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Abstract: We address some special cases of job shop and flow shop scheduling problems with
s-precedence constraints. Unlike the classical setting, in which precedence constraints among the
tasks of a job are finish–start, here the task of a job cannot start before the task preceding it has started.
We give polynomial exact algorithms for the following problems: a two-machine job shop with two
jobs when recirculation is allowed (i.e., jobs can visit the same machine many times), a two-machine
flow shop, and an m-machine flow shop with two jobs. We also point out some special cases whose
complexity status is open.
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1. Introduction

This paper addresses a variant of classical shop scheduling models. While, in classical job shop
or flow shop (as well as in the large majority of scheduling problems with precedence constraints), the
task of a job cannot start before the previous task of the same job has finished, we address a situation in
which each task of a job cannot start before the previous task of the same job has started. These types of
constraints are known in the literature as s-precedence constraints. Scheduling problems with s-precedence
constraints have been introduced by Kim and Posner [1] in the case of parallel machines. They showed
that makespan minimization is NP-hard, and developed a heuristic procedure deriving tight worst-case
bounds on the relative error. Kim, Sung, and Lee [2] performed a similar analysis when the objective
was the minimization of total completion time of the tasks, while Kim [3] extended the analysis to
uniform machines. Tamir [4] analyzed a parallel-machine problem in which traditional finish–start
precedence constraints coexisted with s-precedence constraints (that she renamed selfish precedence
constraints, giving an enjoyable dramatized motivation of the model), and established various worst-case
bounds for classical dispatching rules which refer to specific structures of precedence constraints. Indeed,
s-precedence constraints also arise in project management, called start–start precedence constraints
(Demeulemeester and Herroelen [5]), as a result of the elaboration of a work breakdown structure (WBS)
and of the coordination among different operational units. To our knowledge, none has addressed job
shop and flow shop problems with s-precedence constraints so far.

The problem can be formally introduced as follows. We are given a set of n h J1, J2, . . . , Jn, to be
processed on a shop with m machines denoted as M1, . . . , Mm. Each job Jk consists of a totally ordered
set of tasks, Jk = {Ok

1, Ok
2, . . . , Ok

nk
}, k = 1, . . . , n. Task Ok

i requires processing time pk
i on a given machine

M(Ok
i ), i = 1, . . . , nk. Tasks cannot be preempted. Task Ok

i can only start after task Ok
i−1 is started;

i.e., there is an s-precedence constraint between tasks Ok
i−1 and Ok

i , for all k = 1, . . . , n, i = 2, . . . , ni.
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A schedule is an assignment of starting times to all tasks so that at any time each machine processes at
most one task and all s-precedence constraints are satisfied. The problem is to find a feasible schedule
that minimizes makespan.

We characterize the complexity of special cases of the problem, considering a fixed number of
jobs and machines. Shop problems with few jobs occur when modeling synchronization and conflicts
among processes share common resources. Examples of this situation include scheduling robot moves in
flexible robotic cells (Agnetis et al [6]), aircraft scheduling during taxiing at an airport so that no aircraft
collides (Avella et al. [7]), or, in container terminals, the synchronization of crane gantry movements once
transportation tasks have been assigned (Briskorn and Angeloudis [8]).

The structure of the paper is as follows. In Section 2 we consider the job shop scenario, and give a
polynomial time algorithm for the problem in which n = 2, m = 2, and each job can visit the machines
several times (that is, recirculation [9] is allowed ). In Section 3 we focus on the flow shop scenario.
We show that the two-machine flow shop can be solved in linear time and we give a polynomial time
algorithm for the m-machine problem with two jobs. In Section 4 we briefly discuss cases with n > 2 and
point out open problems.

2. The Job Shop with Two Jobs and Two Machines

In this section we describe a polynomial algorithm for the job shop problem with two jobs and two
machines; i.e., J2|n = 2, s− prec|Cmax. For notation simplicity, in this section we denote the two jobs as A
and B, consisting of the sequence of tasks, A = {A1, A2, . . . , AnA} and B = {B1, B2, . . . , BnB}, respectively.
Task Ai (Bh) requires processing time pA

i (pB
h ) on machine M(Ai) (M(Bh)).

