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a b s t r a c t

We establish explicit socially optimal rules for an irreversible investment decision with
time-to-build and uncertainty. Assuming a price sensitive demand function with a
random intercept, we provide comparative statics and economic interpretations for three
models of demand (arithmetic Brownian, geometric Brownian, and the Cox–Ingersoll–
Ross). Committed capacity, that is, the installed capacity plus the investment in the
pipeline, must never drop below the best predictor of future demand, minus two biases.
The discounting bias takes into account the fact that investment is paid upfront for future
use; the precautionary bias multiplies a type of risk aversion index by the local volatility.
Relying on the analytical forms, we discuss in detail the economic effects. For example, the
impact of volatility on the optimal investment is negligible in some cases. It vanishes in
the CIR model for long delays, and in the GBM model for high discount rates.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

How to track demand when the time-to-build retards capacity expansion? When to invest and how much? We answer
these questions with a model of irreversible investment. The objective of the decision-maker is to maximize the expected
discounted micro-economic social surplus, i.e., the sum of the consumers' net surplus and of the firms' profit. We are able to
show in particular that the solution is implementable as a competitive equilibrium. We are able to calculate explicit,
compact, decision rules.

In many capitalistic industries, construction delays are essential. In this paper, we focus on electricity generation. In this
sector, construction delays can be considerable: they could be only one year for a small wind-farm but could be three years
for a gas turbine and eight to ten years for a nuclear plant. The scenarios of the evolution of demand with their trends, their
drag force, and their stochastic parts require particular attention. To this purpose, we develop the comparative statics and
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economic interpretations for three demand models applied to electricity generation. The intercept of the price sensitive
demand function follows either an arithmetic Brownian motion as in Bar-Ilan et al. (2002), or a geometric Brownian motion
as in Bar-Ilan and Strange (1996) and Aguerrevere (2003), or the Cox–Ingersoll–Ross (CIR) model. The latter is a mean-
reverting process, and, to our knowledge, no real options investment model exists in the literature with time-to-build and a
process of this type. The basic existence and regularity results are provided in a companion paper (Federico and Pham,
2014), but we simplify the specification for the sake of calculability.

An exact decision rule facilitates the clear understanding of the effects at play. The decision rule stipulates what the
committed capacity should be, that is, the installed capacity plus capacity under construction. The action rule, given the
current conditions, is that the committed capacity must not fall below the best predictor of demand after the delay, minus
two biases. The first bias is a pure discounting bias unrelated to uncertainty: because the investment is paid for upfront but
only produces after the delay, the required committed capacity is reduced. The second one is a precautionary bias where a
risk aversion index is multiplied by local volatility.

We also illustrate the practical importance of a possible saturation of the demand with the CIR model. Indeed, one can
observe in Fig. 1 that the electricity consumption in several developed countries slows down and seems to reach some
ceiling. The saturation is clearer for per capita electric consumption. We show that the investors' behavior is very different
depending on whether demand is above or below the long-run average, or target. When demand is above the target,
the investor is almost insensitive to the current demand, except if the return speed is very slow. Below the target, the
comparison between the time-to-build and the expected time-to-target is critical: if the time-to-build is longer, then the
optimal committed capacity is practically the target itself minus the biases; if the time-to-build is shorter, then the investors
observe the process and invest progressively.

The literature on the topic provides a number of insights. Table 1 provides a tentative classification. The competitive
pressure matters: competition kills the value of waiting and thus accelerates investment. Grenadier (2000, 2002) and
Pacheco de Almeida and Zemsky (2003) follow this line of thought. We exclusively use a competitive market and show that
this effect is completely internalized. The seminal work McDonald and Siegel (1986) on the option to wait in the case of
irreversible decisions shows that uncertainty has a negative effect on investment. Strong support for this result is that with
greater volatility, investment is triggered by a higher current product price, i.e. a smaller probability of a market downturn.
Several extensions provide conditions under which this result does not hold or might be mitigated. Construction delays, that
is, the time between the decision and the availability of the new capacity, have attracted the attention of economists.
In particular, the models in Bar-Ilan and Strange (1996), Bar-Ilan et al. (2002), and Aguerrevere (2003) exhibit situations
where an increase in uncertainty leads to an increase in investment.
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Fig. 1. (Left) Electric power consumption per capita. (Right) Electric power consumption.
Source: World Bank.

Table 1
Papers on investment with uncertainty and time-to-build.

Paper Objective Competition Investment

Majd and Pindyck (1986) Firm No Irreversible
Bar-Ilan and Strange (1996) Firm No Reversible
Grenadier (2000) Firm Perfect Irreversible
Bar-Ilan et al. (2002) Planner No Irreversible
Grenadier (2002) Firm Imperfect Irreversible
Aguerrevere (2003) Planner/firm Perfect/imperfect Irreversible with flexible production
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The models that exhibit a positive effect on investment from an increase in uncertainty do so only for a specific range of
parameters. Besides, the quantitative effects are very small. Bar-Ilan et al. (2002) show in their simulations that when the
uncertainty on demand is multiplied by five, then the investment threshold moves only by 1%. And as the authors
themselves point out, the investment thresholds are nearly independent of the level of uncertainty. The large effects found
in Majd and Pindyck (1986) are reconsidered in Milne and Whalley (2000).

In Aguerrevere (2003), a paper with which we share most of the modeling choices, the production is flexible,
although the capacity accumulation is not. Investors keep the choice to produce only when it is profitable, and
thus the rigidity of investment is attenuated by the option to produce or not. The capacity reserves are all the more
profitable the longer the time-to-build. In consequence, uncertainty tends to increase the investment rate. This
paper is significant because of the way it integrates meaningful economic questions, and the numerical simulations are
instructive.

As far as electricity production is concerned, the flexibility of the base production is limited either for technological
reasons (nuclear plants) or because the fixed cost per idle period is important (coal- or gas-fired power plants). In which
case, the cost difference between producing or not is narrow. Our approach fills a gap in the literature.

This paper is organized as follows. Section 2 describes and justifies our modeling approach. Solutions and general
properties are provided in Section 3. We give the expression of the decision rule and we show that the solution to the
optimization program can be decentralized as a competitive equilibrium. The economic analysis of the joint effect of time-
to-build and uncertainty is given in Section 4 for the a geometric Brownian motion, and in Section 5 for the CIR model.
Section 6 concludes.

