 17 13 3 G GM 

E41168 E41168GA bv 51 33 41 26 21 6 S SM 

I41004 I41004GA POD 51 13 48 39 32 7 S SC 

I41025 I41025GA POD 51 3 16 81 58 23 F ML 

P41039 P41039GA STO 51 35 35 30 22 9 S SC 

P41043 P41043GA POD 51 31 25 44 31 13 G GC 

P41046 P41046GA POD 51 10 30 60 44 16 F ML 

P41072 P41072GA STO 51 21 66 13 11 2 S SM 

P41082 P41082GA STO 51 34 40 26 22 4 S SM 

P41112 P41112GA POD 51 35 35 30 23 7 S SM 
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P41112 P41112GB POD 51 35 31 34 24 10 G GC 

P41122 P41122GA POD 51 16 37 48 33 15 S SM 

P41123 P41123GA POD 51 25 37 37 28 9 S SC 

V41001 V41001GA STO 51 20 48 32 18 14 S SM 

E41136 E41136GA PSM 62 41 40 18 16 2 G GM 

I41030 I41030GA PSM 62 29 39 32 23 8 S SM 

I41036 I41036GA PSM 62 39 26 36 26 10 G GC 

I41036 I41036GB PSM 62 36 26 37 25 12 G GC 

I41038 I41038GA PSM 62 20 32 48 36 12 S SM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



238 
 

ID 

Site 

ID 

sample 
Formation BLU 

Laboratory analysis 

D10 D17 D20 D30 D50 D60 Cu* Cc** 

D41006 D41006GA MAC 11 0.009 0.026 0.032 0.092 0.248 0.511 57 1.835 

D41010 D41010GA MAC 11 0.009 0.038 0.071 0.141 0.295 0.402 42 5.246 

E41003 E41003GA MAC 11 0.005 0.022 0.021 0.040 0.201 0.628 124 0.498 

E41009 E41009GA MAC 11 0.003 0.007 0.009 0.025 0.102 0.220 81 1.017 

E41015 E41015GA MAC 11 0.010 0.025 0.032 0.083 0.324 1.294 133 0.543 

E41019 E41019GA MAC 11 0.005 0.020 0.025 0.061 0.305 1.663 314 0.419 

E41023 E41023GA MAC 11 0.006 0.022 0.032 0.092 0.740 2.521 404 0.539 

E41024 E41024GA MAC 11 0.027 0.096 0.136 0.307 3.744 12.179 448 0.284 

E41026 E41026GA MAC 11 0.002 0.007 0.012 0.026 0.097 0.197 82 1.470 

E41033 E41033GA MAC 11 0.021 0.046 0.074 0.192 0.716 2.177 102 0.792 

E41052 E41052GA MAC 11 0.003 0.009 0.015 0.028 0.195 0.407 121 0.588 

E41086 E41086GA MAC 11 0.020 0.054 0.069 0.172 1.368 3.679 182 0.399 

E41087 E41087GA MAC 11 0.022 0.048 0.074 0.194 1.608 5.727 260 0.297 

E41089 E41089GA MAC 11 0.009 0.024 0.040 0.127 0.794 3.089 348 0.585 

E41091 E41091GA MAC 11 0.021 0.049 0.076 0.187 1.878 7.560 360 0.221 

E41092 E41092GA MAC 11 0.012 0.037 0.059 0.095 0.243 0.382 33 2.032 

E41097 E41097GA MAC 11 0.021 0.078 0.103 0.232 2.959 12.845 600 0.196 

E41106 E41106GA MAC 11 0.001 0.004 0.005 0.016 0.061 0.140 120 1.510 

E41111 E41111GA MAC 11 0.004 0.014 0.023 0.033 0.147 0.243 67 1.251 

E41124 E41124GA MAC 11 0.022 0.035 0.057 0.172 1.794 4.700 217 0.290 

E41127 E41127GA MAC 11 0.057 0.123 0.157 0.298 2.684 9.258 161 0.167 

E41145 E41145GA MAC 11 0.003 0.008 0.009 0.021 0.112 0.237 69 0.564 

E41159 E41159GA MAC 11 0.007 0.024 0.040 0.340 3.061 5.100 764 3.387 

E41169 E41169GA MAC 11 0.005 0.013 0.024 0.049 0.214 0.472 103 1.098 

E41174 E41174GA MAC 11 0.023 0.034 0.059 0.127 0.417 1.098 48 0.637 

E41190 E41190GA MAC 11 0.022 0.040 0.069 0.133 0.401 1.687 77 0.479 

E41195 E41195GA MAC 11 0.016 0.046 0.072 0.168 0.718 3.139 191 0.548 

E41210 E41210GA MAC 11 0.005 0.018 0.023 0.037 0.134 0.185 38 1.497 

P41005 P41005GA MAC 11 0.003 0.009 0.020 0.047 0.465 1.799 521 0.351 

P41005 P41005GB MAC 11 0.017 0.035 0.058 0.147 0.567 1.407 84 0.918 

P41015 P41015GA MAC 11 0.001 0.004 0.005 0.009 0.028 0.057 57 1.337 

P41018 P41018GA MAC 11 0.005 0.018 0.023 0.037 0.131 0.227 43 1.158 

P41018 P41018GB MAC 11 0.011 0.026 0.040 0.128 0.647 3.184 289 0.467 

P41023 P41023GA MAC 11 0.001 0.008 0.010 0.025 0.096 0.231 172 2.062 

P41023 P41023GB MAC 11 0.001 0.008 0.010 0.032 0.236 0.402 301 1.945 

P41025 P41025GA MAC 11 0.001 0.001 0.004 0.010 0.065 0.260 260 0.355 

P41036 P41036GA MAC 11 0.010 0.031 0.047 0.132 0.378 0.784 78 2.223 

P41040 P41040GA MAC 11 0.004 0.009 0.010 0.027 0.078 0.170 40 1.030 
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P41040 P41040GB MAC 11 0.004 0.008 0.012 0.028 0.210 0.795 177 0.212 

