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Abstract: Recently, a new mathematical formulation of evolutionary game dynamics [1] has been
introduced accounting for a finite number of players organized over a network, where the players are
located at the nodes of a graph and edges represent connections between them. Internal steady states
are particularly interesting in control and consensus problems, especially in a networked context where
they are related to the coexistence of different strategies. In this paper we consider this model including
self-loops. Existence of internal steady states is studied for different graph topologies in two-strategy
games. Results on the effect of removing links from central players are also presented.
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1. Introduction

Many physical systems of interest can be described by evolutionary games on graphs within the
more general framework of dynamical systems on complex networks [2]. For example, opinion
dynamics under social network influence [3], spread of contagious diseases subject to competition
and selection [4–6], crime dynamics [7], bacterial networks [8], multi-agent decision-making
dynamics [9, 10], and the emergence of cooperation in networked populations [11–18]. Among the
different interaction mechanisms, the simplest ones can be modeled as two-strategy games [19–21].
Differently from the standard approaches presented in [11, 14, 16–18], where the interactions among
players are described as discrete time stochastic processes, the evolutionary games equation on
networks (EGN) proposed in [1], is a system of ordinary differential equations. More specifically,
each of them takes the form of a replicator equation [19], ruling the dynamics of any single player in a
population of N individuals arranged on a network, while other standard approaches [12, 13, 15]
consider the average dynamics of the whole population. Recently, model reduction and symmetries
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have been investigated by using the concept of lumpability of graphs [22].
Similarly to the standard case, the replicator equation on networks possesses different kinds of

steady states: mixed steady states that belong to the interior of the simplex (all players play all strategies
with the probability in (0,1)), pure steady states for which all entries belong to the border of the simplex
(all players play all strategies with probability 0 or 1), and pure/mixed steady states (where some players
play a pure strategy and others play a mixed one. Mixed steady states, hereafter called internal steady
states, are particularly important in the EGN because they represent situations where a player assumes
hybrid decisions corresponding to partially agree to all available strategies. This includes the case for
which some of the strategies are strongly preferred to the others, for example the probability to choose
a given strategy can be very close to 1, although different. As a consequence, the probability to choose
all the other strategies will be very close to 0 since the sum of all strategy components for each player
equals 1. Internal steady states are the most reasonable states for which a group of individuals can be
able to agree on a compromised decision.

Moreover, the importance of the internal states mentioned above lies on the fact that they represent
situations where different subpopulations may coexist. Thus, studying the attractiveness of these states
is connected to the possibility that subgroups of the players eventually coexist in an asymptotically
stable manner [1, 19, 20]. On the contrary, oscillations making the dynamics more interesting will be
produced only if we have unstable internal steady states [23].

In this paper, we study the feasibility of internal steady states in the EGN proposed in [1], by
considering different situations, such as, for example, the presence of self-connections in the network.
This is particularly relevant for social applications, since self-loops describe well how a player is able
to interact also with himself, thus modeling positive or negative feedback on player decisions. We find
necessary conditions for the feasibility of internal steady states of EGN. We distinguish the cases of
dominant, coordination and anti-coordination payoff matrices of the underlying games. Moreover, we
prove sufficient conditions for the feasibility of internal steady states when the graph is complete.
Existence and feasibility of internal steady states are relevant for solving control and consensus
problems. Controlling dynamical systems over networks in order to drive a population of agents
towards a specific steady state has been widely studied [24–27], while the presence of adaptive
networks has been tackled in [28, 29].

In [30], the authors developed a new notion: equilibrium interdependence of agents. This
investigates how the changes in the parameters impact the equilibrium of the system and how they
influence the strategy of other players. In the same direction, we propose a similar approach, where
after analyzing the effect of changing some model parameters, we also investigate the effect of
modifying the connectivity of players. Therefore, in this work, we prove results concerning how the
dynamics of the whole system is influenced by varying the network connectivity of a single node. The
problem under investigation connects with the diffusion centrality issue [31], whereby the role of the
central individuals in a social network is analyzed by observing indirect information flow.

Finally, the effect of link removal from central players is studied theoretically for graphs with no
self-edges, while numerical results are proposed to investigate the case of graphs with self-edges.
Including self-edges in the model proposed in [1] is very promising to study the stability of internal
steady states [32]. Indeed, it has been shown that stability of certain internal steady states is not possible
for graph with no self-edges. Thus, the stability strongly depends on the strength of self-connections
as well as on graph topology.
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The paper is organized as follows. In Section 2 we illustrate the basics of evolutionary games on
networks and in particular on two-strategy game for graphs including self-loops. Section 3 states the
necessary conditions for the existence of internal steady states. Some numerical results are provided
to analyze the existence of mixed steady states for a generic and heterogeneous scenario. Then, in
Section 4 we present sufficient conditions in the case of complete graphs. In Section 5 we tackle the
problem of link removal from a player by providing theoretical results for the case of no self-loops, and
numerical experiments for the case with self-loops. Finally, in Section 6 we state some conclusions
and suggest future developments.

2. Preliminaries

We start by considering the evolutionary game equation on a network (EGN) introduced in [1]:

ẋv,s = xv,s(pG
v,s − φ

G
v ), (2.1)

where s belongs to a set of strategies S = {1, 2, . . . ,M}, v belongs to a set of vertices V = {1, 2, . . . ,N}
and xv,s is the probability that vertex v chooses strategy s, pG

v,s is a Von-Neumann Morgenstern utility
payoff of player v using pure strategy s, and φG

v is the average payoff over the set of strategies available
to vertex v.