For information on the popular arithmetic Brownian motion application, see Appendix A.
2. The model

We set up a model of an irreversible investment decision in which the objective is to maximize the expected
discounted social surplus, i.e., the sum of the consumers' net surplus and of the firms' profit. This economic
objective has a simple mathematical expression: it amounts to tracking the current demand of electricity using a quadratic
penalty.
1.
 The inverse demand function at date t is

ptðQ Þ ¼ ηþθðDt�Q Þ; ð1Þ
with ηZ0 and θ40, where p is the price and Q is the output.1 The (quasi) intercept ðDtÞtZ0 is a diffusion that satisfies
the SDE:

dDt ¼ μðDtÞ dtþσðDtÞ dWt ;

D0 ¼ d;

(
ð2Þ

where ðWtÞtZ0 is a Brownian motion on some filtered probability space ðΩ;F ; ðF tÞtZ0;PÞ. Without loss of generality,
we suppose that the filtration ðF tÞtZ0 is the one generated by the Brownian motion W and enlarged by the P�null
sets.
2.
 There is a time lag h40 between the date of the investment decision and the date when the investment is completed
and becomes productive. Thus, the investment decision at time t brings additional capacity at time tþh.
3.
 At time t¼0, there is an initial stream of pending investments initiated in the interval ½�h;0Þ that are going to be
completed in the interval ½0;hÞ. The function that represents the cumulative investment planned in the interval ½�h; s�,
sAð�h;0Þ, is a nonnegative non-decreasing càdlàg function. Therefore, the set where this function lives is

I0 ¼ fI0: ½�h;0Þ-Rþ ; s↦I0s c"adl"ag; non� decreasingg: ð3Þ

We set

I00� ¼ lim
s↑0

I0s ; I0AI0: ð4Þ
4.
 The decision variable is represented by a càdlàg nondecreasing and nonnegative ðF tÞtZ0�adapted process ðItÞtZ0, where
It represents the cumulative investment in the interval ½0; t�. Hence, the set of admissible strategies, which we denote by
I , is the set

I ¼ fI:Rþ �Ω-Rþ ; I c"adl"ag; ðF tÞtZ0�adapted;nondecreasingg: ð5Þ
By setting I0� ≔0, formally dIt is the investment at time tZ0.
1 Aguerrevere (2003) takes a similar form and discusses its flexibility.
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5.
 Given I0AI0, IAI , we set

I t ¼
I0t ; tA ½�h;0Þ;
I00� þ It ; tZ0:

(
ð6Þ

Then we assume that the production capacity ðKtÞtZ0 is the càdlàg process following the controlled dynamics driven by
the state equation:

Kt ¼ kþ I t�h; 8tZ0: ð7Þ
The equality above can be seen as a very special controlled locally deterministic equation with delay in the control
variable.
Significantly, the randomness in (7) enters only through I, and there are no stochastic integrals.
6.
 The objective is to minimize over IAI the functional

Fðk; d; I0; IÞ ¼ E

Z þ1

0
e�ρt 1

2
ðKt�DtÞ2 dtþq0 dIt

� �� �
; ð8Þ

where q040 is the unit investment cost.
Economic interpretation of the objective. Given (1), the standard micro-economic connection between the demand function
and the instantaneous net consumers' surplus St at date t is

St ¼
Z Kt

0
ðηþθðDt�qÞÞ dq�ptKt : ð9Þ

This is the sum of the values given to each unit consumed at date t minus the price paid for them. Remark that if we
interpret η as the unit production cost, and if there is some fixed cost f per year, the instantaneous producer's profit πt is
ðpt�ηÞKt� f . The social (or total) instantaneous surplus TSt ¼ Stþπt is

TSt ¼ θ
Z Kt

0
ðDt�qÞ dq� f ð10Þ

TSt ¼ �θ
2
ðKt�DtÞ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Depends on control

þθ
2
D2
t � f|fflfflfflffl{zfflfflfflffl}

Does not

: ð11Þ

Finally, the program is the maximization of the expected discounted sum of such instantaneous social surpluses minus the
investment costs:

max
IAI

E

Z þ1

0
e�ρtðTSt dt�q0 dItÞ:

� �
ð12Þ

Indeed, if we normalize θ to 1 and get rid of the part not depending on the control in TSt , we retrieve the optimization
problem we have set at point 6 above.

In the following, we will exploit the fact that the investment process and the instantaneous demand function (1)
generate a spot price process:

pt≔ηþDt�Kt : ð13Þ

It reflects the marginal cost plus a term, which can be negative, that measures tension in the market.
Diffusion process: The process D satisfies the following conditions2: we assume that the coefficients μ;σ:R-R in (2) are

continuous with sublinear growth and regular enough to ensure the existence of a unique strong solution to (2). Further, we
assume that this solution takes values in an open set O of R and that it is non-degenerate over this set, that is, σ240 on O.
In the example we shall discuss in the next section, the set O will be R or ð0; þ1Þ. We observe that, due to the assumption
of sublinear growth of μ;σ, standard estimates in SDEs (see, e.g., Krylov, 1980, Chapter II) show that there exist κ0; κ1
depending on μ;σ such that

E½jDt j2�rκ0ð1þjdj2Þeκ1t ; tZ0: ð14Þ
2 A reference for the theory of one-dimensional diffusions is Karatzas and Shreve (1991).
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3. Solution

The problems with delay are by nature of infinite dimension. Referring to our case, the functional F defined in (8)
depends not only on the initial k but also on the past of the control I0, which is a function. Nevertheless, the problem can be
reformulated in terms of another one-dimensional state variable not affected by the delay. We rewrite the objective
functional to introduce a new state variable, the so-called committed capacity.

The idea of the reformulation in control problems with delay is contained in Bar-Ilan et al. (2002) (cf. also Bruder and
Pham, 2009) in the context of optimal stochastic impulse problems. Here, we develop this idea for singular stochastic
control. It is worth stressing that, unlike (Bar-Ilan et al., 2002), we simplify the approach by working not on the value
function of the optimization problem but directly on the basic functional.