P41061 P41061GA MAC 11 0.003 0.007 0.009 0.027 0.122 0.283 92 0.848 

P41062 P41062GA MAC 11 0.022 0.028 0.032 0.072 0.176 0.269 12 0.877 

P41062 P41062GB MAC 11 0.004 0.009 0.014 0.025 0.137 0.228 62 0.754 

P41069 P41069GA MAC 11 0.007 0.025 0.024 0.117 2.692 7.050 946 0.259 

P41088 P41088GA MAC 11 0.005 0.024 0.022 0.050 0.291 1.756 352 0.286 

P41098 P41098GA MAC 11 0.025 0.049 0.073 0.213 1.684 5.099 204 0.356 

P41098 P41098GB MAC 11 0.027 0.067 0.087 0.220 1.590 4.171 155 0.432 

P41101 P41101GA MAC 11 0.008 0.020 0.023 0.057 0.350 1.078 129 0.359 

P41101 P41101GB MAC 11 0.006 0.019 0.022 0.063 0.340 0.848 147 0.803 

P41106 P41106GA MAC 11 0.003 0.007 0.012 0.028 0.141 0.379 143 0.753 

P41106 P41106GB MAC 11 0.004 0.009 0.019 0.031 0.243 0.850 190 0.253 

P41107 P41107GA MAC 11 0.021 0.059 0.087 0.319 4.181 7.063 343 0.701 

P41126 P41126GA MAC 11 0.003 0.011 0.025 0.113 1.557 4.212 1404 1.007 

P41127 P41127GA MAC 11 0.006 0.024 0.029 0.097 0.329 0.707 124 2.312 

P41127 P41127GB MAC 11 0.006 0.023 0.021 0.054 0.222 0.481 81 1.033 

P41129 P41129GA MAC 11 0.007 0.022 0.038 0.123 0.365 0.796 109 2.590 

V41011 V41011GA MAC 11 0.003 0.008 0.011 0.042 0.249 0.755 226 0.697 

V41016 V41016GA MAC 11 0.003 0.008 0.010 0.023 0.146 0.229 80 0.818 

V41018 V41018GA MAC 11 0.021 0.048 0.063 0.116 0.436 1.494 72 0.436 

V41028 V41028GA MAC 11 0.005 0.024 0.026 0.088 0.592 3.338 668 0.460 

E41185 E41185GA SSR 22 0.005 0.008 0.011 0.037 0.653 1.674 314 0.155 

I41045 I41045GA MCP 22 0.008 0.022 0.021 0.031 1.219 6.042 723 0.019 

E41044 E41044GA STO3 23 0.002 0.006 0.008 0.043 0.318 0.923 517 1.145 

E41069 E41069GA MAI 23 0.001 0.003 0.005 0.012 0.100 0.462 462 0.306 

E41070 E41070GA MAI 23 0.002 0.007 0.008 0.038 1.114 3.487 2238 0.263 

E41072 E41072GA LIM 23 0.003 0.010 0.023 0.101 1.570 3.740 1391 1.009 

E41083 E41083GA LIM 23 0.002 0.006 0.008 0.021 0.224 0.573 324 0.421 

E41084 E41084GA LIM 23 0.001 0.003 0.006 0.009 0.087 0.664 497 0.100 

E41108 E41108GA STO3 23 0.001 0.001 0.002 0.006 0.218 0.789 789 0.039 

E41113 E41113GA STO3 23 0.004 0.009 0.025 0.079 1.660 6.642 1878 0.265 

E41139 E41139GA MAI 23 0.010 0.020 0.023 0.041 0.332 0.728 76 0.238 

I41006 I41006GA MAI 23 0.001 0.003 0.004 0.008 0.021 0.028 25 2.291 

I41008 I41008GA LIM 23 0.002 0.004 0.005 0.010 0.022 0.035 23 2.057 

I41014 I41014GA MAI 23 0.004 0.008 0.013 0.054 1.259 3.001 722 0.235 

I41057 I41057GA LIM 23 0.004 0.009 0.014 0.020 0.072 0.538 143 0.200 

I41061 I41061GA CCA 23 0.025 0.084 0.198 0.791 9.358 14.149 571 1.783 

I41061 I41061GB CCA 23 0.030 0.213 0.394 1.780 6.341 9.400 318 11.400 

P41011 P41011GA MAI 23 0.001 0.004 0.006 0.022 0.120 0.315 284 1.397 

P41011 P41011GB MAI 23 0.001 0.004 0.005 0.011 0.061 0.229 229 0.542 
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P41124 P41124GA CCA 23 0.005 0.009 0.013 0.033 0.782 3.354 704 0.070 