In this paper we consider a generalization of the model where pG
v,s and φG

v are both defined by means
of player-to-player payoff matrices Bv,u ∈ R

M×M, such that Bv,u is the payoff matrix used by player v
against player u. As a consequence, the model presented in [1] coincides with the special case, whereby
Bv,u = Bv, ∀u, v ∈ V . As usual, pG

v,s and φG
v depend on the graph G, which in turn is defined by means

of an N × N adjacency matrix A = (av,u) ∈ RN×N
≥0 with (v, u) ∈ V2. More precisely,

pG
v,s =

N∑
u=1

av,ue>s Bv,uxu,

and

φG
v =

N∑
u=1

av,ux>v Bv,uxu,

where es is the s-th canonical-basis vector of RM and xv = [xv,1 xv,2 . . . xv,M]T is the distribution of
pure strategies of player v.

Moreover, we consider graphs with self-loops, i.e., av,v ≥ 0. In this regard, it is straightforward to
consider also self-games described by payoff matrices Bv,v, where a player v plays against itself. For
convenience, we define the degree of a node as deg (v) =

∑N
u=1 av,u. Since we are only concerned with

graphs without isolated vertices, then
∑N

u=1,u,v av,u = deg (v) − av,v > 0. Hence, δv = av,v/deg (v), which
is the relative self-connectivity (i.e., how strong is the self-connection with respect to the sum of all
connection weights) is such that 0 ≤ δv < 1.

Since for every v the constraint xv,1 + xv,2 + . . . + xv,M = 1 holds, we have that for M strategies and
N vertices the EGN leads to a system with N(M − 1) ordinary differential equations. Furthermore, in
this article we analyze the EGN equation for two-strategy games (M = 2). Therefore, for convenience,
we drop the second index s of xv,s, introducing the variable yv = xv,1, whereas xv,2 = 1 − yv. Thus, in
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our case the EGN becomes a system of N ODEs:

ẏv = yv(pG
v − φ

G
v ). (2.2)

Equation (2.2) can be rewritten in a more convenient way as follows: let bv,u
s,r be the payoff of player

v against u when they use strategies s and r, respectively. Then, the payoff function for vertex v against
u can be defined by means of the payoff matrix:

Bv,u =

(
b1,1

v,u b1,2
v,u

b2,1
v,u b2,2

v,u

)
. (2.3)

We denote by σr
v,u = (−1)r+1(b1,r

v,u − b2,r
v,u) the payoff difference of player v when u uses strategy r. The

sign of parameters σ is associated with the game characteristics:

• if σ1
v,u > 0 and σ2

v,u > 0, then v is playing a coordination game against u. A prototypical example
of this kind of games is the Stag Hunt game.
• if σ1

v,u < 0 and σ2
v,u < 0, then v is playing an anti-coordination game against u. A prototypical

example of this kind of games is the Chicken game.
• if σ1

v,u < 0 and σ2
v,u > 0, or σ1

v,u > 0 and σ2
v,u < 0, then v is playing a dominant game against u.

A prototypical example of this kind of games for which σ1
v,u < 0 and σ2

v,u > 0 is the well-known
Prisoner’s dilemma game.

According to [19], Bv,u can be equivalently rewritten as a diagonal matrix, namely

Bv,u = diag(σ1
v,u, σ

2
v,u), (2.4)

and Eq (2.2) reads as
ẏv = yv(1 − yv) fv(y) , (2.5)

where y = (y1, . . . , yN)>, fv(y) =
∑N

u=1 av,u fv,u(yu) and fv,u(yu) = yuTr
(
Bv,u

)
− σ2

v,u, where Tr
(
Bv,u

)
is the

trace of matrix Bv,u. Steady states of (2.5) are very important solutions because they influence
significantly the asymptotic dynamics of the system. Moreover, they can be related to the Nash
equilibria of the game described by the payoff matrix of Eq (2.4). Nash equilibria represent a
cornerstone of game theory, since they correspond to strategies such that no player has any incentive
to change his or her own strategy. The relationship between steady states and Nash equilibria will be
clarified later in the paper.

A solution y∗ of the EGN is a steady state if, and only if, for all v, yv = 0, or yv = 1, or fv(y∗) = 0.
But,

fv(y∗) = 0⇔
N∑

u=1

av,uTr
(
Bv,u

)
yu =

N∑
u=1

av,uσ
2
v,u,∀v ∈ V,

or equivalently
[(Σ1 + Σ2) ◦ A]y∗ = [Σ2 ◦ A]1, (2.6)

where Σ1 and Σ2 are matrices with Σ1
v,u = σ1

v,u, Σ2
v,u = σ2

v,u, A is the adjacency matrix, 1 is the N
dimensional vector with one in every entry, and ◦ denotes the Hadamard product defined as P ◦ Q = R
where R = {ri, j} := {pi, jqi, j}, provided that matrices P and Q have the same dimension.

