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Abstract

A spatio-temporal blockwise Euclidean likelihood method for the estimation of covari-
ance models when dealing with large spatio-temporal Gaussian data is proposed. The
method uses moment conditions coming from the score of the pairwise composite like-
lihood. The blockwise approach guarantees considerable computational improvements
over the standard pairwise composite likelihood method. In order to further speed up
computation, a general purpose graphics processing unit implementation using OpenCL
is implemented. The asymptotic properties of the proposed estimator are derived and the
finite sample properties of this methodology by means of a simulation study highlight-
ing the computational gains of the OpenCL graphics processing unit implementation.
Finally, there is an application of the estimation method to a wind component data set.

Keywords: Composite likelihood; Euclidean likelihood; Gaussian random fields;
Parallel computing; OpenCL

1. Introduction

With the advent and expansion of Geographical Information Systems (GIS) along
with related software, statisticians today routinely encounter large spatial or spatio-
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that includes the full code.
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temporal data sets containing one or multiple variables observed across a large number
of location sites. This has generated considerable interest in statistical modeling for large5

geo-referenced spatial and spatio-temporal data; see, for instance, Cressie & Wikle (2015)
and Sherman (2011).

Gaussian random fields (RFs) are the cornerstone for this kind of analysis and have
been largely used in the past years thanks to a well developed and rich theory. Moreover,
they represent the building block for more sophisticated models or non-Gaussian RFs10

(see, for instance, Bevilacqua et al. (2020), De Oliveira et al. (1997) and Xu & Genton
(2017)). The covariance function is a crucial object in Gaussian RF analysis. It is
well known, in fact, that, together with the mean, the covariance function completely
characterizes the finite dimensional distribution of the RF. Furthermore, it is also well
known that the spatio-temporal kriging predictor depends on the knowledge of such15

covariance function.
Since a covariance function must be positive definite, practical estimation generally

requires the selection of some parametric classes of covariances and the corresponding
estimation of these parameters. The maximum likelihood method is generally considered
the best option for estimating the covariance model parameters. Nevertheless, the eval-20

uation of the objective function under the Gaussian assumption requires the solution of
a system of linear equations. For a Gaussian RF observed in n spatio-temporal locations
the computational burden is O(n3), making this method computationally impractical
for large data sets. This fact motivates the search for estimation methods with a good
balance between computational complexity and statistical efficiency.25

Some solutions have been proposed involving approximations of the covariance matrix
(Cressie & Johannesson, 2008; Furrer et al., 2006; Kaufman et al., 2008; Litvinenko et al.,
2017), stochastic approximations of the score function (Stein et al., 2013), approximations
based on Markov RFs (Lindgren et al., 2011; Rue & Held, 2005; Rue & Tjelmeland, 2002),
Gaussian predictive process (Banerjee et al., 2008) or on the composite likelihood idea30

(Bai et al., 2012; Bevilacqua & Gaetan, 2015; Bevilacqua et al., 2012; Eidsvik et al., 2014)
and the so-called Vecchia approximations (Katzfuss & Guinness, 2020; Stein et al., 2004)
among others. Another interesting proposal merging a parametric and non parametric
approach can be found in Ma & Kang (2020). For an extensive review see Heaton et al.
(2019) and the references therein.35

The concept of composite likelihood (CL) refers to a general class of objective func-
tions based on the likelihood of marginal or conditional events (see Lindsay, 1988; Varin
et al., 2011, for a recent review). This kind of estimation method has two important
features: first, it is generally an appealing estimation method when dealing with large
data sets; second, it can be helpful when the specification of the likelihood is difficult. As40

outlined in Bevilacqua & Gaetan (2015) the class of CL functions is very large and, to the
best of our knowledge, there are no clear guidelines on how to chose a specific member
of this class for a given estimation problem. In the Gaussian case, if the choice of the
CL is driven by computational concerns, the CL based on pairs has clear computational
advantages with respect to other types of CL functions.45

In a purely spatial context, Bevilacqua et al. (2015) propose a blockwise Euclidean
likelihood (EU) method (Antoine et al., 2007; Owen, 2001) for the estimation of a latent
Gaussian RF when considering binary data. The moment conditions used in the EU
estimator derive from the score function of the CL based on marginal pairs. A feature
of this approach is that it is possible to obtain computational benefits over the standard50

2

                  



pairwise likelihood depending on the choice of the spatial blocks.
The main advantage of EU estimators is due to their computational simplicity. While

similar estimators, such as the empirical likelihood estimator and the exponential tilting
estimator (see, e.g.: Kitamura, 1997; Newey & Smith, 2004; Nordman & Caragea, 2008;
Qin & Lawless, 1994), are computed via the solution of complicated optimization prob-55

lems in the parameter of interest and an auxiliary parameter vector, EU estimators are
characterized by a closed form solution for the auxiliary parameter and a simple opti-
mization problem based on a quadratic form. This structure makes the EU estimator
particularly appealing for the problem we want to tackle.

The goal of the paper is to modify and extend the approach in Bevilacqua et al.60

(2015) to the spatio-temporal context and Gaussian data. This generalization implies the
construction of (possibly overlapping) spatio-temporal blocks. Different types of blocks
should be considered depending on the type of data. For instance, for a few location
sites observed in a large number of temporal instants, the use of temporal blocks is the
natural choice. The asymptotic properties of the proposed estimator are established65

under increasing domain asymptotics.
Since the proposed method is highly amenable to parallelization, we reduce the com-

putational complexity by considering an implementation based on the OpenCL language
(Stone et al., 2010) in a general purpose graphical processing unit (GPGPU) framework
(Lee et al., 2010; Suchard et al., 2010). This allows to considerably reduce the computa-70

tional costs associated to the blockwise EU estimation of the spatio-temporal covariance
model.

The remainder of the paper is organized as follows. In Section 2, we introduce the
concept of spatio-temporal RF and the pairwise likelihood estimation method. In Section
3, we introduce the blockwise spatio-temporal EU method and we establish the associ-75

ated asymptotic properties. In Section 4, we investigate the performance of the spatio-
temporal blockwise EU estimator in terms of statistical and computational efficiency
highlighting the gains induced by the graphics processing unit (GPU) parallelization. In
Section 5, we apply our methodology to a data set on Mediterranean wind speed. Finally,
in Section 6 we give some conclusions.80

2. Spatio-temporal pairwise likelihood

Let l = (s>, t)> denote a generic spatio-temporal index with l ∈ L = S × T with
S ⊂ Rd and T ⊂ R+ being our sampling region, and let Z = {Zl, l ∈ L } be a
real-valued spatio-temporal RF (STRF) defined on L.

When T = {t0} then L ≡ S and Zs ≡ Z(s>,t0)> is a purely spatial RF. When S= {s0}85

then L ≡ T and Zt ≡ Z(s>0 ,t)
> is a purely temporal RF. The high order of complexity of

spatio-temporal interactions calls for simplifying assumptions, such as those of intrinsic
or weak stationarity, that have implications on the existence of the moments of the RF.

A STRF Z is second-order (weakly stationary) if E[Zl] = µ and Var[Zl] = σ2 are finite
constants for all l ∈ L and the covariance Cov[Zl, Zl′ ] = C(h, u) = σ2ρ(h, u) with ρ(·, ·)90

a positive definite function such that ρ(0, 0) = 1 that only depends on h = s′−s and u =
t′−t. Additionally, in the remainder of the paper we assume a zero nugget effect. Isotropy
is another very common assumption and also the building block for more sophisticated
models. Isotropic spatial RFs have the feature that, for a candidate correlation function
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φ : [0,∞)→ R and given s′, s, two arbitrary location sites in S, the correlation function95

solely depends on the Euclidean distance (denoted ‖·‖ throughout) that is ρ(h) = φ(‖h‖).
Spatio-temporal modeling inherits the assumption of spatial isotropy coupling, through
a continuous function, spatial isotropy with temporal symmetry. This is, φ : [0,∞) ×
[0,∞)→ R, with φ(0, 0) = 1, such that ρ(h, u) = φ (‖h‖, |u|).1

In the past years, many parametric models have been proposed in order to model
the covariance function of a Gaussian STRF. A possible simple construction is obtained
as the product of any valid isotropic spatial and temporal symmetric covariance as for
instance:

C(h, u,θ) = σ2 exp

(
−||h||
αs
− |u|
αt

)
, (1)

where θ = (σ2, αs, αt)
>. Here αs and αt are positive spatial and temporal scale pa-

rameters respectively. This kind of covariance model, called separable model, has been
criticized for its lack of flexibility. For such a reason, different classes of non separable
covariance models have been proposed in order to capture possible spatio-temporal in-
teractions. A special case of the celebrated Gneiting class (Gneiting, 2002) is given by:

C(h, u,θ) =
σ2

(1 + |u|/αt)
e
− ‖h‖
αs(1+|u|/αt)β/2 , (2)

where θ = (σ2, αs, αt, β)>. In this case, the parameter β ∈ [0, 1] is a (non) separability100

parameter. When β = 0 the covariance model is separable.
Let us assume that z = {zl1 , . . . , zln}> is a realization of Z and define `ij(θ) ≡

log(fZij (zij),θ), θ ∈ Θ ⊂ Rdθ , the loglikelihood associated to the Gaussian bivariate
distribution random vector Zij = (Zli , Zlj )

>. The pairwise weighted composite likeli-
hood objective function is then given by

pl(θ) =

n−1∑

i=1

n∑

j=i+1

`ij(θ)wij , (3)

where
wij are suitable positive weights not depending on θ. Then the maximum pairwise

weighted composite likelihood estimator is given by θ̂PL = argmaxθ∈Θ pl(θ). Moreover,

θ̂PL is consistent and its asymptotic distribution, under increasing domain asymptotics, is105

Gaussian with asymptotic covariance matrix given by G(θ)−1 = H(θ)−1J(θ)H(θ)−1>

where G(θ) is the Godambe information matrix and H(θ) = −E[∇2pl(θ)], J(θ) =
E[∇pl(θ)∇pl(θ)>] (Bevilacqua et al., 2012).