3.1. Reduction to a problem without delay

For the case of the domain for the couple of variables (k,d) of our problem, the set is3:

S ¼R�O: ð15Þ
Define the committed capacity as the capacity h units of time later, i.e.,

Ct≔Ktþh ¼ cþ It ; ð16Þ
where c≔kþ I00� . Notice that, unlike (7), (16) represents a controlled dynamics not containing the delay in the control variable.

From now on, the dependence of K on k; I0; I; the dependence of C on c; I; and the dependence of D on d are denoted
respectively as Kk;I0 ;I , Cc;I , and Dd.

The crucial facts that allow the removal of the delay are the following:
1.
pro
The committed capacity is ðF tÞtZ0�adapted. This is due to the special structure of the controlled dynamics of K that

makes Kk;I0 ;I
tþh known given the information F t .
2.
 Within the interval ½0;hÞ, the control I does not affect the dynamics of Kk;I0 ;I , which is (deterministic and) fully

determined by I0. In other words, Kk;I0 ;Ið1Þ

t ¼ Kk;I0 ;Ið2Þ

t for every tA ½0;hÞ and every Ið1Þ; Ið2ÞAI . Therefore, we canwrite without

ambiguity Kk;I0

t for tA ½0;hÞ to refer to the “controlled” process K within the interval ½0;hÞ.

Given these observations, we have the following:

Proposition 1.
Fðk; d; I0; IÞ ¼ E

Z þ1

0
e�ρtðgðCc;I

t ;Dd
t Þ dtþq0 dItÞ

� �
þ Jðk; d; I0Þ; ð17Þ

where

Jðk; d; I0Þ ¼ 1
2
E

Z h

0
e�ρtðKk;I0

t �Dd
t Þ2 dt

" #
; ð18Þ

and g:S-Rþ is defined by

g c; dð Þ≔1
2
e�ρhE ðc�Dd

hÞ2
h i

¼ 1
2
e�ρh c2�2β0 dð Þcþα0 dð Þ� �

; ð19Þ

where

α0ðdÞ≔E½jDd
hj2�; β0ðdÞ≔E½Dd

h�: ð20Þ

Proof. Using the definition of g, the time-homogenous property of D, we have

E½gðCc;I
t ;Dd

t Þ� ¼
1
2
e�ρhE½E½ðc0 �Dd0

h Þ2�jc0 ¼ Cc;I
t ; d0 ¼ Dd

t
�

¼ 1
2
e�ρhE½E½ðCc;I

t �Dd
tþhÞ2 F tj ��

¼ 1
2
e�ρhE½ðCc;I

t �Dd
tþhÞ2�

¼ 1
2
e�ρhE½ðKk;I0 ;I

tþh �Dd
tþhÞ2�: ð21Þ
3 The real problem is meaningful for kZ0; nevertheless, it is convenient from the mathematical point of view to allow the case of ko0. Because the
blem is irreversible and starts from kZ0, the capital remains nonnegative.



R. Aïd et al. / Journal of Economic Dynamics & Control 51 (2015) 240–256 245
Therefore, (8) can be rewritten as

Fðk;d; I0; IÞ ¼ E

Z
½0;hÞ

e�ρt 1
2
ðKk;I0 ;I

t �Dd
t Þ2 dtþq0 dIt

� �� �
þE

Z
½h;þ1Þ

e�ρt 1
2
ðKk;I0 ;I

t �Dd
t Þ2 dtþq0 dIt

� �� �

¼ E

Z
½0;hÞ

e�ρt 1
2
ðKk;I0 ;I

t �Dd
t Þ2 dtþq0 dIt

� �� �
þE

Z þ1

0
e�ρðtþhÞ 1

2
ðKk;I0 ;I

tþh �Dd
tþhÞ2 dtþq0 dItþh

� �� �

¼ E

Z þ1

0
e�ρtðgðCc;I

t ;Dd
t Þ dtþq0 dItÞ

� �
þ Jðk; d; I0Þ: □ ð22Þ

Thus, the functional Jðk;d; I0Þ defined in Proposition 1 does not depend on IAI . Therefore, by setting

Gðc; d; IÞ≔E

Z þ1

0
e�ρtðgðCc;I

t ;Dd
t Þ dtþq0 dItÞ

� �
; ð23Þ

the original optimization problem of minimizing Fðk; d; I0; �Þ over I is equivalent to the optimization problem without delay:

vðc; dÞ≔inf
IAI

Gðc; d; IÞ subject to ð16Þ and ð2Þ: ð24Þ

Remark. We consider only the case of a fixed time-to-build. It would be more realistic to assume that the time-to-build is
uncertain at the time the investment is launched. This can be modeled by a family of random variables indexed in time (e.g.,
the date when the investment is launched). Assuming that there is a maximum value H40 for the time-to-build, one can
consider a family of random variables ðhsÞsZ �H , each taking values in ½0;H�, with hs representing the random time-to-build
corresponding the investment launched at time s. The expression of the capacity K corresponding to (7) would be

Kt ¼ k0þ
Z t

�H
1fhs r t� sg dI s:

However, even assuming independence between ðhsÞsZ �H and D, it seems not possible – or, at least, not straightforward – to
define a variable like the committed capacity, as the one we are able to define here in the case of a fixed time-to-build, to
solve the problem.
3.2. Solution characterization

In the sequel, to give sense to the problem (i.e., to guarantee finiteness), we make the standing assumption that the
discount factor ρ satisfies

ρ4maxðκ1;0Þ; ð25Þ
where κ1 is the constant appearing in (14). This assumption guarantees that there is some κ depending on μ;σ s.t.

0rvðc; dÞrκð1þjcj2þjdj2Þ; 8ðc; dÞAS: ð26Þ
In particular, it implies that the value function v is finite and locally bounded.

Federico and Pham (2014) prove the following facts4:
1.
wit
v is convex with respect to the variable c.

2.
 v is differentiable with respect to c, and vc is continuous in S.