Our goal is to study how the connectivity of the graph and the presence of self-loops impact the
existence of an internal steady state. From [1] we know that if all players have the same payoff matrix
and there are no self-loops, then the topology does not matter. We will start by looking at theoretical
results on the existence of mixed equilibrium for more general cases than those studied in [1].
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3. Existence of the internal mixed equilibrium

If y∗ satisfies Eq (2.6), then it is a steady state for the ODE system (2.5). Whenever [(Σ1 + Σ2) ◦ A]
is invertible, then we have a unique solution:

y∗ = [(Σ1 + Σ2) ◦ A]−1[Σ2 ◦ A]1. (3.1)

A steady state y∗ satisfying (2.6) is feasible if, and only if, y∗v ∈ [0, 1], ∀v ∈ V . A feasible steady
state y∗ is pure if y∗v ∈ {0, 1}

N , ∀v ∈ V . A feasible steady state y∗ is said to be internal or mixed if,
and only if, y∗v ∈ (0, 1), ∀v ∈ V . Finally, a feasible steady state is non pure if its components belong
to both sets (0, 1) and {0, 1}. We can relate steady states of EGN to Nash equilibria of the underlying
game described by the payoff matrices (2.3). Indeed, in two-strategy games, if y∗ is a feasible internal
steady state, then it is also a Nash equilibrium of the underlying static game [19].

However, it is not enough to guarantee the solvability of Eq (2.6) in order for the mixed steady states
to exist, because we also need that the solutions of the linear equations (2.6) to belong to the interior
of the hypercube ∆S = {y ∈ RN : 0 ≤ yi ≤ 1 , ∀i ∈ V}. We start by giving necessary conditions on the
values of the σs in order for the mixed steady states to be feasible.

Suppose that for every game, the payoff matrix that player v uses when it plays with his neighbors
is equal for every opponent. In other words, ∀v ∈ V, Bv,u = Bv = diag(σv,1, σv,2), ∀u , v. In
contradistinction, the self-game of player v is represented by the matrix Bv,v = Bv = diag(σv,1, σv,2).
Now let us define βv and γv as follows: Tv = βvTv

σv,2 = γvσv,2
,

where Tv = Tr (Bv) and Tv = Tr
(
Bv

)
. Note that, if Tv = 0 for some v, then either player v has

a dominant strategy or it is indifferent to any strategy. In the case he has a dominant strategy, no
internal equilibria can be obtained. In the case the player is indifferent, then he will always play the
same strategy that he used at the beginning of the game; therefore, in order to look for an internal
equilibrium, we could consider the network game without this player. We define dv =

σv,2

Tv
and dv =

σv,2

Tv
=

γvσv,2

βvTv
=

γv
βv

dv. The following theoretical result holds.

Proposition 3.1. Suppose that the adjacency matrix A is non-negative (A ∈ RN×N
≥0 ) and that each node

has at least one neighbor. Moreover, suppose that Tv , 0. If y∗ is a mixed steady state, then for any
v ∈ V: dv(1 + δv(γv − 1)) − y∗vδv(βv − 1) ∈ (0, 1) if av,v , 0

dv ∈ (0, 1) if av,v = 0
.

Proof. Let [Ay∗]v and [A1]v be the v-th component of the vector Ay∗ and A1, respectively.
Since each node has at least one neighbor, then deg (v) > 0, ∀v ∈ V . Therefore,

[Ay∗]v =
∑N

u=1 av,u · y∗u ≥ min(y∗) ·
∑N

u=1 av,u =

= min(y∗) · deg (v) > 0, ∀v ∈ V.
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Furthermore,
[Ay∗]v =

∑N
u=1 av,u · y∗u <

∑N
u=1 av,u · 1 =

= deg (v) , ∀v ∈ V .

This implies that 0 < [Ay∗]v < deg (v), and hence

[Ay∗]v
deg(v) ∈ (0, 1) ∀v ∈ V. (3.2)

From Eq (2.6), we know that∑N
u=1 av,uTr

(
Bv,u

)
y∗u =

∑N
u=1 av,uσv,2 ⇒

Tv[Ay∗]v + av,v(Tv − Tv)y∗v = σv,2deg (v) + av,v(σv,2 − σv,2) ⇒
Tv

(
[Ay∗]v + av,v(βv − 1)y∗v

)
= σv,2

(
deg (v) + av,v(γv − 1)

) , (3.3)

∀v ∈ V . If av,v = 0 then
[Ay∗]v
deg(v) = dv ∈ (0, 1), ∀v ∈ V.

If av,v , 0, then dividing both sides of Eq (3.3) by deg (v) Tv, we have:

[Ay∗]v
deg(v) + δv(βv − 1)y∗v = dv (1 + δv(γv − 1))⇒
[Ay∗]v
deg(v) = dv (1 + δv(γv − 1)) − δv(βv − 1)y∗v ∈ (0, 1).

∀v ∈ V.

�

This result represents a necessary condition for having an internal steady state y∗. The condition
depends on the game played, represented by the parameter dv, and on the self-loop, ruled by the
parameters δv, βv and γv. If we know the components of y∗, no such condition is needed. However, the
proposition allows us to prove the interesting corollary below. This result will give us a truly
necessary condition for having an internal steady state in the cases where we have coordination and
anti-coordination payoff matrices. It is also interesting to note that, if δv = 0 (i.e., no self-loops), then
we have that dv ∈ (0, 1), recovering the results of [1] for the uniform payoff case. In this sense, the
results in the previous theorem are an extension of the results presented in [1].