Obviously, if two consecutive tasks of the same job, say, Ai and Ai+1, require the same machine, then
Ai+1 has to wait for the completion of Ai, but if the machines required by the two operations are different,
i.e., M(Ai+1) 6= M(Ai), then Ai+1 can start even if Ai has not completed yet. So, unlike the classical job
shop setting in which precedence relations are finish-start, in our model it may actually happen that Ai+1
even completes before Ai (the same of course applies to job B).

Given a partial schedule, the first unscheduled tasks of the two jobs will be referred to as the available
tasks. Suppose now that one of the two machines, say M′, has just completed a task, while the other
machine, say M′′, is still busy. If both the available tasks require M′′, we say that machine M′ is blocked
and this certainly results in idle time on M′.

We let A[i] and B[h] denote the first i tasks of A and the first h tasks of B; i.e., A[i] = {A1, A2, . . . , Ai}
and B[h] = {B1, B2, . . . , Bh}.

Given A and B, consider any two task subsequences X ⊆ A and Y ⊆ B. We want to characterize
the schedules of X ∪Y such that each task starts right after the previous task on the same machine has
completed. More formally, a schedule of X ∪Y is a no-idle subschedule (NIS) if, across the span of such a
subschedule, the only machine idle time occurs, on one machine, after all the tasks of X ∪Y have started.
When X = A[i] and Y = B[h], for some 1 ≤ i ≤ nA and 1 ≤ h ≤ nB, then we say that the NIS is an initial
no-idle subschedule (INIS).

Consider Figure 1 and the task set A[2] ∪ B[2]. The subschedule in Figure 1a is not an INIS for
A[2] ∪ B[2], since on M1 there is idle time before B2 starts. On the contrary, in the case depicted in
Figure 1b, the subschedule of A[2] ∪ B[2] is an INIS. Note that if we restrict our attention to the task set
A[2] ∪ B[1], then the subschedule in Figure 1a is an INIS.
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(a) (b)

Figure 1. In instance (a), the set A[2]∪ B[2] does not form an INIS (initial no-idle subschedule);
in instance (b) it does.

2.1. Generating Initial No-Idle Subschedules

We denote by A[i, Mj] and B[h, Mj], the subset of tasks of A[i] and B[h] respectively, requiring
machine Mj, j = 1, 2; i.e.,

A[i, Mj] = {Ar : r ≤ i, M(Ar) = Mj} j = 1, 2,

B[h, Mj] = {Bq : q ≤ h, M(Bq) = Mj} j = 1, 2.

We also let P(A[i, Mj]) and P(B[h, Mj]) indicate the total processing time of tasks in A[i, Mj] and
B[h, Mj]; i.e.,

P(A[i, Mj]) = ∑
r∈A[i,Mj ]

pA
r ,

P(B[h, Mj]) = ∑
q∈B[h,Mj ]

pB
q .

If an INIS of tasks A[i] ∪ B[h] exists, its makespan is given by

max{P(A[i, M1]) + P(B[h, M1]), P(A[i, M2]) + P(B[h, M2])}.

Proposition 1. In any optimal schedule, there are indices i and h such that the subschedule involving tasks
A[i] ∪ B[h] is an INIS.

In fact, given an optimal schedule, consider the subschedule of the tasks scheduled on the two
machines from time 0 to the end of the first idle interval of the schedule, assuming, e.g., that such an idle
interval occurs on M1. If the subschedule is not an INIS, we can iteratively remove the last task scheduled
on M2 in the subschedule, until the definition of INIS is met.

In view of Proposition 1, we are only interested in schedules in which the initial part is an INIS.
However, not all initial no-idle subschedules are candidates to be the initial part of an optimal schedule.

We first address the following question. Can we determine all operation pairs (i, h) such that an
INIS of A[i] ∪ B[h] exists? We show next that this question can be answered in polynomial time.

The idea is to build the no-idle partial schedules from the beginning of the schedule onward. To this
aim, let us define an unweighted graph G, which we call initial no-idle graph. Nodes of G are denoted
as (i, h), representing a NIS of A[i] ∪ B[h] (for shortness, we use (i, h) also to denote the corresponding
INIS). If the schedule obtained appending Bh+1 to schedule (i, h) is still an INIS, we insert node (i, h + 1)
and an arc from (i, h) to (i, h + 1) in G. Symmetrically, if the schedule obtained appending Ai+1 to (i, h)
is an INIS, we insert (i + 1, h) and an arc from (i, h) to (i + 1, h) in G.