3.
 The function d↦vcðc; dÞ does not increase for each cAR.

4.
 vcZ�q0.
In view of these facts, there is now the continuation region

C≔fðc; dÞASjvcðc; dÞ4�q0g; ð27Þ
and the action region

A≔fðc; dÞASjvcðc; dÞ ¼ �q0g: ð28Þ
Therefore, C and A are disjoint and S ¼ C [ A. Due to the continuity of vc, the continuation region is an open set of S, while
the action region is a closed set of S. Moreover, due to the monotonicity of vcðc; �Þ and to the convexity of vð�; dÞ, C and A can
4 Federico and Pham (2014) deal with reversible problems. We can apply their results by taking an infinite cost of disinvestment. The irreversible case
h a profit maximization criterion is studied with similar generality in Ferrari (2013).
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be rewritten as

C¼ fðc; dÞASjc4 ĉðdÞg; A¼ fðc; dÞASjcr ĉðdÞg; ð29Þ
where ĉ:O-R is a non-decreasing function, see Fig. 2.

The latter function is the optimal boundary for the problem, in the sense that it characterizes the optimal control as
follows. The optimal control consists of keeping the state process (C,D) within the closure of the continuation region C . By
continuity of trajectories of D and continuity of the optimal boundary ĉ, this is obtained as follows:
1.
Fed
At time t¼0:
(a) If ðC0;D0Þ ¼ ðc; dÞ=2C , i.e., co ĉðdÞ, then the optimal investment dI0 is finite and equal to ĉðdÞ�c40.
(b) If ðC0;D0Þ ¼ ðc; dÞA IntðCÞ, i.e., c4 ĉðdÞ, then no investment is done.
(c) If ðC0;D0Þ ¼ ðc;dÞA∂C, i.e., c¼ ĉðdÞ, then an infinitesimal investment is done in order to reflect vertically and upwards

the process (C,D) at the boundary.
5 No
erico
2.
 At time t40 just the last two actions (b) and (c) described above for time t¼0 are possible.

In the case when ðCt ;DtÞA∂C, the description of the optimal control above is informal. Theorem 1 below gives the rigorous
and explicit solution.

The form of the solution is typical of singular stochastic control when there are no fixed costs of investment and the
uncontrolled state process (here the demand D) has continuous trajectories: except at time t¼0, when a jump (a finite size
investment) is possible, the remaining part of the optimal control does not contain finite size investments. From a practical
point of view, this is a bit unsatisfactory, since actually one would like to know how much to invest. On the other hand, as
we have said, this solution is typical of the model, whose value is that it allows analytical tractability.

In practice, the solution should be read as follows: the rule is to keep the committed capacity Ct always greater than (or
equal to) the value ĉðDtÞ, and to do the minimal effort to obtain that. In this sense, clearly our mathematical model is only a
theoretical approximation of the reality.

We have an explicit characterization of ĉ, that is, of the optimal control that is provided by the following result.

Theorem 1. The optimal boundary is explicitly written as

ĉ dð Þ ¼ β0 dð Þ�q0ρe
ρhþ1

2
σ2 dð Þβ″ðdÞψ

0ðdÞ�β0ðdÞψ″ðdÞ
ψ 0ðdÞ ; ð30Þ

where β0ðdÞ is defined in (20) as E½Dd
h�,

βðdÞ≔
Z þ1

0
e�ρtE½β0ðDd

t Þ� dt; ð31Þ

and ψ is the strictly increasing fundamental solution to the linear ODE:

Lϕ	 

dð Þ≔ρϕ dð Þ�μ dð Þϕ0 dð Þ�1

2
σ2 dð Þϕ″ dð Þ ¼ 0; dAO: ð32Þ

The unique optimal control for the problem (24) is the process

Int ¼ ĉ sup
0r sr t

Dd
s

� �
�c

� �þ
: ð33Þ

Proof. Theorem 4.2 and Corollary 5.2 of Federico and Pham (2014) state the above claim5 with

ĉ dð Þ ¼ ρ β dð Þ� ψ ðdÞ
ψ 0ðdÞβ

0 dð Þ�q0e
ρh

� �
; ð34Þ

Therefore, if (34) can be rewritten in the form (30), then it is more suitable for interpretation.
te however that here we have the term eρh multiplying q0. This is due to the fact that our function g is equal to the function g in Section 5 of
and Pham (2014) up to the constant e�ρh .
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To this purpose, because ψ solves the ODE (32), we have

ĉ dð Þ ¼ ρβ dð Þ�μ dð Þβ0 dð Þ�1
2
σ2 dð Þψ″ðdÞ

ψ 0ðdÞβ
0 dð Þ�q0ρe

ρh: ð35Þ

On the other hand, it is well-known from the connection between the linear ODE and the one-dimensional diffusions that
the function β solves the nonhomogeneous ODE (32) with the forcing term β0:

Lβ¼ β0: ð36Þ
Hence, combining (35) and (36), the expression (30) follows. □

The social optimum we have characterized assumes that all decisions are controlled by one agent, the fictitious social
planner. Proposition 2 states that if investors with the same irreversible technology are many, and if they take the price
process as given, then they collectively behave like the social planner would like to see them behaving. Consumers are not
strategic, as we have shown in the economic interpretation of the objective (Section 2). In other terms, a competitive
equilibrium implements the social optimum. This is the second fundamental theorem of welfare economics, adapted to our
stochastic infinite time-horizon modeling.
Proposition 2. Let pk;I
0 ;d;n

t ≔ηþDd
t �Kk;I0 ;n

t be the spot price process (see Eq. (13)) for initial conditions k; I0 and d, where Kk;I0 ;n is
the optimal capital process (i.e. corresponding to the optimal control In provided by the solution of the optimization problem).
If competitive firms have linear cost, with η being the unit production cost and q0 the unit investment cost, the expected net

present value of a unit investment for a price-taking firm is

E

Z þ1

h
e�ρtðpk;I0 ;d;nt �ηÞ dt

� �
�q0r0; ð37Þ

with the equality holding if and only if ðkþ I00� ; dÞAA.

The proof is in Appendix B. Competitive investment is null if the LHS is strictly negative, whereas any investment is
optimal (in particular the socially optimal one) in case of equality.