Corollary 3.1. Suppose that y∗ is a mixed steady state. Let `v = deg (v)− av,v be the v-th element of the
Laplacian matrix of the graph, i.e., L = diag(deg (v)v∈V) − A. For each v, then:

(a) if δv = 0, then Bv represents a coordination game if Tv > 0 or an anti-coordination game if Tv < 0;

(b) if δv > 0 and 1 < βv < γv, then Bv represents a coordination game if Tv > 0 or an anti-coordination
game if Tv < 0;

(c) if δv > 0, βv > 1 and γv < −`v, then the pure strategy y∗v = 1 is dominant for the game represented
by Bv if Tv > 0, or the pure strategy y∗v = 0 is dominant for the game represented by Bv if Tv < 0.

Proof.

• Proof of (a)
If δv = 0 then av,v = 0, by the previous proposition we have that dv ∈ (0, 1), then if Tv > 0, then
Bv represents a coordination game, while for Tv < 0 we have an anti-coordination game.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5287–5306.
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For the cases with δv > 0, firstly, notice that

1 −
1
δv

=
av,v − deg (v)

av,v
.

Moreover, since δv > 0⇒ av,v = 1, then:

1 −
1
δv

= av,v − deg (v) = −`v.

Secondly, if βv > 1, then δv(βv − 1) > 0. Furthermore:

0 < dv(1 + δv(γv − 1)) − y∗vδv(βv − 1) < dv(1 + δv(γv − 1)),

and
1 > dv(1 + δv(γv − 1)) − y∗vδv(βv − 1) > dv(1 + δv(γv − 1)) − δv(βv − 1),

yielding that
0 < dv(1 + δv(γv − 1)) < 1 + δv(βv − 1).

• Proof of (b)
If 1 < βv < γv, then 1 + δv(γv − 1) > 0 and

0 < dv(1 + δv(γv − 1)) < 1 + δv(βv − 1)⇒ dv ∈
(
0, 1+δv(βv−1)

1+δv(γv−1)

)
.

Since γv > βv then 1 + δv(γv − 1) > 1 + δv(βv − 1), which implies dv ∈ (0, 1) and the conclusion
follows.
• Proof of (c)
βv > 1 and γv < −`v, then 1+δv(βv−1)

1+δv(γv−1) < 0 and

0 < dv(1 + δv(γv − 1)) < 1 + δv(βv − 1)⇒ dv ∈
(

1+δv(βv−1)
1+δv(γv−1) , 0

)
.

It turns out that dv is a negative number and hence σv,1 and σv,2 have different signs. In particular,
if Tv > 0, then σv,2 < 0 and 0 < |σv,2| < σv,1, while Tv < 0 implies that σv,1 < 0 and 0 < |σv,1| <

σv,2. In the former case, Bv represents a game with the pure strategy y = 1 dominant; instead for
the latter case the pure strategy y = 0 is dominant.

�

The results of Corollary 3.1 are depicted in Figure 1 for a generic player v. We report the regions
were an internal steady state is feasible. Blue and red colors indicates the areas where it is necessary a
non-dominant game (bistable or coexistent) and a dominant game, respectively.

3.1. Numerical results

Proposition 3.1 and Corollary 3.1 relate the existence of the internal steady state with the
connectivity of each player v, i.e., δv, the strength of its self-games, i.e., βv and γv, and the game itself.
However, these results only provide necessary conditions for the existence of internal mixed steady
states.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5287–5306.



5294

1

1

−`v

βv

γv

Non dominant games

Dominant games

Figure 1. This figure reports the regions on the plane (βv, γv) where conditions of
Corollary 3.1 are met for a generic player v.

While sufficient conditions that work for particular graph structures will be proven in the next
sections, here we show a numerical example using an Erdös-Rényi graph sample with N = 150 nodes
and average degree 10. We assume that av,v = 1 for all v ∈ V , i.e., each player has a self-loop. For
this numerical example, we divide the nodes into six groups of 25 elements each. For each group, we
choose the parameters σv,1 and σv,2 in the set {(1, 1), (0.9, 1), (1, 0.9), (−1,−1), (−0.9,−1), (−1,−0.9)}.
In this way, half of the nodes have a coordination game payoff matrix, while the other half play anti-
coordination games. We also assume that βv = β and γv = γ for all the players. Then, for each couple
of values β and γ in the set [−30, 30] × [−30, 30], we evaluated the solution y∗ of Eq (3.1). In Figure 2
we report in blue the couples (β, γ) for which Eq (3.1) has no solution, or if the solution cannot be
classified as an internal steady state (i.e., y∗v < (0, 1) ∀v). Instead, if the solution y∗ is internal, then the
couple (β, γ) is depicted in light green. Finally, in dark green we report the non internal steady states
that anyway satisfy the condition of Proposition 3.1. We remark that light and dark green areas refer
to the points (β, γ) which satisfy the condition of Proposition 3.1 for all the players.

4. Feasibility of mixed steady states for complete graphs

In this section we report some theoretical results on the feasibility of mixed steady states for
complete graphs. In order to study how connectivity plays a role on the existence of steady states, we
start our study with the most connected graph: the complete one. Our result shows that the presence
of many connections in the graph implies that the payoff matrices of the players should be very
similar in order for the system to be able to have an internal steady state.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5287–5306.
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4.1. Feasibility of mixed steady states with self-edges

Consider a complete undirected and unweighted graph of N nodes with self-edges. Then, the
adjacency matrix A is equal to 1N×N . Moreover, we consider that the self-game strengths are given by
βv = β and γv = γ for all players. In this case, we get that (Σ1 + Σ2) ◦ A = diag(Tv)Aβ and
Σ2 ◦ A = diag(σv,2)Aγ where Aβ = 1N×N + (β − 1)IN×N and Aγ = 1N×N + (γ − 1)IN×N .