As illustrated later on (cases (i)− (iv) below), while building the graph G, we can also determine
whether or not a certain INIS can be the initial part of an optimal schedule. If it can, we call it a target
node.
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Consider any node (i, h) in G, and the machine completing soonest in the INIS. Ties can be broken
arbitrarily, but to fix ideas, suppose that M2 is still busy when M1 completes. (Note that, since there is no
idle time, M1 completes at time P(A[i, M1]) + P(B[h, M1]).) If i < nA and h < nB, the two available tasks
are Ai+1 and Bh+1, and four cases can occur.

(i) M(Ai+1) = M(Bh+1) = M2. In this case, M1 is necessarily idle until M2 completes (Figure 2a).
Hence, there is no way to continue an INIS, and therefore node (i, h) has no outgoing arcs. In this
case, (i, h) is a target node.

(ii) M(Ai+1) = M1 and M(Bh+1) = M2. In this case, when Ai completes, the only way to continue an
INIS is to start task Ai+1 on M1 (Figure 2b). Thus we generate node (i + 1, h) and the arc from (i, h)
to (i + 1, h), which is the only outgoing arc of (i, h). In this case as well, (i, h) is a target node.

(iii) M(Ai+1) = M2 and M(Bh+1) = M1. A symmetrical discussion to the previous case holds; i.e., the
only way to continue an INIS is to start task Bh+1 on M1 (Figure 2c), so we generate node (i, h + 1)
and the arc from (i, h) to (i, h + 1), which is the only outgoing arc of (i, h). In this case also, (i, h) is a
target node.

(iv) M(Ai+1) = M(Bh+1) = M1. In this case, the INIS can be continued in two possible ways; i.e.,
scheduling either Ai+1 or Bh+1 on M1 (Figure 2b,c respectively). Therefore, (i, h) has two outgoing
arcs, pointing towards nodes (i + 1, h) and (i, h + 1), respectively. However, in this case (i, h) is not
a target node, since there is no point in keeping M1 idle until the completion of M2.

(a) (b)

(c)

Figure 2. Possible scenarios when M1 completes before M2: (a) The INIS (i, h) cannot be
continued, (b) it can only be continued scheduling Ai+1, and (c) it can only be continued
scheduling Bh+1.

Clearly, if M2 completes before M1, in the four above cases the roles of M1 and M2 are exchanged. If
either i = nA or h = nB, the above cases simplify as follows, where we assume that h = nB; i.e., job B is
finished. (A symmetric discussion holds in i = nA.)

(v) M(Ai+1) = M1. In this case, we can continue an INIS starting task Ai+1 on M1. Thus we generate
node (i + 1, h) and the arc from (i, h) to (i + 1, h), which is the only outgoing arc of (i, h). Node (i, h)
is a target node.

(vi) M(Ai+1) = M2. In this case, M1 is necessarily idle until M2 completes. Hence, there is no way to
continue an INIS, and therefore node (i, h) has no outgoing arcs. In this case, (i, h) is a target node.

Again, the roles of the two machines are exchanged if M2 frees up before M1 in the partial schedule.
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In conclusion, the question of whether a NIS exists for the task set A[i] ∪ B[h] is equivalent to asking
whether node (i, h) can be reached from the dummy initial node (0, 0) on G.

A few words on complexity. Clearly, G has O(nAnB) nodes, and each node has at most two outgoing
arcs. The graph G can be built very efficiently. In fact, for each node (i, h), it can be checked in constant
time, which condition holds among (i)–(iv) (or (v)–(vi) when one of the jobs is over), and hence whether
or not it is a target node.

2.2. Minimizing the Makespan

Now we can address the main question. How to schedule the tasks on the two machines so that
the overall makespan is minimized. The key idea here is that any active schedule can be seen as the
juxtaposition of no-idle subschedules. In fact, suppose that after processing a certain task Ai, one machine
stays idle until the other machine completes task Bh. It is important to observe that this may happen for
one of two reasons:

• When a machine completes, it is blocked because both available tasks require the other machine;
• When a machine completes, there is one task the machine can process, but it might be profitable to

wait for the other machine to free up another task.