A distinctive feature of pl(θ) is that the associated estimating function,

∇pl(θ) =

n−1∑

i=1

n∑

j=i+1

∇`ij(θ)wij ,

1We will use the notation | · | to indicate both the cardinality of a set and the absolute value of a
scalar. Hence, for a generic set A, |A| is its cardinality, while for a generic scalar a, |a| is its absolute
value. The different notation for sets and scalars avoids any potential confusion.
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where ∇ denotes the vector differential operator with respect to θ, is unbiased. Let us
then define gij(θ) := ∇`ij(θ)wij . Hence,

E[gij(θ0)] = 0, (4)

where θ0 is unique.2 The moment condition in Equation (4) is one of the building blocks
of our approach.110

The role of the weights wij in Equations (3) and (4) is to reduce computational time
and to improve the statistical efficiency of the estimator. As shown in Bevilacqua &
Gaetan (2015), Davis & Yau (2011) and Joe & Lee (2009), compactly supported weight
functions depending on fixed spatial or spatio-temporal distance, i.e.

wij =

{
1 ‖si − sj‖ ≤ ds, |ti − tj | < dt,

0 otherwise
, (5)

can significantly improve both the statistical efficiency and the computational complexity
of the estimation method. A theoretical guideline on how to choose ds and dt is given
in Bevilacqua et al. (2012) but its implementation is computationally demanding. In
practice, the choice of ds or dt depends on the problem at hand and on the size of the
dataset. A rule of thumb is to fix ds or dt as a small proportion of the maximum spatial115

and temporal distances (Bevilacqua et al., 2012).
The recent literature on the topic has put forward alternative and more statistically

efficient weighting schemes (see, e.g., Pace et al., 2019). However, also in this case, their
practical implementation is computationally demanding.

3. Spatio-temporal blockwise Euclidean likelihood120

In what follows we introduce the spatio-temporal blockwise EU (STBEU) under a
general spatio-temporal framework for both evenly and unevenly spaced lattice. A similar
framework has been considered in Bai et al. (2012) and Nordman & Caragea (2008). The
approach is not exactly the same as that of Bevilacqua et al. (2012) and exploits the
limiting results of Jenish & Prucha (2009) for RFs.125

Let us construct the blockwise version of the moment conditions described in Equation
(4). Let L ⊂ Rd × R+ be our sampling region, where the generic element l = (s>, t)>

includes both the spatial index and the time index and consider a block length bn where

b−1
n +

b2(1+d)n

n → 0 as n→∞ and a set U =
(
− 1

2 ,
1
2

]d×(0, 1] (see e.g. Nordman & Caragea,
2008). Then, a (1 + d)-dimensional block is defined as

Bbn(κ) = κ+ bnU .

2 The assumption that θ0 be unique is rather standard in the literature (see e.g. Bevilacqua et al.,
2012), it may be, though, problematic to maintain when dealing with complex models such as those
treated in this paper. In this case a researcher may invoke some modifications that accommodate for
the presence of multiple optima (see for example Van der Vaart, 2007, Section 5.2.1). It is possible to
adapt the standard proof for the consistency of M-estimators to the presence of multiple optima. In
particular, one can define a set of population optima, say, Θ0 ∈ Θ and show, under fairly standard
assumptions, that, for every ε > 0 and every compact set K ⊂ Θ, P (d(θ̂,Θ0) ≥ ε ∧ θ̂ ∈ K) → 0 where

θ̂ is an M-estimator and d(·, ·) measures the distance between a point and a set. Further details can be
found in Theorem 5.14 in Van der Vaart (2007).
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Notice that the set U is a (1 +d)-dimensional square and can be seen as the prototypical
space for the construction of the generic block Bbn(κ). The size of the block depends on
bn while its position depends on the point of coordinates κ. The associated index set is
defined as

Kbn = {κ : Bbn(κ) ⊂ L} ,

with κ ∈ Rd × R+ and N = |Kbn |, the number of blocks. The blockwise version of
Equation (4) is

E[mκ (θ0)] = 0, (6)

where, for Dbn(i, j,κ) =
{

(i, j) : (li, lj) ∈ Bbn(κ) ∩ Rd × R+
}

and b1+d
n = |Dbn |,

mκ (θ) =
1

b1+d
n

∑

{i,j}∈Dbn (i,j,κ)

gij (θ) .

The STBEU objective function is defined as

Rn(θ,λ) =
1

2

∑

κ∈Kbn

(
1 + λ>mκ (θ)

)2
(7)

(see Antoine et al., 2007).3 From the first order conditions of Equation (7) we can
compute an estimator of the auxiliary parameter λ

λ̂(θ)

b1+d
n

= −Σ̂(θ)−1m̂ (θ) (8)

with

m̂ (θ) =
1

N

∑

κ∈Kbn

mκ (θ)

and

Σ̂(θ) =
b1+d
n

N

∑

κ∈Kbn

mκ (θ)mκ (θ)
>
. (9)

By plugging in Equation (8) into Equation (7) we find

Rn(θ, λ̂(θ)) =
N

2

(
1− b1+d

n m̂ (θ)
>
Σ̂(θ)−1m̂ (θ)

)
=
N

2

(
1− b1+d

n Qn(θ)
)
,

where Qn(θ) is implicitly defined. Hence,

θ̂ = arg min
θ∈Θ

Qn(θ) (10)

is the STBEU estimator for the parameter vector θ.

3The auxiliary parameter λ comes from the fact that the EU estimator is a member of the generalized
empirical likelihood family of estimators. These estimators admit a dual representation as the solution
of a Lagrangian optimization problem. The parameter vector λ is related to the corresponding Lagrange
multipliers. See Newey & Smith (2004) for some general results on generalized empirical likelihood,
Bevilacqua et al. (2015) for an application of EU to the spatial case and Owen (2001) for a textbook
treatment of the problem.
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3.1. Asymptotic results

The asymptotic results are derived by adapting to our problem some results in Jenish
& Prucha (2009) (see also Bai et al., 2012).

A1 Let L ⊂ Rd × R+ be a possibly unevenly spaced lattice. For any two points l and130

k in L their distance is at least d0. This is, given a distance metric ς(·, ·), we have
ς(l,k) ≥ d0 with d0 > 0.

A2 Let Ln be a sequence of arbitrary subsets of L such that |Ln| → ∞ as n→∞.

A3 The parameter set Θ ⊂ Rdθ is compact and θ0 is an interior point of Θ.

A4 For some δ > 0 and e > 0 and for all κ ∈ Ln,

lim
e→∞

E

[
sup
θ∈Θ
‖mκ(θ)‖2+δ1{sup

θ∈Θ
‖mκ(θ)‖ > e}

]
= 0,

where 1{·} is the indicator function.135

A5 Define ∇`θ the `-th derivative operator with respect to θ and ` = 0, 1, 2. Then, (i)
E
[
‖∇θmκ(θ)‖1+η

]
< ∞ for all l ∈ Ln, with η > 0; (ii) E

[
supθ∈Θ ‖∇`θml(θ)‖

]
<

∞; (iii) let ∇`θm(θ) = E
[
∇`θml(θ)

]
, then ∇θm(θ0) is full column rank;

(iv) Σ̂(θ0)→p Σ(θ0), a positive definite matrix.

A6 Consider V ⊆ Ln and W ⊆ Ln, let σ(V) = σ(zl, l ∈ V) and σ(W) = σ(zl, l ∈ W)
and α(V,W) = α(σ(V), σ(W)). Consider also the set Rd × R+ endowed with the
metric ς(l,k) = max1≤i≤1+d |li − ki|. In addition to that define the set distance as
ς(V,W) = inf {ς(l,k) : l ∈ V,k ∈ W} for any subset V,W ⊂ Rd × R+. Then, the
α-mixing coefficient for the RF is given by

αp,q(r) = sup (α(V,W), |V| ≤ p, |W| ≤ q, ς(V,W) ≥ r)

where

α(V,W) = sup (|P (A ∩ B)− P (A)P (B)|;A ∈ σ(V),B ∈ σ(W)) .

We assume that the following conditions hold:140

(a)
∑∞
h=1 h

(1+d)−1α1,1(h)
δ

2+δ <∞,

(b)
∑∞
h=1 h

(1+d)−1αp,q(h) <∞ for p+ q ≤ 4,

(c) α1,∞(h) = O(h−(1+d)−ε) for some ε > 0.

In what follows we discuss some important features of the assumptions used to derive
Theorem 1. Assumption A1 defines the structure of the lattice. Even though we allow145

the lattice to be unevenly spaced, we do not want the points to be too close to each
other. Under Assumption A2 the number of points in any subset of L grows as n grows.
Assumption A3 is a standard condition on the parameter space. A4 is an assumption
on the tail behavior of the moment condition and it is called uniform Lδ+2 integrability.
Assumption A4 together with assumptions A1, A2 and the α-mixing condition A6 allows150
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us to use a central limit theorem for RFs. A5 is a set of regularity conditions. In
particular, A5(i) and A5(ii) allow us to use a uniform law of large numbers, A5(iii) is
necessary to guarantee invertibility of the variance covariance matrix of the estimator,
while A5(iv) is a condition on the finiteness of the limiting variance covariance matrix of
the moment conditions and it is used in the consistency proof.155

Theorem 1. Assume A1 to A6 hold. Then,

1. θ̂ →p θ0,

2.
√
n
(
θ̂ − θ0

)
→d N (0,Ω(θ0)),

where Ω(θ0) = (∇θm(θ0)>Σ(θ0)−1∇θm(θ0))−1.