Figure 2. Existence of the internal mixed equilibrium in the hypothesis that βv = β and
γv = γ for all the N = 150 players, arranged over an Erdös-Rényi graph with average degree
10. Blue region does not present any internal equilibrium. Light green regions show an
internal equilibrium, satisfying Proposition 3.1. Dark green regions represent the value of β
and γ satisfying Proposition 3.1 for non internal steady states which are solutions of Eq (3.1).

Lemma 4.1. Let N ∈ N+. If β , 1 and β , 1 − N, then Aβ is invertible and its inverse is given by
A−1
β = [qv,u] where qv,v =

β+(N−2)
(β−1)(β+N−1)

qv,u = −1
(β−1)(β+N−1) , v , u.

The proof of this lemma is a direct consequence of the remark that Aβ is a circulant matrix.

To ease the discussion of the upcoming results, we introduce the average of a vector over a set of
indices Ψ, 〈x〉Ψ = 1

|Ψ|

∑
v∈Ψ xv, where |Ψ| is the cardinality of the set.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5287–5306.
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Theorem 4.2. Let A, with N ≥ 3 vertices, be the adjacency matrix of a complete graph with self-edges.
If Tv , 0 and βv = β < {1, 1 − N} for all v ∈ V, then there is at most one non-pure steady-state y∗ for
the system of ODEs in Eq (2.5) and 〈y∗〉V =

γ+N−1
β+N−1〈d〉V . Moreover, y∗ is an internal steady-state if, and

only if, for all v ∈ V:
If sign (γ + N − 1) = sign (β − 1), then:

N〈d〉V
β+N−1 < dv <

N〈d〉V
β+N−1 +

β−1
γ+N−1 . (4.1)

If sign (γ + N − 1) , sign (β − 1), then:
N〈d〉V
β+N−1 +

β−1
γ+N−1 < dv <

N〈d〉V
β+N−1 . (4.2)

Remark 4.3. For the case N = 2, it is easy to check that y∗ is feasible if, and only if, 0 < dv < 1 for
v = 1, 2.

Proof. For β < {1, 1 − N} and σv,1 + σv,2 , 0 we have that (Σ1 + Σ2) ◦ A is invertible. Then, Eq (3.1)
becomes:

y∗ = A−1
β DAγ1, (4.3)

where D = diag(Tv)−1diag(σv,2) = diag(dv) is a diagonal matrix.
In this case, the components of the steady state in Eq (4.3) are defined as follows:

y∗v =
(β+N−2)(γ+N−1)

(β−1)(β+N−1) dv −
(γ+N−1)

(β−1)(β+N−1)

∑N
u=1
u,v

du ⇒

y∗v =
(β+N−1)(γ+N−1)

(β−1)(β+N−1) dv −
(γ+N−1)

(β−1)(β+N−1)

∑N
u=1 du ⇒

y∗v =
γ+N−1
β−1

(
dv −

N〈d〉V
β+N−1

)
,

while the average of all the components of y∗ is:

〈y∗〉 =
γ+N−1
β−1

(
〈d〉V − N〈d〉V

β+N−1

)
=

γ+N−1
β+N−1〈d〉V .

Since each component y∗v is in the set (0, 1), then:

0 < γ+N−1
β−1

(
dv −

N〈d〉V
β+N−1

)
< 1.

If sign (γ + N − 1) = sign (β − 1), then:
N〈d〉V
β+N−1 < dv <

N〈d〉V
β+N−1 +

β−1
γ+N−1 .

On the other hand, if sign (γ + N − 1) , sign (β − 1), then:
N〈d〉V
β+N−1 +

β−1
γ+N−1 < dv <

N〈d〉V
β+N−1 .

�

Corollary 4.4. Under the assumptions of Theorem 4.2, if dv = d for all v ∈ V, then y∗ is internal to the
simplex if, and only if,

γ + N − 1
β + N − 1

d ∈ (0, 1).

The proof of the corollary is straightforward by plugging dv = 〈d〉V in (4.1) or (4.2).
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4.2. Feasibility of mixed steady states with no self-edges

In the following theorems we discuss the feasibility of internal steady states for complete graphs
with no self-edges. In this case Theorem 4.2 simplifies as follows.

Theorem 4.5. Let A, with N ≥ 3 vertices, be the adjacency matrix of a complete graph with no self-
edges. If Tv , 0, ∀v ∈ V, then there is at most one non-pure steady-state y∗ for the system of ODEs in
Eq (2.5) and 〈y∗〉V = 〈d〉V . Moreover, y∗ is an internal steady-state if, and only if,

N〈d〉V−1
N−1 ≤ dv ≤

N〈d〉V
N−1 , ∀ v ∈ V. (4.4)

Corollary 4.6. Under the assumptions of Theorem 4.2, if y∗ is an internal steady-state then:

|dv − 〈d〉V | < 1
N−1 , ∀ v ∈ V. (4.5)

Proof. From (4.4), we have that:

〈d〉V−1
N−1 < dv − 〈d〉V < 〈d〉V

N−1 , ∀ v ∈ V.