P41124 P41124GB CCA 23 0.001 0.002 0.003 0.008 0.021 0.077 77 0.837 

V41006 V41006GA STO3 23 0.003 0.007 0.008 0.039 0.211 0.458 136 0.971 

V41007 V41007GA STO3 23 0.006 0.025 0.037 0.156 0.830 3.616 612 1.144 

E41078 E41078GA bnb 31 0.003 0.009 0.014 0.036 2.387 27.143 9077 0.016 

E41162 E41162GA VILc 31 0.005 0.012 0.023 0.028 0.102 0.177 36 0.919 

E41163 E41163GA VILc 31 0.009 0.023 0.027 0.070 0.192 0.318 34 1.660 

P41038 P41038GA VILa 31 0.003 0.006 0.008 0.020 0.072 0.183 53 0.659 

P41066 P41066GA bna 31 0.038 0.167 0.224 0.427 0.882 1.423 37 3.327 

E41042 E41042GA STO 51 0.001 0.003 0.004 0.011 0.326 0.785 785 0.168 

E41046 E41046GA STO 51 0.001 0.004 0.006 0.025 0.096 0.227 199 2.396 

E41071 E41071GA POD 51 0.001 0.003 0.005 0.022 0.356 1.020 1020 0.470 

E41077 E41077GA pv 51 0.026 0.107 0.187 0.618 3.276 6.446 252 2.310 

E41098 E41098GA POD 51 0.002 0.004 0.005 0.008 0.120 0.631 407 0.060 

E41099 E41099GA POD 51 0.001 0.002 0.003 0.006 0.020 0.418 418 0.096 

E41100 E41100GA POD 51 0.001 0.001 0.001 0.003 0.010 0.022 22 0.473 

E41101 E41101GA POD 51 0.001 0.002 0.002 0.005 0.015 0.046 46 0.495 

E41102 E41102GA POD 51 0.001 0.002 0.002 0.006 0.023 0.051 51 0.623 

E41103 E41103GA POD 51 0.001 0.002 0.003 0.007 0.030 0.556 556 0.090 

E41105 E41105GA OMT 51 0.001 0.004 0.005 0.009 0.072 0.227 189 0.309 

E41109 E41109GA STO 51 0.001 0.002 0.003 0.008 0.530 1.330 1330 0.054 

E41114 E41114GA STO 51 0.005 0.011 0.025 0.119 1.174 3.297 716 0.940 

E41129 E41129GA POD 51 0.003 0.006 0.008 0.032 1.110 2.662 823 0.117 

E41130 E41130GA POD 51 0.003 0.005 0.007 0.022 0.619 2.327 847 0.077 

E41137 E41137GA POD 51 0.001 0.002 0.003 0.006 0.021 0.055 55 0.760 

E41138 E41138GA POD 51 0.001 0.002 0.003 0.006 0.019 0.026 26 1.230 

E41155 E41155GA MMA 51 0.005 0.024 0.037 0.246 1.793 4.161 764 2.664 

E41156 E41156GA MMA 51 0.006 0.026 0.048 0.229 1.729 3.951 625 2.092 

E41164 E41164GA bv 51 0.018 0.076 0.143 0.610 4.051 7.580 429 2.776 

E41168 E41168GA bv 51 0.006 0.024 0.026 0.144 1.280 2.836 508 1.319 

I41004 I41004GA POD 51 0.003 0.008 0.010 0.027 0.144 0.305 105 0.821 

I41025 I41025GA POD 51 0.001 0.001 0.002 0.004 0.010 0.024 24 0.651 

P41039 P41039GA STO 51 0.003 0.014 0.020 0.073 0.502 1.991 667 0.892 

P41043 P41043GA POD 51 0.001 0.004 0.006 0.021 0.222 1.278 1061 0.299 

P41046 P41046GA POD 51 0.001 0.002 0.004 0.008 0.026 0.073 73 0.806 

P41072 P41072GA STO 51 0.032 0.159 0.225 0.510 1.507 2.177 68 3.727 

P41082 P41082GA STO 51 0.010 0.025 0.034 0.103 0.431 1.623 167 0.674 

P41112 P41112GA POD 51 0.006 0.022 0.020 0.074 1.429 3.337 603 0.300 

P41112 P41112GB POD 51 0.002 0.009 0.021 0.047 1.477 3.546 1620 0.282 

P41122 P41122GA POD 51 0.002 0.003 0.005 0.008 0.099 0.465 303 0.101 
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P41123 P41123GA POD 51 0.003 0.006 0.008 0.021 0.403 1.231 469 0.136 

V41001 V41001GA STO 51 0.001 0.004 0.007 0.034 0.823 1.516 1211 0.626 

E41136 E41136GA PSM 62 0.020 0.057 0.101 0.412 2.829 5.344 263 1.563 

I41030 I41030GA PSM 62 0.004 0.009 0.019 0.053 0.972 1.987 444 0.313 

I41036 I41036GA PSM 62 0.002 0.008 0.010 0.028 1.195 4.261 2084 0.092 

I41036 I41036GB PSM 62 0.001 0.006 0.009 0.031 1.232 3.599 2819 0.209 

I41038 I41038GA PSM 62 0.001 0.005 0.006 0.021 0.094 0.376 291 0.870 
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ID 

Site 
ID Sample Formation BLU 

Laboratory analysis 

IP (%) WL (%) WP (%) A 𝒅̅ (mm) Gs 

D41006 D41006GA MAC 11 6 27 21 1.22 1.37 2.74 

D41010 D41010GA MAC 11 2 26 24 0.57 0.00 2.87 

E41003 E41003GA MAC 11 4 28 24 0.74 1.02 2.63 

E41009 E41009GA MAC 11 10 33 22 1.24 0.66 2.65 

E41015 E41015GA MAC 11 5 24 19 1.31 1.59 2.60 

E41019 E41019GA MAC 11 5 24 19 0.68 1.25 2.78 

E41023 E41023GA MAC 11 5 29 24 0.89 1.71 2.85 

E41024 E41024GA MAC 11 1 20 19 0.20 5.42 2.63 

E41026 E41026GA MAC 11 12 34 22 1.31 0.48 2.73 

E41033 E41033GA MAC 11 4 27 22 1.47 2.58 2.68 

E41052 E41052GA MAC 11 6 30 24 0.75 0.00 2.59 

E41086 E41086GA MAC 11 3 28 25 1.28 2.91 2.76 

E41087 E41087GA MAC 11 5 25 21 1.66 3.46 2.72 

E41089 E41089GA MAC 11 5 27 23 1.23 0.00 2.74 

E41091 E41091GA MAC 11 4 23 19 1.16 3.65 2.71 

E41092 E41092GA MAC 11 3 28 25 0.89 1.23 2.71 

E41097 E41097GA MAC 11 3 25 23 0.84 0.00 2.82 

E41106 E41106GA MAC 11 6 30 24 0.50 0.35 2.78 

E41111 E41111GA MAC 11 6 29 23 0.92 0.61 2.77 

E41124 E41124GA MAC 11 5 29 24 1.67 3.01 2.68 

E41127 E41127GA MAC 11 8 34 26 5.56 0.00 2.73 

E41145 E41145GA MAC 11 8 32 24 1.25 0.52 2.68 

E41159 E41159GA MAC 11 11 43 32 2.20 2.77 2.86 

E41169 E41169GA MAC 11 6 31 25 1.03 1.03 2.70 

E41174 E41174GA MAC 11 5 40 34 2.34 0.00 2.74 

E41190 E41190GA MAC 11 4 23 19 1.41 2.44 2.75 

E41195 E41195GA MAC 11 3 31 28 1.13 2.94 2.83 

E41210 E41210GA MAC 11 6 29 23 1.00 0.64 2.77 

P41005 P41005GA MAC 11 10 32 22 1.09 1.24 2.69 

P41005 P41005GB MAC 11 10 37 27 1.96 1.88 2.71 

P41015 P41015GA MAC 11 11 36 24 0.84 0.13 2.68 

P41018 P41018GA MAC 11 6 30 24 0.91 0.53 2.64 

P41018 P41018GB MAC 11 10 30 20 2.51 2.53 2.70 

P41023 P41023GA MAC 11 3 29 25 0.29 0.45 2.40 

P41023 P41023GB MAC 11 10 38 28 0.93 0.90 2.63 

P41025 P41025GA MAC 11 15 38 23 0.82 0.00 2.75 

P41036 P41036GA MAC 11 3 23 20 0.92 2.10 2.59 

P41040 P41040GA MAC 11 2 27 24 0.36 0.32 2.85 
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P41040 P41040GB MAC 11 2 26 25 0.23 0.75 2.71 