3.3. Interpretation of the optimal boundary

The optimal boundary ĉðdÞ defined by (30) and the optimal control defined by (33) are easily amenable to interpretations.
The optimal boundary is composed of three terms:

ĉðdÞ ¼ β0ðdÞ�bρ�bσðdÞ: ð38Þ
1.
 β0ðdÞ is what d is expected to be h years later: one commits to what demand is expected to be when the investment
becomes operative.
2.
 The discounting bias bρ ¼ q0ρeρh expresses the fact that the investment is paid right away, whereas the cost of the
insufficient capacity is discounted.
This effect can be retrieved with a heuristic non-stochastic (σ¼0) version of the model where irreversibility constraints
are ignored. Suppose that instead of following the demand, the investor wants Kt to follow Dt�Δ. This is easy to
implement in a deterministic world, and the investor suffers the quadratic lossZ þ1

h
e�ρt 1

2
Δ2

� �
dt ¼ 1

2
Δ2e�ρh

ρ
; ð39Þ

see “Depends on control” in Eq. (11). The advantage of this underinvestment is that, at date 0, the investor saves, once for
all, q0Δ. The total investment cost is therefore

q0

Z þ1

0
e�ρt dDt�q0Δ: ð40Þ

If the investor wants to choose the optimal Δ, he only minimizes

1
2
Δ2e�ρh

ρ
�q0Δ: ð41Þ

The minimizing Δ is precisely the discounting bias q0ρeρh.
3.
 The precautionary bias

bσ dð Þ≔1
2
σ2 dð Þ β0 dð Þψ″ðdÞ

ψ 0ðdÞ �β″ dð Þ
� �

ð42Þ
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gives the security margin due to the stochastic nature of the demand process. It is practically null if, for example, σðdÞ is
close to 0.
The calculations go one step further if we assume the affine drift μðdÞ ¼ adþb. Then we have

β0 dð Þ ¼ deah�bh
1�eah

ah
: ð43Þ

The ratio must be taken as �1 when a¼0. Therefore, β″¼ 0 in this case, and

bσ dð Þ ¼ 1
2
σ2 dð Þ e

ah

ρ�a
ψ″ðdÞ
ψ 0ðdÞ : ð44Þ
For the latter term bσðdÞ,
�
 The delay has an impact only if aa0. The sign of a determines the impact of the delay: the uncertainty about the future
grows (diminishes) when h increases if a40 ðao0Þ, which justifies a bigger (smaller) bias.
�
 The factor σ2ðdÞ is local, it takes into account the local risk only.

�
 The factor ψ″ðdÞ=ψ 0ðdÞ40 takes into account the global risk.6 This term is a kind of absolute risk aversion related to the

dynamics of D, not the delay.

4. Geometric Brownian motion

4.1. The optimal boundary

In the case where the demand follows a geometric Brownian motion (GBM):

dDt ¼ μDt dtþσDt dWt ; μAR; σ40; ð45Þ

with initial datum d40, the minimal constant κ1 for which (14) is verified is 2μþσ2. Therefore, according to (25), we
assume that

ρ42μþσ2: ð46Þ

In this case O¼ ð0; þ1Þ and

β0 dð Þ ¼ eμhd and β dð Þ ¼ eμh

ρ�μ
d: ð47Þ

Moreover,

Lϕ	 

dð Þ ¼ ρϕ dð Þ�μdϕ0 dð Þ�1

2
σ2d2ϕ″ dð Þ; ϕAC2 O;Rð Þ; ð48Þ

and the fundamental increasing solution to Lϕ¼ 0 is

ψ ðdÞ ¼ dm; ð49Þ

where m is the positive root of the equation

ρ�μm�1
2
σ2m m�1ð Þ ¼ 0: ð50Þ

Due to Theorem 1, we have

ĉ dð Þ ¼ deμh�q0ρe
ρh�1

2
σ2 eμh

ρ�μ
m�1ð Þd; ð51Þ

with

m¼ 1
σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�1

2
σ2

� �2

þ2ρσ2

s
� μ�1

2
σ2

� �0
@

1
A: ð52Þ

Further, (46) implies m42.
6 Rogers and Williams (2000, Proposition (50.3), Chapter V, p. 292) show that ψ strictly increases and is convex.



R. Aïd et al. / Journal of Economic Dynamics & Control 51 (2015) 240–256 249
4.2. Comparative statics

Note that

ĉ dð Þ ¼ Ad�q0ρe
ρh; with A¼ 1

2
eμh

ρ�μ
2ρ�μþ1

2
σ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�1

2
σ2

� �2

þ2ρσ2

s0
@

1
A: ð53Þ

The next result analyzes the sensitivity of the optimal boundary, and thus of the action region with respect to the
parameters of the model.

Proposition 3. The optimal boundary expressed by (53) has the following properties:
1.
 ∂ĉðdÞ=∂q0o0,

2.
 A40,

3.
 ðh=AÞ∂A=∂h¼ μh, and it has the sign of μ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

4.
 σ=A
� �

∂A=∂σ ¼ �σ2= ðμ�1
2σ2Þ2þ2ρσ2o0, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
5.
 μ=A
� �

∂A=∂μ¼ μhþ1
2 μ= ρ�μ

� �� �ð1� μþ1
2 σ

2
� �

= ðμ�1
2 σ2Þ2þ2ρσ2Þ, and it has the sign of μ
6.
 ρ=A
� �

∂A=∂ρ¼ 1
2 ðρσ2þμ2�1

2 μσ
2�μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ�1

2 σ2Þ2þ2ρσ2
q

Þ= ρ�μ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðμ�1
2 σ2Þ2þ2ρσ2

q
40.
Proof. Properties 1, 3, and 4 are immediate.
The other properties involve the same square root for the denominator. The signs are determined in all of the cases by

showing that the numerators can be rearranged and simplified to show that their signs depend only on the sign of ρðρ�μÞ,
which is positive given (46). The terms have the same sign for all of the relevant parameters. □

Property 1 says that the investment decreases with respect to the investment cost. Property 2 says that the investment is
responsive to the current demand. Property 3 shows the importance of μ: when, e.g., μ40, a longer delay means above all a
higher future demand, hence a higher investment. Property 4 confirms that more uncertainty makes the investor more
cautious.