Since y∗ is an internal steady state and Tv , 0, then by Theorem (4.2), dv ∈ (0, 1), since βv = γv = 0.
Therefore,

− 1
N−1 < dv − 〈d〉V < 1

N−1 , ∀ v ∈ V,

which is the statement of the corollary. �

The Corollary 4.6 provides a necessary condition for the system (2.5) to have an internal steady
state. If for any vertex v, the distance of dv to the average 〈d〉V is greater than or equal to 1

N−1 , then
the system can only have pure steady states. We can also see that if N is large, then we may only have
internal steady states whose components dvs are very close, i.e., in a complete graph, the system can
only have internal steady states if the payoff’s ratio of every player dv, does not get more than 1

N−1
distant from the average of all payoff’s ratios. For a large system, this will require similar payoffs for
all players.

It is worthwhile to note that the results presented in Sections 3 and 4 highlight a strong dependence
of the internal steady state on the connectivity of the network and on self-loops. The numerical
experiments reported in Figure 3 show that the steady states reached by a population playing different
game typologies without (first row) and with (second row) self-loops, may change significantly
according to the network connectivity. The detail of the dynamics of a specific node is also reported
(third row). In subplot (A), individuals play anti-coordination games, with σv,1 = σv,2 = −1 for all v.
For the case with self-loops, we set βv = 4 and γv = 6 for all v. In subplot (B), individuals play
coordination games, with σv,1 = σv,2 = 1 for all v. For the case with self-loops, we set βv = −5 and
γv = −6 for all v. In subplot (C), individuals play coordination games, with σv,1 = −1 and σv,2 = 1.2
for all v. For the case with self-loops, we set βv = −2.5 and γv = −3.5 for all v. Initial condition used
for all experiments is x1(0) = x2(0) = x3(0) = x4(0) = x5(0) = 0.3.

As a conclusive remark, while in [30] it has been shown that, generally, equilibrium agents are
indifferent to small changes in games with two strategies, in our framework we show that modifications
in the network structure, as well as the presence of self-loops, may produce significant changes in the
dynamics of the system. This connects to Section 5, where the effect of link removal has been analyzed
from both theoretical and numerical points of view.
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Figure 3. The effect of link removal. The steady state reached by a population of N =

5 individuals arranged on complete network, closed star and open star are reported, with
and without the presence of self-loops. In subplots (A), (B) and (C), individuals play anti-
coordination, coordination and strategy-two dominant games, respectively. We report the
steady state reached by the population when no self-loops are present (first row), and when
self-loops are active (second row). The detail of the dynamics of specific nodes is also
reported in the third row. Grey lines refer to the dynamics without self-loops, while black
lines are used for the dynamics with self-loops. Solid, dashed and dashed-pointed lines are
used to distinguish among complete, closed star and open star networks.

5. The effect of link removal

We now consider the following scenario: take a fully connected graph, choose one specific node
and start deleting successively different links from this node. The general question under
consideration is: what is the effect in the dynamics of such procedure? In general terms, such circle of
ideas has attracted the attention of other researchers. For instance, in telecommunications and
computer networks this corresponds to the so-called “bond percolation” process (see Section 16.1
of [33]). In Chapter 16 of [33], a comprehensive review of percolation and network resilience can be
found. In contradistinction with such approach, we focus on one single node and analyze the
resilience with respect to link removal in a deterministic fashion.

First, we study the effect of link removal from central player starting from a complete network. In
particular, we report some theoretical results for the case of graphs with no self-edges
(βv = γv = 0,∀v ∈ V). The case of networks including self-edges is then investigated by means of
numerical simulations, showing that removing links can change dramatically the asymptotic behavior
of the system, sometimes destroying the internal steady states.
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5.1. Theoretical results on games with no self-edges by removing links

Theorem 5.1. Let A be the adjacency matrix of a complete graph with N > 3 vertices and no self-
edges. Assume that the connection between vertices v0 and u0 is removed and Γ = V\{v0, u0}. Moreover,
assume that σv,1 +σv,2 , 0 for all v. If an internal steady state y∗ exists, then following conditions hold

i)
−2 + 〈d〉Γ(N − 1)

N − 3
< dv0 = du0 <

〈d〉Γ(N − 1)
N − 3

,

ii)
−1 + dv0

N − 1
+ 〈d〉Γ < dv <

dv0

N − 1
+ 〈d〉Γ, ∀v ∈ Γ.

Proof. Without loss of generality, let us assume v0 = 1, u0 = 2. Writing Eq (2.6) as a system of linear
equations, we get 

y3 + y4 + . . . + yN = d1(N − 2)
y3 + y4 + . . . + yN = d2(N − 2)
y1 + y2 + y4 . . . + yN = d3(N − 1)

...

y1 + y2 + y3 . . . + yN−1 = dN(N − 1)

.

If d1 , d2 then the first two equations would be incompatible, therefore d1 = d2. In this case, the
system has infinite solutions with y1 and y2 as free variables. Let z = y1 + y2 and assume d1 = d2, then
the system with N equations can be reduced to a system with N − 1 equations

y3 + y4 + . . . + yN = d1(N − 2)
z + y4 + . . . + yN = d3(N − 1)

...

z + y3 + . . . + yN−1 = dN(N − 1)

.

This system has only one solution given by:

z∗ = −(N − 3)d1 + (N − 1)〈d〉Γ,
y∗v = d1 + (N − 1)〈d〉Γ − (N − 1)dv, ∀v ∈ Γ.

If the solution is in the simplex, then for all v ∈ Γ, it is true that 0 < z∗ < 2 and 0 < y∗v < 1. This implies
that i) and ii) must hold. �

Suppose now that we start from an almost complete graph and iteratively remove additional links
from the same vertex v0. Let Λ = {v1, v2, . . . , vM−1} be the set of vertices that have been disconnected
from vertex v0 and Γ = V\

(
Λ ∪ {v0}

)
the set of vertex that is still connected to v0.