4. Numerical experiments160

4.1. Statistical efficiency

This section compares the relative efficiency of the STBEU with respect to the pair-
wise likelihood (PL). To this end, we configure two sampling schemes, a regular sampling
scheme and an irregular sampling scheme. In the first case, we set a regular grid with
unit spacing [−a, a]2 in both directions and with ns = (2a+1)2 locations in space and nt165

in time. In the second case, the setting involves an irregular grid with ns = (2a+1)2

2 × 2
locations in space uniformly distributed on [−a, a]2 and nt in time. In both cases we
have N = nt × ns spatio-temporal locations and a ∈ R. In what follows we consider
three specific simulation settings:

1. spatial blocks: more space than time locations, [−8, 8]2 and nt = 19, that is ns =170

289 and nst = 5202;

2. temporal blocks: more time than space locations, [−2, 2]2 and nt = 210, that is
ns = 25 and nst = 5250;

3. spatio-temporal blocks: balanced spatio-temporal locations, [−5, 5]2 and nt = 50,
that is ns = 121 and nst = 6050.175

Note that more means roughly 10 times (or higher) locations more than the other and
balanced means less than 2 times. Under these settings, we perform 500 simulations of a
Gaussian RF with Double Exponential

and Gneiting covariance functions as defined in Equations (1) and (2). In both cases
we estimate the spatial and temporal scale parameters and the variance parameters180

that is αs, αt and σ2 respectively. For each simulation setting and covariance model
we consider two combinations of parameters, so that we can evaluate the effect of an
increasing spatial and temporal dependence through αs, αt (specific parameter values
are found in Tables 2, 3 and 4).

We also consider the effect of the block length on the efficiency of the STBEU esti-185

mator. Following Bevilacqua et al. (2015) and Lee & Lahiri (2002), spatial blocks are
formed by the set [C

√
γ,C
√
γ]2 in overlapping and non overlapping cases with C being

a positive constant and we chose γ to be the range of the spatial coordinates. Temporal
8

                  



blocks are formed by a sequence of the temporal length spaced by bt. For example, if the
spatial block has length bs = 2, the temporal block length bt = 10, γ = 16 and nt = 50,190

then C = 1/2 and the prototype spatio-temporal block U is equal to (−1/8, 1/8]2 × 5.
We chose bs = {2, 4} for space, bt = {2, 3} for time and bst = {4, 9} for spatio-

temporal blocking. In the overlapping version, constants os and ot are needed to tune
the degree of overlapping. A possible choice for these constants is os = bsps and ot = btpt
with 0 < ps ≤ 1 and 0 < pt ≤ 1. We set p = ps = pt = 0.5 for the overlapping case195

while p = ps = pt = 1 corresponds to the non overlapping case. Table 1 shows the
number of spatio-temporal blocks associated with three settings under the overlapping
and non-overlapping version.

As outlined in Section 2, the efficiency of the method depends on the choice of ds and
dt. Here we follow Bevilacqua et al. (2012) for the choice of these two parameters and we200

fix the distances ds and dt in the weight function (5) to be 25% of their corresponding
block length.

Blocking p
1 0.5

Spatial
bs = 2 64 225
bs = 4 16 49

Temporal
bt = 2 105 209
bt = 3 70 139

Spatio-temporal
bst = 4 625 3969
bst = 9 144 800

Table 1: Number of spatial, temporal and spatio-temporal blocks resulting from fixing
the block length b and the overlapping parameter p = ps = pt used in the simulation
study

Figure 1 shows the intuition behind the spatio-temporal blocking procedure. Think
of spatio-temporal locations as being a dense block as showed in the upper-left panel
of Figure 1 with time represented by depth. Spatial blocking is the upper-right panel:205

space is divided by the blocking procedure mentioned above such that every block con-
siders all time locations. The lower-left panel represents temporal blocking: time is
divided uniformly and all space locations are considered in each block. Finally, the
lower-right panel is the spatio-temporal blocking which is a combination of both spatial
and temporal blocking. Note that, regardless of the procedure, every block considers210

spatio-temporal locations. Say we have more space locations than time locations, then
better performance is expected by choosing spatial blocking. The same reasoning applies
for temporal blocking or spatio-temporal blocking.

9

                  



Figure 1: Intuition behind the spatio-temporal blocking procedure

Double exponential Gneiting

Regular Irregular Regular Irregular

b = 2 b = 4 b = 2 b = 4 b = 2 b = 4 b = 2 b = 4

αs = 1.2/3 αt = 1.2/3 αs = 1.2/3 αt = 1.2/3

αs 1.015 0.961 0.765 0.824 1.133 1.009 0.799 0.865
(1.035) (0.988) (0.666) (0.720) (1.051) (1.094) (0.706) (0.768)

αt 0.949 0.912 0.651 0.751 1.101 1.051 0.714 0.800
(0.916) (0.954) (0.570) (0.667) (1.131) (1.115) (0.571) (0.715)

σ2 0.997 0.957 0.651 0.846 1.006 0.878 0.665 0.825
(1.071) (0.975) (0.554) (0.764) (0.930) (0.983) (0.548) (0.756)

STRE 0.952 0.901 0.529 0.701 1.054 0.963 0.625 0.778
(0.939) (0.937) (0.391) (0.536) (1.039) (1.054) (0.47) (0.68)

αs = 1.8/3 αt = 1.8/3 αs = 1.8/3 αt = 1.8/19

αs 1.008 1.005 0.832 0.801 1.188 1.087 0.897 0.902
(1.021) (1.084) (0.625) (0.706) (1.212) (1.224) (0.759) (0.835)

αt 1.012 0.975 0.730 0.824 1.195 1.074 0.830 0.891
(1.038) (1.020) (0.617) (0.723) (1.292) (1.156) (0.647) (0.885)

σ2 0.993 0.893 0.688 0.853 0.980 0.923 0.682 0.851
(1.001) (0.987) (0.588) (0.763) (0.996) (0.981) (0.595) (0.795)

STRE 1.038 0.921 0.59 0.723 1.233 1.076 0.69 0.832
(1.04) (1.01) (0.433) (0.633) (1.253) (1.186) (0.513) (0.742)

Table 2: Simulated relative efficiency (with respect to the PL, i.e. SRE = madPL
madSTBEU

)
of STBEU estimator under spatial blocking. Relative efficiency is presented for different
values of the block length, overlapping-non overlapping (in parentheses) and regular-
irregular cases. Rows with STRE caption shows the overall performance.
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Double exponential Gneiting

Regular Irregular Regular Irregular

b = 2 b = 3 b = 2 b = 3 b = 2 b = 3 b = 2 b = 3

αs = 3.1/3 αt = 3.1/3 αs = 3.1/3 αt = 3.1/19

αs 1.111 0.827 1.072 0.787 1.038 0.842 1.035 0.811
(0.752) (0.619) (0.674) (0.593) (0.676) (0.591) (0.690) (0.555)

αt 1.134 1.010 1.218 0.945 1.323 1.205 1.332 0.972
(0.888) (0.752) (0.818) (0.709) (1.088) (0.932) (0.820) (0.763)

σ2 0.966 0.739 1.055 0.741 0.984 0.749 1.018 0.746
(0.610) (0.504) (0.657) (0.544) (0.670) (0.568) (0.655) (0.537)

STRE 1.189 0.841 1.169 0.82 1.325 0.986 1.217 0.884
(0.706) (0.515) (0.668) (0.486) (0.8) (0.608) (0.701) (0.533)

αs = 4/3 αt = 4/3 αs = 4/3 αt = 4/19

αs 1.119 0.825 1.074 0.759 0.981 0.769 1.033 0.798
(0.786) (0.623) (0.690) (0.584) (0.634) (0.548) (0.690) (0.559)

αt 1.184 1.045 1.264 0.956 1.400 1.377 1.357 1.074
(0.946) (0.804) (0.852) (0.702) (1.166) (1.020) (0.894) (0.836)

σ2 0.955 0.756 1.090 0.743 1.008 0.775 1.014 0.768
(0.627) (0.542) (0.670) (0.540) (0.675) (0.559) (0.651) (0.518)

STRE 1.315 0.916 1.264 0.886 1.401 1.034 1.288 0.936
(0.776) (0.558) (0.726) (0.52) (0.844) (0.636) (0.746) (0.559)

Table 3: Simulated relative efficiency (with respect to the PL, i.e. SRE = madPL
madSTBEU

) of
STBEU estimator under temporal blocking. Relative efficiency is presented for different
values of the block length, overlapping-non overlapping (in parentheses) and regular-
irregular cases. Rows with STRE caption shows the overall performance.
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Double exponential Gneiting

Regular Irregular Regular Irregular

bst = 4 bst = 9 bst = 4 bst = 9 bst = 4 bst = 9 bst = 4 bst = 9

αs = 3.1/3 αt = 3.1/3 αs = 3/3 αt = 3/19

αs 1.283 0.918 1.034 0.842 1.187 0.890 0.970 0.784
(1.054) (0.692) (0.584) (0.625) (0.899) (0.674) (0.574) (0.684)

αt 1.494 0.914 1.042 0.913 1.786 1.177 1.166 1.039
(1.030) (0.723) (0.632) (0.707) (1.297) (0.941) (0.729) (0.809)

σ2 0.951 0.721 0.759 0.711 1.024 0.782 0.746 0.699
(0.773) (0.642) (0.464) (0.569) (0.815) (0.689) (0.462) (0.566)

STRE 1.398 0.794 1.035 0.846 1.542 0.904 1.095 0.92
(0.923) (0.535) (0.431) (0.524) (1.02) (0.6) (0.46) (0.582)

αs = 4/3 αt = 4/3 αs = 4/3 αt = 4/19

αs 1.244 0.876 1.112 0.891 0.897 0.708 1.022 0.853
(1.034) (0.631) (0.638) (0.701) (0.659) (0.501) (0.565) (0.655)

αt 1.507 0.976 1.176 1.020 1.223 1.055 1.318 1.121
(1.122) (0.794) (0.715) (0.785) (1.009) (0.744) (0.818) (0.928)

σ2 0.991 0.722 0.793 0.690 0.738 0.706 0.749 0.686
(0.814) (0.652) (0.527) (0.600) (0.650) (0.533) (0.529) (0.610)

STRE 1.624 0.909 1.205 0.939 0.962 0.755 1.177 0.953
(1.076) (0.61) (0.516) (0.586) (0.633) (0.413) (0.506) (0.605)

Table 4: Simulated relative efficiency (with respect to the PL, i.e. SRE = madPL
madSTBEU

)
of STBEU estimator under spatio-temporal blocking. Relative efficiency is presented for
different values of the block length, overlapping-non overlapping (in parentheses) and
regular-irregular cases. Rows with STRE caption shows the overall performance.