P41061 P41061GA MAC 11 2 25 23 0.21 0.48 2.66 

P41062 P41062GA MAC 11 1 26 25 0.15 0.74 2.58 

P41062 P41062GB MAC 11 1 24 23 0.19 0.46 2.58 

P41069 P41069GA MAC 11 2 30 28 0.48 2.70 2.57 

P41088 P41088GA MAC 11 4 26 22 0.67 1.42 2.54 

P41098 P41098GA MAC 11 1 35 34 0.37 3.44 2.65 

P41098 P41098GB MAC 11 1 34 33 0.48 3.43 2.80 

P41101 P41101GA MAC 11 3 31 28 0.55 1.24 2.62 

P41101 P41101GB MAC 11 1 28 27 0.28 1.22 2.72 

P41106 P41106GA MAC 11 6 38 32 0.67 0.55 2.77 

P41106 P41106GB MAC 11 3 31 27 0.48 0.82 2.82 

P41107 P41107GA MAC 11 8 29 21 2.77 4.37 2.68 

P41126 P41126GA MAC 11 8 29 21 0.92 1.87 2.80 

P41127 P41127GA MAC 11 4 23 18 0.65 1.24 2.72 

P41127 P41127GB MAC 11 5 26 21 0.90 0.96 2.64 

P41129 P41129GA MAC 11 3 24 21 0.64 1.47 2.64 

V41011 V41011GA MAC 11 5 29 24 0.64 0.98 2.72 

V41016 V41016GA MAC 11 5 26 22 0.58 0.56 2.72 

V41018 V41018GA MAC 11 2 20 18 0.77 2.12 2.48 

V41028 V41028GA MAC 11 5 25 20 0.77 0.00 2.77 

E41185 E41185GA SSR 22 4 37 33 0.88 0.00 2.83 

I41045 I41045GA MCP 22 5 27 22 1.02 1.43 2.79 

E41044 E41044GA STO3 23 12 32 20 1.09 0.00 2.88 

E41069 E41069GA MAI 23 13 34 21 0.81 0.38 2.75 

E41070 E41070GA MAI 23 12 33 20 1.09 1.26 2.76 

E41072 E41072GA LIM 23 12 36 25 1.24 1.63 2.87 

E41083 E41083GA LIM 23 12 38 26 1.15 0.84 2.72 

E41084 E41084GA LIM 23 12 40 28 0.91 0.41 2.79 

E41108 E41108GA STO3 23 26 59 33 1.24 0.00 2.89 

E41113 E41113GA STO3 23 8 29 21 0.96 1.96 2.69 

E41139 E41139GA MAI 23 8 35 27 2.51 0.89 2.72 

I41006 I41006GA MAI 23 9 33 24 0.67 0.10 2.65 

I41008 I41008GA LIM 23 3 27 24 0.26 0.19 2.61 

I41014 I41014GA MAI 23 12 35 23 1.59 0.00 2.76 

I41057 I41057GA LIM 23 1 22 22 0.07 0.47 2.70 

I41061 I41061GA CCA 23 6 29 23 1.98 7.81 2.80 

I41061 I41061GB CCA 23 7 30 23 3.96 7.21 2.80 

P41011 P41011GA MAI 23 9 29 21 0.68 0.40 2.68 

P41011 P41011GB MAI 23 8 29 21 0.56 0.29 2.79 
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P41124 P41124GA CCA 23 5 30 25 0.75 1.44 2.73 

P41124 P41124GB CCA 23 6 25 19 0.34 0.16 2.84 

V41006 V41006GA STO3 23 4 23 19 0.43 1.00 2.59 

V41007 V41007GA STO3 23 3 23 20 0.37 2.37 2.73 

E41078 E41078GA bnb 31 12 31 19 1.32 1.57 2.82 

E41162 E41162GA VILc 31 6 29 23 1.03 0.61 2.77 

E41163 E41163GA VILc 31 3 25 22 0.82 1.16 2.74 

P41038 P41038GA VILa 31 8 33 25 1.00 0.37 2.73 

P41066 P41066GA bna 31 7 30 24 2.74 2.77 2.82 

E41042 E41042GA STO 51 18 44 26 1.12 0.00 2.57 

E41046 E41046GA STO 51 8 27 19 0.59 0.29 2.74 

E41071 E41071GA POD 51 14 36 22 0.91 0.49 2.80 

E41077 E41077GA pv 51 13 34 21 3.21 4.24 2.68 

E41098 E41098GA POD 51 15 41 26 1.25 0.00 2.68 

E41099 E41099GA POD 51 15 50 34 0.99 0.00 2.82 

E41100 E41100GA POD 51 14 42 28 0.51 0.00 2.86 

E41101 E41101GA POD 51 15 46 32 0.67 0.00 2.78 

E41102 E41102GA POD 51 15 44 28 0.78 0.14 2.82 

E41103 E41103GA POD 51 14 41 27 0.81 0.29 2.85 

E41105 E41105GA OMT 51 9 33 24 0.68 0.45 2.60 

E41109 E41109GA STO 51 21 52 31 1.20 0.00 2.75 

E41114 E41114GA STO 51 11 37 26 1.70 0.00 2.77 

E41129 E41129GA POD 51 17 43 26 2.33 0.00 2.81 

E41130 E41130GA POD 51 21 55 34 2.30 0.00 2.66 

E41137 E41137GA POD 51 14 40 26 0.91 0.00 2.74 

E41138 E41138GA POD 51 14 39 26 0.83 0.00 2.76 

E41155 E41155GA MMA 51 11 32 21 1.45 0.00 2.77 

E41156 E41156GA MMA 51 8 43 34 1.98 0.00 2.82 

E41164 E41164GA bv 51 11 38 27 3.26 0.00 2.77 

E41168 E41168GA bv 51 6 38 32 1.03 1.84 2.76 

I41004 I41004GA POD 51 7 26 19 1.00 0.56 2.76 

I41025 I41025GA POD 51 13 39 26 0.56 0.04 2.80 

P41039 P41039GA STO 51 8 27 19 0.93 1.50 2.71 

P41043 P41043GA POD 51 14 37 23 1.09 0.65 2.80 

P41046 P41046GA POD 51 9 33 24 0.58 0.16 2.75 

P41072 P41072GA STO 51 7 35 28 3.37 2.55 2.71 

P41082 P41082GA STO 51 1 28 27 0.26 0.00 2.79 

P41112 P41112GA POD 51 8 31 23 1.19 1.60 2.77 

P41112 P41112GB POD 51 10 33 22 1.02 1.26 2.74 

P41122 P41122GA POD 51 10 39 29 0.68 0.33 2.65 
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P41123 P41123GA POD 51 9 30 21 0.98 0.82 2.62 

V41001 V41001GA STO 51 14 40 26 1.05 0.75 2.65 

E41136 E41136GA PSM 62 4 31 27 1.80 3.71 2.80 

I41030 I41030GA PSM 62 8 37 29 0.97 1.20 2.68 

I41036 I41036GA PSM 62 23 46 23 2.34 1.31 2.68 

I41036 I41036GB PSM 62 11 33 22 0.94 1.06 2.79 

I41038 I41038GA PSM 62 6 37 30 0.51 0.40 2.74 
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Slope deposits unit weight laboratory analysis  

ID Site Sample ID BLU 
Natural density 

(g/cm3) 
Natural Unit 

Weight (kN/m3) 
Dry density 

(g/cm3) 
Dry Unit Weight 

(kN/m3) 