Theorem 5.2. Let A, with N > 3 vertices, be the adjacency matrix of a complete graph where K − 1
vertices have been disconnected from vertex v0. Let Λ be the set of disconnected vertices and Γ the
remaining set of connected vertices. Moreover, let us assume that σv,1 + σv,2 , 0 for all v ∈ V. Then,
there exists an internal steady state, if, and only if, all the following conditions hold:

i) (K − 1)〈d〉Λ − (N−1)(K−2)
(N−2) 〈d〉Γ < dv0 < (K − 1)〈d〉Λ − (N−1)(K−2)

(N−2) 〈d〉Γ + K−2
N−2 ,
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ii) −1 − N−K
K−2 dv0 +

(N−2)(K−1)
K−2 〈d〉Λ < (N − 2)dv < −

N−K
K−2 dv0 +

(N−2)(K−1)
K−2 〈d〉Λ, ∀v ∈ Λ,

iii) −1 + dv0 + (N − 1)〈d〉Γ < (N − 1)dv < dv0 + (N − 1)〈d〉Γ, ∀v ∈ Γ.

Proof. Let us assume without loss of generality that Λ = {2, 3, · · · ,K}. Then, A = (av,u)N×N where

av,u =


0, if


v = u or
v = 1, 1 ≤ u ≤ K or
1 ≤ v ≤ K, u = 1

1, otherwise.

.

The matrix A is invertible for all N > 2 and its inverse is given by the block matrix

A−1
N =


R1 R2 R3

R>2 R4 R5

R>3 R>5 R6

 ,
where

R1 = N−2
(K−2)(N−K)

R2 = − 1
K−211×(K−1)

R3 = 1
N−K 11×(N−K)

R4 = 1
K−21(K−1)×(K−1) − I(K−1)

R5 = 0(K−1)×(N−K)

R6 = 1
N−K 1(N−K)×(N−K) − I(N−K)

.

In the above formulas, Ii is the i-dimensional identity matrix, and 0i× j and 1i× j are the i × j matrices of
all 0 and 1 entries, respectively.

By Eq (3.1), the steady state can be expressed as

y∗1 = d1
N−2
K−2 −

(N−2)(K−1)
(K−2) 〈d〉Λ + (N − 1)〈d〉Γ

y∗v = −
(N−K)d1−(N−2)(K−2)dv+(N−2)(K−1)〈d〉Λ

(K−2) , v ∈ Λ

y∗u = d1 − du + (N − 1)〈d〉Γ, u ∈ Γ.

The result thus follows from the fact the y∗v ∈ (0, 1), for all v ∈ V . �

Remark 5.3. If dv = d ∈ (0, 1) ,∀v ∈ V , then we can show that inequalities i), ii) and iii) hold.
Then, from Theorem 5.2, we have that the internal steady state exists. This is in agreement with the
conclusions obtained by Theorem 1 in [1].

5.2. Simulation results on games with self-edges by removing links

In the following, we report some numerical results on the effect of link removal in networks with
self-edges. In order to study the link removal from networks including self-edges we develop a
numerical experiment employing random graphs with 60 nodes. Starting from the complete graph, we
use 3 different removal strategies to produce different graphs whose average degree is
k ∈ {60, 59, 58, . . . , 6, 5}, thus obtaining a sequence of 56 graphs with different degrees.
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Figure 4. Effect of link removal on coordination and anti-coordination games. Subplots (A),
(B) and (C) report as a function of the average degree of the network, the value at steady
state reached by each of the 60 members of the considered population, for each link removal
strategy. In this case, the first 30 players play a coordination game, while the others play an
anticoordination game. The lines in subplots (D), (E) and (F) represent the average of the
whole population steady states as a function of the average degree of the network for each
link removal strategy. The lighter dots correspond to the steady states reached by members
of the population over 1000 numerical experiments.

A comment concerning the different strategies for edge removal is in order. In the so-called
random removal strategy, we start from a complete graph, and then we randomly remove 60 links, in
order to obtain a new graph with an average degree of 59. In general, starting from a graph with
average degree k, we remove 60 links in order to obtain a graph with average degree k − 1. The
random regular removal strategy is similar to the random removal approach, but we remove exactly
one link for each node, in order to obtain at each step a random regular graph (i.e., all nodes have the
same degree). Finally, the Erdös-Rényi removal strategy consists of starting from an Erdös-Rényi
graph sample with average degree k, then removing a certain amount of links in order to obtain an
Erdös-Rényi graph sample with average degree k. An existing link remains with probability k−1

k
,

otherwise, it is removed. In this way we are able to build Erdös-Rényi graph samples using a removal
process. For each node we fix βv = γv = −30. For this numerical example, we divide the nodes into
six groups of 10 elements each. For each group, we choose the parameters σv,1 and σv,2 in the set
{(1, 1), (0.9, 1), (1, 0.9), (−1,−1), (−0.9,−1), (−1,−0.9)}. In this way, half on the nodes have a
coordination game payoff matrix, while the other half play anti-coordination games. The three
random removal strategies have been repeated 1000 times, thus obtaining 3 · 56 · 1000 = 168000
random graphs. For each of them, a random initial condition has been created (i.e., xv(0) is a
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Figure 5. Effect of link removal on dominant games. Subplots (A), (B) and (C) report as a
function of the average degree of the network, the value at steady state reached by each of
the 60 members of the considered population, for each link removal strategy. In this case, all
players of the population play a strategy 2 dominat game. The lines in subplots (D), (E) and
(F) represent the average of the whole population steady states as a function of the average
degree of the network for each link removal strategy. The lighter dots correspond to the
steady states reached by members of the population over 1000 numerical experiments.