Tables 2, 3 and 4 report the simulation results for the spatial, temporal and spatio-
temporal blocking respectively. We measure efficiency in two ways. The first one corre-215

sponds to the simulated relative efficiency defined as SRE = madPL
madSTBEU

, where madPL
and madSTBEU are the median absolute deviations associated with PL and STBEU esti-
mators respectively. SRE is reported for every parameter and scenario. The choice of the
mad as a measure of statistical efficiency is due to the fact that the STBEU estimator
may display fatter tails than its competitor (see, e.g., Hansen et al., 1996, for a similar220

situation in a different context).4 The second approach is the simulated total relative
efficiency (STRE) as a measure of overall efficiency for the multi-parameter case (Bevilac-

qua & Gaetan, 2015). The STRE is defined as STRE =
(

DPL
DSTBEU

)1/dθ
where dθ = 3 is

the number of parameters of the model, DPL and DSTBEU are the determinants of the
variance covariance matrices of the PL and STBEU estimators respectively.225

The simulation results allow us to make some interesting comments on the perfor-
mance of the estimators under scrutiny. First of all, we notice that it is difficult to have
a clear ranking between STBEU and PL in absolute terms. However, we notice that
for certain specifications STBEU tends to outperform PL. For example, this happens
in Table 2 for the STRE when using the Double Exponential correlation function with230

b = 2 in the regular case and for the Gneiting correlation function for almost all the

4In Appendix C we also provide results for performance measures based on the mean square error
and on the nine decile range.
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results (STRE and SRE) in the regular case. Similar results are found in Tables 3 and
4. It is worth mentioning that STBEU outperforms PL in some irregular cases as well.
Particularly, for αt in the temporal blocking case using the Gneiting correlation function.

In addition to that, since the computation of STBEU is comparatively time saving,235

a researcher concerned with speed may be willing to trade off some statistical efficiency
in favor of higher computational efficiency. Further details on computational efficiency
are presented in Section 4.2. Moreover, consistently with the results in Bevilacqua et al.
(2015), the STBEU tends to perform better when the spatial data are on a regular
grid. Finally, we notice that the effect of the block length has a considerable impact240

on the results. In general, we notice that smaller block lengths tend to provide better
results. This suggest that, given an adequate procedure for the selection of the block
length in conjunction with our computationally efficient approach, we may obtain further
improvements. This problem is relevant and it is the object of future research.

We additionally consider a simulation study using a special case of the spatio-temporal
Wendland correlation function proposed in Porcu et al. (2020):

φ(h, u,θ) =
σ2

(1 + ||h||/αs)2.5

(
1− |u|

αt(1 + ||h||/αs)−β
)4.5

+

, (11)

where θ = (σ2, αs, αt, β)> (see Appendix E for the corresponding code). This covariance245

model is compactly supported in time and has some computational benefits with respect
to the covariance models (1) and (2) since the associated covariance matrix is sparse.
We use this model in the application in Section 5. The case β = 0 implies a separable
spatio-temporal covariance and the case 0 < β ≤ 1 leads to a non separable covariance
function We opt for a non overlapping regular spatial blocking setting (bs = 0.2) with250

ns = 400 and nt = 10, a total of nst = 4000. The distances in the weight function are
set to ds = 0.06 and dt = 3. Figure 2 shows the boxplots of the estimated parameters.
As a general comment, the distribution of the estimates for the four parameters tends to
be symmetric and with very few outliers.

4.2. Computational efficiency255

The STBEU estimator is implemented in C and OpenCL (OCL) standard, both
interfacing with R. We used a MacBook Pro laptop that has three devices, an Intel Core
CPU and two GPU devices: Intel Iris Pro and AMD Radeon R9 M370X Compute Engine,
but we worked in CPU and AMD since they support double precision. Computational
efficiency performance is evaluated comparing C vs OpenCL (through R) in two ways:260

evaluation of gij from Equation (4) in one block, and the full blockwise approach.
Our AMD device supports OpenCL version 1.2. There are 10 Compute Units (CUs),

where each CU contains 16 stream cores, and each stream core houses four processing
elements. Thus, each compute unit in the Radeon R9 M370X has 64 (16× 4) processing
elements (i.e. 640 PE in total)5. Our CPU (called the host in OpenCL) has access to 16265

Gb of the main memory, while the GPU has 2 Gb of memory from which it can directly
process data.

5All GPU vendors have some fundamental building block they scale up/down to hit various perfor-
mance/power/price targets. AMD calls theirs a Compute Unit, NVIDIA’s is known as an SMX, and
Intel’s is called a sub-slice.
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Figure 2: Boxplots of the parameters of the space time Wendland covariance model in equation (11),
using a non overlapping regular spatial blocking setting.
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Now, in order to evaluate the correlation functions, we need to compute nst(nst−1)/2
distances for the upper triangular matrix formed by all possible pairs of nst spatio-
temporal locations. At first glance, this would mean that the problem size (called270

NDrange in OpenCL where ND stands for N−dimensional, N = 1, 2, 3) is nst(nst−1)/2
too. Say, for example, we have ns = 1024 locations in space and nt = 32 in time, that
makes nst = 32768 spatio-temporal locations. Double precision requires 8 bytes per lo-
cation, that means that our host and device memory requirement would be 8× (32768×
(32767)/2) ≈ 4.3Gb. To overcome this memory requirement issue, we set the NDrange to275

have two dimensions with sizes ns and nt. It means that our device memory requirement
is now 8× 1024× 32 ≈ 33kB, roughly 0.0007% of the initial requirement in our example.
The latter was possible due to the workgroup concept in OpenCL.

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0

Space−time locations (104)

Ti
m

e 
[s

ec
]

Double Exponential
C
OCL GPU

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0

Space−time locations (104)

Ti
m

e 
[s

ec
]

Double Exponential
C
OCL GPU

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0

Space−time locations (104)

Ti
m

e 
[s

ec
]

Gneiting
C
OCL GPU

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0

Space−time locations (104)

Ti
m

e 
[s

ec
]

Gneiting
C
OCL GPU

Figure 3: Gradient (gij) evaluation time performance comparison C vs OpenCL (denoted OCL) for
Double Exponential and Gneiting covariance functions. Space locations vary from 4 to 9409 and time
locations from 2 to 97 on the left panel, the opposite in the right panel.
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Figure 3 compares C and OpenCL performance of equations (1) and (2) as specified
before. Space locations vary from 4 to 9409 and time locations from 2 to 97 on the left280

panel, the opposite in the right panel. These results are dependent on the characteristics
of the computer, such as the graphic card, OpenCL version, hardware specifications,
and so on. Nonetheless, it provides a relative sense of the computational improvement
potential. We used AMD in this case, local size is 16 work-items in each dimension,
which makes our total max Work Group Size (256). In both panels, OpenCL GPU285

timing outperforms C from roughly nst ≈ 10000 reaching approximately 6 and 3 times
faster for the double exponential and Gneiting case respectively.
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Figure 4: Blockwise time performance comparison for C vs OpenCL (denoted OCL with CPU and
GPU). The x axis is divided to 10e4. Rows compare spatial vs temporal blocking and columns compare
the correlation model.

Rows from Figure 4 compare spatial blocking against temporal blocking and columns
compare Double Exponential (1) and Gneiting (2) correlation models. In the spatial

16

                  



blocking procedure, nt is fixed to 100 and ns maximum is 29584, meaning nst = 2958400,290

and ns is fixed to 100 and the maximum value of nt is 29600 (nst = 2960000) in the tem-
poral blocking case. We can see that OpenCL outperforms C in all cases. An important
conclusion from Figure 4 is that OpenCL should be used when having more locations
per block. In the blockwise context, this implies that having a denser block improves the
time performance. Rows from Figure 4 reinforce this conclusion as we set 50 temporal295

blocks and approximately 11 spatial blocks. Comparing the correlation function used in
the blockwise procedure (i.e. the columns from Figure 4) suggests that using the Double
Exponential covariance function outperforms the Gneiting covariance function. Finally,
note that OpenCL GPU outperforms OpenCL CPU in three out of four panels.

5. Application: Mediterranean winds300

The Mediterranean winds data set contains wind component observations (east-west)
for 1175 space locations and 28 time periods taken every 6 hours from 00:00 UTC on
29 January 2005 to 18:00 UTC on 04 February 2005. These data are available in Wikle
et al. (2019). Figure 5 shows a map of the spatial locations.

For reproducible research purposes, we developed the R package STBEU (Morales-305

Oñate et al., 2019) that includes the full code for this application.
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Figure 5: Mediterranean region. The light blue dots are the space locations where the wind component
data are recorded in the region from 6.5◦ W-16.5◦ E and 33.5◦ N-45.5◦ N.
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STBEU
Parameters αs αt σ2

β = 0 385.73 16.93 13.45
(2.90) (0.26) (0.27)

β = 0.5 386.69 17.07 13.38
(4.07) (0.27) (0.38)

β = 1 399.37 16.62 13.16
(26.45) (0.32) (0.27)

PL
β = 0 351.79 18.44 12.03

(19.75) (1.47) (0.87)
β = 0.5 352.91 18.45 12.03

(19.82) (1.47) (0.87)
β = 1 354.04 18.47 12.03

(19.91) (1.48) (0.87)

Table 5: Estimation results of the spatio-temporal Gaussian process with Wendland
covariance model (11) using Mediterranean wind data with STBEU and PL for β =
0, 0.5, 1. Standard errors are shown in parenthesis.