Property 5 has a similar logic as property 3: the impact on future demand dominates. To refine the analysis, a focus on
the precautionary bias only is useful. Note that

bσ dð Þ ¼ 1
2

eμh

ρ�μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�1

2
σ2

� �2

þ2ρσ2

s
� μþ1

2
σ2

� �0
@

1
Ad40: ð54Þ

But,

μ
bσðdÞ

∂bσðdÞ
∂μ

¼ μ h�1
2

1
ρ�μ

2ρ�μþ1
2
σ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�1

2
σ2

� �2

þ2ρσ2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�1

2
σ2

� �2

þ2ρσ2

s
0
BBBBB@

1
CCCCCA: ð55Þ

In the second factor, the first term is positive and the second one is negative. We take μ40 for the discussion. The overall
sign of the elasticity depends, for example, on h: if h is small, then the elasticity is negative (the precautionary bias decreases
as μ increases); if h is big, then the elasticity is positive (the precautionary bias increases).

The discount rate has two antagonistic effects on the optimal boundary: the discounting bias increases with respect to ρ
because the benefits of investment are discounted, and the precautionary bias decreases because the future costs are
discounted. Indeed,

ρ
bσðdÞ

∂bσðdÞ
∂ρ

¼ 1
2

ρ
ρ�μ

μþ1
2
σ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�1

2
σ2

� �2

þ2ρσ2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�1

2
σ2

� �2

þ2ρσ2

s o0: ð56Þ

Property 6 reflects only the latter effect.

4.3. Simulations

In the reference scenario is ρ¼0.08 year�1, μ¼0.03 year�1, σ¼0.06 year�1/2, and q0 ¼ 1000 MEuro GW�1. These values
are grossly consistent with the behavior of demand in the countries pictured in Fig. 1. We assume that there is no committed
capacity at date 0, and that the demand starts at 10 GW.



Fig. 3. (Left) Investment threshold as a function of σ. (Right) investment threshold as a function of μ.

Fig. 4. (Left) Investment boundaries. (Right) Demand, committed capacity behavior in the geometric case for h¼8 years and h¼1 year when σ¼0.06.
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Fig. 3 shows the sensitivity of ĉ ð10 GWÞ for a range of volatilities σ and a range of drifts μ. Other parameters are those of
the reference scenario.

Fig. 4 shows the optimal boundaries (Left) and the committed capacities for h¼8 and h¼1 for the same trajectory of
demand, with σ¼0.06 and a starting point of d¼10 GW (Right). The committed capacities stop growing during the episode
where demand is (fortuitously) stabilized. The committed capacity increases with the delay. For the long delay, the
committed capacity is always ahead of the demand.
5. CIR model

5.1. The optimal boundary

For the case where the demand follows a Cox–Ingersoll–Ross model:

dDt ¼ γðδ�DtÞ dtþσ
ffiffiffiffiffi
Dt

p
dWt ; γ; δ;σ40; ð57Þ

then, under the assumption 2γδZσ2, we have O¼ ð0; þ1Þ. We suppose that this assumption is true. Also in this case (14) is
verified with κ1 ¼ ε for any ε40. Therefore, according to (25), we assume that ρ40.

This case has

β0 dð Þ ¼ e�γhdþð1�e� γhÞδ and β dð Þ ¼ e� γhd�δ
ρþγ

þδ
ρ
: ð58Þ

Moreover,

Lϕ	 

dð Þ ¼ ρϕ dð Þ�γ δ�d

� �
ϕ0 dð Þ�1

2
σ2dϕ″ dð Þ; ϕAC2 O;Rð Þ; ð59Þ
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and the increasing fundamental solution to Lϕ¼ 0 is

ψ ðdÞ ¼Mðρ=γ;2γδ=σ2;2γd=σ2Þ; ð60Þ
where M is the confluent hypergeometric function of the first type.7

Hence,

ĉ dð Þ ¼ e�γhdþð1�e�γhÞδ�q0ρe
ρh�1

2
σ2e

� γh

ρþγ
ψ″ðdÞ
ψ 0ðdÞ ð61Þ

ĉ dð Þ ¼ δþe�γh d�δ
� ��q0ρe

ρh�e� γh σ2

2γδþσ2

M 2þρ
γ
;2þ2γδ

σ2 ;
2dγ
σ2

� �
M 1þρ

γ
;1þ2γδ

σ2 ;
2dγ
σ2

� �d: ð62Þ
5.2. Comparative statics

The analysis is done with a stylized version of the optimal boundary based on the following results.

Proposition 4. The optimal boundary expressed by (62) verifies the following:
1.
7 See Abr
the tangent at d¼0 is the line

Tangent dð Þ ¼ γδ

γδþσ2

2

e�γhdþð1�e�hγÞδ�q0ρe
ρh; ð63Þ
2.
 the asymptote when d-1 is the line

Asymptote dð Þ ¼ ρ
ρþγ

e�γhdþ 1� ρ
ρþγ

e�γh
� �

δ�σ2

2γ
ρ

ρþγ
e�γh�q0ρe

ρh; ð64Þ
3.
 the intersection between the two lines above is

δþσ2

2γ
; δ�q0ρe

ρh
� �

: ð65Þ
Proof. The expression of the tangent line (63) at d¼0 immediately follows by the series expansion of M:

M a; b; zð Þ ¼ ∑
1

s ¼ 0

ðaÞs
ðbÞss!

zs ¼ 1þa
b
zþ aðaþ1Þ

bðbþ1Þ2!z
2þ⋯ ð66Þ

To calculate the asymptote, we start from (34). Let Mða; b; zÞ be the confluent hypergeometric function of the first type with
parameters a, b. Then
(i)
 zM0ða; b; zÞ ¼ aðMðaþ1; b; zÞ�Mða; b; zÞÞ (here M0 is the derivative w.r.t. z),