uniformly distributed random number in the set (0, 1)). Thereafter, we let the solutions of the
ODE (2.5) evolve towards a steady state. An example of the reached steady states is depicted in the
subplots (A), (B) and (C) of Figure (4), where a colored point represents the value of the v-th
component of the steady state for a given graph whose average degree is reported in the abscissa. We
notice that, for sparser graphs, the behavior of the bistable nodes (i.e., the first 30 nodes), becomes
more regular, that is, it is easier for the whole population to reach the similar steady state of consensus
as long as the neighbor’s size decreases. For supporting this claim, in subplots (D), (E) and (F), we
report with lines the average of the whole population steady states as a function of the average degree
of the network for each link removal strategy. The lighter dots correspond to the steady states reached
by members of the population over 1000 numerical experiments. The dots allow us to show that the
variance of steady state decreases as the number of removed links increases. A similar numerical
experiment has been performed for a population of players involved in a dominant game. More
specifically, we assume that a prisoner’s dilemma game, where strategies 1 and 2 stand for
cooperation and defection, respectively, is simulated by means of the EGN Eq (2.5). For this
numerical example, we divide the nodes into six groups of 10 elements each. For each group, we
choose the parameters σv,1 and σv,2 in the set {(−1, 1.1), (−1, 0.9), (−1.1, 1), (−1.1, 0.9), (−0.9, 1),
(−0.9, 1.1)}. For each node we fix βv = γv = −30. All the couples (σv,1, σv,2) represent games where
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strategy 2 is dominant, coherently with a prisoner’s dilemma game. An example of the reached steady
states is depicted in the subplots (A), (B) and (C) of Figure (5). The lines in subplots (D), (E) and (F)
represent the average of the whole population steady states as a function of the average degree of the
network for each link removal strategy. The lighter dots correspond to the steady states reached by
members of the population over 1000 numerical experiments. Interestingly, this experiment shows
that link removal policies, as well as the presence of self-loops, allow the system to converge toward
strategy 1 for low connectivity, even though the original game is strategy 2 dominant. Moreover, this
transition from a population of individuals all converging to strategy 2 to a population of individuals
all converging to strategy 1 is sharper if the removal policy is random regular. This result may be
useful for further studies investigating the interplay between cooperation and defection in a
population of decision makers playing the prisoner’s dilemma game. Indeed, Figure (5) shows that
including the self-loop as well as removing links can drive individuals to reach some level of
cooperation. As a final remark, we note that in [30] the authors conclude that changing the preference
of one player usually will not lead a change in the system, which in fact depends on switching the
number of strategies’ players. We can see a similar effect for the link removal in Figure 5.

6. Conclusions and future developments

In this paper, we study the relationship between network topology and self-loops in the Evolutionary
Game Equation on Graphs. The mathematical form of this equation allows us to analyze separately the
dynamics of any single individual, starting from his initial condition, which refers to his status in the
beginning of the observation, to transient evolution of his strategy, until the asymptotic regime.

In this framework, we state some necessary results for the existence and feasibility of internal steady
states. Necessary and sufficient conditions for the case of complete graphs have also been provided. In
this scenario, we proved that we can only have a mixed steady state if all payoff matrices are almost
similar in terms of the parameters dv (i.e., these parameters must be sufficiently close to their average).
In this respect, we also show that the larger the number of nodes of the network, the stronger the
conditions for the mixed steady state to be feasible.

The investigation of the internal steady states conducted in this study is an attempt to solve a well-
known problem related to games on networks, such as the cooperation in the prisoner’s dilemma game
from a different point of view. Specifically, the existence of mixed steady states is an alternative way
of conceiving cooperation, moving from a discrete (a player cooperates or defects) to a continuous
setup (a player can exhibit an intermediate level of cooperation). Then, we exploited the influence
of varying the connectivity of the network by removing iteratively the edges of a single node. This
link removal process has been studied starting from a complete network without and with self-loops.
The former is developed through theoretical results, whereas the latter through numerical simulations.
We showed that the effect of link removal may also favor the presence of mixed steady states, thus
fostering the onset of a partial level of cooperation. The present research shows that self-loops and link
removal have a deep impact on the steady states of each individual of a networked finite population,
and consequently, on the whole dynamics. These two ingredients may be fruitfully used for control
purposes: for instance, we showed that it is possible to control the dynamics of a population playing
a dominant game like the prisoner’s dilemma, driving individuals towards a more profitable strategy.
Moreover, our approach shows that, although the individuals are involved in coordination and/or anti-
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coordination games, which naturally splits the population strategy, the presence of self-loops and the
link removal may help to reduce the difference of these strategies, thus driving the population towards
a consensus steady state.

A natural continuation of this research, which is presently under investigation by the authors,
concerns the modification of the present model to account for the weak-selection limit, by preserving
all the main peculiarities of the EGN equation. Similar investigations are under way concerning the
effect of different network topologies, such as small world or scale-free networks, on the feasibility of
the steady states of the EGN equation.
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