D41006 D41006WA 11 1.45 14.24 1.39 13.60 

D41010 D41010WA 11 1.55 15.16 1.37 13.47 

D41013 D41013WA 11 1.62 15.86 1.43 13.98 

E41000 E41000WA 11 1.83 18.00 1.54 15.14 

E41001 E41001WA 11 1.56 15.32 1.25 12.23 

E41003 E41003WA 11 1.81 17.73 1.48 14.48 

E41006 E41006WA 11 1.93 18.97 1.62 15.86 

E41009 E41009WA 11 1.78 17.45 1.48 14.48 

E41010 E41010WA 11 2.07 20.29 1.80 17.65 

E41011 E41011WA 11 1.56 15.26 1.27 12.48 

E41015 E41015WA 11 1.85 18.15 1.58 15.46 

E41017 E41017WA 11 1.88 18.47 1.64 16.09 

E41019 E41019WA 11 1.84 18.06 1.56 15.27 

E41023 E41023WA 11 1.58 15.48 1.28 12.53 

E41024 E41024WA 11 1.86 18.25 1.65 16.21 

E41026 E41026WA 11 1.94 19.00 1.63 15.96 

E41029 E41029WA 11 2.01 19.73 1.66 16.32 

E41031 E41031WA 11 1.96 19.24 1.58 15.48 

E41032 E41032WA 11 1.73 16.97 1.52 14.92 

E41033 E41033WA 11 1.79 17.53 1.57 15.36 

E41040 E41040WA 11 1.97 19.33 1.69 16.55 

E41050 E41050WA 11 1.91 18.76 1.65 16.19 

E41052 E41052WA 11 1.65 16.19 1.32 12.94 

E41056 E41056WA 11 1.65 16.22 1.41 13.82 

E41059 E41059WA 11 1.48 14.49 1.27 12.41 

E41061 E41061WA 11 1.75 17.15 1.58 15.54 

E41062 E41062WA 11 1.97 19.30 1.68 16.50 

E41067 E41067WA 11 1.73 16.94 1.52 14.89 

E41086 E41086WA 11 1.61 15.77 1.50 14.69 

E41089 E41089WA 11 1.54 15.11 1.44 14.14 

E41090 E41090WA 11 1.91 18.71 1.59 15.63 

E41091 E41091WA 11 1.72 16.83 1.59 15.61 

E41092 E41092WA 11 1.71 16.77 1.58 15.49 

E41106 E41106WA 11 1.47 14.37 1.35 13.24 

E41110 E41110WA 11 1.57 15.44 1.45 14.19 

E41111 E41111WA 11 1.41 13.80 1.26 12.32 

E41119 E41119WA 11 1.37 13.40 1.19 11.63 

E41124 E41124WA 11 1.78 17.47 1.59 15.61 

E41145 E41145WA 11 1.43 13.99 1.20 11.81 

E41159 E41159WA 11 1.23 12.02 0.95 9.32 

E41179 E41179WA 11 1.12 10.99 0.87 8.50 

E41186 E41186WA 11 1.12 10.96 0.97 9.53 
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E41190 E41190WA 11 1.45 14.19 1.39 13.67 

E41195 E41195WA 11 1.28 12.53 1.11 10.93 

E41210 E41210WA 11 1.43 14.03 1.32 12.94 

I41015 I41015WA 11 1.48 14.47 1.21 11.88 

I41040 I41040WA 11 1.29 12.63 1.10 10.74 

P41001 P41001WA 11 1.58 15.54 1.20 11.77 

P41002 P41002WA 11 1.65 16.16 1.33 13.05 

P41005 P41005WB 11 1.39 13.62 1.07 10.54 

P41005 P41005WA 11 1.66 16.28 1.32 12.92 

P41012 P41012WA 11 1.73 17.01 1.40 13.72 

P41015 P41015WA 11 1.51 14.79 1.15 11.24 

P41016 P41016WA 11 1.52 14.87 1.15 11.23 

P41018 P41018WB 11 1.79 17.56 1.58 15.46 

P41018 P41018WA 11 1.83 17.92 1.52 14.94 

P41019 P41019WA 11 1.65 16.17 1.31 12.82 

P41019 P41019WB 11 1.66 16.26 1.31 12.85 

P41020 P41020WA 11 1.67 16.40 1.37 13.47 

P41021 P41021WA 11 1.77 17.37 1.39 13.61 

P41021 P41021WB 11 1.85 18.12 1.48 14.53 

P41022 P41022WA 11 1.34 13.16 1.09 10.70 

P41023 P41023WB 11 1.50 14.68 1.13 11.04 

P41023 P41023WA 11 1.55 15.25 1.24 12.21 

P41025 P41025WA 11 1.82 17.87 1.48 14.50 

P41032 P41032WA 11 1.47 14.38 1.15 11.32 

P41036 P41036WA 11 1.75 17.13 1.52 14.92 

P41040 P41040WA 11 1.39 13.65 1.14 11.22 

P41040 P41040WB 11 1.58 15.48 1.28 12.51 

P41057 P41057WA 11 1.51 14.85 1.30 12.71 

P41061 P41061WA 11 1.67 16.38 1.37 13.43 

P41061 P41061WB 11 1.98 19.44 1.66 16.31 

P41062 P41062WB 11 1.69 16.58 1.37 13.40 

P41062 P41062WA 11 1.75 17.18 1.49 14.57 

P41069 P41069WA 11 1.63 15.95 1.34 13.10 

P41088 P41088WA 11 1.55 15.17 1.28 12.60 

P41098 P41098WA 11 1.21 11.82 0.96 9.42 

P41098 P41098WB 11 1.40 13.76 1.23 12.02 

P41101 P41101WB 11 1.49 14.64 1.20 11.75 

P41101 P41101WA 11 1.51 14.84 1.19 11.70 

P41106 P41106WA 11 1.42 13.97 1.12 10.97 

P41106 P41106WB 11 1.43 14.03 1.19 11.66 

P41107 P41107WA 11 1.35 13.20 1.16 11.40 

P41126 P41126WA 11 1.52 14.93 1.36 13.32 

P41127 P41127WB 11 1.44 14.09 1.32 12.96 

P41127 P41127WA 11 1.46 14.36 1.38 13.49 

P41129 P41129WA 11 1.57 15.42 1.51 14.78 
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V41000 V41000WA 11 1.79 17.52 1.56 15.32 