Note that in both of these two cases (i, h) is a target node of G. On the contrary, if a machine
completes a task while the other machine is still busy, and both available tasks require that machine
(i.e., (i, h) is not a target node of G), with no loss of generality we can assume that the machine will
immediately start one of them, since otherwise the schedule might turn out non-active (there is no point
in waiting for the other machine to complete its task).

If t denotes the makespan of an INIS, the schedule after t is completely independent from the
schedule before t. In other words, the optimal solution from t onward is the optimal solution of a problem
in which t is indeed time 0, and the two jobs are A \ A[i] and B \ B[h]. Hence, to address the overall
problem, the idea is to build another, higher-level graph in which the arcs specify portions of the overall
schedule.

Suppose that (i, h) is a target node of graph G, and consider the task sets A \ A[i] and B \ B[h]. We
can build a new no-idle graph on these sets, and call it G(i, h). (Correspondingly, the graph previously
denoted as G can be renamed G(0, 0).) Suppose that (r, q) is a target node in graph G(i, h). This
means that the tasks of the set {Ai+1, Ai+2, . . . , Ar} ∪ {Bh+1, Bh+2, . . . , Bq} form a NIS, that we denote by
[(i + 1, h + 1) → (r, q)]. It is convenient to extend the previous notation, letting A[i + 1, r, Mj] denote
the set of tasks of A[i + 1, r] that require machine Mj, and analogously we let B[h + 1, q, Mj] be the set
of tasks of B[h + 1, q] that require Mj. Their total processing times are denoted as P(A[i + 1, r, Mj]) and
P(B[h + 1, q, Mj]). (The set previously denoted as A[i, Mj] should now be written A[0, i, Mj].)

We next introduce the (weighted) graph G as follows. As in G, nodes denote task pairs (i, h). There
is an arc [(i, h), (r, q)] if (r, q) is a target node in the graph G(i, h); i.e., if the NIS [(i + 1, h + 1)→ (r, q)]
exists. Such an arc [(i, h), (r, q)] is weighted by the length of the corresponding NIS; i.e.,

max{P(A[i + 1, r, M1]) + P(B[h + 1, q, M1]), P(A[i + 1, r, M2]) + P(B[h + 1, q, M2])}.

Moreover, G contains a (dummy) initial node (0, 0) while the final node is (nA, nB). At this point the
reader should have no difficulty in figuring out that the following theorem holds.

Theorem 1. Given an instance of J2|n = 2, s− prec|Cmax, the optimal schedule corresponds to the shortest path
from (0, 0) to (nA, nB) on G, and its weight gives the minimum makespan.

Now, let us discuss complexity issues. The graph G can indeed be generated starting from (0, 0),
and moving schedules forward. From each node (i, h) of G, we can generate the corresponding no-idle
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graph G(i, h), and add to G all target nodes of G(i, h). We then connect node (i, h) in G to each of these
nodes, weighing the arc with the corresponding length of the NIS. If a target node was already present in
G, we only add the corresponding new arc. Complexity analysis is, therefore, quite simple. There are
O(nAnB) nodes in G. Each of these nodes has a number of outgoing arcs, whose weight can be computed
in O(nAnB). Clearly, finding the shortest path on G is not the bottleneck step, and therefore, the following
result holds.

Theorem 2. J2|n = 2, s− prec|Cmax can be solved in O(n2
An2

B).

Example 1. Consider the following instance, in which job A has four tasks and job B two tasks.

job 1 2 3 4
ine A 5,M1 1,M1 4,M2 6,M1

B 4,M2 7,M2 – –

Figure 3a depicts the graph G(0, 0), in which all nodes are target nodes. Figure 3b shows the INIS [(0, 0)→
(2, 2)]. At the end of this INIS, machine M1 is blocked, since the next task of A requires M2 and job B is already
finished. Notice that [(0, 0) → (2, 2)] is the longest INIS which can be built, but the optimal solution does not
contain it. Figure 4a shows the best schedule which can be attained when the INIS [(0, 0) → (2, 2)], having
makespan 17. Figure 4b shows the optimal schedule, having makespan 16. The optimal schedule consists of two
no-idle subschedules; namely, the INIS [(0, 0) → (1, 1)] (containing tasks A1 and B1 and corresponding to arc
[(0, 0), (1, 1)] on G), and the NIS [(2, 2)→ (4, 2)] (containing tasks A2, A3, A4 and B2 and corresponding to arc
[(1, 1), (4, 2)] on G). For illustrative purposes, Figure 5 shows the graph G(1, 1). Notice that in such a graph, (2,1)
is not a target node.