(ii)
 M a; b; zð Þ � ΓðbÞ

ΓðaÞe
zza�b, when z-1
Using (i),

Mða; b; zÞ
zM0ða;b; zÞ ¼

Mða; b; zÞ
zM0ða; b; zÞ ¼

Mða; b; zÞ
aðMðaþ1;b; zÞ�Mða; b; zÞÞ ¼

1

a
Mðaþ1; b; zÞ
Mða; b; zÞ �1

� �; ð67Þ

and using (ii), we get

lim
z-1

Mða; b; zÞ
zM0ða; b; zÞ ¼ 0: ð68Þ

Thus, the slope of the asymptote of ĉ is

α≔ lim
d-1

ĉðdÞ
d

¼ lim
d-1

ρβðdÞ
d

¼ ρ
ρþγ

e�γh ð69Þ
amowitz and Stegun (1965).
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and its intersection with the c-axis is

κ≔ lim
d-þ1

ðĉðdÞ�αdÞ: ð70Þ

Therefore,

κ ¼ δ 1� ρ
ρþγ

e� γh
� �

�κ1
ρ

ρþγ
e� γh�q0ρe

ρh; ð71Þ

where

κ1≔ lim
d-1

ψ ðdÞ
ψ 0ðdÞ: ð72Þ

To compute the latter, (i) is used to get

Mða; b; zÞ
M0ða;b; zÞ ¼

z

a
Mðaþ1; b; zÞ
Mða; b; zÞ �1

� �: ð73Þ

Then, the use of (ii) and of the identity aΓðaÞ ¼Γðaþ1Þ yields

lim
z-1

Mða; b; zÞ
M0ða; b; zÞ ¼ lim

z-1
z

z�a
¼ 1: ð74Þ

Thus, given that the function of interest is Mðρ=γ;2γδ=σ2;2γd=σ2Þ, we get κ1 ¼ σ2=2γ and the expression of the asymptote
(64) follows.
Finally, the expression of the intersection (65) is a direct implication of points 1 and 2 of this proposition. □

For the economic interpretations, ĉðdÞ has the stylized expression:

minfTangentðdÞ;AsymptoteðdÞg: ð75Þ
The kink point ðδþσ2=2γ; δ�q0ρeρhÞ is close to ðδ; δÞ if the uncertainty is small compared to the convergence speed, and if q0
is small.

When h and σ are small, the tangent is the 451 line minus the discounting bias: committed capacity follows demand. The
asymptote expresses a conservative behavior because the capacity increases by only ρ=ðρþγÞ for each unit increase of demand.

With a large convergence speed compared to the volatility (a small σ2=γ), the uncertainty has a negligible impact on the
optimal boundary.

The tangent and the asymptote become flatter and flatter as h increases: current conditions as measured by d matter less
when the delay is longer. The flattening effect is exponential. Reversion to the mean implies that as the delay increases, the
current demand progressively loses relevance for the prediction of the future demand. No precautionary bias is needed at
the limit for the large delays.
5.3. Simulations

The CIR model provides a rich setting to analyze the effects of the time-to-build, of the volatility, and of different
convergence rates. The following reference parameters are the discount rate is ρ¼0.08 year�1, the long-term demand is
δ¼20 GW, the demand approaches this limit at a speed γ¼0.8 or 0.08 year�1, and σ¼0.1 or 0:05 GW1=2 year�1=2. The
Fig. 5. (Left) Investment threshold ĉð10Þ as a function of σ. (Right) investment threshold ĉð10Þ as a function of μ.



Fig. 6. (Left) Investment boundaries. (Right) Demand, committed capacity behavior with the CIR model for an eight-year delay and a one-year delay in the
case of a large mean-reversion (γ¼0.8).

Fig. 7. (Left) Investment boundaries. (Right) Demand, committed capacity behavior in the CIR case for an eight-year delay and a one-year delay in the case
of a small mean-reversion (γ¼0.08).
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investment cost is q0 ¼ 1000 MEuro GW�1. We assume that there is no committed capacity at date 0, and that the demand
starts at 10 GW.

Fig. 5 shows the sensitivity of ĉ ð10 GWÞ. A range of volatilities σ (with γ¼0.08) and a range of mean-reversion
parameters γ (with σ¼0.1) are explore. Other parameters are those of the reference scenario.

We also consider four cases, where the delay h¼1 or 8, and the demand volatility σ¼0.1 or 0.05. Fig. 6 (Left) gives the
four boundaries. However, the two boundaries with h¼8 are almost completely flat and confounded. The other two have
very close tangents and asymptotes and are hard to discern visually. Fig. 6 (Right) shows the committed capacities for h¼8
and h¼1 for the same trajectory of demand with σ¼0.1. For a long delay, the committed capacity is immediately at the long-
term value while for short delay, more time is taken. In both cases, once the long-term value has been reached, committed
capacities barely increase.

Fig. 7 (Left) shows four boundaries with the same parameters as in Fig. 6 except that γ¼0.08. The boundaries have a less
marked kink than with a faster convergence rate: boundaries are more like the 451 line because the demand evolves much
more slowly, and they are much more alike in terms of positions and slopes.

Fig. 7 (Right) shows the committed capacities for h¼8 and h¼1 for the same trajectory of demand with σ¼0.1. The
committed capacities are more responsive to the current conditions because they are better predictors of the future demand
than when γ is large. This effect plays for demand levels below 20 or above. Longer delays go with greater committed
capacities.
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6. Conclusion

Electricity demand has a random part and is price sensitive. Our minimization of an expected quadratic loss is founded
on microeconomic theory, and our optimal solution can be implemented as a competitive equilibrium. In this paper where
the delay between the investment decision and activation of the new capacity is accounted for, we have characterized the
explicit decision rules for important classes of demand processes.

The benefits of closed-form solutions cannot be overstated, because we can show the interaction, in investors decisions,
between the time-to-build and the uncertainty. In particular, we identify the base rule and the two corrective terms: the
investor should invest if his or her committed capacity (i.e., the capacity in the pipeline) is below the best linear estimate of
the future demand, the given demand today, and the delay minus a discounting bias and a precautionary bias determined by
uncertainty and global risk aversion. The latter term varies substantially with the demand model.