V41011 V41011WA 11 1.43 14.05 1.11 10.87 

V41016 V41016WA 11 1.48 14.48 1.23 12.03 

V41018 V41018WA 11 1.78 17.43 1.55 15.19 

V41026 V41026WA 11 1.77 17.36 1.55 15.21 

V41027 V41027WA 11 1.85 18.17 1.55 15.21 

V41028 V41028WA 11 1.91 18.71 1.66 16.31 

E41180 E41180WA 22 1.33 13.03 1.27 12.41 

E41185 E41185WA 22 1.18 11.62 1.11 10.86 

I41045 I41045WA 22 1.54 15.08 1.29 12.66 

E41044 E41044WA 23 1.81 17.76 1.58 15.53 

E41069 E41069WA 23 1.40 13.74 1.26 12.33 

E41072 E41072WA 23 1.69 16.59 1.44 14.14 

E41083 E41083WA 23 1.53 15.01 1.34 13.14 

E41084 E41084WA 23 1.41 13.87 1.27 12.45 

E41108 E41108WA 23 1.76 17.30 1.42 13.92 

E41113 E41113WA 23 1.49 14.57 1.31 12.87 

E41139 E41139WA 23 1.57 15.42 1.31 12.87 

I41006 I41006WA 23 1.63 16.03 1.33 13.07 

I41008 I41008WA 23 1.54 15.08 1.25 12.29 

I41014 I41014WA 23 1.34 13.19 1.19 11.70 

I41057 I41057WA 23 1.55 15.20 1.29 12.66 

I41061 I41061WA 23 1.37 13.44 1.25 12.30 

P41011 P41011WA 23 1.73 16.99 1.41 13.88 

P41030 P41030WA 23 1.48 14.55 1.21 11.87 

P41031 P41031WA 23 1.59 15.60 1.29 12.62 

P41124 P41124WA 23 1.41 13.83 1.21 11.89 

P41124 P41124WB 23 1.74 17.10 1.51 14.77 

V41006 V41006WA 23 1.86 18.26 1.66 16.28 

V41007 V41007WA 23 1.91 18.74 1.65 16.21 

E41038 E41038WA 31 1.94 19.05 1.63 16.02 

E41043 E41043WA 31 1.75 17.13 1.58 15.51 

E41079 E41079WA 31 1.65 16.20 1.43 14.01 

E41162 E41162WA 31 1.52 14.90 1.49 14.65 

E41199 E41199WA 31 1.33 13.08 1.26 12.33 

P41038 P41038WA 31 1.43 14.03 1.15 11.26 

P41066 P41066WA 31 1.82 17.88 1.55 15.23 

D41003 D41003WA 51 1.54 15.10 1.28 12.51 

D41005 D41005WA 51 1.53 15.04 1.38 13.52 

E41042 E41042WA 51 1.88 18.49 1.48 14.52 

E41046 E41046WA 51 1.87 18.36 1.62 15.89 

E41071 E41071WA 51 1.64 16.13 1.41 13.81 

E41098 E41098WA 51 1.50 14.70 1.36 13.38 

E41099 E41099WA 51 1.49 14.66 1.33 13.04 

E41101 E41101WA 51 1.68 16.45 1.41 13.82 
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E41102 E41102WA 51 1.59 15.60 1.38 13.53 

E41103 E41103WA 51 1.76 17.29 1.49 14.61 

E41105 E41105WA 51 1.71 16.74 1.49 14.62 

E41109 E41109WA 51 1.56 15.33 1.30 12.80 

E41129 E41129WA 51 1.40 13.75 1.28 12.52 

E41137 E41137WA 51 1.87 18.34 1.53 14.97 

E41138 E41138WA 51 1.89 18.50 1.42 13.90 

E41156 E41156WA 51 1.49 14.60 1.13 11.11 

E41164 E41164WA 51 1.80 17.63 1.52 14.93 

E41168 E41168WA 51 1.14 11.18 1.00 9.83 

I41004 I41004WA 51 1.69 16.54 1.43 14.01 

I41021 I41021WA 51 1.64 16.07 1.36 13.31 

I41025 I41025WA 51 1.77 17.35 1.39 13.63 

P41039 P41039WA 51 1.92 18.86 1.70 16.68 

P41043 P41043WA 51 1.75 17.16 1.50 14.75 

P41046 P41046WA 51 1.78 17.42 1.46 14.29 

P41072 P41072WA 51 1.53 15.00 1.32 12.99 

P41082 P41082WA 51 1.42 13.91 1.15 11.28 

P41112 P41112WA 51 1.43 14.07 1.25 12.27 

P41112 P41112WB 51 1.57 15.36 1.34 13.18 

P41122 P41122WA 51 1.36 13.37 1.19 11.70 

P41123 P41123WA 51 1.44 14.11 1.31 12.82 

V41001 V41001WA 51 1.50 14.72 1.28 12.55 

V41003 V41003WA 51 1.55 15.17 1.31 12.87 

C7001 C7001WA 61 1.60 15.65 1.23 12.06 

C7008 C7008WA 61 1.54 15.12 1.12 10.97 

U7446 U7446WA 61 1.20 11.80 1.05 10.30 

U7466 U7466WA 61 1.38 13.51 1.32 12.96 

V4050 V4050WA 61 1.61 15.78 1.37 13.39 

V4058 V4058WA 61 1.51 14.86 1.14 11.20 

V4060 V4060WA 61 1.44 14.12 1.12 10.95 

V4122 V4122WA 61 1.87 18.32 1.62 15.87 

V4149 V4149WA 61 1.20 11.81 1.02 10.02 

V4155 V4155WA 61 1.68 16.52 1.47 14.45 

V4385 V4385WA 61 1.21 11.88 1.03 10.08 

V4386 V4386WA 61 1.41 13.79 1.25 12.30 

V4387 V4387WA 61 1.19 11.66 1.03 10.12 

V4388 V4388WA 61 1.20 11.74 1.09 10.66 

E41132 E41132WA 62 1.11 10.85 0.90 8.79 

E41136 E41136WA 62 1.57 15.43 1.40 13.77 

I41030 I41030WA 62 1.50 14.71 1.16 11.42 

I41036 I41036WA 62 1.70 16.70 1.45 14.25 

I41038 I41038WA 62 1.39 13.67 1.07 10.48 

U7505 U7505WA 62 1.27 12.42 1.24 12.12 

V4004 V4004WA 62 2.00 19.60 1.70 16.70 
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V4013 V4013WA 62 1.66 16.24 1.31 12.82 

V4015 V4015WA 62 1.42 13.92 1.09 10.73 

V4017 V4017WA 62 1.64 16.11 1.29 12.62 

V4282 V4282WA 62 1.34 13.12 1.11 10.86 
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APPENDIX C 
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ID Site Rv GSI peak 
GSI residual Intact rock strenght (MPa) mi 

min max min max max min 

20120102 25 55 26 21 29 43 16.8 10.4 

20120103 20 50 26 21 19 39 16.8 10.4 

20120104 29 60 27 22 32 54 16.8 10.4 

20120105 21 30 20 15 23 35 16.8 10.4 

20120108 31 50 26 21 33 63 16.8 10.4 

20120112 11 40 23 18 10 28 16.8 10.4 

20120117 23 40 23 18 26 39 16.8 10.4 

20120146 15 40 23 18 18 26 16.8 10.4 

20120147 31 50 26 21 36 60 16.8 10.4 

20120153 22 45 25 20 25 37 16.8 10.4 

20120154 22 45 25 20 23 38 16.8 10.4 

20120156 26 55 26 21 31 43 16.8 10.4 

20120356 11 40 23 18 13 24 16.8 10.4 

20120357 38 35 22 17 54 79 16.8 10.4 

20170319 8 30 20 15 12 18 16.8 10.4 

20170320 22 40 23 18 17 51 16.8 10.4 

20170321 21 55 26 21 22 36 16.8 10.4 

20170322 12 40 23 18 15 23 16.8 10.4 

20170328 24 60 27 22 25 42 16.8 10.4 

20170329 33 60 27 22 38 73 16.8 10.4 

20170330 25 65 27 22 25 47 16.8 10.4 

20170332 29 60 27 22 30 58 16.8 10.4 

20170333 24 50 26 21 28 40 16.8 10.4 

20170334 16 40 23 18 15 34 16.8 10.4 

20170335 15 30 20 15 17 27 16.8 10.4 

20170336 24 45 25 20 21 51 16.8 10.4 

20170337 26 65 27 22 28 47 16.8 10.4 

20182006 17 55 26 21 16 33 16.8 10.4 

20182036 21 55 26 21 19 44 16.8 10.4 

20182039 22 70 27 22 22 40 16.8 10.4 

20182040 24 45 25 20 26 42 16.8 10.4 

20182041 28 55 26 21 34 49 16.8 10.4 

20182042 29 55 26 21 34 50 16.8 10.4 

20182043 27 45 25 20 31 49 16.8 10.4 

20182044 26 55 26 21 30 45 16.8 10.4 
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20182045 21 35 22 17 23 34 16.8 10.4 