Figure 3. (a) The graph G(0, 0) in the example. (b) The INIS [(0, 0)→ (2, 2)].

Figure 4. (a) The best schedule starting with the INIS [(0, 0)→ (2, 2)], and (b) the optimal schedule in the
example.
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Figure 5. Graph G(1, 1) in the example.

3. Flow Shop

In this section we consider the flow shop problem, i.e., F|s−prec|Cmax, in which the job set J contains
n jobs, and job Jk requires processing time pk

j on machine Mj (here we use index j for both tasks and
machines, as there is exactly one task per machine). While in the classical problem F||Cmax a job cannot
start on machine Mj before it is completed on Mj−1, in Fm|s−prec|Cmax, a job can start on machine Mj as
soon as it is started on Mj−1.

3.1. Two-Machine Flow Shop (F2|s−prec|Cmax)

We next consider the two-machine flow shop problem, so pk
1 and pk

2 denote the processing times
of job Jk on M1 and M2 respectively, k = 1, . . . , n. Note that, as in the classical F2||Cmax, with no loss of
generality we can assume that in any feasible schedule the machine M1 processes all the jobs consecutively
with no idle time between them. We next show that problem F2|s−prec|Cmax can be solved in linear time.

Proposition 2. Given an instance of F2|s−prec|Cmax, there always exists a schedule σ∗ having makespan
max{∑n

k=1 pk
1, ∑n

k=1 pk
2}, which is therefore optimal.

Proof. Given an instance of F2|s−prec|Cmax, partition the jobs into two sets, J′ and J′′, such that
J′ = {Jk|pk

1 ≤ pk
2} and J′′ = J \ J′. Then, build σ∗ by scheduling, on both machines, first all jobs of

J′ in arbitrary order, and then all jobs of J′′, also in arbitrary order. If we let C(1) and C(2) denote
the completion time of the last job of J′ on M1 and M2 respectively, one has C(1) < C(2). From the
definition of J′, one gets that up to C(2), no idle time occurs on M2. From then on, all jobs of J′′ are
scheduled, and two cases may occur. (i) No idle time ever occurs on M2, in which case the makespan
equals max{∑n

k=1 pk
1, ∑n

k=1 pk
2}. (ii) Some idle time occurs on M2. Consider the first time that M2 is idle

and M1 is still processing a job Jk. Upon completion of Jk, the two machines will simultaneously start the
next job, say, Jk̄, but since Jk̄ ∈ J′′, M1 will still be processing it while M2 returns idle. Since all remaining
jobs belong to J′′, this will happen for each job until the end of the schedule. In particular, when the last
job is scheduled, again, M2 completes first, so in conclusion, the makespan of σ∗ is ∑n

k=1 pk
1.

The above proof contains the solution algorithm. For each job Jk, put it into J′ if pk
1 ≤ pk

2 and in
J′′ otherwise. Then, schedule all jobs of J′ followed by all jobs of J′′ (in any order). Since establishing
whether a job belongs to J′ or J′′ can be done in constant time, and since jobs can be sequenced in arbitrary
order within each set, we can conclude with the following result.

Theorem 3. F2|s−prec|Cmax can be solved in O(n).

While F2|s−prec|Cmax appears even simpler than the classical F2||Cmax, one may wonder whether
other simplifications occur for m > 2. While the complexity status of Fm|s−prec|Cmax is open, we point
out a difference between Fm||Cmax and Fm|s−prec|Cmax, which may suggest that the problem with
s-precedence constraints is not necessarily easier than the classical counterpart.
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It is well known [10] that in Fm||Cmax there always exists an optimal schedule in which the
job sequences on M1 and M2 are identical, and the same holds for machines Mm−1 and Mm. (As a
consequence, for m ≤ 3 the optimal schedule is a permutation schedule.) This is no more true in
Fm|s−prec|Cmax, even with only two jobs.