Scenario Elapsed time Time Gain (with respect to i))
i) 16.6696 1.0000
ii) 2.5202 6.6144
iii) 1.0604 15.7201
iv) 0.4764 34.9908
v) 0.2237 74.5177

Table 6: Estimation elapsed times (minutes) of the spatio-temporal Gaussian process
with Wendland covariance model (11) to Mediterranean winds data. Scenarios are i) PL
using CPU one core (default in R), ii) PL using OpenCL framework with CPU (Intel(R)
Core(TM) i7-4980HQ), iii) STBEU using CPU one core (default in R), iv) STBEU using
OpenCL framework with GPU (AMD Radeon R9 M370X) and v) STBEU using OpenCL
framework with CPU (Intel(R) Core(TM) i7-4980HQ).

We assume data to be a realization of an isotropic in space and symmetric in time
spatio-temporal Gaussian RF with spatio-temporal Wendland correlation function intr-
duced Equation (11).

Since the data set has more space than time locations, spatial (non overlapping)310

blocks are constructed in the following manner: [0, 400]2 and nt = 28, that is ns = 1175
and nst = 32900. We estimate the model with STBEU considering the cases β = 0, 0.5, 1
and with weights such that only pairs with spatial and temporal distances lower than
50 and 6 respectively are considered for each block, that is ds = 50 and dt = 6 in the
weight function (5). The results are reported in Table 5 while standard errors are shown315

in parenthesis. In terms of magnitude, the estimated coefficients for STBEU are not too
susceptible to the choice of β. With respect to PL, we notice some sizable difference in
the estimates of αt both in comparison with STBEU and in relation with the choice of
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β. Furthermore, the estimates of the other parameters, αt and σ2, tend to be similar
for the two estimation methods and with respect to the choice of β. In addition to that,320

we observe that the standard errors for σ2 are systematically smaller for PL. However,
identifying a similar pattern for the other parameters seems to be more complicated. We
notice, though, that for β = 0.5 the standard errors for STBEU are much smaller than
those produced by PL.

Additionally, in Figure 6, the empirical marginal spatial and temporal semi-variograms325

are compared with their estimated theoretical counterparts using STBEU and PL esti-
mates with β = 0.5 and they show a satisfactory fitting in particular for the STBEU
estimation. The shaded area between the solid lines represents the confidence band for
the STBEU while that between the dotted lines the PL. Additional information about
the standard errors are presented in Appendix B.330
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Figure 6: Confidence bands for the empirical spatial and temporal marginal semi-variogram versus the
estimated semi-variograms for model (11) with β = 0.5 using STBEU (solid line) and PL (dotted line)
estimates.

Finally we show the computational benefits of the STBEU method. Results in Table 6
show the elapsed time (in minutes) of the entire optimization process (we use the simplex
method proposed in Nelder & Mead (1965) as implemented in the R function optim) for
five setups:

i) PL using CPU one core (default in R),335

ii) PL using OpenCL framework with CPU (Intel(R) Core(TM) i7-4980HQ),

iii) STBEU using CPU one core (default in R),

iv) STBEU using OpenCL framework with GPU (AMD Radeon R9 M370X) and

v) STBEU using OpenCL framework with CPU (Intel(R) Core(TM) i7-4980HQ).
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Using the Wendland covariance function and comparing against the PL (CPU-only)340

setup, the STBEU method is approximately 35 and 75 times faster in setups iv) and v)
respectively.

6. Conclusions

In this paper we introduce a blockwise Euclidean likelihood method based on the
score of the pairwise likelihood objective function for the estimation of spatio-temporal345

covariance models of Gaussian RFs. This approach is particularly useful when dealing
with large data sets. We show that the proposed estimator, denoted as STBEU, is
consistent and asymptotically normal. Furthermore, a set of simulation results and an
application on a wind speed data set suggest that the STBEU works well in finite samples.
The blockwise approach guarantees considerable computational gains over the standard350

pairwise composite likelihood method and our implementation in OpenCL allows us to
obtain further improvements in the computation of the estimates. Although in this
paper we only considered spatio-temporal Gaussian RFs, the proposed methodology can
be easily extended to the case of the estimation of spatio-temporal non-Gaussian RFs
with known bivariate distribution as, for example, in Alegŕıa et al. (2017) and Bevilacqua355

et al. (2020).
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Appendix

Appendix A. Proofs

In this section we collect the proof of the asymptotic results described in Theorem
1. Let us introduce some useful notation: ∇θ and ∇λ are the first derivative operators
for θ and λ respectively, while ∇θθ, ∇λλ and ∇θλ indicate second and cross derivatives370

and are defined accordingly. Similarly, for a certain function Rn(θ,λ) defined below,
Rn,θ(θ,λ) is its first derivative with respect to θ. Derivatives with respect to λ, second
derivatives and cross derivatives are defined in a similar manner. Let us also define
Q(θ) = m(θ)>Σ(θ)−1m(θ), the population version of our objective function.

Proof. We first prove part 1. We have to show that, for some δ > 0, P (‖θ̂−θ0‖ > δ)→ 0375

as n → ∞. By continuity of Q(θ) and the assumption that θ0 is the unique minimizer,

we have that, for some ε > 0, {‖θ̂ − θ0‖ > δ} =⇒ { | Q(θ̂) − Q(θ0) | > ε}. This is,
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the latter set contains the former. Hence, P (‖θ̂− θ0‖ > δ) ≤ P ( | Q(θ̂)−Q(θ0) | > ε).
By some simple algebraic manipulation we have

Q̂n(θ)−Q(θ) = m̂ (θ)
>
Σ̂(θ)−1m̂ (θ)−m (θ)

>
Σ(θ)−1m (θ)

= (m̂ (θ)−m (θ))
>
Σ̂(θ)−1 (m̂ (θ)−m (θ)) + 2 (m̂ (θ)−m (θ))

>
Σ̂(θ)−1m (θ)

−m (θ)
>
(
Σ(θ)−1 − Σ̂(θ)−1

)
m (θ) .

Hence, by taking the norm and by triangle inequality

|Q̂n(θ)−Q(θ)| ≤ ‖m̂ (θ)−m (θ)‖2
∥∥∥Σ̂(θ)−1

∥∥∥+ 2 ‖m̂ (θ)−m (θ)‖
∥∥∥Σ̂(θ)−1

∥∥∥ ‖m (θ)‖

− ‖m (θ)‖2
∥∥∥Σ(θ)−1 − Σ̂(θ)−1

∥∥∥ .

By assumptions A5 and A6 and the continuous mapping theorem we get the following
uniform convergence result

sup
θ∈Θ

| Q̂n(θ)−Q(θ) | →p 0. (A.1)

Therefore,

ε < | Q(θ̂)−Q(θ0) | = | Q(θ̂)− Q̂n(θ0) + Q̂n(θ0)−Q(θ0) |
≤ 2 sup

θ∈Θ
| Q̂n(θ)−Q(θ) | →p 0,

where the latter inequality follows from the triangular inequality and the uniform
convergence condition (A.1). This implies that P (‖θ̂−θ0‖ > δ) ≤ P ( | Q(θ̂)−Q(θ0) | >
ε)→ 0 as n→∞. Hence, θ̂ →p θ0. Before showing asymptotic normality we show that

the estimate of the Lagrange multiplier λ̂

b1+dn
converges to zero in probability. By a mean

value argument, the uniform convergence results in part 1 and the continuous mapping
theorem we get

λ̂

b1+d
n

→p 0.

Let us now prove part 2 and define

2Rn(θ,λ) = 1 + 2λ>m̂(θ) +
1

b1+d
n

λ>Σ̂(θ)>λ.

The first order conditions of R̂(θ̂, λ̂) with respect to θ and λ are

0 = Rn,θ(θ̂, λ̂) = ∇θm̂(θ̂)λ̂+
λ>

Nb1+d
n

∑

i∈Ibn

mi(θ̂)∇θmi(θ̂)λ̂, (A.2)

0 = Rn,λ(θ̂, λ̂) = m̂(θ̂) +
1

b1+d
n

Σ̂(θ̂)λ̂. (A.3)
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Let us now take a mean value expansion of the first order conditions (A.2) and (A.3)
about the true values (θ>,λ>)> = (θ>0 ,0

>)>

0 = Rn,θ(θ̂, λ̂) = Rn,θ(θ0,0) +Rn,θλ(θ̇, λ̇)λ̂+Rn,θθ(θ̇, λ̇)(θ̂ − θ0) (A.4)

= Rn,θλ(θ̇, λ̇)

√
n

b1+d
n

λ̂+
1

b1+d
n

Rn,θθ(θ̇, λ̇)
√
n(θ̂ − θ0),

0 = Rn,λ(θ̂, λ̂) = Rn,λ(θ0,0) +Rn,λλ(θ̇, λ̇)λ̂+Rn,λθ(θ̇, λ̇)(θ̂ − θ0) (A.5)

=
√
nRn,λ(θ0,0) + b1+d

n Rn,λλ(θ̇, λ̇)

√
n

b1+d
n

λ̂+Rn,λθ(θ̇, λ̇)
√
n(θ̂ − θ0).

More compactly,

(
0√

nR̂λ(θ0,0)

)
= −

(
1

b1+dn
R̂θθ(θ̇, λ̇) R̂θλ(θ̇, λ̇)

R̂λθ(θ̇, λ̇) b1+d
n R̂λλ(θ̇, λ̇)

)(√
n(θ̂ − θ0)√

n

b1+dn
λ̂

)
.