20182046 9 25 18 13 14 17 16.8 10.4 

20182047 20 35 22 17 20 36 16.8 10.4 

20182048 10 30 20 15 14 20 16.8 10.4 

20182050 16 40 23 18 15 33 16.8 10.4 

20182051 24 55 26 21 24 47 16.8 10.4 

20182052 15 35 22 17 16 26 16.8 10.4 

20182055 9 30 20 15 14 18 16.8 10.4 

20182056 19 45 25 20 21 33 16.8 10.4 

20182057 21 45 25 20 22 37 16.8 10.4 

20182058 15 45 25 20 17 28 16.8 10.4 

20182059 20 40 23 18 21 34 16.8 10.4 

20182060 15 65 27 22 13 34 16.8 10.4 

20182064 18 40 23 18 21 30 16.8 10.4 

20182065 17 40 23 18 18 29 16.8 10.4 

20182066 24 40 23 18 26 40 16.8 10.4 

20182067 19 45 25 20 18 36 16.8 10.4 

20182068 21 45 25 20 22 36 16.8 10.4 

20182069 19 50 26 21 21 32 16.8 10.4 

20182070 22 35 22 17 20 47 16.8 10.4 

20182071 21 60 27 22 24 35 16.8 10.4 

20182072 26 35 22 17 28 49 16.8 10.4 

20182073 22 40 23 18 24 37 16.8 10.4 

20182075 21 45 25 20 21 37 16.8 10.4 

20182076 23 50 26 21 23 42 16.8 10.4 

20182077 20 55 26 21 20 36 16.8 10.4 

20182078 17 30 20 15 16 33 16.8 10.4 

20182079 21 65 27 22 23 37 16.8 10.4 

20182081 17 40 23 18 17 31 16.8 10.4 

20182082 21 40 23 18 22 37 16.8 10.4 

20182083 19 40 23 18 20 32 16.8 10.4 

20182084 17 40 23 18 17 33 16.8 10.4 

20182085 27 65 27 22 30 50 16.8 10.4 

20182086 25 50 26 21 27 44 16.8 10.4 

20182087 22 40 23 18 21 42 16.8 10.4 

20182088 17 50 26 21 18 30 16.8 10.4 

20182089 27 60 27 22 29 52 16.8 10.4 
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20182090 22 60 27 22 23 40 16.8 10.4 

20182091 28 70 27 22 32 50 16.8 10.4 

20182092 23 55 26 21 26 38 16.8 10.4 

20182093 24 55 26 21 26 39 16.8 10.4 

20182094 18 40 23 18 17 37 16.8 10.4 

20182096 15 35 22 17 15 30 16.8 10.4 

20182097 11 25 18 13 16 20 16.8 10.4 

20182098 19 55 26 21 19 37 16.8 10.4 

20182099 23 40 23 18 24 40 16.8 10.4 

20182100 26 60 27 22 26 49 16.8 10.4 

20182101 24 45 25 20 26 42 16.8 10.4 

20182102 26 65 27 22 29 45 16.8 10.4 

20182103 27 65 27 22 31 47 16.8 10.4 

20182104 25 65 27 22 26 46 16.8 10.4 

20182105 15 35 22 17 16 28 16.8 10.4 
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ID Site Rockmass strenght (MPa) Friction angle (degrees) Effective cohesion (KPa) BMU 