Example 2. Consider an instance with three machines and two jobs, A and B:

j 1 2 3
ine A 4,M1 6,M2 1,M3

B 10,M1 4,M2 9,M3

ine

Scheduling the jobs in the order AB on all three machines, one gets Cmax = 15, and the makespan is attained
on machine M3 (see Figure 6a). If they are scheduled in the order BA on all three machines, Cmax = 16, and in this
case the value of the makespan is attained on M2 (Figure 6b). If jobs are scheduled in the order AB on M1 and BA
on M2 and M3, then Cmax = 14 (all three machines complete at the same time, Figure 6c), and this is the optimal
schedule.

Figure 6. Three schedules for Example 2.

3.2. Flow Shop with Two Jobs and m Machines (Fm|n = 2, s−prec|Cmax)

In what follows we give an Algorithm 1 that solves Fm|n = 2, s−prec|Cmax. Again we denote the
two jobs with A and B, and by pA

j and pB
j the processing time of jobs A and B on machine Mj, j = 1, . . . , m,

respectively. Notice that a schedule is fully specified by the order of the two jobs on each machine, either
AB or BA. In what follows, for a given schedule and a given machine, we call leader the job scheduled
first and follower the other job. So if, on a given machine, the jobs are sequenced in the order AB, then, on
that machine, A is the leader and B is the follower.
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Algorithm 1 For finding a schedule with Cmax ≤ K if it exists.

1: Initialize FA(0) = FB(0) = 0;
2: for u = 1, . . . , m do
3: for v = 1, . . . , m do
4: Compute LA(u, v), LB(u, v), SA(u, v) and SB(u, v) via (1), (2), (3) and (4) respectively;
5: end for
6: end for
7: for v = 1, . . . , m do
8: Compute FA(v) and FB(v) via (5) and (6);
9: end for

10: if FA(m) < +∞ or FB(m) < +∞ then
11: Cmax ≤ K;
12: else
13: Cmax > K.
14: end if

Given any feasible schedule, we can associate with it a decomposition of the m machines into blocks,
each consisting of a maximal set of consecutive machines in which the two jobs are scheduled in the same
order. We denote the block consisting of machines Mu, Mu+1, . . . , Mv as <Mu, Mv> (see Figure 7). In a
block, due to the s-precedence constraints, all the tasks of the leader job start at the same time. Given
a block <Mu, Mv>, we can compute a number of quantities. (Assume for the moment that v < m.) If,
in <Mu, Mv>, A is the leader, then we call leader span the length of the longest A-task in the block, and
denote it with LA(u, v):

LA(u, v) = max
u≤j≤v

{pA
j }, (1)

and similarly, if B is the leader, the leader span is given by:

LB(u, v) = max
u≤j≤v

{pB
j }. (2)

1

2

3

4

5

6

7

8

9

10

(1,4)

(5,7)

(8,10)

SB(5,7)

LA(1,4) LB(5,7) SA(8,10)

Figure 7. A sample schedule for Fm|n = 2, s− prec|Cmax. The tasks of job A are in grey.
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Notice that, due to the definition of block, in the block that follows <Mu, Mv>, the roles of leader
and follower are exchanged. Hence, the time at which the leader completes its longest task in <Mu, Mv>

is also the start time of the other job’s tasks in the next block.
Given a block <Mu, Mv>, suppose again that A is the leader. We let SA(u, v) indicate the span of

block <Mu, Mv>; i.e., the difference between the maximum completion time of a B-task and the start
time of all A-tasks in <Mu, Mv>. This is given by:

SA(u, v) = max
u≤j≤v

{max
u≤h≤j

{pA
h }+ pB

j }, (3)

and exchanging the roles of leader and follower in <Mu, Mv>, we get

SB(u, v) = max
u≤j≤v

{max
u≤h≤j

{pB
h }+ pA

j }. (4)

Notice that trivial lower and upper bounds for the minimum makespan are given by

LB = max{ max
1≤j≤m

{pA
j }, max

1≤j≤m
{pB

j }}

and
UB = max

1≤j≤m
{pA

j }+ max
1≤j≤m

{pB
j }

respectively. In what follows we address the problem of determining a schedule having a makespan not
larger than K, or prove that it does not exist. Assuming that all processing time values are integers, a
binary search over the interval [LB, UB] allows one to establish the value of the minimum makespan.

As we already observed, a relevant difference between Fm||Cmax and Fm|s−prec|Cmax is that, in a
feasible schedule for Fm|s−prec|Cmax, the value of Cmax may not be attained on the last machine, but
rather on any machine. This fact requires carefully handling by the algorithm.