In the arithmetic Brownian motion, the delay and the uncertainty have additive separate effects. In the geometric
Brownian motion, the shocks are amplified exponentially so that with a longer delay, restricting the future capacity becomes
more costly. On the other hand, the discounting bias is accentuated by the delay. The question of which of these opposite
effects dominates the other as the delay increases can be addressed with our explicit expressions. In the CIR case, reversion
to the mean implies that as the delay increases, the current demand progressively loses relevance for the prediction of the
future demand. No precautionary bias is needed at the limit for the large delays.
Appendix A. Arithmetic Brownian motion

A.1. The frontier

With an arithmetic Brownian model of demand, our model is a particular case of Bar-Ilan et al. (2002), where the fixed
investment cost is null. The optimal strategy is simpler. The demand dynamics are

dDt ¼ μ dtþσ dWt ; μAR; σ40; ð76Þ
then O¼R and (14) is verified with κ1 ¼ ε for each ε40. Therefore, according to (25), we assume that ρ40. Thus,

Lϕ	 

dð Þ ¼ ρϕ dð Þ�μϕ0 dð Þ�1

2
σ2ϕ″ dð Þ; ϕAC2 Oð Þ: ð77Þ

The increasing fundamental solution to Lϕ¼ 0 is ψ ðdÞ ¼ eλd where λ is the positive solution to

ρ�μλ�1
2
σ2λ2 ¼ 0: ð78Þ

Because, in this case,

β0 dð Þ ¼ dþμh and β dð Þ ¼ μh
ρ
þd
ρ
þ μ
ρ2: ð79Þ

Due to Theorem 1, ĉ is affine:

ĉ dð Þ ¼ dþμh�q0ρe
ρh�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þ2ρσ2

p
�μ

2ρ
: ð80Þ
A.2. Comparative statics

Consider that

∂2ĉðdÞ
∂h∂σ

¼ 0: ð81Þ

Whatever the time to build h, the investment is retarded in the same way by an increase in σ, and conversely. The additive
separability eliminates the cross effects between the uncertainty and the delay with this model, contrary to Bar-Ilan et al.
(2002).

An increase in uncertainty always retards investment:

∂ĉ dð Þ=∂σ ¼ � σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þ2ρσ2

p o0: ð82Þ

The variation of ĉðdÞ with respect to the time-to-build h is

∂ĉðdÞ=∂h¼ μ�q0ρ
2eρh: ð83Þ



Fig. 8. (Left) b≔ĉð10Þ�10 as a function of σ. (Right) Demand, committed and installed capacity behavior for an eight-year delay, σ ¼ 0:6 GW year�1=2.
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The effect is to hasten investment if μ is relatively large. If h is relatively large, then the cost of investment appears large
compared to the future discounted damage, and investment is retarded. We retrieve the effects encountered in the case of
the geometric Brownian motion.

Furthermore,

∂ĉ dð Þ=∂μ¼ hþ 1
2ρ

1� μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þ2ρσ2

p
 !

40; ð84Þ

and

∂ĉ dð Þ=∂ρ¼ �q0 1þhρ
� �

eρhþ1
2

μ2þρσ2�μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þ2ρσ2

p
ρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þ2ρσ2

p
 !

: ð85Þ

In the latter expression, the first term is negative (the discounting bias is reinforced), whereas the second term is positive
(the precautionary bias is attenuated). Thus, we get the same effects encountered in the case of the geometric Brownian
motion.

A.3. Simulations

In Fig. 8 (Left), b≔ĉðdÞ�d is given as a function of σ, for two contrasted values of h (1 and 8 years). The other parameters
are ρ¼0.08 year�1, μ¼ 0:3 GW year�1, with an initial demand of 10 GW and demand, committed capacity, and installed
capacity all equal at date 0 ðD0 ¼ C0 ¼ K0Þ.

Fig. 8 (Left) shows that the impact of the time-to-build with these values is much more important than the impact of
uncertainty.

By and large, this result is in line with Bar-Ilan et al. (2002). In their setting, increasing the time-to-build from one year to
eight years reverses the relation between uncertainty and investment, which is possible only because they are not separable.
Specifically, for a long delay, an increase in uncertainty hastens investments but decreases their level. But, these effects are
very small (Bar-Ilan et al., 2002, p. 85, Fig. 2).

The excess of committed capacity does not imply that the system will hold an excess of installed capacity. In fact, the
reverse is observed in Fig. 8 (Right). In the case of a delay of eight years, an excess of committed capacity as measured by the
value of b is 1.873 GW. But in eight years, the demand will grow on average 2.4 GW, which clearly indicates that the optimal
strategy is to avoid excess installed capacity.

Appendix B. Proof of Proposition 2

Let c≔kþ I00� . We prove first that

vcðc; dÞ ¼ E

Z þ1

0
e�ρtgcðCc;n

t ;Dd
t Þ dt

� �
; ð86Þ

where Cc;n is the optimal state process associated to the optimal control In provided by Theorem 1. Let InAI be optimal for
(c,d). Then

Gðcþε;d; InÞ�Gðc; d; InÞ
ε

Z
vðcþε; dÞ�vðc; dÞ

ε
: ð87Þ
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On the other hand,

Gðcþε; d; InÞ�Gðc;d: InÞ
ε

¼ E

Z þ1

0
e�ρt gðCc;In

t þε;Dd
t Þ�gðCc;In

t ;Dd
t Þ

ε
dt

" #
: ð88Þ

Taking the lim sup in (87) and taking into account (88), we get

lim sup
ε↓0

vðcþε; dÞ�vðc; dÞ
ε

rE

Z 1

0
e�ρtgcðCc;n

t ;Dd
t Þ dt

� �
: ð89Þ

On the other hand, arguing symmetrically with c�ε, we get

lim inf
ε↓0

vðc; dÞ�vðc�ε; dÞ
ε

ZE

Z þ1

0
e�ρtgcðCc;n

t ;Dd
t Þ dt

� �
: ð90Þ

Therefore, (89) and (90) assert (86).
Using the same argument as in (19) and taking into account (86) we get

vcðc; dÞ ¼ E

Z þ1

0
e�ρðtþhÞðKk;I0 ;n

tþh �Dd
tþhÞ dt

� �
¼ E

Z þ1

h
e�ρtðKk;I0 ;n

t �Dd
t Þ dt

� �
:

Now using the definitions of A; C and pk;I
0 ;d;n, the claim follows.
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