25th perc median 75th perc 25th perc median 75th perc 25th perc median 75th perc 

20120102 0.8 0.9 1.0 28.8 30.2 31.5 35.6 33.1 38.3 1 

20120103 0.6 0.7 0.8 26.4 28.0 29.6 31.4 28.7 34.2 1 

20120104 1.0 1.1 1.3 30.4 31.9 33.3 39.4 36.5 42.5 1 

20120105 0.4 0.5 0.6 21.8 23.2 24.5 22.6 20.7 24.7 4 

20120108 1.0 1.2 1.4 29.9 31.5 33.1 38.6 35.4 41.7 1 

20120112 0.3 0.4 0.5 21.7 23.5 25.1 23.4 20.8 26.1 1 

20120117 0.6 0.7 0.8 25.5 26.9 28.3 29.1 26.8 31.5 4 

20120146 0.4 0.5 0.5 23.1 24.4 25.7 24.8 23.0 27.0 4 

20120147 1.0 1.2 1.3 30.0 31.5 33.0 38.6 35.7 41.6 2 

20120153 0.6 0.7 0.8 26.3 27.7 29.0 30.6 28.3 33.1 2 

20120154 0.6 0.7 0.8 26.2 27.6 28.9 30.4 28.1 32.9 2 

20120156 0.8 0.9 1.0 29.0 30.4 31.7 36.0 33.5 38.7 2 

20120356 0.3 0.4 0.5 21.9 23.3 24.7 23.2 21.3 25.3 4 

20120357 1.1 1.3 1.4 28.8 30.3 31.8 35.5 32.6 38.6 3 

20170319 0.2 0.3 0.3 18.1 19.4 20.6 17.3 15.8 19.0 4 

20170320 0.6 0.7 0.9 25.1 27.2 29.0 29.7 26.3 33.0 4 

20170321 0.6 0.7 0.8 27.2 28.7 30.1 32.6 30.3 35.2 2 

20170322 0.4 0.4 0.5 22.2 23.5 24.7 23.4 21.6 25.4 4 

20170328 0.8 0.9 1.0 28.7 30.1 31.6 35.6 33.0 38.3 2 

20170329 1.2 1.5 1.7 32.1 33.7 35.2 43.7 40.2 47.4 2 

20170330 0.8 1.0 1.1 29.4 30.9 32.4 37.3 34.3 40.3 2 

20170332 1.0 1.2 1.3 30.4 32.0 33.6 39.7 36.5 43.1 2 

20170333 0.7 0.8 0.9 27.8 29.2 30.5 33.4 31.1 36.0 3 

20170334 0.4 0.5 0.6 23.4 25.0 26.7 25.9 23.4 28.6 4 

20170335 0.3 0.4 0.4 20.2 21.5 22.8 20.2 18.5 22.2 4 

20170336 0.7 0.8 1.0 26.8 28.7 30.3 32.5 29.2 35.7 1 

20170337 0.9 1.0 1.1 29.7 31.2 32.6 37.9 35.2 40.9 1 

20182006 0.5 0.6 0.7 25.9 27.5 29.0 30.4 27.8 33.2 3 

20182036 0.7 0.8 1.0 27.4 29.2 30.9 33.7 30.5 36.9 4 

20182039 0.7 0.8 1.0 28.5 30.0 31.5 35.4 32.7 38.3 4 

20182040 0.7 0.8 0.9 26.9 28.3 29.7 31.8 29.4 34.4 2 

20182041 0.9 1.0 1.2 29.8 31.2 32.5 37.7 35.0 40.6 2 

20182042 0.9 1.1 1.2 29.8 31.3 32.6 37.9 35.2 40.8 2 

20182043 0.8 0.9 1.0 27.9 29.4 30.8 34.0 31.3 36.7 3 

20182044 0.8 0.9 1.1 29.1 30.5 31.8 36.2 33.6 39.0 3 
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20182045 0.5 0.6 0.6 23.4 24.7 26.1 25.2 23.2 27.5 3 

20182046 0.2 0.2 0.3 16.6 17.7 18.9 15.1 13.7 16.7 1 

20182047 0.5 0.5 0.6 23.1 24.6 26.0 25.1 23.0 27.4 1 

20182048 0.3 0.3 0.3 18.8 20.1 21.3 18.2 16.6 20.0 4 

20182050 0.4 0.5 0.6 23.3 24.9 26.5 25.7 23.3 28.3 4 

20182051 0.8 0.9 1.0 28.4 30.1 31.6 35.4 32.5 38.5 4 

20182052 0.4 0.4 0.5 21.5 22.8 24.1 22.3 20.5 24.4 4 

20182055 0.2 0.3 0.3 18.5 19.7 21.0 17.9 16.3 19.5 4 

20182056 0.5 0.6 0.7 25.4 26.7 28.1 29.0 26.8 31.3 4 

20182057 0.6 0.7 0.8 25.9 27.4 28.7 30.0 27.7 32.5 4 

20182058 0.5 0.5 0.6 24.2 25.6 26.9 26.9 24.8 29.2 4 

20182059 0.5 0.6 0.7 24.4 25.8 27.2 27.3 25.1 29.6 4 

20182060 0.5 0.6 0.8 26.1 28.0 29.7 31.4 28.1 34.6 4 

20182064 0.5 0.5 0.6 24.0 25.4 26.7 26.4 24.4 28.6 4 

20182065 0.4 0.5 0.6 23.4 24.8 26.1 25.6 23.5 27.8 4 

20182066 0.6 0.7 0.8 25.6 27.0 28.4 29.3 27.0 31.8 3 

20182067 0.5 0.6 0.7 25.2 26.7 28.2 29.0 26.5 31.6 3 

20182068 0.6 0.7 0.8 25.8 27.2 28.6 29.8 27.5 32.2 4 

20182069 0.6 0.6 0.7 26.1 27.4 28.7 30.2 28.0 32.7 4 

20182070 0.5 0.7 0.8 24.0 25.7 27.4 26.9 24.2 29.7 4 

20182071 0.7 0.8 0.9 27.9 29.3 30.5 33.7 31.4 36.3 3 

20182072 0.6 0.8 0.9 25.2 26.6 28.1 28.5 26.1 31.1 3 

20182073 0.6 0.7 0.7 25.1 26.5 27.8 28.4 26.2 30.8 3 

20182075 0.6 0.7 0.8 25.8 27.3 28.7 29.8 27.5 32.3 3 

20182076 0.7 0.8 0.9 27.3 28.8 30.3 32.9 30.3 35.6 3 

20182077 0.6 0.7 0.8 27.0 28.4 29.9 32.2 29.7 34.8 3 

20182078 0.4 0.4 0.5 20.6 22.1 23.6 21.2 19.2 23.3 4 

20182079 0.7 0.8 0.9 28.2 29.7 31.0 34.6 32.2 37.3 3 

20182081 0.4 0.5 0.6 23.5 25.0 26.4 25.8 23.7 28.1 4 

20182082 0.5 0.6 0.7 24.9 26.3 27.6 28.0 25.8 30.4 4 

20182083 0.5 0.6 0.6 24.1 25.5 26.8 26.6 24.5 28.9 4 

20182084 0.4 0.5 0.6 23.7 25.2 26.7 26.2 24.0 28.6 4 

20182085 0.9 1.1 1.2 30.2 31.7 33.1 38.9 36.1 42.0 3 

20182086 0.8 0.9 1.0 28.0 29.4 30.8 34.1 31.6 36.8 3 

20182087 0.6 0.7 0.8 25.1 26.7 28.2 28.8 26.3 31.4 4 

20182088 0.5 0.6 0.7 25.4 26.8 28.1 29.1 26.9 31.5 3 

20182089 0.9 1.1 1.2 29.9 31.5 32.9 38.5 35.5 41.5 3 
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20182090 0.7 0.8 0.9 28.2 29.7 31.1 34.7 32.1 37.4 3 

20182091 1.0 1.1 1.2 30.6 32.0 33.4 39.7 36.9 42.7 3 

20182092 0.7 0.8 0.9 28.0 29.4 30.7 33.9 31.5 36.5 3 

20182093 0.7 0.8 0.9 28.1 29.5 30.8 34.1 31.7 36.8 3 

20182094 0.5 0.6 0.7 24.0 25.7 27.3 27.0 24.5 29.6 4 

20182096 0.4 0.4 0.5 21.7 23.2 24.7 23.0 20.9 25.1 4 

20182097 0.2 0.3 0.3 17.3 18.5 19.8 16.0 14.6 17.7 4 

20182098 0.6 0.7 0.8 26.9 28.4 29.9 32.2 29.5 34.9 3 

20182099 0.6 0.7 0.8 25.4 26.8 28.2 29.0 26.7 31.4 3 

20182100 0.8 1.0 1.1 29.4 30.9 32.4 37.3 34.3 40.3 2 

20182101 0.7 0.8 0.9 26.9 28.3 29.7 31.8 29.4 34.4 2 

20182102 0.9 1.0 1.1 29.7 31.1 32.5 37.7 35.0 40.5 2 

20182103 0.9 1.0 1.2 30.1 31.5 32.8 38.5 35.8 41.4 2 

20182104 0.8 1.0 1.1 29.4 30.9 32.4 37.3 34.5 40.2 2 

20182105 0.4 0.4 0.5 21.7 23.1 24.4 22.8 20.9 24.8 4 
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