Let FA(v) be the minimum sum of leader spans of all blocks from M1 to Mv, when A is the leader of
the last block (i.e., the block including Mv). Similarly, FB(v) is the same when B is the leader of the last
block. In order to write a functional equation for FA(v) and FB(v), we introduce the notation δ(x) = 0 if
x ≤ 0 and δ(x) = +∞ if x > 0.

Hence, we write

FA(v) = min
0≤u≤v

{FB(u) + LA(u + 1, v) + δ(FB(u) + SA(u + 1, v)− K)}. (5)

The first terms accounts for the fact that in the previous block the leader is B, while the rightmost term
(δ(·)) rules out solutions in which the sum of the start time of the last block and the span of the block
itself exceeds K. Symmetrically, one has:

FB(v) = min
0≤u≤v

{FA(u) + LB(u + 1, v) + δ(FA(u) + SB(u + 1, v)− K)}. (6)

Expressions (5) and (6) are computed for v = 1, . . . , m. If at least one of the values FA(m) and FB(m)

has a finite value, a schedule of makespan not exceeding K exists. The values of machine index for which
each minimum in (5) and (6) is attained define the blocks of the schedule, which can, therefore, be easily
backtracked.

Equations (5) and (6) must be initialized, simply letting FA(0) = FB(0) = 0.
Notice that in general one cannot infer the value of the minimum makespan schedule directly from

this procedure. If the minimum in the computation of FA(m) has been attained for, say, machine Mu, it
does not imply that FB(u) + SA(u + 1, m) is indeed the minimum makespan. This is because the overall
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makespan may be due to a previous machine, and the algorithm has no control on this aspect. For
instance, in the sample schedule of Figure 7 the makespan is attained on machine M6. However, its actual
value has no relevance, so long as it does not exceed K, since it does not affect the values FA(v) and FB(v)
subsequently computed.

Concerning complexity, each computation of (5) and (6) requires O(m) comparisons. Since the whole
procedure is repeated at each step of a binary search over [LB, UB], the following result holds.

Theorem 4. Problem Fm|n = 2, s− prec|Cmax can be solved in O(m2log(UB− LB)).

4. Further Research

In this paper we established some preliminary complexity results for perhaps the most basic cases of
shop problems with s-precedence constraints. Here, we briefly elaborate on possible research directions.

• Job shop problem with three jobs. The job shop problem with more than two jobs is NP-hard. This
is a direct consequence of the fact that J|s−prec|Cmax can be viewed as a generalization of J||Cmax,
which is NP-hard with three jobs [11].

Theorem 5. J|n = 3, s− prec|Cmax is NP-hard.

Proof. Consider an instance I of J|n = 3|Cmax, in which Ok
i denotes the i-th task of job Jk in I, having

processing time pk
i on machine M(Ok

i ).
We can define an instance I′ of J|n = 3, s− prec|Cmax with the same number of machines. The three

jobs of I′ are obtained replacing each task Ok
i of I with a sequence of two tasks Ok

i′ and Ok
i′′ , in which

Ok
i′ precedes Ok

i′′ , Ok
i′ has length pk

i and requires machine M(Ok
i ), while Ok

i′′ has sufficiently small length
ε > 0 and also requires machine M(Ok

i ). As a consequence, in J|s−prec|Cmax, the task Ok
i+1′ cannot start

before Ok
i′ is started, but since M(Ok

i′) = M(Ok
i′′) = M(Ok

i ), this can only occur after Ok
i′ is finished. So, for

sufficiently small ε, a feasible schedule for I′ having makespan ≤ K + mε exists if and only if a feasible
schedule for I exists having makespan ≤ K.

Notice that the above reduction cannot be applied to F|n = 3, s− prec|Cmax, since in the flow shop
each job visits all machines exactly once. In fact, the complexity of Fm|s−prec|Cmax is open, even for
fixed m ≥ 3 or fixed n ≥ 3.

• Open problems with two jobs. The approach in Section 2 for J2|n = 2, s− prec|Cmax cannot be trivially
extended to more than two machines. The complexity of this case is open. Additionally, an open
issue is whether a more efficient algorithm can be devised for J2|n = 2, s− prec|Cmax, and a strongly
polynomial algorithm for Fm|n = 2, s− prec|Cmax.
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