By the unifrom weak law of large numbers we get 1

b1+dn
R̂θθ(θ̇, λ̇)→p 0, b1+d

n R̂λλ(θ̇, λ̇)→p

Σ(θ0) and R̂λθ(θ̇, λ̇)→p ∇θm(θ0). Hence,

(√
n(θ̂ − θ0)√

n

b1+dn
λ̂

)
= −

(
Ω(θ0) Ω(θ0)∇θm(θ0)>Σ(θ0)−1

Σ(θ0)−1∇θm(θ0)Ω(θ0) Λ(θ0)

)(
0√

nm̂(θ0)

)

+ op(1),

where

Ω(θ0) = (∇θm(θ0)>Σ(θ0)−1∇θm(θ0))−1

and

Λ(θ0) = Σ(θ0)−1 −Σ(θ0)−1∇θm(θ0)Ω(θ0)∇θm(θ0)>Σ(θ0)−1.

The result follows from an application of the central limit theorem and the continuous380

mapping theorem.

Appendix B. Standard errors

In this section we show via simulation the performance of the STBEU estimator
for a space-time Gaussian RF with Double Exponential covariance function in terms of
confidence intervals. Theorem 1 gives us an expression for the covariance matrix of θ̂:

Ω(θ0) = (∇θm(θ0)>Σ(θ0)−1∇θm(θ0))−1.

Using this formula we compute the corresponding standard errors. Table B.7 shows
the coverage rates for the parameters of interest obtained by the simulation experiment385

detailed below.
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αs αs σ2

95.6% 95.8% 93.8%

Table B.7: Coverage rates for the Monte Carlo experiment using a space time Double
Exponential covariance function. The number of Monte Carlo replications is set to 1000.

In what follows we first show as an example how to simulate a realization of a space-
time Gaussian RF with Double Exponential covariance function and how to calculate
the 95% confidence interval. We start by creating the grid and the data:

# ST: Creat ing g r i d & Data :390

rm( l i s t = l s ( ) )
graphics . of f ( )
l ibrary ( GeoModels )
l ibrary (STBEU)

395

###################################################
type d i s t=1 ### type o f d i s t a n c e 1 : e u c l i d e a n
type subs=1 ### type o f subsampl ing 1=in space 2= in time

scale t=0.6400

scale s =0.6

s i l l =1
nugget=0
mean=0.05405

start=l i s t ( scale s=scale s , scale t=scale t , s i l l = s i l l )
f ix=c ( nugget=nugget ,mean = mean)

####l o c a t i o n s i t e s ###################################410

lambda=6
xx=seq(−lambda , lambda ) ;
coords=as . matrix (expand . grid ( xx , xx ) ) ###r e g u l a r

####temporal i n s t a n t s ################################415

nt = 4
times=seq (1 , nt , 1 )
(NT <− nrow( coords )∗nt )

param=l i s t ( scale s=scale s , scale t=scale t ,420

s i l l =s i l l , nugget=nugget ,mean = mean)
maxdist1=max( d i s t ( coords ) )∗ . 25
maxtime1=cei l ing (max( d i s t ( t imes ) )∗ . 2 5 )

winc=c ( 0 , 0 ) ### l e n g t h o f temporal window425

winstp=1 ### 0.5 h a l f o v e r l a p p i n g 1 ”no” o v e r l a p p i n g
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cc = 1 #Exp Exp

datos <− GeoSim( coordx=coords , coordt=times ,
corrmodel=”Exp Exp” , param=param )$data430

weighted = 0
# END: Creat ing g r i d & Data

We are now ready to estimate the model and calculate the 95% confidence interval:

# ST: S t a r t i n g v a l u e s & e s t i m a t i o n :
r e s1=STBEUFit( start , f ix , coords , t imes , cc , datos ,435

type d i s t , maxdist1 , maxtime1 ,
winc , winstp , 0 , 0 , type subs , weighted ,
GPU =0, local = c ( 1 , 1 ) , va r e s t = TRUE)

NT = nrow( coords )∗length ( t imes )440

qq <− qnorm( 0 . 9 7 5 )

# ∗∗∗∗∗∗∗∗ SCALE S
c ( r e s1$par [ 1 ] − qq∗ r e s1$ s t d e r r [ 1 ] ,
r e s1$par [ 1 ] + qq∗ r e s1$ s t d e r r [ 1 ] )445

# ∗∗∗∗∗∗∗∗ SCALE T
c ( r e s1$par [ 2 ] − qq∗ r e s1$ s t d e r r [ 2 ] ,
r e s1$par [ 2 ] + qq∗ r e s1$ s t d e r r [ 2 ] )
# ∗∗∗∗∗∗∗∗ SILL
c ( r e s1$par [ 3 ] − qq∗ r e s1$ s t d e r r [ 3 ] ,450

r e s1$par [ 3 ] + qq∗ r e s1$ s t d e r r [ 3 ] )
# END: S t a r t i n g v a l u e s & e s t i m a t i o n :

In order to determine how close the simulated coverage is to the nominal 95% coverage,
we now simulate this process a 1000 times.

#### ST: Simulat ion :455

SolPar <− NULL
SolSD <− NULL

s e m i l l a = 1537460

set . seed ( s e m i l l a )
i = 1
nsim = 1000
while ( i <=nsim )
{465

dd <− GeoSim( coordx=coords , coordt=times ,
corrmodel=”Exp Exp” , param=param )$data

tryCatch ({ aux=STBEUFit( start , f ix , coords , t imes , cc , dd ,
type d i s t , maxdist1 , maxtime1 ,470

winc , winstp , 0 , 0 , type subs , weighted ,
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GPU =0, local = c ( 1 , 1 ) , va r e s t = TRUE)} ,
e r r o r=function ( e ){ cat ( ”ERROR : ” ,
condit ionMessage ( e ) , ”\n” )} )

475

SolPar <− rbind ( SolPar , aux$par )
SolSD <− rbind ( SolSD , aux$ s t d e r r )
cat ( ” I t e r : ” , i , ”de : ” , nsim , ”\n” )
i = i+1

}480

#### END Simulat ion :

The final step is to evaluate the coverage rate.

mm<− SolPar
se <− SolSD

485

qq <− qnorm( 0 . 9 7 5 )

# ∗∗∗∗∗∗∗∗ SCALE S
l o . conf . scale s <− mm[ , 1 ] − qq∗se [ , 1 ]
up . conf . scale s <− mm[ , 1 ] + qq∗se [ , 1 ]490

bl . scale s <− sum( start$scale s<l o . conf . scale s ) # bad lower
bu . scale s <− sum(up . conf . scale s<start$scale s ) # bad upper

1−( b l . scale s+bu . scale s )/nsim # shou ld be c l o s e to 1495

# ∗∗∗∗∗∗∗∗ SCALE T
l o . conf . scale t <− mm[ , 2 ] − qq∗se [ , 2 ]
up . conf . scale t <− mm[ , 2 ] + qq∗se [ , 2 ]

500

bl . scale t <− sum( start$scale t<l o . conf . scale t ) # bad lower
bu . scale t <− sum(up . conf . scale t<start$scale t ) # bad upper
1−( b l . scale t+bu . scale t )/nsim # shou ld be c l o s e to 1

505

# ∗∗∗∗∗∗∗∗ SILL
l o . conf . s i l l <− mm[ , 3 ] − qq∗se [ , 3 ]
up . conf . s i l l <− mm[ , 3 ] + qq∗se [ , 3 ]

510

bl . s i l l <− sum( start$ s i l l <l o . conf . s i l l ) # bad lower
bu . s i l l <− sum(up . conf . s i l l <start$ s i l l ) # bad upper
1−( b l . s i l l +bu . s i l l )/nsim # shou ld be c l o s e to 1

For reproducible research purposes, we developed the R package STBEU (Morales-
Oñate et al., 2019) that includes the full code for this application.515
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Appendix C. Simulated relative efficiency

This section shows the relative efficiency results for STBEU and PL considering as
statistical efficiency measures SRE = msePL

mseSTBEU
and SRE = ndrPL

ndrSTBEU
, where mse and

ndr stand for mean square error and nine decile range respectively. Like the mad, the ndr
is robust to the presence of outliers (see, for example, Bekker & Crudu, 2015; Hausman520

et al., 2012). Comparing the results in Tables C.8, C.9 and C.10 against those in Tables
C.11, C.12 and C.13 we may reasonably conjecture that extreme values affect the results
when the relative performance measure is based on the mse. On the other hand, there
seems to be no substantial qualitative difference when we use the ndr versus the mad.

Double exponential Gneiting

Regular Irregular Regular Irregular

b = 2 b = 4 b = 2 b = 4 b = 2 b = 4 b = 2 b = 4

αs = 1.2/3 αt = 1.2/3 αs = 1.2/3 αt = 1.2/3

αs 0.982 0.894 0.545 0.636 1.213 1.055 0.645 0.749
(1.035) (0.979) (0.354) (0.472) (1.218) (1.23) (0.426) (0.659)

αt 0.896 0.834 0.339 0.563 1.171 0.998 0.579 0.743
(0.828) (0.838) (0.216) (0.439) (1.115) (1.109) (0.383) (0.612)

σ2 0.934 0.898 0.405 0.662 0.917 0.852 0.402 0.662
(0.918) (0.957) (0.288) (0.444) (0.898) (0.945) (0.284) (0.544)

STRE 0.952 0.901 0.529 0.701 1.054 0.963 0.625 0.778
(0.939) (0.937) (0.391) (0.536) (1.039) (1.054) (0.47) (0.68)

αs = 1.8/3 αt = 1.8/3 αs = 1.8/3 αt = 1.8/19

αs 1.142 0.928 0.552 0.619 1.791 1.4 0.788 0.881
(1.192) (1.085) (0.338) (0.532) (1.856) (1.634) (0.502) (0.799)

αt 1.057 0.886 0.483 0.638 1.58 1.245 0.716 0.848
(1.027) (0.98) (0.316) (0.538) (1.638) (1.417) (0.475) (0.737)

σ2 0.918 0.845 0.386 0.624 0.914 0.851 0.381 0.624
(0.91) (0.962) (0.27) (0.527) (0.907) (0.954) (0.267) (0.53)

STRE 1.038 0.921 0.59 0.723 1.233 1.076 0.69 0.832
(1.04) (1.01) (0.433) (0.633) (1.253) (1.186) (0.513) (0.742)

Table C.8: Simulated relative efficiency (with respect to the PL, i.e. SRE = msePL
mseSTBEU

)
of STBEU estimator under spatial blocking. Relative efficiency is presented for different
values of the block length, overlapping-non overlapping (in parentheses) and regular-
irregular cases. Rows with STRE caption shows the overall performance.
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Double exponential Gneiting

Regular Irregular Regular Irregular

b = 2 b = 3 b = 2 b = 3 b = 2 b = 3 b = 2 b = 3

αs = 3.1/3 αt = 3.1/3 αs = 3.1/3 αt = 3.1/19

αs 1.195 0.704 1.121 0.675 1.125 0.694 1.031 0.622
(0.572) (0.393) (0.516) (0.361) (0.528) (0.377) (0.462) (0.332)

αt 1.427 0.965 1.359 0.852 2.841 2.022 2.103 1.423
(0.818) (0.506) (0.665) (0.462) (1.613) (1.12) (1.048) (0.78)

σ2 1.02 0.655 1.000 0.624 1.018 0.643 1.007 0.613
(0.462) (0.32) (0.44) (0.309) (0.454) (0.322) (0.436) (0.304)

STRE 1.189 0.841 1.169 0.82 1.325 0.986 1.217 0.884
(0.706) (0.515) (0.668) (0.486) (0.8) (0.608) (0.701) (0.533)

αs = 4/3 αt = 4/3 αs = 4/3 αt = 4/19

αs 1.216 0.709 1.147 0.689 1.069 0.648 1.01 0.617
(0.576) (0.39) (0.535) (0.374) (0.492) (0.352) (0.462) (0.329)

αt 1.763 1.166 1.544 0.967 3.379 2.365 2.542 1.695
(1.013) (0.616) (0.764) (0.523) (1.935) (1.318) (1.284) (0.926)

σ2 1.012 0.647 1.008 0.63 1.02 0.63 1.015 0.617
(0.463) (0.323) (0.452) (0.32) (0.45) (0.321) (0.441) (0.304)

STRE 1.315 0.916 1.264 0.886 1.401 1.034 1.288 0.936
(0.776) (0.558) (0.726) (0.52) (0.844) (0.636) (0.746) (0.559)

Table C.9: Simulated relative efficiency (with respect to the PL, i.e. SRE = msePL
mseSTBEU

)
of STBEU estimator under temporal blocking. Relative efficiency is presented for differ-
ent values of the block length, overlapping-non overlapping (in parentheses) and regular-
irregular cases. Rows with STRE caption shows the overall performance.
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Double exponential Gneiting

Regular Irregular Regular Irregular

bst = 4 bst = 9 bst = 4 bst = 9 bst = 4 bst = 9 bst = 4 bst = 9

αs = 3.1/3 αt = 3.1/3 αs = 3/3 αt = 3/19

αs 1.491 0.634 1.028 0.711 1.622 0.895 1.189 0.918
(0.826) (0.4) (0.332) (0.406) (1.029) (0.553) (0.428) (0.564)

αt 1.968 0.896 1.143 0.956 3.257 1.492 1.747 1.422
(1.08) (0.502) (0.385) (0.534) (1.78) (0.844) (0.647) (0.844)

σ2 0.902 0.551 0.557 0.513 0.91 0.543 0.565 0.512
(0.579) (0.362) (0.205) (0.316) (0.576) (0.356) (0.207) (0.315)

STRE 1.398 0.794 1.035 0.846 1.542 0.904 1.095 0.92
(0.923) (0.535) (0.431) (0.524) (1.02) (0.6) (0.46) (0.582)

αs = 4/3 αt = 4/3 αs = 4/3 αt = 4/19

αs 1.576 0.666 1.086 0.718 0.776 0.52 1.125 0.799
(0.854) (0.417) (0.375) (0.417) (0.471) (0.258) (0.381) (0.483)

αt 2.581 1.165 1.567 1.226 1.675 1.124 2.123 1.575
(1.435) (0.644) (0.554) (0.688) (0.938) (0.555) (0.811) (0.928)

σ2 0.897 0.539 0.568 0.502 0.534 0.463 0.582 0.506
(0.56) (0.351) (0.222) (0.317) (0.348) (0.23) (0.227) (0.32)

STRE 1.624 0.909 1.205 0.939 0.962 0.755 1.177 0.953
(1.076) (0.61) (0.516) (0.586) (0.633) (0.413) (0.506) (0.605)

Table C.10: Simulated relative efficiency (with respect to the PL, i.e. SRE = msePL
mseSTBEU

)
of STBEU estimator under spatio-temporal blocking. Relative efficiency is presented for
different values of the block length, overlapping-non overlapping (in parentheses) and
regular-irregular cases. Rows with STRE caption shows the overall performance.
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Double exponential Gneiting

Regular Irregular Regular Irregular

b = 2 b = 4 b = 2 b = 4 b = 2 b = 4 b = 2 b = 4

αs = 1.2/3 αt = 1.2/3 αs = 1.2/3 αt = 1.2/3

αs 0.929 0.892 0.716 0.789 1.085 1.006 0.779 0.875
(0.968) (0.979) (0.567) (0.722) (1.082) (1.120) (0.617) (0.797)

αt 0.944 0.939 0.620 0.795 1.096 0.996 0.777 0.885
(0.993) (0.941) (0.491) (0.677) (1.075) (1.029) (0.641) (0.819)

σ2 0.903 0.969 0.628 0.845 0.950 0.926 0.614 0.843
(0.918) (0.977) (0.559) (0.753) (0.939) (0.974) (0.548) (0.733)

STRE 0.952 0.901 0.529 0.701 1.054 0.963 0.625 0.778
(0.939) (0.937) (0.391) (0.536) (1.039) (1.054) (0.47) (0.68)

αs = 1.8/3 αt = 1.8/3 αs = 1.8/3 αt = 1.8/19

αs 1.070 0.939 0.721 0.784 1.294 1.120 0.844 0.904
(1.095) (1.031) (0.558) (0.765) (1.316) (1.203) (0.687) (0.885)

αt 0.993 0.911 0.737 0.832 1.294 1.116 0.896 0.953
(0.996) (0.974) (0.571) (0.753) (1.314) (1.209) (0.712) (0.897)

σ2 0.975 0.949 0.590 0.753 0.949 0.925 0.577 0.775
(0.953) (0.990) (0.518) (0.709) (0.912) (0.916) (0.487) (0.725)

STRE 1.038 0.921 0.59 0.723 1.233 1.076 0.69 0.832
(1.04) (1.01) (0.433) (0.633) (1.253) (1.186) (0.513) (0.742)

Table C.11: Simulated relative efficiency (with respect to the PL, i.e. SRE = ndrPL
ndrSTBEU

)
of STBEU estimator under spatial blocking. Relative efficiency is presented for different
values of the block length, overlapping-non overlapping (in parentheses) and regular-
irregular cases. Rows with STRE caption shows the overall performance.
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Double exponential Gneiting

Regular Irregular Regular Irregular

b = 2 b = 3 b = 2 b = 3 b = 2 b = 3 b = 2 b = 3

αs = 3.1/3 αt = 3.1/3 αs = 3.1/3 αt = 3.1/19

αs 1.109 0.815 1.059 0.843 1.058 0.802 0.976 0.782
(0.721) (0.616) (0.723) (0.594) (0.728) (0.647) (0.695) (0.584)

αt 1.193 0.965 1.162 0.953 1.503 1.297 1.270 1.081
(0.886) (0.672) (0.841) (0.725) (1.177) (0.916) (0.901) (0.782)

σ2 1.013 0.844 1.003 0.819 1.037 0.842 0.989 0.809
(0.680) (0.572) (0.678) (0.587) (0.711) (0.595) (0.685) (0.569)

STRE 1.189 0.841 1.169 0.82 1.325 0.986 1.217 0.884
(0.706) (0.515) (0.668) (0.486) (0.8) (0.608) (0.701) (0.533)

αs = 4/3 αt = 4/3 αs = 4/3 αt = 4/19

αs 1.139 0.857 1.085 0.814 1.017 0.772 0.997 0.796
(0.765) (0.628) (0.732) (0.597) (0.708) (0.604) (0.698) (0.587)

αt 1.263 1.034 1.222 1.009 1.579 1.391 1.360 1.164
(0.955) (0.746) (0.867) (0.727) (1.241) (0.985) (0.989) (0.850)

σ2 1.013 0.825 0.990 0.781 1.032 0.822 0.986 0.782
(0.684) (0.575) (0.662) (0.587) (0.703) (0.575) (0.684) (0.568)

STRE 1.315 0.916 1.264 0.886 1.401 1.034 1.288 0.936
(0.776) (0.558) (0.726) (0.52) (0.844) (0.636) (0.746) (0.559)

Table C.12: Simulated relative efficiency (with respect to the PL, i.e. SRE = ndrPL
ndrSTBEU

)
of STBEU estimator under temporal blocking. Relative efficiency is presented for differ-
ent values of the block length, overlapping-non overlapping (in parentheses) and regular-
irregular cases. Rows with STRE caption shows the overall performance.
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Double exponential Gneiting

Regular Irregular Regular Irregular

bst = 4 bst = 9 bst = 4 bst = 9 bst = 4 bst = 9 bst = 4 bst = 9

αs = 3.1/3 αt = 3.1/3 αs = 3/3 αt = 3/19

αs 1.183 0.754 0.989 0.836 1.351 0.925 1.030 0.875
(0.861) (0.628) (0.600) (0.627) (0.995) (0.734) (0.595) (0.659)

αt 1.379 0.987 1.080 1.017 1.756 1.167 1.188 1.124
(1.073) (0.742) (0.627) (0.730) (1.246) (0.846) (0.712) (0.827)

σ2 0.947 0.729 0.754 0.724 0.972 0.737 0.802 0.698
(0.737) (0.584) (0.461) (0.567) (0.736) (0.595) (0.474) (0.553)

STRE 1.398 0.794 1.035 0.846 1.542 0.904 1.095 0.92
(0.923) (0.535) (0.431) (0.524) (1.02) (0.6) (0.46) (0.582)

αs = 4/3 αt = 4/3 αs = 4/3 αt = 4/19

αs 1.219 0.777 0.990 0.824 0.908 0.743 1.018 0.863
(0.910) (0.653) (0.624) (0.613) (0.691) (0.549) (0.591) (0.663)

αt 1.635 1.112 1.247 1.079 1.191 0.974 1.323 1.147
(1.214) (0.807) (0.767) (0.810) (0.821) (0.708) (0.827) (0.834)

σ2 0.952 0.743 0.763 0.726 0.732 0.695 0.802 0.726
(0.737) (0.569) (0.494) (0.582) (0.590) (0.475) (0.498) (0.553)

STRE 1.624 0.909 1.205 0.939 0.962 0.755 1.177 0.953
(1.076) (0.61) (0.516) (0.586) (0.633) (0.413) (0.506) (0.605)

Table C.13: Simulated relative efficiency (with respect to the PL, i.e. SRE = ndrPL
ndrSTBEU

)
of STBEU estimator under spatio-temporal blocking. Relative efficiency is presented for
different values of the block length, overlapping-non overlapping (in parentheses) and
regular-irregular cases. Rows with STRE caption shows the overall performance.

Appendix D. Statistical efficiency525

The following code is for the simulation study using a special case of the spatio-
temporal Wendland correlation function proposed in Porcu et al. (2020):

φ(h, u,θ) =
σ2

(1 + ||h||/αs)2.5

(
1− |u|

αt(1 + ||h||/αs)−β
)4.5

+

,

where θ = (σ2, αs, αt, β)>.

# S e p a r a b i l i t y parameter
rm( l i s t = l s ( ) )
graphics . of f ( )
cat ( ”\014” )530

l ibrary ( GeoModels )
l ibrary (STBEU)

# ST: Creat ing g r i d & Data :
t t = 10535

N = 20

times <− 1 : t t
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x <− seq (0 , 1 , length . out = N)
y <− x540

coords <− expand . grid (x , y )
(NT = length ( t imes )∗nrow( coords ) )

545

smooth t=0 # k or kappa
scale t=time comp supp=3 # compact s u p p o r t t s c a l e t
scale s =.053
power2 t=3.5+smooth t #nu
power s=2550

power2 s =2.5+2∗smooth t# tau

sep =0.5 ## 0 0.5 1
s i l l =1
mean=0555

nugget=0

param = c ( scale s = scale s , scale t=scale t , s i l l = s i l l ,560

nugget = nugget , power s=power s , mean =mean,
power2 s = power2 s ,
power2 t =power2 t , smooth t =smooth t , sep =sep )

565

set . seed (2 )
datos <− GeoSim( coordx=coords , coordt=times , spa r s e=TRUE,

corrmodel=”Wen time ” , param=as . l i s t ( param ) ) $data
# END: Creat ing g r i d & Data570

# ST: S t a r t i n g v a l u e s & e s t i m a t i o n :
start <− NULL
start$scale s <− as . numeric ( param [ 1 ] )575

start$scale t <− as . numeric ( param [ 2 ] )
start$ s i l l <− as . numeric ( param [ 3 ] )
# s t a r t $mean <− as . numeric ( param [ 6 ] )
start$sep <− as . numeric ( param [ 1 0 ] )

580

f ix <− as . l i s t ( param [ c ( 4 , 5 , 6 , 7 , 8 , 9 ) ] )

l <− . 2
winc=l
winstp=1585
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( maxdist1=(1∗winc ) )

maxdist1 =0.06
maxtime1=3590

type subs=1
type d i s t=1
weighted=0

595

#### Simluat ion :

SolPar <− NULL

s e m i l l a = 1537600

set . seed ( s e m i l l a )
i = 1
nsim = 1000
while ( i <=nsim ){

dd <− GeoSim( coordx=coords , coordt=times ,605

corrmodel=”Wen time ” , param=as . l i s t ( param ) ,
model = ” Gaussian ” , spar s e = TRUE)$data

aux=STBEUFit( theta =start , f i x e d = unlist ( f ix ) ,
coords = coords , t imes=times , cc =3, datos=dd ,610

type d i s t=type d i s t ,
maxdist=maxdist1 , maxtime=maxtime1 ,
winc s=winc , winstp s=winstp ,
winc t=NULL,

winstp t=NULL, subs=type subs , weighted=weighted )615

SolPar <− rbind ( SolPar , aux$par )
cat ( ” I t e r : ” , i , ”de : ” , nsim , ”\n” )
i = i+1

}620

solSTBEU <− SolPar
apply ( solSTBEU , 2 ,mean)
par ( mfrow = c ( 2 , 2 ) )
boxplot ( solSTBEU [ , 1 ] , main = ” s c a l e s ” ) ;
abline (h = scale s , col = ” blue ” )625

boxplot ( solSTBEU [ , 2 ] , main = ” s c a l e t ” ) ;
abline (h = scale t , col = ” blue ” )
boxplot ( solSTBEU [ , 3 ] , main = ” s i l l ” ) ;
abline (h = s i l l , col = ” blue ” )
boxplot ( solSTBEU [ , 4 ] , main = ” sep ” ) ;630

abline (h = sep , col = ” blue ” )
par ( mfrow = c ( 1 , 1 ) )

33

                  



Appendix E. Application including nugget

The following code is for the estimation of the parameters in the application data
including the nugget.635

rm( l i s t = l s ( ) )
graphics . of f ( )
cat ( ”\014” )
l ibrary ( GeoModels )
l ibrary (STBEU)640

l ibrary ( s c a t t e r p l o t 3 d )
# d e v t o o l s : : i n s t a l l g i t h u b (” andrewzm/STRbook”)
data ( ”Medwind data ” ,package = ”STRbook” )

coords = Edat$ECMWFxylocs645

datos = matrix ( unlist ( Edat$EUdat ) ,
ncol = ncol ( Edat$EUdat ) ,nrow = nrow( Edat$EUdat ) )
datos = t ( datos )

650

coords l l = coords #lon− l a t coords

pr j = mapproj : : mapproject ( coords [ , 1 ] , coords [ , 2 ] ,
p r o j e c t i o n =” s i n u s o i d a l ” )
coords = cbind ( p r j$x , p r j$y ) # Projec ted coords655

coords = coords∗6371

time <− 1 :nrow( datos )

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ sep = 0.5 ∗∗∗∗∗∗∗∗∗∗#660

#### ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Est imat ion

################################################
# parameters f o r the subsampl ing ####665

###############################################
coordx=coords [ , 1 ]
coordy=coords [ , 2 ]
LX=abs ( range ( coordx ) [1 ]− range ( coordx ) [ 2 ] )
LY=abs ( range ( coordy ) [1 ]− range ( coordy ) [ 2 ] )670

l a t o f i n =400 #changing window s i z e
l x=l a t o f i n #l u n g h e z z a l a t o x quadrato s u b f i n e s t r a
l y=l a t o f i n #l u n g h e z z a l a t o y quadrato s u b f i n e s t r a
winc=c ( l x/sqrt (LX) , l y/sqrt (LY) )
### 1/ l a t o f i n complete o v e r l a p p i n g675

## in space 1 ”no” o v e r l a p p i n g in space
winstp= 1
###############################################
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winc t=6 ### l e n g t h o f temporal window
winstp t=1 ### 0.5 h a l f o v e r l a p p i n g 1 ”no” o v e r l a p p i n g680

( maxdist <− 40)
( maxtime <− 1∗winc t )
###############################################
weighted=0685

type d i s t=1 ### type o f d i s t a n c e 1 : e u c l i d e a n
type subs=1 ### type o f subsampl ing 1=in space 2= in time

smooth t=0690

scale t=20
scale s=350
power2 t=3.5+smooth t +1
power s=2
power2 s =2.5+2∗smooth t695

sep =0.5

s i l l =var ( c ( datos ) ,na .rm = TRUE)
nugget =0.01
mean=mean( datos , na .rm=TRUE)700

start=l i s t ( scale s=scale s , scale t=scale t , s i l l =s i l l ,
nugget=nugget )

f ix=c ( power s=power s ,mean = mean,705

power2 s=power2 s ,
power2 t=power2 t , smooth t=smooth t ,
sep=sep )

param <− c ( start , f ix )
710

summary( d i s t ( coords ) )
max( d i s t ( coords ) ) /maxdist
max( d i s t ( time ) ) /maxtime
summary( d i s t ( time ) )
cc = 3715

#2 : STBEU in OpenCL framework wi th CPU
r e s1 0=STBEUFit( start , f ix , coords , time , cc , datos ,

type d i s t , maxdist , maxtime ,720

winc , winstp ,NULL,NULL, type subs , weighted
, v a r e s t = TRUE

)

725
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###### p a i r w i s e l i k e l i h o o d ########
f i x e d=as . l i s t ( f ix )
r e s2 0=GeoFit (data=datos , coordx=coords , coordt=time ,

corrmodel=”Wen time ” ,
start=start , f i x e d=f ixed ,730

maxdist=maxdist , maxtime=maxtime , va r e s t = TRUE)

re s1 0$par
r e s2 0$par735
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